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Abstract: This paper presents the estimation of the transmission
gain for an AC power line data network in an intelligent home.
The estimated gain ensures the transmission reliability and
efficiency. A neural-fuzzy network with rule switches is proposed
to perform the estimation. An improved genetic algorithm is
preposed to tune the parameters and the rules of the proposed
neural-fuzzy network. By turning on or off the rule switches, an
optimal rule base can be ohtained. An application example will
be given.

I. INTRODUCTION

Nowadays, homes [1] should offer smart features to ensure
higher security, more entertainment and comfort to residents,
A reliable communication channel amoeng electrical appliances
and users has to be present to support these features. The
energy can also be used in a more efficient manner. At present,
many researchers and companies are developing intelligent
home systems. A phone-based remote controller facilitates
home users to issue control commands to their home
appliances through telephones [2]. A small two-arm mobile
robot in a home can be controlled via an ISDN link [3]. In the
U.S., X-10 systems are commonly used to support low-cost
and slow-rate AC power line data networks.

Without relying on the manufacturers of electrical
appliances and installing a LAN, one simple way to realize the
communication channel [4] for home appliances and usersis to
make use of the AC power line. We have successfully realized
a power line data network [6] based on spread-spectrum
technology [5], which supports communications at 10 Kbps in
the noisy and signal-distorting environment of AC power lines.
This network serves as a backbone for an intelligent home
system through which electrical appliances can be controlled
via line/mobile phones, PDAs, keypads or personal computers
anytime and anywhere, inside or outside the home. One of the
major issues of the power line data network is the reliability,
which ensures the sent information to be correctly received.
However, the electric power line at home has many appliances
connected to it, and cach appliance has its own characteristics
that affect the power line conditions. When using the AC
power line as a networking medium [6], one has to deal with
problems such as electromagnetic interference, varying

impedance, narrow frequency impairments {due to noise), and’

signal attenuation. To increase the network reliability, a higher
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gain for transmitters should be used; however, the transmission
rate has to be reduced and the power for data transfer will
increase. Thus, the gain of the transmitters in a power line data
network is an important factor to ensure the transmission
reliability and efficiency. In this paper, a neural-fuzzy network
(NFN) with rule switches [7-8] is proposed to estimate the
transmitter gain. Thanks to the rule switches, an optimal rule
base can be obtained after training. An improved genetic
algorithm (GA) is ermployed to tune the parameters and the rule
base of the proposed NFN,

II. NEURAL-FUZZY NETWORK WITH RULE SWITCHES

We use a fuzzy associative memeory (FAM) [11] typed rule
base for the NFN. The main difference between the proposed
NFN and the traditional NFN is that a unit step function is
introduced to each rule. The unit step functions is defined as,

Oifg<0

Slg)= ,CEM 1

) {1ifg>0 3 (1)
This is equivalent to adding a switch to each rule in the NFN.
The rule is used if the corresponding rule switch is closed;
otherwise, the rule is not needed. An NFN with rule switches
is shown in Fig. 1. Referring to this figure, we define the input
and output variables as x; and y; respectively; where i=1,2, ..,
My, My 15 the number of input variables; j =1, 2, ..., ., Hour 18
the number of output variables. The behavior of y; of the NFN
is governed by my fuzzy rules of the following format:
R IF x,{t) is A, {x,(1)) AND x,(t) is 4, (x,(1)) AND ...
AND x, (7) is A,,mg(x,,‘_n )

THEN y (1) is W, 87 L2,..,mpt=12,..,ny (2)
where 1, is the number of input-output data pairs; w g7 j=12,
.- Mo, 18 the output singleton of the rule g; g = 1,2, ..., m;
The NFN membership functions are bell-shaped ones given by,

-(x, (-5, )
2::’
4, (x.' (t)) =e . 3
where the parameters X, and o, are the mean value and the

standard deviation of the membership function respectively.
The grade of the membership of each rule is defined as,

pD el 1= 4 x4 () <x 4, (x, (), g=
1,2, ..., my (4)
The j-th output of the NFN, y(?), is defined as,
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iﬂg O,
yy =
gZz'#g ®

where ¢ ie denotes the rule switch parameter of the g-th rule.

k..

