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Abstract

This paper studies stochastic control problems motivated by optimal consumption with
wealth benchmark tracking. The benchmark process is modeled by a combination of a geo-
metric Brownian motion and a running maximum process, indicating its increasing trend in the
long run. We consider a relaxed tracking formulation such that the wealth compensated by the
injected capital always dominates the benchmark process. The stochastic control problem is
to maximize the expected utility of consumption deducted by the cost of the capital injection
under the dynamic floor constraint. By introducing two auxiliary state processes with reflec-
tions, an equivalent auxiliary control problem is formulated and studied, which leads to the
HJB equation with two Neumann boundary conditions. We establish the existence of a unique
classical solution to the dual PDE using some novel probabilistic representations involving the
local time of some dual processes together with a tailor-made decomposition-homogenization
technique. The proof of the verification theorem on the optimal feedback control can be carried
out by some stochastic flow analysis and technical estimations of the optimal control.
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1 Introduction

The continuous time optimal portfolio-consumption problem has been extensively studied in dif-
ferent models since the seminal work Merton (1969) and Merton (1971). In the present paper,
we aim to study this problem from a new perspective by simultaneously considering the wealth
tracking with respect to an exogenous benchmark process. Similar to a large body of literature
on optimal tracking portfolio, see, for instance, Browne (1999a), Browne (1999b), Browne (2000),
Teplá (2001), Gaivoronski et al. (2005), Yao et al. (2006), Strub and Baumann (2018), the goal
of tracking is to ensure the agent’s wealth level being close to a targeted benchmark such as the
market index, the inflation rate or the consumption index. However, unlike the conventional for-
mulation of optimal tracking portfolio in the aforementioned studies, we adopt the relaxed tracking
formulation proposed in Bo et al. (2021) using capital injection such that the benchmark process
is regarded as a minimum floor constraint of the total capital.
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Let (Ω,F ,F,P) be a filtered probability space with the filtration F = (Ft)t≥0 satisfying the usual
conditions, which supports a d-dimensional Brownian motion (W 1, . . . ,W d) = (W 1

t , . . . ,W
d
t )t≥0.

We consider a market model consisting of d risky assets, whose price dynamics are described by

dSit
Sit

= µidt+

d∑
j=1

σijdW
j
t , i = 1, . . . , d (1.1)

with the return rate µi ∈ R, i = 1, . . . , d, and the volatility σij ∈ R, i, j = 1, . . . , d. Let us denote
µ := (µ1, . . . , µd)

> with > representing the transpose operator, and σ := (σij)d×d. It is assumed
that σ is invertible. We also assume that the riskless interest rate r = 0 that amounts to the change
of numéraire and µ is not a zero vector. From this point onwards, all values are defined after the
change of numéraire. At time t ≥ 0, let θit be the amount of wealth that a fund manager allocates
in asset Si = (Sit)t≥0 and ct be the consumption rate. The self-financing wealth process of the
agent satisfies the controlled SDE:

V θ,c
t = v +

∫ t

0
θ>s µds+

∫ t

0
θ>s σdWs −

∫ t

0
csds, ∀t ≥ 0, (1.2)

where v ≥ 0 represents the initial wealth level of the agent.

To incorporate the wealth tracking into our optimal consumption problem, let us consider a
general type of benchmark processes M = (Mt)t≥0, which is described by

Mt = mt + Zt, ∀t ≥ 0, (1.3)

where Zt = z +
∫ t

0 µZZsds +
∫ t

0 σZZsdW
η
s is a GBM and mt := max{m, sups≤tBs} is the running

maximum process of the drifted Brownian motion Bt = b+µBt+σBW
γ
t . Here, the model parameters

z,m ≥ 0, b ∈ R, µZ , µB ∈ R and σZ , σB ≥ 0. For the correlative vector γ = (γ1, . . . , γd)
> ∈

[−1, 1]d, the process W γ = (W γ
t )t≥0 is a linear combination of the d-dimensional Brownian motion

(W 1, . . . ,W d) with weights γ, which itself is a Brownian motion. Similarly, the process W η =
(W η

t )t≥0 is a linear combination of the d-dimensional Brownian motion (W 1, . . . ,W d) with weights
η = (η1, . . . , ηd) ∈ [−1, 1]d.

The benchmark process in the general form of (1.3) can effectively capture the long-term in-
creasing trend of many typical benchmark processes, such as S&P 500, NASDAQ and Dow Jones,
or the movements of CPI index and higher education costs in the long run. Figure 1-(a) illustrates
the increasing trend of simulated sample paths of (1.3), which is consistent to Figure 1-(b) that
displays the long term growing trend of the observed data of S&P500, NASDAQ and Dow Jones
from April 1, 2010 to November 01, 2020. Similarly, Figure 1-(c) plots the Consumer Price Index
for Urban Wage Earners and Clerical Workers (CPI-W) from 1984 to 2023, and Figure 1-(d) plots
the total cost of U.S. undergraduate students over time from 1963 to 2021, which both exhibit the
same increasing trend in the long run.

We consider the relaxed benchmark tracking using the capital injection. At any time t ≥ 0, it is
assumed that the fund manager can strategically inject capital At such that the total wealth Vt+At
stays above the benchmark process Mt. In the objective function, in addition to the expected utility
on consumption, the fund manager also needs to take into account the cost of total capital injection.
Mathematically speaking, the fund manager now aims to maximize the following objective function
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Figure 1: (a): Simulated sample paths of the benchmark process t→ Mt via Monte Carlo with dimension
d = 1. The model parameters are set to be z = 0.8, m = 0, b = 1, µZ = 2, σZ = 1, µB = 2, σB = 0, γ =
η = 1. (b): The price movements of market indices S&P500 (GSPC), NASDAQ (IXIC) and Dow Jones (DJI)
based on observed data (April 1, 2011 to November 01, 2020) from Yahoo Finance. (c): Consumer Price Index
for the US’s Urban Wage Earners and Clerical Workers from 1984 to 2023, available from https://www.ssa.

gov/oact/STATS/cpiw_graph.html. (d) Total cost of college in the U.S. for undergraduate students from
1963 to 2021, available from https://www.bestcolleges.com/research/college-costs-over-time/.
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under dynamic floor constraint that, for all (v,m, z, b) ∈ R+ × R+ × R+ × R with R+ := [0,∞),
w(v,m, z, b) := sup

(θ,c,A)∈U
E
[∫ ∞

0
e−ρtU(ct)dt− β

(
A0 +

∫ ∞
0

e−ρtdAt

)]
,

s.t. Mt ≤ At + V θ,c
t at each t ≥ 0,

(1.4)

where ρ > 0 is the discount rate and β > 0 describes the cost per injected capital, which can also be
interpreted as the weight of relative importance between the consumption performance and the cost
of capital injection. Here, (θ, c, A) ∈ U denotes an admissible control where (θ, c) = (θt, ct)t≥0 is an
F-adapted process taking values on Rd×R+, and A = (At)t≥0 is a right-continuous, non-decreasing
and F-adapted process. In the present paper, the utility function is considered as the power utility
U(x) = 1

px
p, x ∈ R+, with the risk aversion parameter p ∈ (−∞, 0) ∪ (0, 1).

Stochastic control problems with minimum guaranteed floor constraints have been studied in
different contexts, see among El Karoui et al. (2005), El Karoui and Meziou (2006), Di Giacinto et
al. (2011), Sekine (2012), Di Giacinto et al. (2014) and Chow et al. (2020) and references therein.
In previous studies, the minimum guaranteed level is usually chosen as constant or deterministic
level and some typical techniques to handle the floor constraints are to introduce the option based
portfolio or the insured portfolio allocation such that the floor constraints can be guaranteed.
However, if we consider the Merton problem under the strict floor constraint on wealth that V θ,c

t ≥
Mt a.s. for all t ≥ 0, the set of admissible controls might be empty due to the more complicated
benchmark process Mt in (1.3). In this regard, we introduce the singular control of capital injection
At in our relaxed tracking formulation such that the admissible set can be enlarged and the optimal
control problem can become solvable. By minimizing the cost of capital injection, the controlled
wealth process V θ,c

t stays very close to the benchmark process Mt as desired. To address the
dynamic floor constraint, our first step is to reformulate it into an unconstrained control problem.
By applying Lemma 2.4 in Bo et al. (2021), for each fixed regular control (θ, c), the optimal singular

control A
(θ,c),∗
t satisfies the form that

A
(θ,c),∗
t = 0 ∨ sup

s≤t
(Ms − V θ,c

s ), ∀t ≥ 0. (1.5)

Thus, the original problem (1.4) with the constraintMt ≤ At+V θ,c
t for all t ≥ 0 admits an equivalent

formulation as an unconstrained utility maximization problem with a running maximum cost that

w(v,m, z, b) = −β(m ∨ b+ z − v)+ (1.6)

+ sup
(θ,c)∈Ur

E
[∫ ∞

0
e−ρtU(ct)dt− β

∫ ∞
0

e−ρtd

(
0 ∨ sup

s≤t
(Ms − V θ,c

s )

)]
.

Here, Ur denotes the set of regular F-adapted admissible strategies (θ, c) = (θt, ct)t≥0 taking values
on Rd × R+ such that, for any T > 0, the SDE (1.2) admits a weak solution on [0, T ].

It is worth noting that some existing studies can be found in stochastic control problems with a
running maximum cost, see Barron and Ishii (1989), Barles et al. (1994), Bokanowski et al. (2015),
Weerasinghe and Zhu (2016) and Kröner et al. (2018), where the viscosity solution approach usually
plays the key role. In our optimal control problem (1.6), two fundamental questions need to be
addressed: (i) Can we characterize the optimal portfolio and consumption control pair (θ∗, c∗) in
the feedback form if it exists? (ii) Whether the relaxed tracking formulation is well-defined in the

sense that the expected total capital injection E[
∫∞

0 e−ρtd(0 ∨ sups≤t(Ms − V θ∗,c∗
s ))] is finite? We
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will verify that our problem formulation does not require the injection of infinitely large capital to
meet the tracking goal. The present paper contributes positive answers to both questions.

In solving the stochastic control problem (1.6) with a running maximum cost, we introduce two
auxiliary state processes with reflections and study an auxiliary stochastic control problem, which
gives rise to the HJB equation with two Neumann boundary conditions. By applying the dual
transform and stochastic flow analysis, we can conjecture and carefully verify that the classical
solution of the dual PDE satisfies a separation form of three terms, all of which admit probabilistic
representations involving some dual reflected diffusion processes and/or the local time at the re-
flection boundary. We stress that the main challenge is to prove the smoothness of the conditional
expectation of the integration of an exponential-like functional of the reflected drifted-Brownian
motion (RDBM) with respect to the local time of another correlated RDBM. We propose a new
method of decomposition-homogenization to the dual PDE, which allows us to show the smoothness
of the conditional expectation of the integration of exponential-like functional of the RDBM with
respect to the local time of an independent RDBM.

By using the classical solution to the dual PDE with Neumann boundary conditions and es-
tablishing some technical estimations of candidate optimal controls, we can address the previ-
ous question (i) and rigorously characterize the optimal control pair (θ∗, c∗) in a feedback form
in the verification theorem. Based on our estimations of the optimal control processes, we can
further answer the previous question; (ii) and verify that the expected total capital injection

E[
∫∞

0 e−ρtd(0 ∨ sups≤t(Ms − V θ∗,c∗
s ))] is indeed bounded, and hence our problem (1.4) in a re-

laxed tracking formulation using the additional singular control is well defined. Moreover, it is also
shown that E[

∫∞
0 e−ρtd(0∨ sups≤t(Ms−V θ∗,c∗

s ))] is bounded below by a positive constant, indicat-
ing that the capital injection is necessary for the well-posedness for the control problem. We also
note that A∗t = sups≤t(V

θ∗,c∗
s −Ms)

− records the largest shortfall when the wealth process V θ∗,c∗
s

falls below the benchmark process ms up to time t. As a manner of risk management, the finite
expectation E[

∫∞
0 e−ρtd(0 ∨ sups≤t(Ms − V θ∗,c∗

s ))] can quantitatively reflect the expected largest
shortfall of the wealth management with respect to the benchmark in a long run.

