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Problem definition: This study investigates a seller’s allocation of a limited resource to sequentially arriv-

ing customers when the seller is influenced by two types of mental accounting bias: prospective accounting

(overestimating future revenue) and behavioral discounting (underestimating future revenue). Methodol-

ogy/results: We establish structural properties on how mental accounting affects capacity allocation deci-

sions and performance. Interestingly, while additional capacity consistently benefits the seller, the same does

not hold true for additional demands. That is, an additional class of demand can hurt the seller, depending

on the type of mental accounting. This is true even if the additional demand class has a higher reservation

price than existing ones. Managerial implications: This result highlights the importance for companies

to address and mitigate biases in decision-makers before embarking on market expansion initiatives through

promotions and advertising campaigns.
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All organizations, from General Motors down to single person households, have explicit and/or

implicit accounting systems. The accounting system often influences decisions in unexpected ways.

—Thaler (1985).

1. Introduction

Mental accounting refers to the cognitive processes individuals and households use to organize,

evaluate, and track their financial activities (Thaler 1985, 1999). It plays a pivotal role in decipher-

ing the complex psychology behind decision-making, offering a clear framework for understanding

various phenomena across fields such as consumer behavior (Thaler 1985, Heath and Soll 1996),

finance (Barberis and Huang 2001), accounting (Burgstahler and Dichev 1997) and operations man-

agement (Becker-Peth et al. 2013). The practical implications of mental accounting are observable

in real-world contexts. For example, Lungeanu and Weber (2021) highlight its impact on CEOs’

resource allocation decisions, emphasizing its crucial influence on corporate decision-making.

In this paper, we explore the impact of mental accounting on decision-making and its influence

on expected revenues in capacity allocation. This analysis is crucial, as many companies frequently

encounter challenges in effectively managing their capacity. For example, consider an independent
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hotel that offers discounts to incentivize early bookings. The hotel may provide a steep discount for

guests who book several months in advance, a moderate discount for bookings made closer to the

stay date, and standard pricing for last-minute reservations. To maximize revenue, the hotel must

carefully determine how many rooms to allocate at each price tier. Overcommitting too many rooms

to early-booking discounts could leave it unable to meet demand from higher-paying last-minute

guests, while underallocating could result in unsold inventory during off-peak times, especially if

last-minute demand fails to materialize. Similarly, an upstream factory that manufactures winter

coats for retail partners faces seasonal demand and limited production capacity. Early in the season,

the factory may receive orders from discount retailers seeking low-cost inventory. However, fulfilling

too many of these early orders could exhaust capacity or raw materials, leaving the factory unable

to serve premium retailers who may place smaller but more profitable orders later in the season. The

factory must therefore decide how to balance short-term fulfillment against the strategic reservation

of capacity for higher-margin opportunities, all while considering uncertainties in future demand.

Furthermore, in this capacity allocation setting, studies consistently show significant deviations

from theoretically optimal decisions, with mental accounting behavior. For instance, despite nor-

mative frameworks such as Littlewood’s law in a key two-class setting of revenue management

(Littlewood 1972, Talluri et al. 2005), where sellers allocate limited resources between two cus-

tomer classes with different pricing and uncertain demand, and lower-priced customers arriving

before higher-priced ones, research has demonstrated that mental accounting biases participants

in controlled experiments (Kocabıyıkoğlu et al. 2018). Specifically, they value revenue differently

based on whether it was generated by early low-end customers or later high-end customers.

In response to this, this paper incorporates mental accounting bias into the two-class revenue

management model, including two forms of mental accounting: behavioral discounting, where the

seller undervalues revenue from later-arriving customers, and prospective accounting, where future

revenue is factored into the capacity allocation for earlier-arriving customers. We show that sellers

exhibit “over-protecting” or “under-protecting” behavior toward high-end customers when they

have prospective accounting and behavioral accounting, respectively. We extend our analysis to

a multi-class scenario where customers arrive sequentially, each class representing higher revenue

potential. In this more complex setting, incorporating mental accounting reveals patterns similar

to those observed in the two-class case: behavioral discounting leads to under-protection of future

demand, while prospective accounting results in over-protection. Consequently, we establish that

(i) capacity allocation simplifies to setting protection levels for each demand class, (ii) these protec-

tion levels are independent of overall capacity, and (iii) the seller’s revenue increases with capacity
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but decreases with bias. We further explore the impact of introducing additional premium demand

(customers with higher reservation prices than existing ones) and additional basic demand (cus-

tomers with lower reservation prices). Although it seems intuitive that more demand would lead

to higher revenue, we find that such additional demand may actually harm the seller, depending

on the type of mental accounting.

Under behavioral discounting, while additional premium demand benefits the seller, additional

basic demand may not. Specifically, with the additional basic demand, the seller becomes less

inclined to reserve inventory for future demand, exacerbating their under-protecting bias under

behavioral discounting. This additional basic demand can hurt the seller if the associated loss out-

weighs the benefits of additional demand. For this effect to occur, the bias level must be sufficiently

high, because if the bias is low, the seller’s capacity allocation decisions remain closely aligned with

optimal protection levels, minimizing distortion. Moreover, capacity must be moderate relative to

total demand. If capacity is too high, resulting in unsold capacity, additional demand helps absorb

the capacity, boosting revenue. However, if capacity is too low and demand greatly exceeds avail-

ability, additional demand does not impact revenue, as the limited capacity cannot satisfy even

the original demand.

Under prospective accounting, we find that additional premium demand can paradoxically harm

the seller. This occurs because the seller overestimates future revenue, leading to excessive pro-

tection of future demand. This over-protection bias is exacerbated when higher protection levels

are required due to the introduction of premium demand, ultimately disadvantaging the seller

under two conditions: (i) when the bias level is moderate, neither too small nor too large,1 and

(ii) when capacity is insufficient relative to demand, forcing the seller to allocate capacity (that

would otherwise be sold to low-end classes) for premium customers at the expense of overall perfor-

mance. This contrasts with the behavioral discounting case, where the seller tends to under-protect

future demands, and the higher protection levels driven by premium demand help mitigate the

under-protection bias, ultimately benefiting the seller.

Furthermore, we find that additional premium demand might be less valuable than additional

basic demand under prospective accounting because, although the premium demand can be harm-

ful, the additional basic demand is always beneficial for the seller. This is because introducing

additional basic demand effectively mitigates the seller’s over-protective behavior against selling

1 Note that if the bias is too large, the seller who extremely overvalues the future revenue may withhold product from
low-end classes, resulting in unsold capacity. In this case, the introduction of premium demand can help assimilate
the unsold capacity and benefit the seller. This is in contrast to the behavioral discounting case where the negative
result occurs when the bias is sufficiently large.
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to earlier-arriving customers, ultimately benefiting the seller. This contrasts with the behavioral

discounting case, where the additional basic demand reinforces, rather than mitigates, the seller’s

bias towards being overly willing to sell to earlier-arriving customers, ultimately hurting the seller.

Overall, this paper shows that additional demand might harm the seller, while additional capacity

always benefits the seller. Moreover, the impact of extra demand hinges on how it interacts with,

offsets or amplifies, the seller’s existing behavioral bias, rather than on the inherent value of the

additional demand itself.

2. Literature Review and Our Contribution

Our study focuses on a seller allocating capacity, incorporating the concept of mental accounting.

As such, our work is related to two literature streams: capacity allocation and mental accounting.

Capacity Allocation. Our research is related to the extensive body of work on capacity allocation,

a facet of quantity-based revenue management starting from the seminal work of Littlewood (1972).

This stream of literature often divides customers into distinct classes, each characterized by unique

traits (Zhang and Cooper 2005, Van Ryzin and Vulcano 2008, Cao et al. 2022). Given that deriving

analytically tractable optimal allocation decisions can be elusive, this field primarily focuses on

establishing structural properties for optimal policies. These properties are valuable not only for

managerial insights but also for enabling efficient computation of optimal strategies.

The literature generally presupposes a rational seller striving to maximize expected revenue.

However, this does not consistently mirror real scenarios and experimental observations. For exam-

ple, Belobaba’s seminal work (1987b) on capacity allocation reveals that even in prominent contexts

like airline yield management, crucial decision elements remain reliant on human judgment rather

than systematic analysis; Cooper et al. (2006) also note airlines frequently make capacity alloca-

tion errors. In controlled experiments, Bearden et al. (2008) consider a seller managing a fixed

capacity over a season, and the seller must decide whether to accept or reject an arriving price

offer to purchase a unit of the product. They find that participants can wrongly accept or reject

an offer. In a similar design, Bendoly (2011) incorporates a decision support system to measure

stress levels via physiological markers. He finds that high capacity levels left at the end of the

booking horizon and the number of simultaneous tasks increase stress and induce decision errors.

Bendoly (2013) conducts similar experiments with hotel employees and finds that different levels of

feedback influence revenue performance. Kocabıyıkoğlu et al. (2015) study the two-class capacity

allocation problem and a closely related newsvendor problem, and find the behavior in these two

mathematically equivalent models does not align in the laboratory. Cesaret (2015) examines the

seller behavior in the two-class capacity allocation model with arbitrary arrivals, and finds that
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participants often accept too many low-class customers. Cleophas and Schüetze (2024) study a

setting with stationary and nonstationary demand, and they observe that subjects might not be

able to accommodate a non-stationary demand.

Our work complements this literature by incorporating mental accounting, a prevalent cognitive

bias, into the seller’s decision-making to explore its theoretical implications within the context

of capacity allocation. Accordingly, we establish structural properties on how mental accounting

affects capacity allocation decisions: the seller’s decision simplifies to establishing a sequence of

nested protection levels for future demands, which deviate from the optimal. This echoes the liter-

ature showing that sellers frequently deviate from strict optimality while still employing decision

policies that mirror the optimal capacity allocation approach (Bearden et al. 2008, Cesaret 2015).

Moreover, we find that such a deviation of the protection levels may affect the value of demand

substantially, depending on the seller’s bias type.

Mental Accounting. Previous research has extensively examined mental accounting and its vari-

ous forms to better understand and explain decision-making behaviors. Thaler (1985) and Heath

and Soll (1996) incorporate mental accounting into utility functions, providing insights into behav-

ioral anomalies. Building on this, Prelec and Loewenstein (1998) present a seminal dynamic model

of mental accounting, emphasizing the role of prospective accounting. This model highlights the

forward-looking nature of human cognition, where individuals prioritize present and future pay-

ments during consumption, with past payments having minimal psychological impact. Likewise,

during payment transactions, the psychological discomfort associated with parting with money is

tempered primarily by the anticipation of future consumption, rather than being influenced by

past outlays. As a result, individuals often prefer prepayment, aligning the discomfort of paying

with the expected pleasure of future consumption.

In operations management, Becker-Peth et al. (2013) employ mental accounting to expound

upon newsvendor order decisions. Their study delineates between income derived from selling

products to consumers and income generated through product returns to suppliers, effectively

accounting for the source of income. Chen et al. (2013) propose the existence of two distinct mental

accounting paradigms that impact the ordering behavior of newsvendors: time discounting and

prospective accounting. The former entails a preference for receiving benefits sooner, while the latter

involves comprehensive consideration of future transactions, coupled with a relative discounting

of past transactions. In a mathematically equivant problem, namley two class capacity allocation

problem, Kocabıyıkoğlu et al. (2015) find that participants’ choices diverge markedly from the

optimal outcomes in controlled experiments, and mental accounting can explain such divergence
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(Kocabıyıkoğlu et al. 2018). Accordingly, we extend the application of both time discounting and

prospective accounting to capacity allocation. We find that while greater capacity consistently

favors the seller, an increase in demand can inadvertently yield detrimental effects on the seller.

This is particularly significant, given that effective customer management often forms a pivotal

aspect of a seller’s operations decisions.