%)

It should be noted that for this partially connected NFN, the
number of rules is equal to the number of membership
functions of each input variables, m, Comparing with that of a
fully connected NFN, the number of rules required is smaller.

ITII. IMPROVED GENETIC ALGORITHM

Genetic algorithm (GA) is a directed random search
technique [9] that is widely applied in optimization problems.
Much research effort has been put to improve the performance
of GA. Different selection schemes and genetic operators have
been proposed [9]. Selection schemes such as rank-based
selection, elitist strategies, steady-state election and
tournament selection were reported [9]. In this paper, the
standard GA is modified and new genetic operations are
introduced to improve its performance. The improved GA
process is shown in Fig. 2. Its details will be given as follows.

A. Initial Population
The initial population is a potential solution set . The first
set of population is usually generated randomly.

P‘:{pl’pl’”"ppap_sizz (6)
P, = [1!'3,»l P by, P, .. ] yi=1,2,..., pop_size; j
=1,2,..., no_vars )
paraml“ < p{ < paramax (8)

where pop_size is the popu].ation size; no_vars is the number of

variables to be tuned; p, . i=1,2, .. pop size;j =12, ...,

no_vars, are the parameters to be tuned; paral, and paral

min

are the minimum and maximum values of p; respectively for
£l

all i. From (6) to (8), we see that the potential solution set P
contains some candidate solutions p, (chromosomes), The

chromosome p, contains some variables Py, (genes).

B. FEvaluation

Each chromosome in the population will be evaluated by a
defined fitness function. The better chromosomes will return
higher values in this process. The fitness function to evaluate a
chromosome in the population can be written as,

finess = f(p,) ®

The form of the fitness function depends on the application,

C. Selection

Two chromosomes in the population will be selected to
undergo genetic operations for reproduction by the method of
spinning the roulette wheel [9]. It is believed that high
potential parents produce better offspring (survival of the best
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ones). The chromosome having a higher fitness value should
therefore have a higher chance to be selected. First, we assign
probability ¢; to the chromosome p; :

q, =W£‘E&)——,i=l,2,...,pop_size (10)
z S
The cumulative probability §, for p, is defined as,
g =§':qt,i=1,2-,...,pop_size (11)
k=t

Then, we randomly generate a nonzero floating-point number,
delo 1]. The chromosome p; is selected if §,, <d <4,

(g, =0). Hence, a chromosome having a larger fip;) will

have a higher chance to be selected. The best chromosomes
will get more offspring, the average will stay and the worst will
die off. In the selection process, two chromosomes will be
selected to undergo the genetic operations.

D. Genetic Operations

The genetic operations are to generate some new
chromosomes (offspring) from their parents after the selection
process. They include the crossover and mutation operations.

1. Crossover

The crossover operation exchanges information from the
two parents, chromosomes p, and pz, obtained in the selection
process. The two parents will produce one offspring. First,
four chromosomes will be generated'

S (12)

d-w)+ max(p,,pz)w (13)

osl =|os] o5,

— 2 —
0s? = fos? os? osm,,,m]wm

2
c
3
L

—losl OSZ IJIO vn‘rsl:pmin(l‘w)-"min(pllpZ)w 14)

ast = [os? os? J- (P + P W)+ (B +P2)W (] 5)
¢ 1 2 m: vars 2

P = [para:m pam;m para-"" ] (16)

p min — [paramm paramm para:ﬁn_ e ] ( l 7)

where we [G 1] is a weight to be determined by users,
max(p, st) denotes the vector with each element obtained by
taking the maximum among the correspending element of p,
and py, e.g. max(l -2 i[z 3 t)=[2 3 3)]. Similarly,
mm(pl, pz) gives a vector by taking the minimum value, e.g.
min{l -2 3}[2 3 1)=f1 -2 1]. Among os! to os’,
the one with the largest fitness value is used as the offspring
os of the crossover operation:

far

0510 us) =05, (18)

where i, is the index i that gives a maximum value of f (osi ), i

08 = [os] 05,

=1, 2,,3 4. Tf the crossover operation can provide a good
offspring, a higher fitness value can be reached in less iteration.
As seen from (12} to (15), the potential offspring after the
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crossover operation spreads over the domain. While (12) and
(15) result in searching around the centre region of the domain

