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ABSTRACT ARTICLE HISTORY
Traffic congestion is significantly affected by the built environment. Existing studies Received 16 February 2025
predominantly examine this through correlation analysis, overlooking causal Accepted 26 July 2025

mechanisms. This omission leads to unreliable feature selection in policy models and
hinders evidence-based interventions. To address this, this study proposes a three- T L
. X X . raffic congestion; built
stage causal framework that rigorously assesses built environment impacts. The first environment; correlation;
stage identifies statistically significant correlations using multivariable least squares causality; spatiotemporal
regression. The second stage applies five causal inference models — Granger causality, pattern; road transportation
structural equation model, causal forest, causal impact, and convergent cross
mapping - to uncover causality. The third stage assesses how the identified causal
factors shape congestion patterns in perpetually congested roadways (PCRs). Applied
to New York City (NYC), the United States, the results reveal 19 correlated and 11
causal impacts. Our key findings include: (1) Transit accessibility is the most robust
causal factor, while built environment diversity exhibits time-dependent variability; (2)
traffic light design demonstrates bidirectional causality with congestion; (3) PCRs
exhibit four distinct spatiotemporal patterns, with bridge-related congestion having
the most consistent impact. These results yielded policy recommendations for NYC
transportation planning: (i) improve the first-and-last-mile connectivity through micro-
mobility; (i) deploy artificial intelligence-driven adaptive traffic signals; (iii) expand the
capacity of critical bridge corridors near PCRs.

KEYWORDS

1. Introduction

Amidst the broader context of sustainability goals articulated in the 2030 Agenda for the United Nations’
Sustainable Development Goals (SDGs), traffic congestion has emerged as a pressing scientific concern
(Kaiser and Deb 2025; Saberi et al. 2020). Yet, addressing congestion remains a multifaced complex chal-
lenge. For instance, the unprecedented pace of urbanization has significantly exacerbated urban congestion
(Su et al. 2025). Moreover, congestion is also shaped by the rise of Digital Earth technologies and their use in
transportation (Jiang et al. 2022; Li et al. 2019). All these factors underscore the urgency of mitigating con-
gestion - a critical objective for aligning urban development over the coming decade with the SDGs.
Achieving this requires uncovering the underlying causal drivers of congestion.

Existing studies have demonstrated that the built environment is a central factor in directly shaping tra-
vel behavior (Benito-Moreno, Carpio-Pinedo, and Lamiquiz-Daudén 2025; Gao et al. 2023; Liu et al. 2025;
Tracy et al. 2011; Zhang, Sun, and Zegras 2021). In exploring the correlative relationship between the built
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environment and behavior, one branch of research classifies physical features using five ‘Ds’ schema
(Cervero and Kockelman 1997; Li et al. 2024; Wang and Zhou 2017): Diversity (the degree of land use mix-
ture within a defined area), Density (concentration of population or physical structures within a given area),
Design (Configuration and physical attributes of transportation infrastructure), Distance to transit (proxi-
mity to transit hubs), and Destination accessibility (access to transportation nodes or destinations).

The effects of these factors have been studied by using regression methods (Shen et al. 2020; Lee, Lee,
and Putri 2025) or geographical detectors (Deng et al. 2022; Ju et al. 2016). For instance, Zhang et al.
(2017a, 2017b) focusing on ‘Diversity’, models the correlation between traffic congestion and points
of interest (POI), and reveals that commercial land negatively affects congestion. Song et al. (2019)
adopts the first four ‘Ds’ to identify which factors influence spatiotemporal congestion patterns. Bao
et al. (2023) further combines land use and transportation network data, discovering that congestion
in satellite cities associated with commercial land can be offset by public transit. Finally, Pan et al.
(2020) and Olayode et al. (2025) integrate road attributes into their analyzes conclude that public com-
mercial POIs, residential POIs, bus routes, bus stops, road lanes, and traffic volumes are the significant
contributors to congestion.

Another branch of research emphasized the effects of a sixth ‘D’ (Demand management) - such as intro-
ducing on-demand ridesharing (Li et al. 2022) and congestion pricing (Cook et al. 2025). For example, Qian
et al. (2020) and Diao, Kong, and Zhao (2021) demonstrate that the entry of transportation network com-
panies increases congestion in the United States (US). Rahman et al. (2022) uses data from over 100 metro-
politan regions in the US and apply a structural equation model (SEM) to show that indirect effects are
strong enough to offset direct effects. Huang and Xu (2023) employ a difference-in-differences (DID)
approach to evaluate the effect of dockless bike-sharing service (DBS) entry on urban traffic congestion
in 98 cities in China, finding that DBS entry reduced congestion by 2.2%. Liang et al. (2023) also employs
DID to assess the impact of congestion taxes on traffic congestion, revealing that congestion pricing policy
can only slightly mitigate traffic congestion.

The above studies rely solely on correlation, an approach prone to misidentifying relationships (Kamat
2025) due to its failure to account for latent variables. Without testing causal relations, identifying factors as
‘key contributors to congestion” based on correlation alone may result in misguided feature selection in
policy models, causing policy misallocation.

Few studies employ causal analyses of traffic congestion. The European Conference of Ministers of
Transport identifies three categories of causal factors contributing to congestion (Managing urban traffic
congestion 2007) (Figure 1): (i) micro-level factors, e.g. conditions on the roadway, or ‘congestion triggers’;
(ii) macro-level factors, e.g. road usage demand and exogenous factors related to activity patterns and travel
demand, or ‘road drivers’; (iii) random factors, e.g. weather, visibility, road work, lighting conditions,
crashes, special events, etc. Kozlak and Wach (2018) examine nine macro-level factors in Poland using stat-
istical and regression methods. In Contrast, Pi et al. (2019) focuses on micro-level factors to present a visual
cause analysis. Yet, to the best of our knowledge, no existing work explores both micro - and micro-factors
together.