3. Mental Accounting

Consider the classical two-class model: a seller with a capacity C, and two customer classes with

associated reservation prices p1 and p2 (≤ p1) and demands D1 and D2. Here, D1 and D2 are

random variables and independent of each other, and the cumulative distribution function of D1

is denoted by F (·). The demand D2 arrives earlier than demand D1. The seller decides how much

the second demand class to accept (i.e., the sales u for low-end customers) right after observing

the low-end demand d2 but before the realization of the high-end demand:

max
y∈[0,C]

p2u(d2,C, y) + p1E
[
D1 ∧

(
C −u(d2,C, y)

)]
, (1)

where

u(d,C, y) := (C − y)+ ∧ d, (2)

for any d,C, y≥ 0, x+ = max{x,0}, and x∧ y= min{x, y}. The seller’s problem can be formulated

as a problem of deciding the protection level y for high-end customers such that the seller sells

to low-end customers only if the capacity C exceeds the protection level. Accordingly, (C − y)+

represents the maximum capacity the seller is willing to sell to low-end customers. The optimal

solution for (1) is represented as y∗ = F̄−1(β), where β := p2/p1 and F̄ (·) = 1−F (·).

We now incorporate the notion of mental accounting into this classical capacity allocation frame-

work. In particular, the seller displays cognitive bias by valuing revenue from different customer

segments (high-end vs. low-end customers) unequally, and behaves as if solving

max
y∈[0,C]

p2u(d2,C, y) + η · p1E
[
D1 ∧

(
C −u(d2,C, y)

)]
, (3)

where η is the mental accounting parameter. In other words, with mental accounting, the seller

behaves as though it were maximizing (3) in lieu of maximizing (1). Note that η > 1 aligns with

the concept of prospective accounting as described by Prelec and Loewenstein (1998), in which

decision-makers anchor their evaluations to anticipated future outcomes. In this context, when

the seller collects revenue from low-end consumers, they simultaneously factor in the expectation

of future revenue, represented by p1E[D1 ∧ (C − u(d2,C, y))]. This results in an overvaluation of
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revenue from high-end consumers, particularly those arriving later in the sequence. Simultane-

ously, this can translate into a tendency to undervalue revenue from early-arriving low-end con-

sumers, thus exhibiting a form of bias consistent with prospective accounting. In another case when

η < 1, it resembles another well-established mental accounting principle: behavioral discounting.

Kocabıyıkoğlu et al. (2018) highlight the prevalence of these mental accounting dimensions among

participants in capacity allocation experiments; they use data from capacity allocation experiments

and estimate that the average level η of prospective accounting exhibited by participants can range

from 1.43 to 2.4, whereas the average level of behavioral discounting can range from 0.59 to 0.9.

Let ŷ(η) denote the solution of (3). Then, the seller’s ensued profit is

π̂(η) := p2u(d2,C, ŷ(η)) + p1E
[
D1 ∧

(
C −u(d2,C, ŷ(η))

)]
. (4)

Lemma 1. a) For a seller defined by the mental accounting parameter η, the protection level

ŷ(η) increases in η.

b) Moreover, the seller’s resulting revenue π̂(η) decreases in η when η > 1 and increases in η

when η≤ 1.

Lemma 1a indicates that a seller’s protection level is increasing of its value of the mental account-

ing parameter η. Intuitively, the larger η, the seller values the revenue from high-end customers

more, and thus reserves more products for high-end customers. Hence, the protection level increases

in η. Basically, under the behavioral discounting condition (η < 1), the biased seller’s decision

on the protection level is lower than the normative level (i.e., under-protecting the high-end cus-

tomers), while under the prospective accounting condition (η > 1), the biased seller’s decision on

the protection level is higher than the normative level (i.e., over-protecting the high-end customers).

This behavior is observed in laboratory settings simulating a seller’s capacity allocation decision

(Kocabıyıkoğlu et al. 2018, 2015) and showing that the subjects in the experiments systematically

over or under protect the high-end consumers. Moreover, the larger the bias magnitude |η−1|, the

further the protection level deviates from the true optimal, and thus the lower the seller’s revenue.

Accordingly, Lemma 1b indicates that the seller’s revenue decreases in the level of prospective

accounting (η > 1) and increases in the level of behavioral accounting (η < 1).

We next extend the two-class setting to the general scenario involving n (≥ 2) classes, pioneered

by Belobaba (1987a,b). A seller, armed with a capacity C (≥ 0), serves n classes of customers, each

associated with a random demand Di and a reservation price pi, where 1≤ i≤ n. The classes are

ordered such that

p1 ≥ p2 ≥ · · · ≥ pn. (5)
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This sequence manifests as class n customers entering the initial stage (stage n), followed by class

n− 1 customers in the subsequent stage (stage n− 1), and eventually culminating with class 1

customers in the final stage (stage 1). This staged progression mirrors the increasing revenue,

wherein class n arrives foremost and class 1 arrives last. Such an arrival process is quite common in

airline seat allocation problems (Belobaba 1987a,b, Brumelle and McGill 1993). Note that a one-to-

one correspondence exists between stages and classes within this n-class framework. Consequently,

the value of n serves a dual purpose, representing both the index of classes and the index of

stages. Similar to the two-class case, at each stage with remaining capacity x, the seller makes

sales decisions based on demand realization. This is akin to determining a protection level y, where

the demand is accepted if the remaining capacity surpasses y, and otherwise rejected. Accordingly,

given the capacity level xi and demand realization di at stage i, the Bellman equation is

Vi(xi) = max
0≤yi−1≤xi

piu(di, xi, yi−1) +E
[
Vi−1

(
xi−u(di, xi, yi−1)

)]
, for 1≤ i≤ n and xi ≤C, (6)

where u(di, xi, yi−1), defined in (2), represents the sales at stage i, with the boundary condi-

tion V0(x) = 0 for any x ≤ C. The right-hand side of (6) comprises two components: the rev-

enue from class i demand (first term) and the value-to-go after selling to class i demand (second

term). Ultimately, the seller’s decisions revolve around determining a sequence of protection levels

yn−1, yn−2, · · · , y1, wherein yi is reserved for class i (1≤ i≤ n− 1) and subsequent classes.

We now incorporate mental accounting into this n-class model framework. For i= n,n−1, · · · ,1,

the seller behaves as if solving

Ui(xi) = max
0≤yi−1≤xi

piu(di, xi, yi−1) + ηi−1E
[
Ui−1

(
xi−u(di, xi, yi−1)

)]
, (7)

with the boundary condition U0(x) = 0 for any x≤ C. Here, ηi−1 is the mental accounting factor

for class i− 1, and η := {ηn−1, ηn−2, · · · , η1}. The formulation (7) is rooted in the common practice

within marketing and economics, wherein the seller’s objective function is additively separable over

money and time (Prelec and Loewenstein 1998, Kőszegi and Rabin 2006). We also align with the

literature (O’Donoghue and Rabin 1999) by assuming that the seller possesses perfect foresight of

her future mental accounting behavior. In this paper, we focus on the case of behaviorial discounting

where η< 1 (Section 4) and the case of prospective accounting where η> 1 (Section 5).

Without loss of generality, we assume that the initial inventory C is always greater than yn−1.

Later, we show that the protection level decisions {yi : i = n− 1, · · · ,1} are independent of the

initial capacity C. Then, consider an instance where there exists an i ∈ {n− 1, n− 2, · · · ,1} such

that yi > C ≥ yi−1. In this scenario, the seller abstains from selling any product to classes n,



9

n − 1, · · · , i + 1. As a result, the original n-class problem reduces to an i-class problem where

class i customers arrive first. One can check that if yn−1 ≤ xn, then yi−1 ≤ xi holds for any i ∈

{n− 1, n− 2, · · · ,1}, and thus the constraint 0≤ yi−1 ≤ xi in (7) can reduce to yi−1 ≥ 0. We next

characterize the solution of the above dynamic program and the biased marginal value of capacity

∆Ui(x) := EDi [Ui(x)−Ui(x− 1)].

Proposition 1. a) Let {ŷj(η) : 1≤ j ≤ n− 1} denote the solution to dynamic programming equa-

tions (7). Then, the optimal protection levels for j ∈ {1,2, · · · , n−1} are jointly determined by n−1

probability equations:

P
(
D1 ≥ ŷ1(η),D1 +D2 ≥ ŷ2(η), · · · ,D1 + · · ·+Dj ≥ ŷj(η)

)
=

pj+1

ηjηj−1 · · ·η1p1
. (8)

b) Moreover, for each i∈ {1,2, · · · , n− 1}, ŷi(η) increases in ηi.

c) Furthermore, ∆Ui(x) is positive and decreasing in x for any i∈ {1,2, · · · , n− 1}.

Proposition 1a shows that, with mental accounting, the seller’s capacity allocation decision can

be characterized by a series of protection levels which are jointly decided by n − 1 equations

as specified in (8). Proposition 1b generalizes the essence of Lemma 1a to encompass situations

involving multiple customer classes. Specifically, it indicates that the protection level ŷi(η) for each

class i increases in ηi. As ηi grows, the seller allocates more resources to class i and later classes,

prioritizing revenue accumulation from those classes. Proposition 1c demonstrates that the biased

marginal value of capacity is positive and decreasing in the capacity level, i.e., the value function

is increasing and concave in the capacity level. For insights, note that

∆Ui(x) = pi P(Di ≥ x− ŷi−1(η))

+ ηi−1pi−1 P(Di <x− ŷi−1(η),Di +Di−1 ≥ x− ŷi−2(η))

+ · · ·

+ ηi−1ηi−2 · · ·η1p1 P
(
Di <x− ŷi−1(η), · · · ,

i∑
j=2

Dj <x− ŷ1(η),
i∑

j=1

Dj ≥ x
)
. (9)

Here, ŷi−1 is the optimal protection level for class i− 1 and later classes, so the maximum amount

of products that can be sold to class i is x− ŷi−1. If Di ≥ x− ŷi−1, the seller sells this unit of

product to class i with a unit revenue pi, corresponding to the first term in (9). If Di <x− ŷi−1 but

the total demand of classes i and i− 1 is greater than x− ŷi−2 (the maximum amount of products

that can be sold to classes i and i− 1), then the seller does not sell this unit of product to class

i but sells to class i− 1 with a unit revenue pi−1, corresponding to the second term in (9). We

continue in this fashion and, if the cumulative demand at each stage j (for 2 ≤ j ≤ i) is smaller
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than the maximum amount of products that are allowed to sell by that stage, but the total demand

from all classes (class i to class 1) exceeds the capacity x, then the seller sells to class 1 with a

unit revenue p1, corresponding to the last term in (9). At its core, capacity allocation involves

the trade-off between selling a product at a lower price and deferring the sale in anticipation of

higher future revenue, while facing the risk of unsold inventory. This trade-off is mathematically

akin to the trade-off in managing prices. Both strategies, i.e., limiting supply and raising prices,

can impact sales. Empirical evidence and controlled experiments consistently reveal that sellers

frequently deviate from strict optimality while still employing decision policies that mirror the

optimal approach (Bearden et al. 2008, Cesaret 2015).

Given the protection levels {ŷi(η) : i= 1,2, · · · , n−1} characterized in Proposition 1, the seller’s

ensuing revenue is

V̂i(xi) = E
[
pimin{Di, xi− ŷi−1(η)}+ V̂i−1

(
xi−min{Di, xi− ŷi−1(η)}

)]
, for 1≤ i≤ n, (10)

with the boundary condition V̂0(x) = 0 for any x ≤ C. That is, although the seller behaves as if

solving equations (7), her ensuing revenue is described by (10).

Proposition 2. a) For any i∈ {1,2, · · · , n}, V̂i(x) decreases in ηi−1 in the prospective accounting

case and increases in ηi−1 in the behavioral discounting case.

b) Moreover, V̂i(x) is increasing in x for any i∈ {1,2, · · · , n}.

