This is the Pre-Published Version.

Minimizing Sum of Completion Times for Batch Scheduling

of Jobs with Deteriorating Processing Times

Joseph Y-T. Leung®, C.T. Ng®*, T.C. Edwin Cheng®

¢Department of Computer Science, New Jersey Institute of Technology,

Newark, NJ, 07102, U.S.A.

bDepartment of Logistics, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong

Abstract

We consider the problem of scheduling n jobs on m > 1 parallel and identical machines,
where the jobs are processed in batches and the processing time of each job is a step function
of its waiting time; i.e., the time between the start of the processing of the batch to which
the job belongs and the start of the processing of the job. For each job i, if its waiting time
is less than a given threshold D, then it requires a basic processing time p; = a;; otherwise,
it requires an eztended processing time p; = a; + b;. The objective is to minimize the sum
of completion times; i.e., Y1 ; C;, where C; is the completion time of job i. We first show
that the problem is NP-hard in the strong sense even if there is a single machine and b; = b
for all 1 <7 < n. We then show that the problem is solvable in polynomial time if a; = a
for all 1 <4 < n. Our algorithm runs in O(n?) time. Finally, we give an approximation
algorithm for the special case where b; < D for all 1 < ¢ < n, and show that it has a

performance guarantee of 2.

Keywords: Batch scheduling; Deteriorating processing times; Sum of completion times;

Performance guarantee; Strong NP-hardness

*Corresponding author. Tel.: 4852 2766 7364; fax: 4852 2330 2704.
E-mail addresses: leung@oak.njit.edu (J.Y-T. Leung), lgtctng@polyu.edu.hk (C.T. Ng),
lgtcheng@polyu.edu.hk (T.C.E. Cheng).

1 Introduction

Barketau et al. [2] have considered the following scheduling problem: There are n jobs to be
scheduled on a single machine. The jobs are processed in batches. Each batch is preceded
by a setup time S. The processing time of a job is a step function that depends on the time
elapsed since the start of the processing of the batch to which the job belongs. Let st and
s; denote the starting time of the [-th batch to which job ¢ belongs and the starting time
of job i, respectively. If s; — st < D, then the processing time of job i is equal to p; = a;;
otherwise, it is equal to p; = a; +b;. We call a; and a; + b; the basic and extended processing
times of job i, respectively. The completion time of a job is the actual time when the job has
finished processing (“job availability”, see [5]), rather than the completion time of all jobs
in its batch (“batch availability”, see [5]). The problem Barketau et al. [2] considered is the
minimization of the makespan (i.e., Cy,ay) of the schedule. The problem will be denoted by

1| S, pi = a; + stp(s; — st — D)b; | Crax, Where

ORI PR

Barketau et al. [2] show that the above scheduling problem is NP-hard in the strong
sense, even if b; = b for all 1 < ¢ < n. They then show that the problem is solvable in
O(nlogn) time if a; = a for all 1 < i < n. Furthermore, they propose an O(n?') time
approximation algorithm for the general problem, and show that it has a performance
guarantee of % Moreover, they show that there is no algorithm with a better performance
guarantee than % unless P = NP. Finally, for the strongly NP-hard special case of the
problem in which a; < a; implies that b; > b;, they propose an O(n?log(>1"; a;)) time
approximation algorithm with a performance guarantee of min{%, % + li}, where [* is the
number of batches in an optimal schedule. Barketau et al. [2] give a couple of applications
motivating the study of this problem.

In this paper we continue the work of Barketau et al. [2], focusing instead on the sum
of completion times objective. We assume that there are m > 1 parallel and identical
machines. Our objective is to minimize the sum of completion times; i.e., > | C;, where

C; is the completion time of job i. We denote this problem by Pm | S,p; = a; + stp(s; —
st — D)b; | X1, Ci.

We show that this problem is strongly NP-hard even when there is a single machine and
b; =10 for all 1 <47 <n. We then give an O(nz) time optimal algorithm for the special case
where a; = a for all 1 < i < n. Finally, we give an O(n®) time approximation algorithm
for the special case where b; < D for all 1 < ¢ < n, and show that it has a performance
guarantee of 2. We feel that this special case is not too restrictive in practice, since D is
the threshold and it is therefore reasonably large.

