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ABSTRACT  
Traffic congestion is significantly affected by the built environment. Existing studies 
predominantly examine this through correlation analysis, overlooking causal 
mechanisms. This omission leads to unreliable feature selection in policy models and 
hinders evidence-based interventions. To address this, this study proposes a three- 
stage causal framework that rigorously assesses built environment impacts. The first 
stage identifies statistically significant correlations using multivariable least squares 
regression. The second stage applies five causal inference models – Granger causality, 
structural equation model, causal forest, causal impact, and convergent cross 
mapping – to uncover causality. The third stage assesses how the identified causal 
factors shape congestion patterns in perpetually congested roadways (PCRs). Applied 
to New York City (NYC), the United States, the results reveal 19 correlated and 11 
causal impacts. Our key findings include: (1) Transit accessibility is the most robust 
causal factor, while built environment diversity exhibits time-dependent variability; (2) 
traffic light design demonstrates bidirectional causality with congestion; (3) PCRs 
exhibit four distinct spatiotemporal patterns, with bridge-related congestion having 
the most consistent impact. These results yielded policy recommendations for NYC 
transportation planning: (i) improve the first-and-last-mile connectivity through micro- 
mobility; (ii) deploy artificial intelligence-driven adaptive traffic signals; (iii) expand the 
capacity of critical bridge corridors near PCRs.
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1. Introduction

Amidst the broader context of sustainability goals articulated in the 2030 Agenda for the United Nations’ 
Sustainable Development Goals (SDGs), traffic congestion has emerged as a pressing scientific concern 
(Kaiser and Deb 2025; Saberi et al. 2020). Yet, addressing congestion remains a multifaced complex chal
lenge. For instance, the unprecedented pace of urbanization has significantly exacerbated urban congestion 
(Su et al. 2025). Moreover, congestion is also shaped by the rise of Digital Earth technologies and their use in 
transportation (Jiang et al. 2022; Li et al. 2019). All these factors underscore the urgency of mitigating con
gestion – a critical objective for aligning urban development over the coming decade with the SDGs. 
Achieving this requires uncovering the underlying causal drivers of congestion.

Existing studies have demonstrated that the built environment is a central factor in directly shaping tra
vel behavior (Benito-Moreno, Carpio-Pinedo, and Lamíquiz-Daudén 2025; Gao et al. 2023; Liu et al. 2025; 
Tracy et al. 2011; Zhang, Sun, and Zegras 2021). In exploring the correlative relationship between the built 
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environment and behavior, one branch of research classifies physical features using five ‘Ds’ schema 
(Cervero and Kockelman 1997; Li et al. 2024; Wang and Zhou 2017): Diversity (the degree of land use mix
ture within a defined area), Density (concentration of population or physical structures within a given area), 
Design (Configuration and physical attributes of transportation infrastructure), Distance to transit (proxi
mity to transit hubs), and Destination accessibility (access to transportation nodes or destinations).

The effects of these factors have been studied by using regression methods (Shen et al. 2020; Lee, Lee, 
and Putri 2025) or geographical detectors (Deng et al. 2022; Ju et al. 2016). For instance, Zhang et al. 
(2017a, 2017b) focusing on ‘Diversity’, models the correlation between traffic congestion and points 
of interest (POI), and reveals that commercial land negatively affects congestion. Song et al. (2019) 
adopts the first four ‘Ds’ to identify which factors influence spatiotemporal congestion patterns. Bao 
et al. (2023) further combines land use and transportation network data, discovering that congestion 
in satellite cities associated with commercial land can be offset by public transit. Finally, Pan et al. 
(2020) and Olayode et al. (2025) integrate road attributes into their analyzes conclude that public com
mercial POIs, residential POIs, bus routes, bus stops, road lanes, and traffic volumes are the significant 
contributors to congestion.

Another branch of research emphasized the effects of a sixth ‘D’ (Demand management) – such as intro
ducing on-demand ridesharing (Li et al. 2022) and congestion pricing (Cook et al. 2025). For example, Qian 
et al. (2020) and Diao, Kong, and Zhao (2021) demonstrate that the entry of transportation network com
panies increases congestion in the United States (US). Rahman et al. (2022) uses data from over 100 metro
politan regions in the US and apply a structural equation model (SEM) to show that indirect effects are 
strong enough to offset direct effects. Huang and Xu (2023) employ a difference-in-differences (DID) 
approach to evaluate the effect of dockless bike-sharing service (DBS) entry on urban traffic congestion 
in 98 cities in China, finding that DBS entry reduced congestion by 2.2%. Liang et al. (2023) also employs 
DID to assess the impact of congestion taxes on traffic congestion, revealing that congestion pricing policy 
can only slightly mitigate traffic congestion.

The above studies rely solely on correlation, an approach prone to misidentifying relationships (Kamat 
2025) due to its failure to account for latent variables. Without testing causal relations, identifying factors as 
‘key contributors to congestion’ based on correlation alone may result in misguided feature selection in 
policy models, causing policy misallocation.

Few studies employ causal analyses of traffic congestion. The European Conference of Ministers of 
Transport identifies three categories of causal factors contributing to congestion (Managing urban traffic 
congestion 2007) (Figure 1): (i) micro-level factors, e.g. conditions on the roadway, or ‘congestion triggers’; 
(ii) macro-level factors, e.g. road usage demand and exogenous factors related to activity patterns and travel 
demand, or ‘road drivers’; (iii) random factors, e.g. weather, visibility, road work, lighting conditions, 
crashes, special events, etc. Koźlak and Wach (2018) examine nine macro-level factors in Poland using stat
istical and regression methods. In Contrast, Pi et al. (2019) focuses on micro-level factors to present a visual 
cause analysis. Yet, to the best of our knowledge, no existing work explores both micro – and micro-factors 
together.

