This is the Pre-Published Version.

This is the accepted manuscript of the following article: Lijun Bo, Yijie Huang, Xiang Yu (2024) Stochastic Control Problems with State Reflections
Arising from Relaxed Benchmark Tracking. Mathematics of Operations Research 50(4):2526-2551, which has been published in final form at https://
doi.org/10.1287/moor.2023.0265.

Stochastic control problems with state-reflections arising from
relaxed benchmark tracking
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Abstract

This paper studies stochastic control problems motivated by optimal consumption with
wealth benchmark tracking. The benchmark process is modeled by a combination of a geo-
metric Brownian motion and a running maximum process, indicating its increasing trend in the
long run. We consider a relaxed tracking formulation such that the wealth compensated by the
injected capital always dominates the benchmark process. The stochastic control problem is
to maximize the expected utility of consumption deducted by the cost of the capital injection
under the dynamic floor constraint. By introducing two auxiliary state processes with reflec-
tions, an equivalent auxiliary control problem is formulated and studied, which leads to the
HJB equation with two Neumann boundary conditions. We establish the existence of a unique
classical solution to the dual PDE using some novel probabilistic representations involving the
local time of some dual processes together with a tailor-made decomposition-homogenization
technique. The proof of the verification theorem on the optimal feedback control can be carried
out by some stochastic flow analysis and technical estimations of the optimal control.
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1 Introduction

The continuous time optimal portfolio-consumption problem has been extensively studied in dif-
ferent models since the seminal work Merton (1969) and Merton (1971). In the present paper,
we aim to study this problem from a new perspective by simultaneously considering the wealth
tracking with respect to an exogenous benchmark process. Similar to a large body of literature
on optimal tracking portfolio, see, for instance, Browne (1999a), Browne (1999b), Browne (2000),
Tepla (2001), Gaivoronski et al. (2005), Yao et al. (2006), Strub and Baumann (2018), the goal
of tracking is to ensure the agent’s wealth level being close to a targeted benchmark such as the
market index, the inflation rate or the consumption index. However, unlike the conventional for-
mulation of optimal tracking portfolio in the aforementioned studies, we adopt the relaxed tracking
formulation proposed in Bo et al. (2021) using capital injection such that the benchmark process
is regarded as a minimum floor constraint of the total capital.
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Let (Q, F,F,P) be a filtered probability space with the filtration F = (F;):>0 satisfying the usual
conditions, which supports a d-dimensional Brownian motion (W1,...,W9) = (W},..., Wd)i>o.
We consider a market model consisting of d risky assets, whose price dynamics are described by

d
= pidt + > oydWi, i=1,....d (1.1)
j=1

dsi
St

with the return rate u; € R, i = 1,...,d, and the volatility o;; € R, 7,5 = 1,...,d. Let us denote
wi= (p, ... ,,ud)—r with T representing the transpose operator, and ¢ := (O'ij)dxd. It is assumed
that o is invertible. We also assume that the riskless interest rate r = 0 that amounts to the change
of numéraire and p is not a zero vector. From this point onwards, all values are defined after the
change of numéraire. At time ¢ > 0, let 0! be the amount of wealth that a fund manager allocates
in asset S* = (S¢);>0 and ¢; be the consumption rate. The self-financing wealth process of the
agent satisfies the controlled SDE:

t t t
vie=v -|-/ 0. pds —I—/ 0] cdWy — / Csds, Yt =0, (1.2)
0 0 0

where v > 0 represents the initial wealth level of the agent.

To incorporate the wealth tracking into our optimal consumption problem, let us consider a
general type of benchmark processes M = (M;)¢>0, which is described by

Mt = My + Zt, Vit Z 0, (13)

where Z; = z + fot Lz Zsds + fot 07 Z,dW, is a GBM and m; := max{m, sups<, Bs} is the running
maximum process of the drifted Brownian motion By = b+upt+op Wt'y. Here, the model parameters
zm > 0, b € R, uz,up € R and oz,0 > 0. For the correlative vector v = ('yl,...,'yd)T €
[—1,1]¢, the process W7 = (W, );>0 is a linear combination of the d-dimensional Brownian motion
(W1 ...,W9) with weights v, which itself is a Brownian motion. Similarly, the process W7 =
(WN)4>0 is a linear combination of the d-dimensional Brownian motion (W1, ..., W%) with weights

n=(m,....nq) € [-1,1]%

The benchmark process in the general form of (1.3) can effectively capture the long-term in-
creasing trend of many typical benchmark processes, such as S&P 500, NASDAQ and Dow Jones,
or the movements of CPI index and higher education costs in the long run. Figure 1-(a) illustrates
the increasing trend of simulated sample paths of (1.3), which is consistent to Figure 1-(b) that
displays the long term growing trend of the observed data of S&P500, NASDAQ and Dow Jones
from April 1, 2010 to November 01, 2020. Similarly, Figure 1-(c) plots the Consumer Price Index
for Urban Wage Earners and Clerical Workers (CPI-W) from 1984 to 2023, and Figure 1-(d) plots
the total cost of U.S. undergraduate students over time from 1963 to 2021, which both exhibit the
same increasing trend in the long run.

We consider the relaxed benchmark tracking using the capital injection. At any time ¢ > 0, it is
assumed that the fund manager can strategically inject capital A; such that the total wealth V; + A;
stays above the benchmark process M;. In the objective function, in addition to the expected utility
on consumption, the fund manager also needs to take into account the cost of total capital injection.
Mathematically speaking, the fund manager now aims to maximize the following objective function
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Figure 1: (a): Simulated sample paths of the benchmark process ¢ — M; via Monte Carlo with dimension
d = 1. The model parameters are set tobe z =08 m =0, b=1, uz =2, oz =1, uyp=2, op=0, 7=
17 = 1. (b): The price movements of market indices S&P500 (GSPC), NASDAQ (IXIC) and Dow Jones (DJI)
based on observed data (April 1, 2011 to November 01, 2020) from Yahoo Finance. (c): Consumer Price Index
for the US’s Urban Wage Earners and Clerical Workers from 1984 to 2023, available from https://wuw.ssa.
gov/oact/STATS/cpiw_graph.html. (d) Total cost of college in the U.S. for undergraduate students from
1963 to 2021, available from https://www.bestcolleges.com/research/college-costs-over-time/.
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under dynamic floor constraint that, for all (v,m, z,b) € Ry x Ry x Ry x R with R := [0, c0),

w(v,m,z,b):= sup E [/ e U (cy)dt — B (Ao +/ e_ptdAt>] ,
0 0

(0,c,A)eU (14)

st My < Ap + Vf’c at each t > 0,

where p > 0 is the discount rate and § > 0 describes the cost per injected capital, which can also be
interpreted as the weight of relative importance between the consumption performance and the cost
of capital injection. Here, (0, ¢, A) € U denotes an admissible control where (6, ¢) = (6, ¢t)¢>0 is an
F-adapted process taking values on R x R, and A = (At)¢>0 is a right-continuous, non-decreasing
and F-adapted process. In the present paper, the utility function is considered as the power utility
Ux) = %xp, x € R, with the risk aversion parameter p € (—o0,0) U (0, 1).

Stochastic control problems with minimum guaranteed floor constraints have been studied in
different contexts, see among El Karoui et al. (2005), El Karoui and Meziou (2006), Di Giacinto et
al. (2011), Sekine (2012), Di Giacinto et al. (2014) and Chow et al. (2020) and references therein.
In previous studies, the minimum guaranteed level is usually chosen as constant or deterministic
level and some typical techniques to handle the floor constraints are to introduce the option based
portfolio or the insured portfolio allocation such that the floor constraints can be guaranteed.
However, if we consider the Merton problem under the strict floor constraint on wealth that Vte’c >
M; a.s. for all £ > 0, the set of admissible controls might be empty due to the more complicated
benchmark process M; in (1.3). In this regard, we introduce the singular control of capital injection
Ay in our relaxed tracking formulation such that the admissible set can be enlarged and the optimal
control problem can become solvable. By minimizing the cost of capital injection, the controlled
wealth process Vte’C stays very close to the benchmark process M; as desired. To address the
dynamic floor constraint, our first step is to reformulate it into an unconstrained control problem.
By applying Lemma 2.4 in Bo et al. (2021), for each fixed regular control (6, ¢), the optimal singular

control AEO’C)’* satisfies the form that

AE&,C),* —0vV SliIt)(Ms - Vf’c), vt > 0. (1.5)

Thus, the original problem (1.4) with the constraint M; < At—H/f’c for all ¢ > 0 admits an equivalent
formulation as an unconstrained utility maximization problem with a running maximum cost that

w(v,m, z,b) = —B(mVb+z—v)" (1.6)
+ sup E [/ e PtU (c)dt — ﬁ/ e Ptd (0 V sup(M; — VSG’C))] .
(8,0)U" 0 0 s<t

Here, U denotes the set of regular F-adapted admissible strategies (6, c) = (¢, ¢t)¢>0 taking values
on R? x R, such that, for any 7' > 0, the SDE (1.2) admits a weak solution on [0, 7.

It is worth noting that some existing studies can be found in stochastic control problems with a
running maximum cost, see Barron and Ishii (1989), Barles et al. (1994), Bokanowski et al. (2015),
Weerasinghe and Zhu (2016) and Kroner et al. (2018), where the viscosity solution approach usually
plays the key role. In our optimal control problem (1.6), two fundamental questions need to be
addressed: (i) Can we characterize the optimal portfolio and consumption control pair (6*,¢*) in
the feedback form if it exists? (ii) Whether the relaxed tracking formulation is well-defined in the
sense that the expected total capital injection E[ [ e ”"d(0 V sup,<; (M, — Vse*’c*))] is finite? We
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will verify that our problem formulation does not require the injection of infinitely large capital to
meet the tracking goal. The present paper contributes positive answers to both questions.