The described model falls into the category of scheduling problems with time-dependent
processing times, which has recently been reviewed by Cheng et al. [3]; in the category of
batch scheduling problems, which has been reviewed by Potts and Kovalyov [5]; and in the
category of scheduling problems with setup times, which has been reviewed by Allahverdi et
al. [1]. However, to the best of our knowledge, no work has been done on models with both
aspects of batching and time-dependent processing times, other than the work of Barketau
et al. [2]. We feel that this is a probable scenario in real-life scheduling environments, and
hence deserves some attention.

This paper is organized as follows. In the next section we will show the strong NP-
hardness result. In Section 3 we give the O(n?) time optimal algorithm for the special case
where a; = a for all 1 < i < n. In Section 4 we give the approximation algorithm for the
special case where b; < D for all 1 <4 < n, and show that it has a performance guarantee

of 2. The last section concludes.

2 Complexity results

In this section we show that the problem is strongly NP-hard even when there is a single
machine and b; = b for all 1 < ¢ < n. We show this by reducing to it the strongly
NP-complete 3-Partition problem, which is defined as follows [4].

3-Partition: Given a list Z of 3h integers, Z = (21, 2o, . . ., 23), such that 33", z; = hB and
% <z < % for each 1 < i < 3h, can Z be partitioned into A disjoint sublists Z1, Zs, ..., Zj

such that for each 1 < j <h, 3. cy 2z = B?

Theorem 1 The problem 1 | S,p; = a; + stp(s; — st — D)b; | 7, C; is NP-hard in the

strong sense even if b; = b for all 1 < i <n.

Proof. We shall reduce the 3-Partition problem to the 1 | S, p; = a; + stp(s; — st — D)b; |
>» , C; problem. Given an instance of the 3-Partition problem, we construct an instance
of the scheduling problem as follows.

Let there be a single machine, 3h “partition” jobs and h “enforcer” jobs. For each
partition job i, 1 < 4 < 3h, a; = 2z; and b; = b = (2h? + 2h + 1)S. For each enforcer
jobi,3h+1<i<4h,a; =B +1and b =b= (2h?> +2h +1)S. Let D = B + 1 and
S = h(2h — 1)(2B + 1) + 3hB. Finally, let

h B 2B 3B
C* Z[4JS+(4]—3)(23+1)+2+7+7]:(2h2+2h+1)5:b.
j=1

We shall show that the instance of the 3-Partition problem has a solution if and only if
there is a schedule for the problem 1 | S, p; = a; + stp(s; — st — D)b; | 7, C; with the sum
of completion times not greater than C*.

Assume that 7, Zy, ..., Z, is a given partition of the instance of 3-Partition. Consider
a schedule for the problem 1 | S,p; = a; + stp(s; — st — D)b; | S, C; with h batches. In
the [-th batch, 1 <[< h, the jobs that correspond to the elements of the sublist Z; are
processed first, in any order, followed by one of the enforcer jobs. Since z; < £, it is easy
to see that the sum of completion times of this schedule is not greater than C*.

Now, suppose that there is a schedule for the instance of the problem 1 | S;p; =
a; + stp(s; — st — D)b; | 31, C; with the sum of completion times not greater than C*. Tt is
clear that no job (be it a partition job or an enforcer job) can be executed in its extended
processing time in the schedule, since b; = b = C*. Thus, every job must be executed in
its basic processing time only. Furthermore, there are at least h batches in the schedule.
Otherwise, there will be at least one job executed in its extended processing time. Thus,
if we can show that there are at most h batches in the schedule, then we have shown that
there are exactly h batches in the schedule. Each batch will consist of three partition jobs
and one enforcer job, and the basic processing times of the three partition jobs will add up
to exactly B.

