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Problem definition: This study investigates a seller’s allocation of a limited resource to sequentially arriv-
ing customers when the seller is influenced by two types of mental accounting bias: prospective accounting
(overestimating future revenue) and behavioral discounting (underestimating future revenue). Methodol-
ogy/results: We establish structural properties on how mental accounting affects capacity allocation deci-
sions and performance. Interestingly, while additional capacity consistently benefits the seller, the same does
not hold true for additional demands. That is, an additional class of demand can hurt the seller, depending
on the type of mental accounting. This is true even if the additional demand class has a higher reservation
price than existing ones. Managerial implications: This result highlights the importance for companies
to address and mitigate biases in decision-makers before embarking on market expansion initiatives through

promotions and advertising campaigns.
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All organizations, from General Motors down to single person households, have explicit and/or
implicit accounting systems. The accounting system often influences decisions in unexpected ways.

—Thaler (1985).

1. Introduction

Mental accounting refers to the cognitive processes individuals and households use to organize,
evaluate, and track their financial activities (Thaler 1985, 1999). It plays a pivotal role in decipher-
ing the complex psychology behind decision-making, offering a clear framework for understanding
various phenomena across fields such as consumer behavior (Thaler 1985, Heath and Soll 1996),
finance (Barberis and Huang 2001), accounting (Burgstahler and Dichev 1997) and operations man-
agement (Becker-Peth et al. 2013). The practical implications of mental accounting are observable
in real-world contexts. For example, Lungeanu and Weber (2021) highlight its impact on CEOs’
resource allocation decisions, emphasizing its crucial influence on corporate decision-making.

In this paper, we explore the impact of mental accounting on decision-making and its influence
on expected revenues in capacity allocation. This analysis is crucial, as many companies frequently

encounter challenges in effectively managing their capacity. For example, consider an independent



hotel that offers discounts to incentivize early bookings. The hotel may provide a steep discount for
guests who book several months in advance, a moderate discount for bookings made closer to the
stay date, and standard pricing for last-minute reservations. To maximize revenue, the hotel must
carefully determine how many rooms to allocate at each price tier. Overcommitting too many rooms
to early-booking discounts could leave it unable to meet demand from higher-paying last-minute
guests, while underallocating could result in unsold inventory during off-peak times, especially if
last-minute demand fails to materialize. Similarly, an upstream factory that manufactures winter
coats for retail partners faces seasonal demand and limited production capacity. Early in the season,
the factory may receive orders from discount retailers seeking low-cost inventory. However, fulfilling
too many of these early orders could exhaust capacity or raw materials, leaving the factory unable
to serve premium retailers who may place smaller but more profitable orders later in the season. The
factory must therefore decide how to balance short-term fulfillment against the strategic reservation
of capacity for higher-margin opportunities, all while considering uncertainties in future demand.

Furthermore, in this capacity allocation setting, studies consistently show significant deviations
from theoretically optimal decisions, with mental accounting behavior. For instance, despite nor-
mative frameworks such as Littlewood’s law in a key two-class setting of revenue management
(Littlewood 1972, Talluri et al. 2005), where sellers allocate limited resources between two cus-
tomer classes with different pricing and uncertain demand, and lower-priced customers arriving
before higher-priced ones, research has demonstrated that mental accounting biases participants
in controlled experiments (Kocabiyikoglu et al. 2018). Specifically, they value revenue differently
based on whether it was generated by early low-end customers or later high-end customers.

In response to this, this paper incorporates mental accounting bias into the two-class revenue
management model, including two forms of mental accounting: behavioral discounting, where the
seller undervalues revenue from later-arriving customers, and prospective accounting, where future
revenue is factored into the capacity allocation for earlier-arriving customers. We show that sellers
exhibit “over-protecting” or “under-protecting” behavior toward high-end customers when they
have prospective accounting and behavioral accounting, respectively. We extend our analysis to
a multi-class scenario where customers arrive sequentially, each class representing higher revenue
potential. In this more complex setting, incorporating mental accounting reveals patterns similar
to those observed in the two-class case: behavioral discounting leads to under-protection of future
demand, while prospective accounting results in over-protection. Consequently, we establish that
(i) capacity allocation simplifies to setting protection levels for each demand class, (ii) these protec-

tion levels are independent of overall capacity, and (iii) the seller’s revenue increases with capacity



but decreases with bias. We further explore the impact of introducing additional premium demand
(customers with higher reservation prices than existing ones) and additional basic demand (cus-
tomers with lower reservation prices). Although it seems intuitive that more demand would lead
to higher revenue, we find that such additional demand may actually harm the seller, depending
on the type of mental accounting.

Under behavioral discounting, while additional premium demand benefits the seller, additional
basic demand may not. Specifically, with the additional basic demand, the seller becomes less
inclined to reserve inventory for future demand, exacerbating their under-protecting bias under
behavioral discounting. This additional basic demand can hurt the seller if the associated loss out-
weighs the benefits of additional demand. For this effect to occur, the bias level must be sufficiently
high, because if the bias is low, the seller’s capacity allocation decisions remain closely aligned with
optimal protection levels, minimizing distortion. Moreover, capacity must be moderate relative to
total demand. If capacity is too high, resulting in unsold capacity, additional demand helps absorb
the capacity, boosting revenue. However, if capacity is too low and demand greatly exceeds avail-
ability, additional demand does not impact revenue, as the limited capacity cannot satisfy even
the original demand.

Under prospective accounting, we find that additional premium demand can paradoxically harm
the seller. This occurs because the seller overestimates future revenue, leading to excessive pro-
tection of future demand. This over-protection bias is exacerbated when higher protection levels
are required due to the introduction of premium demand, ultimately disadvantaging the seller
under two conditions: (i) when the bias level is moderate, neither too small nor too large,! and
(ii) when capacity is insufficient relative to demand, forcing the seller to allocate capacity (that
would otherwise be sold to low-end classes) for premium customers at the expense of overall perfor-
mance. This contrasts with the behavioral discounting case, where the seller tends to under-protect
future demands, and the higher protection levels driven by premium demand help mitigate the
under-protection bias, ultimately benefiting the seller.

Furthermore, we find that additional premium demand might be less valuable than additional
basic demand under prospective accounting because, although the premium demand can be harm-
ful, the additional basic demand is always beneficial for the seller. This is because introducing
additional basic demand effectively mitigates the seller’s over-protective behavior against selling
1 Note that if the bias is too large, the seller who extremely overvalues the future revenue may withhold product from
low-end classes, resulting in unsold capacity. In this case, the introduction of premium demand can help assimilate

the unsold capacity and benefit the seller. This is in contrast to the behavioral discounting case where the negative
result occurs when the bias is sufficiently large.



to earlier-arriving customers, ultimately benefiting the seller. This contrasts with the behavioral
discounting case, where the additional basic demand reinforces, rather than mitigates, the seller’s
bias towards being overly willing to sell to earlier-arriving customers, ultimately hurting the seller.

Overall, this paper shows that additional demand might harm the seller, while additional capacity
always benefits the seller. Moreover, the impact of extra demand hinges on how it interacts with,
offsets or amplifies, the seller’s existing behavioral bias, rather than on the inherent value of the

additional demand itself.

2. Literature Review and Our Contribution

Our study focuses on a seller allocating capacity, incorporating the concept of mental accounting.
As such, our work is related to two literature streams: capacity allocation and mental accounting.

Capacity Allocation. Our research is related to the extensive body of work on capacity allocation,
a facet of quantity-based revenue management starting from the seminal work of Littlewood (1972).
This stream of literature often divides customers into distinct classes, each characterized by unique
traits (Zhang and Cooper 2005, Van Ryzin and Vulcano 2008, Cao et al. 2022). Given that deriving
analytically tractable optimal allocation decisions can be elusive, this field primarily focuses on
establishing structural properties for optimal policies. These properties are valuable not only for
managerial insights but also for enabling efficient computation of optimal strategies.

The literature generally presupposes a rational seller striving to maximize expected revenue.
However, this does not consistently mirror real scenarios and experimental observations. For exam-
ple, Belobaba’s seminal work (1987b) on capacity allocation reveals that even in prominent contexts
like airline yield management, crucial decision elements remain reliant on human judgment rather
than systematic analysis; Cooper et al. (2006) also note airlines frequently make capacity alloca-
tion errors. In controlled experiments, Bearden et al. (2008) consider a seller managing a fixed
capacity over a season, and the seller must decide whether to accept or reject an arriving price
offer to purchase a unit of the product. They find that participants can wrongly accept or reject
an offer. In a similar design, Bendoly (2011) incorporates a decision support system to measure
stress levels via physiological markers. He finds that high capacity levels left at the end of the
booking horizon and the number of simultaneous tasks increase stress and induce decision errors.
Bendoly (2013) conducts similar experiments with hotel employees and finds that different levels of
feedback influence revenue performance. Kocabiyikoglu et al. (2015) study the two-class capacity
allocation problem and a closely related newsvendor problem, and find the behavior in these two
mathematically equivalent models does not align in the laboratory. Cesaret (2015) examines the

seller behavior in the two-class capacity allocation model with arbitrary arrivals, and finds that



participants often accept too many low-class customers. Cleophas and Schiietze (2024) study a
setting with stationary and nonstationary demand, and they observe that subjects might not be
able to accommodate a non-stationary demand.

Our work complements this literature by incorporating mental accounting, a prevalent cognitive
bias, into the seller’s decision-making to explore its theoretical implications within the context
of capacity allocation. Accordingly, we establish structural properties on how mental accounting
affects capacity allocation decisions: the seller’s decision simplifies to establishing a sequence of
nested protection levels for future demands, which deviate from the optimal. This echoes the liter-
ature showing that sellers frequently deviate from strict optimality while still employing decision
policies that mirror the optimal capacity allocation approach (Bearden et al. 2008, Cesaret 2015).
Moreover, we find that such a deviation of the protection levels may affect the value of demand
substantially, depending on the seller’s bias type.

Mental Accounting. Previous research has extensively examined mental accounting and its vari-
ous forms to better understand and explain decision-making behaviors. Thaler (1985) and Heath
and Soll (1996) incorporate mental accounting into utility functions, providing insights into behav-
ioral anomalies. Building on this, Prelec and Loewenstein (1998) present a seminal dynamic model
of mental accounting, emphasizing the role of prospective accounting. This model highlights the
forward-looking nature of human cognition, where individuals prioritize present and future pay-
ments during consumption, with past payments having minimal psychological impact. Likewise,
during payment transactions, the psychological discomfort associated with parting with money is
tempered primarily by the anticipation of future consumption, rather than being influenced by
past outlays. As a result, individuals often prefer prepayment, aligning the discomfort of paying
with the expected pleasure of future consumption.