To fill the gap, we employ multiple causal inference models to identify true causal factors. Based on this, 
our main contributions lie in: (1) uniquely distinguishing between correlated and causal factors, thereby 

Figure 1. Three broad categories of causal factors of traffic congestion.
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improving model feature selection accuracy (Rotari and Kulahci 2024; Saarela 2024); (2) synthesizing results 
across multiple causal inference models, thereby enhancing the robustness of our findings (Dormann et al. 
2018) and (3) exploring the causal roles of these factors in relation to the perpetually congested roadways 
(PCRs), a topic that to our knowledge, has not yet been studied.

The remainder of this article is organized as follows. Section 2 describes the data and methodology; 
Section 3 presents our results; Section 4 discusses the findings; Section 5 concludes this paper and 
summarizes the key insights.

2. Material and methods

2.1. Workflow

Figure 2 shows the workflow of this study. First, a multivariable least squares regression (MLSR) is 
applied to assess the correlation between traffic congestion and built environment factors, comprising 
nine micro-level factors and 22 macro-level factors. Second, five causal inference models are employed 
to detect causal relationships. Then, based on the causal factors, the drivers of each spatiotemporal 
congestion pattern of PCRs are further explored. The final stage involves deriving key insights and pol
icy implications.

Figure 2. Workflow of the study.
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2.2. Data sources

This study uses New York City (NYC) as its case study, due to the availability of a comprehensive conges
tion dataset (see below). As of 2018, NYC’s population was approximately 8.6 million and is projected to 
increase to 1 million people by 2030 (Solecki and Rosenzweig 2019). This population growth exacerbates 
its traffic congestion, highlighting the need to devise new solutions.

Road network data. These data were extracted from OpenStreetMap, comprising all 100,206 road seg
ments within NYC.

Built environment data. Nine micro-level and 22 macro-level factors were obtained from NYC Open 
Data. According to Ewing and Cervero (2010), the 31 factors can be classified into ‘five Ds’ (Table 1). 
Appendix Notes 1 and 2 explain the rationale for excluding the sixth ‘D’.

Average hourly travel speed data and variable descriptions. The dataset contains 25,068,883 records of 
average hourly travel speed data for the period 1–31 Dec 2018, provided by Uber Movement. Each record 
includes recording time, road segment ID, and average speed (Appendix Table 1). Uber Movement also 
provides free-flow speed data, defined as 15th percentile value of actual speeds of all floating vehicles, sorted 
in descending order. Traffic congestion is measured by the travel time index (TTI), calculated as the ratio of 
free-flow speed to average speed (Kong, Yang, and Yang 2015).

2.3. Models

Employing multiple models to reduce bias is a well-established practice in the causal inference literature 
(Imbens and Rubin 2015). The rationale for selecting the five models used in this study is provided in 
Appendix Note3.

Table 1. Definition and calculation methods of the 31 representative factors.
Five ‘Ds’ and definitions Representative variables Calculation methods

Diversity (The degree of land use mixture 
within a defined area)

Proportion of listed POIs, including commercial, 
residential, health services, social services, cultural 
services, education, recreational, government, 
transportation, public safety, and waterbody.

Number of POIs/Area of statistical unit (i.e. 
the buffer with 700m buffer around each 
road segment; Song et al. 2019)

Density (Concentration of population or 
physical structures within a given area)

Population density
􏽐

i[J
Pi/AreaJ , where P is the population in 

the 100m pixel i located within statistical 
unit J AreaJ is the area of J.

Building density
􏽐

i[J
BAi/AreaJ , where BAi is footprint area of 

the building.
Ramp density

􏽐

i[J
LRi/AreaJ , where LRi is the length of 

ramp.
Road density

􏽐

i[J
LRDi/AreaJ , LRDn is the length of the 

road.
Parking lot density

􏽐

i[J
PAi/AreaJ , where PAi is the area of 

parking lot i.
Pedestrian zone density

􏽐

i[J
PZAi/AreaJ , where PZAi is the area of 

pedestrian zone i.
Bus stop shelter density

􏽐

i[J
BSi/AreaJ , where BSi is the number of 

bus stop shelters with J.
Subway station density

􏽐

i[J
SSi/AreaJ , SSn is the number of subway 

stations within J.
Design (Configuration and physical 

attributes of transportation 
infrastructure)

Number of road lanes Number
Length of road segments Number
Ratio of road length to width Ratio = road length / road width
Number of traffic lights Count within statistical unit
Number of street lights Count within statistical unit
Length of bike routes Cumulative length within statistical unit
Length of truck routes Cumulative length within statistical unit
Length of sidewalk routes Cumulative length within statistical unit

Distance to Transit & Destination 
Accessibility (Proximity to transit hubs 
and access to public transportation 
nodes)

Distance to the nearest bridge Euclidean distance (in km) from road 
segment centroid to each respective 
facility.

Distance to the nearest bus stop
Distance to the nearest subway
Distance to the nearest airport
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2.3.1. Correlation model
The MLSR was applied to analyze correlations due to its simplicity and wide use in the literature (Bao et al. 
2022; Bao et al. 2023; Koźlak and Wach 2018; Shen et al. 2020). The model is specified as

TTIweighted = b0 + biX1 + b2X2 + . . .+ bJXJ , (1) 

where TTIweighted = [TTI1, . . . , TTIN]T represents the overall congestion levels of N road segments, and 
TTIi is the entropy-weighted average of TTIs over all days. An example of calculating TTIi is provided 
in Appendix Note 4. Xj [ RN×1 denotes the jth factor (J = 31), and bj are the parameters to be estimated.