In line with Lemma 1b, Proposition 2a demonstrates that, within the multi-class framework, the

seller’s profit diminishes as the bias intensifies. This outcome stems from the fact that a greater

bias, manifested through either prospective accounting or behavioral discounting, leads to more

pronounced deviations from the true optimal allocation decision as |ηi−1 − 1| rises. Additionally,

Proposition 2b establishes that the biased seller’s revenue escalates in relation to the remaining

capacity. This implies that the marginal value of capacity of the biased seller

∆V̂i(x) : = V̂i(x)− V̂i(x− 1)

= pi P(Di ≥ x− ŷi−1(η))

+ pi−1 P(Di <x− ŷi−1(η), Di +Di−1 ≥ x− ŷi−2(η))

+ · · ·

+ p1 P
(
Di <x− ŷi−1(η), · · · ,

i∑
j=2

Dj <x− ŷ1(η),
i∑

j=1

Dj ≥ x
)

(11)

is non-negative. That is, the seller’s supply or capacity retains its inherent value, irrespective of

the cognitive disposition of the seller. Rather, we next show that the value of demand might not

remain when the seller is biased.
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4. Behavioral Discounting

In the context of behavioral discounting, we examine the impact of additional demand that is

either (i) basic, with a lower reservation price compared to existing demand, or (ii) premium, with

a higher reservation price compared to existing demand.

4.1 Additional Basic Demand

When the additional demand is basic, there are n+ 1-classes of customers with prices

p1 > p2 > · · ·> pn > pn+1. (12)

In this scenario, compared to the baseline case described by (5), the prices pi and demands Di for

1≤ i≤ n remain unchanged. However, there is an additional customer segment characterized by

a lower reservation price pn+1 than that of the existing customers, along with a positive demand

Dn+1. Then, the biased seller described by parameters {ηn, ηn−1, · · · , η1} behaves as if solving (7)

for i= n+1, n, · · · ,1. Accordingly, the protection levels in the additional demand case are identical

to the baseline case for all demand classes from stage n− 1 to stage 1, owing to the determination

rule (8) in Proposition 1.

Given an initial capacity level x and the protection level ŷn(η) for class n (and the remaining

classes), the total expected revenue in the additional demand case is

V̂n+1(x) = E
[
pn+1 min{Dn+1, x− ŷn(η)}+ V̂n

(
x−min{Dn+1, x− ŷn(η)}

)]
, (13)

where V̂n(x) is the revenue in the baseline case. Intuition suggests that the seller gets higher revenue

when there is an additional class of demand. This is indeed the case for the unbiased case, where

the seller endowed with n+ 1 classes of demand can at least mimic the decisions with n classes.

However, we next show this is not always true for the biased seller with behavioral discounting.

Proposition 3. In the presence of behavioral discounting, there exist parameters such that

ηn∆Un(x)< pn+1 <min{ηn∆Un(x− 1),∆V̂n(x)}, under which the biased seller earns less revenue

with an additional basic demand—that is, V̂n+1(x)< V̂n(x).

Proposition 3 reveals that additional demand can harm the seller. This is noteworthy because,

at a minimum, the seller could simply decline to serve the extra demand class, resulting in identical

revenue to the baseline case. In other words, if no product is sold to class n+ 1, there would be

no difference in revenue between the two cases. Yet, ironically, Proposition 3 demonstrates that

by accommodating the additional demand class, the seller can actually earn less. For insights, in

the presence of behavioral discounting, a biased seller might choose to accept class n+ 1 demand
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if the immediate unit revenue pn+1 exceeds the perceived (expected) marginal value of capacity

ηn∆Un(x), where ∆Un(x) is defined by (9). However, this perceived marginal value is lower than

the actual marginal value of capacity defined in (11), i.e., ηn∆Un(x) < ∆V̂n(x) due to ηi < 1 for

1≤ i≤ n. Therefore, ηn∆Un(x)< pn+1 <∆V̂n(x) might hold, i.e., the immediate unit revenue pn+1

is higher than the perceived marginal value of capacity, but lower than the actual marginal value

of capacity. As a result, the decision to sell to the additional demand class proves detrimental, to

the point that it outweighs the immediate revenue gained from that class, ultimately harming the

seller.

We also provide insights into the conditions under which the result in Proposition 3 might occur.

First, the bias level should not be too small. As the bias approaches zero, the seller’s capacity

allocation aligns closely with the optimal levels. As a result, the seller’s revenue increases due

to the extra demand. However, when the bias is high, it causes significant deviations from the

optimal protection levels, and consequently, a negative impact on the value of additional demand

emerges. As per Figure 1a, the demand value, V̂n+1(x)− V̂n(x), is negative when the bias is high (the

discounting parameter is small), and becomes positive as the discounting parameter approaches

to 1.
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Figure 1 The demand value V̂n+1(x)− V̂n(x) under behavioral discounting: For 1≤ i≤ n+1, Di are independent

and identically distributed uniform variables on [0,10]. Moreover, p1 = 500 and pi+1 = 0.8pi. In (a),

{η9, η8, . . . , η1} is increasing, where ηi−1 = ηi+ 0.005, and η9 varies from 0.86 to 0.95. In (b), we use the

same increasing sequence for the values of {ηi : 1≤ i≤ 15}: {η15, η14, . . . , η1}= {0.855,0.86, . . . ,0.925}
for the line ηi < 1, and {η15, η14, . . . , η1}= {1,1, . . . ,1} for the line ηi = 1.

Second, capacity should be balanced relative to demand. When capacity significantly exceeds

demand, any additional demand becomes valuable as it absorbs the unused capacity. As shown
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in Figure 1a, at x = 50, the lack of additional capacity limits the ability to meet extra demand,

leading to a lower demand value; at x= 55, the extra capacity allows for greater demand fulfill-

ment, increasing the demand value. However, when capacity is too small, additional demand does

not contribute to revenue since it cannot even meet the original demand. Figure 1b depicts the

value of demand under different counts of demand classes (represented by the parameter n) while

maintaining a fixed capacity level of 50. It shows that when the seller is biased (ηi < 1 for all i),

the value of demand declines from positive to negative as the number of demand classes increases.

Initially, with fewer demand classes, capacity exceeds demand, allowing each additional class to

generate profit, resulting in a positive demand value. Yet, as the number of demand classes n rises,

total demand approaches capacity, reducing the demand value. When n = 9, the demand value

turns negative, consistent with Figure 1a. As the number of demand classes continues to increase

such that n ≥ 10, the demand value starts to rise again, eventually stabilizing at zero. This is

because the protection level reaches the capacity limit, preventing the seller from fulfilling any

orders from lower demand classes. Consequently, the demand value remains at zero. It is worth

noting that, when the seller is unbiased (ηi = 1 for all i) in Figure 1b, the overall trend is similar,

but the demand value never falls below zero.

4.2 Additional Premium Demand

When the additional demand is premium, the demand has the following reservation prices:

p0 > p1 > p2 > · · ·> pn. (14)

Compared to the baseline case defined by (5), this case introduces an extra demand with the highest

reservation price. We use {yi : i= n− 1, · · · ,1,0} to denote the protection levels in the premium

demand case. Given the capacity level xi and demand realization di at stage i, the Bellman equation

for the above premium demand case is

V i(xi) = max
0≤yi−1≤xi

piu(di, xi, y
i−1) +E

[
V i−1 (xi−u(di, xi, y

i−1)
)]
, for i≥ 1 and xi ≤C,

where u(di, xi, y
i−1), as defined in (2), represents the sales at stage i. In contrast to the baseline case

where the boundary condition is V0(·) = 0, the boundary condition now is the revenue generated

by the premium demand V 0(x0) := p0E[min{D0, x0}] for any x0 ≤ C. Therefore, Vn(x) ≤ V n(x)

for any x, meaning that the premium demand is always beneficial for the unbiased seller. This is

because the extra demand class offers both an extra sales opportunity and a revenue source with

the highest selling price possible.
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We now incorporate the notation of mental accounting into the premium demand case defined

by (14). Then, at stage i, the seller behaves as if solving

U i(xi) = max
0≤yi−1≤xi

piu(di, xi, y
i−1) + ηi−1E

[
U i−1 (xi−u(di, xi, y

i−1)
)]

for i = {n,n− 1, · · · ,1}, and U 0(x0) = V 0(x0). One can obtain the protection levels {ŷi(η) : i =

0,1, · · · , n− 1} by solving

P
(
D0 ≥ ŷ0(η),D0 +D1 ≥ ŷ1(η), · · · ,D0 + · · ·+Dj ≥ ŷj(η)

)
=

pj+1

ηjηj−1 · · ·η1η0p0
. (15)

The seller may allocate products for the premium demand, leading to distinct protection levels

compared to the baseline case. Next, we compare these protection levels between the two cases.

Lemma 2. Given η, the protection levels in the premium demand case are always higher than the

baseline case, i.e., ŷi(η)≥ ŷi(η) for i= 1,2, · · · , n− 1.
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Figure 2 The protection levels ŷi(η) and ŷi(η): For 0 ≤ i ≤ 9, Di are i.i.d. uniform variables on [0,10]. In (a),

η8 = 1.18, ηi−1 = ηi + 0.005, p0 = 510, and pi+1 = 29/30pi. In (b), η8 = 0.88, ηi−1 = ηi + 0.005, p0 = 510,

and pi+1 = 0.8pi.

Intuitively, the seller needs to reserve a certain amount of products for the premium demand

which arrives at the latest with the highest reservation price. Consequently, the seller would reserve

more products when deciding protection levels for all other classes, i.e., the protection level at each

stage is higher in the premium demand case than in the baseline case; see Figure 2 for an illustration.

In this figure, the protection level gap remains consistently stable across stages (classes) between

the two cases: ŷi − ŷi ≈ ŷi−1 − ŷi−1. That is, the seller in the premium demand case allocates the
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same amount of capacity to each class i (where 1≤ i≤ n−1) as that in the baseline case, implying

that the capacity allocated for premium demand is drawn from what was originally allocated to

class n customers without premium demand.

Given the protection levels {ŷi(η) : i= 0,1, · · · , n− 1}, the seller’s resulting revenue is

V̂ i(xi) := E
[
pimin{Di, xi− ŷi−1(η)}+ V̂ i−1 (xi−min{Di, xi− ŷi−1(η)}

)]
, (16)

for i= n,n−1, · · · ,1, with the boundary condition V̂ 0(x0) = V 0(x0). Next, we compare the revenue

V̂ n(x) with the baseline case V̂n(x) defined in (10).

Lemma 3. In the presence of behavioral discounting, V̂ n(x)≥ V̂n(x) always holds for any x.

Unlike the basic demand with a lower reservation price, the premium demand consistently ben-

efits the seller. Under behavioral discounting, the biased seller typically under-protects future

demand. However, in the presence of premium demand, protection levels, representing the quantity

of product withheld for future sales, are generally higher than in the baseline case; see Lemma 2.

This suggests that the biased seller is more likely to delay sales and reserve products for future

premium demand, mitigating the impact of behavioral discounting on protection levels. As a result,

the premium demand scenario consistently yields higher revenue for the biased seller under behav-

ioral discounting, as shown in Figure 3. In addition, we make two observations in Figure 3. First,

the value of premium demand increases as the seller’s bias increases. For insights, as the seller

becomes more biased and applies greater discounts to future demand, their willingness to allocate

products to premium demand diminishes. This can benefit the seller, as reserving fewer/no prod-

ucts for premium demand results in higher revenue compared to the baseline case. Second, the

value of premium demand will not decline to zero as the number of demand class n rises. This is

because the protection level ŷ0 is fixed, independent of the number of classes n. Hence, the actual

value of the products allocated to class 0 is fixed.

In sum, under behavioral discounting, the additional demand with a lower reservation price may

hurt the seller, whereas the premium demand with a higher reservation price always benefits the

seller. Note that under behavioral discounting, the seller tends to under-protect future demands.