Our proof is thus reduced to showing that there are at most h batches in the schedule.
Assume that there are h+ 1 batches in the schedule; the case with more than h+ 1 batches

can be proved in a similar fashion. The best case scenario (in terms of the sum of completion

times of the jobs) is that there are four jobs scheduled in each of the first h—1 batches, three
jobs scheduled in the h-th batch, and one job scheduled in the (h + 1)-th batch. Observing
that the basic processing time of each job is larger than %, we can compute a lower bound

L for the sum of ompletion times of the jobs in this schedule as follows.

h=1 B B 3B B B 3B
L:Z[4js+4(j_1)B+Z+§+T+B]+[3hs+(h_1)B+Z+§+T]+[(h+1)s+h3]
j=1

> (2h* + 2h +1)S = C*.

This contradicts the fact that the schedule has the sum of completion times not greater

than C*. n

Since the problem 1 | S,p; = a; + stp(s; — st — D)b; | 7, C; is strongly NP-hard for

the case b; = b for all 1 < i < n, we immediately have the following results.

Corollary 1 The problem 1| S,p; = a; + stp(s; — st — D)b; | Y1, C; is strongly NP-hard
for the special cases: (1) a; < a; implies b; < bj, (2) a; > a; implies b; < b;, (3) a; < a;

implies b; > b;, and (4) a; > a; implies b; > b;.

3 Optimal algorithm

In this section we shall give an optimal algorithm for the special case where a; = a for all
1 <i < n. We consider the single machine case first, and then extend the algorithm to the
parallel and identical machines case.

Suppose we have a single machine. The scheduling algorithm will schedule the jobs
optimally in & batches for each 1 < k <[], where h is the largest number of jobs that can
be scheduled in a batch without causing any job to execute in its extended processing time.
The algorithm then chooses the schedule with the minimum sum of completion times from
among the [}] schedules. Suppose we are scheduling the n jobs in k batches. Assume the
jobs have been ordered in descending order of the b;’s (i.e., in the LPT order of the b;’s).
The algorithm schedules as many jobs as possible in each batch, without causing any job
to execute in its extended processing time. In other words, each job is scheduled with its
basic processing time p; = a only. If all the jobs have been scheduled, then we are done.

Otherwise, we schedule the remaining jobs in ascending order of the b;’s (i.e., in the SPT

5

order of the b;’s). For each such job, we either schedule it at the end of the last batch or
we schedule it at the end of the first batch (provided that there are two or more batches),
depending on which configuration will give a smaller sum of completion times. We keep
assigning the jobs in this fashion until we have completely assigned all the jobs. Notice
that in the last step, we initially assign some jobs to the end of the first batch, until at
some point a job is assigned to the end of the last batch. From then on all the jobs will be

assigned to the end of the last batch.

Algorithm OPT-1

Input: A set of n jobs with basic processing times p; = a and extended processing times
p; =a+b;, 1 <i<n. A single machine. Setup time S and threshold D.

Output: A schedule S; with the minimum sum of completion times.

Method:

1. Sort the jobs in descending order of their extended processing times; i.e., a + b; >

a+by > >a+by,
2. Let h be the largest integer such that (h — 1)a < D but ha > D.
3. K« [%].

4. Let S, be the schedule where the first h jobs are scheduled in the first batch, the next
h jobs are scheduled in the second batch, and so on, until the k’-th batch. Let SCT

be the sum of completion times of the schedule .S;.
5. For k=F —1to1do
6. { Let S} be the schedule where the first kh jobs are scheduled in the first &
batches, with h jobs per batch.

7. For j =n to kh+ 1 do

=

{ if (hb; < S and k > 1) then put job j at the end of the first batch, else

put job j at the end of the k-th batch. }

9. Compute the sum of completion times of the schedule S; and assign it to
SCT'.
10. if (SCT' < SCT) then { S; < S;. SCT « SCT'. }. }
11. Return schedule S;.