In solving the stochastic control problem (1.6) with a running maximum cost, we introduce two
auxiliary state processes with reflections and study an auxiliary stochastic control problem, which
gives rise to the HJB equation with two Neumann boundary conditions. By applying the dual
transform and stochastic flow analysis, we can conjecture and carefully verify that the classical
solution of the dual PDE satisfies a separation form of three terms, all of which admit probabilistic
representations involving some dual reflected diffusion processes and/or the local time at the re-
flection boundary. We stress that the main challenge is to prove the smoothness of the conditional
expectation of the integration of an exponential-like functional of the reflected drifted-Brownian
motion (RDBM) with respect to the local time of another correlated RDBM. We propose a new
method of decomposition-homogenization to the dual PDE, which allows us to show the smoothness
of the conditional expectation of the integration of exponential-like functional of the RDBM with
respect to the local time of an independent RDBM.

By using the classical solution to the dual PDE with Neumann boundary conditions and es-
tablishing some technical estimations of candidate optimal controls, we can address the previ-
ous question (i) and rigorously characterize the optimal control pair (6*,¢*) in a feedback form
in the verification theorem. Based on our estimations of the optimal control processes, we can
further answer the previous question; (ii) and verify that the expected total capital injection
E[f," e *d(0 V sup (M, — VZ))] is indeed bounded, and hence our problem (1.4) in a re-
laxed tracking formulation using the additional singular control is well defined. Moreover, it is also
shown that E[[;* e *'d(0 V sup (M — Vse*’c*))] is bounded below by a positive constant, indicat-
ing that the capital injection is necessary for the well-posedness for the control problem. We also
note that Ay = sups<t(Vse*’c* — M)~ records the largest shortfall when the wealth process 7
falls below the benchmark process mg up to time t. As a manner of risk management, the finite
expectation E[ [~ e ?'d(0 V sup,<; (M — VSG*’C*))] can quantitatively reflect the expected largest
shortfall of the wealth management with respect to the benchmark in a long run.

The rest of the paper is organized as follows. In Section 2, we introduce the auxiliary state
processes with reflections and derive the associated HJB equation with two Neumann boundary
conditions for the auxiliary stochastic control problem. In Section 3, we address the solvability of
the dual PDE problem by verifying a separation form of the solution and the probabilistic repre-
sentations, the homogenization of Neumann boundary conditions and the stochastic flow analysis.
The verification theorem on the optimal feedback control is presented in Section 4 together with the
technical proofs on the strength of stochastic flow analysis and estimations of the optimal control.
It is also verified therein that the expected total capital injection is bounded. Finally, the proof of
an auxiliary lemma is reported in Appendix A.

2 Formulation of the Auxiliary Control Problem

In this section, we formulate and study a more tractable auxiliary stochastic control problem, which
is mathematically equivalent to the unconstrained optimal control problem (1.6). To this end, we

first introduce a new auxiliary state process to replace the wealth process V¢ = (Vte’c)tzg given in
(1.2). Let us first define

DtZ:Mt—‘/;070+V_me_Za Vtz()? (21)



where M = (My)>0 is defined by (1.3), and it is clear that Dy = 0. Moreover, for any x > 0, we
define the running maximum process of the process D = (D;)¢>o that

Li:=xVsupDs—2x2>0, Vt>0 (2.2)
s<t

with the initial value Ly = 0. The auxiliary state process X = (X;):>0 is then defined as the
reflected process X; := Ly — Dy for t > 0 that satisfies the SDE that for all ¢ > 0,

¢ t t t ¢ ¢
Xi==x —I—/ H;F,uds —I—/ GzadWs —/ ceds — / Wz Zsds —/ 0z ZsdW —/ dmgs+ Ly (2.3)
0 0 0 0 0 0

with the initial value Xg = = > 0. In particular, X; hits 0 if the running maximum process L;
increases. We will change the notation from L; to Lf( from this point onwards to emphasize its
dependence on the new state process X given in (2.3).

On the other hand, for the running maximum process m = (my)s>o in (1.3), we also introduce
a second auxiliary state process Iy := m;y — By for all t > 0. As a result, I; hits 0 if m; increases,
and we have

t t t
A:Lrh/dmf:/umm—/lmmnn vt >0, (2.4)
0 0 0

where the initial state value Iy =mV b—5b > 0.

The stochastic control problem (1.6) can be solved by studying the auxiliary problem that, for
all (z,y,2) € R},

(0,c)eUr (0,c)eUr
S.t. the state process (X, I) satisfies (2.3)-(2.4), and Z is the GBM in (1.3),

uw(z,h,z) = sup J(z,h,z;0,c)= sup Egp. [/ e_”tU(ct)dt—ﬁ/ e_ptstX},
0 0 (2.5)

where E, [ := E[:|Xo = x, Iy = h, Zp = z]. We note the equivalence that

u(v—mVb—zmVb—b,z), ifv>mVb+ z,

w(v,m, z,b) = { (2.6)

uw0,mVb—>bz)—pmVb+z—v), fv<mVb+z,

where w(v, m, z,b) is given by (1.6).

We first have the following property of the value function u in (2.5), whose proof is deferred to
Appendix A.

Lemma 2.1. Let the discount factor p > 2,u,z+0% (if 2uz+a% < 0, this condition is automatically
satisfied). Then, © — u(x,h,z), h — u(z, h,z) and z — u(z, h, z) are non-decreasing. Moreover,
it holds that, for all (z1,z2, h1, ha, 21, 22) € RY,

|u(z1, hi, z1) — u(z2, he, 22)| < B(|x1 — x2| + |h1 — hal)

1z 3
+BG2+ + |21 — 29],
Z T p—pz  p—2uz -0}

where we recall that > 0 is the cost parameter due to the capital injection appeared in (1.4).



By dynamic program argument, we can derive the associated HJB equation that, for (z,h, z) €
(0,00)%,

1 P
sup |07 pug + =000 " Qugy + UZQTanz(um — Uyy) — UBQTU’yurh] + sup <C — cux)
fcRd 2 >0 \ P

1 1
+ ingU}Lh — ppup + 50%22(%,3 + Upy — 2Ugy) + pzz(uy — uy)

+ozopzn Y (ugh — up.) = pu,

ug(0,h,2) =B, V(h,z) € R2,

up (2,0, 2) = ug(7,0,2), V(z,2) € R

Here, the first Neumann boundary condition in (2.7) stems from the fact that X; = 0 when L,
increases; while the second Neumann boundary condition in (2.7) comes from the fact that I; =0
when m; increases.

Assuming that HJB equation (2.7) admits a unique classical solution u satisfying u,, < 0 and
ug > 0, which will be verified in later sections, the first-order condition yields the candidate optimal
feedback control that

0 — —(UO’T)il Uy — OBOYULH + UZO-T]Z(UCECC - sz)7 = (u$)l’%1

Uz

Plugging the above results into (2.7), we apply Lemma 2.1 and the Legendre-Fenchel transform of
the solution w only with respect to = that u(y, h, z) := sup,so{u(z, h, z) — yx} for all (y,h,z) €
(0, 8] x R2. Equivalently, u(z, h,z) = infye (0,8 {(y, h, 2) — xy} for all (z,h,z) € R3. The dual
transform can linearize the HJB equation (2.7), and we get the dual PDE for 4(y, h, z) that, for all
(y, h,2) € (0, ] x (0,00)?,

Cﬁ 24 4 pui éA s 1y 5. . — -
5 Y Uy + YUy + 5 Uhh = HBUL + +2UZZ Uy + Pz2Uy + K1YUyh — K2ZY Uy
T 1—p __p .
+ozopy Nzl + (ke — pz)zy + > y =P = pu, (2.8)
where the coefficients
141 _ _
a:=(u (co") w2 >0, ki:=opp (60 ) toy, ke :=ozu' (o) ton. (2.9)

Correspondingly, the first Neumann boundary condition in (2.7) is transformed to the Neumann
boundary condition that

Gy (B, h,2) =0, V(h,2) € RL. (2.10)

The second Neumann boundary condition in (2.7) is transformed to the Neumann boundary con-
dition that

Ux(y,0,2) =y, V(y,z) € (0,8] x Ry. (2.11)



3 Solvability of the Dual PDE

This section examines the existence of solution to PDE (2.8) with two Neumann boundary condi-
tions (2.10) and (2.11) in the classical sense using the probabilistic approach.

Before stating the main result of this section, let us first introduce the following function that,
for all (r,h,z) € R,

1l—p _» 0 si-P_Rr o r
v(r,h,z) = Tpﬁ =) {/0 e ps+1€pdes] + (k2 — pz)E {/0 e‘ps_RSdes}

— BE { /0 h eﬂsRQdKQ] : (3.1)

Here, the processes R" = (R});>0 and H" = (H[");>0 with (r,h) € R% are two reflected processes
satisfying that, for all t > 0,

2
Rf—r—f—(z—p)t—i—aBtl—i—L;zO, (3.2)
H}! = h — ugt — o10pB} — \/1 — 2opB? + K!' > 0, (3.3)

and the process N* = (Nf);>0 is a GBM satisfying

AN} = pzN7dt + 0207 N7 dB} + \/@UZN{ZB?, Ny =z,

where BY = (BY);>0, B! = (B})i>0 and B? = (B?);>0 are three independent scalar Brownian
motions; while L" = (L¥)¢>0 (resp. K" = (K);>0) is a continuous and non-decreasing process that
increases only on the set {t > 0; Ry =0} with L} = 0 (resp. {t > 0; H}' =0} with K} = 0) such
that RT > 0 (vesp. H}' > 0) a.s. for t > 0, the correlative coefficients are respectively given by

W (00T) 1o W (00T) o

— P S A 3.4
01 o y 02 o ( )

On the other hand, note that (R} )¢ in (3.2) and (H}');>0 in (3.3) are RDBMs, and the processes
L™ = (L})i>0 and K" = (K}');>0 are uniquely determined by the above properties (c.f. Harrison
(1985)). Using the solution representation of “the Skorokhod problem”, it follows that, for all ¢ > 0,

a2
Li=0Vv<-— + max —()éB1 —\—=—0p

(3.5)
Kth =0V {—h+ max (uBs —i—aBBj:’)} )
s€[0,¢]
where the process B3 = (B})i>0 = (01B} + \/1 — 03B?)>0 is a scalar Brownian motion.
The main result of this section is stated as follows:

Theorem 3.1. Assume p > 2(6{7?;) and pz > ka. Consider the function v(r, h, z) for (r,h,z) € R3
defined by the probabilistic representation (3.1). For all (y,h,z) € (0,] x R2, let us define

) B y

w(y,h,z):=v <— In 5 h, z) . (3.6)

Then, for each (h,z) € R%, we have



o the function (0, 5] 2 y — u(y, h, z) is strictly convex.

e the function U(y, h, z) is a classical solution of PDE (2.8) with Neumann boundary conditions
(2.10) and (2.11).