When the additional demand with the lowest price arrives first, the seller is less willing to allocate

products to the future demand. This effect aligns with and exacerbates the seller’s under-protection

bias, ultimately hurting the seller’s revenue. Conversely, when the premium demand with the high-

est price arrives the latest, the seller is more willing to allocate products to the future demand. This

effect is opposite to the behavioral discounting bias. As a result, the higher protection level induced

by the premium demand helps alleviate the seller’s under-protection bias, eventually improving the
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Figure 3 The value of premium demand V̂ n(x)− V̂n(x) under behavioral discounting: For 1≤ i≤ n, Di are i.i.d.

uniform variables on [0,10], and D0 = p1
η0p0

X + (1− p1
η0p0

)Y where X ∼N(1, ε2), and Y ∼N(0, ε2) for

a significantly low ε. Moreover, p0 = 510, and pi+1 = 0.8pi. In (a), {η3, η2, · · · , η0} is increasing, where

ηi−1 = ηi + 0.005, and η3 varies from 0.86 to 0.95. In (b), {η8, η7, · · · , η0}= {0.86,0.865, · · · ,0.9} for the

line η8 = 0.86, and {η8, η7, · · · , η0}= {0.92,0.925, · · · ,0.96} for the line η8 = 0.92.

seller’s overall revenue. In essence, the impact of the additional basic and premium demands hinges

on how they interact with, offset or amplify, the seller’s existing behavioral biases. The premium

demand has a beneficial effect by counteracting the under-protection bias, whereas the additional

low-price demand reinforces and worsens that bias.

5. Prospective Accounting

Section 4 demonstrates that under behavioral discounting, the additional premium demand always

benefits the seller, whereas the additional basic demand may not. Next, we explore whether this

positive effect of additional premium demand on the seller still holds when it exhibits prospective

accounting.

5.1 Additional Premium Demand

Proposition 4. In the presence of prospective accounting, there exist parameters under which the

biased seller earns less revenue with premium demand—that is, V̂ n(x)< V̂n(x).

Proposition 4 shows that the premium demand can hurt the seller under prospective accounting,

i.e., the disadvantage attributed to more demand remains valid even if the additional demand is

premium. Under certain conditions, the seller reserves one unit of product for class 0 customers

(ŷ0 = 1), and the difference between protection levels in the premium demand case and the baseline
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case remains constant such that ŷi− ŷi = 1 for each i∈ {1,2, · · · , n− 1}; see Figure 2. This implies

that the single unit reserved for class 0 is effectively taken from the capacity originally allocated to

class n customers in the absence of premium demand. Consequently, the revenue difference between

the premium demand case and the baseline case hinges on the revenue generated by this single

unit of capacity. In the premium demand case, the expected revenue of this unit of capacity is

p0P(D0 ≥ ŷ0) = p0
p1
η0p0

=
p1
η0
. (17)

On the other hand, in the baseline case, this unit of product may be sold to class n, class n− 1,

· · · , or class 1, the expected revenue of which is equal to the marginal value of capacity ∆V̂n(x),

as specified in (11). As long as
∑n

i=1Di ≥ x, this product can be sold for certain, and the revenue

is a weighted average of prices {pi : i= 1,2, · · · , n}. It can be greater than p1
η0

when n is small and

η0 is sufficiently large. As a result, the premium demand case can lead to a lower revenue than the

baseline case.

For insights, in the presence of premium demand, the protection levels are generally higher

compared to the baseline case without premium demand. When the seller exhibits a prospective

accounting bias and overvalues the revenue from future demand classes, they tend to over-protect

those future demands. Thus, the higher protection levels driven by the premium demand exacerbate

the seller’s over-protection bias, ultimately hurting the seller. This contrasts with the behavioral

discounting case, where the seller tends to under-protect future demands, and the higher protection

levels driven by premium demand help mitigate the under-protection bias, ultimately benefiting

the seller.

We also provide insights into the conditions under which the result in Proposition 4 might occur.

First, the bias level should be moderate, neither too small nor too large; see Figure 4a for an

illustration. When the bias level is sufficiently small, the seller approaches rational behavior, and

the protection levels align with the true optimal levels. In this case, introducing premium demand

would increase the seller’s revenue as expected. However, when the bias level becomes very large

where the seller overvalues the revenue from the high-end classes and withholds product from the

low-end classes, the protection levels become highly distorted and result in unsold capacity. In such

cases, the introduction of premium demand can help assimilate the unsold capacity and benefit

the seller. This is in contrast to the behavioral discounting case where the result in Proposition 3

occurs when the bias level is sufficiently large.

Second, the capacity should not be too large relative to the aggregated demand. If the capacity

is too large, the inventory surpasses the demand, and any additional demand (including premium
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Figure 4 The value of premium demand V̂ n(x)− V̂n(x) under prospective accounting: For 1≤ i≤ n, Di are i.i.d.

uniform variables on [0,10], andD0 = p1
η0p0

X+(1− p1
η0p0

)Y whereX ∼N(1, ε2) and Y ∼N(0, ε2) for a sig-

nificantly low ε. Moreover, p0 = 510, and pi+1 = 29/30pi. In (a), {η3, η2, η1, η0} is increasing, where ηi−1 =

ηi+0.005, and η3 varies from 1.1 to 1.2. In (b), we adopt the same increasing sequences: {η5, η4, · · · , η0}=

{1.085,1.09, · · · ,1.11} for the line η5 = 1.085, and {η5, η4, · · · , η0} = {1.165,1.17, · · · ,1.19} for the line

η5 = 1.165.

demand) helps assimilate the excess inventory, thereby benefiting the seller. If the capacity is too

small, recall that in the behavioral discounting case, any additional demand has no impact on the

seller’s revenue as the finite capacity cannot even fulfill the original demand. In contrast, in the

prospective accounting case, the allocation to premium demand remains fixed according to (15),

regardless of changes in capacity or demand count. Therefore, even if the demand is far beyond

the capacity, the allocation to premium demand can harm the seller’s revenue because the revenue

reduction due to the allocation remains fixed; see Figure 4b for an illustration. In Figure 4b, the

protection level ŷ0 is fixed at 1, independent of the number of classes n. Therefore, the actual

expected revenue of the product allocated to class 0 is fixed, as shown in (17). On the other hand,

because ŷ3 ≥ 14, due to the limited inventory, the seller does not sell any product to class 4, class 5,

and any inferior classes as n increases. This means that the expected revenue of that product

(allocated to class 0 in the premium demand case) in the baseline case, as specified in (11), is also

fixed. Comparing (17) with (11) leads to a fixed negative value of the premium demand.

5.2 Additional Basic Demand

So far, we have shown that the additional premium demand is not necessarily a plus for the seller.

Then, it seems less surprising that the additional basic demand might hurt the seller under some

conditions (as shown in Proposition 3), given that the premium demand has a higher reservation
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price than the basic demand. However, Lemma 4 below shows that the additional basic demand

is always beneficial for the seller under prospective accounting, even though it seems less valuable

than the premium demand.

Lemma 4. In the presence of prospective accounting, V̂n+1(x)≥ V̂n(x) always holds for any x.

For insights, with the additional basic demand, the seller becomes more inclined to sell to these

customers when they arrive. Under prospective accounting, the seller overvalues the revenue from

future demand and is therefore less willing to sell to earlier-arrived customers. This effect is oppo-

site to the direct impact of introducing the new customer class. As a result, the additional demand

essentially counteracts the seller’s bias towards being less willing to sell to earlier-arrived cus-

tomers, eventually benefiting the seller’s overall performance. This contrasts with the behavioral

discounting case, where the seller discounts the future demand and is thus more willing to sell to

earlier-arrived customers, which amplifies the direct impact of introducing the new customer class.

Consequently, under behavioral discounting, the additional demand reinforces, rather than miti-

gates, the seller’s bias towards being overly willing to sell to earlier-arrived customers, ultimately

hurting the seller’s revenue.
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Figure 5 The demand value V̂n+1(x) − V̂n(x) under prospective accounting: For 1 ≤ i ≤ n + 1, Di are inde-

pendent and identically distributed uniform variables on [0,10]. Moreover, p1 = 500 and pi+1 =

0.8pi. In (a), {η9, η8, · · · , η1} is increasing, where ηi−1 = ηi + 0.005, and η9 varies from 1 to 1.1.

In (b), {η10, η9, · · · , η1} = {1.08,1.085, · · · ,1.125} for the line η10 = 1.08, and {η10, η9, · · · , η1} =

{1.12,1.125, · · · ,1.165} for the line η10 = 1.12.

Figure 5 illustrates the demand value V̂n+1(x)− V̂n(x) under prospective accounting. As per this

figure, V̂n+1(x)− V̂n(x) is higher when x= 55 than x= 50 because the scarcity in capacity can limit
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the value of additional demand. Moreover, V̂n+1(x)− V̂n(x) = 0 when η9 is sufficiently high, where

the seller overvalues the future demands, so that it might not sell to the additional customers.

Finally, V̂n+1(x)− V̂n(x) decreases with n, i.e., the value of additional demand diminishes to zero

as existing demands increase.

To summarize, under the prospective accounting bias, where the seller tends to over-protect

future demands, the additional demand with a lower reservation price always benefits the seller,

whereas the premium demand with a higher reservation price may hurt the seller. When the addi-

tional demand with the lowest price arrives first, the seller is less willing to allocate products to

the future demand. This effect is opposite to and alleviates the seller’s over-protection bias, ulti-

mately improving the seller’s revenue. Conversely, when the premium demand with the highest

price arrives at the latest, the seller is more willing to allocate products to future demand. This

effect aligns with and exacerbates the seller’s over-protection bias under prospective accounting,

eventually leading to a negative impact on the seller’s overall revenue. Similar to the scenario under

behavioral discounting, the impact of the additional and premium demands hinges on how they

interact with, offset or amplify, the seller’s existing bias. The additional low-price demand has a

beneficial effect by counteracting the over-protection bias, whereas the premium demand reinforces

and worsens that bias. The key distinction is that under prospective accounting, the seller’s ten-

dency is to over-protect future demands, in contrast to the under-protection bias observed under

behavioral discounting.

6. Conclusion

In this paper, we investigate a capacity allocation problem in which the manager exhibits men-

tal accounting bias: prospective accounting and behavioral discounting. In prospective accounting,

biased sellers consistently overvalue future demand and allocate excessive capacity to accommo-

date it. On the other hand, in behavioral discounting, biased sellers undervalue future demand

and allocate insufficient capacity. Contrary to expectations, additional demand does not always

translate into higher earnings. The outcome depends on the type of mental accounting and the

nature of the demand, sometimes resulting in lower revenue despite the presence of extra demand.

One of the key challenges in operations management is effectively balancing supply and demand.

Companies must ensure the availability of resources while stimulating demand for their products

or services. For example, an independent hotel might invest in expanding its facilities by adding

more rooms or enhancing amenities. Alternatively, it might allocate significant resources to pro-

motions and advertising campaigns aimed at expanding its market and attracting new customer
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segments. Our research suggests that companies should prioritize capacity expansion, as it consis-

tently increases revenue regardless of the cognitive biases of decision-makers. However, if a company

invests resources solely in attracting additional customers, our findings indicate that even success-

ful efforts may not be beneficial. Specifically, attracting more customers can potentially reduce a

company’s revenue while increasing promotional and advertising costs. This paradox arises because

the seller’s cognitive biases significantly influence how demand impacts profitability. In cases of

behavioral discounting, biased sellers may not benefit from increased demand from low-end cus-

tomers. Conversely, with prospective accounting biases, targeting high-end customers can lead to

negative consequences. In a similar vein, attracting more premium demand is not necessarily better

than attracting more basic demand.

Given these findings, it is crucial for companies to address and mitigate the cognitive biases

of their decision-makers before implementing demand management strategies. By proactively de-

biasing decision-making processes, companies can make more informed and rational choices when

targeting new markets. Optimizing the allocation of resources and capacity in this way allows them

to maximize outcomes and enhance the overall effectiveness of their demand management efforts.