To fill the gap, we employ multiple causal inference models to identify true causal factors. Based on this,
our main contributions lie in: (1) uniquely distinguishing between correlated and causal factors, thereby

. N . N . N
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f \ / N £ N
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Figure 1. Three broad categories of causal factors of traffic congestion.
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improving model feature selection accuracy (Rotari and Kulahci 2024; Saarela 2024); (2) synthesizing results
across multiple causal inference models, thereby enhancing the robustness of our findings (Dormann et al.
2018) and (3) exploring the causal roles of these factors in relation to the perpetually congested roadways
(PCRs), a topic that to our knowledge, has not yet been studied.

The remainder of this article is organized as follows. Section 2 describes the data and methodology;
Section 3 presents our results; Section 4 discusses the findings; Section 5 concludes this paper and
summarizes the key insights.

2. Material and methods
2.1. Workflow

Figure 2 shows the workflow of this study. First, a multivariable least squares regression (MLSR) is
applied to assess the correlation between traffic congestion and built environment factors, comprising
nine micro-level factors and 22 macro-level factors. Second, five causal inference models are employed
to detect causal relationships. Then, based on the causal factors, the drivers of each spatiotemporal
congestion pattern of PCRs are further explored. The final stage involves deriving key insights and pol-
icy implications.

Dataset

Traffic data Built environment Data

/ OStudy area: New York °
City (NYC)

O“Micro-level”  factors: road 0 “Macro-level factors:

density, ramp density, number of proportion of points of interest,
O Average hourly travel

speed data (Dec 1, 2018 -
Dec 31, 2018)

population density, building

width, length of bike routes, truck ~ 9ensity, parking lots density,

distance to the nearest transit

1
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1
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1
1
1
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1
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Methodology
Correlation analysis Causality analysis
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Figure 2. Workflow of the study.
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2.2. Data sources

This study uses New York City (NYC) as its case study, due to the availability of a comprehensive conges-
tion dataset (see below). As of 2018, NYC’s population was approximately 8.6 million and is projected to
increase to 1 million people by 2030 (Solecki and Rosenzweig 2019). This population growth exacerbates
its traffic congestion, highlighting the need to devise new solutions.

Road network data. These data were extracted from OpenStreetMap, comprising all 100,206 road seg-
ments within NYC.

Built environment data. Nine micro-level and 22 macro-level factors were obtained from NYC Open
Data. According to Ewing and Cervero (2010), the 31 factors can be classified into ‘five Ds’ (Table 1).
Appendix Notes 1 and 2 explain the rationale for excluding the sixth ‘D’.

Average hourly travel speed data and variable descriptions. The dataset contains 25,068,883 records of
average hourly travel speed data for the period 1-31 Dec 2018, provided by Uber Movement. Each record
includes recording time, road segment ID, and average speed (Appendix Table 1). Uber Movement also
provides free-flow speed data, defined as 15th percentile value of actual speeds of all floating vehicles, sorted
in descending order. Traffic congestion is measured by the travel time index (TTI), calculated as the ratio of
free-flow speed to average speed (Kong, Yang, and Yang 2015).

2.3. Models

Employing multiple models to reduce bias is a well-established practice in the causal inference literature
(Imbens and Rubin 2015). The rationale for selecting the five models used in this study is provided in
Appendix Note3.

Table 1. Definition and calculation methods of the 31 representative factors.
Five ‘Ds’ and definitions

Representative variables Calculation methods

Diversity (The degree of land use mixture  Proportion of listed POIs, including commercial, Number of POls/Area of statistical unit (i.e.

within a defined area) residential, health services, social services, cultural the buffer with 700m buffer around each
services, education, recreational, government, road segment; Song et al. 2019)
transportation, public safety, and waterbody.

Density (Concentration of population or Population density > P;/Area,, where P is the population in
physical structures within a given area) i€ o s -
the 100m pixel i located within statistical
unit J Area; is the area of J.

> BA;/Area,, where BA; is footprint area of

i€
the building.

> LR;i/Area,, where LR; is the length of

i€l
ramp.

Road density >"LRD;/Area,, LRD, is the length of the

i€l
road.

3" PAi/Area;, where PA; is the area of

i€
parking lot i.

>~ PZA;/Area;, where PZA; is the area of

i€l
pedestrian zone i.

>" BS;/Area;, where BS; is the number of

i€
bus stop shelters with J.

> 85i/Areay, SS, is the number of subway

i€l
stations within J.