Let us consider an example. Shown in Fig. 1(a) is a set of 10 jobs, with S = 5 and
D = 10. The jobs are already in descending order of their extended processing times. In
this example, h = 3 and ¥’ = 4. We first construct the schedule with 4 batches, which is
shown in Fig. 1(b). The sum of completion times of this schedule S; is SCT = 330. We
then successively construct the schedules with 3 batches, 2 batches and 1 batch, as shown
in Figs. 1(c), 1(d) and 1(e), respectively. The schedule with 3 batches has the first 9 jobs
scheduled in the first 3 batches; see Fig. 1(c). Job 10 is then scheduled at the end of the
first batch, since 3b;9 < 5. Scheduling job 10 at the end of the first batch gives a smaller
sum of completion times. The schedule with 2 batches has the first 6 jobs scheduled in the
first 2 batches, as shown in Fig. 1(d). Job 10 is then scheduled at the end of the first batch,
since 3b1g < 5. However, job 9 is scheduled at the end of the last batch, since 3bg > 5.
From then on, job 8 and job 7 are also scheduled at the end of the last batch. The schedule
with 1 batch has the first 3 jobs scheduled in the first batch, as shown in Fig. 1(e). From
then on, job 10 until job 4 are also scheduled at the end of the first batch. The output of
the algorithm is the schedule with 2 batches (Fig. 1(d)), since it has the smallest sum of
completion times SCT" = 320.

i J1[2]3[4[5[6]7]8[9]10

a; |44 4444|444

b |7|716|5|5|4(3]2]2]1
S=5 D=10

Fig. 1(a) A set of 10 jobs

S{1|2]3]S]4[5]6]S|7]8[9]S][10]
5 9 13 17 22 26 30 34 39 43 47 51 56 60

0
Fig. 1(b) Schedule S;; SCT = 330

7

\5|1\2\3\10\5|4|5\6\5\7\8\9|
0 5 9 13 17 22 27 31 35 30 44 48 52 56

Fig. 1(c) Schedule Sj; SCT' = 322

\5|1\2\3\10\5|4|5\6\9|8|7|
0 5 9 13 17 22 27 31 35 390 45 b1 58

Fig. 1(d) Schedule S;; SCT" = 320

Sl1[2[3]10]9[8]7]6][5][4]
5 9 13 17 22 28 34 41 49 58 67

|
0

Fig. 1(e) Schedule Sj; SCT' = 336
Integers within the cells in the depicted schedules are job indices.

Fig. 1 An example illustrating Algorithm OPT-1

Let us examine the running time of the algorithm. Sorting the jobs in descending order
of the b;’s takes O(nlogn) time. The algorithm takes O(n) iterations, and each iteration
takes linear time to schedule the jobs. Thus, the overall running time of the algorithm is

O(n?).

Theorem 2 Algorithm OPT-1 correctly outputs a schedule with the minimum sum of com-

pletion times on a single machine.

Proof. Let h and k' be as defined in Algorithm OPT-1. It is clear that the optimal
schedule will consist of k& batches, for some 1 < k < k’. Let us now focus on the optimal
schedule with k£ batches. Assume that the jobs are sorted in descending order of their
extended processing times, or equivalently, in descending order of the b;,’s. The optimal
schedule will execute the jobs with the largest extended processing times in their basic
processing time mode. Therefore, the first £h jobs will all be executed in their basic
processing time mode, while the remaining jobs will all be executed in their extended

processing time mode.

Among the jobs kh+ 1, kh+ 2, ..., n, job n has the smallest extended processing time
while job kh + 1 has the largest extended processing time. Therefore, these jobs must be
scheduled in the order of n, n — 1, ..., kh + 1. Moreover, they must be scheduled at the
end of some batch. Suppose we are scheduling job n. Let us compare the effects of putting
job n at the end of the (k — 1)-th batch versus putting it at the end of the k-th batch. If
job n is put at the end of the (k — 1)-th batch, the sum of completion times of job n and
all the jobs that follow it are given by

tr 1= (X+a+b,)+(X+a+b,+S+a)+(X+a+b,+S+2a)+---+(X+a+b,+S+ha),

where X is the starting time of job n. See Fig. 2 for an illustration.

X |a+bn| [a+bn|

000000000000

Fig. 2 Illustrating the proof of Theorem 2

On the other hand, if job n is put at the end of the k-th batch, the sum of completion

times of the corresponding jobs are given by
th=(X+S4+a)+(X+S+2a)+---+(X+S+ha)+(X+S+hat+a+b,).