The rest of the paper is organized as follows. In Section 2, we introduce the auxiliary state
processes with reflections and derive the associated HJB equation with two Neumann boundary
conditions for the auxiliary stochastic control problem. In Section 3, we address the solvability of
the dual PDE problem by verifying a separation form of the solution and the probabilistic repre-
sentations, the homogenization of Neumann boundary conditions and the stochastic flow analysis.
The verification theorem on the optimal feedback control is presented in Section 4 together with the
technical proofs on the strength of stochastic flow analysis and estimations of the optimal control.
It is also verified therein that the expected total capital injection is bounded. Finally, the proof of
an auxiliary lemma is reported in Appendix A.

2 Formulation of the Auxiliary Control Problem

In this section, we formulate and study a more tractable auxiliary stochastic control problem, which
is mathematically equivalent to the unconstrained optimal control problem (1.6). To this end, we

first introduce a new auxiliary state process to replace the wealth process V θ,c = (V θ,c
t )t≥0 given in

(1.2). Let us first define

Dt := Mt − V θ,c
t + v −m ∨ b− z, ∀t ≥ 0, (2.1)
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where M = (Mt)t≥0 is defined by (1.3), and it is clear that D0 = 0. Moreover, for any x ≥ 0, we
define the running maximum process of the process D = (Dt)t≥0 that

Lt := x ∨ sup
s≤t

Ds − x ≥ 0, ∀t ≥ 0 (2.2)

with the initial value L0 = 0. The auxiliary state process X = (Xt)t≥0 is then defined as the
reflected process Xt := Lt −Dt for t ≥ 0 that satisfies the SDE that for all t > 0,

Xt = x+

∫ t

0
θ>s µds+

∫ t

0
θ>s σdWs −

∫ t

0
csds−

∫ t

0
µZZsds−

∫ t

0
σZZsdW

η
s −

∫ t

0
dms + Lt (2.3)

with the initial value X0 = x ≥ 0. In particular, Xt hits 0 if the running maximum process Lt
increases. We will change the notation from Lt to LXt from this point onwards to emphasize its
dependence on the new state process X given in (2.3).

On the other hand, for the running maximum process m = (mt)t≥0 in (1.3), we also introduce
a second auxiliary state process It := mt − Bt for all t ≥ 0. As a result, It hits 0 if mt increases,
and we have

It = I0 +

∫ t

0
dms −

∫ t

0
µBds−

∫ t

0
σBdW

γ
s , ∀t ≥ 0, (2.4)

where the initial state value I0 = m ∨ b− b ≥ 0.

The stochastic control problem (1.6) can be solved by studying the auxiliary problem that, for
all (x, y, z) ∈ R3

+,
u(x, h, z) := sup

(θ,c)∈Ur

J(x, h, z; θ, c) = sup
(θ,c)∈Ur

Ex,h,z
[∫ ∞

0
e−ρtU(ct)dt− β

∫ ∞
0

e−ρtdLXt

]
,

S.t. the state process (X, I) satisfies (2.3)-(2.4), and Z is the GBM in (1.3),

(2.5)

where Ex,h,z[·] := E[·|X0 = x, I0 = h, Z0 = z]. We note the equivalence that

w(v,m, z, b) =

{
u(v −m ∨ b− z,m ∨ b− b, z), if v ≥ m ∨ b+ z,

u(0,m ∨ b− b, z)− β(m ∨ b+ z − v), if v < m ∨ b+ z,
(2.6)

where w(v,m, z, b) is given by (1.6).

We first have the following property of the value function u in (2.5), whose proof is deferred to
Appendix A.

Lemma 2.1. Let the discount factor ρ > 2µZ+σ2
Z (if 2µZ+σ2

Z ≤ 0, this condition is automatically
satisfied). Then, x → u(x, h, z), h → u(x, h, z) and z → u(x, h, z) are non-decreasing. Moreover,
it holds that, for all (x1, x2, h1, h2, z1, z2) ∈ R6

+,

|u(x1, h1, z1)− u(x2, h2, z2)| ≤ β(|x1 − x2|+ |h1 − h2|)

+ β

(
σ2
Z +

|µZ |
ρ− µZ

+
3

ρ− 2µZ − σ2
Z

)
|z1 − z2|,

where we recall that β > 0 is the cost parameter due to the capital injection appeared in (1.4).
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By dynamic program argument, we can derive the associated HJB equation that, for (x, h, z) ∈
(0,∞)3,

sup
θ∈Rd

[
θ>µux +

1

2
θ>σσ>θuxx + σZθ

>σηz(uxx − uxz)− σBθ>σγuxh
]

+ sup
c≥0

(
cp

p
− cux

)
+

1

2
σ2
Buhh − µBuh +

1

2
σ2
Zz

2(uzz + uxx − 2uxz) + µZz(uz − ux)

+σZσBzη
>γ(uxh − uhz) = ρu,

ux(0, h, z) = β, ∀(h, z) ∈ R2
+,

uh(x, 0, z) = ux(x, 0, z), ∀(x, z) ∈ R2
+.

(2.7)

Here, the first Neumann boundary condition in (2.7) stems from the fact that Xt = 0 when Lt
increases; while the second Neumann boundary condition in (2.7) comes from the fact that It = 0
when mt increases.

Assuming that HJB equation (2.7) admits a unique classical solution u satisfying uxx < 0 and
ux ≥ 0, which will be verified in later sections, the first-order condition yields the candidate optimal
feedback control that

θ∗ = −(σσ>)−1µux − σBσγuxh + σZσηz(uxx − uxz)
uxx

, c∗ = (ux)
1
p−1 .

Plugging the above results into (2.7), we apply Lemma 2.1 and the Legendre-Fenchel transform of
the solution u only with respect to x that û(y, h, z) := supx≥0{u(x, h, z) − yx} for all (y, h, z) ∈
(0, β] × R2

+. Equivalently, u(x, h, z) = infy∈(0,β]{û(y, h, z) − xy} for all (x, h, z) ∈ R3
+. The dual

transform can linearize the HJB equation (2.7), and we get the dual PDE for û(y, h, z) that, for all
(y, h, z) ∈ (0, β]× (0,∞)2,

α2

2
y2ûyy + ρyûy +

σ2
B

2
ûhh − µBûh + +

1

2
σ2
Zz

2ûzz + µZzûz + κ1yûyh − κ2zyûyz

+σZσBγ
>ηzûzh + (κ2 − µZ)zy +

(
1− p
p

)
y
− p

1−p = ρû, (2.8)

where the coefficients

α := (µ>(σσ>)−1µ)
1
2 > 0, κ1 := σBµ

>(σσ>)−1σγ, κ2 := σZµ
>(σσ>)−1ση. (2.9)

Correspondingly, the first Neumann boundary condition in (2.7) is transformed to the Neumann
boundary condition that

ûy(β, h, z) = 0, ∀(h, z) ∈ R2
+. (2.10)

The second Neumann boundary condition in (2.7) is transformed to the Neumann boundary con-
dition that

ûz(y, 0, z) = y, ∀(y, z) ∈ (0, β]× R+. (2.11)
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3 Solvability of the Dual PDE

This section examines the existence of solution to PDE (2.8) with two Neumann boundary condi-
tions (2.10) and (2.11) in the classical sense using the probabilistic approach.

Before stating the main result of this section, let us first introduce the following function that,
for all (r, h, z) ∈ R3

+,

v(r, h, z) :=
1− p
p

β
− p

1−pE
[∫ ∞

0
e
−ρs+ p

1−pR
r
sds

]
+ β(κ2 − µZ)E

[∫ ∞
0

e−ρs−R
r
sN z

s ds

]
− βE

[∫ ∞
0

e−ρs−R
r
sdKh

s

]
. (3.1)

Here, the processes Rr = (Rrt )t≥0 and Hh = (Hh
t )t≥0 with (r, h) ∈ R2

+ are two reflected processes
satisfying that, for all t ≥ 0,

Rrt = r +

(
α2

2
− ρ
)
t+ αB1

t + Lrt ≥ 0, (3.2)

Hh
t = h− µBt− %1σBB

1
t −

√
1− %2

1σBB
0
t +Kh

t ≥ 0, (3.3)

and the process N z = (N z
t )t≥0 is a GBM satisfying

dN z
t = µZN

z
t dt+ %2σZN

z
t dB

1
t +

√
1− %2

2σZN
z
t B

2
t , N z

0 = z,

where B0 = (B0
t )t≥0, B1 = (B1

t )t≥0 and B2 = (B2
t )t≥0 are three independent scalar Brownian

motions; while Lr = (Lrt )t≥0 (resp. Kh = (Kh
t )t≥0) is a continuous and non-decreasing process that

increases only on the set {t ≥ 0; Rrt = 0} with Lr0 = 0 (resp. {t ≥ 0; Hh
t = 0} with Kh

0 = 0) such
that Rrt ≥ 0 (resp. Hh

t ≥ 0) a.s. for t ≥ 0, the correlative coefficients are respectively given by

%1 :=
µ>(σσ>)−1σγ

α
, %2 :=

µ>(σσ>)−1ση

α
. (3.4)

On the other hand, note that (Rrt )t≥0 in (3.2) and (Hh
t )t≥0 in (3.3) are RDBMs, and the processes

Lr = (Lrt )t≥0 and Kh = (Kh
t )t≥0 are uniquely determined by the above properties (c.f. Harrison

(1985)). Using the solution representation of “the Skorokhod problem”, it follows that, for all t ≥ 0,
Lrt = 0 ∨

{
−r + max

s∈[0,t]

[
−αB1

s −
(
α2

2
− ρ
)
s

]}
,

Kh
t = 0 ∨

{
−h+ max

s∈[0,t]

(
µBs+ σBB

3
s

)}
,

(3.5)

where the process B3 = (B3
t )t≥0 = (%1B

1
t +

√
1− %2

1B
0
t )t≥0 is a scalar Brownian motion.

The main result of this section is stated as follows:

Theorem 3.1. Assume ρ > α2p
2(1−p) and µZ > κ2. Consider the function v(r, h, z) for (r, h, z) ∈ R3

+

defined by the probabilistic representation (3.1). For all (y, h, z) ∈ (0, β]× R2
+, let us define

û(y, h, z) := v

(
− ln

y

β
, h, z

)
. (3.6)

Then, for each (h, z) ∈ R2
+, we have
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• the function (0, β] 3 y 7→ û(y, h, z) is strictly convex.

• the function û(y, h, z) is a classical solution of PDE (2.8) with Neumann boundary conditions
(2.10) and (2.11).

On the other hand, if the Neumann problem (2.8)-(2.11) has a classical solution û(y, h, z) satisfying
|û(y, h, z)| ≤ C(1 + |y|−q + zq) for some q > 1 and some constant constant C > 0, then v(r, h, z) :=
û(βe−r, h, z) admits the probabilistic representation (3.1).

Theorem 3.1 provides a probabilistic presentation of the classical solution to the PDE (2.8) with
Neumann boundary conditions (2.10) and (2.11). Our method in the proof of Theorem 3.1 is com-
pletely from a probabilistic perspective. More precisely, we start with the proof of the smoothness
of the function v by applying properties of reflected processes (Rr, Hh, N z), the homogenization
technique of the Neumann problem and the stochastic flow analysis. Then, we show that v solves a
linear PDE by verifying two related Neumann boundary conditions at r = 0 and h = 0 respectively.

The next result deals with the first two terms of the function v given in (3.1), whose proof is
similar to that of Theorem 4.2 in Bo et al. (2021) after minor modifications. For the completeness,
we provide a sketch of the proof in Appendix A.

Lemma 3.2. Assume ρ > α2|p|
2(1−p) +µZ and µZ > κ2. For any (r, z) ∈ R2

+, denote by l(r, z) the sum

of the first term and the second term of the function v given in (3.1) that

l(r, z) :=
1− p
p

β
− p

1−pE
[∫ ∞

0
e
−ρs+ p

1−pR
r
sds

]
+ β(κ2 − µZ)E

[∫ ∞
0

e−ρs−R
r
sN z

s ds

]
. (3.7)

Then, the function l(r, z) is a classical solution to the following Neumann problem with Neumann
boundary condition at r = 0:

α2

2
lrr +

(
α2

2
− ρ
)
lr +

1

2
σ2
Zz

2lzz + µZzlz + κ2zlrz

+(κ2 − µZ)βze−r +
1− p
p

β
− p

1−p e
p

1−p r = ρl, on (0,∞)2,

lr(0, z) = 0, ∀z ∈ R+.