Building density

Ramp density

Parking lot density

Pedestrian zone density

Bus stop shelter density

Subway station density

Design (Configuration and physical
attributes of transportation
infrastructure)

Distance to Transit & Destination
Accessibility (Proximity to transit hubs
and access to public transportation
nodes)

Number of road lanes

Length of road segments

Ratio of road length to width
Number of traffic lights
Number of street lights

Length of bike routes

Length of truck routes

Length of sidewalk routes
Distance to the nearest bridge
Distance to the nearest bus stop
Distance to the nearest subway
Distance to the nearest airport

Number

Number

Ratio =road length / road width

Count within statistical unit

Count within statistical unit

Cumulative length within statistical unit

Cumulative length within statistical unit

Cumulative length within statistical unit

Euclidean distance (in km) from road
segment centroid to each respective
facility.
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2.3.1. Correlation model
The MLSR was applied to analyze correlations due to its simplicity and wide use in the literature (Bao et al.
2022; Bao et al. 2023; Kozlak and Wach 2018; Shen et al. 2020). The model is specified as

TTIweighted = BO + IBin + BzXZ +...+ B]X]> (1)

where TTI,eighted = [TTIL, ..., TTIN]T represents the overall congestion levels of N road segments, and
TTI; is the entropy-weighted average of TTIs over all days. An example of calculating TTI; is provided
in Appendix Note 4. X; € RN*! denotes the jy, factor (J =31), and B; are the parameters to be estimated.

To address multicollinearity and high inter-variable correlation, we additionally employed variance
inflation factor (VIF) and Pearson correlation coefficient (Shrestha 2020; Tay 2017). A VIF € [0, 5] typically
indicates the absence of multicollinearity.

2.3.2. Causality models

Granger causality (Shojaie and Fox 2022) is a prediction-based method. If the historical data of a particular
built environment factor improves the prediction accuracy of congestion level, then that factor is said to ‘G-
causes’ congestion. The method involves three stages: first, a baseline model is constructed to predict future
congestion using only historical congestion data. Second, an enhanced model is constructed that incorpor-
ates historical data on the built environment. Finally, the predictive performance of the baseline model and
enhanced model is compared. If the enhanced model performs better, it indicates that the factor ‘G-causes’
congestion. Traditional Granger causality assumes linear relationships. To address this limitation, we adopt
an improved model based on transfer entropy (TE), and calculate the net information outflow (Wiener
1956) to quantify causality:

—~
TEfactor—> congestion — TEfactor—> congestion TECOﬂgestion—)factora (2)

if TE factor—congestion > 0, this implies that the factor ‘G-causes’ congestion.

SEM (Golob 2003) distinguishes between direct and indirect effects of the ‘five Ds’ and their composite
variables (i.e. XX1-XX5). In contrast to Granger causality, SEM captures the pathways through which the
‘five Ds’ influence traffic congestion by incorporating latent variables. The model is expressed as follows:

TTI ~ XX1 + XX2 + XX3 + XX4 + XX5, (3)
XX1 =~ XX5, XX2 =~ XX5, XX3 =~ XX5, XX4 =~ XX5, (4)
XX1 ~~ XX2, XX2 ~~ XX3, XX3 ~~ XX4, XX4 ~~ XX1. (5)

Here, the symbols (~, =~, ~~) denote regression, latent variable definition and variance, respectively.
XX1-XX4 are calculated as the weighted averages of components of the ‘five Ds’, while XX5 represents the
average XX1 - XX4.

Causal forest outperforms the previous two models because it can identify the congestion factors at a
granular level, by estimating the heterogeneous treatment effects (HTEs) (Wager and Athey 2018). For
example, while traditional modes may indicate how to alleviate congestion at the citywide level, causal forest
provides evidence for specific areas. It functions like an intelligent diagnostic system, capable of identifying
different ‘treatment plans’ for different road segments-an approach useful for policymakers focused on loca-
lized interventions.

Causal impact (Brodersen et al. 2015) differs from causal forest by comparing the congestion levels under
conditions where a specific built environment factors is considered versus where is it. This method creates a
treatment group and a control group, and follows a three-stage procedure: first, a Bayesian structural time
series model is constructed to learn the effect pattern of the given factor on congestion; second, the model is
used to generate a ‘synthetic control’ time series; and third, the observed effects are compared between the
treatment and control groups, capturing both pointwise and cumulative impacts.

Convergent cross mapping (CCM) (Tsonis et al. 2018) measures the causal relationship between traffic
congestion Y and a built environment factor X based on their short-term temporal dynamics. By construct-
ing their respective manifolds, My and My, under the embedded dimension E, the E + 1 nearest points to



6 W. HUAN ET AL.

X(t) in My and to Y(#) in My can be used to estimate the system as follows:
Y()IMx =) wYW), i=1, ..., E+1, (6)

X\ My = Zw,-X(ti), i=1,..., E+1, (7)

where w; is the weight assigned to each neighboring point. The CCM correlation coefficient is then calcu-
lated as

e = i X — XDEOIMy = XDIMY)
\/25:1 (X (i) — X(0))° > (X() My — X(i)|MY)2

As the time series L increases, if r¢cy converges to a stable value, it indicates a causal relationship from
XtoY.

The five causal models offer complementary approaches for distinguishing relationships between the
built environment and traffic congestion. Granger causality acts as a ‘time-series prediction’, assessing
whether historical built environment data can predict future congestion - a straightforward approach
but sensitive to the choice of time window. SEM serves as a ‘roadmap architect’, quantifying both direct
effects (e.g. the impact of road density on traffic congestion) and indirect pathways (e.g. the influence of
bus stops on congestion through transit use). Causal Forest functions like a ‘precision tool’, identifying
location-specific effects, through is computationally intensive. Causal Impact is well-suited for evaluat-
ing short-term effects using synthetic controls, yet is vulnerable to control group selection bias. CCM
operates as a ‘long-term observer’, capturing delayed and nonlinear responses (e.g. the influence of
water bodies may take years to manifest in traffic patterns). For comprehensive analysis, we integrate
these models to uncover how the built environment influences congestion through multiple causal
pathways.