In operations management, Becker-Peth et al. (2013) employ mental accounting to expound
upon newsvendor order decisions. Their study delineates between income derived from selling
products to consumers and income generated through product returns to suppliers, effectively
accounting for the source of income. Chen et al. (2013) propose the existence of two distinct mental
accounting paradigms that impact the ordering behavior of newsvendors: time discounting and
prospective accounting. The former entails a preference for receiving benefits sooner, while the latter
involves comprehensive consideration of future transactions, coupled with a relative discounting
of past transactions. In a mathematically equivant problem, namley two class capacity allocation
problem, Kocabiyikoglu et al. (2015) find that participants’ choices diverge markedly from the

optimal outcomes in controlled experiments, and mental accounting can explain such divergence



(Kocabiyikoglu et al. 2018). Accordingly, we extend the application of both time discounting and
prospective accounting to capacity allocation. We find that while greater capacity consistently
favors the seller, an increase in demand can inadvertently yield detrimental effects on the seller.
This is particularly significant, given that effective customer management often forms a pivotal

aspect of a seller’s operations decisions.

3. Mental Accounting

Consider the classical two-class model: a seller with a capacity C, and two customer classes with
associated reservation prices p; and p, (< p;) and demands D; and D,. Here, D; and D, are
random variables and independent of each other, and the cumulative distribution function of D,
is denoted by F'(-). The demand D, arrives earlier than demand D;. The seller decides how much
the second demand class to accept (i.e., the sales u for low-end customers) right after observing
the low-end demand d, but before the realization of the high-end demand:

ygag] pou(ds, Cy) + piE [D1 A (C = u(ds, C, ?/))} ; (1)

where
u(d, C,y) :=(C—y)" Nd, (2)

for any d,C,y >0, x* =max{z,0}, and Ay = min{z,y}. The seller’s problem can be formulated
as a problem of deciding the protection level y for high-end customers such that the seller sells
to low-end customers only if the capacity C exceeds the protection level. Accordingly, (C' —y)™
represents the maximum capacity the seller is willing to sell to low-end customers. The optimal
solution for (1) is represented as y* = F~1(3), where 3:=p,/p; and F(-)=1— F(-).

We now incorporate the notion of mental accounting into this classical capacity allocation frame-
work. In particular, the seller displays cognitive bias by valuing revenue from different customer
segments (high-end vs. low-end customers) unequally, and behaves as if solving

max sz(dz,ij)Jrn'plE[DlA (C_u(d27c7y)):|7 (3)

y€(0,C]

where 7 is the mental accounting parameter. In other words, with mental accounting, the seller
behaves as though it were maximizing (3) in lieu of maximizing (1). Note that 7 > 1 aligns with
the concept of prospective accounting as described by Prelec and Loewenstein (1998), in which
decision-makers anchor their evaluations to anticipated future outcomes. In this context, when
the seller collects revenue from low-end consumers, they simultaneously factor in the expectation

of future revenue, represented by piE[D; A (C — u(ds, C,y))]. This results in an overvaluation of



revenue from high-end consumers, particularly those arriving later in the sequence. Simultane-
ously, this can translate into a tendency to undervalue revenue from early-arriving low-end con-
sumers, thus exhibiting a form of bias consistent with prospective accounting. In another case when
n < 1, it resembles another well-established mental accounting principle: behavioral discounting.
Kocabiyikoglu et al. (2018) highlight the prevalence of these mental accounting dimensions among
participants in capacity allocation experiments; they use data from capacity allocation experiments
and estimate that the average level i of prospective accounting exhibited by participants can range
from 1.43 to 2.4, whereas the average level of behavioral discounting can range from 0.59 to 0.9.

Let 9(n) denote the solution of (3). Then, the seller’s ensued profit is

#(n) i=p2ulds, C, §(n)) +piE | Dy A (C = u(da, C. () | (4)

LEMMA 1. a) For a seller defined by the mental accounting parameter n, the protection level
9(n) increases in 1.
b) Moreover, the seller’s resulting revenue w(n) decreases in n when n>1 and increases in n

when n < 1.

Lemma la indicates that a seller’s protection level is increasing of its value of the mental account-
ing parameter 7). Intuitively, the larger 7, the seller values the revenue from high-end customers
more, and thus reserves more products for high-end customers. Hence, the protection level increases
in 7. Basically, under the behavioral discounting condition (n < 1), the biased seller’s decision
on the protection level is lower than the normative level (i.e., under-protecting the high-end cus-
tomers), while under the prospective accounting condition (1 > 1), the biased seller’s decision on
the protection level is higher than the normative level (i.e., over-protecting the high-end customers).
This behavior is observed in laboratory settings simulating a seller’s capacity allocation decision
(Kocabiyikoglu et al. 2018, 2015) and showing that the subjects in the experiments systematically
over or under protect the high-end consumers. Moreover, the larger the bias magnitude |n— 1], the
further the protection level deviates from the true optimal, and thus the lower the seller’s revenue.
Accordingly, Lemma 1b indicates that the seller’s revenue decreases in the level of prospective
accounting (7> 1) and increases in the level of behavioral accounting (n < 1).

We next extend the two-class setting to the general scenario involving n (> 2) classes, pioneered
by Belobaba (1987a,b). A seller, armed with a capacity C' (> 0), serves n classes of customers, each
associated with a random demand D, and a reservation price p;, where 1 <17 <n. The classes are

ordered such that

V
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This sequence manifests as class n customers entering the initial stage (stage n), followed by class
n — 1 customers in the subsequent stage (stage n — 1), and eventually culminating with class 1
customers in the final stage (stage 1). This staged progression mirrors the increasing revenue,
wherein class n arrives foremost and class 1 arrives last. Such an arrival process is quite common in
airline seat allocation problems (Belobaba 1987a,b, Brumelle and McGill 1993). Note that a one-to-
one correspondence exists between stages and classes within this n-class framework. Consequently,
the value of n serves a dual purpose, representing both the index of classes and the index of
stages. Similar to the two-class case, at each stage with remaining capacity x, the seller makes
sales decisions based on demand realization. This is akin to determining a protection level y, where
the demand is accepted if the remaining capacity surpasses y, and otherwise rejected. Accordingly,
given the capacity level x; and demand realization d; at stage i, the Bellman equation is

Vi(r;)= max pau(d;,;,y;-1) +E [Vi—l(l‘i — U(di,xmyi—ﬂ)}, for1<i<nandz; <C, (6)

0<y;_1<z;

where u(d;,z;,y;_1), defined in (2), represents the sales at stage i, with the boundary condi-
tion Vp(x) =0 for any x < C. The right-hand side of (6) comprises two components: the rev-
enue from class i demand (first term) and the value-to-go after selling to class ¢ demand (second
term). Ultimately, the seller’s decisions revolve around determining a sequence of protection levels
Yn-1y Yn—2, "'+, Y1, wherein y; is reserved for class ¢ (1 <i<n—1) and subsequent classes.

We now incorporate mental accounting into this n-class model framework. For i=n,n—1,--- 1,
the seller behaves as if solving

Ui(z;)= max piu(divﬂfi,yifl)+77i71E|:Ui71(1'i*u(divxivyifl))}v (7)

0<y;—1<z;

with the boundary condition Uy(x) =0 for any z < C. Here, n;_; is the mental accounting factor
for class i — 1, and n:={n,_1,Mn_2, -+ ;M1 }. The formulation (7) is rooted in the common practice
within marketing and economics, wherein the seller’s objective function is additively separable over
money and time (Prelec and Loewenstein 1998, Készegi and Rabin 2006). We also align with the
literature (O’Donoghue and Rabin 1999) by assuming that the seller possesses perfect foresight of
her future mental accounting behavior. In this paper, we focus on the case of behaviorial discounting
where 1 < 1 (Section 4) and the case of prospective accounting where 1 > 1 (Section 5).

Without loss of generality, we assume that the initial inventory C' is always greater than y,, ;.
Later, we show that the protection level decisions {y; :i =n —1,---,1} are independent of the
initial capacity C. Then, consider an instance where there exists an i € {n —1,n —2,--- ,1} such

that y; > C' > y;_1. In this scenario, the seller abstains from selling any product to classes n,



n—1,---, i+ 1. As a result, the original n-class problem reduces to an i-class problem where
class i customers arrive first. One can check that if y,_; < z,, then y,_; < x; holds for any ¢ €
{n—1,n—2,--- 1}, and thus the constraint 0 <y; ; <x; in (7) can reduce to y;_; > 0. We next
characterize the solution of the above dynamic program and the biased marginal value of capacity

AU;(z) :==Ep,[U;(z) = U;(z —1)].

PROPOSITION 1. a) Let {g;(n) :1<j <n—1} denote the solution to dynamic programming equa-
tions (7). Then, the optimal protection levels for j € {1,2,--- ,n—1} are jointly determined by n—1
probability equations:
P(Dy> s (m), D1+ Dy = ga(m). - Dy 4+ Dy = () ) = —LH— (8)
NiMj—1-Th
b) Moreover, for each i €{1,2,--- ,n—1}, g:(n) increases in n;.

¢) Furthermore, AU,;(x) is positive and decreasing in x for any i € {1,2,--- ,n—1}.