(a value of w near to 1 in (15) can move os! to be near

MZ& ), (13) and (14) move the potential offspring to be near

the domain boundary (a small value of w in (13) and (14) can
move 05 and 0s’ 10 be Near Ppay and Py respectively).

2. Mutation

The offspring (18) will then undergo the mutation operation,
which changes the genes of the chromosomes. In this paper, a
different process of mutation is proposed. The details are as
follows. Every gene of the offspring os of (18) will have a
chance to mutate governed by a probability of mutation,
P, € [0 1], which is defined by users. This probability gives
an expécted number {(p,xro_vars) of genes that undergo the
mutation. For each gene, a random number between 0 and |
will be generated such that if it is less than or equal to p_, the

operation of mutation will take place on that gene and updated
instantly. The gene of the offspring of (18) is then mutated by:

R o, +Ao - if flo, +Ao )2 [, - Ao’ )

O _{ AoL if f(o, +A0. )< f(o, - Ao, ) “h2e

no_vars (19

*where

a0 =fo 0 o 0?0 20)
oo - a0 - 0] @1)

Aosu =w, r(‘pam{t -0 *) (22)

‘Ao =w, r( «paramm) (23)

re [0 l] is a randomly generated number; w, {0 1] is a

weight governing the magmtudes of Ao and AoL The

value of w, is varled by the value of ?, where 7 is the

iteration number and 7 is the total number of iteration. In order
to search more locally at the later stage, the value of w,

Tr .
should be small as -77 increases so as to reduce the

significance of the mutation. Based on this idea, a monotonic
decreasing function governing w,_ is proposed as follows,

1
ar
w o =w,l-— =0
"y f[ T]

ensure a large search space. When [1 —%] "0, Aof and

AofI are small to ensure a small search space for fine-tuning,.
E. Reproduction

The new offspring will be evaluated using the fitness
function of (9). This new offspring will replace the
chromosome with the smallest fitness value among the
population if a randomly generated number within 0 to 1 is
smaller than p, e[O l], which is the probability of

acceptance defined by users. Otherwise, the new offspring will
replace the chromosome with the smallest fitness value only if
the fitness value of the offspring is greater than the fitness
value of that chromosome in the population. p, is effectively
the probability of accepting a bad offspring in order to reduce
the chance of converging to a local optimum. Hence, the
possibility of reaching the global optimum is kept.

After the operation of selection, crossover, mutation and
reproduction, a new population is generated. This new
population will repeat the same process. Such an iterative
process can be terminated when the result reaches a defined
condition, e.g. a defined number of iteraticn has been reached.

F. Benchmark Test Functions

Some benchmark test functions [10] are used to examine the
applicability and efficiency of the improved GA. Six test
functions, f,(x), i =1, 2, 3, 4, 5, 6 will be used, where
x=[x, x x,|", n is an integer denoting the vector’s
dimension. The six test functions are defined as follows.

fx)=%x’, 5.12<x, <5.12 (25)
i=1

where 7 = 3 and the mintimum point is at £(0, 0, 0) = 0.