(8)

2.4. Perpetually congested roadway (PCRs) analysis

Congestion in PCRs is more intricate than general congestion. In this study, road segments with TTI of at
least 1.5 for all hours of the day are defined as PCRs. This threshold is selected based on the classification
proposed by Kong, Yang, and Yang (2015), where TTI<1.5 indicates smooth or free-flowing traffic (see
Appendix Table 2).

2.4.1. Congestion patterns

Agglomerative hierarchical clustering (Oti and Olusola 2024) is employed to identify spatiotemporal pat-
terns within PCRs based on the TTI. Four linkage methods are commonly used to measure distance: single,
complete, average, and Ward linkage. Ward linkage is selected for this study, and the distance between two
clusters (C;, C;) is defined as

1

Dyara(Ci, C]) = m

> (ist(xi, %))’ )

x,EC,-,ijCj

where dist(x;, x;) denotes the Euclidean distance between samples x; and x;. |C;| and |C;j| represent the num-
ber of samples in clusters C; and C;. Subsequently, all PCRs are clustered using k-means, with the weighted
feature matrix, expressed as:

F= Fxdiag(wy,wy, ..., wi1), (10)
where F € RN*1L is the feature matrix. N is the number of road segments, w; (j =1, 2, ...11) denotes the

weight for the j feature, and F € RN*!! represents the resulting weighted feature matrix.

2.4.2. Mantel test
The Mantel test (Somers and Jackson 2022) is conducted to evaluate the association between the TTI
matrices of the congestion patterns and the feature matrix F. The Mantel test is a statistical method used
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for evaluating the correlation between two data matrices and to test for autocorrelation. We chose the Man-
tel test because, unlike conventional correlation coefficients that measure relationships between pairs, it is
specifically designed to evaluate correlations between entire matrices. Unlike the Pearson and Spearman
coeflicients, the Mantel test uses a permutation-based approach to randomly rearranging the data. Each per-
mutation is calculated only once. The Mantel p correlation ranges from —1 to 1, where —1 indicates a nega-
tive correlation, 0 indicates no correlation, and 1 indicates a perfect positive correlation.

3. Results
3.1. Single-model results and validity

3.1.1. MLSR
(1) Model results. As shown in Table 2, six factors do not exert a statistically significant influence (P > 0.05)
and three factors exhibit multicollinearity (VIF > 6). Combined with the Pearson correlation coefficients
(Appendix Figures 1 and 2), only 19 factors are found to be significantly correlated with the TTI (Appendix
Table 3). The R? value from the MLSR is relatively low (R* = 0.150). Durbin-Watson statistics and Hypoth-
esis tests confirm that our data satisfy the assumptions of the regression model except for linearity. To
further validate these results, we applied a non-linear model (random forest), which achieved a substantially
better performance (R®= 0.565; Table 4 and Figure 3 in Appendix).

(2) Model validity. As shown in Table 2, the values of Mean Square Error (MSE), Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) are all close
to zero, indicating that the model exhibits strong predictive performance.

3.1.2. Granger causality
(1) Model results. Figure 3 visualizes the results of both the linear and nonlinear models, with correspond-
ing numerical values presented in Table 3. The analysis reveals that the proportion of commercial and

Table 2. MLSR analysis between 31 built environment factors and traffic congestion.

Five ‘Ds’ Representative variables Coefficient t-Value P-value VIF
Diversity Proportion of commercial facilities 0.078 20.194 bl 4.155
Proportion of residential facilities 0.131 2.762 i 17.149
Proportion of health service facilities 0.019 7.958 *rx 2.034
Proportion of social service facilities 0.026 1.061 0.289 3.135
Proportion of cultural service facilities —0.005 —1.638 0.101 18.352
Proportion of educational facilities 0.011 7.103 bl 2.210
Proportion of recreational facilities 0.024 6.362 *ax 2.269
Proportion of government facilities 0.020 6.762 bl 1.553
Proportion of transportation facilities —0.025 —5.928 bl 1.743
Proportion of public safety facilities —0.002 —0.808 0.419 1.305
Proportion of waterbody —0.001 —0.241 0.810 1.759
Density Population density 0.029 5313 *x 1.223
Building density 0.012 2.150 ** 1.811
Road density 0.008 3.945 *rx 1.760
Ramp density 0.044 16.176 xrx 1.127
Density of parking lots 0.028 3.880 *rx 1.043
Density of pedestrian zones 0.006 0.818 0.413 1.115
Density of bus stop shelters —0.025 —10.896 *rx 2.576
Density of subway stations 0.041 9.766 bl 3357
Design Number of road lanes 0.023 6.767 *ax 5.228
Length of road segments —0.036 —2.266 ** 1.656
Ratio of road segment length to width 0.184 5.025 il 6.609
Number of traffic lights 0.033 13.136 bl 2.085
Number of street lights 0.024 5.948 *x 2.712
Length of bike routes 0.024 8.095 bl 1.065
Length of truck routes —0.008 —1.588 0.112 1.053
Length of sidewalk routes 0.014 3.323 bl 1.037
Distance & Destination Accessibility Distance to the nearest bridge —0.012 —5.029 *x 1316
Distance to the nearest bus stop —0.060 -16.759 *xE 1.339
Distance to the nearest subway —0.037 —19.711 *x 1.616
Distance to the nearest airport —0.022 -13.022 *xx 1.236

MSE = 0.003, RMSE = 0.058, MAE = 0.042, MAPE = 1x 107, R2=0.150
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Figure 3. Granger causality results. Factors connected by loops represent bidirectional causality. Only road density and the
number of traffic lights show robust bidirectional causality with the TTI, as reflected by their larger node sizes.

health service facilities, population density, number of road lanes and traffic lights, road density, distance to
the nearest bridge and bus stop are statistically significant causal factors (Px_,y <0.05). Among these, road
density (TEy_ x = 0.177) and the number of traffic lights (TEy_, x = 0.116) exhibit the strongest bidirectional
causality with the TTI, suggesting these elements not only influence but are also influenced by traffic con-
ditions in a feedback loop.