Proposition 1a shows that, with mental accounting, the seller’s capacity allocation decision can
be characterized by a series of protection levels which are jointly decided by n — 1 equations
as specified in (8). Proposition 1b generalizes the essence of Lemma la to encompass situations
involving multiple customer classes. Specifically, it indicates that the protection level g;(n) for each
class i increases in 7;. As n; grows, the seller allocates more resources to class ¢ and later classes,
prioritizing revenue accumulation from those classes. Proposition 1c¢ demonstrates that the biased
marginal value of capacity is positive and decreasing in the capacity level, i.e., the value function

is increasing and concave in the capacity level. For insights, note that

AU;(x)=p; P(D; >z —g;-1(n))
+n0im1picn P(D; <2 —9;21(n), Dy + Doy > @ — §i—2(n))
+

+Ni1Mi—2 P P<Di <x—Gi-1(m),- 7ZDj <33—3)1(77)aZDj Zx)- 9)
j=2 j=1

Here, 9,_, is the optimal protection level for class ¢ — 1 and later classes, so the maximum amount
of products that can be sold to class ¢ is  — g;_1. If D; > x — g;_1, the seller sells this unit of
product to class ¢ with a unit revenue p;, corresponding to the first term in (9). If D; <z —¢;_, but
the total demand of classes ¢ and i — 1 is greater than x — ;5 (the maximum amount of products
that can be sold to classes i and i — 1), then the seller does not sell this unit of product to class
i but sells to class ¢ — 1 with a unit revenue p;_;, corresponding to the second term in (9). We

continue in this fashion and, if the cumulative demand at each stage j (for 2 < j <) is smaller
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than the maximum amount of products that are allowed to sell by that stage, but the total demand
from all classes (class i to class 1) exceeds the capacity xz, then the seller sells to class 1 with a
unit revenue p;, corresponding to the last term in (9). At its core, capacity allocation involves
the trade-off between selling a product at a lower price and deferring the sale in anticipation of
higher future revenue, while facing the risk of unsold inventory. This trade-off is mathematically
akin to the trade-off in managing prices. Both strategies, i.e., limiting supply and raising prices,
can impact sales. Empirical evidence and controlled experiments consistently reveal that sellers
frequently deviate from strict optimality while still employing decision policies that mirror the
optimal approach (Bearden et al. 2008, Cesaret 2015).

Given the protection levels {g;(n):i=1,2,--- ,n— 1} characterized in Proposition 1, the seller’s

ensuing revenue is
Vi(z;) =E [Pz‘ min{D;,z; — Ji_1(n)} + Vi (z; —min{D;, z; — ?)i71(77)})] , for1<i<n, (10)

with the boundary condition ‘70(93) =0 for any z < C. That is, although the seller behaves as if

solving equations (7), her ensuing revenue is described by (10).

PROPOSITION 2. a) For any i€ {1,2,--- ,n}, Vl(x) decreases in n;_1 in the prospective accounting
case and increases in 1;_1 in the behavioral discounting case.
b) Moreover, TZ@) is increasing in x for any i € {1,2,--- ,n}.

In line with Lemma 1b, Proposition 2a demonstrates that, within the multi-class framework, the
seller’s profit diminishes as the bias intensifies. This outcome stems from the fact that a greater
bias, manifested through either prospective accounting or behavioral discounting, leads to more
pronounced deviations from the true optimal allocation decision as |7;_; — 1| rises. Additionally,
Proposition 2b establishes that the biased seller’s revenue escalates in relation to the remaining

capacity. This implies that the marginal value of capacity of the biased seller
AVi(z): = Vi(z) = Vi(x —1)
= pi P(Di > —9i-1(n))
+ pioa P(Di<z—9;-1(), Di+ D1 >~ 7 2(n))

_l’_

Y

+ o P(Di<a—gialm), . Y Di<a—gi(n), Y D;=e) (11)
j=2 j=1

is non-negative. That is, the seller’s supply or capacity retains its inherent value, irrespective of
the cognitive disposition of the seller. Rather, we next show that the value of demand might not

remain when the seller is biased.
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4. Behavioral Discounting

In the context of behavioral discounting, we examine the impact of additional demand that is
either (i) basic, with a lower reservation price compared to existing demand, or (ii) premium, with

a higher reservation price compared to existing demand.

4.1 Additional Basic Demand

When the additional demand is basic, there are n + 1-classes of customers with prices

p1>p2>”‘>pn >pn+1- (12)

In this scenario, compared to the baseline case described by (5), the prices p; and demands D; for
1 <7 <n remain unchanged. However, there is an additional customer segment characterized by
a lower reservation price p,; than that of the existing customers, along with a positive demand
D, ;. Then, the biased seller described by parameters {n,,n,_1,---,m } behaves as if solving (7)
fori=n+1,n,---,1. Accordingly, the protection levels in the additional demand case are identical
to the baseline case for all demand classes from stage n — 1 to stage 1, owing to the determination
rule (8) in Proposition 1.

Given an initial capacity level x and the protection level 3,(n) for class n (and the remaining

classes), the total expected revenue in the additional demand case is

VnJrl(x) =E Pn+1 min{DnJrla xr— gn(n)} + Vn (37 - min{Dn+1v X — Zjn(n)})} ’ (13)
where Vn(x) is the revenue in the baseline case. Intuition suggests that the seller gets higher revenue
when there is an additional class of demand. This is indeed the case for the unbiased case, where
the seller endowed with n + 1 classes of demand can at least mimic the decisions with n classes.

However, we next show this is not always true for the biased seller with behavioral discounting.

PROPOSITION 3. In the presence of behavioral discounting, there exist parameters such that
N AU, (2) < ppi1 < min{n, AU, (z — 1), AV, (x)}, under which the biased seller earns less revenue
with an additional basic demand—that is, Vi1 () < Vi, (z).

Proposition 3 reveals that additional demand can harm the seller. This is noteworthy because,
at a minimum, the seller could simply decline to serve the extra demand class, resulting in identical
revenue to the baseline case. In other words, if no product is sold to class n + 1, there would be
no difference in revenue between the two cases. Yet, ironically, Proposition 3 demonstrates that
by accommodating the additional demand class, the seller can actually earn less. For insights, in

the presence of behavioral discounting, a biased seller might choose to accept class n + 1 demand



12

if the immediate unit revenue p,,; exceeds the perceived (expected) marginal value of capacity
N, AU, (), where AU, (z) is defined by (9). However, this perceived marginal value is lower than
the actual marginal value of capacity defined in (11), i.e., 7, AU, (z) < AV, (z) due to n; <1 for
1 <i <n. Therefore, n, AU, (z) < ppi1 < AVn(x) might hold, i.e., the immediate unit revenue p,,
is higher than the perceived marginal value of capacity, but lower than the actual marginal value
of capacity. As a result, the decision to sell to the additional demand class proves detrimental, to
the point that it outweighs the immediate revenue gained from that class, ultimately harming the
seller.

We also provide insights into the conditions under which the result in Proposition 3 might occur.
First, the bias level should not be too small. As the bias approaches zero, the seller’s capacity
allocation aligns closely with the optimal levels. As a result, the seller’s revenue increases due
to the extra demand. However, when the bias is high, it causes significant deviations from the
optimal protection levels, and consequently, a negative impact on the value of additional demand
emerges. As per Figure 1a, the demand value, V,, (x)— v, (x), is negative when the bias is high (the

discounting parameter is small), and becomes positive as the discounting parameter approaches

to 1.
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Figure 1 The demand value Vn+1 (z)— Vn(:r) under behavioral discounting: For 1 <i <n+1, D; are independent
and identically distributed uniform variables on [0,10]. Moreover, p; = 500 and p;+1 = 0.8p;. In (a),
{179,775;7 . 77]1} is increasing, where 7,1 =7; +0.005, and 19 varies from 0.86 to 0.95. In (b), we use the
same increasing sequence for the values of {n; : 1 < < 15}: {ni5,714,...,m} = {0.855,0.86,...,0.925}
for the line n; < 1, and {m15,M14,...,m}={1,1,...,1} for the line n; = 1.

Second, capacity should be balanced relative to demand. When capacity significantly exceeds

demand, any additional demand becomes valuable as it absorbs the unused capacity. As shown
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in Figure la, at x = 50, the lack of additional capacity limits the ability to meet extra demand,
leading to a lower demand value; at = = 55, the extra capacity allows for greater demand fulfill-
ment, increasing the demand value. However, when capacity is too small, additional demand does
not contribute to revenue since it cannot even meet the original demand. Figure 1b depicts the
value of demand under different counts of demand classes (represented by the parameter n) while
maintaining a fixed capacity level of 50. It shows that when the seller is biased (n; <1 for all 7),
the value of demand declines from positive to negative as the number of demand classes increases.
Initially, with fewer demand classes, capacity exceeds demand, allowing each additional class to
generate profit, resulting in a positive demand value. Yet, as the number of demand classes n rises,
total demand approaches capacity, reducing the demand value. When n =9, the demand value
turns negative, consistent with Figure la. As the number of demand classes continues to increase
such that n > 10, the demand value starts to rise again, eventually stabilizing at zero. This is
because the protection level reaches the capacity limit, preventing the seller from fulfilling any
orders from lower demand classes. Consequently, the demand value remains at zero. It is worth
noting that, when the seller is unbiased (n; =1 for all ) in Figure 1b, the overall trend is similar,

but the demand value never falls below zero.

4.2 Additional Premium Demand

When the additional demand is premium, the demand has the following reservation prices:

Do >p1>pP2 > > P (14)

Compared to the baseline case defined by (5), this case introduces an extra demand with the highest
reservation price. We use {y":i=mn—1,---,1,0} to denote the protection levels in the premium
demand case. Given the capacity level x; and demand realization d; at stage ¢, the Bellman equation
for the above premium demand case is

Vi(x;))= max pu(d,z;,y" ") +E [V’;l (a:z — u(di,xi,yifl))] , fori>1and x; <C,

0<y*~1<az;

where u(d;, x;,y*""), as defined in (2), represents the sales at stage . In contrast to the baseline case
where the boundary condition is V;(-) = 0, the boundary condition now is the revenue generated
by the premium demand V°(z) := poE[min{ Dy, z,}] for any xy < C. Therefore, V, (z) < V"(x)
for any x, meaning that the premium demand is always beneficial for the unbiased seller. This is
because the extra demand class offers both an extra sales opportunity and a revenue source with

the highest selling price possible.
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We now incorporate the notation of mental accounting into the premium demand case defined

by (14). Then, at stage ¢, the seller behaves as if solving

U= ey ey ™) 4 [0 ()]

0<y*~I<az;

for i ={n,n —1,---,1}, and U°(zo) = V°(x¢). One can obtain the protection levels {g*(n):i =
0,1,---,n—1} by solving

N N . D;
P(Do=3°(m), Do+ Dy 23" (n), -+ Do+ -+ D; =7 (m) ) = e (15)
NiNj—1- - MNoPo

The seller may allocate products for the premium demand, leading to distinct protection levels

compared to the baseline case. Next, we compare these protection levels between the two cases.

