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Abstract

In this paper, a short-term home daily load forecasting realized
by a neural fuzzy network (NFN) and an improved genetic
algorithm (GA) is proposed. It can forecast the daily load
accurately with respect to different day types and weather
information. It will also be shown that the improved GA
performs better than the traditional GA on some benchmark test
functions. By introducing switches in the links of the neural
fuzzy network, the optimal network structure can be found by
the improved GA. The membership functions and the number
of rules of the neural fuzzy network can be generated
automatically. Simulation results for a short-term daily load
forecasting in an intelligent home will be given.

1. INTRODUCTION

Modern homes should have smart features to ensure a
higher degree of home security, entertainment and comfort.
To realize these features, reliable channels for the
communication among electrical appliances and users should
be present. Appliances should be used in an efficient way to
reduce the wastage of energy. This paper is based on an
intelligent home system [3). In this system, the AC power
line network is used not only for supplying electrical power,
but also serving as the data communication channel for
electrical appliances. With this AC power line data network,
a short-term load forecasting can be realized. An accurate
load forecasting can bring the following benefits to the
intelligent home: 1) Increasing the reliability {4] of the AC
power line data network, and 2) Optimal load scheduling.

Computational intelligence techniques have been applied in
load forecasting. Artificial neural networks have been
considered as a very promising approach to short-term load
forecasting [5-6], but its slow convergence time and poor
ability of processing linguistic information may cause some
problems. In recent year, fuzzy logic has been used to deal
with variable linguistic information in load forecasting [7].
By processing fuzzy information, reasoning with respect to a
linguistic knowledge base can be done. In [5-6], gradient-
descent (GD) algorithm was used to train the neural network
parameters. However, the common problems of convergence
to local minima and sensitivity to initial values persist.
Global search technique such as Genetic Algorithm (GA) [1]
may solve these problems. The contributions of this paper are
five-fold. First, we develop a neural fuzzy system with the
improved GA for short-term daily load forecasting in an
intelligent home. Simulation results will be given. Second,
new genetic operators are introduced in the improved GA. It
will be shown that the improved GA performs better than the
traditional GA based on the benchmark De Jong’s test
functions [2]. Third, the improved GA is implemented in
floating-point numbers; hence, the processing time is shorter

than that of the traditional GA. Fourth, the improved GA
needs only one user-input parameter (population size), instead
of three, for its implementation. This makes the improved
GA simple and easy to use, especially for the users who do
not have too much knowledge on tuning. Fifth, a neural
fuzzy network (NFN) with switches is proposed. By using
the improved GA, the optimal number of fuzzy rules can be
found.

1. IMPROVED GENETIC ALGORITHM

Genetic algorithms (GAs) [1] are powerful searching
algorithms to handle optimization problems. In this paper,
the traditional GA is modified and new genetic operators are
introduced to improve its performance. The probabilities of
crossover and mutation in the traditional GA are no longer
needed. Only the population size has to be defined. The
improved GA process is shown in Fig. 1..

A. Initial Population
The initial population is a potential solution set P. The first
set of population is usually generated randomly.

P={p|a P Prop_sie S » 1)
P: =[pi, p.‘; pi, pi,,_»,_,] s (2)
paral, < p, <paral,,i=1,...,pop_size;j=1, ..., no_vars(3)

where pop_size denotes the population size; no_vars denotes
the number of variables to be tuned; p, are the parameters

to be tuned; paral, and paral, are the minimum and

maximum values of the parameter p, . It can be seen from (1)

to (3) that the potential solution set P contains some candidate
solutions p, (chromosomes). The chromosome p, contains

some variables p, (genes).

B. Evaluation

Each chromosome in the population will be evaluated by a
defined fitness function. The better chromosomes will return
higher values in this process. The fitness function to evaluate
a chromosome in the population can be written as,

fiess = f(p,) )

The form of the fitness function depends on the application.

C. Selection

Two chromosomes in the population will be selected to
undergo genetic operations for reproduction. The
chromosome having a higher fitness value should have a
higher chance to be selected. The selection can be done by
assigning a probability g, to the chromosome p; :
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pop_size . .
qi=f(pi)/ 2. f,),i=1,2,..., pop_size (5)
=
The cumulative probability ¢, for p, is defined as,
4,=2.9,,i=1,2,..., pop_size 6)

J=l

The selection process randomly generates a nonzero floating-
point number, d e[O l], for each chromosome. Then, the
chromosome p, is chosen if §,, <d<g,,i=1,2, ..., pop_size,
and ¢,=0. It can be observed from this selection process
that a chromosome having a larger f{p,) will have a higher

chance to be selected.