(2) Statistical test. As shown in Table 3, a P-value less than 0.05 indicates a statistically significant causal
effect.

(3) Parameter setting. Figure 4 illustrates how the p-value varies with lag length, based on the Chi-
squared and the Likelihood ratio tests. p-value less than 0.05 indicates reasonable lag. The optimal settings
identified across the tests are 100, 20, 95, 115, 125, 130, 95, 40, 75, 130, 75, 60, 80, 85, 140, and 140.

3.1.3. SEM

(1) Model results. In Figure 5a, 14 factors emerge as statistically significant causal variables, indicated by
solid arrows. XX4 stands out as particularly influential because all of its component variables (X16-X19)
achieve statistical significance, suggesting its causal effect. Figure 5b presents the overall effects of XX1-
XX4, with specific effect paths detailed in Appendix Table 5. Intuitively, XX4 (Distance and Destination
accessibility) shows the strongest direct effect, suggesting it may represent a fundamental determinant of
traffic congestion. XX1 (Diversity) demonstrates the strongest indirect effect, highlighting how urban
characteristics influence traffic through secondary pathways. These findings underscore the importance
of both direct and indirect of urban factors’ effects when designing policy inventions.

(2) Validity test. The model’s fit is evaluated using standard goodness-of-fit statistics (Rahman et al.
2022). As shown in Table 4, the model yields a statistically significant CMIN score of 63.149. The GFI
exceeds the recommended threshold of 0.95, indicating a strong model fit. The CFI, NFI, and IFI with values
of 0.905, 0.094, and 0.907, respectively-also support the model’s adequacy.

3.1.4. Causal forest

(1) Model results. In Figure 6, SHapley Additive exPlanations (SHAP; Albini et al. 2022) are used to visu-
alize feature changes. SHAP values quantify feature effects for individual road segment, while the final effect
is aggregated across all segments. Taking X16 as an example, the SHAP values of most road segments are
greater than zero, indicating that its overall positive influence outweighs any negative effects. Similar analy-
sis applies to other factors. In Figure 7a, X8 and X16 show strong feature importance. In Figure 7b, X16, X7,
X15, X17, and X12 show strong importance, as indicated by the feature splitting order. These correspond to
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Figure 4. Lag selection of the model. This refers to the number of prior observation points included in the model.

Table 4. Evaluation of fitting goodness.

Index

Recommended score

Results of our model

Chi-square (CMIN)
Goodness-of-fit index (GFI)
Comparative fit index (CFI)
Normal fit index (NFI)
Incremental fit index (IFl)

A lower value indicates a better fit.

[0,1], 1 indicates perfect fit.
[0,1], 1 indicates perfect fit.
[0,1], 1 indicates perfect fit.
[0,1], 1 indicates perfect fit.

r

63.027

0.973
0.905
0.904
0.907

distance to the nearest bridge, population density, sidewalk route length, distance to the nearest bus stop,
and road length-highlighting their strong causal relationship with the TTL

(2) Model robustness. Figure 8 presents the comparison between the estimated treatment effects gener-
ated by the model and the true treatment effects for the six factors. All estimated effect curves exhibit trend
consistent with the true curves, indicating strong predictive performance and suggesting good model
generalization.
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Figure 5. SEM results. Four factors in XX4 are all significant, which show the most robust causality.

3.1.5. Causal impact

(1) Model results. As shown in Figure 9, ten factors show causal relationships with the TTT in this model.
The dataset is partitioned with a training to test ratio of 2:1. When the sample size exceeds 200, both the
pointwise and the cumulative plots show an upward trend, indicating a positive causal effect on congestion.
Conversely, a downward trend suggests a negative causal effect.

(2) Statistical test. In Table 5, the posterior causal probability reflects the likelihood that a variable truly influ-
ences the TTI. Compared to the p-value, it offers a more intuitive measure of causal certainty. We rigorously
employ both p-value and poster probability to ensure a robust result. The results identify ten factors with p-
value less than 0.05 and posterior probability exceeding 95%, thereby providing strong evidence of a causal effect.
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Figure 6. Causal forest results. The effects of X1-X19 on individual read segment. The larger range of the points distribution,
the stronger impacts.

Table 5. Statistical test of causal impact.

