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Bowen Lan, Hailong Huang, Senior Member, IEEE

Abstract—This paper presents the development and optimiza-
tion of a wheel-legged biped robot designed for community
inspection tasks. The robot combines the efficiency of wheeled
robots with the adaptability of legged systems, making it suitable
for navigating diverse terrains in semi-structured environments.
The main innovations of this research include the development
of an integrated control system that combines balance control,
state estimation, and terrain adaptation using multi-sensor fusion.
The robot’s mechanical structure is designed to withstand jumps
and falls, while its electronic hardware and software architecture
ensure real-time control and robust performance. Experiments
demonstrate the robot’s capabilities including tracking velocity
as high as 2m/s, resisting severe disturbance or slippage, and
traversing steps over 10 cm automatically. The results show that
the proposed control methods and hardware design effectively
ensure the robot’s robustness and adaptability, validating its
potential for practical community inspection applications. This
work contributes to the growing field of autonomous robots in
public service and provides a foundation for future research and
development.

Index Terms—wheel-legged biped robot, linear quadratic reg-
ulator, multi-sensor fusion, feedforward control

I. INTRODUCTION

In recent years, the deployment of autonomous robots for
community-based tasks has gained significant attention due to
their potential to improve efficiency, safety, and accessibility in
public and private spaces [1]-[4]. Among these, wheel-legged
biped robots stand out as a promising platform for applications
such as community inspection and monitoring. Combining
their stability and maneuverability with the adaptability and
versatility of legged systems, these robots are uniquely suited
for navigating the diverse and often unpredictable environ-
ments found in community settings [5], [6].

Community inspection tasks, such as monitoring infrastruc-
ture and detecting hazards, often require robots to operate
in environments that are highly dynamic and contain a mix
of structured and unstructured terrains [1]. For example, a
robot may need to traverse smooth sidewalks, ascend ramps,
Cross uneven pavements, or navigate narrow corridors within
buildings. Traditional wheeled robots, while efficient on flat
surfaces, struggle with uneven terrains or obstacles. Con-
versely, legged robots excel in challenging terrains but often
suffer from lower energy efficiency and slower speeds. Wheel-
legged biped robots offer an optimal middle ground, leveraging
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their compact and energy-efficient design while maintaining
the ability to handle moderate terrain variations.

The integration of wheel-legged biped robots into commu-
nity inspection workflows presents several key advantages.
First, their compact form factor and high agility make them
well-suited for navigating crowded or confined spaces, such
as office buildings, residential complexes, or urban streets.
Second, their ability to balance dynamically on two wheels
enables them to quickly change direction or adapt to obstacles,
ensuring efficient and safe operation in environments shared
with pedestrians. Third, these robots can be equipped with
advanced sensing and perception systems, such as LiDAR,
cameras, and environmental sensors, to autonomously identify
and respond to potential issues, such as structural damage, fire
hazards, or environmental anomalies.

Beyond their functional capabilities, deploying wheel-
legged biped robots for community inspection also holds
societal significance. These robots can reduce the reliance on
human inspectors for repetitive or hazardous tasks, minimizing
risks and freeing up human resources for more complex
decision-making roles. Additionally, their presence in commu-
nities can enhance public trust in technology, as they provide
visible, tangible benefits in maintaining safety, cleanliness, and
functionality within shared spaces.

In this paper, we focus on the development and optimization
of a wheel-legged biped robot system specifically tailored for
community inspection tasks. By addressing the challenges of
perception and locomotion in semi-structured environments,
we aim to demonstrate the feasibility and practicality of
these robots as a reliable solution for improving community
infrastructure and safety. Through this work, we contribute to
the growing body of research on autonomous robots in public
service, paving the way for their broader adoption in real-
world applications.

We address the stability and terrain traversal capability
of a wheel-legged biped robot equipped with two-degree-
of-freedom legs in semi-structured urban environments by
significantly enhancing its perception and control algorithms.
The main contributions are as follows:

1) Building upon the conventional linear control method,
we design a Kalman filter to fuse IMU and wheel odom-
etry measurements. By detecting and isolating abnormal
data induced by wheel slippage through measurement
residual analysis, we substantially improve the accuracy
of velocity estimation as well as the robot’s control
stability in complex terrains.

2) We propose a feedforward control method based on the
wheel-ground contact angle, addressing the limitations
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of existing approaches and enhancing control precision
on uneven terrain.

3) The surrounding terrain is mapped using LiDAR and
depth cameras, for which we design a 2.5D trajectory
prediction and slope estimation algorithm.

4) We introduce a step detection method based on the
predicted trajectory, along with a corresponding au-
tonomous jumping algorithm, which significantly en-
hances the robot’s capability to traverse challenging
environments.