(3.8)

On the other hand, if the Neumann problem (3.8) has a classical solution l(r, z) for r ∈ R+ satisfying
|l(r, z)| ≤ C(1 + eqr + zq) for some q > 1 and a constant C > 0 depending on (µ, σ, µZ , σZ , p), then
this solution l(r, z) admits the probabilistic representation (3.7). Moreover, l(r, z) admits the explicit
form that

l(r, z) = C1β
− p

1−p e
p

1−p r + C2βe
−r + z

(
βe−r − β

`
e−`r

)
, ∀(r, z) ∈ R2

+, (3.9)

where C1, C2 > 0 are two positive constants defined by

C1 :=
2(1− p)3

p(2ρ(1− p)− α2p)
, C2 :=

2(1− p)2

2ρ(1− p)− α2p
β
− 1

1−p , (3.10)

the constant ` is the positive root of the quadratic equation

1

2
α2`2 +

(
ρ− κ2 −

1

2
α2

)
`+ µZ − ρ = 0, (3.11)

9



which is given by

` =
−(ρ− κ2 − 1

2α
2) +

√
(ρ− κ2 − 1

2α
2)2 + 2α2(ρ− µZ)

α2
> 0. (3.12)

The challenging step in our problem is to handle the last term of the function v given in (3.1),
which differs substantially from the first two terms of v as it now involves both the reflected process
Rr and the local time term Kh of the reflected process Hh. In particular, we highlight that the
reflected process Rr is not independent of the local time process Kh. As a preparation step to
handle the smoothness of the second term of the function v given in (3.1), let us first discuss the
case when the reflected process Rr is independent of the local time Kh.

Lemma 3.3. Let us consider the function that, for all (r, h) ∈ R2
+,

ϕ(r, h) := −βE
[∫ ∞

0
e−ρs−R

r
sdGhs

]
, (3.13)

where the reflected process Rr = (Rrt )t≥0 with r ∈ R+ is given by (3.2), and the process (P h, Gh) =
(P ht , G

h
t )t≥0 satisfies the reflected SDE:

P ht = h−
∫ t

0
µBds−

∫ t

0
σBdB

0
s +

∫ t

0
dGhs ≥ 0. (3.14)

Here, Gh = (Ght )t≥0 is a continuous and non-decreasing process that increases only on the time
set {t ∈ R+; P ht = 0} with Gh0 = 0 and such that P ht ≥ 0 a.s. for t ≥ 0. Then, the processes
Gh = (Ght )t≥0 and Rr = (Rrt )t≥0 are independent. Moreover, the function ϕ(r, h) is a classical
solution to the following PDE with Neumann boundary conditions at r = 0 and h = 0:

α2

2
ϕrr +

(
α2

2
− ρ
)
ϕr +

σ2
B

2
ϕhh − µBϕh = ρϕ, on (0,∞)2,

ϕr(0, h) = 0, ∀h ∈ R+,

ϕh(r, 0) = βe−r, ∀r ∈ R+.

(3.15)

On the other hand, if the Neumann problem (3.15) has a classical solution ϕ(r, h) satisfying
|ϕ(r, h)| ≤ C for some constant C > 0 depending on (µ, σ, µB, σB), then this solution ϕ(r, h)
satisfies the probabilistic representation (3.39).

The following result guarantees the smoothness of the function ϕ(r, h) for (r, h) ∈ R2
+ defined

by (3.13).

Lemma 3.4. Consider the function ϕ(r, h) for (r, h) ∈ R2
+ defined by (3.13). Assume σB 6= 0,

then it holds that ϕ ∈ C2,2(R2
+). Moreover, for all (r, h) ∈ R2

+, we have

ϕr(r, h) = βE
[∫ τr

0
e−ρs−R

r
sdGhs

]
, ϕh(r, h) = βE

[
e−ρηh−R

r
ηh

]
, (3.16)

ϕrr(r, h) = β

∫ ∞
0

∫ r

−∞
e−ρs−r+xφ1(s, x, r)dxdE[Ghs ]− βE

[∫ τr

0
e−ρs−R

r
sdGhs

]
, (3.17)

ϕrh(r, h) = −βE
[
e−ρηh−R

r
ηh1ηh<τr

]
=−β

∫ ∞
0

∫ r

0

∫ y

−∞
e−ρs−r+xφ1(s, x, y)φ2(s, h)dxdyds. (3.18)

10



Here τr := inf{s ≥ 0; −αB1
s−(1

2α
2−ρ)s = r}, ηh := inf{s ≥ 0; σBB

0
s+µBs = h} (with inf ∅ = +∞

by convention), and functions φ1(s, x, y), φ2(s, h) are respectively given by, for all (s, x, y, h) ∈ R4
+,

φ1(s, x, y) =
2(2y − x)√

2σ̂2πs3
exp

(
µ̂

σ̂
x− 1

2
µ̂2s− (2y − x)2

2σ̂2s

)
, (3.19)

φ2(s, h) =
h√

2σ2
Bπs

3
exp

(
−(h− µBs)2

2σ2
Bs

)
, (3.20)

where parameters µ̂ := α
2 −

ρ
α and σ̂ := α.

Proof. The independence between the reflected process Rr = (Rrt )t≥0 and the process Gh = (Ght )t≥0

plays an important role in the proof below. Before calculating the partial derivatives of ϕ(r, h), we
first claim that, for all (r, h) ∈ R2

+,

ϕ(r, h) = −β
∫ ∞

0
E
[
e−ρs−R

r
s
]
dE[Ghs ]. (3.21)

In fact, fix (T, r, h) ∈ R3
+, and let n ≥ 1, si = T

n i with i = 0, 1, . . . , n. Then, it holds that

E
[∫ T

0
e−ρs−R

r
sdGhs

]
= E

[
lim
n→∞

n∑
i=1

e−ρsi−R
r
si

(
Ghsi −G

h
si−1

)]
.

Note that e−ρs−R
r
s ≤ 1 a.s., for all s ∈ [0, T ]. Then

∑n
i=1 e

−ρsi−Rrsi (Ghsi − G
h
si−1

) ≤
∑n

i=1(Ghsi −
Ghsi−1

) = GhT . Thus, from the dominated convergence theorem (DCT) and the independence be-

tween B0 and B1, it follows that

E
[∫ T

0
e−ρs−R

r
sdGhs

]
= lim
n→∞

E

[
n∑
i=1

e−ρsi−R
r
si

(
Ghsi −G

h
si−1

)]
= lim
n→∞

n∑
i=1

E
[
e−ρsi−R

r
si

(
Ghsi −G

h
si−1

)]
= lim

n→∞

n∑
i=1

E
[
e−ρsi−R

r
si

]{
E[Ghsi ]− E[Ghsi−1

]
}

=

∫ T

0
E
[
e−ρs−R

r
s
]
dE[Ghs ]. (3.22)

Letting T →∞ on both side of (3.22) and applying MCT, it follows that

E
[∫ ∞

0
e−ρs−R

r
sdGhs

]
=

∫ ∞
0

E
[
e−ρs−R

r
s
]
dE[Ghs ].

This verifies the claim (3.21).

Let h ∈ R+ be fixed. First of all, we consider the case with arbitrary r2 > r1 ≥ 0. It follows
from (3.13) that

ϕ(r2, h)− ϕ(r1, h)

r2 − r1
= −β

∫ ∞
0

E

[
e−ρs

e−R
r2
s − e−R

r1
s

r2 − r1
dGhs

]
.

A direct calculation yields that, for all s ≥ 0,

lim
r2↓r1

e−R
r2
s −ρs − e−R

r1
s −ρs

r2 − r1
=

{
−e−R

r1
s −ρs, maxq∈[0,s]{−αB1

q − (1
2α

2 − ρ)q} ≤ r1,

0, maxq∈[0,s]{−αB1
q − (1

2α
2 − ρ)q} > r1.
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Note that sup(r1,r2)∈R2
+
| e−R

r2
s −ρs−e−R

r1
s −ρs

r2−r1 | ≤ e−ρs. Then, the DCT yields that

lim
r2↓r1

ϕ(r2, h)− ϕ(r1, h)

r2 − r1
= βE

[∫ ∞
0

e−ρs−R
r1
s 1{maxq∈[0,s]{−αB1

q−( 1
2
α2−ρ)q}≤r1}dG

h
s

]
= βE

[∫ τr1

0
e−ρs−R

r1
s dGhs

]
. (3.23)

For the case r1 > r2 ≥ 0, similar to the computations for (3.23), we can show that

lim
r2↑r1

ϕ(r2, h)− ϕ(r1, h)

r2 − r1
= lim

r2↓r1

ϕ(r2, h)− ϕ(r1, h)

r2 − r1
.

Thus, the representation (3.16) holds.

For any real numbers r0, rn ≥ 0 with rn → r0 as n→∞, we have from (3.16) that, for all n ≥ 1,

∆n :=
ϕr(rn, h)− ϕr(r0, h)

rn − r0

= βE

[
1

rn − r0

∫ τrn

τr0

e−ρs−R
r0
s dGhs

]
+ βE

[
1

rn − r0

∫ τr0

0
e−ρs

(
e−R

rn
s − e−R

r0
s

)
dGhs

]

+ βE

[
1

rn − r0

∫ τrn

τr0

e−ρs
(
e−R

rn
s − e−R

r0
s

)
dGhs

]
:= ∆(1)

n + ∆(2)
n + ∆(3)

n . (3.24)

In order to handle the term ∆
(1)
n , we first focus on the case with rn ↓ r0 as n → ∞. Let us define

the drifted-Brownian motion W̃s := −αB1
s − (α

2

2 − ρ)s for all s ∈ R+. In view of (3.2) and (3.5),
it holds that

Rr0s = r0 − W̃s +

(
sup
q∈[0,s]

W̃q − r0

)+

, ∀s ≥ 0.

Note that φ1(s, x, y) defined by (3.19) is the joint probability density of two-dimensional random
variable (W̃s,maxq∈[0,s] W̃q) for any s ≥ 0. Then, we have

E

[
1

rn − r0

∫ τrn

τr0

e−ρs−R
r0
s dGhs

]
= E

[
1

rn − r0

∫ ∞
0

e−ρs−R
r0
s 1{τr0<s≤τrn}dG

h
s

]

=

∫ ∞
0

E

[
exp(−ρs− r0 + W̃s − (supq∈[0,s] W̃q − r0)+)

rn − r0
1{r0<maxq∈[0,s] W̃q≤rn}

]
dE[Ghs ]

=

∫ ∞
0

∫ rn

r0

∫ y

−∞

e−ρs−r0+x−(y−r0)+

rn − r0
φ1(s, x, y)dxdydE[Ghs ]. (3.25)

For (s, y) ∈ R2
+, set g(s, y) :=

∫ y
−∞ e

−ρs−r0+x−(y−r0)+
φ1(s, x, y)dx. Then, by the continuity of

y → g(s, y), we have

lim
n→∞

1

rn − r0

∫ rn

r0

g(s, y)dy = g(s, r0). (3.26)

It follows from (3.25), (3.26) and DCT that

lim
n→∞

E

[
1

rn − r0

∫ τrn

τr0

e−ρs−R
r0
s dGhs

]
=

∫ ∞
0

∫ r0

−∞
e−ρs−r0+xφ1(s, x, r0)dxdE[Ghs ].

12



For the case where r0 > 0 and rn ≥ 0 with rn ↑ r0 as n → ∞, using a similar argument as above,
we can derive that

lim
n→∞

∆(1)
n = β

∫ ∞
0

∫ r0

−∞
e−ρs−r0+xφ1(s, x, r0)dxdE[Ghs ].

In a similar fashion as in the derivation of (3.23), we also have

lim
n→∞

∆(2)
n = β lim

n→∞
E
[

1

rn − r0

∫ τr0

0
e−ρs

(
e−R

rn
s − e−R

r0
s

)
dGhs

]
= −βE

[∫ τr0

0
e−ρs−R

r0
s dGhs

]
.