Actual Prediction Prediction Absolute Absolute Posterior

value value- Actual value- value- effect- effect- Relative P- probability of a
Variable  -average average cumulative cumulative average cumulative effect value causal effect
X1 2.80 2.00 276.80 197.00 0.80 80.00 49% 0.011 98.90%
X2 2.70 2.00 266.60 196.00 0.71 70.52 44% 0.056 94.00%
X3 2.90 1.90 292.50 192.90 1.00 100.00 69% 0.039 96.07%
X4 2.90 3.20 285.10 322.70 -0.83 —37.63 -11% 0.083 92.00%
X5 2.60 2.00 258.60 195.0 0.63 63.34 40% 0.069 93.00%
X6 2.80 3.50 27830 347.70 —0.69 —69.39 —18% 0.083 92.00%
X7 3.10 2.50 312.60 253.80 0.59 58.85 26% 0.049 95.10%
X8 2.90 2.90 293.90 291.20 0.03 2.629 1.60% 0.439 56.00%
X9 2.80 3.80 282.70 382.30 -1.00 —100.00 —-25% 0.006 99.40%
X10 2.70 2.40 269.30 239.50 0.30 29.80 30% 0.336 66.00%
X11 2.70 3.20 274.00 317.30 -0.43 —43.31 —-13% 0.036 96.40%
X12 2.80 3.20 284.90 316.50 -0.32 —31.65 —8.4% 0.388 61.00%
X13 2.90 410 294.50 408.20 -1.10 -113.70 —-27% 0.007 99.30%
X14 2.90 2.90 293.80 286.70 0.071 7.09 3.40% 0.386 61.00%
X15 3.00 2.80 299.00 284.20 0.15 14.57 8.10% 0.370 63.00%
X16 3.30 2.50 326.70 246.70 0.80 80.00 35% 0.009 99.05%
X17 2.80 2.10 277.00 209.90 0.67 67.07 36% 0.049 95.10%
X18 2.90 3.70 29230 370.50 -0.78 —78.21 —20% 0.045 95.50%
X19 2.60 3.30 267.80 328.40 -0.71 —70.59 -21% 0.011 98.90%
3.1.6. CCM

(1) Model results. In Figure 10, an increase in the correlation coeflicient indicating a causal relationship.
Nine factors exhibit a unidirectional causal effect (i.e. x causes y) with the TTI. Notably, the number of
traffic lights exhibit bidirectional causality with the TTI, as evidence by both the x causing y and y causing
x effects displaying a rising trend (Figure 10e). The analysis reveals a feedback loop where increased traffic
congestion drives additional traffic signal installation, which subsequently alters traffic flow until reaching
an observable stable state in the curves. This mutually reinforcing pattern in both directions suggest a com-
plex feedback loop that has significant implications for transportation planning - traffic signal optimization
should be viewed as ongoing, dynamic process rather than a one-time solution.

(2) Parameter settings. Figure 11 illustrates how prediction performance varies with the embedding
dimensions. The X-axis value corresponding to the peak of each curve represents the optimal embedding
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(b) Causal tree. The splitting order is X16, X7, X15, X17, and X12.

Figure 7. Feature selection for causal forest model. The variable with high feature importance and a high splitting order is
dominant causal factor.

dimension. For example, in the first panel, when exploring the causality from x to the TTI, the optimal
embedding dimension of x is 10, while the optimal dimension for TTI is 6.

3.2. Overall results

3.2.1. Integrated findings

The synthesized results, as illustrated in Figure 12, reveal a hierarchy of causal factors based on their vali-
dation across five distinct models. The robustness of each factor was assessed by the number of models in
which it demonstrated statistical significance, with a predefined threshold requiring validation in at least
three models (i.e. demonstrating minimum 60% causal support). First, the distance to the nearest bridge
and bus stop emerges as the most robust causal factors, validated by all five models. This strongly suggests
that transportation accessibility plays a fundamental role in the observed phenomenon. Second, several fac-
tors showed high but slightly less consistent support, validated in four models, including the proportion of
commercial facilities, population density, number of road lanes and traffic lights, and distance to the nearest
airport. This indicates the importance of urban infrastructure and demographic characteristics. Then,
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Figure 8. lllustration of estimated treatment effect and true treatment effect of causal forest model.

educational facilities, road density, ramp density, and distance to the nearest subway pass validation in three
model tests. The remaining factors, validated by only one or two models, demonstrated insufficient consist-
ency for robust conclusions. Overall, this analysis identified 11 robust causal factors, with the findings par-
ticularly highlighting transportation accessibility as key determinants. It also suggests that less consistent
factors may require further investigation to understand their potential context-dependent effects or possible
interactions with other variables.

3.2.2. Sensitivity to weekday-weekend-holidays

To assess the robustness of our causal findings, we conducted a comparative analysis using the average
treatment effect (ATE) (Li 2020) across four temporal groups: one-month (baseline), weekday, weekend,
and holiday (Figure 13). First, the analysis revealed consistent causal rankings for infrastructure-related
factors, such as distance to bridges and transit hubs, number of traffic lights and of road lanes, which con-
sistently ranked among the top-six in all subgroups. This confirms their temporal stability. However, the
weekend and holiday groups exhibited notable shifts in specific land use categories. Compared to the
baseline group, the ATE for commercial facilities and recreational facilities increased by a 48.6% and
60.0%, respectively, while educational facilities showed a 64.8% decrease. This is consistent with travel
behavior theory (Zhu et al. 2019). Third, weekday results displayed a trend aligned with the full-
month pattern, suggesting that weekday data effectively captures representative congestion dynamics.
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Figure 9. Causal impact results. For each figure, the trend of pointwise and cumulative effects represents the variation of
causal effects on traffic congestion. Five factors show positive upward trend and the other five factors show negative down-
ward trend.

In summary, our findings indicate while core transit infrastructures effects remain robust across temporal
contexts, land use impacts are temporally sensitive. Urban planners can confidently rely on infrastruc-
ture-related findings but should adjust for behavioral shifts in land use effects during non-workday
periods.