LEMMA 2. Given m, the protection levels in the premium demand case are always higher than the

baseline case, i.e., §'(n) > 9;(n) fori=1,2,--- ,n—1.
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(a) Prospective Accounting (b) Behavioral Discounting

Figure 2  The protection levels ¢°(n) and §;(n): For 0<i <9, D; are ii.d. uniform variables on [0,10]. In (a),
ns = 1.18, n;—1 =n; +0.005, po =510, and p;+1 =29/30p;. In (b), ns =0.88, n;—1 =n; + 0.005, po = 510,
and Pit+1 = 08[)1

Intuitively, the seller needs to reserve a certain amount of products for the premium demand
which arrives at the latest with the highest reservation price. Consequently, the seller would reserve
more products when deciding protection levels for all other classes, i.e., the protection level at each
stage is higher in the premium demand case than in the baseline case; see Figure 2 for an illustration.
In this figure, the protection level gap remains consistently stable across stages (classes) between

the two cases: §° — ; ~ 9~ — 9;,_,. That is, the seller in the premium demand case allocates the
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same amount of capacity to each class ¢ (where 1 <7 <mn—1) as that in the baseline case, implying
that the capacity allocated for premium demand is drawn from what was originally allocated to

class n customers without premium demand.

Given the protection levels {¢*(n):i=0,1,--- ,n — 1}, the seller’s resulting revenue is
Vl(l'z) :=E|p;min{D;,z, — 9" ()} + vt (% —min{D;,x; — 17’1(?7)}) } ) (16)
fori=n,n—1,---,1, with the boundary condition Vo(xo) =V(z). Next, we compare the revenue

V" (2) with the baseline case V,,(z) defined in (10).
LEMMA 3. In the presence of behavioral discounting, V™(x) > V,,(x) always holds for any .

Unlike the basic demand with a lower reservation price, the premium demand consistently ben-
efits the seller. Under behavioral discounting, the biased seller typically under-protects future
demand. However, in the presence of premium demand, protection levels, representing the quantity
of product withheld for future sales, are generally higher than in the baseline case; see Lemma 2.
This suggests that the biased seller is more likely to delay sales and reserve products for future
premium demand, mitigating the impact of behavioral discounting on protection levels. As a result,
the premium demand scenario consistently yields higher revenue for the biased seller under behav-
ioral discounting, as shown in Figure 3. In addition, we make two observations in Figure 3. First,
the value of premium demand increases as the seller’s bias increases. For insights, as the seller
becomes more biased and applies greater discounts to future demand, their willingness to allocate
products to premium demand diminishes. This can benefit the seller, as reserving fewer/no prod-
ucts for premium demand results in higher revenue compared to the baseline case. Second, the
value of premium demand will not decline to zero as the number of demand class n rises. This is
because the protection level 4° is fixed, independent of the number of classes n. Hence, the actual
value of the products allocated to class 0 is fixed.

In sum, under behavioral discounting, the additional demand with a lower reservation price may
hurt the seller, whereas the premium demand with a higher reservation price always benefits the
seller. Note that under behavioral discounting, the seller tends to under-protect future demands.
When the additional demand with the lowest price arrives first, the seller is less willing to allocate
products to the future demand. This effect aligns with and exacerbates the seller’s under-protection
bias, ultimately hurting the seller’s revenue. Conversely, when the premium demand with the high-
est price arrives the latest, the seller is more willing to allocate products to the future demand. This
effect is opposite to the behavioral discounting bias. As a result, the higher protection level induced

by the premium demand helps alleviate the seller’s under-protection bias, eventually improving the
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Figure 3  The value of premium demand V" (z) — V;,(z) under behavioral discounting: For 1 <i <n, D; are i.i.d.

uniform variables on [0,10], and Do = PL-X + (1 — ;BL-)Y where X ~ N(1,€%), and Y ~ N(0,€?) for
a significantly low e. Moreover, po = 510, and p;+1 = 0.8p;. In (a), {ns,n2,---
Ni—1 =1; +0.005, and 73 varies from 0.86 to 0.95. In (b), {ns,n7, -+ ,n0} ={0.86,0.865,---,0.9} for the

line g = 0.86, and {ns,n7,--- ,no} = {0.92,0.925,--- ,0.96} for the line ng =0.92.

,Mo} is increasing, where

seller’s overall revenue. In essence, the impact of the additional basic and premium demands hinges
on how they interact with, offset or amplify, the seller’s existing behavioral biases. The premium
demand has a beneficial effect by counteracting the under-protection bias, whereas the additional

low-price demand reinforces and worsens that bias.

5. Prospective Accounting

Section 4 demonstrates that under behavioral discounting, the additional premium demand always
benefits the seller, whereas the additional basic demand may not. Next, we explore whether this
positive effect of additional premium demand on the seller still holds when it exhibits prospective

accounting.

5.1 Additional Premium Demand

PROPOSITION 4. In the presence of prospective accounting, there exist parameters under which the

biased seller earns less revenue with premium demand—that is, V" (x) < V,,(z).

Proposition 4 shows that the premium demand can hurt the seller under prospective accounting,
i.e., the disadvantage attributed to more demand remains valid even if the additional demand is
premium. Under certain conditions, the seller reserves one unit of product for class 0 customers

(9° =1), and the difference between protection levels in the premium demand case and the baseline
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case remains constant such that ¢ —¢; =1 for each i € {1,2,--- ,n — 1}; see Figure 2. This implies
that the single unit reserved for class 0 is effectively taken from the capacity originally allocated to
class n customers in the absence of premium demand. Consequently, the revenue difference between
the premium demand case and the baseline case hinges on the revenue generated by this single
unit of capacity. In the premium demand case, the expected revenue of this unit of capacity is

b1 :&

poP(Do > QO) = Do
MoPo Mo

(17)

On the other hand, in the baseline case, this unit of product may be sold to class n, class n — 1,

-+, or class 1, the expected revenue of which is equal to the marginal value of capacity AV, (x),
as specified in (11). As long as > | D; >z, this product can be sold for certain, and the revenue
is a weighted average of prices {p;:i=1,2,--- ,n}. It can be greater than f}—; when n is small and
1o is sufficiently large. As a result, the premium demand case can lead to a lower revenue than the
baseline case.

For insights, in the presence of premium demand, the protection levels are generally higher
compared to the baseline case without premium demand. When the seller exhibits a prospective
accounting bias and overvalues the revenue from future demand classes, they tend to over-protect
those future demands. Thus, the higher protection levels driven by the premium demand exacerbate
the seller’s over-protection bias, ultimately hurting the seller. This contrasts with the behavioral
discounting case, where the seller tends to under-protect future demands, and the higher protection
levels driven by premium demand help mitigate the under-protection bias, ultimately benefiting
the seller.

We also provide insights into the conditions under which the result in Proposition 4 might occur.
First, the bias level should be moderate, neither too small nor too large; see Figure 4a for an
illustration. When the bias level is sufficiently small, the seller approaches rational behavior, and
the protection levels align with the true optimal levels. In this case, introducing premium demand
would increase the seller’s revenue as expected. However, when the bias level becomes very large
where the seller overvalues the revenue from the high-end classes and withholds product from the
low-end classes, the protection levels become highly distorted and result in unsold capacity. In such
cases, the introduction of premium demand can help assimilate the unsold capacity and benefit
the seller. This is in contrast to the behavioral discounting case where the result in Proposition 3
occurs when the bias level is sufficiently large.

Second, the capacity should not be too large relative to the aggregated demand. If the capacity

is too large, the inventory surpasses the demand, and any additional demand (including premium
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Figure 4  The value of premium demand V" (z) — Vi, (z) under prospective accounting: For 1 <i<mn, D; are i.i.d.

uniform variables on [0, 10], and Do = -2L- X + (1 — -2L)Y where X ~ N(1,¢?) and Y ~ N (0, €?) for a sig-

n0Po n0Po
nificantly low e. Moreover, po = 510, and p;4+1 = 29/30p;. In (a), {n3,m2,71, 7m0 } is increasing, where n;_1 =

7:+0.005, and ns varies from 1.1 to 1.2. In (b), we adopt the same increasing sequences: {5,714, -+ ,mo} =
{1.085,1.09,---,1.11} for the line s = 1.085, and {ns,n4, -+ ,mo} = {1.165,1.17,--- ,1.19} for the line
15 = 1.165.

demand) helps assimilate the excess inventory, thereby benefiting the seller. If the capacity is too
small, recall that in the behavioral discounting case, any additional demand has no impact on the
seller’s revenue as the finite capacity cannot even fulfill the original demand. In contrast, in the
prospective accounting case, the allocation to premium demand remains fixed according to (15),
regardless of changes in capacity or demand count. Therefore, even if the demand is far beyond
the capacity, the allocation to premium demand can harm the seller’s revenue because the revenue
reduction due to the allocation remains fixed; see Figure 4b for an illustration. In Figure 4b, the
protection level §° is fixed at 1, independent of the number of classes n. Therefore, the actual
expected revenue of the product allocated to class 0 is fixed, as shown in (17). On the other hand,
because 73 > 14, due to the limited inventory, the seller does not sell any product to class 4, class 5,
and any inferior classes as n increases. This means that the expected revenue of that product
(allocated to class 0 in the premium demand case) in the baseline case, as specified in (11), is also

fixed. Comparing (17) with (11) leads to a fixed negative value of the premium demand.

5.2 Additional Basic Demand

So far, we have shown that the additional premium demand is not necessarily a plus for the seller.
Then, it seems less surprising that the additional basic demand might hurt the seller under some

conditions (as shown in Proposition 3), given that the premium demand has a higher reservation
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price than the basic demand. However, Lemma 4 below shows that the additional basic demand
is always beneficial for the seller under prospective accounting, even though it seems less valuable

than the premium demand.
LEMMA 4. In the presence of prospective accounting, Vnﬂ(x) > Vn(m) always holds for any x.