At last, we can also obtain∣∣∣∆(3)
n

∣∣∣ = βE

[
1

rn − r0

∣∣∣∣∣
∫ τrn

τr0

e−ρs
(
e−R

rn
s − e−R

r0
s

)
dGhs

∣∣∣∣∣
]

≤ βE
[
Gτrn −Gτr0
rn − r0

sup
s≥0

∣∣∣e−ρs (e−Rrns − e−Rr0s )∣∣∣] .
Note that sups≥0 | e

−Rrns −e−R
r0
s

rn−r0 | ≤ 1, P-a.s., and the fact that Gτrn → Gτr0 , a.s., as n → ∞, the

DCT yields that limn→∞ |∆(3)
n | = 0. Putting all the pieces together, we get that

ϕrr(r0, h) = β

∫ ∞
0

∫ r0

−∞
e−ρs−r0+xφ1(s, x, r0)dxdE[Ghs ]− βE

[∫ τr0

0
e−ρs−R

r0
s dGhs

]
. (3.27)

We next derive the representation of the partial derivative ϕh(r, h). For any h2 > h1 ≥ 0, it
follows from (3.13) that

ϕ (r, h2)− ϕ (r, h1)

h2 − h1
= −β

∫ ∞
0

E
[
e−ρs−R

r
s
]
d

(
Gh2
s −Gh1

s

h2 − h1

)
.

In lieu of (3.5), it holds that, for i = 1, 2, Ghis = hi ∨ {maxl∈[0,s](µBl + σBB
0
l )} − hi for s ≥ 0. For

h > 0, we introduce ηh := inf {s ≥ 0; σBWs + µBs = h} with inf ∅ = +∞ by convention. A direct
calculation yields that, for all s ≥ 0,

Gh2
s −Gh1

s

h2 − h1
=


0, s < ηh1 ,

− Gh1
s

h2 − h1
, ηh1 ≤ s < ηh2 ,

− 1, s ≥ ηh2 .

Then, it holds that

E
[∫ ∞

0
e−ρs−R

r
sd

(
Gh2
s −Gh1

s

h2 − h1

)]
= −E

[∫ ηh2

ηh1

e−ρs−R
r
sd

(
Gh1
s

h2 − h1

)]

= −E

[∫ ηh2

ηh1

(
e−ρs−R

r
s − e−ρηh1

−Rrηh1

)
d

(
Gh1
s

h2 − h1

)]
− E

[
e
−ρηh1

−Rrηh1

]
.

Note that, as h2 ↓ h1, we have

E

[∫ ηh2

ηh1

(
e−ρs−R

r
s − e−ρηh1

−Rrηh1

)
d

(
Gh1
s

h2 − h1

)]
≤E

[
sup

s∈[ηh1
,ηh2

]

∣∣∣e−ρs−Rrs − e−ρηh1
−Rrηh1

∣∣∣]→ 0.
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This yields that

lim
h2↓h1

E
[∫ ∞

0
e−ρs−R

r
sd

(
Gh2
s −Gh1

s

h2 − h1

)]
= −E

[
e
−ρηh1

−Rrηh1

]
. (3.28)

Similarly, using the above argument, we also obtain

lim
h2↑h1

ϕ(r, h2)− ϕ(r, h1)

h2 − h1
= lim

h2↓h1

ϕ(r, h2)− ϕ(r, h1)

h2 − h1
.

Thus, we can conclude that, for all (r, h) ∈ R2
+,

ϕh(r, h) = βE
[
e−ρηh−R

r
ηh

]
. (3.29)

Furthermore, in view of Proposition 2.5 in Abraham (2000), it follows that

E[Ghs ] =

∫ s

0
p(0, h; l, 0)dl, ∀s ≥ 0, (3.30)

where p(0, h0; s, h) = P(P h0
s ∈ dh)/dh is the condition density function of the reflected drifted

Brownian motion P h0
s at time s ≥ 0 (c.f. Veestraeten (2004)). Hence, we deduce that

ϕ(r, h) = −β
∫ ∞

0
E
[
e−ρs−R

r
s
]
p(0, h; s, 0)ds, ∀(r, h) ∈ R2

+.

In view that for every fixed s ∈ R+, the function h → p(0, h; s, 0) belongs to C2(R+) (c.f.
Veestraeten (2004)), we get that, for all (r, h) ∈ R2

+,

ϕhh(r, h) = −β
∫ ∞

0
E
[
e−ρs−R

r
s
] ∂2p(0, h; s, 0)

∂h2
ds. (3.31)

Following (3.29) and a similar argument as in the proof of (3.23), we can obtain

ϕrh(r, h) = −βE
[
e−ρηh−R

r
ηh1ηh<τr

]
= −βE

[
exp

(
−ρηh − r + W̃ηh −

(
sup

q∈[0,ηh]
W̃q − r

)+)
1supq∈[0,ηh] W̃q<r

]

= −β
∫ ∞

0

∫ r

0

∫ y

−∞
e−ρs−r+xφ1(s, x, y)φ2(s, h)dxdyds. (3.32)

The desired conclusion on the smoothness of ϕ(r, h) in the lemma follows by combining expressions
in (3.23), (3.27), (3.29), (3.31) and (3.32).

We next give the proof of Lemma 3.3.

Proof of Lemma 3.3. In lieu of Lemma 3.4, we first prove that the function ϕ(r, h) defined by (3.39)
satisfies the Neumann problem (3.15). In fact, for all (r, h) ∈ R2

+, we introduce thatB̂
r
t := r +

(
α2

2
− ρ
)
t+ αB1

t , ∀t ∈ R+,

B̃h
t := h− µBt− σBB0

t , ∀t ∈ R+.
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Here, we recall that B1 = (B1
t )t≥0 and B0 = (B0

t )t≥0 are two independent scalar Brownian motions,
which are given in (3.2) and (3.3). For any ε ∈ (0, r ∧ h), let us define

τε := inf{t ≥ 0; |B̂r
t − r| ≥ ε or |B̃h

t − h| ≥ ε}. (3.33)

We can easily check that, for any t̂ ≥ 0, R̂r
t̂∧τε

= B̂r
t̂∧τε

and P h
t̂∧τε

= B̃h
t̂∧τε

. Then, by (3.3), (3.5) and
the strong Markov property, we get that

−βE
[∫ ∞

t̂∧τε
e−ρs−R

r
sdGhs

∣∣∣Ft̂∧τε] = e−ρ(t̂∧τε)ϕ
(
Rr
t̂∧τε , P

h
t̂∧τε

)
,

where ϕ(r, h) = −βE[
∫∞

0 e−ρs−R
r
sdGhs ] using (3.39). Consider using Lemma 3.4, we can verify

that the function ϕ satisfies ϕr(0, h) = 0, and ϕh(r, 0) = βe−r for all (r, h) ∈ R2
+. Therefore, for

(r, h) ∈ R2
+, it holds that

ϕ(r, h) = E

[
e−ρ(t̂∧τε)ϕ

(
Rr
t̂∧τε , P

h
t̂∧τε

)
− β

∫ t̂∧τε

0
e−ρs−R

r
sdGhs

]
.

By Lemma 3.4 and Itô’s formula, we have

β

t̂
E

[∫ t̂∧τε

0
e−ρs−R

r
sdGhs

]
=

1

t̂
E
[
e−ρ(t̂∧τε)ϕ

(
Rr
t̂∧τε , P

h
t̂∧τε

)
− ϕ(r, h)

]
=

1

t̂
E

[∫ t̂∧τεt

0
e−ρs (Lϕ− ρϕ) (Rrs, P

h
s )ds

]
+

1

t̂
E

[∫ t̂∧τε

0
e−ρsϕr(R

r
s, P

h
s )dLrs

]

+
1

t̂
E

[∫ t̂∧τε

0
e−ρsϕh(Rrs, P

h
s )dGhs

]
, (3.34)

where the operator L is defined on C2(R2
+) that

Lg :=
α2

2
grr +

(
α2

2
− ρ
)
gr +

1

2
σ2
Bghh − µBgh, ∀g ∈ C2(R2

+).

The DCT yields that

lim
t̂↓0

1

t̂
E

[∫ t̂∧τε

0
e−ρs (Lϕ− ρϕ) (Rrs, P

h
s )ds

]
= (Lϕ− ρϕ) (r, h).

Note that, for all r ∈ R+, ϕh(r, 0) = βe−r and Rrs > 0 on s ∈ [0, t̂ ∧ τε]. We then have

1

t̂
E

[∫ t̂∧τε

0
ϕr(R

r
s, P

h
s )dLrs

]
= 0, ϕh(Rrs, P

h
s )1{Phs =0} = βe−R

r
s .

By using (3.34), we obtain (Lϕ− ρϕ) (r, h) = 0 on (r, h) ∈ R2
+.

Next, we assume that the PDE (3.15) admits a classical solution ϕ satisfying |ϕ(r, h)| ≤ C for
some constant C > 0 depending on (µ, σ, µB, σB) only. Using the Neumann problem (3.15), the
Itô’s formula gives that, for all (T, r, h) ∈ R3

+,

E
[
e−ρTϕ(RrT , P

h
T )
]

= ϕ(r, h) + E
[∫ T

0
e−ρs (Lϕ− ρϕ) (Rrs, P

h
s )ds

]
15



+ E
[∫ T

0
e−ρsϕr(R

r
s, P

h
s )1{Rrs=0}dL

r
s

]
+ E

[∫ T

0
e−ρsϕh(Rrs, P

h
s )1{Phs =0}dG

h
s

]
= ϕ(r, h) + βE

[∫ T

0
e−R

r
s−ρsdGhs

]
. (3.35)

Moreover, by DCT and the boundedness of ϕ on R2
+, limT→∞ E

[
e−ρTϕ(RrT , P

h
T )
]

= 0. Letting
T → ∞ on both sides of (3.41) and using DCT and MCT, we obtain the representation (3.39) of
the solution ϕ(r, h), which completes the proof.

Next, we propose a homogenization method of Neumann boundary conditions to study the
smoothness of the last term in the probabilistic representation (3.1) together with the application
of the result obtained in Lemma 3.3.

Proposition 3.5. For any (r, h) ∈ R2
+, define the function ξ(r, h) as follows:

ξ(r, h) := −κ1E
[∫ ∞

0
e−ρsϕrh(Rrs, H

h
s )ds

]
. (3.36)

Here, we recall that the reflected processes Rr = (Rrt )t≥0 and Hh = (Hh
t )t≥0 with (r, h) ∈ R2

+ are
given in (3.2) and (3.3), respectively. Moreover, let us define that

ψ(r, h) := ϕ(r, h) + ξ(r, h), ∀(r, h) ∈ R+, (3.37)

where the function ϕ(r, h) ∈ C2(R2
+) is given by (3.13) in Lemma 3.3. Then, the function ψ(r, h) is

a classical solution to the following Neumann problem with Neumann boundary conditions at r = 0
and h = 0: 

α2

2
ψrr +

(
α2

2
− ρ
)
ψr +

σ2
B

2
ψhh − µBψh − κ1ψrh = ρψ, on (0,∞)2,

ψr(0, h) = 0, ∀h ∈ R+,

ψh(r, 0) = βe−r, ∀r ∈ R+.

(3.38)

On the other hand, if the Neumann problem (3.38) has a classical solution ψ(r, h) satisfying
|ψ(r, h)| ≤ C for some constant C > 0 depending on (µ, σ, µB, σB, γ), then this solution ψ(r, h)
satisfies the following probabilistic representation:

ψ(r, h) = −βE
[∫ ∞

0
e−ρs−R

r
sdKh

s

]
. (3.39)

Proof. Note that the integral in the expectation is the Lebesgue integral in (3.36). Then, using
the stochastic flow argument (c.f. the argument used in Theorem 4.2 in Bo et al. (2021)), it is not
difficult to verify that ξ(r, h) ∈ C2(R2

+) is a classical solution to the following Neumann problem
with homogeneous Neumann boundary conditions:

α2

2
ξrr +

(
α2

2
− ρ
)
ξr +

σ2
B

2
ξhh − µBξh − κ1ξrh − ρξ = κ1ϕrh, on (0,∞)2,

ξr(0, h) = 0, ∀h ∈ R+,

ξh(r, 0) = 0, ∀r ∈ R+.

(3.40)
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Using Eq. (3.15) in Lemma 3.3, i.e.,

α2

2
ϕrr +

(
α2

2
− ρ
)
ϕr +

σ2
B

2
ϕhh − µBϕh = ρϕ, on (0,∞)2,

ϕr(0, h) = 0, ∀h ∈ R+,

ϕh(r, 0) = βe−r, ∀r ∈ R+.