On the other hand, if the Neumann problem (2.8)-(2.11) has a classical solution u(y, h, z) satisfying
[a(y, h, z)| < C(1+4|y|~?74 2%) for some q > 1 and some constant constant C' > 0, then v(r,h,z) :=
u(Be~", h,z) admits the probabilistic representation (3.1).

Theorem 3.1 provides a probabilistic presentation of the classical solution to the PDE (2.8) with
Neumann boundary conditions (2.10) and (2.11). Our method in the proof of Theorem 3.1 is com-
pletely from a probabilistic perspective. More precisely, we start with the proof of the smoothness
of the function v by applying properties of reflected processes (R", H", N¥), the homogenization
technique of the Neumann problem and the stochastic flow analysis. Then, we show that v solves a
linear PDE by verifying two related Neumann boundary conditions at » = 0 and h = 0 respectively.

The next result deals with the first two terms of the function v given in (3.1), whose proof is
similar to that of Theorem 4.2 in Bo et al. (2021) after minor modifications. For the completeness,
we provide a sketch of the proof in Appendix A.
o?[p|

2(1-p)
of the first term and the second term of the function v given in (3.1) that

Lemma 3.2. Assume p > +pz and iz > Ko. For any (r,z) € R, denote by I(r, z) the sum

1 - R > — £ _RT e I
l(r,z) = b 4 ) [/0 e pSJrlppRSds} + B(k2 — pz)E [/0 ePSRSdeS] . (3.7)

Then, the function l(r,z) is a classical solution to the following Neumann problem with Neumann
boundary condition at r = 0:

2 2
« « 1
?lrr + <2 - P> I + 50’%221,% + MZle + Kozl

l1-p _» »
(2 — pz)Bre + L2 e = ol on (0, 00)%,
p
[,(0,2) =0, VzeR,.

On the other hand, if the Neumann problem (3.8) has a classical solution [(r, z) forr € Ry satisfying
[l(r,z)] < C(14 €2 + 2%) for some ¢ > 1 and a constant C' > 0 depending on (u, 0, puz,02,p), then
this solution l(r, z) admits the probabilistic representation (3.7). Moreover, l(r, z) admits the explicit
form that

l(r,2) = Clﬁ_ﬁeﬁr +Cofe™ " + 2 <56_T - ie_h> . Y(r,z) € R%, (3.9)
where C,Co > 0 are two positive constants defined by
2(1 - p)? 2(1-p?® L
Ci:= , Cy:= B 1-r, 3.10
P2o(1 — p) — o) 20(1—p) — o (3.10)
the comstant £ is the positive root of the quadratic equation
[y 1 o
50 | p— ke 50 {4+ puz —p=0, (3.11)



which is given by

~(p— 52— 30%) + /(0 — 2 — $02)2 +202(p — piz)

a2

(= > 0. (3.12)

The challenging step in our problem is to handle the last term of the function v given in (3.1),
which differs substantially from the first two terms of v as it now involves both the reflected process
R" and the local time term K’ of the reflected process H". In particular, we highlight that the
reflected process R” is not independent of the local time process K. As a preparation step to
handle the smoothness of the second term of the function v given in (3.1), let us first discuss the
case when the reflected process R’ is independent of the local time K".

Lemma 3.3. Let us consider the function that, for all (r,h) € Ri,
o(r,h) := —BE [ / epsR?ng‘] , (3.13)
0

where the reflected process R™ = (R})i>o with r € Ry is given by (3.2), and the process (P",G") =
(Ph,GI>0 satisfies the reflected SDE:

t t t
Pth:h—/ qus—/ aBdBS+/ dGh > 0. (3.14)
0 0 0

Here, G" = (G?)tzo is a continuous and non-decreasing process that increases only on the time
set {t € Ry; Pl = 0} with Gh = 0 and such that P} > 0 a.s. fort > 0. Then, the processes
Gh = (GM) >0 and R" = (R})¢>0 are independent. Moreover, the function o(r,h) is a classical
solution to the following PDE with Neumann boundary conditions at r =0 and h = 0:

2 2
SOT(O, h) == 0, Vh S R+, (315)

2 2 2
« (0 o
— @ + < - p) ©or + TBSth — pppn = pp, on (0,00)?,

on(r,0) = Be™", VreR;.

On the other hand, if the Neumann problem (3.15) has a classical solution (r,h) satisfying
lo(r,h)] < C for some constant C > 0 depending on (u,o,up,0B), then this solution ¢(r,h)
satisfies the probabilistic representation (3.39).

The following result guarantees the smoothness of the function ¢(r, h) for (r,h) € R? defined
by (3.13).

Lemma 3.4. Consider the function ¢(r,h) for (r,h) € R% defined by (3.13). Assume op # 0,
then it holds that p € C*?(R2). Moreover, for all (r,h) € R%, we have

%mmﬂmU%%*Mﬂ,wmmﬂ%kW*ﬂ, (3.16)
0

— <[ —ps—r+x hl _ Tr —ps—R, h
orr (T, h) B/O /_Ooe o1(s,z,r)dzdE[G]] — BE [/0 e dGS] , (3.17)

- 0o rTory
orn(r,h) = —BE {e_pnh_R"h 177h<n]:—5/ / / e P T b (s, 2, y)p2(s, h)dxdyds.  (3.18)
0 0 —00

10



Here 7, := inf{s > 0; —aBl—(3a%—p)s =1}, n, := inf{s > 0; opBY+pups = h} (with inf ) = +oo
by convention), and functions ¢1(s,x,y), ¢2(s,h) are respectively given by, for all (s,z,y,h) € Ri,

_ 2(2y — =) fo 1,  (2y—=)?
o1(s,x,y) = NCEr exp ( x 2u 957 ) (3.19)

ba (s, h) = UL_MS)Q) , (3.20)

e
———exp | — 5
20]237rs3 20ps

where parameters i := 5 — £ and 6 := a.

QI

Proof. The independence between the reflected process R” = (R} );>0 and the process Gh = (G )t>0
plays an important role in the proof below. Before calculating the partial derivatives of p(r, h), w
first claim that, for all (r, h) € RZ,

o(r,h) = —5/ e P dE[G1. (3.21)

In fact, fix (7,7, h) € Ri, and let n > 1, s; = %2 with ¢ = 0,1,...,n. Then, it holds that

T R h - h h
[ e it =v | 3o (6 —at )|

=1
Note that e~ < 1 as., for all s € [0,T]. Then Y1 e 75 (Gh —Gh )y <Y (Gh -
GZF )= G, Thus, from the dominated convergence theorem (DCT) and the independence be-
tween BY and B!, it follows that

5| - act = Jim ® ;e‘p& wah-ah) Z,}L“;oiE[e_psi_Rgi (et -6i))

= lim ZE[ i ] {E[G?J—E[GZZ,_I]} - /0 TE[e—PS—RZ] dE[G"]. (3.22)

Letting T — oo on both side of (3.22) and applying MCT, it follows that

E[ / e—PS—R?dGQ] = / E [e "] dE[GP].
0 0

This verifies the claim (3.21).

Let h € Ry be fixed. First of all, we consider the case with arbitrary ro > r; > 0. It follows
from (3.13) that

T‘Q 1
o(ra, h) — @(ri, h 5 € —e R _ o= Rs ach
T2 =" T2 =" 3

A direct calculation yields that, for all s > 0,

_RT2_ _RM_ —R—ps 1 1.2

. e BsTops _ o Rs —ps —e TP maxgep g {—aB; — (50— p)g} <71,
lim =

rodry T —1T1 %

0, mane[ms] {—aB

11



T2 71
eiRS 7ps_efRs

| < e7”%. Then, the DCT yields that

T2—T1

. p(re,h) —p(r1,h) % ps—RI h
lim = BE 0 e’ 1{maxqe[0’51{—aB;—(%oc2—p)q}§7"1}dGs

r2dr1 T2 —T1
Try T
= BE [ /O e_pS_RsldG’;] . (3.23)

For the case 1 > ry > 0, similar to the computations for (3.23), we can show that

ratry To — 171 ralry T —1T1

Note that sup,, ,,)er2 \

Thus, the representation (3.16) holds.