For insights, with the additional basic demand, the seller becomes more inclined to sell to these
customers when they arrive. Under prospective accounting, the seller overvalues the revenue from
future demand and is therefore less willing to sell to earlier-arrived customers. This effect is oppo-
site to the direct impact of introducing the new customer class. As a result, the additional demand
essentially counteracts the seller’s bias towards being less willing to sell to earlier-arrived cus-
tomers, eventually benefiting the seller’s overall performance. This contrasts with the behavioral
discounting case, where the seller discounts the future demand and is thus more willing to sell to
earlier-arrived customers, which amplifies the direct impact of introducing the new customer class.
Consequently, under behavioral discounting, the additional demand reinforces, rather than miti-
gates, the seller’s bias towards being overly willing to sell to earlier-arrived customers, ultimately

hurting the seller’s revenue.
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Figure 5  The demand value Vn+1(x) - Vn(x) under prospective accounting: For 1 <i<mn+ 1, D, are inde-
pendent and identically distributed uniform variables on [0,10]. Moreover, p1 = 500 and p;+1 =
0.8p;. In (a), {ne,ms, -+ ,m} is increasing, where n;_1 = n; + 0.005, and 79 varies from 1 to 1.1.
In (b), {mo,m9, -+ ,m} = {1.08,1.085,---,1.125} for the line no = 1.08, and {nio,ne, -, m} =
{1.12,1.125,--- ,1.165} for the line n10 = 1.12.

Figure 5 illustrates the demand value Vnﬂ(:ﬂ) — Vn(a:) under prospective accounting. As per this

figure, V1 (x)— Vn(:c) is higher when x = 55 than x = 50 because the scarcity in capacity can limit
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the value of additional demand. Moreover, V, 4 (x) — V,(z) = 0 when 7, is sufficiently high, where
the seller overvalues the future demands, so that it might not sell to the additional customers.
Finally, Vn+1(x) - Vn(az) decreases with n, i.e., the value of additional demand diminishes to zero
as existing demands increase.

To summarize, under the prospective accounting bias, where the seller tends to over-protect
future demands, the additional demand with a lower reservation price always benefits the seller,
whereas the premium demand with a higher reservation price may hurt the seller. When the addi-
tional demand with the lowest price arrives first, the seller is less willing to allocate products to
the future demand. This effect is opposite to and alleviates the seller’s over-protection bias, ulti-
mately improving the seller’s revenue. Conversely, when the premium demand with the highest
price arrives at the latest, the seller is more willing to allocate products to future demand. This
effect aligns with and exacerbates the seller’s over-protection bias under prospective accounting,
eventually leading to a negative impact on the seller’s overall revenue. Similar to the scenario under
behavioral discounting, the impact of the additional and premium demands hinges on how they
interact with, offset or amplify, the seller’s existing bias. The additional low-price demand has a
beneficial effect by counteracting the over-protection bias, whereas the premium demand reinforces
and worsens that bias. The key distinction is that under prospective accounting, the seller’s ten-
dency is to over-protect future demands, in contrast to the under-protection bias observed under

behavioral discounting.

6. Conclusion

In this paper, we investigate a capacity allocation problem in which the manager exhibits men-
tal accounting bias: prospective accounting and behavioral discounting. In prospective accounting,
biased sellers consistently overvalue future demand and allocate excessive capacity to accommo-
date it. On the other hand, in behavioral discounting, biased sellers undervalue future demand
and allocate insufficient capacity. Contrary to expectations, additional demand does not always
translate into higher earnings. The outcome depends on the type of mental accounting and the
nature of the demand, sometimes resulting in lower revenue despite the presence of extra demand.

One of the key challenges in operations management is effectively balancing supply and demand.
Companies must ensure the availability of resources while stimulating demand for their products
or services. For example, an independent hotel might invest in expanding its facilities by adding
more rooms or enhancing amenities. Alternatively, it might allocate significant resources to pro-

motions and advertising campaigns aimed at expanding its market and attracting new customer
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segments. Our research suggests that companies should prioritize capacity expansion, as it consis-
tently increases revenue regardless of the cognitive biases of decision-makers. However, if a company
invests resources solely in attracting additional customers, our findings indicate that even success-
ful efforts may not be beneficial. Specifically, attracting more customers can potentially reduce a
company’s revenue while increasing promotional and advertising costs. This paradox arises because
the seller’s cognitive biases significantly influence how demand impacts profitability. In cases of
behavioral discounting, biased sellers may not benefit from increased demand from low-end cus-
tomers. Conversely, with prospective accounting biases, targeting high-end customers can lead to
negative consequences. In a similar vein, attracting more premium demand is not necessarily better
than attracting more basic demand.

Given these findings, it is crucial for companies to address and mitigate the cognitive biases
of their decision-makers before implementing demand management strategies. By proactively de-
biasing decision-making processes, companies can make more informed and rational choices when
targeting new markets. Optimizing the allocation of resources and capacity in this way allows them
to maximize outcomes and enhance the overall effectiveness of their demand management efforts.
In summary, companies should not only focus on increasing demand and managing supply but also
consider the cognitive biases of their decision-makers. By implementing de-biasing strategies, they
can optimize their expansion plans and improve their overall success in new markets.

With limited analytical exploration of managerial behavior, several research directions can use-
fully be pursued in the future. First, in our model, earlier consumers consistently have lower reser-
vation prices compared to later arrivals. A valuable extension would be to relax this assumption,
allowing for the possibility that later arrivals may not necessarily have higher reservation prices.
Second, we acknowledge that other behavioral biases, such as regret, may also exist. Therefore,
similar to Long and Wu (2024), future research could explore a more general model incorporating
different functional forms to capture both regret and mental accounting. This is interesting because
regret fundamentally differs from mental accounting in several ways—for example, the rule used
to determine optimal protection levels in the two-class model does not generalize to a multi-class
setting when regret is taken into account. Third, the seller is a price-taker. It would be interesting
to consider a price-setter who must decide prices to sell capacity. Fourth, our analytical study could
be extended to experimental or empirical contexts. Future research can follow approaches provided
in the literature to test different types of mental accounting and then accordingly determine their

impacts on capacity allocation.
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Appendix: Proofs

Proof of Lemma 1. a) If d, < C' —y, the objective function of (3) pads + np1E[min{D;,C — ds}]
is independent of y. If dy > C' — y, then the first-order-condition of (3) is p, — np F(y) =0 =
F(g(n)) = % Accordingly, §(n) increases in 7).

b) If dy < C' — g, then 7(n) = pads + p1E[min{D;, C — d,}] is independent of . If dy > C — g, 7(n) =
p2(C —§) + p1E[min{ D, §}] and its derivative with respect to 7 is —ps + p1F(§) = —ps +p17§% =

p2(1/n—1). Therefore, 7(n) increases in y when 1 <1 and decreases in § when 1 > 1. According to

Lemma la, g(n) increases in 7, so 7(n) increases in 7 when 7 <1 and decreases in 7 when > 1. ®

Proof of Proposition 1. Part (a): We show this result by induction. When i =1, F(§;) = £2-.

mpP1

Suppose

Di

P(Dy>91,D1+Dy>0a,-++ D14+ D1 >0Gi1) =
Ni—1Mi—2 " TpP1

(18)

holds. Let h(z) = p;y min{d; 1,z — 4;} + E[U;(x — min{d; 1,2 — 9;})]. If iy <z — G5, h(x) =
Piv1div1 + ME[U;(x — di11)] is independent of gy;. Hereafter, we assume d; 1 > = — ¢;. Then,

~ ~ xT E (0 ~ ~
h(ﬂf) :pi+1(33 - yi) + mE[Ui(yi)], and “z) — —Pi+1 + in = —Pi+t1+ mpiP(Di > Y — %‘-1) +

dy; dg;

NiNi—1Pi-1P(Ds < i — Gic1, Dica + Di 2 G — Ji—2) + mimti—1Mi—2pi—2P(Di < i — 9i-1, Dica + D; <
Ui = Gi-2,Dima + Doy + Di > §i — §im3) + -+ mimima - mpiP(Di < G — i1, Dic + Di < 93 —
Yi—oy» y Do+ +D; <4i—41,D1+Dy+---+D; > ;) =0, where the second equality holds because
of Lemma 6 (in online appendix). Moving p;,; to the right hand side and dividing n;nm;_1 - - 71p1
on both sides yields

L p(Di> )+ —L
Ni—1Mi—2 - TpP1 Ni—2Mi—3 - TP

Pize P(D; <¥i—Yi—1,Di1 +D; < Ui — Y2, Di o+ D1 +D; > 4 — §i—3) +- -
Ni—3Mi—4 """ TP1

+P(D; <9 — Yie1, Dica + D <Gy — Yim2y-- Do+ -4+ D; <Gy — Y1, D1 + Do+ - + D; > 3;)

I e S (19)
NiMi—1" " TpP1

P(D; <yi—Yi—1,Dic1 + D > 9 — §i—2)

In addition, as (18) holds, Lemma 5 (in online appendix) implies that

P(Di >4, D1+Dy>9s,--+ D1+ +D;_1>9;_1,D1+---+D; > 7;)
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= b P(Di > §i — 1) + ————P(Di < §i — i1, Di+ Di 1y > G — Gia) + -
Ni—1Mi—2 - TpP1 i—21i—-3 - ThP1
+np;P(Di<§i—ﬁi—1,“',Di+D¢—1+"'+D3<ﬂi—§2,Di+Di—1+"‘+D2Z,’Qi—ﬁl)
1P1

+P(D; <9i—Yi—1, - Di+Di1 4+ Dy <y — 1, D; + Di_1 +-- -+ Dy > 1;). (20)

Combining (19) and (20) gives Equation (8).
Part (b): Let f(ni—1,yi—1) = p; min{d;, z; — y;_1 } + ;i1 E[U;_1 (z; — min{d;, x; — y;_1 })]. Then,

0
anf ) =E |:U1'_1<$1' — mll’l{d“l'z — yz—l})] s
82f (9E |:Ui—1($i - min{di, €T; — %—1})} dE[Ui—l(xi—l)] 8%‘-1
Oni—1-0Yi—1 B 0Yi—1 B dx; 0Yi—1 '
Note that z;_; = z; — min{d;,x; — y,_1} weakly increases in y; 1, so % > 0. Moreover,
dE[Uji;%w > 0 by Lemma 6. Therefore, % >0, ie., f(mi—1,9i—1) is submodular with

respect to 1;_; and y; ;. As a result, §;_; increases in n;_;.
Part (c): Lemma 6 shows that w >0, which implies that AU;(x) > 0. Next, we show that

% decreases in x. First, (U ()] =p P(Dy, > ),

AU, (x) decreases in x. It suffices to show o

dE[U;_1(2)]

dE[U;(2)]
dz dz

which decreases in x. Suppose decreases in x, and then we expect to show

decreases in . Observe that
E[Ui(z)] = Ep, |pi min{D;, — §;_1} + ni-1Ep,_, (U1 (z —min{D;,r — 3?1—1})]] .