In terms of the above two Neumann problem, we can conclude that ψ(r, h) = ϕ(r, h) + ξ(r, h)
satisfies the Neumann problem (3.38). This shows the first part of the proposition.

We next prove the second part of the proposition. To do it, we assume that the Neumann
problem (3.15) admits a classical solution ψ satisfying |ψ(r, h)| ≤ C for some constant C > 0
depending on (µ, σ, µB, σB, γ) only. Then, the Itô’s formula gives that, for all (T, r, h) ∈ R3

+,

E
[
e−ρTψ(RrT , H

h
T )
]

= ψ(r, h) + E
[∫ T

0
e−ρs (Lψ − ρψ) (Rrs, H

h
s )ds

]
+ E

[∫ T

0
e−ρsψr(R

r
s, H

h
s )1{Rrs=0}dL

r
s

]
+ E

[∫ T

0
e−ρsψh(Rrs, H

h
s )1{Hh

s =0}dK
h
s

]
, (3.41)

where the operator L is defined on C2(R2
+) that

Lg :=
α2

2
grr +

(
α2

2
− ρ
)
gr +

σ2
B

2
ghh − µBgh − κ1grh, ∀g ∈ C2(R2

+).

It follows from the first equation in (3.38) that E[
∫ T

0 e−ρs(Lψ − ρψ)(Rrs, H
h
s )ds] = 0. Using the

Neumann boundary conditions in (3.38), we obtain

E
[∫ T

0
e−ρsψr(R

r
s, H

h
s )1{Rrs=0}dL

r
s

]
= E

[∫ T

0
e−ρsψr(0, H

h
s )dLrs

]
= 0,

and

E
[∫ T

0
e−ρsψh(Rrs, H

h
s )1{Hh

s =0}dK
h
s

]
= E

[∫ T

0
e−ρsψh(Rrs, 0)dKh

s

]
= βE

[∫ T

0
e−ρs−R

r
sdKh

s

]
.

This yields from (3.41) that

E
[
e−ρTψ(RrT , H

h
T )
]

= ψ(r, h) + βE
[∫ T

0
e−R

r
s−ρsdKh

s

]
. (3.42)

Moreover, we have the boundedness of ψ on R2
+. In fact, the function ϕ is bounded on R2

+ via
(3.13); while ϕrh is also bounded by applying (3.32) in Lemma 3.4. This gives from DCT that
limT→∞ E

[
e−ρTψ(RrT , H

h
T )
]

= 0. Letting T → ∞ on both sides of (3.41), using DCT and MCT,
we obtain the representation (3.39) of the solution ψ(r, h), which completes the proof.

Remark 3.6. Proposition 3.5 has showed that, the function ψ given by (3.39) is in C2(R2
+).

Furthermore, it also holds that

ψr(r, h) = βE
[∫ τr

0
e−ρs−R

r
sdKh

s

]
, ψh(r, h) = βE

[
e
−ρζh−Rrζh

]
, (3.43)
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ψrr(r, h) = β lim
∆r→0

E
[

1

∆r

∫ τr+∆r

τr

e−ρs−R
r
sdKh

s

]
− βE

[∫ τr

0
e−ρs−R

r
sdKh

s

]
, (3.44)

ψrh(r, h) = −βE
[
e
−ρζh−Rrζh1ζh<τr

]
. (3.45)

Here, τr is defined in Lemma 3.4, and ζh := inf{s ≥ 0; σBB
3
s + µBs = h} with convention

inf ∅ = +∞. From these representations, it follows that ψr(r, h) + ψrr(r, h) > 0 for all (r, h) ∈ R2
+.

We can finally present the proof of the main result in this section, i.e., Theorem 3.1.

Proof of Theorem 3.1. By applying Lemma 3.2 and Proposition 3.5, the function v(r, h, z) defined
by (3.1) is a classical solution to the following Neumann problem:

α2

2
vrr +

(
α2

2
− ρ
)
vr +

1

2
σ2
Bvhh − µBvh +

1

2
σ2
Zz

2vzz + µZzvz − κ1vrh + κ2zvrz

+σZσBη
>γzvzh + (κ2 − µZ)βze−r +

(
1− p
p

)
β
− p

1−p e
p

1−p r = ρv, on (0,∞)3,

vr(0, h, z) = 0, ∀(h, z) ∈ R2
+,

vh(r, 0, z) = βe−r, ∀(r, z) ∈ R2
+.

(3.46)

Then, we can verify that û(y, h, z) = v(− ln y
β , h, z) for (y, h, z) ∈ (0, β]× R2

+ is a classical solution
of the Neumann problem (2.8) with Neumann boundary conditions (2.10) and (2.11). Moreover,
the strict convexity of (0, β] 3 y → û(y, h, z) for fixed (h, z) ∈ R2

+ follows from the fact that
ûyy = 1

y2 [vrr + vr] > 0 by applying Lemma 3.2, Lemma 3.4 and Remark 3.6. On the other hand, in

a similar fashion of Proposition 3.5’s proof, we can verify that if the Neumann problem (2.8)-(2.11)
has a classical solution û(y, h, z) satisfying |û(y, h, z)| ≤ C(1 + |y|−q + zq) for some q > 1 and
some constant constant C > 0, then v(r, h, z) := û(βe−r, h, z) has the probabilistic representation
(3.1).

4 Verification Theorem

Theorem 3.1 shows existence and uniqueness of the classical solution û(y, h, z) for (y, h, z) ∈ (0, β]×
R2

+ to the dual PDE (2.8) with two Neumann boundary conditions (2.10) and (2.11). Moreover, this
solution û(y, h, z) is strictly convex in y ∈ (0, β]. The following verification theorem will recover the
classical solution u(x, h, z) of the primal HJB equation (2.7) via the inverse transform of û(y, h, z),
and provide the optimal (admissible) portfolio-consumption control in the feedback form to the
primal stochastic control problem (2.5).

Theorem 4.1. Let ρ0 > 0 be the constant depending on model parameters (µ, σ, µB, σB, µZ , σZ , γ, p, β)
explicitly specified later in (4.45). For the discount rate ρ > ρ0, it holds that:

(i) Consider the function v(r, h, z) for (r, h, z) ∈ R3
+ defined by the probabilistic representation

(3.1). Let û(y, h, z) = v(− ln y
β , h, z) for all (y, h, z) ∈ (0, β] × R2

+. For any (x, h, z) ∈ R3
+,

introduce that

u(x, h, z) = inf
y∈(0,β]

{û(y, h, z) + yx}. (4.1)
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Then, the function u(x, h, z) is a classical solution to the following HJB equation with Neu-
mann boundary conditions:

sup
θ∈Rd

[
θ>µux +

1

2
θ>σσ>θuxx + σZθ

>σηz(uxx − uxz)− σBθ>σγuxh
]

+ sup
c≥0

(
cp

p
− cux

)
+

1

2
σ2
Buhh − µBuh +

1

2
σ2
Zz

2(uzz + uxx − 2uxz)

+µZz(uz − ux) + σZσBzη
>γ(uxh − uhz) = ρu,

ux(0, h, z) = β, ∀(h, z) ∈ R2
+,

uh(x, 0, z) = ux(x, 0, z), ∀(x, z) ∈ R2
+.

(4.2)

(ii) Define the following optimal feedback control function by, for all (x, h, z) ∈ R3
+,

θ∗(x, h, z) := −(σσ>)−1µux − σBσγuxh + σZσηz(uxx − uxz)
uxx

, c∗(x, h, z) := u
1
p−1
x . (4.3)

With (x, h, z) ∈ R3
+, consider the controlled reflected process (X∗, I, Z) = (X∗t , It, Zt)t≥0 given

by, for all t ≥ 0,

X∗t = x+

∫ t

0
θ∗(X∗s , Is, Zs)

>µds+

∫ t

0
θ∗(X∗s , Is, Zs)

>σdWs −
∫ t

0
c∗(X∗s , Is, Zs)ds

−
∫ t

0
µZZsds−

∫ t

0
σZZsdW

η
s −

∫ t

0
dms + LX

∗
t ,

It = h−
∫ t

0
µBds−

∫ t

0
σBdW

γ
s +

∫ t

0
dms,

Zt = z +

∫ t

0
µZZsds+

∫ t

0
σZZsdW

η
s .

(4.4)

Above, the running maximum process m = (mt)t≥0 is given in (1.3) and LX
∗

0 = 0. Define
θ∗t = θ∗(X∗t , It, Zt) and c∗t = c∗(X∗t , It, Zt) for all t ≥ 0. Then, (θ∗, c∗) = (θ∗t , c

∗
t )t≥0 ∈ Ur is an

optimal investment-consumption strategy. Moreover, for any admissible strategy (θ, c) ∈ Ur,
we have

E
[∫ ∞

0
e−ρt

(ct)
p

p
dt− β

∫ ∞
0

e−ρtdLXt

]
≤ u(x, h, z), for all (x, h, z) ∈ R3

+,

where the equality holds when (θ, c) = (θ∗, c∗).

Proof. We first prove the item (i). For (x, h, z) ∈ R3
+, let us define y∗ = y∗(x, h, z) ∈ (0, β] satisfying

ûy(y
∗, h, z) = −x. Then, we have

u(x, h, z) = inf
y∈(0,β]

{û(y, h, z) + yx} = û(y∗(x, h, z), h, z) + xy∗(x, h, z). (4.5)

By applying Lemma 3.2 and Lemma 3.4, it follows that

ûy(y, h, z) = −1

y
vr

(
− ln

y

β
, h, z

)
= −1

y

[
lr

(
− ln

y

β
, z

)
+ ψr

(
− ln

y

β
, h

)]
≤ 0. (4.6)
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Then, (0, β] 3 y → û(y, h, z) is decreasing for fixed (z, h) ∈ R2
+. Moreover, note that ûy(β, h, z) = 0,

and hence

lim
y→0

ûy(y, h, z) = lim
r→+∞

ûy(βe
−r, h, z) = − lim

r→+∞
ervr(r, h, z) = −∞.

Thus, y∗ and u defined by (4.1) is well-defined on R2
+. Moreover, it follows from Theorem 3.1 that

y 7→ û(y, h, z) is strictly convex, which implies that x 7→ u(x, h, z) is strictly concave. Thus, a
direct calculation yields that u solves the primal HJB equation (2.7).

We next prove the item (ii). It follows from Theorem 3.1 that θ∗(x, h, z) and c∗(x, h, z) given by
(4.3) are continuous on R3

+. We then claim that, there exists a pair of positive constants (Co, Cq)
such that, for all (x, h, z) ∈ R3

+,

|θ∗(x, h, z)| ≤ Co(1 + x+ z), |c∗(x, h, z)| ≤ Cq(1 + x). (4.7)

Let γ1 := |(σσ>)−1µ|, γ2 := |(σσ>)−1σBσγ| and γ3 := |(σσ>)−1σZση|. In view of the duality
transform, we arrive at

|θ∗(x, z)| ≤ γ1

∣∣∣∣ uxuxx (x, h, z)

∣∣∣∣+ γ2

∣∣∣∣uxzuxx
(x, h, z)

∣∣∣∣+ γ3

∣∣∣∣zuxzuxx
(x, h, z)

∣∣∣∣+ γ3z

= γ1y
∗(x, h, z)ûyy(y

∗(x, h, z), h, z) + γ2|ûyh(y∗(x, h, z), h, z)|+ γ3|zûyz(y∗(x, h, z), h, z)|+ γ3z

= γ1y
∗(x, h, z)vrr

(
− ln

y∗(x, h, z)

β
, h, z

)
+ γ2

∣∣∣∣vrh(− ln
y∗(x, h, z)

β
, h, z

)∣∣∣∣
+ γ3

∣∣∣∣zvrz (− ln
y∗(x, h, z)

β
, h, z

)∣∣∣∣+ γ3z

= γ1x+
γ1

y∗(x, h, z)
(lrr + ψrr)

(
− ln

y∗(x, h, z)

β
, h, z

)
+

γ2

y∗(x, h, z)

∣∣∣∣ψrh(− ln
y∗(x, h, z)

β
, h

)∣∣∣∣
+

γ3

y∗(x, h, z)

∣∣∣∣zlrz (− ln
y∗(x, h, z)

β
, z

)∣∣∣∣+ γ3z, (4.8)

where the last equality holds since x = −ûy(y∗(x, h, z), h, z) = 1
y∗(x,h,z)vr

(
− ln y∗(x,h,z)

β , h, z
)

=

1
y∗(x,h,z)(lr + ψr)

(
− ln y∗(x,h,z)

β , h, z
)

. It follows from (3.43) and (3.44) that, for all (r, h) ∈ R2
+,

ψr(r, h) + ψrr(r, h) = β lim
∆r→0

E
[

1

∆r

∫ τr+∆r

τr

e−ρs−R
r
sdKh

s

]
. (4.9)

Using the representation (3.5), we get that, for all h ∈ R+ and t ≥ s ≥ 0,

Kh
t −Kh

s = 0 ∨
{
−h+ max

l∈[0,t]

(
µBl + σBB

2
l

)}
− 0 ∨

{
−h+ max

l∈[0,s]

(
µBl + σBB

2
l

)}
= h ∨

{
max
l∈[0,t]

(
µBl + σBB

2
l

)}
− h ∨

{
max
l∈[0,s]

(
µBl + σBB

2
l

)}
.