For any real numbers rg, r,, > 0 with r, — 79 as n — 0o, we have from (3.16) that, for alln > 1,

A, = ©r(Tn, h) — @r(r0, h)

'm —T0
1 T RTO b 1 0 e [ _RIn R0 h
— BE PR GGh | 4 BE e (e — ) ach
Tn — TO Trg Tn — TO 0
1 Trn rn e
+ BE / e=hs (e*Rs - e*RSO) dGM| = AL L AD L AB), (3.24)
Tn —T0 Tro

In order to handle the term Ag), we first focus on the case with r, | rg as n — oo. Let us define
the drifted-Brownian motion W, := —aB} — (0‘72 —p)s for all s € Ry. In view of (3.2) and (3.5),
it holds that
+
RQOZTO—WS—F ( sup Wq—r0> , Vs>0.
q€[0,s]

Note that ¢1(s,z,y) defined by (3.19) is the joint probability density of two-dimensional random
variable (W, max¢(o ) Wy) for any s > 0. Then, we have

! / TR e | —p | / TRy dG"
Tn =70 Jry, s Tn —T0 Jo {rro<s<mrn}
_ /ooE exp(—ps — 1o+ Wy — (SuPgefo,s] Wq —170)
Y e—ps—rota—(y—ro)*
-] 01(s. 2. y)dedydE[GL). (3.25)
For (s,y) € RZ, set g(s,y) := f;yoo e*pS*r0+I*(y*r0)+¢1(s,:L',y)d:):. Then, by the continuity of
y — g(s,y), we have

E

)
dE[G"]

o — T0 {ro<maxq€[0 5] Wq<rn}

lim
n—o0 T’I’L _ TO

/Tn 9(s,y)dy = g(s,70). (3.26)

It follows from (3.25), (3.26) and DCT that

1 Trn I
e Ps—Rs d(??
T'n =70 Jr,

0

lim E

n—o0

oo pTo
= / / e_pS_TO“L””gbl(s,a:,rg)ddeE[GZ].
0 —00

12



For the case where 9 > 0 and r,, > 0 with r,, T r9 as n — oo, using a similar argument as above,
we can derive that

oo frro
lim AN = 5/ / e POt (s, 2, 1) dzdE[GH].
0 —00

n—oo

In a similar fashion as in the derivation of (3.23), we also have

1 Tr, n . Tr, .
lim AP =3 lim E { / Y e (e_RS — e_RSO> dGQ} = —pE {/ ? PR dGQ] .
n—00 n—o0 rm — 70 Jo 0

At last, we can also obtain

1
Tn —T0

‘Ag”)‘ — GE

Trn 7
_ _R™ _ 0
/ e”s(e R —eRS)dG;Z
Tro

G - G Tn T
Al )

'n —T0 5>0

RO
Note that sup,> \S%e| < 1, P-ass., and the fact that G, — G

Tn—T0

DCT yields that lim,, s |A§’)] = 0. Putting all the pieces together, we get that

Ty &S., a8 M —» 00, the

o0 T0 Tr -
©rr(r0,h) = B / / e PSR g (s, 2, 10)dedE[GT) — BE [ / ’ e‘ps_RSOdGQ] ) (3.27)
0 —00 0

We next derive the representation of the partial derivative oy (r, h). For any he > h; > 0, it
follows from (3.13) that

QD(T, h2) T hl _ 6/ e PS— RT d GZZ _Géll
ho — h1 ho—hy )~

In lieu of (3.5), it holds that, for i = 1,2, G% = h; v {maxc(o ¢ (Bl + 0B} — h; for s > 0. For
h > 0, we introduce 7y, := inf {s > 0; opWs + ups = h} with inf ) = 400 by convention. A direct
calculation yields that, for all s > 0,

(

07 $ < Nhy,
Gz -Gl _ Gh
ho — hy - _h2_h17 Nhy < 8 < Nhy,
_17 32"7h2-

Then, it holds that

[e%e] - hy hi\ T MNh - h1
E [/ e*ﬂszsd (GSGS> = _F / 2 e*pszSd ( Gs )
0 hy —hi )| Ty ho — hy
1 T h T
__E / R G i T P G |
Mhy hy —h

Note that, as hy | h1, we have

Mhy hy —hy ) |~

13
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This yields that

> v Gh2 — Ghl —pnp, —RI
lim E TRy ) = —E e T | 2
hzlgzll [/0 € ( hg — hl >:| [e 1] (3 8)

Similarly, using the above argument, we also obtain

90(r7 h2) - 90(r7 hl)

(p(?", hQ) - (,0(7", hl) )

lim = lim
hathy ho — hy halh1 ho — hy
Thus, we can conclude that, for all (r,h) € ]Ri,
on(r,h) = BE [e_""’l_th} . (3.29)

Furthermore, in view of Proposition 2.5 in Abraham (2000), it follows that
S
B(GY = [ pl0.Lo)l, s =0, (3.30)
0

where p(0, ho; s, h) = P(PM ¢ dh)/dh is the condition density function of the reflected drifted
Brownian motion P at time s > 0 (c.f. Veestraeten (2004)). Hence, we deduce that

o(r, h) ——B/ e psT R (O,h;s,())ds, Y(r, h) eRi.

In view that for every fixed s € Ry, the function h — p(0,h;s,0) belongs to C*(Ry) (c.f.
Veestraeten (2004)), we get that, for all (r,h) € R%,

- 02p(0, h; 5,0
©nn(r, ) ——5/ [emPe— 1] p(ahQS ) ds. (3.31)

Following (3.29) and a similar argument as in the proof of (3.23), we can obtain

ern(r,h) = —BE [e7™ 1, oo |

+
exp <_P77h —r+ Wy, — (q:{g};h] W, — T) > 1supq€[0,7lh] Wq<r]

0o rTrory
— _ —ps—r+x
B/O /0 /_Ooe d1(8,x,y)p2(s, h)dxdyds. (3.32)

— _BE

The desired conclusion on the smoothness of ¢(r, k) in the lemma follows by combining expressions
n (3.23), (3.27), (3.29), (3.31) and (3.32). O

We next give the proof of Lemma 3.3.

Proof of Lemma 3.3. In lieu of Lemma 3.4, we first prove that the function ¢(r, h) defined by (3.39)
satisfies the Neumann problem (3.15). In fact, for all (r,h) € R2, we introduce that

2
Bl :==r+ <O;—p>t+aBtl, vVt e Ry,

"= h—upt —opBY, VteR,.

14



Here, we recall that B! = (B} );>0 and B = (BY);>¢ are two independent scalar Brownian motions,
which are given in (3.2) and (3.3). For any € € (0,7 A h), let us define

Te :=inf{t > 0; |Bf —r| > e or |B — h| > €}. (3.33)

We can easily check that, for any ¢ > 0, Rg/\n = B’Z{Me and Pt!;\Te = Bg/\n' Then, by (3.3), (3.5) and
the strong Markov property, we get that

—BE [ / e Pt
t

NTe

—o(t . h
ffATC] =e p(t/\T )(p (RE/\Te,Pi/\Te> ’

where ¢(r,h) = —BE[[;° e **"RdG"] using (3.39). Consider using Lemma 3.4, we can verify
that the function ¢ satisfies ¢,(0,h) = 0, and ¢p(r,0) = Be™" for all (r,h) € R%. Therefore, for
(r,h) € RZ, it holds that

. 15/\76
plrh) =B |0 (Re, Ph Y -5 [ e tagh .
€ € 0

By Lemma 3.4 and It6’s formula, we have

B A RT 1 ~h 1 i h
?E /0 efpS* sdGS — ;E [efp( /\76)90 <_R:t‘/\7_67 PtA/\TE) — (p(T‘, h/)i|

1 l?/\‘l‘t€ 1 fATE

— B[ e - ooy (L Pds| 4B | [ e (R P
0 0
1 1?/\TE
+3B| [ (R PhaGE | (3.34)
0

where the operator £ is defined on C?(R?) that

o2 o 1, 2 (M2
Lg:= ?gr,, + 5 Pl gr+ §Uthh — puBYh, VgeCl (RH'

The DCT yields that

1
hm 7]E

fATE
/ e (Lo — pp) (BT, PYds
io t 0

= (Lo — pp) (r, h).

Note that, for all 7 € Ry, @ (r,0) = fe" and R. >0 on s € [0, A 7.]. We then have

1
=E
t

tA/\‘r6
/0 sor(RZ,Psh)dLZ] =0, @n(Ry, P Liprgy = Be M.

By using (3.34), we obtain (L — pp) (r,h) =0 on (r,h) € R2.

Next, we assume that the PDE (3.15) admits a classical solution ¢ satisfying |¢(r, h)| < C for
some constant C' > 0 depending on (i, 0, up,op) only. Using the Neumann problem (3.15), the
It6’s formula gives that, for all (T, 7, h) € Ri,

T
B e o, )] = ol + B | [ (Lo po) (5 P

15



T T
+E [/ e P (R, Psh)l{RQ:O}dLZ] +E [/ e P on(Ry, P11 pr_gydG
0 0

T
= @(r,h) + BE [ /O eR?”SdGZ] . (3.35)

Moreover, by DCT and the boundedness of ¢ on Ri, limr o E [e_pTgp(Rl_”p,Pr_ﬁ)] = 0. Letting
T — oo on both sides of (3.41) and using DCT and MCT, we obtain the representation (3.39) of
the solution ¢(r, h), which completes the proof. O

Next, we propose a homogenization method of Neumann boundary conditions to study the
smoothness of the last term in the probabilistic representation (3.1) together with the application
of the result obtained in Lemma 3.3.

Proposition 3.5. For any (r,h) € R3, define the function &(r,h) as follows:
&(ryh) = —k1E [/ e P pn(RY, HMds | . (3.36)
0

Here, we recall that the reflected processes R = (R} )i>o and H" = (H[")¢>o with (r,h) € R2 are
given in (3.2) and (3.3), respectively. Moreover, let us define that

Y(r,h) == @(r,h) +&(r,h), V(r,h) € Ry, (3.37)

where the function p(r, h) € C*(R%) is given by (3.13) in Lemma 5.3. Then, the function v (r,h) is
a classical solution to the following Neumann problem with Neumann boundary conditions atr =0

and h = 0:
o2 o2 52
?iﬁw + (2 - P) Py + TBwhh — putn — k1ten = p, on (0,00)%,
G (0,h) =0, VheR,, (3.38)

Yp(r,0) = pe™", VreR,.