Taking derivative with respect to x yields

dE[U; ()]
dz

Uiy (z—d;)]
dz

) e—gi—1 dE|
=p,P(D;>x—9y;_1)+ Ni—1 dF;(d;).
0

dE[U;_1 (z—dy)]

Observe that the term p; is independent of z, while the term 7;_; -

in the integral

decreases in x by our supposition. Therefore, to show % decreases in z, it suffices to show

pi > ni,lw. One can check p; — ni,lw > p; — i1, = 0, where the last

inequality holds because of Lemma 7 (in online appendix). This establishes that AU, (x) decreases
in z. ]
Proof of Proposition 2. Part (a): It suffices to investigate how Vi(z) changes with f;_i,
because ¢;_; increases in 7,_; for each i € {1,2,--- ,n} by Proposition 1b. From Viﬂ(miﬂ) =
E|pipamin{D; 1, x;01 — Ui} + Vi(miﬂ —min{D;1,T;i41 — g)z})} , we have

d‘7i+1 (l’i+1)
dy;

=P(Dj11 > x; _Ai{_i ~
(Diy1 > @iy1 — Ui){ — Pis1 + i,
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:P(Di+l > Tiy1 — Z)z){ — Di+1 +piP(Di > ?}z - @z‘—l)
+0iaP(D; <9 = Yic1, Di + Dica 29 — Yim2) + -+ (21)
+pP(D; <9 —Yie1,- , Di+Din+---+Da <9 —91,Di + Di1+---+ Dy Zﬂi)},

where the last equality holds by Lemma 8 (in online appendix).
At optimality, the opportunity cost of the ¢;th inventory is equal to the immediate revenue p;
by selling that inventory to class ¢ 4+ 1 customers directly; that is,

dE[Ui1(2iy1)]

dE[U:(9:)]\
0 7} —0.

=P(Dip1 > w1 — @z){ —Diy1+ M i

Therefore,

dE[U;(9:))
dy;
+nini—1 - -mpiP(D; <Yi —Yic1, - s Di+Dicqv 4+ Dy <yi — 1, Di + Diqy + -+ Dy > 4;),

Dit1 =1 =0 P(Di > i — Y1) +0inic1pia P(Ds < G — 9im1, Di + Di1 > G — Gi—2) + -+

where the last equality holds because of Lemma 6. Plugging p;,; into (21) yields
dvi+1(33i+1)
d;
{(1 —n)piP(Di > G — i1) + (L= nimi—1)pia P(Di < §i — Gic1, Di+ Dioy 2 95 — Gia) + -
+ (X =nnicr )P P(D; <G — Gimny -, Di+ Dy + -+ Do <9y =91, Dy + Dioy + -+ -+ Dy > Qz)}7

= P(Di+1 > Xjp1 — Z)z)

which is positive if n; < 1 for each ¢ and negative if n; > 1 for each i. As a result, the seller’s
resulting revenue ‘71-+1($i+1) increases in ¢; in the behavioral discounting case and decreases in ¥;
in the prospective accounting case. This completes the proof of Part (a).

Part (b): We prove this result by induction. It is easy to see that V;(z) = E[p, min{D;,z}] increases
in z. Suppose V;_;(z) increases in x, and then we would like to show that V;(z) increases in .
According to (10), Vi(z) =E|p; min{Di,3:—g)i_l}—i—f/;_l(a:—min{Di,m—gi_l})}. As x —min{D;,z—
¥i—1} weakly increases in x and Vi,l(m) increases in x, the second term in the square brackets
increases in x. Note that the first term also weakly increases in z, so it follows immediately that
Vi(z) increases in z. This completes the proof of Part (b). |
Proof of Proposition 3. We first provide the conditions under which 7,AU, () < ppi1 <
min{n, AU, (z — 1),AVn(m)} holds: The parameters x, p1, pnt1, N, D1, Da, -+, D, satisfy

pn+1

MMt TP1
(22)

P(D12g17D1+D2ZQ25”')D1+”'+Dn—1Zgn—17D1+"'+Dan_6):

Pr+1

Mh—1Tn—2"""TpP1 ’
(23)

P(Di >4, D1+D2>9s,-- D1+ +Dp1>9p1,D1+---+ D, >x)>
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where 0 < e < 1. Equation (22) implies that ¢, = x — ¢, which means that only 0 < e <1 unit of
product is allowed to sell to class n+ 1 in the additional demand case. Although the left hand side
probability in (23) is smaller than the left hand side probability in (22) because x > x — ¢, (23)
implies that the left hand side probability cannot be too small. There always exist multiple sets
of parameters that satisfy these two properties. Below, we show (22) and (23) imply 1, AU, (z) <
Pryr <min{n, AU, (z — 1), AV, (z)}.

First, by Lemma 5, we have

P(Dy> 9, D1+ Dy >9a,-++ D1+ +Dy 1 >y1,D1+---+ D, >x)

pn P(Dnz.f—@n_l)—i— pn—l

- P<Dn<x_gn—l>Dn+Dn—lZx_yAn—2)+"'
Mn—1Mn—2 """ Tp1 NMn—2Mn—3 TP

+np]29 P(D,<z—9y-1,Dp+ Dy 1 <T—Yp_2,- ,Dyp+-+Ds<x—9o, Dy +---+ Dy > — 1)
1P1
+P(D, <z —9p-1,D0+ Dy 1 <z —Yp_2, -, Dy+---+Dy<x—141,D,+---+ Dy >zx). (24)

On the other hand, by (23), we have

pn+1

P(D: >4, Di1+D>>9s,- ,D1+---+Dp 1 >Yp1,D1+---+D, >x)> .
NMn—-1Mn—2"""MTp1

Therefore,

Pt SPuP (D > = Gn1) +M01Pn1P(Dn <2 = Gp1, D+ Dy 22— Ja) + -+
+ 1Mz pP(Dy <z =901, D0+ Dy 1 <x—Gp_9,- ,Dypy+--+D3<x—102,D,,++--+ Dy >x—171)
+ 12 mpiP(Dn <z —901,D0+ Dy 1 <=9y 9, ,Dypy+--+Dy<x—01,D,,+---+ Dy >2x)
<puP(Dyp > —Gn-1) +Ppn1P(Dp <x—Gp_1,Dp1+Dp>x—0p_2)
+pnoP(Dy<x—8n1,Dp 1+ Dy <=9y 9,Dp o+ Dy 1+Dy>x— 0 3)+- -
+pP(D, <2 —9p-1,Dh 1+ D, <x—Yp_9,--,Do+---+D, <x—9,D1+ Dy +---+ D, >x)

=AV,(z), (25)

where the last equality holds because of Lemma 8.
Second, (22) implies that
P(D1>91,D14+Ds> 9o, D14+ D1 >Gp1,D1+---+D, >2) < L (26)
MMn—1"""TpP1
Combining (26) and (24) gives

Pn+1 >77npnP(Dn 2 T — y\nfl) +77n77n71pn71P(-Dn <x— y\nflv Dn + anl 2 T — g)n72) + -
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+77n77n—1"'772p2P(Dn<x_yn—17"' 7Dn++D3<$_y27Dn++D22x_gl)
+nn7]n—1'”n1p1P(-Dn<x_gn—17"' 7Dn++D2<$—@1,Dn++D1Z$)
=1, AU, (), (27)

where the above equality holds because of Lemma 6.

Third, (22) implies that

P(Dy > 41, D1+ Dy > o, -+ ,D1+”‘+Dn—1Z@n_1,D1+~-+DnZ$—1)>p”—+l.
Nntn—1-""1TP1
(28

By Lemma 5, we have

P(DIZQI7D1+D2ZZ}27“' aD1+"'+Dn71ZgnflaDl_‘_""{'Dan_l)

— pn P(Dnzx_l_gn_l)_'_ pn—l
Mn—1Mn—2"""MpP1 Mn—2Mn—3 " TpP1

P(Dn<$_1_gn—1aDn+Dn—lZw_l_y71—2)+"'

+7]p]29 P(Dn<$717:gnfl7Dn+Dn71<x717gn725aDn++D3<$*1*g2aDn++D22'T*]-7g1)
1M1
+PD,<x—1-9p 1, D+ D, 1 <x—1—9, o, Dy+-+Dy<x—1—9,D,+---+ Dy >x—1).

(29)
Combining (28) and (29) gives

Pn+1 <T]npnP(Dn Zx_1_gn—l)+nnnn—1pn—1P<Dn<x_1_gn—17Dn+Dn—1 Z:U_l_gn—Q)_‘_
+77n77n—1"'772p2P(Dn<x_1_:’gn—17'” ,D7L+"'+D3<37—1—@27Dn+"‘+D2237—1—@1)
+77n7]n71"'771p1P(Dn<55_1_Qn717”‘ 7Dn++D2<95—1—?)1,Dn++D125U—1)

=1, AU, (x —1). (30)

Now, we show that under condition 7, AU, (z) < ppi1 < min{n, AU, (z — 1), AV, (2)}, Vi (z) <
V,,(x) holds immediately. From E[U, ()] = E[pn41 min{D, 1,2 — jn } + 1 E[U, (x —min{ D, ,,, x —
Un})]], we have

dE[Up11(2)]

dE[U, ()]
g, Sy

:P(Dn+12$_§n){_pn+l+nﬂ d:g

which implies that p,+1 =1,AU,(9,). Since n, AU, (z — 1) > p,+1 >0, AU, (x), we have AU, (x —

1) > AU, (9n) > AU, (z). Note that AU, (x) decreases in = by Proposition 1lc, so z — 1<y, < x.

That is, the seller allocates € unit of product to class n+ 1 customers, where 0 < e < 1. Also, from
Vn+1<m) =E [pn+1 min{Dn+17m - an} + Vn(x - min{Dn—Ha T — gn})}

=E {pnﬂ min{D,, 1, €} + V,(z —min{D,,;, e})}
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:/ {pn+1dn+1 + ‘A/vn(aj - dn+1)}an+1(dn+1) + / {pn+1€ + Vn(x - 6)}an+1(dn+1)7
0 €

we have

Vntl(x) V() N
{praduss 4 Ve = dus) }iFradsn) + [ {pusset Vala = O JaFrus(dien)

0

/ n an+1 n+1) - / Vn(w)an-&-l(dn—&-l)

= [ {oniiton + o = o) = V@) JaF s i)+ [ {paine + Vo =0 = Vo) B ().
0 €

Note that when 0 <e <1,

A

Pni1€+ Vn(:n —€)— Vn(x) = e{pnﬂ — Valz) = :/"(x ) } = e{pnﬂ — AVn(x)} <0.