Therefore, t;_1 < tj if and only if hb, < S. In other words, it is more advantageous to
put job n at the end of the (k — 1)-th batch, rather than at the end of the k-th batch, if
hb, < S. By a similar reasoning, it is more advantageous to put job n at the end of the
first batch, rather than at the end of any batch, if hb, < S. On the other hand, if kb, > S,
then it is more advantageous to put job n at the end of the k-th batch, rather than at the
end of any batch. In case hb, = S, putting job n at the end of any batch gives the same
sum of completion times.

Inductively, we can show that the scheduling of job j, kh + 1 < j < n, depends on the
relationship between hb; and S. If hb; < S, then job j should be put at the end of the

9

first batch; otherwise, it should be put at the end of the last batch. But this is exactly how
Algorithm OPT-1 schedules these jobs. Therefore, Algorithm OPT-1 generates an optimal

schedule. m

We now extend the algorithm to the parallel and identical machines case. But first we
need to introduce some notations. By “vertical scheduling of n jobs in k batches”, we mean
scheduling the n jobs vertically on the m machines so that the number of batches is exactly
k, without causing any job to execute in its extended processing time mode; see Fig. 3 for

an illustration.

h h
My | S|1|5|9 |S|13|1721|S5]|25|27
My | S|2|6[10[S|14[18]22|S5 |26
My | S|3|7|11|S|15]|19 |23
My | S14|8|12|S5|16]20 |24

Integers within the cells in the depicted schedule are job indices.

Fig. 3 Vertical scheduling of 27 jobs in 10 batches

Shown in Fig. 3 is the vertical scheduling of 27 jobs in 10 batches; the number of
machines is 10 and A = 3. As can be seen from Fig. 3, we schedule job 1 on machine 1,
job 2 on machine 2, and so on, until job 12. At this time, the first 4 batches are full, with
each batch having exactly h jobs. The next 4 batches are scheduled similarly. In the last 2
batches, we schedule job 25 on machine 1, job 26 on machine 2, and job 27 on machine 1
again. Notice that the last 2 batches are not full; batch 9 has only 2 jobs and batch 10 has
only 1 job.

By “placing job 7 on machine ¢”, we mean to put job j at the end of the first batch of
machine ¢ if hb; < S; otherwise, we put job j at the end of the last batch of machine i. By
“vertically placing jobs n,...,7 on machines i,...,m”, we mean placing job n on machine
i, placing job n — 1 on machine i + 1, ..., placing job n — [m — (¢ — 1)] — 1 on machine
m, placing job n — [m — (i — 1)] — 2 on machine ¢ again, placing job n —[m — (i — 1)] — 3
on machine ¢ + 1, and so on. In other words, the jobs are placed on the machines in a

wrap-around manner.

10

Algorithm OPT-m
Input: A set of n jobs with basic processing times p; = a and extended processing times
p; = a+b;, 1 <1 < n.m identical and parallel machines. Setup time S and threshold D.

Output: A schedule S; with the minimum sum of completion times.

Method:

1. Sort the jobs in descending order of their extended processing times; i.e., a + by >

a+b2 Z Za+b71-
2. Let h be the largest integer such that (h — 1)a < D but ha > D.
3. K —mx [2]

4. Let S; be the schedule where the n jobs are vertically scheduled in &’ batches. Let

SCT be the sum of completion times of the schedule S;.
5. For k=Fk —1to1do
6. { if (n < kh) then { Let S} be the vertical schedule of the n jobs in k batches and

let SCT" be the sum of completion times of the schedule S;. Goto Step (10). }.

7. Schedule the first kh jobs vertically in £ batches.
8. if (k < m) then { Vertically place the jobs n,n —1,...,kh + 1 on the machines
1,2,..., k. }.

else { Let k = gm+r and ' =m —r. if (n — kh < 7'h) then { Vertically place
the jobs n,n —1,...,kh + 1 on the machines r + 1,7 +2,... ,m. }.
else { Vertically place the jobs n,n —1,...,n —r'h + 1 on the machines
r+1,7+2,...,m. Vertically place the jobs n—r'h,n—r'h—1,... kh+1
on the machines 1,2,...,m. }. }.

9. Compute the sum of completion times of the schedule S; and assign it to SCT".

11

10. if (SCT" < SCT) then { S; < S;. SCT « SCT'. }. }
11. Return schedule S;.