To address multicollinearity and high inter-variable correlation, we additionally employed variance 
inflation factor (VIF) and Pearson correlation coefficient (Shrestha 2020; Tay 2017). A VIF [ [0, 5] typically 
indicates the absence of multicollinearity.

2.3.2. Causality models
Granger causality (Shojaie and Fox 2022) is a prediction-based method. If the historical data of a particular 
built environment factor improves the prediction accuracy of congestion level, then that factor is said to ‘G- 
causes’ congestion. The method involves three stages: first, a baseline model is constructed to predict future 
congestion using only historical congestion data. Second, an enhanced model is constructed that incorpor
ates historical data on the built environment. Finally, the predictive performance of the baseline model and 
enhanced model is compared. If the enhanced model performs better, it indicates that the factor ‘G-causes’ 
congestion. Traditional Granger causality assumes linear relationships. To address this limitation, we adopt 
an improved model based on transfer entropy (TE), and calculate the net information outflow (Wiener 
1956) to quantify causality:

􏽣TE factor→congestion = TE factor→congestion − TEcongestion→factor, (2) 

if 􏽣TE factor→congestion ≥ 0, this implies that the factor ‘G-causes’ congestion.
SEM (Golob 2003) distinguishes between direct and indirect effects of the ‘five Ds’ and their composite 

variables (i.e. XX1-XX5). In contrast to Granger causality, SEM captures the pathways through which the 
‘five Ds’ influence traffic congestion by incorporating latent variables. The model is expressed as follows:

TTI ≏ XX1+ XX2+ XX3+ XX4+ XX5, (3) 

XX1 =≏ XX5, XX2 =≏ XX5, XX3 =≏ XX5, XX4 =≏ XX5, (4) 

XX1 ≏≏ XX2, XX2 ≏≏ XX3, XX3 ≏≏ XX4, XX4 ≏≏ XX1. (5) 

Here, the symbols (∼,  = ∼, ∼∼) denote regression, latent variable definition and variance, respectively. 
XX1-XX4 are calculated as the weighted averages of components of the ‘five Ds’, while XX5 represents the 
average XX1 – XX4.

Causal forest outperforms the previous two models because it can identify the congestion factors at a 
granular level, by estimating the heterogeneous treatment effects (HTEs) (Wager and Athey 2018). For 
example, while traditional modes may indicate how to alleviate congestion at the citywide level, causal forest 
provides evidence for specific areas. It functions like an intelligent diagnostic system, capable of identifying 
different ‘treatment plans’ for different road segments-an approach useful for policymakers focused on loca
lized interventions.

Causal impact (Brodersen et al. 2015) differs from causal forest by comparing the congestion levels under 
conditions where a specific built environment factors is considered versus where is it. This method creates a 
treatment group and a control group, and follows a three-stage procedure: first, a Bayesian structural time 
series model is constructed to learn the effect pattern of the given factor on congestion; second, the model is 
used to generate a ‘synthetic control’ time series; and third, the observed effects are compared between the 
treatment and control groups, capturing both pointwise and cumulative impacts.

Convergent cross mapping (CCM) (Tsonis et al. 2018) measures the causal relationship between traffic 
congestion Y and a built environment factor X based on their short-term temporal dynamics. By construct
ing their respective manifolds, MY and MX , under the embedded dimension E, the E+ 1 nearest points to 
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X(t) in MX and to Y(t) in MY can be used to estimate the system as follows:

Ŷ(t)|MX =
􏽘

wiY(ti), i = 1, . . . , E+ 1, (6) 

X̂(t)|MY =
􏽘

wiX(ti), i = 1, . . . , E+ 1, (7) 

where wi is the weight assigned to each neighboring point. The CCM correlation coefficient is then calcu
lated as

rCCM =

􏽐L
i=1 (X(i) − X(i))(X̂(i)|MY − X̂(i)|MY)

����������������������
􏽐L

i=1 (X(i) − X(i))2
􏽱

􏽐L
i=1 (X̂(i)|MY − X̂(i)|MY)

2
. (8) 

As the time series L increases, if rCCM converges to a stable value, it indicates a causal relationship from 
X to Y .

The five causal models offer complementary approaches for distinguishing relationships between the 
built environment and traffic congestion. Granger causality acts as a ‘time-series prediction’, assessing 
whether historical built environment data can predict future congestion – a straightforward approach 
but sensitive to the choice of time window. SEM serves as a ‘roadmap architect’, quantifying both direct 
effects (e.g. the impact of road density on traffic congestion) and indirect pathways (e.g. the influence of 
bus stops on congestion through transit use). Causal Forest functions like a ‘precision tool’, identifying 
location-specific effects, through is computationally intensive. Causal Impact is well-suited for evaluat
ing short-term effects using synthetic controls, yet is vulnerable to control group selection bias. CCM 
operates as a ‘long-term observer’, capturing delayed and nonlinear responses (e.g. the influence of 
water bodies may take years to manifest in traffic patterns). For comprehensive analysis, we integrate 
these models to uncover how the built environment influences congestion through multiple causal 
pathways.

2.4. Perpetually congested roadway (PCRs) analysis

Congestion in PCRs is more intricate than general congestion. In this study, road segments with TTI of at 
least 1.5 for all hours of the day are defined as PCRs. This threshold is selected based on the classification 
proposed by Kong, Yang, and Yang (2015), where TTI≤1.5 indicates smooth or free-flowing traffic (see 
Appendix Table 2).