5) We engineer a complete robotic hardware and soft-
ware system, aiming to facilitate and accelerate the
deployment of this robotic configuration in real-world
applications.

The remainder of this paper is organized as follows. Section

IT presents the related work. Section III details the modelling
of the robot and the control methods. Section IV shows the
experiment results. Section V summarizes this paper.

II. RELATED WORK
A. Development History of Wheel-legged Biped Robot

In 1998, Professor Osamu Matsumoto and his team in Japan
developed a wheel-legged biped robot, as shown in Fig. la
[7]. This robot features ball screw structures on its legs for
extension and retraction, and wheels at the ends of the legs
driven by DC motors. The height of the robot ranges from
0.575 to 0.74 meters, with a weight of 10 kg and a load
capacity of 2 kg. The robot is capable of ascending steps by
swinging its legs, as illustrated in Fig. 1b.
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(a) Biped type robot

(b) Climbing stairs

Fig. 1: Biped type robot and its stair climbing process [7].

In 2015, the DRC-Hubo robot from the Korea Advanced
Institute of Science and Technology (KAIST) participated
in and won the DARPA Robotics Challenge. Its primary
configuration is a bipedal humanoid robot, but it features two
drive wheels added at the knee joints and two caster wheels
at the toes. This design allows the robot to transition into a
kneeling position to enter a wheeled mode of movement, as
shown in Fig. 2. This configuration significantly enhances its
speed on flat surfaces while maintaining its obstacle-crossing
capabilities [8].

In 2017, Boston Dynamics unveiled the wheel-legged robot
Handle, as shown in Fig. 3a This robot stands 1.9 meters
tall, weighs approximately 105 kg, and has a maximum load
capacity of 45 kg. It can achieve a top speed of 24 m/s.
The wheels are driven by motors, while the upper limbs
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Fig. 2: DRC-Hubo transitions from standing to kneeling [8].

are hydraulically powered. In a video released by Boston
Dynamics [9], Handle demonstrated its remarkable maneu-
verability, including high-speed movement, descending stairs,
limb stabilization, jumping, and off-road capabilities. In 2019,
Boston Dynamics introduced the second generation of the
Handle robot, designed for warehouse handling tasks. This
version features an additional robotic arm on its upper body
for picking up goods, as shown in Fig. 3b.

(b) Handle ver. 2

(é-l) Handle ver. 1
Fig. 3: The Handle robot [9].

In 2019, researchers at ETH Zurich in Switzerland devel-
oped a wheel-legged biped robot named Ascento [10], as
shown in Fig. 4. This robot underwent a topology optimization
design and utilized lightweight nylon 3D printing, resulting in
a total weight of only 10.4 kg. The leg linkages of Ascento are
specially designed so that the hip joint motors can drive the
wheels to move vertically along the body, achieving decoupled
control of balance and leg length. This design reduces the
complexity of the control system. The robot’s height can be
adjusted between 31 cm and 66 cm, and it is capable of
performing actions such as jumping onto steps [11].

Fig. 4: The Ascento robot [10].

In 2021, Tencent’s Robotics X Lab introduced a wheel-
legged biped robot named Ollie [12], as depicted in Fig. 5.
Ollie employs an innovative pentagonal linkage as its leg
structure, with each leg using two joint motors to control
the position of the wheels. Compared to traditional wheel-
legged designs, this configuration adds an extra degree of



freedom, providing more flexible movement capabilities. In
a subsequent video released by the lab [13], the Ollie robot
demonstrated its exceptional maneuverability, including the
ability to traverse inclined terrains smoothly and perform
actions such as jumping and backflips.

Fig. 5: The Ollie robot [12].

B. Control Methods

When examining the control algorithms for wheel-legged
biped robots, it is evident that current research has made sig-
nificant progress across various control strategies, effectively
enhancing the robots’ balance and maneuverability.

Take the Ascento robot as an example, its control system
employs a Linear Quadratic Regulator (LQR) control strategy.
This approach introduces a set of state variables to describe
the robot’s dynamic configuration, including tilt angle, linear
velocity, and angular velocity, enabling precise state feedback
control. Additionally, Ascento integrates a Kalman filter for
state estimation, further improving the system’s accuracy and
robustness. This combination allows the robot to effectively
perform various actions, such as autonomous jumping and
balance recovery, even in the presence of external disturbances.

On the other hand, the Ollie robot utilizes a linear feedback
controller and an Interconnection and Damping Assignment
Passivity-Based Control (IDA-PBC) method. This approach
enhances system stability under uncertainties and disturbances
by applying principles of energy shaping and damping injec-
tion. The application of IDA-PBC enables Ollie to maintain ef-
fective control despite nonlinear characteristics. Furthermore,
Ollie is equipped with an observer designed to estimate system
states, which further enhances the robot’s adaptability.