On the other hand, if the Neumann problem (3.38) has a classical solution (r,h) satisfying
[(r,h)| < C for some constant C > 0 depending on (u,o, up,0p,7), then this solution (r,h)
satisfies the following probabilistic representation:

Y(r,h) = —BE [ / - e—PS—REdKQ] . (3.39)
0

Proof. Note that the integral in the expectation is the Lebesgue integral in (3.36). Then, using
the stochastic flow argument (c.f. the argument used in Theorem 4.2 in Bo et al. (2021)), it is not
difficult to verify that &(r,h) € C*(R?) is a classical solution to the following Neumann problem
with homogeneous Neumann boundary conditions:

a? o? 0% )
Egrr + ? - P 57‘ + 7§hh - :LLth - Klgrh - /)5 = R1$rp, ON (Oa OO) )
£(0,h) =0, VheRy, (3.40)

&(r,0) =0, VreR,.
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Using Eq. (3.15) in Lemma 3.3, i.e.,
2 2

2
(0% 8] g
5 e+ <2 - p) ©or + 73¢hh — pppn = pp, on (0,00)?,

907’(07 h) = 07 Vh € R-i—v
on(r,0) = Be™ ", VreRy.

In terms of the above two Neumann problem, we can conclude that ¢ (r,h) = (r,h) + £(r, h)
satisfies the Neumann problem (3.38). This shows the first part of the proposition.

We next prove the second part of the proposition. To do it, we assume that the Neumann
problem (3.15) admits a classical solution 1 satisfying [ (r, h)| < C for some constant C' > 0
depending on (u, o, up,op,y) only. Then, the It6’s formula gives that, for all (7,7, h) € Ri,

[ )] = v & [ [ o - o) (g s

T
+E [/ e P, (RY, H§)1{R§0}dLg} +E [/
0 0

where the operator £ is defined on C?(RR?) that

T
e_psd}h(R;,Hg)l{Hshzo}ng] y (341)

2 2

a a? o5 2 2
Lg:= ?gw + 5 - P gr+ 7ghh — UBGh — K1grhs Vg € C*(RY).

It follows from the first equation in (3.38) that E[fOT e P5(Ly — p)(RL, HM)ds] = 0. Using the
Neumann boundary conditions in (3.38), we obtain

T T
E[ / e—pswr(R;,HQﬂ{Rgo}dLZ}zE[ / e—psqu(o,H?)sz]:o,
0 0

and

T

T T
E[ / epslzzh(R;’,H?)l{Hg:o}dK?}=E[ / eﬂswmz,mm}:m [ / epsR?dKﬁ]-
0 0 0

This yields from (3.41) that

T
B e oy 1)) = o) + 68| [ et (3.42)
0

Moreover, we have the boundedness of ¥ on Ri. In fact, the function ¢ is bounded on Ri via
(3.13); while ¢, is also bounded by applying (3.32) in Lemma 3.4. This gives from DCT that
limy,oo E [e PT9 (R}, H})] = 0. Letting T — oo on both sides of (3.41), using DCT and MCT,
we obtain the representation (3.39) of the solution ¢ (r, k), which completes the proof. O

Remark 3.6. Proposition 5.5 has showed that, the function v given by (3.39) is in C*(R2).
Furthermore, it also holds that

Wy (r,h) = BE { /0 ; eﬂsR?sz] . Un(r,h) = BE [e"’“‘%] , (3.43)
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1 Tr4+Ar " Tr -
Urr(r,h) = B lim E [ / e—PS—deKg] — GE [ /O e—PS—deKg] : (3.44)

Ar |,
VYrp(r,h) = —BE [e_pCh_th 1<h<rr} : (3.45)
Here, 7, is defined in Lemma 3.4, and (, := inf{s > 0; opB3 + pugs = h} with convention

inf ) = +00. From these representations, it follows that . (r, k) + ¥ (r,h) > 0 for all (r,h) € R2.

We can finally present the proof of the main result in this section, i.e., Theorem 3.1.

Proof of Theorem 3.1. By applying Lemma 3.2 and Proposition 3.5, the function v(r, h, z) defined
by (3.1) is a classical solution to the following Neumann problem:

( 012 2 1 1
71% + (2 — p) Uy + iU%Uhh — WBVL + ia%z%zz + UZ2Vy — K1Upp + K22Upy

1-— _ p_
+oz081 Y2 + (K — pz)Bze”" + <p> B el = pv, on (0,00)3,

p (3.46)

2
vr(0,h,2) =0, V(h,z) € R%,

Uh(r707 Z) = /36—1”, V(Ta Z) € R?l—

Then, we can verify that a(y, h, z) = v(—In %, h,z) for (y,h,z) € (0, 8] x R% is a classical solution
of the Neumann problem (2.8) with Neumann boundary conditions (2.10) and (2.11). Moreover,
the strict convexity of (0,8] > y — a(y,h,z) for fixed (h,z) € R% follows from the fact that
Uyy = y% [Upr + vr] > 0 by applying Lemma 3.2, Lemma 3.4 and Remark 3.6. On the other hand, in
a similar fashion of Proposition 3.5’s proof, we can verify that if the Neumann problem (2.8)-(2.11)
has a classical solution (y, h, z) satisfying |u(y, h,2)| < C(1 + |y|~7 + 27) for some ¢ > 1 and

some constant constant C' > 0, then v(r, h, z) := a(Be™", h, z) has the probabilistic representation
(3.1). O

4 Verification Theorem

Theorem 3.1 shows existence and uniqueness of the classical solution 4 (y, h, z) for (y, h, z) € (0, 5] x
R? to the dual PDE (2.8) with two Neumann boundary conditions (2.10) and (2.11). Moreover, this
solution u(y, h, z) is strictly convex in y € (0, 8]. The following verification theorem will recover the
classical solution u(z, h, z) of the primal HJB equation (2.7) via the inverse transform of a(y, h, z),
and provide the optimal (admissible) portfolio-consumption control in the feedback form to the
primal stochastic control problem (2.5).

Theorem 4.1. Let pg > 0 be the constant depending on model parameters (y, o, uB, 0B, hz,02,7%, P, 3)
explicitly specified later in (4.45). For the discount rate p > po, it holds that:

(i) Consider the function v(r,h,z) for (r,h,z) € RY defined by the probabilistic representation
3.1). Let a(y,h,z) = v(—=In¥, h,2) for all (y,h,z) € (0,8] x R2. For any (x,h,z) € R3,
B +
introduce that

u(z,h,z) = inf {a(y,h,z)+yz}. (4.1)
y€(0,5]
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Then, the function u(z, h,z) is a classical solution to the following HJB equation with Neu-
mann boundary conditions:

.

1

sup [OTuux + §9TJJT9um + JZQTUnz(um — Ugy) — UBQTavuxh
fcRd

P L L 9 o
+sup | — —cuy | + §O'Buhh — UBup + 50'22 (Uzz + Upr — 2Ua:z)

c>0 \ D
4.2
Fpzz(uz — ug) + 0zop2n Y(Ueh — unz) = pu, (4.2)
Um(07ha Z) =B, V(h,z) GR?H
up(x,0,2) = ug(x,0,2), V(x,z2)€ Ri-
(ii) Define the following optimal feedback control function by, for all (z,h,z) € R3,
* T\—1 MUz — OBOYUgh + 07012 (Ugz — Ugz) * 1

0" (z,h,z) :=—(c0 ") , (zohyz)i=ur . (4.3)

Ugy

With (z,h, z) € R, consider the controlled reflected process (X*,1,7Z) = (X}, It, Zi)i>0 given
by, for allt > 0,

t t t
X;":x+/ 0*(X;‘,IS,ZS)T,uds+/ «9*(X;‘,IS,ZS)TadWS—/ HXE 1, Z,)ds
0 0 0

t t t
—/ ,uZsts—/ JZstWS”—/ dms + L,
0 0 0

t ¢ t
It:h—/ ,qus—/ oBde—F/ dms,
0 0 0

t t
7y = z+/ MZZSds+/ oz ZsdW.
0 0

(4.4)

Above, the running mazimum process m = (my)i>o is given in (1.3) and L{ = 0. Define
0f = 0*(X], It, Zt) and ¢f = (X}, It, Zy) for allt > 0. Then, (6*,c*) = (0, ¢} )0 € U" is an
optimal investment-consumption strateqy. Moreover, for any admissible strategy (0,c) € U",
we have

0o D 0o
E [/ efpt@dt - B/ eptde(] <u(z,h,z), forall (z,h,z)€R3,
0 p 0

where the equality holds when (0,c) = (6%, c*).

Proof. We first prove the item (i). For (z, h, z) € R3, let us define y* = y*(z, h, z) € (0, B] satisfying
Uy(y*, h, z) = —x. Then, we have

u(e.hz) = inf iy )+ e} = il (@ b2, )+ oy (e, h2), (4.5)
ye 9.

By applying Lemma 3.2 and Lemma 3.4, it follows that

ay(y?h’ Z) = _31/1)7“ <_ ln%,h, Z> = _; |:lr <_ hlZ’Z) + (_ Inz7h>:| <0. (46)
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Then, (0, 8] 3 y — a(y, h, 2) is decreasing for fixed (z, h) € R%. Moreover, note that (3, h, z) = 0,
and hence

A A —r o r _

?}E)I%)uy(y, h,z) = rgrfoo Uy(Be ", h, 2) = rginooe vr(ryh, 2) 0.
Thus, y* and u defined by (4.1) is well-defined on R%. Moreover, it follows from Theorem 3.1 that

y — u(y, h,z) is strictly convex, which implies that x — wu(x,h,z) is strictly concave. Thus, a
direct calculation yields that u solves the primal HJB equation (2.7).