2.4.1. Congestion patterns
Agglomerative hierarchical clustering (Oti and Olusola 2024) is employed to identify spatiotemporal pat
terns within PCRs based on the TTI. Four linkage methods are commonly used to measure distance: single, 
complete, average, and Ward linkage. Ward linkage is selected for this study, and the distance between two 
clusters (Ci, Cj) is defined as

Dward(Ci, Cj) =
1

|Ci| · |Cj|

􏽘

xi[Ci,xj[Cj

(dist(xi, xj))2, (9) 

where dist(xi, xj) denotes the Euclidean distance between samples xi and xj. |Ci| and |Cj| represent the num
ber of samples in clusters Ci and Cj. Subsequently, all PCRs are clustered using k-means, with the weighted 
feature matrix, expressed as:

F̂ = F∗diag(w1,w2, . . . , w11), (10) 

where F [ RN∗11 is the feature matrix. N is the number of road segments, wj ( j = 1, 2, . . . 11) denotes the 
weight for the jth feature, and F̂ [ RN∗11 represents the resulting weighted feature matrix.

2.4.2. Mantel test
The Mantel test (Somers and Jackson 2022) is conducted to evaluate the association between the TTI 
matrices of the congestion patterns and the feature matrix F. The Mantel test is a statistical method used 
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for evaluating the correlation between two data matrices and to test for autocorrelation. We chose the Man
tel test because, unlike conventional correlation coefficients that measure relationships between pairs, it is 
specifically designed to evaluate correlations between entire matrices. Unlike the Pearson and Spearman 
coefficients, the Mantel test uses a permutation-based approach to randomly rearranging the data. Each per
mutation is calculated only once. The Mantel p correlation ranges from −1 to 1, where −1 indicates a nega
tive correlation, 0 indicates no correlation, and 1 indicates a perfect positive correlation.

3. Results

3.1. Single-model results and validity

3.1.1. MLSR
(1) Model results. As shown in Table 2, six factors do not exert a statistically significant influence (P > 0.05) 
and three factors exhibit multicollinearity (VIF > 6). Combined with the Pearson correlation coefficients 
(Appendix Figures 1 and 2), only 19 factors are found to be significantly correlated with the TTI (Appendix 
Table 3). The R2 value from the MLSR is relatively low (R2 = 0.150). Durbin-Watson statistics and Hypoth
esis tests confirm that our data satisfy the assumptions of the regression model except for linearity. To 
further validate these results, we applied a non-linear model (random forest), which achieved a substantially 
better performance (R2 = 0.565; Table 4 and Figure 3 in Appendix).

(2) Model validity. As shown in Table 2, the values of Mean Square Error (MSE), Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) are all close 
to zero, indicating that the model exhibits strong predictive performance.

3.1.2. Granger causality
(1) Model results. Figure 3 visualizes the results of both the linear and nonlinear models, with correspond
ing numerical values presented in Table 3. The analysis reveals that the proportion of commercial and 

Table 2. MLSR analysis between 31 built environment factors and traffic congestion.
Five ‘Ds’ Representative variables Coefficient t-Value P-value VIF

Diversity Proportion of commercial facilities 0.078 20.194 *** 4.155
Proportion of residential facilities 0.131 2.762 *** 17.149
Proportion of health service facilities 0.019 7.958 *** 2.034
Proportion of social service facilities 0.026 1.061 0.289 3.135
Proportion of cultural service facilities −0.005 −1.638 0.101 18.352
Proportion of educational facilities 0.011 7.103 *** 2.210
Proportion of recreational facilities 0.024 6.362 *** 2.269
Proportion of government facilities 0.020 6.762 *** 1.553
Proportion of transportation facilities −0.025 −5.928 *** 1.743
Proportion of public safety facilities −0.002 −0.808 0.419 1.305
Proportion of waterbody −0.001 −0.241 0.810 1.759

Density Population density 0.029 5.313 *** 1.223
Building density 0.012 2.150 ** 1.811
Road density 0.008 3.945 *** 1.760
Ramp density 0.044 16.176 *** 1.127
Density of parking lots 0.028 3.880 *** 1.043
Density of pedestrian zones 0.006 0.818 0.413 1.115
Density of bus stop shelters −0.025 −10.896 *** 2.576
Density of subway stations 0.041 9.766 *** 3.357

Design Number of road lanes 0.023 6.767 *** 5.228
Length of road segments −0.036 −2.266 ** 1.656
Ratio of road segment length to width 0.184 5.025 *** 6.609
Number of traffic lights 0.033 13.136 *** 2.085
Number of street lights 0.024 5.948 *** 2.712
Length of bike routes 0.024 8.095 *** 1.065
Length of truck routes −0.008 −1.588 0.112 1.053
Length of sidewalk routes 0.014 3.323 *** 1.037

Distance & Destination Accessibility Distance to the nearest bridge −0.012 −5.029 *** 1.316
Distance to the nearest bus stop −0.060 −16.759 *** 1.339
Distance to the nearest subway −0.037 −19.711 *** 1.616
Distance to the nearest airport −0.022 −13.022 *** 1.236

MSE = 0.003, RMSE = 0.058, MAE = 0.042, MAPE = 1×10−6, R2 = 0.150
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health service facilities, population density, number of road lanes and traffic lights, road density, distance to 
the nearest bridge and bus stop are statistically significant causal factors (PX→Y ,0.05). Among these, road 
density (TEY→X = 0.177) and the number of traffic lights (TEY→X = 0.116) exhibit the strongest bidirectional 
causality with the TTI, suggesting these elements not only influence but are also influenced by traffic con
ditions in a feedback loop.