Let us consider an example. Shown in Fig. 4(a) is a set of 20 jobs, with S =4, D =3
and m = 3. The jobs are already in descending order of their extended processing times.
In this example, h = 2 and & = 12. Let us consider step 6 of the algorithm for k& = 7.
Following the algorithm, the test in step 6 of the algorithm fails, so the algorithm proceeds
to step 7. It schedules the first kh = 14 jobs vertically in 7 batches, as shown in Fig. 4(b).
In step 8, the test fails, so it moves to the “else” part. The algorithm computes » = 1 and
r’ = 2, and tests if n — kh < r’h. The test fails, so it moves to the “else” part. Here it first
vertically places jobs 20, 19, 18 and 17 on machines My and Mj. It finally places jobs 16
and 15 vertically on machines M; to Ms. The final schedule S is shown in Fig. 4(d), with
the sum of completion times SCT" = 309.

(1|23 145|167]81]9 10
a| 212212222 |2|2]|2
bi | 919198 |8|T7T| 7| T7T]6]6
¢ (1112 |13 |14 | 15|16 | 17|18 |19 | 20
a; | 2 | 2 212122222
b;| 5| 5|5 |414|3]1]1|1]|1

S=4,D=3m=3

Fig. 4(a) A set of 20 jobs

My | S|1|4|S|7]10]S5|13]14
My | S|12|5]|S|8]11
My | S|13|16]|S|9]12

Fig. 4(b) Vertically scheduling 14 jobs in 7 batches

My [S|1|4]| S| 7105|1314
My | S12|5]20|18 S |8]11
My | S{3|6[19[17| S |9 |12

Fig. 4(c) Vertically placing jobs 20, 19, 18, 17 on machines M, and Mj

12

My | S|1|4| S| 7 |10|S|13|14]|16
M, | S 5120118 S |8 |11 |15
My | S1316|19[17| S |9 |12

Fig. 4(d) Vertically placing jobs 16 and 15 on machines M; and M,
Integers within the cells in the depicted schedules are job indices.
Fig. 4 An example illustrating Algorithm OPT-m

Notice that Algorithm OPT-m covers some solutions which are obviously not optimal
and can be skipped. Referring to Fig. 3, it is obvious that 10 batches are not optimal.
After considering 8 batches, the next candidate for optimality is clearly 11 batches. The
general rule is that after all the “full” batches have been scheduled, the remaining jobs
should be allocated to = batches (z < m) “as equally as possible”. However, this will not
affect the output nor the running time of the algorithm.

Let us examine the running time of the algorithm. Sorting the jobs in descending order
of the b;’s takes O(nlogn) time. The algorithm takes O(n) iterations, and each iteration
takes linear time to schedule the jobs. Thus, the overall running time of the algorithm is

O(n?), same as Algorithm OPT-1.

Theorem 3 Algorithm OPT-m correctly outputs a schedule with the minimum sum of com-

pletion times on m parallel and identical machines.

Proof. Let h and k' be as defined in Algorithm OPT-m. It is clear that the optimal
schedule will consist of k batches, for some 1 < k < k’. Let us now focus on the optimal
schedule with k batches. Assume that the jobs are sorted in descending order of their
extended processing times, or equivalently, in descending order of the b;,’s. The optimal
schedule will execute the jobs with the largest extended processing times in their basic
processing time mode, while the remaining jobs will all be executed in their extended
processing time mode.

If the number of jobs is less than or equal to kh, then the optimal schedule will vertically
schedule these jobs in k batches, and we are done. Otherwise, it will vertically schedule

the first k£h jobs in k£ batches, and schedule the remaining jobs in their extended processing

13

times mode. Let us now focus on the remaining jobs. Let k = gm+r and 7/ = m —r. Then
the first » machines have ¢+ 1 batches while the last ' machines have g batches, r+7" = m.
In other words, the first 7 machines have (¢ + 1)h jobs while the last 7 machines have gh
jobs. Thus, we need to assign r’h jobs to the last 7" machines before we assign any jobs to
the first 7 machines. If the number of remaining jobs is less than or equal to r'h, then we
vertically place these jobs in the last 7’ machines. Otherwise, we vertically place r’'h jobs
on the last ' machines, so that each machine now has (¢ + 1)h jobs. The remaining jobs

will then be vertically placed on the m machines. |

4 Approximation algorithm

In this section we give an approximation algorithm for the general case of the problem
1|S,pi = a;+stp(s; — st — D)b; | S, C;. We first give the algorithm for a single machine,
and then extend the algorithm to m parallel and identical machines.