If maxl∈[0,t](µBl + σBB
2
l ) ≤ h, it holds that Kh

t −Kh
s = 0 ≤ K0

t −K0
s ; while, if maxl∈[0,t](µBl +

σBB
0
l ) > h, we also have

Kh
t −Kh

s ≤ max
l∈[0,t]

(
µBl + σBB

2
l

)
− h ∨

{
max
l∈[0,s]

(
µBl + σBB

2
l

)}
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≤ max
l∈[0,t]

(
µBl + σBB

2
l

)
− max
l∈[0,s]

(
µBl + σBB

2
l

)
= K0

t −K0
s . (4.10)

Hence, we can deduce that K0
t −Kh

t ≥ K0
s −Kh

s , i.e., the process {K0
t −Kh

t }t≥0 is non-decreasing.
This implies that, for all h ≥ 0,

ψr(r, h) + ψrr(r, h) = β lim
∆r→0

E
[

1

∆r

∫ τr+∆r

τr

e−ρs−R
r
sdKh

s

]
= β lim

∆r→0
E
[

1

∆r

∫ τr+∆r

τr

e−ρs−R
r
sdK0

s

]
− β lim

∆r→0
E
[

1

∆r

∫ τr+∆r

τr

e−ρs−R
r
sd(K0

s −Kh
s )

]
≤ β lim

∆r→0
E
[

1

∆r

∫ τr+∆r

τr

e−ρs−R
r
sdK0

s

]
= ψr(r, 0) + ψrr(r, 0). (4.11)

Note that, it follows from Proposition 3.5 that

ψrr

(
− ln

y∗(x, h, z)

β
, h

)
≤ (ψr + ψrr)

(
− ln

y∗(x, h, z)

β
, 0

)
− ψr

(
− ln

y∗(x, z)

β
, h

)
≤ (ψr + ψrr)

(
− ln

y∗(x, h, z)

β
, 0

)
= (ϕr + ϕrr + ξr + ξrr)

(
− ln

y∗(x, h, z)

β
, 0

)
. (4.12)

In view of Lemma 3.4, we obatin that

ϕr(r, 0) + ϕrr(r, 0) = β

∫ ∞
0

∫ r

−∞
e−ρs−r+xφ1(s, x, r)dxdE

[
G0
s

]
. (4.13)

For r ∈ [0, 1], by the continuity of r →
∫∞

0

∫ r
−∞ e

−ρs+xφ1(s, x, r)dxdE[G0
s], we can obtain∫ ∞

0

∫ r

−∞
e−ρs+xφ1(s, x, r)dxdE[G0

s] ≤ max
r∈[0,1]

∫ ∞
0

∫ r

−∞
e−ρs+xφ1(s, x, r)dxdE[G0

s] < +∞. (4.14)

For the other case r > 1, we obtain from (3.19) that∫ 1

0

∫ r

−∞
e−ρs+xφ1(s, x, r)dxdE[G0

s]

=

∫ 1

0

∫ r

−∞
e−ρs+x

2(2r − x)√
2σ̂2πs3

exp

(
µ̂

σ̂
x− 1

2
µ̂2s− (2r − x)2

2σ̂2s

)
dxdE[G0

s].

y=r−x
=

∫ 1

0

∫ ∞
0

e−ρs+r−y
2(r + y)√

2σ̂2πs3
exp

(
µ̂

σ̂
(r − y)− 1

2
µ̂2s− (r + y)2

2σ̂2s

)
dydE[G0

s]

≤
∫ 1

0
e−ρs

2 exp
(
− 1

2σ̂2s

)
√

2σ̂2πs3

∫ ∞
0

(r + y) exp

((
µ̂

σ̂
+ 1

)
r +

y2

2σ̂2s
− (r + y)2 − 1

2σ̂2s

)
dydE[G0

s]

≤ 9σ̂
11
2

∫ 1

0
e−ρsdE[G0

s]

∫ ∞
0

(r + y) exp

((
µ̂

σ̂
+ 1

)
r − y − 1

σ̂2

)
dy

≤ 9σ̂
11
2 E
[∫ 1

0
dG0

s

] ∫ ∞
0

(1 + y) exp

(
−y − 1

σ̂2

)
dy ≤ 18σ̂5eσ̂

−2
(|µB|+ 3σB). (4.15)

Moreover, using the fact 1
2 µ̂

2s+ (2r−x)2

2σ̂2s
≥ µ̂

σ̂ (r − x), it holds that∫ ∞
1

∫ r

−∞
e−ρs+x

2(2r − x)√
2σ̂2πs3

exp

(
µ̂

σ̂
x− 1

2
µ̂2s− (2r − x)2

2σ̂2s

)
dxdE[G0

s]
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≤
∫ ∞

1

∫ r

−∞
e−ρs+x

2(2r − x)√
2σ̂2π

exp

(
2µ̂

σ̂
r

)
dxdE[G0

s]

y=r−x
=====

∫ ∞
1

∫ ∞
0

e−ρs+r−y
2(r + y)√

2σ̂2π
exp

(
2µ̂

σ̂
r

)
dydE[G0

s]

≤ 4√
2σ̂2π

∫ ∞
0

e−ρsdE[G0
s] ≤

4(|µB|+ 3σB)√
2σ̂2π

. (4.16)

Thus, it follows from (4.9)-(4.16) that

1

y∗(x, z)
(ϕrr + ϕr)

(
− ln

y∗(x, z)

β
, 0

)
≤M1(1 + x), (4.17)

where the positive constant M1 is defined by

M1 := 18σ̂5eσ̂
−2

(|µB|+ 3σB) +
4(|µB|+ 3σB)√

2σ̂2π
+ max
r∈[0,1]

∫ ∞
0

∫ r

−∞
e−s+xφ1(s, x, r)dxdE[G0

s]. (4.18)

In what follows, let us define that, for (r, h) ∈ R2
+,

f(r, h) := ϕrh(r, h)=−βE
[
e−ρηh−R

r
ηh1ηh<τr

]
=−β

∫ ∞
0

∫ r

0

∫ y

−∞
e−ρs−r+xφ1(s, x, y)φ2(s, h)dxdyds.

Using Proposition 3.5 and Proposition 4.1 in Bo et al. (2021), we obtain that

ξr(r, 0) = −κE
[∫ τr

0
e−ρsfr(R

r
s, H

0
s )ds

]
, (4.19)

ξrr(r, 0) = −κΓE
[
e−ρτrfr(0, H

0
τr)
]
− κE

[∫ τr

0
e−ρsfrr(R

r
s, H

0
s )ds

]
, (4.20)

where Γ :=
∫∞

0
1√

2σ̂2πs
e−

µ̂2

2σ̂2 sds is a positive constant. It follows from a direct calculation that, for

all (r, h) ∈ R2
+,

fr(r, h) = β

∫ ∞
0

∫ r

0

∫ y

−∞
e−ρs−r+xφ1(s, x, y)φ2(s, h)dxdyds−β

∫ ∞
0

∫ r

−∞
e−ρs−r+xφ1(s, x, r)φ2(s, h)dxds,

frr(r, h) = −fr(r, h) + β

∫ ∞
0

∫ r

−∞
e−ρs−r+xφ1(s, x, r)φ2(s, h)dxds

− β
∫ ∞

0

∫ r

−∞
e−ρs−r+x

∂φ1

∂y
(s, x, r)φ2(s, h)dxds− β

∫ ∞
0

e−ρsφ1(s, r, r)φ2(s, h)ds.

Note that, by using (3.19), we have

|fr(r, h)| ≤ βe−r
∫ ∞

0

∫ ∞
0

∫ y

−∞
e−s+xφ1(s, x, y)φ2(s, h)dxdyds+ βe−r

∫ ∞
0

∫ ∞
−∞
e−s+xφ1(s, x, r)φ2(s, h)dxds,

|fr(r, h) + frr(r, h)| ≤ βe−r
∫ ∞

0

∫ r

−∞
e−s+xφ1(s, x, r)φ2(s, h)dxds

+ βe−r
∫ ∞

0

∫ ∞
−∞

e−s+x
∂φ1

∂y
(s, x, r)φ2(s, h)dxds+ βe−r

∫ ∞
0

e−s+rφ1(s, r, r)φ2(s, h)ds.
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In a similar fashion of (4.14)-(4.18), we deuce that |fr(r, h)| ≤ M2βe
−r and |fr(r, h) + frr(r, h)| ≤

M3βe
−r, where the finite positive constants are given by

M2 := sup
h∈R+

∫ ∞
0

∫ ∞
0

∫ y

−∞
e−s+xφ1(s, x, y)φ2(s, h)dxdyds+ sup

(r,h)∈R2
+

∫ ∞
0

∫ r

−∞
e−s+xφ1(s, x, r)φ2(s, h)dxds < +∞,

(4.21)

M3 := sup
(r,h)∈R+

∫ ∞
0

∫ r

−∞
e−s+xφ1(s, x, r)φ2(s, h)dxds+ sup

(r,h)∈R2
+

∫ ∞
0

∫ ∞
−∞

e−s+x ∂φ1
∂y

(s, x, r)φ2(s, h)dxds

+ sup
(r,h)∈R2

+

∫ ∞
0

e−s+rφ1(s, r, r)φ2(s, h)ds < +∞. (4.22)

Therefore, it holds that

(ξr + ξrr)(r, 0) ≤ |κ|E
[∫ τr

0
e−ρs|fr + frr|(Rrs, H0

s )ds

]
+ β|κ|ΓM2E

[
e−ρτr

]
≤ |κ|βM3E

[∫ τr

0
e−ρs−R

r
sds

]
+ β|κ|ΓM2E

[
e−ρτr

]
= βe−rM3|κ|

∫ ∞
0

∫ r

0

∫ y

−∞
e−ρs−xφ1(s, x, y)dxdyds+ β|κ|ΓM2E

[
e−ρτr

]
= βe−rM3M2|κ|+ β|κ|ΓM2e

−r ≤M4βe
−r, (4.23)

where the positive constant M4 is defined by

M4 := M2(M3|κ|+ |κ|Γ). (4.24)

Thus, we deduce from (4.19)-(4.24) that

1

y∗(x, h, z)
(ψrr + ψr)

(
− ln

y∗(x, h, z)

β
, 0

)
≤ (M4 +M1)(1 + x). (4.25)

On the other hand, using Lemma 3.2, we have

lrr (r, z) = C1β
− p

1−p

(
p

1− p

)2

e
p

1−p r + C2βe
−r + z(βe−r − β`e−`r)

=
p

1− p
lr(r) +

βe−r

1− p
C2 +

1

1− p
zβe−r − zβe−`r

(
`+

p

1− p

)
. (4.26)

Then, by using the condition ρ > α2p+1
2(1−p) , we deduce that

1

y∗(x, h, z)
lrr

(
− ln

y∗(x, h, z)

β
, z

)
≤ 1

y∗(x, h, z)

[
1

1− p
(lr + ϕr)

(
− ln

y∗(x, h, z)

β
, h, z

)
+
y∗(x, h, z)

1− p
C2 +

1

1− p
zy∗(x, h, z)

]
=

1

1− p
x+

1

1− p
C2 +

1

1− p
z ≤ 1

1− p
(x+ z) + 2(1− p)β−

1
1−p . (4.27)

By using Lemma 3.2 again, we have |zlrz(r, z)| = zβ(e−`r−e−r) ≤ lr(r, z) for all (r, z) ∈ R2
+. Thus,

it holds that

1

y∗(x, h, z)

∣∣∣∣zlrz (− ln
y∗(x, h, z)

β
, z

)∣∣∣∣ ≤ 1

y∗(x, h, z)
(lr + ϕr)

(
− ln

y∗(x, h, z)

β
, h, z

)
= x. (4.28)
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Moreover, note that

|ψrh (r, z)| = βE
[
e
−ρζh−Rrζh1ζh<τr

]
≤ βE

[
exp

(
−ρζh − r −

(
α2

2
− ρ
)
ζh − αB1

ζh
− Lrζh

)]
≤ βe−rE

[
exp

(
−α

2

2
ζh − αB1

ζh

)]
= βe−r. (4.29)

In lieu of (4.8), (4.12), (4.17), (4.27) (4.28) and (4.29), we deduce |θ∗(x, h, z)| ≤ Co(1 + x + z),
where the positive constant Co is defined by

Co := 1 +

(
1

1− p
+ 2(1− p)β−

1
1−p +M1 +M4

)
γ1 + γ2. (4.30)

Here, the constant C2 is given by (3.10) and constants M1 and M4 are defined as (4.18) and (4.24).