(2) Statistical test. As shown in Table 3, a P-value less than 0.05 indicates a statistically significant causal 
effect.

(3) Parameter setting. Figure 4 illustrates how the p-value varies with lag length, based on the Chi- 
squared and the Likelihood ratio tests. p-value less than 0.05 indicates reasonable lag. The optimal settings 
identified across the tests are 100, 20, 95, 115, 125, 130, 95, 40, 75, 130, 75, 60, 80, 85, 140, and 140.

3.1.3. SEM
(1) Model results. In Figure 5a, 14 factors emerge as statistically significant causal variables, indicated by 
solid arrows. XX4 stands out as particularly influential because all of its component variables (X16-X19) 
achieve statistical significance, suggesting its causal effect. Figure 5b presents the overall effects of XX1- 
XX4, with specific effect paths detailed in Appendix Table 5. Intuitively, XX4 (Distance and Destination 
accessibility) shows the strongest direct effect, suggesting it may represent a fundamental determinant of 
traffic congestion. XX1 (Diversity) demonstrates the strongest indirect effect, highlighting how urban 
characteristics influence traffic through secondary pathways. These findings underscore the importance 
of both direct and indirect of urban factors’ effects when designing policy inventions.

(2) Validity test. The model’s fit is evaluated using standard goodness-of-fit statistics (Rahman et al. 
2022). As shown in Table 4, the model yields a statistically significant CMIN score of 63.149. The GFI 
exceeds the recommended threshold of 0.95, indicating a strong model fit. The CFI, NFI, and IFI with values 
of 0.905, 0.094, and 0.907, respectively-also support the model’s adequacy.

3.1.4. Causal forest
(1) Model results. In Figure 6, SHapley Additive exPlanations (SHAP; Albini et al. 2022) are used to visu
alize feature changes. SHAP values quantify feature effects for individual road segment, while the final effect 
is aggregated across all segments. Taking X16 as an example, the SHAP values of most road segments are 
greater than zero, indicating that its overall positive influence outweighs any negative effects. Similar analy
sis applies to other factors. In Figure 7a, X8 and X16 show strong feature importance. In Figure 7b, X16, X7, 
X15, X17, and X12 show strong importance, as indicated by the feature splitting order. These correspond to 

Figure 3. Granger causality results. Factors connected by loops represent bidirectional causality. Only road density and the 
number of traffic lights show robust bidirectional causality with the TTI, as reflected by their larger node sizes.
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distance to the nearest bridge, population density, sidewalk route length, distance to the nearest bus stop, 
and road length-highlighting their strong causal relationship with the TTI.

(2) Model robustness. Figure 8 presents the comparison between the estimated treatment effects gener
ated by the model and the true treatment effects for the six factors. All estimated effect curves exhibit trend 
consistent with the true curves, indicating strong predictive performance and suggesting good model 
generalization.

Figure 4. Lag selection of the model. This refers to the number of prior observation points included in the model.

Table 4. Evaluation of fitting goodness.
Index Recommended score Results of our model

Chi-square (CMIN) A lower value indicates a better fit. 63.027
Goodness-of-fit index (GFI) [0,1], 1 indicates perfect fit. 0.973
Comparative fit index (CFI) [0,1], 1 indicates perfect fit. 0.905
Normal fit index (NFI) [0,1], 1 indicates perfect fit. 0.904
Incremental fit index (IFI) [0,1], 1 indicates perfect fit. 0.907
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3.1.5. Causal impact
(1) Model results. As shown in Figure 9, ten factors show causal relationships with the TTI in this model. 
The dataset is partitioned with a training to test ratio of 2:1. When the sample size exceeds 200, both the 
pointwise and the cumulative plots show an upward trend, indicating a positive causal effect on congestion. 
Conversely, a downward trend suggests a negative causal effect.

(2) Statistical test. In Table 5, the posterior causal probability reflects the likelihood that a variable truly influ
ences the TTI. Compared to the p-value, it offers a more intuitive measure of causal certainty. We rigorously 
employ both p-value and poster probability to ensure a robust result. The results identify ten factors with p- 
value less than 0.05 and posterior probability exceeding 95%, thereby providing strong evidence of a causal effect.

Figure 5. SEM results. Four factors in XX4 are all significant, which show the most robust causality.
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3.1.6. CCM
(1) Model results. In Figure 10, an increase in the correlation coefficient indicating a causal relationship. 
Nine factors exhibit a unidirectional causal effect (i.e. x causes y) with the TTI. Notably, the number of 
traffic lights exhibit bidirectional causality with the TTI, as evidence by both the x causing y and y causing 
x effects displaying a rising trend (Figure 10e). The analysis reveals a feedback loop where increased traffic 
congestion drives additional traffic signal installation, which subsequently alters traffic flow until reaching 
an observable stable state in the curves. This mutually reinforcing pattern in both directions suggest a com
plex feedback loop that has significant implications for transportation planning – traffic signal optimization 
should be viewed as ongoing, dynamic process rather than a one-time solution.

(2) Parameter settings. Figure 11 illustrates how prediction performance varies with the embedding 
dimensions. The X-axis value corresponding to the peak of each curve represents the optimal embedding 

Figure 6. Causal forest results. The effects of X1-X19 on individual read segment. The larger range of the points distribution, 
the stronger impacts.

Table 5. Statistical test of causal impact.