We next prove the item (ii). It follows from Theorem 3.1 that 6*(z, h, z) and ¢*(x, h, z) given by
(4.3) are continuous on R3. We then claim that, there exists a pair of positive constants (C,, Cy)
such that, for all (z,h,z) € R3,

0% (z,h,2)| < Co(l+x+2), |c"(z,h,2)| <Ce(1+2). (4.7)
Let v := [(co") " ul, 42 := |(007) togoy| and 3 := |(co ") tozon|. In view of the duality
transform, we arrive at
u u 2Zu
‘9*(.’1772” §71 i(.ﬁ:,h,z) + 72 ﬂ(‘r?haz) + 73 xz(x7h7z) + v3%
Uz Uz Uz

= Vly*('xa h) Z)@yy(y*(l"a h7 Z)7 hv Z) + 72|ﬂyh(y*($a h> Z)> ha Z)| + 73|Zayz(y*(xa ha Z)a h’ Z)| + Y3z

*(x, h *(x, h
=vy*(x, h, 2)vp (— In y(:c,ﬁ,z)’ h, z) + o |Upn (— In y(an,ﬁ,z)7 h, z> '

*(z,h
2V <— lnw, h, z) ’ + 32

+ 73

B
71 y*(l', hv Z) V2 y*(l’,h, 2)
=z + (b + ¢y <—1n,h,2) + Y <—1H,h
) ) 8 y*(x,h,2) 8
3 y*(% h7 Z)

— |zl | —In XL , 4.8
+y*(x,h,z) z ( n 5 z)‘—k’ygz (4.8)

. . ~ * *(x,h,z
where the last equality holds since x = —uy(y*(z,h,2),h,2) = mvr (—ln %,h, z):

m(lr + ) (— In W, h, z). It follows from (3.43) and (3.44) that, for all (r,h) € R?,

. 1 Tr+Ar o pr
Un(r,h) + Yy, h) = B Jim E [AT / e pe deK?} : (4.9)
Using the representation (3.5), we get that, for all h € Ry and ¢t > s > 0,

Kh—Kh=0v {_h—i—lrél[%,)t(] (nBl + UBBIQ)} —0V {—h+lren[g§] (1Bl +03Bl2)}

=hV l+oB?) Y —hvV I+ 32}.
{lem[gﬁ(uB op ;)} {lren[%(uB opBy)

If maxjep (ppl + opBf) < h, it holds that K{* — K" = 0 < K — K?; while, if max;eo (1l +
opBY) > h, we also have

Kh— Kl < 1+ Bz—h\/{ 1+ BZ}
¢ K < max (uBl + opBY) mnax (upl + opBY)
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< l B?) — l B?) = K — K9, 4.10
ZTEII[%(MB +oB z) fél[éi’; (MB toB l) t s ( )

Hence, we can deduce that K — KJ' > K9 — K i.e., the process {K{ — K!'};>0 is non-decreasing.
This implies that, for all h > 0,

Ur(rh) + g (rh) = 8 Jim B | — 58 lim E L[ sz g0
r\T, rr T, 1m AT (& s 11m A”{’ e s

Ar—0
gimE|= [ —PS‘R?d(KO—Kh) <8 lim E |~ e —ps—RZdKO
ArSo | Ar c s s Arso | Ar c s
= Uy (1,0) + Y (7, O). (4.11)

Note that, it follows from Proposition 3.5 that

b (R 1) ) (R, )y, (L))

< (r + ) <—1n?f(””’6’“>,0) (ot P 6+ ) <—1ny*(””’5h’z),0) L (412)

In view of Lemma 3.4, we obatin that
©r(r,0) + @pp(r,0) = B / / e PTGy (s, x,r)dzdE [GY] . (4.13)
0 —00

For r € [0,1], by the continuity of r — [° ["_ e ?*"¢y (s, z,r)dzdE[GY], we can obtain

/ / e P (s, x,r)dedE[G] < maX/ / TPy (s, @, r)dedB[GY] < oo (4.14)
0 —00

rel0,1]

For the other case r > 1, we obtain from (3.19) that
1 r
/ / e P52 (s, x,r)dzdE[GY]

- 2(2r —x) il 1. (2r —x)?
ps+x =\ M) P Ta2. dxdE. 0 .
/ / 20’27'('83 exp <5x I 262s rdE[G ]

77‘ 1 2
_ / / —{C )] 20 oy (/f (r—y) - Lazs U fzy) ) dydE[CY)]
g

V262783 2 2625
L pe2exp (—gm) [ i 2o (rty)? -1
<[ " 20s S+l - dydE[G°
N /0 ‘ V262ms3 /0 (r+y)exp (((3 + > T 262s 262s ) ydE|Gy]
1 0o ~ 1
S%lzl/ e—PSdE[GQ]/ (T+y)exp<('u+1>r—yﬂ )dy
0 0 g g
1 e’} -1 L
<962 E [/ ng} / (1+y)exp (y(}Q > dy < 186%¢° " (|ug| + 305). (4.15)
0 0

Moreover, using the fact %ﬂzs 4 2 o > i (r — x), it holds that

262s = o

~ 2
—pS+CC x) H _ 1 ~2 o (27” — :1:) d dE GO
/ / 20 7r$3 eXp (636 ght? 2625 zdE[G]
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IN

)

/ empste 22— 2) 202 %) <2“r> dadE[GY)
=)

/ oty <ﬁ y) p<2f‘r> dydE[GY)]
(

_ + 30B)
e P dE[GY] < sl +305) 4.16
- \/202 < 2627 ( )
Thus, it follows from (4.9)-(4.16) that
1 y*(z, 2)
- (rr + ) | —In=—25,0 | < Mi(1+2), (4.17)
y*(z, 2) 5

where the positive constant M; is defined by

A7 4 3 o0 T
My = 185°¢° 2(|,uB\ +30B) + Hpp| + 305) + max / / e 5T (s, x,7)dzdE[GY]. (4.18)
2027 re0,1.Jo Jo

In what follows, let us define that, for (r, h) € Ri,
» o0 T Yy
021 = prn(rc =B [t = [ [ e s, )l dadyds,
0 0 J—oo

Using Proposition 3.5 and Proposition 4.1 in Bo et al. (2021), we obtain that

Tr
&.(r,0) = —kE [ / e (R, Hg)ds] : (4.19)
0
Tr
o (1,0) = —&I'E [e 7™ £,(0, HY )| — KE e P fr(RT, HY)ds | | 4.20
Tr 0 S S
~2
where T' := fooo \/ﬁe_;ﬁsds is a positive constant. It follows from a direct calculation that, for

all (r,h) € R2,
fin) =5 [ [ ettt ponts wdodydss [ e s, ryon(s. hdods,
for(ryh) = —fr(r,h) + ﬁ/ / e P g (s, 2, 1) da(s, h)dxds
0 —00
oo T o 8¢1 0o
_ ps—r+x ~ 7L . ps
6/0 /_Ooe oy (s,z,7)p2(s, h)dxds B/O e Po1(s,r,r)pa(s, h)ds
Note that, by using (3.19), we have
ol )] < e / °°/ h / " ey (5,2, y)bals, h)dadyds + Be /0 e, ryonls hydads,
|fr(r,h) + for(r,h)| < Be™ / / TGy (8,2, 1) P2(s, h)dads
e [T e s (s hdads £ B [ e (s, r)onls ).
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In a similar fashion of (4.14)-(4.18), we deuce that |f.(r, h)| < MaBe™" and |fr(r, h) + frr(r,h)| <
MsBe™", where the finite positive constants are given by

= sup / / / 5T (s, 2, ) P2(s, h)drdyds +  sup / / 5Ty (8,2, 7)da(s, h)drds < +oo,

heR4 (r,h)ERZ/0
(4.21)
Ma = 7s+a: 7S+z 3(251
3:= sup ¢1(s,x,7)pa(s, h)dxds + sup —— (8,2, 7)p2(s, h)dzds
(r,h)ER L (r,h)€RZ dy
+ sup / e T (8,7, 1) pa(s, h)ds < +oc. (4.22)
(r,n)er2 Jo

Therefore, it holds that
(& + &) (1, 0) < [&[E [/ e lfr + fwl(RZ,HS)ds] + Blk[TME [e™]
0
< |k|BM3E {/ ePSRst] + B|k|TME [e7#7]
0

= Be”" Ms|k| /000 /OT /y e P (s, x,y)dadyds + B|k|T MoE [e77™]
—oc0
= Be""MsMs|k| + B|k|T Mae™ < MyfSe™", (4.23)
where the positive constant M, is defined by
My := May(Mslk| + |k|TD). (4.24)
Thus, we deduce from (4.19)-(4.24) that

1

y*(x, h, 2)
y*(z, h, 2)

(e ) (-1 %

,0> < (My+ My)(1 4+ z). (4.25)
On the other hand, using Lemma 3.2, we have

2
e (1,2) = C1 5155 (1 P ) e 1 Cofie™ + 2(Be" — le=")

_ p 66—7” 1 —r —br b
=1 _plr(r) T C’ + 1 _pzﬁe zPe <€+ T—5 —p> . (4.26)

Then, by using the condition p > 20‘(21”:;1), we deduce that

1 y*(z, h, 2)
T/ _ 1 Nurr _]‘ - 5
y*(z, h, Z)l < T8 z)

< l?“ r _1 77]17 - * 7h7

oy (z,h, 2) [119( +¢)< T8 2 1—p 02+1*p2y (., 2)
e ATHE T S S g P L RS e (4.27)
T1-p 1-p*T1-p T 1-p b ’ ‘