Similarly, one can show p,1d, 1 + V., (x —dpi1) — v, (z) < 0. Therefore, Vn+1(x) < Vn(x) ]
Proof of Lemma 2. From P(D, > 9°) = nﬁizl)o and P(Dy > 91,D1+ Dy > 4o+, D1+ -+ D; >
9;) = —2F— we have P(Dy > §°, Dy > §1,D1 + Dy > Go,+++ , Dy + -+ D; > ;) = — 2+

NiNi—1-N1P1’° NiNi—1-1M0P0

Therefore, for each i € {1,2,--- ,n—1},
P(Do>9°, D1 > 41, D1+ Dy >, , Dy + -+ D; > 19;)
=P(Dy>4°, Do+ D, >9",--+ Do+ Dy +---+D; >4"). (31)
Now, we show ¢° > ¢; by induction. When i =1, (31) reduces to
P(Dy > 9% Dy >4) =P(Dy >4°, Do+ D1 > 9"). (32)

Suppose §' < 9, for a contradiction. Then P(Dgy > 9° D > 91) = P(D; > 41| Dg > §°)P(Dy > 9°) <
P(Dy + Dy > 4Dy > §°)P(Dg > §°) = P(Dy > 4°, Dy + Dy > '), contradicting (32), where the
above inequality holds because §' < ;. Suppose 9~ > 9,_; holds, and we would like to show

9" > 9;. Suppose §* < §; for a contradiction. Note that
P(Di+-+D; >4;|Dy>4°, D1 > §1,D1 + Dy > Go, -+ , D14+ D;_1 > §;_1)
=P(Dy+--+D;i 29| D1+ + D1 > g;1),
P(Do+ Dy +--+D; >§[Dy>§°, Do+ Dy > 3", , Do+ Dy+-++Di_y > ')
=P(Do+ D1+ +D; >9|Do+Dy+--+D; 1 >§").
Because ¢! > ;_; and ¢’ < 4;, it follows immediately that

P(D1+‘l‘DZZQl’Dl‘f‘+D1,12g171)<P(D0+D1++D12Q1|D0+D1++DZ 1>g2 1)
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Therefore,

P(Dy+--+D;>9;|Do>9°, D1 >41,D1+ Dy > Gy -+, Di++-+D; 1 > G 1)

<P(Dy+Di+--+D; >4 |Dy>9°, Do+ D1 >9",-+ ,Do+ D1+ +D;_1 >4 ). (33)
One can check

P(Do>4°,D1 > §1,D1+ Dy >, -+, D1+ -+ D; > 1)
=P(Dy+-+-+D; > §;|Do >49°, D1 > §1,D1 + Dy > G, , Dy 4+ +Di_y > §i_1)
‘P(Dy>9°,D1 > G1,D14+ Do >, ,Di+-++Di1 > 1)
<P(Dy+Di+--+D; >§'|Dy>4°, Do+ Dy > 4", ,Do+Dy+---+D;_1 >§"")
‘P(Do>9° Do+D1>9',--+ ,Do+Dy+---+Diy 297")
=P(Dy>9", Do+ D1 >9",-- Do+ Dy +---+D; > 4),
contradicting (31), where the above inequality holds because of (33) and P(Dy > ¢°, D, > ¢y, D +
Dy >y Dy o+ Dy >29;1) =P(Dg > 9°, Do+ Dy > 9",--- ,Do+ Dy +---+D;_y > 97 1).
This establishes that §° > g; for each i € {1,2,--- ,n—1}. [ ]
Proof of Lemma 3. By Lemma 2, ' > g; for each 1 =1,---,n — 1, implying that the seller
reserves more products for each class i (and the remaining classes) due to the introduction of class
0 customers. Below, we show such an increase always brings a higher profit to the seller.
In the premium demand case, suppose the seller is in the beginning of stage ¢ when class i

customers arrive. If the seller sells a product to class ¢, then an immediate profit of p; will be

accrued. Otherwise, the expected revenue of this product is as follows:

=p; 1 P(Dic1 > 9" =9 ) +pioP(Dic1 <9 ' =93 Dia+Di g >9 =9 )+
+piP(Dios <9 =§" % Dy +Dia++ Dy <9 9" D1+ Dj o4+ Dy >97 =70

+poP(Diy <9 =42\ Di1+Di o+ 4+ D1 <9 —9° Dy 1+ Di s+ -+ Dy > 9.

(34)
By Lemma 5, one can check
P(Dy>9°, Do+ Dy >4§" -+ ,Do+--+Di 9>9"* Do+---+D; 1 >4
bi—1 a1 a2 Pi—2 a1 A2 a1 i3
P(D;ov 29" =97 %)+ P(D;o1 <9 =97 Dica+ D 029" —9'")

_772;2772;3 *+*ToPo Ni—3Mi—a " ToPo
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%_...

D1
TloPo

+P(D; 1 <§ ' =4 Dig+ Dot 4+ D1 <G =§° Dii+Di o4+ Dy >4,

_%

PD;ioi <y =492, Di+ 4D <y ' =9 D14+ Dy >9" =7

On the other hand, by the protection level determination rule, we have

P(Dy>9°, Do+ Dy >4" -+ ,Do+--+Di_o>9"2 Do+ +D; 1 >4 )= bi .
Ni—1Mi—2 " TNoPo

Therefore,

pi =Nic1Pic1P(Dicy >4 =472 + mimamiapioP(Dimy <G =42, Dii + Dy > 9 = §°70)
4_...
F0icatia P P(Di <G =92 D+ Do < T =9 D+ 4+ Dy 25 3
F0icamica - MopoP(Dicy < g7 =42 Dia o+ Dy <§ T =% Dig -+ Do > 9.
(35)
Comparing (35) with (34) establishes AV;_ (") > p;. This completes the proof. ]
Proof of Proposition 4. We first provide the conditions under which V" (x) < V,(z) holds:
(i) Do= X +[1— E]Y, where X ~ N(1,€?), Y ~ N(0,€?), and e — 0.
-
(il) B <p.

One can verify that as € -+ 0, P(Dy=1) - 2 and P(Dy, =0) = 1 — 2. As a result, 3° — 1.

nopo ’ 10Po
Moreover, because P(D; > ¢,) = ni’;l, P(Dy=1,D; > ) ~ 77:))1170 - ﬁ = mf;ipo =P(Dy > 9°, Dy +

D, > §'). Therefore, §* — g; + 1. Similarly, as e =0, P(Dy >1,Dy+ D, > 91 +1,Do + Dy + Dy >
7 ~ — 7 7 — — 7 7 ~ _P1_ . p —
U2+ 1)~ P(Dy=1,D1>91,D1+ Dy > 9) =P(Dy =1)P(Dy > 91,D1 + Dy > o) = ,701170 ,72,7‘1’“ =

P —P(Dy>9° Do+ Dy > 4", Do+ Dy + Dy > 4?), which implies that §* — ¢ + 1. Continuing

n2M1M0P0

in this fashion, one can show that as e =0, §* — ¢; + 1, for i =1,2,--- ,n — 1. That is, the product
allocated to class 0 in the premium demand case is originally allocated to class n, which could
be sold to class n, class n — 1, ---, or class 1 in the baseline case. Hence, the revenue difference
between V,,(x) and V"(z) depends on this single unit of product only.

The expected profit of this product in the baseline case is
AV, (2) =ppP(Dn > 2 = Gu1) + Pur P(Dp <& —Gp1, D+ Dy 1 > — fa) + -
+piP(Dp <z —9p-1,--Dpn+Dyp 1 +--+Dy<x—91,D,+ Dpy_1+---+ Dy + Dy > x),
and the total profit V,(z) =V, (z) = Vi(z — 1) + V,(x — 1) = AV, (2) + V(2 — 1). In the premium

demand case, the expected value of the product allocated to class 0 is poP(Dy > 1) &~ poni—;o = Z—;,
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A~ A~

and the total profit can be written as V" (z) =V, (z — 1) + poP(Dy > 1) =V, (x — 1) + EL. One may
wonder whether it is possible for the products except this single unit reserved for class 0 to be sold
to class 0. Note that > | D; >z, so the products except the single unit are guaranteed to sell out

at the end of stage 1. Hence, there is no chance for them to be sold to class 0.

Therefore, V"(a?) - Vn(x) A~ R AVn(aj) Note that D, +D,,_1+---+ Dy +D; > x, so

10
P(Dn Zl‘_gnfl) +P(Dn <x_gn717Dn+Dn71 Zl‘_gn72) + -

+P<Dn<x_yn—17"' 7Dn+Dn—1+"'+D2<x_glaDn+Dn—1+”'+D2+Dl2x>:1-

Therefore, AVn(x) is a weighted average of pi,pa, -+ ,Pn, 1.€., pnp < AVn(x) < p;. Because Z—é <pn
(which is possible, especially when 7 is large and n is small), it follows immediately that f]—(l) <
AVn(x), indicating that the profit generated by this single unit of product in the premium demand
case is smaller than that in the baseline case. Hence, V" (z) < V(). This completes the proof. m
Proof of Lemma 4. The derivative of Vn+1(x) =E [an min{D,, 11,z — Y} + Vn(x —min{D,, 1,z —
g)n})] with respect to ¢, is

)

P(Dn+1 2 €r— :&n){ _pn+1 +
:P(Dn+1 2 T — yn){ — Pn+1 +pnP(Dn Z Qn - gnfl) +pn71P(Dn < Qn - gnfla Dn + -anl Z gn - yn72)

++p1P(Dn <:’;n_yn—1a"' ;Dn+Dn—1+"'+D2 <gn_glaDn+Dn—1+"'+D1 Z?jn)}y
(36)

where the last equality holds by Lemma 8. On the one hand, by Lemma 5, we have

P(Dy>91,D1+Ds>9s,-+- ,D1+---+Dy1>Yp1,D1+---+ D, > 2x)