Variable

Actual 
value 

-average

Prediction 
value- 

average
Actual value- 

cumulative

Prediction 
value- 

cumulative

Absolute 
effect- 

average

Absolute 
effect- 

cumulative
Relative 

effect
P- 

value

Posterior 
probability of a 

causal effect

X1 2.80 2.00 276.80 197.00 0.80 80.00 49% 0.011 98.90%
X2 2.70 2.00 266.60 196.00 0.71 70.52 44% 0.056 94.00%
X3 2.90 1.90 292.50 192.90 1.00 100.00 69% 0.039 96.07%
X4 2.90 3.20 285.10 322.70 −0.83 −37.63 −11% 0.083 92.00%
X5 2.60 2.00 258.60 195.0 0.63 63.34 40% 0.069 93.00%
X6 2.80 3.50 278.30 347.70 −0.69 −69.39 −18% 0.083 92.00%
X7 3.10 2.50 312.60 253.80 0.59 58.85 26% 0.049 95.10%
X8 2.90 2.90 293.90 291.20 0.03 2.629 1.60% 0.439 56.00%
X9 2.80 3.80 282.70 382.30 −1.00 −100.00 −25% 0.006 99.40%
X10 2.70 2.40 269.30 239.50 0.30 29.80 30% 0.336 66.00%
X11 2.70 3.20 274.00 317.30 −0.43 −43.31 −13% 0.036 96.40%
X12 2.80 3.20 284.90 316.50 −0.32 −31.65 −8.4% 0.388 61.00%
X13 2.90 4.10 294.50 408.20 −1.10 −113.70 −27% 0.007 99.30%
X14 2.90 2.90 293.80 286.70 0.071 7.09 3.40% 0.386 61.00%
X15 3.00 2.80 299.00 284.20 0.15 14.57 8.10% 0.370 63.00%
X16 3.30 2.50 326.70 246.70 0.80 80.00 35% 0.009 99.05%
X17 2.80 2.10 277.00 209.90 0.67 67.07 36% 0.049 95.10%
X18 2.90 3.70 292.30 370.50 −0.78 −78.21 −20% 0.045 95.50%
X19 2.60 3.30 267.80 328.40 −0.71 −70.59 −21% 0.011 98.90%
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dimension. For example, in the first panel, when exploring the causality from x to the TTI, the optimal 
embedding dimension of x is 10, while the optimal dimension for TTI is 6.

3.2. Overall results

3.2.1. Integrated findings
The synthesized results, as illustrated in Figure 12, reveal a hierarchy of causal factors based on their vali
dation across five distinct models. The robustness of each factor was assessed by the number of models in 
which it demonstrated statistical significance, with a predefined threshold requiring validation in at least 
three models (i.e. demonstrating minimum 60% causal support). First, the distance to the nearest bridge 
and bus stop emerges as the most robust causal factors, validated by all five models. This strongly suggests 
that transportation accessibility plays a fundamental role in the observed phenomenon. Second, several fac
tors showed high but slightly less consistent support, validated in four models, including the proportion of 
commercial facilities, population density, number of road lanes and traffic lights, and distance to the nearest 
airport. This indicates the importance of urban infrastructure and demographic characteristics. Then, 

Figure 7. Feature selection for causal forest model. The variable with high feature importance and a high splitting order is 
dominant causal factor.
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educational facilities, road density, ramp density, and distance to the nearest subway pass validation in three 
model tests. The remaining factors, validated by only one or two models, demonstrated insufficient consist
ency for robust conclusions. Overall, this analysis identified 11 robust causal factors, with the findings par
ticularly highlighting transportation accessibility as key determinants. It also suggests that less consistent 
factors may require further investigation to understand their potential context-dependent effects or possible 
interactions with other variables.

3.2.2. Sensitivity to weekday-weekend-holidays
To assess the robustness of our causal findings, we conducted a comparative analysis using the average 
treatment effect (ATE) (Li 2020) across four temporal groups: one-month (baseline), weekday, weekend, 
and holiday (Figure 13). First, the analysis revealed consistent causal rankings for infrastructure-related 
factors, such as distance to bridges and transit hubs, number of traffic lights and of road lanes, which con
sistently ranked among the top-six in all subgroups. This confirms their temporal stability. However, the 
weekend and holiday groups exhibited notable shifts in specific land use categories. Compared to the 
baseline group, the ATE for commercial facilities and recreational facilities increased by a 48.6% and 
60.0%, respectively, while educational facilities showed a 64.8% decrease. This is consistent with travel 
behavior theory (Zhu et al. 2019). Third, weekday results displayed a trend aligned with the full- 
month pattern, suggesting that weekday data effectively captures representative congestion dynamics. 

Figure 8. Illustration of estimated treatment effect and true treatment effect of causal forest model.
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In summary, our findings indicate while core transit infrastructures effects remain robust across temporal 
contexts, land use impacts are temporally sensitive. Urban planners can confidently rely on infrastruc
ture-related findings but should adjust for behavioral shifts in land use effects during non-workday 
periods.