D. Genetic Operations

The genetic operations are the averaging and the mutation
operations. If two selected chromosomes are p; and p;, the
offspring generated by the averaging process is given by,
0§ =|05] 05y : asm)_vars]=(p1+p2)/2 (7)
This offspring (7) will then undergo the mutation operation.
Three new offspring will be generated:

_[,e/ J j
nos, = [os, os] 08}, s |+
[blAnosI b,Anos, - bm,;‘,mAnosm_m]

»J=12,3 ®
where b,i=1,2, ..., no_vars, can only take the value of 0 or

1, Anos, , i =1, 2, ..
floating-point numbers with para’, <os{ +Anos, < pard’,,, .
The first new offspring (j = 1) has only one 4, = 1 (i being

randomly generated within the range) and all the others are
zeros. The second new offspring has some b, randomly set to

., ho_vars, are randomly generated

1 and others are zeros. The third new offspring has all 5, = 1.

These three new offspring will then be evaluated using the
fitness function of (4). The one with the largest fitness value
£, will replace the chromosome with the smallest fitness
value f, in the population if £, > f,. After the operation of
selection, averaging, and mutation, a new population is
generated. This new population will repeat the same process.
Such an iterative process can be terminated when the result
reaches a defined condition, e.g., the change of the fitness
values between the current and the previous iteration is less
than 0.001.

III. BENCHMARK TEST FUNCTIONS

De Jong’s Test Functions [2] are used as the benchmark
test functions to examine the applicability and efficiency of
the improved GA. Five test functions, f(x),i=1,2,3,4,5,
will be used, where x=[,\rl x xm_‘] . no_x is an integer
denoting the dimension of the vector x.

The five test functions are defined as follows,

S0=2x], -5.12< x5, £5.12

i=\

&)

where n =3 and the minimum point is at £,(0, 0, 0) =0

f(®)= f:(mOx (x,q -x,.’)‘ +(x, - 1)’), —2.048<x,£2.048 (10)
i=l

where n =2 and the minimum point is at £(0, 0) = 0.

f,(x)=6xn+z~:ﬂoor(x,.), -5.12<x,<5.12 (11)
im}

where n = 5 and the minimum point is at £({-5.12, -5], ...,

[-5.12, -5])=0.

The floor function, floor(), is to round down the argument to

an integer.

f,(x):iixx,f’+Gauss(0,]), -1.28<x,<1.28 (12)

i=l
where 7 = 30 and the minimum point is at £(0, ..., 0)=0.
The Gauss(0, 1) is a function to generate uniformly a random
floating-point number between 0 and 1 inclusively.

A=ty ——

~ j+2(x,. "aif)ﬁ

where {, }= [_32 E

—65.356 < x, <65.356

(13)
-16 0 16 32 - e 0 16 32
-32 -32 -32 -32 -32 . .- 32 32 32
k=500 and the minimum point is at f5(-32,~-32) = 1.
The fitness function for £, to f; is defined as,

Sfimess =11+ f;(x),i=1,2,3,4. (14)
and the fitness function for f; is defined as,
Sfitness =1/ f5(x) (15)

The improved GA goes through these 5 test functions. The
results are compared with those obtained by the traditional
GA [1]. Each simulation takes 500 iterations and the
population size is 20. Each parameter of the traditional GA is
encoded into a 40-bit chromosome and the probabilities of
crossover and mutation are 0.25 and 0.03 respectively. For
tests 1 to 5, the initial value arell 1 1], [o.5 05], [t - 1],
[05 - 05] and [I0 - 10] respectively. The results of
the average fitness values over 30 times of simulations are
tabulated in Table 1. It can be seen that the performance of
the improved GA is better than that of the traditional GA.

From Table I, the processing time of the improved GA is
much shorter than that of the traditional GA.

IV. TUNING MEMBERSHIP FUNCTIONS AND RULES

A. Neural Fuzzy Network with Rule Switches
We use a fuzzy associative memory (FAM) [8] rule base
type for the NFN. For an NFN, the number of possible rules
may be too large. This makes the network complex while
some rules may not be necessary. Thus, an NFN is proposed
which can have an optimal number of rules and membership
functions. A unit step function is introduced to each rule:
0if¢<0
o6)-{ <50 wem 16)
This is equivalent to adding a switch to each rule in the NFN.
Referring to Fig. 2, we define the input and output variables
as x,, i = 1, 2, ..., n, and y, respectively; where n is the
number of input variables. The behaviour of the NFN is
governed by p fuzzy rules in the following format;
Rg: TF x(t) is 4,,(x,(0) AND x,(1) is 4,, (x,(t)) AND ...
AND x,(1) is 4, (x,(0)
THEN y(f)is w,,t=1,2,...,u
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where u is the number of input-output data pairs; g=1, 2, ...,
Pp- is the rule number; w, is the output singleton of rule g.

p=[Im (13)
i=1

where m; is the number of membership function of input

variable x, and g; e[l,...,m,.], i=l..,n.