In addition, various control methods have emerged that in-
tegrate techniques such as fuzzy control [14], model predictive
control [15], and reinforcement learning [16] algorithms with
LQR. These approaches have further improved the control
robustness of wheel-legged biped robots to varying degrees.
However, due to the complexity of these methods, they have
yet to be widely adopted in practical applications.

In summary, the existing control methods for wheel-legged
biped robots have effectively achieved balance control. These
algorithms, by integrating advanced control theories and state
estimation techniques, ensure that robots maintain stability
and robustness in dynamic environments. Although there is
still room for improvement, the current control strategies
have reached a practical level, adequately meeting the balance
control demands in real-world applications.

However, there are still some critical research gaps in cur-
rent studies. Firstly, most existing control strategies primarily
rely on proprioceptive sensors, such as Inertial Measurement
Units (IMUs) and encoders. While these devices provide
information about the robot’s own motion state, they lack
integration with external terrain data. This limitation may lead
to insufficient robustness in motion control when facing un-
structured terrains, thereby restricting the robot’s adaptability
in complex environments. Secondly, the failure to fully utilize
external terrain data means that current control algorithms may
not achieve optimal path planning and obstacle avoidance on
dynamic and irregular terrains. This not only affects the robot’s
maneuverability but also limits its practicality in diverse appli-
cation scenarios. Therefore, developing control algorithms that
can integrate proprioceptive and external terrain information is
crucial for enhancing the performance of wheel-legged biped
robots.

The primary objective of this research is to develop a set of
locomotion control algorithms suitable for wheel-legged biped
robots. By integrating multi-source sensory information, the
aim is to improve the robot’s motion robustness in unstructured
terrains. This research will contribute to expanding the robot’s
application capabilities in complex environments, enhancing
task execution efficiency and safety, and providing new direc-
tions and possibilities for the future development of robotic
technology.

III. METHODOLOGY
A. Modeling

Due to the excessive complexity of performing a complete
3D modeling, we assume that the left and right legs move
synchronously and conduct the modeling solely within a 2D
plane when considering balance control.

Based on the structure illustrated in Fig. 6, we begin by
simplifying the leg structure, reducing the five-bar linkage
mechanism to a single variable-length straight pole that ac-
tuated by a revolute joint at ¢y and a prismatic joint at Ly,
which is hereafter referred to as the “virtual leg”. Referring to
the conclusions presented in [17], we can derive the following
equation through static force analysis:

_ lisin(¢q — ¢3) (T cos(¢o — ¢2) + F'Losin(¢o — ¢2))

T, =
! Lo sin(¢3 — ¢2) 0

_lasin(¢a — ¢1) (T, cos(¢o — ¢3) + F'Losin(¢o — ¢3))

2= Lo sin(¢z — ¢2) .

This equation allows the torque 7}, generated by the virtual
leg at angle ¢g, as well as the thrust force F' along the virtual
leg at Ly, to be translated into the joint motor torques 77 and
T, acting at positions ¢, and ¢4, respectively.

The simplified structure of the robot is illustrated in Fig.
7, comprising three main components: the body, the wheels,
and a virtual leg. This configuration can be interpreted as
the addition of a rigid body to the upper section of the
classical wheeled inverted pendulum (WLP). Following the



Fig. 6: The pentagonal linkage of the legs.

Fig. 7: The simplified physical model.

methodology outlined in [17], we assume that the length of
the virtual leg remains constant and define the state variables
as .

x=[0 0 z % ¢ 9] , (3)
where 6 represents the deviation angle of the virtual leg,
xp is the displacement of the body in the forward-backward
direction, and ¢ is the pitch angle of the body. By employing
classical mechanics analysis stated in [17] for system model-
ing, we derive the system’s nonlinear model as

&= f(x,u), “4)

where u = [T, T]T, in which 7, is the torque generated by
the virtual leg, and 7' is the torque produced by the wheels.