3.3. Perpetually congested roadway

3.3.1. Identified spatiotemporal congestion patterns

Our procedure identifies 889 segments classified as PCRs. The hierarchical clustering procedure identifies
four distinct spatiotemporal congestion patterns (Appendix Figures 4), which are subsequently grouped
into two higher-level clusters using k-means based on the 11 weighted causal factors. The silhouette coeffi-
cient (Rousseeuw 1987) and elbow method (Liu and Deng 2020) both indicate that two clusters are the opti-
mal solution, as demonstrated in Appendix Figure 5. These clusters are interpreted as main urban arterials
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Figure 10. CCM results. The trends represent the variation of causal effects. Number of traffic lights shows bidirectional
causality, as its two lines both show upward trend.

(cluster 1) and city expressways (cluster 2), respectively, with their spatial distributions illustrated in Appen-
dix Figure 6. The corresponding statistical summaries of these clusters are comprehensively presented in
Figure 14. This two-step clustering approach successfully reveals the two main types of congestion patterns
in city road networks.

3.3.2. Underlying mechanisms

Figure 15 presents the Mantel test results for the four spatiotemporal congestion patterns across the two
clusters. Green lines (p € [0.01,0.05]) and red lines (p < 0.01) represent significant relationship between
the TTI values and the built environment features. The results support several key findings. First, on
urban main arterials, road density, number of traffic lights, and distance to the nearest transit hubs
are identified as primary congestion drivers. In contrast, on city expressways, ramp density and number

Table 6. Correlation and causality-based recommendations.

‘Five Ds’ Correlation-based suggestions and consequences Causality-based findings and suggestions
‘Diversity’ vs Increasing land use ‘Diversity’ in high ‘Density’ areas is ‘Diversity’ shows a positive causal effect, with time-
‘Density’ thought to reduce trips to the city center (Song et al. dependent variations in its impact strength. This supports

‘Density’ vs ‘Design’

2019) - this can increase local congestion by complicating
short-distance travel patterns.

Congestion caused by dense employment zones should be
offset by expanding public transit (Bao et al. 2023) - this
may induce new congestion hotspots near transit hubs.

time-sensitive interventions, e.g. commute-priority
corridors and commercial-flow lanes.

‘Design’ exerts a stronger causal effect than ‘Density’. This
support ‘Design’-focused interventions, such as pressure-
sensitive traffic lights, and freight tunnel near bridge-
related congestion hotspots.

‘Distance & Public transit accessibility is viewed as critical for congestion  This dimension presents is the most robust influence. It
Destination mitigation (Ding et al. 2025) - increasing parking near should be coupled with complementary measures, such
accessibility’ public transit hubs may initially worsen congestion until as congestion pricing and expanded bike-sharing

key infrastructure thresholds are crossed.

infrastructure.
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Figure 12. Overall result. One factor is defined as a causal factor only if it is validated by at least three models. This leads to
11 causal factors.

of road lanes emerge as significant causal factors. Notably, distance to the nearest bridge appears as the
most consistent key influential factor across both two roadway types, because it reflects network edges con-
necting distinct traffic communities (Sun et al. 2014). Second, non-weekday patterns show stronger causal
associations with traffic lights and the proportion of public facilities, compared with weekday patterns.
Additionally, the causal influence of first ‘D’ (Diversity) is found to be are weaker than that of the third
‘D’ (Design). Overall, the underlying causes of congestion on main urban arterials appear more complex
than those on city expressways, potentially due to the complex geographical environment surrounding
them.
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Figure 13. Temporal sensitivity test of 19 correlated factors. The top-six factors exhibit temporal stability.

4. Discussion
4.1. Findings and recommendations

This study identifies causal explanations of urban congestion, thereby extending and refining those offered
by previous correlation studies (Table 6). First, earlier correlational findings point to the need to increase
land use ‘Diversity’ in high ‘Density” areas (Song et al. 2019) and that ‘Density’-induced congestion should
be offset by public transit (Bao et al. 2023). Our study show that the causal effect of ‘Design’ is stronger than
that of ‘Diversity’ and ‘Density’ in a mature city such as NYC. Second, the ‘Distance & Destination acces-
sibility’ component shows consistently robust causal effects with Ding et al. (2025). Third, our identification
of road density and traffic lights as having bidirectional causal relationships with congestion extends the
unidirectional relationships reported by Duan et al. (2020).

4.2. Multi-model selection suggestions

This study integrates five complementary models to produce novel findings. However, these findings must
be interpreted in conjunction with the specific application contexts suited to a multi-model approach, as
summarized in Table 7. To ensure robustness, we recommend resolving conflicts through cross-validation:
(i) verifying whether the data satisfy model assumptions, and (ii) conducting parameter sensitivity test.

4.3. Limitations and prospects
This study has three principal limitations that warrant discussion. First, excludes critical random variables

that may influence traffic patterns and user behavior, such as real-time weather fluctuations and incident

Table 7. Contextualized multi-model strategy.
Recommended model

Context combination Advantages
Short-term assessment of Granger causality + Causal ~ Capture immediate causal effects, e.g. the short-term impact of newly built
transportation infrastructure Impact infrastructure.
Long-term land use planning Causal Forest + CCM Accounts for spatial heterogeneity and nonlinear, delayed effects.
Citywide congestion control Granger causality + SEM Identifies causal pathways, e.g. how bus stops affect congestion indirectly
via transit hub usage.
Place-specific congestion control Causal Forest + Causal Precisely detects spatial hotspots, while revealing causal pathways, e.g. the

Impact + SEM impact of bike lanes on congestion near schools.
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Figure 14. Statistical information of 11 factors in two types of perpetually congested roadways.