The membership function is bell-shaped as given by,

(05, )
202
4, @)= 7 (19
where parameter x, and o, are the mean value and the

standard deviation of the membership function respectively.
The grade of the membership of each rule is defined as,

Hg () = Aig (4 (0): dg, (53(D)-..* Apg (%,(1))
The output of the neural fuzzy network y(f) is defined as,

)4 2
20 =Y ngweslc,) / 2o
g=l

(20)

21
g=1
where ¢, denotes the rule switch parameter of the g-th rule.

B. Tuning
The proposed NFN can be employed to learn a multi-input-

single-output relationship in an application using the

improved GA. The desired input-output relationship is

described by,

y(O)=qlz(),1=1,2,....u

where y“(f) is the desired output the

2'(0)=[(t) () - z/()] and q() is an unknown non-

linear function. The fitness function is defined as,

fitness=1/1+err

where err=1/u i'yd (t)—y(q/yd ()

The objective is to minimize the value of (24) using the
improved GA by setting the chromosome to be [X, o, ¢,]

i

(22)

for input

(23)

(24

for all i, g;, g. The range of fitness in (23) is [0,1]. A larger
value of the fitness indicates a smaller err. Thus, an optimal
neural fuzzy network in terms of the number of rules and the
membership functions can be obtained.

V. SHORT-TERM LOAD FORECASTING SYSTEM

It is desired to forecast the load demand in a home with
respect to the weekday’s type number and the hour number.
The load forecasting system involves 168 multi-input-single-
output NFNs, one for a given weekday’s type number and an
hour number (7x24=168). The most important task in the
short-term load-forecasting problem is to select the input
variables. We use three types of input variables: Historical
load data — the hourly load values that represent the power
consumption habit of the family; Temperature inputs — the
average temperature at the previous day and the present day;
Rainfall index inputs — the average rainfall index at previous
day and the present day. The range of the rainfall index is set
between 0 and 1. 0 represents no rain and 1 represents heavy
rain. One of the 168 proposed NFN for daily load forecasting
is shown in Fig. 3. It is a 7-input-1-output network with rule
switches.  The inputs, z;, of the proposed NFN are:

z, =L'(d-1,h~1) which represents the load value at the
previous hour of the previous day, z, =L%(d-1,h) which
represents the load value at the forecasting hour of the
previous day, z, =L/(d-1,A+1) which represents the load
value at the next hour of the previous day, z, = average
temperature at the previous day. z, = average temperature at
the present day, z, = average rainfall index at the previous
day, z,= average rainfall index at the present day. The
output, y(t)= L(d,k) , where d=1, 2, ..., 7 is the weekday’s
type number (e.g. d = 1 for Monday, d = 7 for Sunday), h=
1,2, ...,24 is the hour number. One should note the special
case that if d = 1, (d-1) should be 7. L(d,h)is the forecasted
load for day-d, hour-h. ’

Real data of 12 weeks (week 1 to week 12) for learning and 2
weeks (week 13 to week 14) for testing are prepared. The
number of membership function for each input variables is 2
(m,=2,i=1,2,...,7) such that the numbers of rules is p =
27=128. From (21),

128 128
W)=Y g Wwgole,) / PWRO! 25)
g=1 g=1
fitness = —1 (26)
1+err
12
err =112 |y (- 5(6)/»* ) @7
t=1

(25) is for one of the 168 NFNs. The improved GA is
employed to tune the parameters and structure of the NFN of
(25). The population size is 10. Bounds of parameters are set
at 0<x <1 0<o, <04 and -l1g¢ <1 The

chromosomes are [%, o, 5,1, i=1...,7.8=12,g=1,...128.
The initial values of ¥,  , o, , 5, are 0.5, 02 and 1

respectively. The number of the iterations for training is 2000.
For comparison, a 7-input-l1-output NFN without rule
switches trained by the traditional GA (bit-length = 9) is also
applied for the load forecasting. The common network
parameters are kept unchanged. The probabilities of
crossover and mutation are 0.65 and 0.05 respectively. The
simulation data are tabulated in Table 1. The average
number of rules for the proposed NFN is 69.58, implying a
45.64% reduction of the number of rules after learning. Table
111 show the average training error (MAPE) based on data of
week 1 to week 12 and the average forecasting error (MAPE)
from week 13 to week 14 for Sunday. The MAPEs are
smaller as compared with the values offered by the traditional
NFN tuned by the traditional GA. Fig. 4 show the forecasted
daily load curve on Sunday at Week 13.

VI. CONCLUSION

In this paper, an improved GA has been proposed in which
new genetic operators have also been introduced. Based on
the benchmark, De Jong’s test functions, it has been shown
that the improved GA performs better than the traditional GA.
An NFN has been proposed in which a switch is introduced in
each fuzzy rule. Thus, the NFN can be optimized using the
improved GA. A short-term load forecasting in an intelligent
home has been realized using the proposed network.
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