Next, we show the linear growth of c∗(x, h, z) on (x, h, z) ∈ R3
+. Note that y∗(x, h, z) =

ux(x, h, z) for all (x, h, z) ∈ R3
+, we arrive at

|c∗(x, h, z)| = ux(x, h, z)
1
p−1 =

(
1

y∗(x, h, z)

) 1
1−p

. (4.31)

Using the relationship −x = vy(y
∗(x, h, z), h, z), we can see that

x = −vy(y∗(x, z), h, z) =
1

y∗(x, h, z)
(lr + ψr)

(
− ln

y∗(x, h, z)

β
, h, z

)
≥ 1

y∗(x, h, z)
lr

(
− ln

y∗(x, h, z)

β
, z

)
. (4.32)

Thus, Lemma 3.2 yields that, for all r ∈ [1,∞),

lr(r, z) = β
− p

1−p
pC1

1− p
e
pr

1−p − C2βe
−r + zβ(e−`r − e−r) ≥ (βe−r)

− p
1−p

(
pC1

1− p
− C2β

1
1−p e

− r
1−p

)
= (βe−r)

− p
1−p

2(1− p)
2ρ(1− p)− α2p

(
1− e−

1
1−p r

)
≥ (βe−r)

− p
1−p

2(1− p)
2ρ(1− p)− α2p

(
1− e−

1
1−p
)
.

This implies that, for the case in which y∗(x, h, z) ≤ βe−1,

lr

(
− ln

y∗(x, h, z)

β
, z

)
≥ 2(1− p)

2ρ(1− p)− α2p

(
1− e−

1
1−p
)( 1

y∗(x, h, z)

) p
1−p

. (4.33)

For the case with y∗ > βe−1, we have 0 < y∗(x, h, z)
− 1

1−p ≤ β
− 1

1−p e
1

1−p for all (x, h, z) ∈ R3
+.

Hence, (x, h, z) → y∗(x, h, z)
− 1

1−p is bounded. Thus, it follows from (4.32) and (4.33) that, for all
(x, h, z) ∈ R3

+,

0 <

(
1

y∗(x, h, z)

) 1
1−p
≤ Cq(1 + x), (4.34)

where the positive constant Cq is specified as

Cq := β
− 1

1−p e
1

1−p +
(2ρ(1− p)− α2p)

2(1− p)

(
1− e−

1
1−p
)−1

. (4.35)
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We can then conclude from (4.31) and (4.34) that |c∗(x, z)| ≤ Cq(1 + x) for (x, h, z) ∈ R3
+. Hence,

it follows from (4.7) that, for any T ∈ R+, the SDE (4.4) satisfied by X∗ admits a weak solution
on [0, T ] (c.f.  Laukajtys and S lomiński (2013)), which gives that (θ∗, c∗) ∈ Ur.

On the other hand, fix (T, x, h, z) ∈ R4
+ and (θ, c) = (θt, ct)t≥0 ∈ Ur. By applying Itô’s formula

to e−ρTu(XT , IT , ZT ), we arrive at

e−ρTu(XT , IT , ZT ) +

∫ T

0
e−ρs

(cs)
p

p
ds

= u(x, h, z) +

∫ T

0
e−ρsux(Xs, Is, Zs)θ

>
s σdWs +

∫ T

0
e−ρsσBuz(Xs, Is, Zs)dW

γ
s

+

∫ T

0
e−ρsσZZsuz(Xs, Is, Zs)dW

η
s +

∫ T

0
e−ρs(uz − ux)(Xs, Is, Zs)dms

+

∫ T

0
e−ρsux(Xs, Is, Zs)dL

X
s +

∫ T

0
e−ρs(Lθs,csu− ρu)(Xs, Is, Zs)ds, (4.36)

where the operator Lθ,c with (θ, c) ∈ Rd × R+ is defined on C2(R2
+) that

Lθ,cg := θ>µgx +
1

2
θ>σσ>θgxx + σZθ

>σηz(gxx − gxz)− σBθ>σγgxh +
cp

p
− cgx +

1

2
σ2
Bghh − µBgh

+
1

2
σ2
Zz

2(gzz + gxx − 2gxz) + µZz(gz − gx) + σZσBzη
>γ(gxh − ghz), ∀g ∈ C2(R2

+).

Taking the expectation on both sides of the equality (4.36), we deduce from the Neumann boundary
condition ux(0, h, z) = β and uh(x, 0, z) = ux(x, 0, z) that

E
[∫ T

0
e−ρs

(cs)
p

p
ds− β

∫ T

0
e−ρsdLXs

]
= u(x, h, z)− E

[
e−ρTu(XT , IT , ZT )

]
+ E

[∫ T

0
e−ρs(Lθs,csu− ρu)(Xs, Is, Zs)ds

]
≤ u(x, h, z)− E

[
e−ρTu (XT , IT , ZT )

]
. (4.37)

Here, the last inequality in (4.37) holds true due to (Lθ,cu − ρu)(x, h, z) ≤ 0 for all (x, h, z) ∈ R3
+

and (θ, c) ∈ Rd × R+. We next verify the validity of the so-called transversality conditions:

lim sup
T→∞

E
[
e−ρTu(XT , IT , ZT )

]
≥ 0, (4.38)

lim
T→∞

E
[
e−ρTu(X∗T , IT , ZT )

]
= 0. (4.39)

In view of Lemma 3.2 and Proposition 3.5, it follows that x → u(x, h, z), h → u(x, h, z) and
z → u(x, h, z) are non-decreasing. Thus, we get

lim sup
T→∞

E
[
e−ρTu(XT , IT , ZT )

]
≥ lim sup

T→∞
E
[
e−ρTu(0, 0, 0)

]
= 0. (4.40)

Using Lemma 3.2 and Proposition 3.5 again, it holds that |ux(x, h, z)| ≤ β, |uh(x, h, z)| ≤ β and
|uz(x, h, z)| ≤ β

` for all (x, h, z) ∈ R3
+. Thus, we can see that, for all (x, z, h) ∈ R3

+,

|u(x, h, z)| ≤ |u(x, h, z)− u(x, h, 0)|+ |u(x, h, 0)− u(x, 0, 0)|+ |u(x, 0, 0)− u(0, 0, 0)|+ |u(0, 0, 0)|

≤ β (x+ h) +
β

`
z + |u(0, 0, 0)|. (4.41)
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By applying Itô’s formula to |It|2 and |Xt|2, it follows from (4.7) and the Gronwall’s lemma that,
for all t ≥ 0,

E[|It|2] ≤ h2 + (σ2
B + µ2

B)tet, (4.42)

E
[
|X∗t |2

]
≤ x2 + 2Kt

[
1 +KeKt + z2e(2|µZ |+3σ2

Z)t

(
1 +

KeKt

2|µZ |+ 3σ2
Z

)]
(1 + x2), (4.43)

where the positive constant K is specified as

K := 4Co|µ|+ 2C2
o |σσ>|+ |µZ |+ σ2

Z + 4Co|σZση|. (4.44)

Let us define the constant

ρ0 :=
α2|p|+ 1

2(1− p)
+K + 2|µZ |+ 3σ2

Z + 1 (4.45)

with K being given in (4.44). Then, using estimates (4.41), (4.42) and (4.43), it follows that, for
the discount rate ρ > ρ0,

lim
T→∞

E
[
e−ρT |u(X∗T , IT , ZT )|

]
≤ β lim

T→∞
E
[
e−ρT (X∗T + IT + ZT )

]
= 0.

Finally, letting T →∞ in (4.37), we obtain from (4.41) and DCT that, for any (θ, c) ∈ Ur,

E
[∫ ∞

0
e−ρs

(cs)
p

p
ds− β

∫ ∞
0

e−ρsdLXs

]
≤ u(x, h, z), for all (x, h, z) ∈ R3

+,

where the equality holds when (θ, c) = (θ∗, c∗). Thus, the proof of the theorem is complete.

Remark 4.2. To ensure the validity of the transversality conditions (4.38) and (4.39), we as-
sume that the discount rate ρ > ρ0, where the constant ρ0 > 0 only depends on model parameters
(µ, σ, µB, σB, µZ , σZ , γ, p, β), and moreover, it is explicitly specified in (4.45). For example, let us
consider the model parameters specified as d = n = 1, µ = 0, 1, σ = 1, µB = 0.1, σB = 0.1,
µZ = 0.1, σZ = 0.1, p = 0.5, γ = 1 and β = 1. By a direct calculation, ρ0 ≈ 2.63, thus the
condition on the discount rate ρ requires that ρ > 2.63.

Remark 4.3. In fact, the state processes of the primal control problem (1.4) and the auxiliary
control problem (2.5) satisfy the following relationship:

Xt = x+ V θ,c
t − (mt + Zt −m0 − z) + sup

s∈[0,t]

(
−x− V θ,c

s + (ms + Zs −m0 − z)
)+

, (4.46)

It = h+ (mt −m0)−Bt, ∀t ≥ 0. (4.47)

Therefore, we can obtain the auxiliary state process (X, I, Z) = (Xt, It, Zt)t≥0 by using the process

(V θ,c, B,m,Z) = (V θ,c
t , Bt,mt, Zt)t≥0. However, from (4.46) and (4.47), we can also see that

different primal state processes (V θ,c, B,m,Z) may correspond to the same auxiliary state process
(X, I, Z). Theorem 4.1 gives the optimal feedback control (θ∗, c∗) in terms of (X, I, Z) but not by
(V θ,c, B,m,Z). This is an important reason why we introduce the auxiliary state process (X, I, Z)
and study the auxiliary optimal control problem instead, which allows us to characterize the optimal
control (θ∗, c∗) in the feedback form.