£io0=E(100fe,-x7F + - 1)2), -2.048<x, <2.048  (26)
where # = 2 and the minimum point is at 5,(1, 1) =0,
_/;(x)=ﬁiﬂoor(x,. +0.5)?, -5.12<x, <5.12 27)

where # =5 and the minimum point is at 3([5.12, 5], ..., [3.12,
5]) = 0. The value of the floor functicen, floor(-), is obtlained by
rounding down its argument to the nearest smaller integer.

fix) =% ix' +Gauss(0,1), ~1.28<x, <1.28 (28)
i=l

where » = 3 and the minimum point is at £(0, 0, 0) =
Gauss(0, 1) 1s a function to randomly generate a floating-point

(249)  number betwcen Qand 1.
1
where w, € [0 1] and w_ > 0 determine the initial value and £ (x) —-+ Z——— . —05356<x, <65.356 (29)
i=l
the decay rate respectively. Their values are chosen by users. A Z(x 4y )6
For a large wy, from (22) and (23), th ~r(param“ -o, )and  where
i a{a}[n‘momazfn—lﬁo i6 32
Aot ~r( paramm) initially as (l—i}w' ~1, which 3232 33 ~16 -16 —1o m1e -1
T —32 —16 0 16 32 -32 -6 O 16 32 -32 -16 0 1§ 32
: ‘ 0 0 D0 O 16 16 16 16 16 32 32323232}‘
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k =500 and the maximum point is at f;(32, 32) = 1.

7,0 =$lx? ~10cos(@m,)+10], 51255, <512 (30)
b

where n = 3 and the minimum point is at £(0, 0, 0) =0. It
should be noted that the minimum values of all functions in the
defined domain are zero except for f5(x). The fitness functions
for fi(x) to fo(x) and f;(x) are defined as,

fitness ='IT}1:-(“X—),I':1,2, 3,4, 6. (31)
and the fitness function for f(x) is defined as,
fitness = fy(x) (32)

The proposed GA is used to find the minimum points of
these 6 test functions, The results are compared with those
obtained by the standard GA with arithmetic crossover and
non-uniform mutation [9]. The control parameters of the
proposed GA and the standard GA with arithmetic crossover
and non-uniform mutation are tabulated in Table I. These
parameters are selected by trial and error through experiments
for good performance. The initial values of x in the population
for a test function are set to be the same for both GAs. The
number of iteration for each test function is listed in Table II.
For test functions 1 to 6, the irnitial values are [1 1 l] ,

fos os}, It 1], fos 0.5], [to 10] and
[t 1 1] respectively. The results of the average fitness
values over 50 times of simulations based on the proposed and

standard GAs are shown in Fig. 3 and tabulated in Table IL. It
can be seen that the performance of the proposed GA is better.

IV. TUNING OF MEMBERSHIP FUNCTIONS AND RULE BASE

By introducing the rule switches, the parameters and the rule
base of the NFN proposed in section II can be tuned using the
improved GA. To perform the tuning process, some control
parameters of the improved GA, namely w, p,,, p., pop_size, wy
and w. have to be chosen first. The parameters of the NFN to
be tuned are [x, o, ¢, ] forall i, g, g This is the

chromosome for the GA process. X,

., and o, are the

parameters of the membership functions and ¢, is the

parameter of the rule switch, The proposed NFN is used to
learn the input-output relationship of an application. The
desired input-output relationship can be written as,

y(t)=q zd(t)), t=1,2,..,u
where y?(f) = [y," ® yin ya (t)] is the desired
output vector corresponding to the input wvector,
2()=[/() 20() -« z()] and q) is an unknown
non-linear function. The fitness function is defined as,

(33)

fitness = (34)

1+err
err == Sy *{0)- ()
U =1

The abjective is to minimize the mean absolute error (MAE) of
(35) using the improved GA The range of fizness in (34) is [0,

(35)
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1]. A larger fitness indicates a smailer err, By using the NTN
and the improved GA, an optimal NFN in terms of the number
of rules and the membership functions can be obtained.