3.3. Perpetually congested roadway

3.3.1. Identified spatiotemporal congestion patterns
Our procedure identifies 889 segments classified as PCRs. The hierarchical clustering procedure identifies 
four distinct spatiotemporal congestion patterns (Appendix Figures 4), which are subsequently grouped 
into two higher-level clusters using k-means based on the 11 weighted causal factors. The silhouette coeffi
cient (Rousseeuw 1987) and elbow method (Liu and Deng 2020) both indicate that two clusters are the opti
mal solution, as demonstrated in Appendix Figure 5. These clusters are interpreted as main urban arterials 

Figure 9. Causal impact results. For each figure, the trend of pointwise and cumulative effects represents the variation of 
causal effects on traffic congestion. Five factors show positive upward trend and the other five factors show negative down
ward trend.
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(cluster 1) and city expressways (cluster 2), respectively, with their spatial distributions illustrated in Appen
dix Figure 6. The corresponding statistical summaries of these clusters are comprehensively presented in 
Figure 14. This two-step clustering approach successfully reveals the two main types of congestion patterns 
in city road networks.

3.3.2. Underlying mechanisms
Figure 15 presents the Mantel test results for the four spatiotemporal congestion patterns across the two 
clusters. Green lines (p [ [0.01,0.05]) and red lines (p , 0.01) represent significant relationship between 
the TTI values and the built environment features. The results support several key findings. First, on 
urban main arterials, road density, number of traffic lights, and distance to the nearest transit hubs 
are identified as primary congestion drivers. In contrast, on city expressways, ramp density and number 

Figure 10. CCM results. The trends represent the variation of causal effects. Number of traffic lights shows bidirectional 
causality, as its two lines both show upward trend.

Table 6. Correlation and causality-based recommendations.
‘Five Ds’ Correlation-based suggestions and consequences Causality-based findings and suggestions

‘Diversity’ vs 
‘Density’

Increasing land use ‘Diversity’ in high ‘Density’ areas is 
thought to reduce trips to the city center (Song et al. 
2019) – this can increase local congestion by complicating 
short-distance travel patterns.

‘Diversity’ shows a positive causal effect, with time- 
dependent variations in its impact strength. This supports 
time-sensitive interventions, e.g. commute-priority 
corridors and commercial-flow lanes.

‘Density’ vs ‘Design’ Congestion caused by dense employment zones should be 
offset by expanding public transit (Bao et al. 2023) – this 
may induce new congestion hotspots near transit hubs.

‘Design’ exerts a stronger causal effect than ‘Density’. This 
support ‘Design’-focused interventions, such as pressure- 
sensitive traffic lights, and freight tunnel near bridge- 
related congestion hotspots.

‘Distance & 
Destination 
accessibility’

Public transit accessibility is viewed as critical for congestion 
mitigation (Ding et al. 2025) – increasing parking near 
public transit hubs may initially worsen congestion until 
key infrastructure thresholds are crossed.

This dimension presents is the most robust influence. It 
should be coupled with complementary measures, such 
as congestion pricing and expanded bike-sharing 
infrastructure.
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of road lanes emerge as significant causal factors. Notably, distance to the nearest bridge appears as the 
most consistent key influential factor across both two roadway types, because it reflects network edges con
necting distinct traffic communities (Sun et al. 2014). Second, non-weekday patterns show stronger causal 
associations with traffic lights and the proportion of public facilities, compared with weekday patterns. 
Additionally, the causal influence of first ‘D’ (Diversity) is found to be are weaker than that of the third 
‘D’ (Design). Overall, the underlying causes of congestion on main urban arterials appear more complex 
than those on city expressways, potentially due to the complex geographical environment surrounding 
them.

Figure 11. Parameter settings of the CCM.

Figure 12. Overall result. One factor is defined as a causal factor only if it is validated by at least three models. This leads to 
11 causal factors.
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4. Discussion

4.1. Findings and recommendations

This study identifies causal explanations of urban congestion, thereby extending and refining those offered 
by previous correlation studies (Table 6). First, earlier correlational findings point to the need to increase 
land use ‘Diversity’ in high ‘Density’ areas (Song et al. 2019) and that ‘Density’-induced congestion should 
be offset by public transit (Bao et al. 2023). Our study show that the causal effect of ‘Design’ is stronger than 
that of ‘Diversity’ and ‘Density’ in a mature city such as NYC. Second, the ‘Distance & Destination acces
sibility’ component shows consistently robust causal effects with Ding et al. (2025). Third, our identification 
of road density and traffic lights as having bidirectional causal relationships with congestion extends the 
unidirectional relationships reported by Duan et al. (2020).

4.2. Multi-model selection suggestions

This study integrates five complementary models to produce novel findings. However, these findings must 
be interpreted in conjunction with the specific application contexts suited to a multi-model approach, as 
summarized in Table 7. To ensure robustness, we recommend resolving conflicts through cross-validation: 
(i) verifying whether the data satisfy model assumptions, and (ii) conducting parameter sensitivity test.

4.3. Limitations and prospects

This study has three principal limitations that warrant discussion. First, excludes critical random variables 
that may influence traffic patterns and user behavior, such as real-time weather fluctuations and incident 

Figure 13. Temporal sensitivity test of 19 correlated factors. The top-six factors exhibit temporal stability.

Table 7. Contextualized multi-model strategy.

Context
Recommended model 

combination Advantages

Short-term assessment of 
transportation infrastructure

Granger causality + Causal 
Impact

Capture immediate causal effects, e.g. the short-term impact of newly built 
infrastructure.