The algorithm for a single machine first sorts the jobs in ascending order of their basic
processing times; i.e., a; < ay < -+ < a,. It then schedules the n jobs into as many batches
as needed, say k', without causing any job to execute in its extended processing time mode.
Let this schedule be S; and its sum of completion times be SCT. For each k between 1
and &/, it tries to form a schedule with k& batches. Finally, it outputs the schedule with the
minimum sum of completion times from among the k&’ schedules.

Suppose we are scheduling the n jobs in £ batches. The algorithm first schedules as
many jobs as it can in k batches, say n’, without causing any job to execute in its extended
processing time mode. It then reorders the remaining n —n’ jobs in ascending order of their
extended processing times. Scanning the list of jobs in this order, the algorithm tries to
insert each job at the end of the j-th batch, 1 < j < k, that will give the smallest sum of

completion times. At the end, we get a schedule with exactly k batches.

Algorithm APP-1
Input: A set of n jobs with basic processing times p; = a; and extended processing times
p; = a; + b;, 1 < i <n. A single machine. Setup time S and threshold D.

Output: A schedule S; on a single machine.

14

Method:

1. Sort the jobs in ascending order of their basic processing times; i.e., a; < ay < --- <

Ay .

2. Let S; be the schedule where the first x; jobs are scheduled in the first batch, the
next xy jobs are scheduled in the second batch, and so on, until the &’-th batch. The
jobs are all scheduled in their basic processing times mode. Let SCT be the sum of

completion times of the schedule S;.

3. Fork=F —1to1do

4. { Let S] be the schedule where the first z; jobs are scheduled in the first batch,
the next x5 jobs are scheduled in the second batch, and so on, until the k-th
batch. All these jobs are scheduled in their basic processing times. Let S; contain
n’ jobs.

D. Sort, the remaining n — n’ jobs in ascending order of their extended processing
times; i.e., a1+ b1 < apyo +byio < -o- <ay + by

6. For j=n"+1tondo

7. { Schedule job j at the end of the I-th batch, 1 <[< k, such that the [-th

batch gives the smallest sum of completion times. }
8. Compute the sum of completion times of the schedule S; and assign it to SCT".
9. if (SCT' < SCT) then { S; < S;. SCT « SCT'. }. }

10. Return schedule S;.

Let us examine the running time of the algorithm. Sorting the jobs in ascending order

of their basic processing times takes O(nlogn) time. The algorithm has O(n) iterations.

15

In each iteration, it needs to sort the jobs in ascending order of their extended processing
times, which takes O(nlogn) time. It then schedules the remaining jobs at the end of the
batch that gives the smallest sum of completion times, which takes O(n?) time. Therefore,

the overall runnig time of the algorithm is O(n?).

Theorem 4 If b; < D for all 1 < i < n, then Algorithm APP-1 has a performance

guarantee of 2.

Proof. Let k' be as defined in Algorithm APP-1. It is clear that the optimal schedule
will consist of k batches, for some 1 < k < k’. Let us consider the schedule produced by
Algorithm APP-1 for k& batches. Algorithm APP-1 schedules the n’ jobs with the smallest
basic processing times in the £ batches, and the remaining jobs are scheduled with extended
processing times. The optimal algorithm will, in the best case, schedule n’ 4+ k jobs with
basic processing times, and the remaining jobs must be scheduled with extended processing
times. Since b; < D for all 1 < ¢ < n, the difference in the processing times of the two
schedules is at most k£D. Since the sum of completion times of the optimal schedule is at

least kD, we have the performance ratio is at most 2. [

We now consider the case of m parallel and identical machines. First, we need to
introduce some notations. By “putting job j on machine ¢”, we mean to put job j at
the end of the [-th batch of machine i, where the /-th batch gives the smallest sum of
completion times. By “vertically putting jobs n’,...,n on machines i,...,m”, we mean
putting these jobs on the machines in a wrap-around manner. “Scheduling jobs vertically”
has the same meaning as before. That is, jobs are scheduled in their basic processing times

on the machines in a wrap-around manner.