In summary, companies should not only focus on increasing demand and managing supply but also

consider the cognitive biases of their decision-makers. By implementing de-biasing strategies, they

can optimize their expansion plans and improve their overall success in new markets.

With limited analytical exploration of managerial behavior, several research directions can use-

fully be pursued in the future. First, in our model, earlier consumers consistently have lower reser-

vation prices compared to later arrivals. A valuable extension would be to relax this assumption,

allowing for the possibility that later arrivals may not necessarily have higher reservation prices.

Second, we acknowledge that other behavioral biases, such as regret, may also exist. Therefore,

similar to Long and Wu (2024), future research could explore a more general model incorporating

different functional forms to capture both regret and mental accounting. This is interesting because

regret fundamentally differs from mental accounting in several ways—for example, the rule used

to determine optimal protection levels in the two-class model does not generalize to a multi-class

setting when regret is taken into account. Third, the seller is a price-taker. It would be interesting

to consider a price-setter who must decide prices to sell capacity. Fourth, our analytical study could

be extended to experimental or empirical contexts. Future research can follow approaches provided

in the literature to test different types of mental accounting and then accordingly determine their

impacts on capacity allocation.
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Appendix: Proofs

Proof of Lemma 1. a) If d2 <C − y, the objective function of (3) p2d2 + ηp1E[min{D1,C − d2}]

is independent of y. If d2 ≥ C − y, then the first-order-condition of (3) is p2 − ηp1F̄ (y) = 0⇒

F̄ (ŷ(η)) = β
η
. Accordingly, ŷ(η) increases in η.

b) If d2 <C− ŷ, then π̂(η) = p2d2 +p1E[min{D1,C−d2}] is independent of ŷ. If d2 ≥C− ŷ, π̂(η) =

p2(C − ŷ) + p1E[min{D1, ŷ}] and its derivative with respect to ŷ is −p2 + p1F̄ (ŷ) =−p2 + p1
p2
ηp1

=

p2(1/η−1). Therefore, π̂(η) increases in ŷ when η≤ 1 and decreases in ŷ when η > 1. According to

Lemma 1a, ŷ(η) increases in η, so π̂(η) increases in η when η≤ 1 and decreases in η when η > 1.

Proof of Proposition 1. Part (a): We show this result by induction. When i= 1, F̄ (ŷ1) = p2
η1p1

.

Suppose

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1) =
pi

ηi−1ηi−2 · · ·η1p1
(18)

holds. Let h(x) = pi+1 min{di+1, x− ŷi}+ ηiE[Ui(x−min{di+1, x− ŷi})]. If di+1 < x− ŷi, h(x) =

pi+1di+1 + ηiE[Ui(x − di+1)] is independent of ŷi. Hereafter, we assume di+1 ≥ x − ŷi. Then,

h(x) = pi+1(x− ŷi) + ηiE[Ui(ŷi)], and dh(x)

dŷi
=−pi+1 + ηi

dE[Ui(ŷi)]

dŷi
=−pi+1 + ηipiP(Di ≥ ŷi − ŷi−1) +

ηiηi−1pi−1P(Di < ŷi − ŷi−1,Di−1 + Di ≥ ŷi − ŷi−2) + ηiηi−1ηi−2pi−2P(Di < ŷi − ŷi−1,Di−1 + Di <

ŷi − ŷi−2,Di−2 + Di−1 + Di ≥ ŷi − ŷi−3) + · · · + ηiηi−1 · · ·η1p1P(Di < ŷi − ŷi−1,Di−1 + Di < ŷi −

ŷi−2, · · · ,D2+ · · ·+Di < ŷi− ŷ1,D1+D2+ · · ·+Di ≥ ŷi) = 0, where the second equality holds because

of Lemma 6 (in online appendix). Moving pi+1 to the right hand side and dividing ηiηi−1 · · ·η1p1
on both sides yields

pi
ηi−1ηi−2 · · ·η1p1

P(Di ≥ ŷi− ŷi−1) +
pi−1

ηi−2ηi−3 · · ·η1p1
P(Di < ŷi− ŷi−1,Di−1 +Di ≥ ŷi− ŷi−2)

+
pi−2

ηi−3ηi−4 · · ·η1p1
P(Di < ŷi− ŷi−1,Di−1 +Di < ŷi− ŷi−2,Di−2 +Di−1 +Di ≥ ŷi− ŷi−3) + · · ·

+ P(Di < ŷi− ŷi−1,Di−1 +Di < ŷi− ŷi−2, · · · ,D2 + · · ·+Di < ŷi− ŷ1,D1 +D2 + · · ·+Di ≥ ŷi)

=
pi+1

ηiηi−1 · · ·η1p1
. (19)

In addition, as (18) holds, Lemma 5 (in online appendix) implies that

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,D1 + · · ·+Di ≥ ŷi)
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=
pi

ηi−1ηi−2 · · ·η1p1
P(Di ≥ ŷi− ŷi−1) +

pi−1
ηi−2ηi−3 · · ·η1p1

P(Di < ŷi− ŷi−1,Di +Di−1 ≥ ŷi− ŷi−2) + · · ·

+
p2
η1p1

P(Di < ŷi− ŷi−1, · · · ,Di +Di−1 + · · ·+D3 < ŷi− ŷ2,Di +Di−1 + · · ·+D2 ≥ ŷi− ŷ1)

+ P(Di < ŷi− ŷi−1, · · · ,Di +Di−1 + · · ·+D2 < ŷi− ŷ1,Di +Di−1 + · · ·+D1 ≥ ŷi). (20)

Combining (19) and (20) gives Equation (8).

Part (b): Let f(ηi−1, yi−1) = pimin{di, xi− yi−1}+ ηi−1E[Ui−1(xi−min{di, xi− yi−1})]. Then,

∂f

∂ηi−1
= E
[
Ui−1(xi−min{di, xi− yi−1})

]
,

∂2f

∂ηi−1 · ∂yi−1
=
∂E
[
Ui−1(xi−min{di, xi− yi−1})

]
∂yi−1

=
dE[Ui−1(xi−1)]

dxi−1
· ∂xi−1
∂yi−1

.

Note that xi−1 = xi − min{di, xi − yi−1} weakly increases in yi−1, so
∂xi−1

∂yi−1
≥ 0. Moreover,

dE[Ui−1(xi−1)]

dxi−1
≥ 0 by Lemma 6. Therefore, ∂2f

∂ηi−1·∂yi−1
≥ 0, i.e., f(ηi−1, yi−1) is submodular with

respect to ηi−1 and yi−1. As a result, ŷi−1 increases in ηi−1.

Part (c): Lemma 6 shows that dE[Ui(xi)]

dxi
≥ 0, which implies that ∆Ui(x)≥ 0. Next, we show that

∆Ui(x) decreases in x. It suffices to show dE[Ui(x)]

dx
decreases in x. First, dE[U1(x)]

dx
= p1P (D1 ≥ x),

which decreases in x. Suppose
dE[Ui−1(x)]

dx
decreases in x, and then we expect to show dE[Ui(x)]

dx

decreases in x. Observe that

E[Ui(x)] = EDi

[
pimin{Di, x− ŷi−1}+ ηi−1EDi−1

[Ui−1(x−min{Di, x− ŷi−1})]
]
.

Taking derivative with respect to x yields

dE[Ui(x)]

dx
= piP (Di ≥ x− ŷi−1) +

∫ x−ŷi−1

0

ηi−1
dE[Ui−1(x− di)]

dx
dFi(di).

Observe that the term pi is independent of x, while the term ηi−1
dE[Ui−1(x−di)]

dx
in the integral

decreases in x by our supposition. Therefore, to show dE[Ui(x)]

dx
decreases in x, it suffices to show

pi ≥ ηi−1
dE[Ui−1(x−di)]

dx
. One can check pi − ηi−1 dE[Ui−1(x−di)]

dx
≥ pi − ηi−1 pi

ηi−1
= 0, where the last

inequality holds because of Lemma 7 (in online appendix). This establishes that ∆Ui(x) decreases

in x.

Proof of Proposition 2. Part (a): It suffices to investigate how V̂i(x) changes with ŷi−1,

because ŷi−1 increases in ηi−1 for each i ∈ {1,2, · · · , n} by Proposition 1b. From V̂i+1(xi+1) =

E
[
pi+1 min{Di+1, xi+1− ŷi}+ V̂i(xi+1−min{Di+1, xi+1− ŷi})

]
, we have

dV̂i+1(xi+1)

dŷi
=P(Di+1 ≥ xi+1− ŷi)

{
− pi+1 +

dV̂i(ŷi)

dŷi

}
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=P(Di+1 ≥ xi+1− ŷi)
{
− pi+1 + piP(Di ≥ ŷi− ŷi−1)

+ pi−1P(Di < ŷi− ŷi−1,Di +Di−1 ≥ ŷi− ŷi−2) + · · · (21)

+ p1P(Di < ŷi− ŷi−1, · · · ,Di +Di−1 + · · ·+D2 < ŷi− ŷ1,Di +Di−1 + · · ·+D1 ≥ ŷi)
}
,

where the last equality holds by Lemma 8 (in online appendix).

At optimality, the opportunity cost of the ŷith inventory is equal to the immediate revenue pi+1

by selling that inventory to class i+ 1 customers directly; that is,

dE[Ui+1(xi+1)]

dŷi
= P(Di+1 ≥ xi+1− ŷi)

{
− pi+1 + ηi

dE[Ui(ŷi)]

dŷi

}
= 0.

Therefore,

pi+1 = ηi
dE[Ui(ŷi)]

dŷi
= ηipiP(Di ≥ ŷi− ŷi−1) + ηiηi−1pi−1P(Di < ŷi− ŷi−1,Di +Di−1 ≥ ŷi− ŷi−2) + · · ·

+ ηiηi−1 · · ·η1p1P(Di < ŷi− ŷi−1, · · · ,Di +Di−1 + · · ·+D2 < ŷi− ŷ1,Di +Di−1 + · · ·+D1 ≥ ŷi),

where the last equality holds because of Lemma 6. Plugging pi+1 into (21) yields

dV̂i+1(xi+1)

dŷi
= P(Di+1 ≥ xi+1− ŷi){

(1− ηi)piP(Di ≥ ŷi− ŷi−1) + (1− ηiηi−1)pi−1P(Di < ŷi− ŷi−1,Di +Di−1 ≥ ŷi− ŷi−2) + · · ·

+ (1− ηiηi−1 · · ·η1)p1P(Di < ŷi− ŷi−1, · · · ,Di +Di−1 + · · ·+D2 < ŷi− ŷ1,Di +Di−1 + · · ·+D1 ≥ ŷi)
}
,

which is positive if ηi < 1 for each i and negative if ηi > 1 for each i. As a result, the seller’s

resulting revenue V̂i+1(xi+1) increases in ŷi in the behavioral discounting case and decreases in ŷi

in the prospective accounting case. This completes the proof of Part (a).

Part (b): We prove this result by induction. It is easy to see that V̂1(x) = E[p1 min{D1, x}] increases

in x. Suppose V̂i−1(x) increases in x, and then we would like to show that V̂i(x) increases in x.

According to (10), V̂i(x) = E
[
pimin{Di, x− ŷi−1}+ V̂i−1(x−min{Di, x− ŷi−1})

]
. As x−min{Di, x−

ŷi−1} weakly increases in x and V̂i−1(x) increases in x, the second term in the square brackets

increases in x. Note that the first term also weakly increases in x, so it follows immediately that

V̂i(x) increases in x. This completes the proof of Part (b).