_ Pn P(Dy > 2 — fny) + Pt
Nn—1Mn—2""""Tp1 Nn—2Tn—3" " Thp1

+np; P(Dy <@ —Gp1y+Dp+-r Dy <@ —Gja, Dy +- -+ Dy > — 1)
1M1

+P(Dn<x_gn717Dn+anl<$_:gn727 7Dn++D2<$_g1aDn++D1 Zx)

P(Dn <x_gn717Dn+Dn71 Z:L'_gn72)+

On the other hand, by the protection level determination rule, for any z > g,

P(D1 > §1, D1+ Dy >4, , Dyt 4 Doy 2y, D+ 4 Dy >a) < — 2
Mntlln—1-""TpP1

Therefore,

Pn+1 ZnnpnP<Dn Z T — gn—l) +nnnn—1pn—1P(Dn <T— Z)n—lyDn + Dn—l Z T — gn—Q) + -

+77n77n71“‘772P2P(Dn<x_ﬁn717”‘ 7Dn++D3<x_QQaDn++D22$_g1)
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+ P P(Dp <@ = Y1, D+ + Dy <x—91,Dp+---+ Dy >x).  (37)

Putting (37) back to (36) gives dv%i(z) < 0; that is, the resulting revenue V,,(z) decreases in

Un- Since g, < x, Vn+1(x) takes the minimum when ¢, = x. Note that ¢, = r means that the

seller does not sell any product to class n+ 1 customers in the additional demand case, at which

Vii1(z) = V,,(2). Therefore, V,,41 () >V, (). This completes the proof. ]
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This document contains the intermediate results for the proofs in the paper.

LEMMA 5. For a fized i, if
. N N Pj+1
P(Dy>91,D1+Dy>9s,-++ D1+ +D; > 9;) = ———————
NjNj—1- TP
holds for any 1 < j <i—1, then the following probability equation holds:

P(Di >4, Di+D>>9s,-- \Di+---+D;_1 >9;_1,D1+---+D; > x)

= bi PD;>z—9;—1)+ Pizy PD;<x—9i-1,D; + D 1 >0 —§i_0) 4+~
Ni—1Mi—2 - TpP1 Ni—2Mi—3 - MP1
+77p12) P(Di<x—9i—1, -, Di+Dig+--+Ds<x—30, Di+ Di 1+ + Dy > —4)
1P1

+P(D;<z—9i—1, s Di+Diy+---+Ds<x—01,D; +D; 1 +---+ Dy > x).
Proof of Lemma 5. One can check
P(Dlzyjl,D1+D22Q2,'-- ,D1+"'+Di_1Zgi_l,D1+”'+DiZa})
:P(D1+"'+Di2$,D1Zﬁl,D1+DQZQ2,'“ ,D1+"'+Di_1zgi_1)
=P(D1+-+D;i>2z,Dy > 41,D1+ Dy >0, , D1+ +Di 1 2951, D 2 — 1)
+PD1+-+Di 22, D1 291,D1+ Dy > G,y D1+ + Dy 291, D < — 1)
=P(D1>41,D1+ Dy >Go,++ D1+ 4+ D1 > 41, D >0 —§; 1)
+P(D1+-+Di 22, D1 291,D1+ Dy > 9o, D14+ Dy 290, D < — 1)
=P(D1 291, D1+ Dy >4, ,Di+-+-+D; 1 29 1)P(Di > 2 — i)
+P(Di+-+D;>2,D1 > §1, D1+ Do > o, -+, Di++ -+ Dicy 2§51, Di <2 = §i1)
bi

= P(Dizx—z)i_l)
Ni—1Mi—2 - TpP1

+P(D1+--+D;>x,D;>9,D1+ Dy >0o, -+ D1+ +D; 1 >Gi1,D; <x—Gi_1),

where the last equality holds because of our supposition.

Similarly,

P(Di+---+D;>x,D,>4,,D1+D>>9s,-+ ,Dy+---+D;_1 >9;_1,D; <z —g;_1)



=P(Dy+---+D;,>x,D1 >4, D1+ +D; 1> 1,D; <x—G;i_1,D; + D;_1 > x — §;_2)
+P(Dy+---+D;>x,Dy >4, ,Di++D; 1 >91,D; <t —Gi—1,D; + Diy < —Gio)
=P(D1>91,- ,Di+-+D; 2>y 2, D; <x—4i—1,D; + D; 1 > x—§;_2)
+P(D1+---+D;>x,D: >4y, ,Di+-+Di 1 >0, D <x— 41, D+ D1 <z — G o)
=P(Dy =41, , D+ +Di o 20 2)P(Di <t —Ji1,Di + Di 1 20— G o)

+P(Di1+---+D;>x,D; >4, D1+ +D; 1 >0, D <x— i1, D+ Diy <z — i)

_ Di—1 P(Di<$_@ifl7Di+Di*1 21'_391'72)
Ni—2Mi—3 D1

+P(Di+---+D;>x,D1 >4, ,Di+---+D; 1 >9;—1,D; <t — 91, D; + Di 1 <x—Yi_2),

where the second equality holds because
D+ +Di2>92

=Di+--+D; >z,
Di+D,_ 1 >x—7i_o

and
=Di+-+Di1>Gi.
D;<x—9i

Continuing in this fashion, we obtain

P(Di >4, D1+Dy>9s,-- ,Di+---+D;_1 > 91, D1 +---+D; > x)

= bi PD;>z—9;_1)+ Piz PD;<x—9—1,D; +D; -1 >0 —§i_0) 4+~
Ni—1Mi—2 TP Ni—2Mi—3 - MpP1
+77p229 P(Di<x—9i1,,Di+Diy+-+Ds<x—30, Di + Di 1+ + Dy >x— )
1P1

+P(D;<z—9i—1, s Di+Di g+ +Ds<x—01,D; +D; 1 +---+ Dy > x).

This completes the proof.
LEMMA 6. Taking derivative of E[U;(x;)] with respect to x; yields

dﬂl’i
=p;P(D; >z —Gi1) + 0i1pi 1 P(Di < i — §i1, Di + Di—1 > — §i_a)

+0i—1i—a2pioP(D; <x; —§i—1,Di + Di 1 <y — Yio, Di+ Di 1+ D2 > x; — §i_3)

+0ic1i—o - mpiP(D; <@y — 951, Dy + Doy <y — Gy Dy 4+ Do <y — 91, D+ -+ Dy > ;).



Proof of Lemma 6. One can check

E[Ui(z;)] =Ep, [ max p;min{D;,x; —y;_1} +n_1Ep,_, [Ui—1(z; —min{D;, x; — yi_l})]}

0<y;—1<z;
= EDZ- [Pi min{Dia XTi— Z)Fl} + i1 EDZ-_1 [Uiq (ZUZ - miﬂ{Di, T — Qifl})]] )

where the last equality holds because we restrict our attention to the problem with a sufficient
initial inventory.
Taking derivative with respect to x; yields

Uia (CL“Z -

di)]
de. dF;(d;)

R Ti—Yi—1 dE
piP(D; 21’1‘—%—1)"‘771‘—1/ [
0

Ti—Yi—
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Ti—Y;
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Ti—Yi—
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—d;—J;—

=p,P(D; > x; — yifl)

+Mic1Mi—2 /
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0 dz; dﬂ—z(di—a)}dFi_l(d,»_l)dFi(di)

=p;P(D; >z —Gi1) +0i1pi 1 P(Di < — §i1, Di + Di1 > — §i—a)
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LEMMA 7. For any i€ {1,2,--- ,n—1} and any = > i,

dE[Ui(JU)] <pi+1
dx M

9

where the strict equality holds when x = ;.

Proof of Lemma 7. By Lemma 6, we have

dE[U;(x)]
dx
=p;P(D; >z —gi—1) +ni—1pi1P(D; <x—4i—1,Di 1+ D; > — §;-2)

+0i1Mi—opi—oP(Di < —Gim1, Din+ D <z — Y0, Di o+ Dy +D; >x— G 5)+ -

+nic1i—o - mpiP(Di <2 — 91, Di + Dy <z —Gi_9,-++ Do+ +D; <x—791,D1+Dy+---+D; > x).

(38)
On the one hand, according to (8), for any = > g;,
P(Dy> g1, D+ Dy > gy, Dy+--- 4 Diy > §; 1, Dy +--+ Dy >a) < — L (39)
NiNi—1---Th1
where the strict equality holds when z = g;. On the other hand, by Lemma 5, we have
P(Di >, D1+D2>9s,-- ,Di+---+D; 1 >9;1,D1+---+D; > x)
_ Di N Di—1 « A
= P(D;,>x—9;—1)+ PD;<z—9i—1,Di+D; 1 >x—gio2)+---
Ni—1Mi—2 " P1 Ni—21i—3 " TpP1
+np; P(Di<z—gi1,,Di+Dig+-+D3<x—92,Di+ Di 1+ + Dy >~ 1)
1P1
+P(Dl<l’—y171, ,D1+D271++D2<.’L‘-ZQ1,D1+D171++D1 Zx) (40)

Combining (39) and (40) yields

piP(D; >x—4i—1) +nic1piaP(Dy <x—4i—1,Di 1+ D; > — §i—n) + - -

+ iMoo mp1P(Dy <z — 91, Di 1+ D <t —Gi—2,-+ , Do+ +D; <x—91,D1+Dy+---+D; > x)
<Pi+1

— )

b

dE[U;(2)]
dx

where the strict equality holds when x = ¢;. It follows (38) that < p;# holds immediately. m

LEMMA 8. Taking derivative of VZ(:UZ) with respect to x; yields

dvi € N N N
da(:‘ ) =p;P(D; > x; —4i1) +pi1P(Di <2 — §im1, Di + Dioq1 > — Gi2)

+pioP(D;<x;i—9i—1,Di +Di 1 <xi — Yi—o, Di+ D1+ Di_o > x; — 3;_3)
4.
+piP(Di <xi = §i1, Di+ Dia <@ —Giooy o+, Dit o+ Dy <z —§1,Di + -+ D1 > ;).



Proof of Lemma 8. Recall that

A

Vila:) = E[pimin{ Dy, ;= i1} 4 Vi (@ — min{ Dy, = i1 })|.

Taking derivative with respect to x; follows the same process as that in Lemma 6 and thus the

detail is omitted. [