data. These observed factors were not controlled for potentially introducing heterogeneity into the esti-
mation of interactions between the built environment and traffic congestion. Second, although we con-
ducted sensitivity analysis comparing weekdays, weekends, and holidays, the exclusive reliance on data
from December 2018 imposes temporal constraints. This limits the generalizability of our findings and pre-
cludes analysis of seasonal or interannual variation. Third, by focusing on the static ‘five Ds’ of the built
environment factors, the current modeling framework does not account for the emerging sixth ‘D’-the
dynamic dimension, represented by demand responsive services. To address these limitations, future
research should pursue three directions: (1) integrate or control for random exogenous factors; (2) utilize
multi-seasonal and multi-annual data to capture temporal dynamics, including seasonal patterns and
extreme weather effects; and (3) develop hybrid models that systematically incorporate dynamic the
sixth ‘D’ components. These enhancements will improve the explanatory power and practical relevance

of the framework.
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Figure 15. Mantel test for four patterns of cluster 1 (a-d) and cluster2 (e-h). F1-F11 represent the 11 causal factors (Appen-
dix Table 6). TTI1- TTI5 represents the average TTI at five periods (1:00-6:00, 7:00-9:00, 10:00-15:00, 16:00-19:00, 20:00-
24:00).

5. Conclusion

The objective of this study is to investigate the causal relationship between traffic congestion and the built
environment in New York City through three efforts: (1) estimating a multivariable least squares to identify
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built environment factors significantly correlated with congestion; (2) establishing causal relationships
between these factors using five causal inference models, while discussing a contextualized multi-model
strategy for applying causal inference methods into urban research; and (3) examining the underlying
impact mechanisms of four spatiotemporal patterns of perpetually congested roadways using Mantel
test. The results highlight the limitations of relying solely on correlational analysis-namely, the risk of mis-
leading feature selection and ineffective policy interventions. Based on the identified causal mechanisms, we
propose targeted built environment interventions aimed at effectively mitigating traffic congestion.

Through these efforts and results, our paper offers three contributions:

(1) The development of a framework for analyzing the causal importance of built environment factors,
enabling the quantification of the global importance of the ‘five Ds’. The New York City case study results
ranked their significance as follows: Distance & Destination accessibility, Design, Diversity, and Density.
Notably, public transit accessibility and traffic signal design emerge as critical for mitigating traffic
congestion.

(2) The identification of distinct casual factors driving congestion on perpetually congested roadways-
key bottlenecks in urban traffic networks-through temporal analysis across five daily time periods.
Bridge-related congestion shows the strongest and most consistent impact.

(3) The provision of empirical grounding for several evidence-based urban planning recommen-
dations. First, enhance accessibility to major transit hubs and increase traffic capacity at critical bridge
connections. We suggest to deploy bicycle-sharing systems specifically tailored to first-and-last-mile con-
nectivity at key transit nodes. Second, implement intelligent demand management vis congestion pricing
at tunnel and bridge approaches to urban centers. Third, deploy adaptive traffic signal control systems
that automatically trigger traffic signal extension when congestion exceeds defined thresholds. This
approach can help break the vicious cycle of ‘traffic flow aggregation, signal delay, and congestion exacer-
bation” (Naeem et al. 2024).
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Data availability statement

The publicly accessible average hourly travel speed data were downloaded from Uber Movement (https://movement.
uber.com/explore/new_york/speeds/query?dt[tpb]=ALL_DAY&dt[wd;]=1,2,3,4,5,6,7&dt[dr] [sd]=2018-11-
28&dt[dr][ed]=2018-12-30&{f=&lat.=40.7491664&Ing.=-74.0154715&z.=11.9&lang=en-US.) on April 20, 2023. As of
October 1, 2023, Uber Movement had ceased providing services. Data used in this study are available upon request.
The publicly accessible built environment data were obtained from NYC Open Data (https://opendata.
cityofnewyork.us/), using the following specific datasets:

(1) Points of Interest: https://data.cityofnewyork.us/City-Government/Points-Of-Interest/rxuy-2muj;
(2) Building Footprints: https://data.cityofnewyork.us/Housing-Development/Building-Footprints/nqwf-w8eh;
(3) Bus Stop Shelters: https://data.cityofnewyork.us/Transportation/Bus-Stop-Shelters/qafz-7myz;
(4) Subway Stations: https://data.cityofnewyork.us/Transportation/Subway-Stations/arq3-7z49;
(5) Parking Lots: https://data.cityofnewyork.us/City-Government/Parking-Lot/h7zy-iq3d;
(6) Leading Pedestrian Interval Signals: https://data.cityofnewyork.us/Transportation/VZV_Leading-Pedestrian-
Interval-Signals/mqt5-ctec;
(7) Bike Routes: https://data.cityofnewyork.us/Transportation/New-York-City-Bike-Routes/7vsa-caz7;
(8) Truck Routes: https://data.cityofnewyork.us/Transportation/New-York-City-Truck-Routes-Map-/wnu3-egq7;
(9) Sidewalks: https://data.cityofnewyork.us/City-Government/Sidewalk/v{x9-tbb6;
(10) Bridge Ratings: https://data.cityofnewyork.us/Transportation/Bridge-Ratings/4yue-vjfc;
(11) Airport Polygons: https://data.cityofnewyork.us/City-Government/Airport-Polygon/xthz-rhsk.

The datasets listed above may have been updated over time; however, the average travel speed data and built environ-
ment data used in this study were temporally aligned to ensure consistency.
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