Proof of Proposition 3. We first provide the conditions under which ηn∆Un(x) < pn+1 <

min{ηn∆Un(x− 1),∆V̂n(x)} holds: The parameters x, p1, pn+1, η, D1,D2, · · · ,Dn satisfy

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Dn−1 ≥ ŷn−1,D1 + · · ·+Dn ≥ x− ε) =
pn+1

ηnηn−1 · · ·η1p1
,

(22)

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Dn−1 ≥ ŷn−1,D1 + · · ·+Dn ≥ x)≥ pn+1

ηn−1ηn−2 · · ·η1p1
,

(23)
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where 0 < ε ≤ 1. Equation (22) implies that ŷn = x− ε, which means that only 0 < ε ≤ 1 unit of

product is allowed to sell to class n+ 1 in the additional demand case. Although the left hand side

probability in (23) is smaller than the left hand side probability in (22) because x > x− ε, (23)

implies that the left hand side probability cannot be too small. There always exist multiple sets

of parameters that satisfy these two properties. Below, we show (22) and (23) imply ηn∆Un(x)<

pn+1 <min{ηn∆Un(x− 1),∆V̂n(x)}.

First, by Lemma 5, we have

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Dn−1 ≥ ŷn−1,D1 + · · ·+Dn ≥ x)

=
pn

ηn−1ηn−2 · · ·η1p1
P(Dn ≥ x− ŷn−1) +

pn−1
ηn−2ηn−3 · · ·η1p1

P(Dn <x− ŷn−1,Dn +Dn−1 ≥ x− ŷn−2) + · · ·

+
p2
η1p1

P(Dn <x− ŷn−1,Dn +Dn−1 <x− ŷn−2, · · · ,Dn + · · ·+D3 <x− ŷ2,Dn + · · ·+D2 ≥ x− ŷ1)

+ P(Dn <x− ŷn−1,Dn +Dn−1 <x− ŷn−2, · · · ,Dn + · · ·+D2 <x− ŷ1,Dn + · · ·+D1 ≥ x). (24)

On the other hand, by (23), we have

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Dn−1 ≥ ŷn−1,D1 + · · ·+Dn ≥ x)≥ pn+1

ηn−1ηn−2 · · ·η1p1
.

Therefore,

pn+1 ≤ pnP(Dn ≥ x− ŷn−1) + ηn−1pn−1P(Dn <x− ŷn−1,Dn +Dn−1 ≥ x− ŷn−2) + · · ·

+ ηn−1ηn−2 · · ·η2p2P(Dn <x− ŷn−1,Dn +Dn−1 <x− ŷn−2, · · · ,Dn + · · ·+D3 <x− ŷ2,Dn + · · ·+D2 ≥ x− ŷ1)

+ ηn−1ηn−2 · · ·η1p1P(Dn <x− ŷn−1,Dn +Dn−1 <x− ŷn−2, · · · ,Dn + · · ·+D2 <x− ŷ1,Dn + · · ·+D1 ≥ x)

< pnP(Dn ≥ x− ŷn−1) + pn−1P(Dn <x− ŷn−1,Dn−1 +Dn ≥ x− ŷn−2)

+ pn−2P(Dn <x− ŷn−1,Dn−1 +Dn <x− ŷn−2,Dn−2 +Dn−1 +Dn ≥ x− ŷn−3) + · · ·

+ p1P(Dn <x− ŷn−1,Dn−1 +Dn <x− ŷn−2, · · · ,D2 + · · ·+Dn <x− ŷ1,D1 +D2 + · · ·+Dn ≥ x)

=∆V̂n(x), (25)

where the last equality holds because of Lemma 8.

Second, (22) implies that

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Dn−1 ≥ ŷn−1,D1 + · · ·+Dn ≥ x)<
pn+1

ηnηn−1 · · ·η1p1
. (26)

Combining (26) and (24) gives

pn+1 >ηnpnP(Dn ≥ x− ŷn−1) + ηnηn−1pn−1P(Dn <x− ŷn−1,Dn +Dn−1 ≥ x− ŷn−2) + · · ·
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+ ηnηn−1 · · ·η2p2P(Dn <x− ŷn−1, · · · ,Dn + · · ·+D3 <x− ŷ2,Dn + · · ·+D2 ≥ x− ŷ1)

+ ηnηn−1 · · ·η1p1P(Dn <x− ŷn−1, · · · ,Dn + · · ·+D2 <x− ŷ1,Dn + · · ·+D1 ≥ x)

=ηn∆Un(x), (27)

where the above equality holds because of Lemma 6.

Third, (22) implies that

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Dn−1 ≥ ŷn−1,D1 + · · ·+Dn ≥ x− 1)>
pn+1

ηnηn−1 · · ·η1p1
.

(28)

By Lemma 5, we have

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Dn−1 ≥ ŷn−1,D1 + · · ·+Dn ≥ x− 1)

=
pn

ηn−1ηn−2 · · ·η1p1
P(Dn ≥ x− 1− ŷn−1) +

pn−1
ηn−2ηn−3 · · ·η1p1

P(Dn <x− 1− ŷn−1,Dn +Dn−1 ≥ x− 1− ŷn−2) + · · ·

+
p2
η1p1

P(Dn <x− 1− ŷn−1,Dn +Dn−1 <x− 1− ŷn−2, · · · ,Dn + · · ·+D3 <x− 1− ŷ2,Dn + · · ·+D2 ≥ x− 1− ŷ1)

+ P(Dn <x− 1− ŷn−1,Dn +Dn−1 <x− 1− ŷn−2, · · · ,Dn + · · ·+D2 <x− 1− ŷ1,Dn + · · ·+D1 ≥ x− 1).
(29)

Combining (28) and (29) gives

pn+1 <ηnpnP(Dn ≥ x− 1− ŷn−1) + ηnηn−1pn−1P(Dn <x− 1− ŷn−1,Dn +Dn−1 ≥ x− 1− ŷn−2) + · · ·

+ ηnηn−1 · · ·η2p2P(Dn <x− 1− ŷn−1, · · · ,Dn + · · ·+D3 <x− 1− ŷ2,Dn + · · ·+D2 ≥ x− 1− ŷ1)

+ ηnηn−1 · · ·η1p1P(Dn <x− 1− ŷn−1, · · · ,Dn + · · ·+D2 <x− 1− ŷ1,Dn + · · ·+D1 ≥ x− 1)

=ηn∆Un(x− 1). (30)

Now, we show that under condition ηn∆Un(x)< pn+1 <min{ηn∆Un(x− 1),∆V̂n(x)}, V̂n+1(x)<

V̂n(x) holds immediately. From E[Un+1(x)] = E[pn+1 min{Dn+1, x− ŷn}+ηnE[Un(x−min{Dn+1, x−

ŷn})]], we have

dE[Un+1(x)]

dŷn
= P(Dn+1 ≥ x− ŷn)

{
− pn+1 + ηn

dE[Un(ŷn)]

dŷn

}
= 0,

which implies that pn+1 = ηn∆Un(ŷn). Since ηn∆Un(x− 1)≥ pn+1 > ηn∆Un(x), we have ∆Un(x−

1) ≥∆Un(ŷn) > ∆Un(x). Note that ∆Un(x) decreases in x by Proposition 1c, so x− 1 ≤ ŷn < x.

That is, the seller allocates ε unit of product to class n+ 1 customers, where 0< ε≤ 1. Also, from

V̂n+1(x) =E
[
pn+1 min{Dn+1, x− ŷn}+ V̂n(x−min{Dn+1, x− ŷn})

]
=E
[
pn+1 min{Dn+1, ε}+ V̂n(x−min{Dn+1, ε})

]
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=

∫ ε

0

{
pn+1dn+1 + V̂n(x− dn+1)

}
dFn+1(dn+1) +

∫ ∞
ε

{
pn+1ε+ V̂n(x− ε)

}
dFn+1(dn+1),

we have

V̂n+1(x)− V̂n(x)

=

∫ ε

0

{
pn+1dn+1 + V̂n(x− dn+1)

}
dFn+1(dn+1) +

∫ ∞
ε

{
pn+1ε+ V̂n(x− ε)

}
dFn+1(dn+1)

−
∫ ε

0

V̂n(x)dFn+1(dn+1)−
∫ ∞
ε

V̂n(x)dFn+1(dn+1)

=

∫ ε

0

{
pn+1dn+1 + V̂n(x− dn+1)− V̂n(x)

}
dFn+1(dn+1) +

∫ ∞
ε

{
pn+1ε+ V̂n(x− ε)− V̂n(x)

}
dFn+1(dn+1).

Note that when 0< ε≤ 1,

pn+1ε+ V̂n(x− ε)− V̂n(x) = ε
{
pn+1−

V̂n(x)− V̂n(x− ε)
ε

}
= ε
{
pn+1−∆V̂n(x)

}
< 0.

Similarly, one can show pn+1dn+1 + V̂n(x− dn+1)− V̂n(x)< 0. Therefore, V̂n+1(x)< V̂n(x).

Proof of Lemma 2. From P(D0 ≥ ŷ0) = p1
η0p0

and P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di ≥

ŷi) =
pi+1

ηiηi−1···η1p1
, we have P(D0 ≥ ŷ0,D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di ≥ ŷi) =

pi+1

ηiηi−1···η0p0
.

Therefore, for each i∈ {1,2, · · · , n− 1},

P(D0 ≥ ŷ0,D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di ≥ ŷi)

=P(D0 ≥ ŷ0,D0 +D1 ≥ ŷ1, · · · ,D0 +D1 + · · ·+Di ≥ ŷi). (31)

Now, we show ŷi ≥ ŷi by induction. When i= 1, (31) reduces to

P(D0 ≥ ŷ0,D1 ≥ ŷ1) = P(D0 ≥ ŷ0,D0 +D1 ≥ ŷ1). (32)

Suppose ŷ1 < ŷ1 for a contradiction. Then P(D0 ≥ ŷ0,D1 ≥ ŷ1) = P(D1 ≥ ŷ1|D0 ≥ ŷ0)P(D0 ≥ ŷ0)<

P(D0 + D1 ≥ ŷ1|D0 ≥ ŷ0)P(D0 ≥ ŷ0) = P(D0 ≥ ŷ0,D0 + D1 ≥ ŷ1), contradicting (32), where the

above inequality holds because ŷ1 < ŷ1. Suppose ŷi−1 ≥ ŷi−1 holds, and we would like to show

ŷi ≥ ŷi. Suppose ŷi < ŷi for a contradiction. Note that

P(D1 + · · ·+Di ≥ ŷi|D0 ≥ ŷ0,D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1)

=P(D1 + · · ·+Di ≥ ŷi|D1 + · · ·+Di−1 ≥ ŷi−1),

P(D0 +D1 + · · ·+Di ≥ ŷi|D0 ≥ ŷ0,D0 +D1 ≥ ŷ1, · · · ,D0 +D1 + · · ·+Di−1 ≥ ŷi−1)

=P(D0 +D1 + · · ·+Di ≥ ŷi|D0 +D1 + · · ·+Di−1 ≥ ŷi−1).

Because ŷi−1 ≥ ŷi−1 and ŷi < ŷi, it follows immediately that

P(D1+ · · ·+Di ≥ ŷi|D1+ · · ·+Di−1 ≥ ŷi−1)<P(D0+D1+ · · ·+Di ≥ ŷi|D0+D1+ · · ·+Di−1 ≥ ŷi−1).
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Therefore,

P(D1 + · · ·+Di ≥ ŷi|D0 ≥ ŷ0,D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1)

<P(D0 +D1 + · · ·+Di ≥ ŷi|D0 ≥ ŷ0,D0 +D1 ≥ ŷ1, · · · ,D0 +D1 + · · ·+Di−1 ≥ ŷi−1). (33)

One can check

P(D0 ≥ ŷ0,D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di ≥ ŷi)

=P(D1 + · · ·+Di ≥ ŷi|D0 ≥ ŷ0,D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1)

·P(D0 ≥ ŷ0,D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1)

<P(D0 +D1 + · · ·+Di ≥ ŷi|D0 ≥ ŷ0,D0 +D1 ≥ ŷ1, · · · ,D0 +D1 + · · ·+Di−1 ≥ ŷi−1)

·P(D0 ≥ ŷ0,D0 +D1 ≥ ŷ1, · · · ,D0 +D1 + · · ·+Di−1 ≥ ŷi−1)

=P(D0 ≥ ŷ0,D0 +D1 ≥ ŷ1, · · · ,D0 +D1 + · · ·+Di ≥ ŷi),

contradicting (31), where the above inequality holds because of (33) and P(D0 ≥ ŷ0,D1 ≥ ŷ1,D1 +

D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1) = P(D0 ≥ ŷ0,D0 +D1 ≥ ŷ1, · · · ,D0 +D1 + · · ·+Di−1 ≥ ŷi−1).