By using Lemma 3.2 again, we have |zl,,(r, )| = 28(e ™" —e™") < l,(r,z) for all (r,z) € R%. Thus,
it holds that

1
y*(z, h,2)

e (- PR ) < e (PR ) <oy
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Moreover, note that
2
—oCp—RT @ L
Yy (1, 2)| = BE [e po <h1¢h<n] < BE [exp <_P<h -r= (2 - p) Ch— aBg, — chﬂ
o2
< pe"E [exp <—2Ch - OzBéh>] =pe". (4.29)

In lieu of (4.8), (4.12), (4.17), (4.27) (4.28) and (4.29), we deduce |6*(x,h, 2)| < Co(1 + = + 2),
where the positive constant C, is defined by

1 1
Coi=1+ <1 5+ 21 —p)B 77 + My + M4> 71+ e (4.30)

Here, the constant C5 is given by (3.10) and constants M; and My are defined as (4.18) and (4.24).
Next, we show the linear growth of ¢*(x,h,z) on (z,h,z) € Ri. Note that y*(z,h,z) =
ug(x, h, 2) for all (x,h,2) € R3, we arrive at

1

(2, )| = wa(, hy 2) 7T = <1> ﬁ. (4.31)

y*(z, h,2)

Using the relationship —z = vy (y*(z, h, 2), h, ), we can see that

_ * _ 1 . y*(l‘,h, Z)
r = —vy(y*(x,2),h,z) = W(lr + ) < In 5 Jh, z)

1 y*(x, h, 2)
y*(z, h, z)lT <_ . B 72) . “32)

v

Thus, Lemma 3.2 yields that, for all r € [1,00),

lp(r,z) = Biﬁ fclpelprp — Cofle™ 4 2B —eT) > (667T)7ﬁ (11701p — C’gﬁllpelrp>
_(pgm-_ 2(1—p) Jp—— - 2(1—p) e
= (B 2p(1 —p) — a?p (1 ‘ ) = (Be) 2p(1 —p) — a?p <1 ‘ ) '

This implies that, for the case in which y*(z, h,2) < Be~!,

I (— lny*(:n’ﬁh’z),,z) > 2p(12(_1p_)]i)a2p (1 - e—ﬁ) <y($1hz)>lp (4.33)

For the case with y* > Be™!, we have 0 < y*(x,h, z)fﬁ < Bfﬁeﬁ for all (x,h,z) € }Ri.
Hence, (z,h,z) = y*(z, h, z)_ﬁ is bounded. Thus, it follows from (4.32) and (4.33) that, for all
(x,h,2) € Ri,

1

1 I-p

where the positive constant C; is specified as

L. ) — a2 -
Cq:=p T-rel-r + (2/)(12(1]? o) p) (1 —e 1 ) 1. (4.35)
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We can then conclude from (4.31) and (4.34) that |c*(z, 2)| < Cy(1 + z) for (z,h,z) € R3. Hence,
it follows from (4.7) that, for any T' € R, the SDE (4.4) satisfied by X* admits a weak solution
on [0,7T] (c.f. Laukajtys and Stomiriski (2013)), which gives that (0*,c¢*) € U".

On the other hand, fix (T, z,h,z) € Ri and (0, c¢) = (0, ¢t)r>0 € U'. By applying Itd’s formula
to e PTu(Xy, I, Zr), we arrive at

—pT T (cs)”
e’ u(XT,IT,ZT)—I-/ e PP (s
0 p
T T
= u(x, h, Z) +/ eipsuac(XSa I, ZS)HZUdWS +/ eipSUBuz(X&I& ZS)dWS’Y
0 0
T T
+/ epSUZZsuz(XS,IS,ZS)dWS”—{—/ e P (uy — ug)(Xs, Is, Zs)dmsg
0 0

T T
+ / e_psug:(Xs, IS; Zs)de + / e_ps(ﬁe&csu - pu) (XS, IS? Zs)ds’ (436)
0 0

where the operator £%¢ with (6, c) € R x R. is defined on C?(R?) that

1 cP 1
£%¢q:= 0" g, + §9T00T09m + 020" 0n2(gur — guz) — 08O TYGLn + o a T ingth — 1LBgh
1 5 9 B _ T B C2(R2
+ 5022 (922 + Guw — 2922) + 1z22(9: — 92) + 070820 V(gan — 9nz), Vg € CT(RY).

Taking the expectation on both sides of the equality (4.36), we deduce from the Neumann boundary
condition u, (0, h, z) = 8 and up(x,0,2) = uy(x,0,2) that

T (Cs)p T
E [/ e_psTds — B/ e_pdef] =u(z, h,z) — E[e P u(Xr, I, Z7))
0 0

T
+E [/ e P (L0 — pu) (X, I, Zs)ds} <wu(x,h,z) —E [e_pTu (Xp, Ir, Zr)] . (4.37)
0

Here, the last inequality in (4.37) holds true due to (£L%“u — pu)(z, h,z) <0 for all (z,h,2) € RS
and (0,c) € RY x R;. We next verify the validity of the so-called transversality conditions:

limsupE [e *Tw(Xr, Ir, Z7)] >0, (4.38)
T—00
lim E [e "Tu(XF, Ir, Z7)] = 0. (4.39)
T—00

In view of Lemma 3.2 and Proposition 3.5, it follows that * — wu(z,h,z), h — wu(x,h,z) and
z — u(x, h, z) are non-decreasing. Thus, we get

limsup E [e_pTu(XT, Ir,Zr)] > limsupE [e_pTu(O, 0,0)] =0. (4.40)

T—o0 T—00

Using Lemma 3.2 and Proposition 3.5 again, it holds that |u,(z,h,2)| < 8, |up(z, b, 2)| < 8 and
lus(x, h, 2)| < % for all (z,h,z) € RY. Thus, we can see that, for all (z,z,h) € R3,

|U(.’L‘,h,2)| < |u(x, h,Z) - U(CL', h70)| + |U(l‘,h,0) - ’UJ(I',O,O)‘ + ”UJ(Q?,O,O) - u(0a0a0)| + |u(03030)|

<pBxz+h)+ %z + |u(0,0,0)]|. (4.41)
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By applying 1t6’s formula to |I;|? and |X;|?, it follows from (4.7) and the Gronwall’s lemma that,
for all t > 0,

E[|L2] < B + (0% + uh)te’, (4.42)

K Kt
E[|X;[?] < 2?4 2Kt |1+ Ket 4 22eClnzl+30%)t (1 + W)] (1+z2), (4.43)
Z VA

where the positive constant K is specified as
K = 4C,|u| 4+ 2C2|oo | + |uz| + 0% + 4C,|oz01)|. (4.44)
Let us define the constant

oo o?|p| +1
0= o
2(1-p)

with K being given in (4.44). Then, using estimates (4.41), (4.42) and (4.43), it follows that, for
the discount rate p > po,

+ K +2|uz| +30% + 1 (4.45)

lim E [e "T|u(X}, I, Zr)|] < 5Thm E e ""(X} + It + Zr)] = 0.
—00

T—o00

Finally, letting 7' — oo in (4.37), we obtain from (4.41) and DCT that, for any (6,c) € U",
% s (es)? > X
E [/ e PPl ds — B/ e PdL; ] <wu(z,h,z), forall (z,h,z)cR3,
0 p 0
where the equality holds when (6, c) = (6*,¢*). Thus, the proof of the theorem is complete. O

Remark 4.2. To ensure the validity of the transversality conditions (4.38) and (4.39), we as-
sume that the discount rate p > pg, where the constant py > 0 only depends on model parameters
(L, o, 0B, 0B, hz,02,7,D, B), and moreover, it is explicitly specified in (4.45). For example, let us
consider the model parameters specified as d = n =1, p = 0,1, o0 = 1, up = 0.1, o = 0.1,
pwz =01, 0, =01, p=05,v=1and 8 = 1. By a direct calculation, py ~ 2.63, thus the
condition on the discount rate p requires that p > 2.63.

Remark 4.3. In fact, the state processes of the primal control problem (1.4) and the auxiliary
control problem (2.5) satisfy the following relationship:

+
Xp=a+ VP~ (mi+Z —mg—2) + sup (—:L‘ — VP 4+ (my + Zg —mg — z)) , (4.46)
s€[0,t]

I; = h+ (mt — mo) —B;, Vt>O0. (447)

Therefore, we can obtain the auxiliary state process (X,1,7) = (Xy, It, Zt)i>0 by using the process
(V¢ B,m,Z) = (Vte’c, By, my, Zt)e>0. However, from (4.46) and (4.47), we can also see that
different primal state processes (VO¢, B, m, Z) may correspond to the same auziliary state process
(X,1,7). Theorem 4.1 gives the optimal feedback control (6*,c*) in terms of (X, I,Z) but not by
(V9¢,B,m, Z). This is an important reason why we introduce the auziliary state process (X, 1, Z)
and study the auxiliary optimal control problem instead, which allows us to characterize the optimal
control (0*,c*) in the feedback form.