Next, we linearize the system around the equilibrium point
corresponding to the upright posture. This process yields the
system’s state-space equation

¢ = Az + Bu. (5)

By discretizing this continuous-time system, we obtain the
discrete-time state-space equation

Tpt1 = Gz, + Huy,. (6)

B. Balance Control

To achieve balanced control of the system using LQR, we
need to solve the discrete-time Riccati equation:

G"PG-P+Q-G"PH (R+ H"PH) ' H'PG, (7)

where () and R are the weighting matrices for the state vari-
ables and control inputs, respectively, and P is the unknown
matrix to be solved. Once P is obtained, the optimal feedback
gain matrix K can be calculated as:

K =(H"PH+R)  H"PG. (8)

Similar to the methods described in [10] and [17], for virtual
legs of varying lengths, the corresponding state-space equa-
tions are formulated individually, and the respective feedback
gain matrices K are subsequently computed. By performing
polynomial fitting on each element of K (L( ranging from
0.1m to 0.35m with step size 0.0l m, and the polynomial
order is 3 in out case), we can obtain a feedback gain matrix
K (Lg) that varies as a function of the virtual leg length L.
Consequently, the system’s feedback control law is expressed
as:

u=—K(Ly)(xq — ), ©)
where 3 = [0 0 24 @4 0 0]
desired displacement of the body.

, in which x4 is the

C. State Variables Estimation

The aforementioned modeling considers only the robot’s
motion in a two-dimensional plane, without accounting for the
actual bipedal structure. Therefore, it is necessary to design
an appropriate state observer to estimate the required state
variables in Eq. 3. The observer is designed as

9. o — g N Qsimu
0 o — d)zmu
xp| RO, + Losinf
T= iy = |Rby + Lobeosd + Losing|* 10
Q_S d?imu

where ¢;,, and éimu are the pitch angle and its chang-
ing rate, respectively, measured by the body-mounted IMU.
0, = 30, +01,), 0, = %(95) + 7)) represent the average
cumulative rotational angle and angular velocity of the left and
right wheels obtained from wheel feedback. v = 3 (¢} + &),
& = L(dh + ¢p) are the average angles and angular velocity
of left and right virtual legs, calculated through forward
kinematics of the legs.

D. Basic Control Framework

In addition to the balance controller, there are PD controllers
designed for controlling height, roll, yaw, and synchronization
of the two legs. As shown in Fig. 8, [, ™', ¢} §ic] | are
the reference command of state variables, body height, body
roll angle, and body yaw angle respectively. x is the state
variables vector. [y is the average length of left and right
virtual legs. ¢3f is the difference angle between two virtual
legs. ¢ron and ¢y, are the roll and yaw angles of the body,
respectively. Freedfovad — g is the feedforward force for
the leg length controller, where m,; is the mass of the body.
These PD controllers work in conjunction with the LQR to

achieve comprehensive motion control of the entire robot.
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Fig. 8: The complete control framework incorporates LQR and
PD controllers.

E. Velocity Estimation

The aforementioned model assumes perfect rolling without
any slippage between the wheels and the ground, which does
not accurately reflect real-world conditions. According to the
observation method described above, when wheel slippage
occurs, both 6, and éw exhibit significant fluctuations. These
fluctuations can cause the controller to generate excessively
large torque outputs, which may further aggravate the slippage
and ultimately lead to system instability and failure.

In order to address this issue, we employ a Kalman filter to
fuse data from the left and right wheel encoders as well as the
acceleration and angular velocity measurements from the IMU.
The fusion process explicitly accounts for the uncertainties
associated with different sensor sources. During the update
step, residuals are monitored in real time to identify and isolate
anomalous sensor data. This approach enables us to obtain a
more accurate estimation of the robot’s body velocity, which
significantly enhances the control robustness of the robot when
operating on uneven terrain.

1) System State-Space Model: To simplify the problem,
we model the robot as a two-wheel differential drive system
during the filtering process. The state vector of the filter is
defined as follows:

The state vector is defined as:

(1)

>
I
€ o<

where v denotes the linear velocity of the robot body along
the forward direction, a represents the linear acceleration along
the same direction, and w is the yaw rate about the vertical
axis.

The state transition model is given by:

Xk = Fxp_1 + wy, (12)
where F is the state transition matrix:
1 At 0

F=1(0 1 0], (13)
0 0 1

and wy, is the process noise, assumed to be zero-mean Gaus-
sian with covariance matrix Q.

2) Measurement Model: The measurement vector is defined
as:
Wright
Wieft
Gimu (14)
Wimu
where wrign and wiere represent the rotational angular velocities
of the right and left wheels measured by the wheel encoders,
respectively. ain, denotes the linear acceleration of the robot’s
body along the forward direction as measured by the IMU,
and wjy, is the yaw angular velocity about the vertical axis
measured by the IMU.

The measurement equation is given by:
z, = Hxg + v, (15)

where H is the measurement matrix with wheel radius R and
the distance between the wheels L:

i 9 L
I 2
1L g L
e n )R] a6)
0 0 1

and v, is the measurement noise, assumed to be zero-mean
Gaussian with covariance matrix R.