This establishes that ŷi ≥ ŷi for each i∈ {1,2, · · · , n− 1}.

Proof of Lemma 3. By Lemma 2, ŷi ≥ ŷi for each i = 1, · · · , n − 1, implying that the seller

reserves more products for each class i (and the remaining classes) due to the introduction of class

0 customers. Below, we show such an increase always brings a higher profit to the seller.

In the premium demand case, suppose the seller is in the beginning of stage i when class i

customers arrive. If the seller sells a product to class i, then an immediate profit of pi will be

accrued. Otherwise, the expected revenue of this product is as follows:

∆V̂i−1(ŷ
i−1)

=pi−1P(Di−1 ≥ ŷi−1− ŷi−2) + pi−2P(Di−1 < ŷ
i−1− ŷi−2,Di−1 +Di−2 ≥ ŷi−1− ŷi−3) + · · ·

+p1P(Di−1 < ŷ
i−1− ŷi−2, · · · ,Di−1 +Di−2 + · · ·+D2 < ŷ

i−1− ŷ1,Di−1 +Di−2 + · · ·+D1 ≥ ŷi−1− ŷ0)

+p0P(Di−1 < ŷ
i−1− ŷi−2, · · · ,Di−1 +Di−2 + · · ·+D1 < ŷ

i−1− ŷ0,Di−1 +Di−2 + · · ·+D0 ≥ ŷi−1).
(34)

By Lemma 5, one can check

P(D0 ≥ ŷ0,D0 +D1 ≥ ŷ1, · · · ,D0 + · · ·+Di−2 ≥ ŷi−2,D0 + · · ·+Di−1 ≥ ŷi−1)

=
pi−1

ηi−2ηi−3 · · ·η0p0
P(Di−1 ≥ ŷi−1− ŷi−2) +

pi−2
ηi−3ηi−4 · · ·η0p0

P(Di−1 < ŷ
i−1− ŷi−2,Di−1 +Di−2 ≥ ŷi−1− ŷi−3)
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+ · · ·

+
p1
η0p0

P(Di−1 < ŷ
i−1− ŷi−2, · · · ,Di−1 + · · ·+D2 < ŷ

i−1− ŷ1,Di−1 + · · ·+D1 ≥ ŷi−1− ŷ0)

+ P(Di−1 < ŷ
i−1− ŷi−2, · · · ,Di−1 +Di−2 + · · ·+D1 < ŷ

i−1− ŷ0,Di−1 +Di−2 + · · ·+D0 ≥ ŷi−1).

On the other hand, by the protection level determination rule, we have

P(D0 ≥ ŷ0,D0 +D1 ≥ ŷ1, · · · ,D0 + · · ·+Di−2 ≥ ŷi−2,D0 + · · ·+Di−1 ≥ ŷi−1) =
pi

ηi−1ηi−2 · · ·η0p0
.

Therefore,

pi =ηi−1pi−1P(Di−1 ≥ ŷi−1− ŷi−2) + ηi−1ηi−2pi−2P(Di−1 < ŷ
i−1− ŷi−2,Di−1 +Di−2 ≥ ŷi−1− ŷi−3)

+ · · ·

+ ηi−1ηi−2 · · ·η1p1P(Di−1 < ŷ
i−1− ŷi−2, · · · ,Di−1 + · · ·+D2 < ŷ

i−1− ŷ1,Di−1 + · · ·+D1 ≥ ŷi−1− ŷ0)

+ ηi−1ηi−2 · · ·η0p0P(Di−1 < ŷ
i−1− ŷi−2, · · · ,Di−1 + · · ·+D1 < ŷ

i−1− ŷ0,Di−1 + · · ·+D0 ≥ ŷi−1).
(35)

Comparing (35) with (34) establishes ∆V̂i−1(ŷ
i−1)≥ pi. This completes the proof.

Proof of Proposition 4. We first provide the conditions under which V̂ n(x)< V̂n(x) holds:

(i) D0 = p1
η0p0

X + [1− p1
η0p0

]Y , where X ∼N(1, ε2), Y ∼N(0, ε2), and ε→ 0.

(ii)
∑n

i=1Di ≥ x;

(iii) p1
η0
≤ pn.

One can verify that as ε→ 0, P(D0 = 1)→ p1
η0p0

, and P(D0 = 0)→ 1− p1
η0p0

. As a result, ŷ0→ 1.

Moreover, because P(D1 ≥ ŷ1) = p2
η1p1

, P(D0 = 1,D1 ≥ ŷ1) ≈ p1
η0p0
· p2
η1p1

= p2
η1η0p0

= P(D0 ≥ ŷ0,D0 +

D1 ≥ ŷ1). Therefore, ŷ1→ ŷ1 + 1. Similarly, as ε→ 0, P(D0 ≥ 1,D0 +D1 ≥ ŷ1 + 1,D0 +D1 +D2 ≥

ŷ2 + 1) ≈ P(D0 = 1,D1 ≥ ŷ1,D1 +D2 ≥ ŷ2) = P(D0 = 1)P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2) ≈ p1
η0p0
· p3
η2η1p1

=

p3
η2η1η0p0

= P(D0 ≥ ŷ0,D0 +D1 ≥ ŷ1,D0 +D1 +D2 ≥ ŷ2), which implies that ŷ2→ ŷ2 + 1. Continuing

in this fashion, one can show that as ε→ 0, ŷi→ ŷi + 1, for i= 1,2, · · · , n− 1. That is, the product

allocated to class 0 in the premium demand case is originally allocated to class n, which could

be sold to class n, class n− 1, · · · , or class 1 in the baseline case. Hence, the revenue difference

between V̂n(x) and V̂ n(x) depends on this single unit of product only.

The expected profit of this product in the baseline case is

∆V̂n(x) =pnP(Dn ≥ x− ŷn−1) + pn−1P(Dn <x− ŷn−1,Dn +Dn−1 ≥ x− ŷn−2) + · · ·

+ p1P(Dn <x− ŷn−1, · · · ,Dn +Dn−1 + · · ·+D2 <x− ŷ1,Dn +Dn−1 + · · ·+D2 +D1 ≥ x),

and the total profit V̂n(x) = V̂n(x)− V̂n(x− 1) + V̂n(x− 1) = ∆V̂n(x) + V̂n(x− 1). In the premium

demand case, the expected value of the product allocated to class 0 is p0P(D0 ≥ 1)≈ p0 p1
η0p0

= p1
η0
,
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and the total profit can be written as V̂ n(x) = V̂n(x− 1) + p0P(D0 ≥ 1)≈ V̂n(x− 1) + p1
η0
. One may

wonder whether it is possible for the products except this single unit reserved for class 0 to be sold

to class 0. Note that
∑n

i=1Di ≥ x, so the products except the single unit are guaranteed to sell out

at the end of stage 1. Hence, there is no chance for them to be sold to class 0.

Therefore, V̂ n(x)− V̂n(x)≈ p1
η0
−∆V̂n(x). Note that Dn +Dn−1 + · · ·+D2 +D1 ≥ x, so

P(Dn ≥ x− ŷn−1) + P(Dn <x− ŷn−1,Dn +Dn−1 ≥ x− ŷn−2) + · · ·

+ P(Dn <x− ŷn−1, · · · ,Dn +Dn−1 + · · ·+D2 <x− ŷ1,Dn +Dn−1 + · · ·+D2 +D1 ≥ x) = 1.

Therefore, ∆V̂n(x) is a weighted average of p1, p2, · · · , pn, i.e., pn <∆V̂n(x)< p1. Because p1
η0
≤ pn

(which is possible, especially when η0 is large and n is small), it follows immediately that p1
η0
<

∆V̂n(x), indicating that the profit generated by this single unit of product in the premium demand

case is smaller than that in the baseline case. Hence, V̂ n(x)< V̂n(x). This completes the proof.

Proof of Lemma 4. The derivative of V̂n+1(x) = E
[
pn+1 min{Dn+1, x− ŷn}+ V̂n(x−min{Dn+1, x−

ŷn})
]

with respect to ŷn is

P(Dn+1 ≥ x− ŷn)
{
− pn+1 +

dV̂n(ŷn)

dŷn

}
=P(Dn+1 ≥ x− ŷn)

{
− pn+1 + pnP(Dn ≥ ŷn− ŷn−1) + pn−1P(Dn < ŷn− ŷn−1,Dn +Dn−1 ≥ ŷn− ŷn−2)

+ · · ·+ p1P(Dn < ŷn− ŷn−1, · · · ,Dn +Dn−1 + · · ·+D2 < ŷn− ŷ1,Dn +Dn−1 + · · ·+D1 ≥ ŷn)
}
,

(36)

where the last equality holds by Lemma 8. On the one hand, by Lemma 5, we have

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Dn−1 ≥ ŷn−1,D1 + · · ·+Dn ≥ x)

=
pn

ηn−1ηn−2 · · ·η1p1
P(Dn ≥ x− ŷn−1) +

pn−1
ηn−2ηn−3 · · ·η1p1

P(Dn <x− ŷn−1,Dn +Dn−1 ≥ x− ŷn−2) + · · ·

+
p2
η1p1

P(Dn <x− ŷn−1, · · · ,Dn + · · ·+D3 <x− ŷ2,Dn + · · ·+D2 ≥ x− ŷ1)

+ P(Dn <x− ŷn−1,Dn +Dn−1 <x− ŷn−2, · · · ,Dn + · · ·+D2 <x− ŷ1,Dn + · · ·+D1 ≥ x).

On the other hand, by the protection level determination rule, for any x≥ ŷn,

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Dn−1 ≥ ŷn−1,D1 + · · ·+Dn ≥ x)≤ pn+1

ηnηn−1 · · ·η1p1
.

Therefore,

pn+1 ≥ηnpnP(Dn ≥ x− ŷn−1) + ηnηn−1pn−1P(Dn <x− ŷn−1,Dn +Dn−1 ≥ x− ŷn−2) + · · ·

+ ηnηn−1 · · ·η2p2P(Dn <x− ŷn−1, · · · ,Dn + · · ·+D3 <x− ŷ2,Dn + · · ·+D2 ≥ x− ŷ1)
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+ ηnηn−1 · · ·η1p1P(Dn <x− ŷn−1, · · · ,Dn + · · ·+D2 <x− ŷ1,Dn + · · ·+D1 ≥ x). (37)

Putting (37) back to (36) gives
dV̂n+1(x)

dŷn
< 0; that is, the resulting revenue V̂n+1(x) decreases in

ŷn. Since ŷn ≤ x, V̂n+1(x) takes the minimum when ŷn = x. Note that ŷn = x means that the

seller does not sell any product to class n+ 1 customers in the additional demand case, at which

V̂n+1(x) = V̂n(x). Therefore, V̂n+1(x)≥ V̂n(x). This completes the proof.
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Online Appendix to “Mental Accounting in Allocating Capacity”

Meng Li, Yan Liu

This document contains the intermediate results for the proofs in the paper.

Lemma 5. For a fixed i, if

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Dj ≥ ŷj) =
pj+1

ηjηj−1 · · ·η1p1

holds for any 1≤ j ≤ i− 1, then the following probability equation holds:

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,D1 + · · ·+Di ≥ x)

=
pi

ηi−1ηi−2 · · ·η1p1
P(Di ≥ x− ŷi−1) +

pi−1
ηi−2ηi−3 · · ·η1p1

P(Di <x− ŷi−1,Di +Di−1 ≥ x− ŷi−2) + · · ·

+
p2
η1p1

P(Di <x− ŷi−1, · · · ,Di +Di−1 + · · ·+D3 <x− ŷ2,Di +Di−1 + · · ·+D2 ≥ x− ŷ1)

+ P(Di <x− ŷi−1, · · · ,Di +Di−1 + · · ·+D2 <x− ŷ1,Di +Di−1 + · · ·+D1 ≥ x).