The following lemma shows that the expectation of the total optimal capital injection is always
positive and finite.
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Lemma 4.4. Consider the optimal investment-consumption strategy (6%, c*) = (05, ¢} )t>0 provided
i Theorem 4.1. Then, we have

(i) The expectation of the discounted capital injection under the optimal strategy (0*,c*) is finite.
Namely, for p > pg with pg > 0 being given in Theorem 4.1,

[e.e]
E [ / e—PtdA;*] < +o00. (4.48)
0

(ii) The expectation of the discounted capital injection under the optimal strategy (0*,c*) is posi-
tive. Namely, for p > pg with po > 0 being given in Theorem 4.1, it holds that

E [/ e_ptdAjf} S Bl (1+3)" >0 (4.49)
0 K z

Here, the optimal capital injection under the optimal strategy (0*,c*) is given by

A =0Vsup(M, — V<), vt>o. (4.50)

s<t

Proof. We first prove the item (i). For (v,m,z,b) € R3 x R, we have from (1.4) that

BE [ /O h e_”tdA;f] _E [ /0 b e—ﬂt(ct?dt] ~ w(v,m, 2,b). (4.51)

Thus, to prove (4.48), it suffices to show that
()’
E [/ praitl dt] < +o0. (4.52)
0 p

By (4.51), [fo e Pt (Ct) dt} can not be —oo because w(v,m, z,b) is finite and E [ [;° e P'dA;]

is nonnegative. The estimate (4.52) obviously holds for the case p < 0 as E [ Jo e Pt (Ct) dt} is

negative in this case. Hence, we only focus on the case with p € (0,1). For p € (0,1), 1t follows
from (4.7) and (4.43) that

EUOOO —ﬂt(p) dt} ;(Cq)pIE [/Oooe—ﬂt(1+|xm)l’dt]

(Cq)p > —pt * (Cq)p * —pt *
S [T e mnpa < S [T e o4 Bl

C.)P 00 K Kt
(Co) / e Pt {2 + 22 + 2Kt [1 + Kt 4 22eClnzl+307)t <1 + €2>] (1+ 3:2)} dt
p Jo 2|pz| + 307

< K(1+ 2% < +oo,

IN

IN

where © = (v —m Vb — 2)" via (2.6), C; > 0 is the constant given by (4.35), and K > 0 is a
constant depending on model parameters (u, o, uz,0z, up,op,p, 3, p) only.

Next, we prove the item (ii). For any admissible portfolio 6 = (6;):>0, we introduce, for all
teRy,

Ve =v+ / 0. pds + / 0] cdw,, A?=0vsup(Z,—V?). (4.53)
0 0

s<t
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Note that ¢ > 0 for all t € Ry. Then, it follows from (1.2), (4.50) and (4.53) that V" > V"<
for all t € Ry, and hence

E [ / eﬂtdA:] >E [ / eptd[xﬁ*] > inf E { / eptd[lf] = W(v, 2). (4.54)
0 0 0

It is not difficult to verify that, for all (v, z) € Ry x (0,00),

Wy, 2) = 22t (1+(V_Z)+)“ >0, (4.55)

14 z
where the constant ¢ € (0,1) is given by (3.12). Thus, we deduce from (4.54) and (4.55) that

K

oo _ _ +\ =—1
E [/ e—ﬂtdAj;] > z—l 7 ¢ (1 + =2 ) 1 > 0, (4.56)
0

z

which completes the proof. O
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A Appendix

This section provides the proof of Lemma 2.1 and a sketch of the proof of Lemma 3.2.

Proof of Lemma 2.1. Let us first fix (h,z) € R2. For any € > 0, denote by (6(z, 2), c*(z,2)) the
e-optimal control strategy for (2.5). Namely, for z € Ry,

u(z, h,z) < J(x, 2,0z, h, z),c(x, h, 2)) + €. (A.1)
Then, for any z1 > x2 > 0, we have from (A.1) that

U(l’l,h,Z) - U(.Tg,h,, Z) > J(.Tl,h, Z3 96(x27 h7 2)706(1'27 h7 Z)) - J($2,h,z;96($2,h, Z),CE(.TQ,h,, Z)) — €
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— _GE [ /0 T e - Lgf?)] e (A.2)

where LT for s € Ry is the local time process with X§ = x. Thus, integration by parts yields that,
for all T > 0,

T T
/ e PPdLE = e*pTL% + p/ Lie Péds.
0 0

Using the solution representation of “the Skorokhod problem”, it follows that, for all s € R,

¢ t ¢ ¢ ¢ ¢ -
LY = sup <:U +/ H;F,udr —i—/ HrTadWT —/ cpdr —/ Wz Zydr —/ 0z ZrdW,! —/ dmr>
te[0,s] 0 0 0 0 0 0

By this, we have x — L¥ is non-increasing. Moreover, it holds that, P-a.s.

sup | L3t — L3?| < |z — 2. (A.3)
s>0

Using the fact L' — L?? < 0 whenever z; > x2 > 0 and MCT, it follows that, for all s > 0,

E [/ e (LT — L?)} =E [/ e_pdeZfl] —-E [/ e_pde?]
0 0 0
T T
= lim E [/ edeLgl} — lim E [/ edeL§2]
T—o0 0 T—o00 0

= lim {IE [e™#T(L3 — L3?)] + pE [/OT e PS(Lo — L?)ds} } <0. (A.4)

T—o0

Hence, we have from (A.2) that u(x1,h,z) — u(xa, h,z) > —e. Since € > 0 is arbitrary, we get
u(z1,h,z) > u(xa, h,z). This conclude that z — u(x, h, z) is non-decreasing. On the other hand,
it follows from (A.3), (A.4) and MCT that

olen ) — ozt )| < 8 s B [ emalg - 1)
(6,c)eUr 0

T
,C S r

T
< B lim (e”T]a:l — zo| + plz1 — xg/ epsds>
T—o0 0

T
= f lim <epT —i—p/ epsds> |z1 — x2] = Bl — x2. (A.5)
0

T—o00

Next, we fix (z,2) € RZ. Let m" = (m!)s>9 and L®" = (L?’h)szo be the respective local time
process of I and X with m? = h € R, and X§* = x € Ry. Using the solution representation of
“the Skorokhod problem” again, we can obtain that, for all s > 0,

l L -
m? = sup <h—/ ,qus—/ aBde> ,
£€0,s] 0 0
t t t t t
L2 = sup (ac—i—/ GTT,udr+/ H;FJCZWT—/ crdr—/ MZZrdr—/ UZZTdWﬁ—m?)
t€[0,s] 0 0 0 0 0
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This implies that both z — m? and z — L?h are non-increasing. Moreover, for hy, ho > 0, it holds
that, P-a.s.

sup Lg’hl — L"g’hQ
s>0

< sup [m[t —m/?
s>0

< |h1 — hal. (A.6)

Then, in a similar fashion, we can also show that h — wu(x, h) is also non-decreasing, and it holds
that, for all (h1,hs) € R2,

|u(z, hi, z) — u(z, he, 2)| < Blh1 — hal. (A.7)

Finally, fix (z,h) € ]R%_, by applying the argument to z — u(z,h,z), we can obtain that for all
(Zl, ZQ) S R+,

3
|u(z, h,z1) — u(z, h,29)] < B (U% + ‘/_JJZ’ +— — ) |21 — 22| (A.8)
p—hz p—2z—0y

Therefore, we deduce from (A.5), (A.7) and (A.8) that

[u(z1, b1, 21) — u(z2, he, 22)|

S ‘U(l‘l, h1721) - u($2a h1721)| + |’LL($2, hlazl) - u(xg,h2,21)| + |U(SU2, hQ,Zl) - U(I‘Q,hQ,ZQ)

3
§5(|331—$2|+|h1—h2|)+5<0%+ 1] + 2> |21 — 22|
pP—Hz p—2uz—0y

Thus, we complete the proof of the lemma. O

Sketch of Proof of Lemma 3.2. In a similar fashion of the proof of Lemma 3.3 and Lemma 3.4, we
can prove that the function [(r, z) given by (3.7) is a classical solution to the Neumann problem
(3.8). Moreover, if the Neumann problem (3.8) has a classical solution [(r, z) for r € R satisfying
[l(r,z)] < C(1+ e + 27) for some ¢ > 1 and a constant C' > 0 depending on (u, 0, z,07,p), then
this solution [(r, z) admits the probabilistic representation (3.7).

Next, we derive the explicit form of the classical solution to Eq. (3.8). It follows from the
probabilistic representation (3.7) that we consider the candidate solution admitting the form
l(r,h) = f(r) + z(r) for Eq. (3.8). In particular, the functions r — f(r) and r — ¢(r) sat-
isfy the following equations, respectively:

(&% a2 — [ R
_pf(r) + (5 - P) fr(r) + ?frr('r) + 1ppﬁ el = 0, (Ag)
a? o?
(1z — p)(r) + (2 + K2 — P) Yr(r) + 71/%(7”) —(pz — K2)Be™ =0. (A.10)

By solving Eq.s (A.9) and (A.10), we obtain

f(?") = Clﬁ_ﬁeﬁr + CQﬁC_T + C3€§T’ 1/}(7:) — /BG_T + C4€_€T + C5€_ér,
__20-p?®
p(2p(1—p)—a®p)’ !
constants which will be determined later. Above, the constant ¢, ¢ are the roots of the quadratic
equation given by

where the constant C := and the constants C; with ¢ = 2,...,5 are unknown real

1 1
2012524-<p—l€2—2a2>£+uz—p20,
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which are given by

~(p— 2 — 30?) + /(0 — 52 — $02)2 + 202(p — u7)
2

~(p— K2 — $0%) = /(p — k2 — $02)? + 20%(p — piz)

2

l= >0,

< 0.

/=

!

Using the probability representation (3.7), we look for such functions f(r) and t(r) with C3 =
C5 = 0 and such that the Neumann boundary conditions f.(r) = 0 and ,(r) = 0 holds. This

implies that Cy = %B_ﬁ and Cy = —% With the above specified constants C; with
i=1,...,b, we can easily verify that I(r,z) = f(r) + z¢(r) satisfies Eq. (3.8). Furthermore, we
can verify that the solution I(r, z) satisfies the growth condition |I(r, z)| < C(1 4 €?" + 2?) for some
g > 1 and some constant C' > 0. Then, this solution [(r, z) admits the probabilistic representation
(3.7). In other words, the probabilistic representation (3.7) has the explicit form (3.9). Thus, we

complete the proof of the lemma. O
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