3) Slippage Detection: Between the prediction and update
steps of the Kalman filter, we detect wheel slippage by mon-
itoring the measurement residuals. The measurement residual
7y, is defined as:

Wright,k
~ w
7 = Nleft,k
Qimu, k

Wimu, k

=z, — HXp 1 (17

where 2y, is the predicted state vector.

If the measurement residual for the wheel rotational speed
exceeds a certain threshold (Wpyay), it is determined that
the corresponding wheel is experiencing slip. In this case,
the observation for that wheel is corrected by removing the
residual, meaning that the predicted value is directly used:

Wik =wik — Wik, (i=Ileft, right). (18)

The corrected measurement vector is used for the update
step.

Wright, k
2, = Wieft, k (19)
Aimu, k
Wimu, k
4) Kalman Iteration:
 State prediction:
Xpk—1 = FXp_1p—1- (20)
o Error covariance prediction:
Pijp-1 =FPy_1p 1 FT + Q. (21)
o Kalman gain calculation:
K; = Py H'(HP,, ,H” + R)™.. (22)



« State update using corrected measurement vector:

Xk = Xpjh—1 + Ki(2p — HXpjp—1). (23)
o Error covariance update:
Py = (I - KiH)Pppp_1. (24)

Through experimental testing, it was found that neglecting
the leg dynamics and directly using the linear velocity v
obtained via Kalman filtering, along with its integral, as the
state variables for balance control does not lead to significant
adverse effects. Specifically,

.iZbZ’U
xb:fvdt.

5) Summary: The proposed multi-sensor fusion observer
leverages a Kalman filter to estimate the linear velocity and
yaw rate of the robot using measurements from wheel encoders
and the IMU. By observing the measurement residual, the
observer can effectively detect and handle wheel slippage,
thereby acquiring highly accurate estimations of the state
variables.

(25)

E Jumping Control

Active jumping is a crucial capability for wheel-legged
biped robots, primarily achieved by altering the length of the
virtual leg. As shown in Fig. 9, a single jump motion can be
described in four stages:

o Phase 1: The robot initially reduces the leg length to /iy

o Phase 2: The robot then exerts a powerful thrust against
the ground until the leg reaches its predetermined maxi-
mum length Ipigp.

o Phase 3: The robot shortens the leg length again to
achieve the maximum possible height off the ground.

o Phase 4: The robot extends the leg once more until it
makes contact with the ground.

Phase Il
Apply positive
strong thrust

! 1 ! !

Leg reaches Leg reaches Leg reaches Ground hit
target length target length target length detected

Liow lhign Lnin

Phase lll
Apply negative
small thrust

Phase IV
Apply positive
small thrust

Phase |
Decrease leg
to length ljoy

Fig. 9: The jumping process.

During the flight phase, when the wheels are not in contact
with the ground, the torques of the wheels are set to zero,
and the LQR balance controller is deactivated. Instead, a PD
controller applied to 7}, is used to maintain the virtual leg
perpendicular to the ground, preparing for ground contact and
cushioning the landing.

In addition, our experiments reveal that the maximum
jumping height can be effectively controlled by adjusting lp;gh.
This approach will be utilized in subsequent tasks where the
robot is required to jump over known terrain.

G. Terrain Feedforward Control

Previous studies have primarily focused on robot motion on
flat terrain. However, in real-world scenarios, terrain undula-
tions have a significant impact on the stability of the robot.
Incorporating terrain considerations into the controller can
greatly enhance the robot’s performance on complex terrains.
To address this, we have designed a trajectory prediction and
feedforward control method described below.

Fig. 10: Static analysis of the robot on a slope.

1) Feedforward Control: The feedforward terms for the
robot were primarily derived through a static mechanical
analysis when the robot remains stationary on a slope, as
illustrated in Fig. 10. It can be observed that the main influence
of uneven terrain on the robot arises from the contact angle
0, between the wheels and the ground. This alters both the
equilibrium pole angle 6 and the wheel output torque T
compared to the case of a level surface.

Through analysis, it is found that the robot achieves static
equilibrium on a slope when its overall center of mass is
located vertically above the wheel contact point. Assuming
the robot body remains horizontal and taking the wheel center
as the origin, the horizontal position of the overall center of
mass is calculated and set equal to the contact point:

My - 0+ myp L sin(Beq) + mp Lo sin(feq)

M
where m,,, m,, and m,, denote the masses of the wheel, pole,
and body, respectively, M = m,, +m,+my, is the total mass,
fq is the equilibrium leg angle, and L = kLg is the position
of the pole’s center of mass along itself.