The following lemma shows that the expectation of the total optimal capital injection is always
positive and finite.
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Lemma 4.4. Consider the optimal investment-consumption strategy (θ∗, c∗) = (θ∗t , c
∗
t )t≥0 provided

in Theorem 4.1. Then, we have

(i) The expectation of the discounted capital injection under the optimal strategy (θ∗, c∗) is finite.
Namely, for ρ > ρ0 with ρ0 > 0 being given in Theorem 4.1,

E
[∫ ∞

0
e−ρtdA∗t

]
< +∞. (4.48)

(ii) The expectation of the discounted capital injection under the optimal strategy (θ∗, c∗) is posi-
tive. Namely, for ρ > ρ0 with ρ0 > 0 being given in Theorem 4.1, it holds that

E
[∫ ∞

0
e−ρtdA∗t

]
≥ z 1− κ

κ

(
1 +

x

z

) κ
κ−1

> 0. (4.49)

Here, the optimal capital injection under the optimal strategy (θ∗, c∗) is given by

A∗t = 0 ∨ sup
s≤t

(Ms − V θ∗,c∗
s ), ∀t ≥ 0. (4.50)

Proof. We first prove the item (i). For (v,m, z, b) ∈ R3
+ × R, we have from (1.4) that

βE
[∫ ∞

0
e−ρtdA∗t

]
= E

[∫ ∞
0

e−ρt
(c∗t )

p

p
dt

]
− w(v,m, z, b). (4.51)

Thus, to prove (4.48), it suffices to show that

E
[∫ ∞

0
e−ρt

(c∗t )
p

p
dt

]
< +∞. (4.52)

By (4.51), E
[∫∞

0 e−ρt
(c∗t )p

p dt
]

can not be −∞ because w(v,m, z, b) is finite and E
[∫∞

0 e−ρtdA∗t
]

is nonnegative. The estimate (4.52) obviously holds for the case p < 0 as E
[∫∞

0 e−ρt
(c∗t )p

p dt
]

is

negative in this case. Hence, we only focus on the case with p ∈ (0, 1). For p ∈ (0, 1), it follows
from (4.7) and (4.43) that

E
[∫ ∞

0
e−ρt

(c∗t )
p

p
dt

]
≤ 1

p
(Cq)

pE
[∫ ∞

0
e−ρt(1 + |X∗t |)pdt

]
≤ (Cq)

p

p

∫ ∞
0

e−ρt(1 + E [|X∗t |])dt ≤
(Cq)

p

p

∫ ∞
0

e−ρt[1 + (1 + E[|X∗t |2])]dt

≤ (Cq)
p

p

∫ ∞
0

e−ρt
{

2 + x2 + 2Kt

[
1 +KeKt + z2e(2|µZ |+3σ2

Z)t

(
1 +

KeKt

2|µZ |+ 3σ2
Z

)]
(1 + x2)

}
dt

≤ K(1 + x2) < +∞,

where x = (v − m ∨ b − z)+ via (2.6), Cq > 0 is the constant given by (4.35), and K > 0 is a
constant depending on model parameters (µ, σ, µZ , σZ , µB, σB, p, β, ρ) only.

Next, we prove the item (ii). For any admissible portfolio θ = (θt)t≥0, we introduce, for all
t ∈ R+,

Ṽ θ
t = v +

∫ t

0
θ>s µds+

∫ t

0
θ>s σdWs, Ãθt = 0 ∨ sup

s≤t
(Zs − Ṽ θ

s ). (4.53)
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Note that c∗t > 0 for all t ∈ R+. Then, it follows from (1.2), (4.50) and (4.53) that Ṽ θ∗
t ≥ V θ∗,c∗

t

for all t ∈ R+, and hence

E
[∫ ∞

0
e−ρtdA∗t

]
> E

[∫ ∞
0

e−ρtdÃθ
∗
t

]
≥ inf

θ
E
[∫ ∞

0
e−ρtdÃθt

]
=: w̃(v, z). (4.54)

It is not difficult to verify that, for all (v, z) ∈ R+ × (0,∞),

w̃(v, z) = z
1− `
`

(
1 +

(v − z)+

z

) `
`−1

> 0, (4.55)

where the constant ` ∈ (0, 1) is given by (3.12). Thus, we deduce from (4.54) and (4.55) that

E
[∫ ∞

0
e−ρtdA∗t

]
≥ z 1− `

`

(
1 +

(v − z)+

z

) κ
κ−1

> 0, (4.56)

which completes the proof.
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A. Kröner, A. Picarelli and H. Zidani (2018): Infinite horizon stochastic optimal control problems with
running maximum cost. SIAM J. Contr. Optim. 56(5), 3296-3319.

J. M. Harrison (1985): Brownian Motion and Stochastic Flow Systems. Wiley, New York.
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A Appendix

This section provides the proof of Lemma 2.1 and a sketch of the proof of Lemma 3.2.

Proof of Lemma 2.1. Let us first fix (h, z) ∈ R2
+. For any ε > 0, denote by (θε(x, z), cε(x, z)) the

ε-optimal control strategy for (2.5). Namely, for x ∈ R+,

u(x, h, z) ≤ J(x, z; θε(x, h, z), cε(x, h, z)) + ε. (A.1)

Then, for any x1 > x2 ≥ 0, we have from (A.1) that

u(x1, h, z)− u(x2, h, z) ≥ J(x1, h, z; θ
ε(x2, h, z), c

ε(x2, h, z))− J(x2, h, z; θ
ε(x2, h, z), c

ε(x2, h, z))− ε
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= −βE
[∫ ∞

0
e−ρsd(Lx1

s − Lx2
s )

]
− ε, (A.2)

where Lxs for s ∈ R+ is the local time process with Xx
0 = x. Thus, integration by parts yields that,

for all T ≥ 0, ∫ T

0
e−ρsdLxs = e−ρTLxT + ρ

∫ T

0
Lxse

−ρsds.

Using the solution representation of “the Skorokhod problem”, it follows that, for all s ∈ R+,

Lxs = sup
t∈[0,s]

(
x+

∫ t

0
θ>r µdr +

∫ t

0
θ>r σdWr −

∫ t

0
crdr −

∫ t

0
µZZrdr −

∫ t

0
σZZrdW

η
r −

∫ t

0
dmr

)−
.

By this, we have x→ Lxs is non-increasing. Moreover, it holds that, P-a.s.

sup
s≥0
|Lx1
s − Lx2

s | ≤ |x1 − x2|. (A.3)

Using the fact Lx1
s − Lx2

s ≤ 0 whenever x1 > x2 ≥ 0 and MCT, it follows that, for all s ≥ 0,

E
[∫ ∞

0
e−ρsd(Lx1

s − Lx2
s )

]
= E

[∫ ∞
0

e−ρsdLx1
s

]
− E

[∫ ∞
0

e−ρsdLx2
s

]
= lim

T→∞
E
[∫ T

0
e−ρsdLx1

s

]
− lim
T→∞

E
[∫ T

0
e−ρsdLx2

s

]
= lim

T→∞

{
E
[
e−ρT (Lx1

T − L
x2
T )
]

+ ρE
[∫ T

0
e−ρs(Lx1

s − Lx2
s )ds

]}
≤ 0. (A.4)

Hence, we have from (A.2) that u(x1, h, z) − u(x2, h, z) ≥ −ε. Since ε > 0 is arbitrary, we get
u(x1, h, z) ≥ u(x2, h, z). This conclude that x → u(x, h, z) is non-decreasing. On the other hand,
it follows from (A.3), (A.4) and MCT that

|u(x1, h, z)− u(x2, h, z)| ≤ β sup
(θ,c)∈Ur

E
[∫ ∞

0
e−ρsd(Lx2

s − Lx1
s )

]
= β sup

(θ,c)∈Ur

lim
T→∞

E
[
e−ρT (Lx2

T − L
x1
T ) + ρ

∫ T

0
e−ρs(Lx2

s − Lx1
s )ds

]
≤ β lim

T→∞

(
e−ρT |x1 − x2|+ ρ|x1 − x2|

∫ T

0
e−ρsds

)
= β lim

T→∞

(
e−ρT + ρ

∫ T

0
e−ρsds

)
|x1 − x2| = β|x1 − x2|. (A.5)

Next, we fix (x, z) ∈ R2
+. Let mh = (mh

s )s≥0 and Lx,h = (Lx,hs )s≥0 be the respective local time
process of I and X with mh

0 = h ∈ R+ and Xx,z
0 = x ∈ R+. Using the solution representation of

“the Skorokhod problem” again, we can obtain that, for all s ≥ 0,
mh
s = sup

`∈[0,s]

(
h−

∫ `

0
µBds−

∫ `

0
σBdW

γ
s

)−
,

Lx,hs = sup
t∈[0,s]

(
x+

∫ t

0
θ>r µdr +

∫ t

0
θ>r σdWr −

∫ t

0
crdr −

∫ t

0
µZZrdr −

∫ t

0
σZZrdW

η
r −mh

t

)−
.
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This implies that both z → mh
s and z → Lx,hs are non-increasing. Moreover, for h1, h2 ≥ 0, it holds

that, P-a.s.

sup
s≥0

∣∣∣Lx,h1
s − Lx,h2

s

∣∣∣ ≤ sup
s≥0

∣∣∣mh1
s −mh2

s

∣∣∣ ≤ |h1 − h2|. (A.6)

Then, in a similar fashion, we can also show that h → u(x, h) is also non-decreasing, and it holds
that, for all (h1, h2) ∈ R2

+,

|u(x, h1, z)− u(x, h2, z)| ≤ β|h1 − h2|. (A.7)

Finally, fix (x, h) ∈ R2
+, by applying the argument to z → u(x, h, z), we can obtain that for all

(z1, z2) ∈ R+,

|u(x, h, z1)− u(x, h, z2)| ≤ β
(
σ2
Z +

|µZ |
ρ− µZ

+
3

ρ− 2µZ − σ2
Z

)
|z1 − z2|. (A.8)

Therefore, we deduce from (A.5), (A.7) and (A.8) that

|u(x1, h1, z1)− u(x2, h2, z2)|
≤ |u(x1, h1, z1)− u(x2, h1, z1)|+ |u(x2, h1, z1)− u(x2, h2, z1)|+ |u(x2, h2, z1)− u(x2, h2, z2)

≤ β(|x1 − x2|+ |h1 − h2|) + β

(
σ2
Z +

|µZ |
ρ− µZ

+
3

ρ− 2µZ − σ2
Z

)
|z1 − z2|.

Thus, we complete the proof of the lemma.

Sketch of Proof of Lemma 3.2. In a similar fashion of the proof of Lemma 3.3 and Lemma 3.4, we
can prove that the function l(r, z) given by (3.7) is a classical solution to the Neumann problem
(3.8). Moreover, if the Neumann problem (3.8) has a classical solution l(r, z) for r ∈ R+ satisfying
|l(r, z)| ≤ C(1 + eqr + zq) for some q > 1 and a constant C > 0 depending on (µ, σ, µZ , σZ , p), then
this solution l(r, z) admits the probabilistic representation (3.7).

Next, we derive the explicit form of the classical solution to Eq. (3.8). It follows from the
probabilistic representation (3.7) that we consider the candidate solution admitting the form
l(r, h) = f(r) + zψ(r) for Eq. (3.8). In particular, the functions r → f(r) and r → ψ(r) sat-
isfy the following equations, respectively:

−ρf(r) +
(α

2
− ρ
)
fr(r) +

α2

2
frr(r) +

1− p
p

β
− p

1−p e
p

1−p r = 0, (A.9)

(µZ − ρ)ψ(r) +

(
α2

2
+ κ2 − ρ

)
ψr(r) +

α2

2
ψrr(r)− (µZ − κ2)βe−r = 0. (A.10)

By solving Eq.s (A.9) and (A.10), we obtain

f(r) = C1β
− p

1−p e
p

1−p r + C2βe
−r + C3e

ρ
α
r, ψ(r) = βe−r + C4e

−`r + C5e
−ˆ̀r,

where the constant C1 := 2(1−p)3

p(2ρ(1−p)−α2p)
, and the constants Ci with i = 2, . . . , 5 are unknown real

constants which will be determined later. Above, the constant `, ˜̀ are the roots of the quadratic
equation given by

1

2
α2`2 +

(
ρ− κ2 −

1

2
α2

)
`+ µZ − ρ = 0,
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which are given by

` =
−(ρ− κ2 − 1

2α
2) +

√
(ρ− κ2 − 1

2α
2)2 + 2α2(ρ− µZ)

α2
> 0,

˜̀=
−(ρ− κ2 − 1

2α
2)−

√
(ρ− κ2 − 1

2α
2)2 + 2α2(ρ− µZ)

α2
< 0.

Using the probability representation (3.7), we look for such functions f(r) and ψ(r) with C3 =
C5 = 0 and such that the Neumann boundary conditions fr(r) = 0 and ψr(r) = 0 holds. This

implies that C2 = 2(1−p)2

2ρ(1−p)−α2p
β
− 1

1−p and C4 = −β
κ . With the above specified constants Ci with

i = 1, . . . , 5, we can easily verify that l(r, z) = f(r) + zψ(r) satisfies Eq. (3.8). Furthermore, we
can verify that the solution l(r, z) satisfies the growth condition |l(r, z)| ≤ C(1 + eqr + zq) for some
q > 1 and some constant C > 0. Then, this solution l(r, z) admits the probabilistic representation
(3.7). In other words, the probabilistic representation (3.7) has the explicit form (3.9). Thus, we
complete the proof of the lemma.
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