Algorithm APP-m
Input: A set of n jobs with basic processing times p; = a; and extended processing times
p; = a; + b;, 1 <4 <n. m parallel and identical machines. Setup time S and threshold D.

Output: A schedule S; on m parallel and identical machines.

Method:

1. Sort the jobs in ascending order of their basic processing times; i.e., a; < ay < -+ <

(.

16

2. Let S; be the schedule where the n jobs are scheduled vertically in as many batches

as necessary, say k' batches. Let SCT be the sum of completion times of the schedule

Sy.

3. Fork=F —1to1do

4. { Let S} be the schedule where the n jobs are scheduled vertically in & batches.

5. if all the jobs are scheduled, then { Compute the sum of completion times of the
schedule S; and assign it to SCT”. Goto step (9). }

6. Suppose the first n” < n jobs have been scheduled. Sort the remaining jobs in
ascending order of their extended processing times; i.e., @41 + by < Qoo+
by <o < ap+ by

7. if (k < m) then { Vertically put the jobs n’ + 1,n' + 2,...,n on the machines
1,2, k. }.
else { Let k = gm+r and ' = m—r. Vertically put the jobs n'+1,n'+2,...,n"

on the machines r+1,r+2, ..., m, and then vertically put the jobs n” +1,n" +2,

...,n on the machines 1,2,... m. }.
8. Compute the sum of completion times of the schedule S; and assign it to SCT".
9. if (SCT' < SCT) then { S; < S;. SCT « SCT'. }. }

10. Return schedule S;.

Let us examine the running time of the algorithm. Sorting the jobs in ascending order
of their basic processing times takes O(nlogn) time. The algorithm has O(n) iterations.
In each iteration, it needs to sort the jobs in ascending order of their extended processing

times, which takes O(nlogn) time. It then schedules the remaining jobs at the end of the

17

batch that gives the smallest sum of completion times, which takes O(n?) time. Therefore,
the overall runnig time of the algorithm is O(n?), same as Algorithm APP-1.
The performance ratio of Algorithm APP-m is also 2 when b; < D for all 1 < i < n.

The proof is identical to the single machine case and will be omitted.

Theorem 5 If b; < D for all 1 < i < n, then Algorithm APP-m has a performance

guarantee of 2.

5 Conclusion

In this paper we have shown the strong NP-hardness of the problem 1 | S, p; = a; + stp(s; —
st — D)b; | 37, C;. We gave an O(n?) time optimal algorithm for the special case where
a; = a for all 1 < ¢ < n, as well as an O(n?) time approximation algorithm for the general
case. We show that the approximation algorithm has a performance guarantee of 2 when
b, < Dforalll<i<n.

Several problems remain open. What is the performance guarantee of the approximation
algorithm for the general case? Is there any better approximation algorithm? Is there any
optimal algorithm for the sum of weighted completion times objective when a; = a for all

1<i<n?

Acknowledgements

This research was supported in part by The Hong Kong Polytechnic University under grant
number A628 from the Area of Strategic Development in China Business Services. The
first author was also partially supported by the National Science Foundation under grant

DMI-0300156.

References

[1] A. Allahverdi, C.T. Ng, T.C.E. Cheng and M.Y. Kovalyov, A survey of scheduling

problems with setup times or costs, Furopean Journal of Operational Research (to

appear).

18

[2] M.S. Barketau, T.C.E. Cheng and C.T. Ng, Batch scheduling of step deteriorating
items, Working Paper, Department of Logistics, The Hong Kong Polytechnic Univer-
sity, 2005.

[3] T.C.E. Cheng, Q. Ding and B.M.T. Lin, A concise survey of scheduling with time-
dependent processing times, Furopean Journal of Operational Research, 152:1-13, 2004.

[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman, San Francisco, 1979.

[5] C.N. Potts and M.Y. Kovalyov, Scheduling with batching: a review, European Journal
of Operational Research, 120:228-249, 2000.

19