For the robot as a whole, it is straightforward to obtain the
force balance in the direction along the slope:

Mgsin(0,.) = fi,

= Rsin(6,), (26)

27)

where f; is the friction force between the ground and the
wheel. From the torque equilibrium of the wheel, we have:

Teq = ftRa (28)

where T, is the equilibrium output torque of the wheel’s
motor.
Combining the above equations, we obtain:
0 . MRsin(6,.) )
= arcsin [ ——————
e (kmp + mb)L(]
Teq = MgRsin(6;,)

(29)



Here, 04 is used as the reference value for the leg angle state 0
in the LQR balance controller, and Tt is superimposed on the
torque output calculated by the LQR controller for the wheel
motors.

Fig. 11: The wheel center trajectory when climbing a stair.

2) Trajectory Prediction and Slope Calculation: We can
notice that the contact angle 6,. of the wheels is equal to the
slope angle of the trajectory of the wheel center, as illustrated
in Fig. 11. Thus, we design the following method to obtain
the contact angle.

Fig. 12: The differential driving model.

For simplicity, the wheel-legged biped robot can be modeled
as a differential drive system with two independently actuated
wheels. As shown in Fig. 12, its configuration is described
by its position (x,y) in the global coordinate frame and its
orientation #, which represents the robot’s heading angle.
The kinematic model relates the robot’s control inputs, linear
velocity v and angular velocity w, to its motion in the planar
workspace.

The continuous-time kinematics of the robot are expressed

as:
cosf O v
sinfd 0 { } ,

(30)
o 1|

T

yl =

0
where & and y are the translational velocities in the x and
y directions, respectively, and 0 is the rate of change of the
robot’s orientation. The matrix transformation accounts for the
robot’s orientation in the global frame.

For implementation in digital systems, the continuous model

is discretized using Euler integration:

Th+1 Tk cosf, O v
Yri1| = |y | + At |sind, 0 M, 31)
Or11 O 0 1 k

where k and k+ 1 denote the current and next time steps, and
At is the sampling time.

Next, assuming the robot perfectly tracks the given linear
velocity vr and angular velocity wy, the predicted 2D body

trajectory can be computed by propagating forward for IV steps
using Equ. (31) as

SZd = {(xuyz)‘z = 172a"'7N}'

(32)

2.5D wheel
center trajectory

2.5D trajectory
2.5D terrain

2D trajectory
2D plane

Fig. 13: 2.5D trajectory calculation.

Subsequently, we construct the elevation map of the terrain
with LiDAR using the elevation mapping algorithm [18] [19]
and localization algorithm Point-LIO [20] that is especially
suitable for IMU saturation during impacts. As shown in Fig.
13, by performing bilinear interpolation on the elevation map,

the projected trajectory can be derived:
Sproj:{(55721‘0)“:1,2,...,]\7}, (33)

where s{ is the length of the trajectory that travels on the X-Y
plane:

s; = (@541, Y541) — (@5, 95) |2, (34)

and z{ is the interpolation height of point (z;,y;) on the
elevation map.
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Fig. 14: Wheel center trajectory calculation.

Then, we calculate the trajectory of the wheel center as
shown in Fig. 14. For each point (s§, z{) in Spoj, Wwe compute

its corresponding wheel center position (s, zV) as s’ = s§
and
w o __ c 2 c c\2
z¥ = 7R§I§?}§;§R (Zj +4/R? — (sj —s5) ) , (35)
which yields the wheel center trajectory:
Swheet = {(s3",2")[i =1,2,...,N}. (36)

Finally, we can calculate the contact angle at each sampling
point as follows:

zih, — 2
0,(sy) = arctan (Zj ! ) .

W
Sit1 — 5

(37)



H. Automatic Jumping on Known Terrain

If at any point on the predicted trajectory the wheel contact
angle exceeds a certain range, the wheels will not be able to
provide sufficient traction to traverse that section using normal
driving. In urban road environments, this typically occurs at
steps, so we can detect steps along the trajectory and then
cross these terrains with a jumping motion.

First, it is necessary to accurately predict and control the
jumping action, including calculating the jump timing and
controlling the jump height. Since the duration of the jump
is very short and there are many influencing factors, using
a purely dynamics-based approach is complex and might
differ significantly from reality. Therefore, we directly conduct
multiple experiments in the real world, and fit the formula
between jumping parameters and control quantities as:

{ Ihigh = g1 (Pair)

(38)
tdelay = gt(hair)

where h,;; is the maximum height the wheel leaves the ground,
ldelay 18 the delay from triggering the jump to the wheel
reaching this height, and ly;g, is the maximum leg extension
during the jump, as shown in Fig. 9.