V. APPLICATION EXAMPLE

The proposed NFN will be employed to estimate the gain of
the transmitter in a power line data network. A network with
48 inputs and 48 outputs is employed to perform the estimation.
The inputs of the proposed NFN are the gains in every
half-hour of the previous day, while the outputs are the
estimated gains in every half-hour of the present day, Seven
NFNs will be used for estimating the fransmission gain. These
NFNs are named Sunday-Monday, Monday-Tuesday,
Tuesday-Wednesday, Wednesday-Thursday, Thursday-Friday,
Friday-Saturday and Saturday-Sunday NFNs. For instance,
the Sunday-Monday NFN makes use of the transmission gains
of Sunday to estimate the transmission gains of Monday. To
perform the training, we have to collect some testing patterns.
48 transmission gains for every half-hour at each day {24 hours)
will be measured. To measure the optimal transmission gain, a
data packet is continuously sent from the transmitter to the
receiver while the transmission gain value is increased
gradually. The increment in the gain value will stop at the
point where the data packet can be correctly received. At that
point, the value of the transmission gain is the smallest
possible one that is not susceptible to interference, and the
optimal transmission gain would be set at a value a bit higher
than this smallest one.

In this application example, transmission gains for 7 weeks
are collected as the testing patterns to train the proposed NFN
using the proposed GA. Take the Sunday-Monday NFN for
instance, the measured transmission gains for Sundays of the
previous 7 weeks will serve as the inputs and the desired
outputs are the meagured transmission gaing of Mondays in the
previous 7 weeks respectively. The rationale for this
arrangement of training is based on the assumption that the
relation between the gain pattern of Sunday and that of
Monday is approximately constant in the most recent seven
weeks. Seven NFNs will be used to derive 7 different relations
for the days in a week. The number of membership functions
for each input variable is chosen to be 5. For the improved GA
process, w=0.5,p, =01, p, =01, wy=1and w,= 1. The
training will last for 2000 iterations. The upper and lower
bounds of each parameter are 1 and —1 respectively. The initial
values of all the parameters are generated randomly. All the 7
NFNs are trained in the same way. The input and output
patterns are normalized such that the elements of the input
vector and the desired output vector are between 0 and 1. The
fitness function for training is defined in (34} and (35). By
minimizing the errors between the desired outputs and the
proposed NFN’s outputs, the characteristics of the
transmission gain pattern are learnt. After training, the
proposed NFN will be employed to estimate the transmission
gain. The 48 transmission gains of the previous day will be fed
to the trained NFN. The 48 NFN outputs will be the estimated
transmission gains for every half-hour of the present day. The
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transmission gain employed by the transmitter in every minute
is obtained by a linear interpolation equation:

ge+30n =880 e oy ey 2 30,7 -0,

30
i,....47 (36)
where g(& +307) denotes the transmission gain employed by

the transmitter at £ + 307 minutes counted from 00:00 am;
g(r +1) denotes the r+1-th output of the corresponding NFN

(i.e. the estimated transmission gain at 30(z + 1) minutes
counted from 00:00 am); g(r} denotes the measured

transmission gain at 307 minutes counted from 00:00 am.

For comparison purpose, a traditional 3-layer NFN [11] is
also trained by the improved GA. The proposed NFN and the
traditional 3-layer NFN will also be trained by standard GA
with arithmetic crossover and non-uniform mutation [9] under
the same condition. For the standard GA approach, the
probabilities of crossover and mutation are selected to be 0.6
and 0.01 respectively, and the shaping parameter of the GA for
non-uniform mutation [9] is selected to be 1. Table III shows
the results of the proposed and traditional approaches for the
Sunday-Monday NFN. To obtain the fitness value for the
testing pattern, the measured transmission gains for Sunday of
week 8 are fed to the trained NFN to obtain the estimated
transmission gains for Monday of week 8. The fitness value is
then obtained by (33) and (34) based on the estimated and
measured transmission gains.

Fig. 4 shows the actual (solid line) and predicted (dotted line)
normalized gains for Monday of week 8 using the proposed
and traditional NFNs respectively with the improved GA. Fig.
5 shows the actual (solid line) and predicted (dotted line)
normalized gains for Monday of week 8 using the proposed
and the traditional NFNs respectively with standard GA., It can
be seen that the performance of the proposed approach is better
than that of other approaches in terms of the fitness values and
size of the rule base.