Proof of Lemma 5. One can check

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,D1 + · · ·+Di ≥ x)

=P(D1 + · · ·+Di ≥ x,D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1)

=P(D1 + · · ·+Di ≥ x,D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,Di ≥ x− ŷi−1)

+ P(D1 + · · ·+Di ≥ x,D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,Di <x− ŷi−1)

=P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,Di ≥ x− ŷi−1)

+ P(D1 + · · ·+Di ≥ x,D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,Di <x− ŷi−1)

=P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1)P(Di ≥ x− ŷi−1)

+ P(D1 + · · ·+Di ≥ x,D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,Di <x− ŷi−1)

=
pi

ηi−1ηi−2 · · ·η1p1
P(Di ≥ x− ŷi−1)

+ P(D1 + · · ·+Di ≥ x,D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,Di <x− ŷi−1),

where the last equality holds because of our supposition.

Similarly,

P(D1 + · · ·+Di ≥ x,D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,Di <x− ŷi−1)
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=P(D1 + · · ·+Di ≥ x,D1 ≥ ŷ1, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,Di <x− ŷi−1,Di +Di−1 ≥ x− ŷi−2)

+ P(D1 + · · ·+Di ≥ x,D1 ≥ ŷ1, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,Di <x− ŷi−1,Di +Di−1 <x− ŷi−2)

=P(D1 ≥ ŷ1, · · · ,D1 + · · ·+Di−2 ≥ ŷi−2,Di <x− ŷi−1,Di +Di−1 ≥ x− ŷi−2)

+ P(D1 + · · ·+Di ≥ x,D1 ≥ ŷ1, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,Di <x− ŷi−1,Di +Di−1 <x− ŷi−2)

=P(D1 ≥ ŷ1, · · · ,D1 + · · ·+Di−2 ≥ ŷi−2)P(Di <x− ŷi−1,Di +Di−1 ≥ x− ŷi−2)

+ P(D1 + · · ·+Di ≥ x,D1 ≥ ŷ1, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,Di <x− ŷi−1,Di +Di−1 <x− ŷi−2)

=
pi−1

ηi−2ηi−3 · · ·η1p1
P(Di <x− ŷi−1,Di +Di−1 ≥ x− ŷi−2)

+ P(D1 + · · ·+Di ≥ x,D1 ≥ ŷ1, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,Di <x− ŷi−1,Di +Di−1 <x− ŷi−2),

where the second equality holds because

D1 + · · ·+Di−2 ≥ ŷi−2
Di +Di−1 ≥ x− ŷi−2

}
⇒D1 + · · ·+Di ≥ x,

and
D1 + · · ·+Di ≥ x

Di <x− ŷi−1

}
⇒D1 + · · ·+Di−1 ≥ ŷi−1.

Continuing in this fashion, we obtain

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,D1 + · · ·+Di ≥ x)

=
pi

ηi−1ηi−2 · · ·η1p1
P(Di ≥ x− ŷi−1) +

pi−1
ηi−2ηi−3 · · ·η1p1

P(Di <x− ŷi−1,Di +Di−1 ≥ x− ŷi−2) + · · ·

+
p2
η1p1

P(Di <x− ŷi−1, · · · ,Di +Di−1 + · · ·+D3 <x− ŷ2,Di +Di−1 + · · ·+D2 ≥ x− ŷ1)

+ P(Di <x− ŷi−1, · · · ,Di +Di−1 + · · ·+D2 <x− ŷ1,Di +Di−1 + · · ·+D1 ≥ x).

This completes the proof.

Lemma 6. Taking derivative of E[Ui(xi)] with respect to xi yields

dE[Ui(xi)]

dxi

=piP(Di ≥ xi− ŷi−1) + ηi−1pi−1P(Di <xi− ŷi−1,Di +Di−1 ≥ xi− ŷi−2)

+ ηi−1ηi−2pi−2P(Di <xi− ŷi−1,Di +Di−1 <xi− ŷi−2,Di +Di−1 +Di−2 ≥ xi− ŷi−3)

+ · · ·

+ ηi−1ηi−2 · · ·η1p1P(Di <xi− ŷi−1,Di +Di−1 <xi− ŷi−2, · · · ,Di + · · ·+D2 <xi− ŷ1,Di + · · ·+D1 ≥ xi).
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Proof of Lemma 6. One can check

E[Ui(xi)] = EDi

[
max

0≤yi−1≤xi
pimin{Di, xi− yi−1}+ ηi−1EDi−1

[Ui−1(xi−min{Di, xi− yi−1})]
]

= EDi

[
pimin{Di, xi− ŷi−1}+ ηi−1EDi−1

[Ui−1(xi−min{Di, xi− ŷi−1})]
]
,

where the last equality holds because we restrict our attention to the problem with a sufficient

initial inventory.

Taking derivative with respect to xi yields

piP(Di ≥ xi− ŷi−1) + ηi−1

∫ xi−ŷi−1

0

dE[Ui−1(xi− di)]
dxi

dFi(di)

=piP(Di ≥ xi− ŷi−1) + ηi−1

∫ xi−ŷi−1

0

{
pi−1P(Di−1 ≥ xi− di− ŷi−2)

+ ηi−2

∫ xi−di−ŷi−2

0

dE[Ui−2(xi− di− di−1)]
dxi

dFi−1(di−1)
}
dFi(di)

=piP(Di ≥ xi− ŷi−1) + ηi−1

∫ xi−ŷi−1

0

pi−1P(Di−1 ≥ xi− di− ŷi−2)dFi(di)

+ ηi−1ηi−2

∫ xi−ŷi−1

0

∫ xi−di−ŷi−2

0

dE[Ui−2(xi− di− di−1)]
dxi

dFi−1(di−1)dFi(di)

=piP(Di ≥ xi− ŷi−1) + ηi−1pi−1P(Di <xi− ŷi−1,Di +Di−1 ≥ xi− ŷi−2)

+ ηi−1ηi−2

∫ xi−ŷi−1

0

∫ xi−di−ŷi−2

0

dE[Ui−2(xi− di− di−1)]
dxi

dFi−1(di−1)dFi(di)

=piP(Di ≥ xi− ŷi−1) + ηi−1pi−1P(Di <xi− ŷi−1,Di +Di−1 ≥ xi− ŷi−2)

+ ηi−1ηi−2

∫ xi−ŷi−1

0

∫ xi−di−ŷi−2

0

{
pi−2P(Di−2 ≥ xi− di− di−1− ŷi−3)

+ ηi−3

∫ xi−di−di−1−ŷi−3

0

dE[Ui−3(xi− di− di−1− di−2)]
dxi

dFi−2(di−2)
}
dFi−1(di−1)dFi(di)

=piP(Di ≥ xi− ŷi−1) + ηi−1pi−1P(Di <xi− ŷi−1,Di +Di−1 ≥ xi− ŷi−2)

+ ηi−1ηi−2pi−2P(Di <xi− ŷi−1,Di +Di−1 <xi− ŷi−2,Di +Di−1 +Di−2 ≥ xi− ŷi−3)

+ ηi−1ηi−2ηi−3

∫ xi−ŷi−1

0

∫ xi−di−ŷi−2

0

∫ xi−di−di−1−ŷi−3

0

dE[Ui−3(xi− di− di−1− di−2)]
dxi

dFi−2(di−2)dFi−1(di−1)dFi(di)

= · · ·

=piP(Di ≥ xi− ŷi−1) + ηi−1pi−1P(Di <xi− ŷi−1,Di +Di−1 ≥ xi− ŷi−2)

+ ηi−1ηi−2pi−2P(Di <xi− ŷi−1,Di +Di−1 <xi− ŷi−2,Di +Di−1 +Di−2 ≥ xi− ŷi−3)

+ · · ·

+ ηi−1ηi−2 · · ·η1p1P(Di <xi− ŷi−1,Di +Di−1 <xi− ŷi−2, · · · ,Di + · · ·+D2 <xi− ŷ1,Di + · · ·+D1 ≥ xi).
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Lemma 7. For any i∈ {1,2, · · · , n− 1} and any x≥ ŷi,

dE[Ui(x)]

dx
≤ pi+1

ηi
,

where the strict equality holds when x= ŷi.

Proof of Lemma 7. By Lemma 6, we have

dE[Ui(x)]

dx

=piP(Di ≥ x− ŷi−1) + ηi−1pi−1P(Di <x− ŷi−1,Di−1 +Di ≥ x− ŷi−2)

+ ηi−1ηi−2pi−2P(Di <x− ŷi−1,Di−1 +Di <x− ŷi−2,Di−2 +Di−1 +Di ≥ x− ŷi−3) + · · ·

+ ηi−1ηi−2 · · ·η1p1P(Di <x− ŷi−1,Di−1 +Di <x− ŷi−2, · · · ,D2 + · · ·+Di <x− ŷ1,D1 +D2 + · · ·+Di ≥ x).
(38)

On the one hand, according to (8), for any x≥ ŷi,

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,D1 + · · ·+Di ≥ x)≤ pi+1

ηiηi−1 · · ·η1p1
, (39)

where the strict equality holds when x= ŷi. On the other hand, by Lemma 5, we have

P(D1 ≥ ŷ1,D1 +D2 ≥ ŷ2, · · · ,D1 + · · ·+Di−1 ≥ ŷi−1,D1 + · · ·+Di ≥ x)

=
pi

ηi−1ηi−2 · · ·η1p1
P(Di ≥ x− ŷi−1) +

pi−1
ηi−2ηi−3 · · ·η1p1

P(Di <x− ŷi−1,Di +Di−1 ≥ x− ŷi−2) + · · ·

+
p2
η1p1

P(Di <x− ŷi−1, · · · ,Di +Di−1 + · · ·+D3 <x− ŷ2,Di +Di−1 + · · ·+D2 ≥ x− ŷ1)

+ P(Di <x− ŷi−1, · · · ,Di +Di−1 + · · ·+D2 <x− ŷ1,Di +Di−1 + · · ·+D1 ≥ x). (40)

Combining (39) and (40) yields

piP(Di ≥ x− ŷi−1) + ηi−1pi−1P(Di <x− ŷi−1,Di−1 +Di ≥ x− ŷi−2) + · · ·

+ ηi−1ηi−2 · · ·η1p1P(Di <x− ŷi−1,Di−1 +Di <x− ŷi−2, · · · ,D2 + · · ·+Di <x− ŷ1,D1 +D2 + · · ·+Di ≥ x)

≤pi+1

ηi
,

where the strict equality holds when x= ŷi. It follows (38) that dE[Ui(x)]

dx
≤ pi+1

ηi
holds immediately.

Lemma 8. Taking derivative of V̂i(xi) with respect to xi yields

dV̂i(xi)

dxi
=piP(Di ≥ xi− ŷi−1) + pi−1P(Di <xi− ŷi−1,Di +Di−1 ≥ xi− ŷi−2)

+ pi−2P(Di <xi− ŷi−1,Di +Di−1 <xi− ŷi−2,Di +Di−1 +Di−2 ≥ xi− ŷi−3)

+ · · ·

+ p1P(Di <xi− ŷi−1,Di +Di−1 <xi− ŷi−2, · · · ,Di + · · ·+D2 <xi− ŷ1,Di + · · ·+D1 ≥ xi).
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Proof of Lemma 8. Recall that

V̂i(xi) = E
[
pimin{Di, xi− ŷi−1}+ V̂i−1(xi−min{Di, xi− ŷi−1})

]
.

Taking derivative with respect to xi follows the same process as that in Lemma 6 and thus the

detail is omitted.