Next, we need to analyze the step height and the distance
from the robot’s current position to the step on the predicted
trajectory. This can be achieved by analyzing the contact angle
along the trajectory. We search for the nearest segment in the
predicted trajectory where the contact angle exceeds 6;"** over
a sequence of consecutive sampling points, and treat this as the
rising part of the step. We then calculate the height difference
of this segment as the step height hgep. The trajectory length
between its highest point and the current position, Sgep, is used
to calculate the jump trigger lead time. When the robot’s state
satisfies:

hstep + hadd < h;?fx (39)
|Sslep -V gt(hstep + hadd)| <€ 7
the jump is triggered, where the jump control input is given
by

lhigh = g1 (Psiep + Pada)- (40)

Here, hgdq is the jump height margin, A** is the robot’s
maximum jump height, v is the current linear velocity of the
robot, and €, is the jump window distance tolerance.

IV. EXPERIMENT
A. Real-world Robot Design

(a) Main supporting framework (b) Complete mechanical structure

Fig. 15: Mechanical structure of the real-world robot.

1) Mechanical Structure Design: In this experiment, we
designed and constructed a prototype of a wheel-legged biped

robot to validate the improved locomotion method. The focus
of the mechanical structure design was to ensure the robot’s
structural strength and stability during jumps or falls. We used
high-strength aluminum profiles to build the main support
frame (see Fig. 15a), which not only provides robust support
but also effectively prevents damage from external forces.
Other structural components were made from carbon fiber,
featuring a hollow design to maximize weight reduction while
maintaining strength and aesthetics.

To enhance the robot’s ability to perceive terrain ahead, we
installed the LiDAR sensor with a downward tilt (see Fig.
15b). This design increases the utilization of the LiDAR point
cloud and improves the accuracy of terrain perception.
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Fig. 16: Electronic design of the real-world robot.
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2) Electronic Hardware Design: For the electronic hard-
ware, we selected a high-performance 13th generation i7
Intel NUC as the main computing device to ensure sufficient
computational power. An STM32 microcontroller was used as
the low-level controller, responsible for hardware driving and
IMU attitude calculation. The lower-level system communi-
cates with the main computer via a USB CDC serial port,
transmitting data and receiving commands for execution. The
entire system is powered by a 6s LiPo battery, with a step-
down device supplying power to the main computer (see Fig.
16).
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Fig. 17: Software architecture of the real-world robot.

3) Software Architecture: In terms of software architecture,
all computations are performed entirely on the robot’s onboard
system without reliance on any external computing device. We
deployed almost all major programs on the main computer,
including the core computations for motion control. To ensure
real-time control, the main computer operates on a ROS
system with a real-time kernel patch, and multiple control



nodes are constructed, such as data transmission nodes, motion
control nodes, and SLAM nodes (see Fig. 17).

The lower-level micro-controller program is divided into
multiple layers: the peripheral layer handles driving of CAN,
UART, and other low-level communication protocols; the
device driver layer includes drivers for different devices;
the application layer provides high-level encapsulation and
algorithms; and the protocol layer manages custom protocol
encapsulation between the upper and lower systems. Through
this multi-layer encapsulation, the upper computer can control
different devices via a unified interface, achieving a complete
control chain from low-level device communication to top-
level serialization protocol.

B. Locomotion Experiments
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Fig. 18: Robot follows a trapezoidal velocity reference.

1) Velocity Tracking: In this experiment, we maintain a

reference virtual leg length of Li*Y = 0.2m and set the
reference yaw and roll angles as ¢ref, = QS:Z{Z = 0. The

reference velocity &4 described in Eq. 9 starts from 0 and
increases at a constant speed of 1.2 m/s? until reaching 2 m/s.
The robot’s tracking performance is shown in Fig. 18.

As observed, the robot successfully follows the reference
velocity and displacement trajectory, while the pitch angle of
the upper body remains highly stable throughout the motion.
This behavior aligns well with the expected outcomes, demon-
strating the effectiveness of the control strategy.

2) Velocity Estimation and Slippage Detection: In this
experiment, we manually lifted the right wheel of the robot
and then released it from the air while spinning it at a high
speed to simulate severe slippage. This was performed twice
under different conditions: with or without the Kalman sensor
fusion method. As shown in Figs. 19 and 20, when slippage
happens without sensor fusion, the dramatic change in velocity
causes failure in the balance control, while the abnormal
wheel measurement is almost ignored using the sensor fu-
sion method. The experimental result demonstrates that the
proposed method effectively suppresses the inaccuracies in
observation caused by slippage. This significantly enhances
the robustness of the system.

3) Disturbance Resistance: In this experiment, the robot
was subjected to an external kick. As shown in Figs. 21 and
22, the robot was momentarily accelerated to a speed of about

Fig. 19: Without sensor fusion, the robot slips and falls (top);
with sensor fusion, it recovers from slipping (bottom).
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Fig. 20: Without sensor fusion, velocity is severely affected
by slippage (top); with sensor fusion, velocity estimation is
accurate (bottom).