VI. CONCLUSION

A neural-fuzzy network with rule switches has been
proposed to estimate the transmission gain for the AC power
line data network in an intelligent home. The proposed NFN
facilitates the learning of the network parameters and the rule
base. An improved GA has been proposed for the training
process. An application example has been given to illustrate
the design process and the merits of the proposed approach.
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Fig. [. Three-layer neural-fuzzy network with rule switches,

Procedure of the improved GA
begin
0 // = number of iteration
initialize P(7) #P(1): population for iteration r

evaluate AP(7)) // AP(7):fitness function
while {not terminatien condition) de
begin
r— 7+l

select 2 parents p; and p; from P(~1)

perform crossover operation according to equations (12} - (18)

perform mutation operation according to equations (19) - (24) to

generate the offspring os

/I reproduce a new P(7)

if random number <p, / p,: probability of acceptance
os replaces the chromosome with the smallest
fitness value in the population

else if {os5) > smallest fitness value in the P(z-1)

os replaces the chromosome with the smallest fitness value

end
evaluate f{P(7))
end

end
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Fig. 2. Procedure of the improved GA.
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Test b, {Shape P {Probability of P (Probability of
function parameter) crossover) mutation)
S 5 0.7 0.9
AL 1 0.8 0.8
(%) 0.1 0.7 0.6
f(x) 1 0.8 0.35
£(0) 0.1 08 0.5
D R U e e e e e e e e e Lilx) 0.9 0.7 04
e etk (b}
@). fix). (0). filx). Table 1. Control parameters of GAs for the benchmark test functions: (a)
i - ;o improved GA, (b) standard GA with arithmetic crossover and non-uniform
- - mutation.
™ r
i [ - Test Average fitness value | Average fitness value | Number of
Fads . function from proposed GA from standard GA iterations
il , fi(x) 1.0000 1.0000 100
- . f2{x) 0.9997 0.6393 5000
L O SRS R A AR Six) 1.0000 1.0000 200
e N ix) 09997 0.8037 500
(©). ). ‘ . /i), £A® 1.0000 1.0000 250
' a ) (%) 1.0000 0.7297 200
o Table II. Average fitness values obtained from the proposed GA and the
) : traditional GA for the benchmark test functions.
i
i NEN with NFN with | NFN without NFN
) rule switches rule rule switches | without rule
o trained by switches trained by the switches
e, , , , , beem g T the improved | trained by improved GA trained by
- . - el GA the standard the standard
©. fi(x). (0. fi(x). _ GA GA
) ) . . Fitness 0.9829 0.9813 0.9724 0.9703
Fig. 3. Results of the improved (solid line) and standard (dotted line) GAs. Value in
MAE
. (Trainin
Fitness 0.9815 0.9793 09715 0.9697
Value in
MAE
(Testing)
Number of 85 91 96 96
Rules

)

Fig. 4, The actual (solid line) and predicted (dotted line) normalized gains for
week 8 using the NFNs (a) with, and (b) without rule switches (both trained by
the improved GA).

(a). (b}
Fig. 5. The actual (solid line) and predicted (dotted line) normalized gains for
week 8 using the NFNs (a) with, and (b) without rule switches (both trained by
the GA with arithmetic crossover and non-uniform mutation).

Test function w Pn Wy W, Pa
Si(x) 0.1 0.3 | 0.001 | 0.001 | ©.1
S(x) 05 | 05 | 001 10 0.1
f(x) 0.1 0.8 i 1000 | 0.1
Ji(x) 0.5 | 035 ] 0.00t 10 0.1
Si(x) 05 | 08 0.1 0.1 0.1
fo(x) 0.0L | 0.1 00L [ 001 [0l

(a)
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Table TH, Results based on the proposed and traditional approaches.
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