Long-term land use planning Causal Forest + CCM Accounts for spatial heterogeneity and nonlinear, delayed effects.
Citywide congestion control Granger causality + SEM Identifies causal pathways, e.g. how bus stops affect congestion indirectly 

via transit hub usage.
Place-specific congestion control Causal Forest + Causal 

Impact + SEM
Precisely detects spatial hotspots, while revealing causal pathways, e.g. the 

impact of bike lanes on congestion near schools.
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data. These observed factors were not controlled for potentially introducing heterogeneity into the esti
mation of interactions between the built environment and traffic congestion. Second, although we con
ducted sensitivity analysis comparing weekdays, weekends, and holidays, the exclusive reliance on data 
from December 2018 imposes temporal constraints. This limits the generalizability of our findings and pre
cludes analysis of seasonal or interannual variation. Third, by focusing on the static ‘five Ds’ of the built 
environment factors, the current modeling framework does not account for the emerging sixth ‘D’-the 
dynamic dimension, represented by demand responsive services. To address these limitations, future 
research should pursue three directions: (1) integrate or control for random exogenous factors; (2) utilize 
multi-seasonal and multi-annual data to capture temporal dynamics, including seasonal patterns and 
extreme weather effects; and (3) develop hybrid models that systematically incorporate dynamic the 
sixth ‘D’ components. These enhancements will improve the explanatory power and practical relevance 
of the framework.

Figure 14. Statistical information of 11 factors in two types of perpetually congested roadways.
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5. Conclusion

The objective of this study is to investigate the causal relationship between traffic congestion and the built 
environment in New York City through three efforts: (1) estimating a multivariable least squares to identify 

Figure 15. Mantel test for four patterns of cluster 1 (a-d) and cluster2 (e-h). F1-F11 represent the 11 causal factors (Appen
dix Table 6). TTI1- TTI5 represents the average TTI at five periods (1:00-6:00, 7:00-9:00, 10:00-15:00, 16:00-19:00, 20:00- 
24:00).
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built environment factors significantly correlated with congestion; (2) establishing causal relationships 
between these factors using five causal inference models, while discussing a contextualized multi-model 
strategy for applying causal inference methods into urban research; and (3) examining the underlying 
impact mechanisms of four spatiotemporal patterns of perpetually congested roadways using Mantel 
test. The results highlight the limitations of relying solely on correlational analysis-namely, the risk of mis
leading feature selection and ineffective policy interventions. Based on the identified causal mechanisms, we 
propose targeted built environment interventions aimed at effectively mitigating traffic congestion.

Through these efforts and results, our paper offers three contributions:

(1) The development of a framework for analyzing the causal importance of built environment factors, 
enabling the quantification of the global importance of the ‘five Ds’. The New York City case study results 
ranked their significance as follows: Distance & Destination accessibility, Design, Diversity, and Density. 
Notably, public transit accessibility and traffic signal design emerge as critical for mitigating traffic 
congestion.

(2) The identification of distinct casual factors driving congestion on perpetually congested roadways- 
key bottlenecks in urban traffic networks-through temporal analysis across five daily time periods. 
Bridge-related congestion shows the strongest and most consistent impact.

(3) The provision of empirical grounding for several evidence-based urban planning recommen
dations. First, enhance accessibility to major transit hubs and increase traffic capacity at critical bridge 
connections. We suggest to deploy bicycle-sharing systems specifically tailored to first-and-last-mile con
nectivity at key transit nodes. Second, implement intelligent demand management vis congestion pricing 
at tunnel and bridge approaches to urban centers. Third, deploy adaptive traffic signal control systems 
that automatically trigger traffic signal extension when congestion exceeds defined thresholds. This 
approach can help break the vicious cycle of ‘traffic flow aggregation, signal delay, and congestion exacer
bation’ (Naeem et al. 2024).
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The publicly accessible average hourly travel speed data were downloaded from Uber Movement (https://movement. 
uber.com/explore/new_york/speeds/query?dt[tpb]=ALL_DAY&dt[wd;]=1,2,3,4,5,6,7&dt[dr][sd]=2018-11- 
28&dt[dr][ed]=2018-12-30&ff=&lat.=40.7491664&lng.=-74.0154715&z.=11.9&lang=en-US.) on April 20, 2023. As of 
October 1, 2023, Uber Movement had ceased providing services. Data used in this study are available upon request. 
The publicly accessible built environment data were obtained from NYC Open Data (https://opendata. 
cityofnewyork.us/), using the following specific datasets: 

(1) Points of Interest: https://data.cityofnewyork.us/City-Government/Points-Of-Interest/rxuy-2muj;
(2) Building Footprints: https://data.cityofnewyork.us/Housing-Development/Building-Footprints/nqwf-w8eh;
(3) Bus Stop Shelters: https://data.cityofnewyork.us/Transportation/Bus-Stop-Shelters/qafz-7myz;
(4) Subway Stations: https://data.cityofnewyork.us/Transportation/Subway-Stations/arq3-7z49;
(5) Parking Lots: https://data.cityofnewyork.us/City-Government/Parking-Lot/h7zy-iq3d;
(6) Leading Pedestrian Interval Signals: https://data.cityofnewyork.us/Transportation/VZV_Leading-Pedestrian- 

Interval-Signals/mqt5-ctec;
(7) Bike Routes: https://data.cityofnewyork.us/Transportation/New-York-City-Bike-Routes/7vsa-caz7;
(8) Truck Routes: https://data.cityofnewyork.us/Transportation/New-York-City-Truck-Routes-Map-/wnu3-egq7;
(9) Sidewalks: https://data.cityofnewyork.us/City-Government/Sidewalk/vfx9-tbb6;

(10) Bridge Ratings: https://data.cityofnewyork.us/Transportation/Bridge-Ratings/4yue-vjfc;
(11) Airport Polygons: https://data.cityofnewyork.us/City-Government/Airport-Polygon/xfhz-rhsk.

The datasets listed above may have been updated over time; however, the average travel speed data and built environ
ment data used in this study were temporally aligned to ensure consistency.
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