2m/s, resulting in deviations in the body attitude angles of
approximately ¢“ = 0.118rad, ¢p; = 0.128rad, and ¢y,, =
0.627 rad. Subsequently, the controller quickly corrected these
deviations, restoring the robot to its normal, stationary upright
posture within 2 seconds.

4) Terrain Feedforward: In this experiment, the robot was
positioned stationary on a slope with a controllable inclination
angle. We measured the tracking performance of key state
variables under different inclination angles, both with and
without feedforward control enabled. Among all state vari-
ables, the body pitch angle ¢ exhibited the most significant
change. As illustrated in Fig. 23, when the wheel contact
angle increases, the pitch angle ¢ gradually deviates from

Fig. 21: Robot recovers after being kicked.
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Fig. 22: Robot posture when recovering from kicking.
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Fig. 23: Body pitch angle ¢ changes with contact angle.

the horizontal reference when feedforward control is disabled.
In contrast, enabling feedforward control substantially reduces
this deviation.

Upon further analysis, one primary reason that the deviation
does not fully vanish is the presence of a dead zone in the
joint motors, leading to imprecise torque execution. Further
improvements at the hardware level may be required to address
this issue.
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Fig. 24: Robot traverses a 3 cm speed bump.

Fig. 25: Robot jumps down from a 40 cm platform.

5) Traversability: When traversing a 3 cm high speed
bump, the robot passed smoothly (Fig. 24), and its ability to
jump down from a 40 cm high platform and land smoothly
(Fig. 25) demonstrates the controller’s effective utilization
of the robot’s leg structure. By adjusting joint compliance,
the robot absorbed the impact of landing, ensuring a safe
touchdown.

6) Automatic Step Crossing: As shown in Fig. 26, we set
up a step with a height of 10cm. The robot utilized LiDAR
for localization and employed the depth camera to acquire

Fig. 27: Trajectory prediction on the elevation map.

precise terrain information, which was then used to construct
an elevation map as in Fig. 27. Using the previously described
methods, the robot performed trajectory prediction and step
detection to estimate the step height and distance. At the
appropriate moment, the jump process was triggered with the
calculated jumping parameters, enabling the robot to success-
fully cross the step. This result demonstrates the feasibility of
the proposed series of algorithms and significantly enhances
the robot’s terrain traversal capability.

C. Summary

These experimental results indicate that the locomotion
control method designed for handling complex terrain and
dynamic disturbances exhibits commendable robustness and
flexibility. Furthermore, they affirm the rationality of the
hardware and software design of the experimental platform.

V. CONCLUSION

The development and implementation of the wheel-legged
biped robot presented in this paper demonstrate significant
advancements in the field of autonomous robotics for com-
munity inspection and monitoring. Through a comprehensive
approach that includes mechanical design, electronic hardware,
software architecture, and advanced control algorithms, we
have successfully addressed the challenges of perception and
locomotion in semi-structured environments.

Our mechanical structure, crafted with high-strength materi-
als and a focus on stability, has proven capable of withstanding
the rigors of real-world operation, including jumps and falls.
The electronic hardware, powered by a high-performance
computing device, ensures the necessary computational power
for real-time control and processing. The software architecture,



built on an ROS system with real-time capabilities, supports
the complex control nodes required for seamless operation.

In terms of locomotion, the robot has exhibited commend-
able performance in velocity tracking, disturbance resistance,
slippage compensation, and traversability. The integration of
a Kalman filter for state estimation has significantly miti-
gated the effects of wheel slippage, while the feedforward
controller improved the performance on unstructured terrains,
both enhancing the system’s robustness. The robot’s ability to
jump and traverse various terrains validates the efficacy of our
jumping control method and the overall control strategy.

In conclusion, the wheel-legged biped robot system devel-
oped in this research has demonstrated itself to be a reliable
and practical solution for community inspection tasks. It
can not only improve efficiency and safety in public spaces
but also contribute significantly to the expanding body of
research on autonomous robots in public service. The suc-
cessful integration of multisource sensory information and
the development of a locomotion control method suitable for
unstructured terrains have enhanced the robot’s operational
capabilities in complex environments. This work lays the
groundwork for the broader adoption of such robots in real-
world applications and provides a solid foundation for future
research and development in the field of autonomous robotics.

There are still limitations in this work that require further
investigation. A primary issue is the omission of potential
differences in the motion of the two legs, which may cause
problems in scenarios such as traversing steps at an angle. Fu-
ture work may explore more sophisticated leg motion planning
strategies to enable even greater terrain traversal capabilities.
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