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ABSTRACT

Exploring navigation strategies in lunar environment contributes to understanding the unique
navigation mechanism of humans in extraterrestrial environments. However, it is unclear
whether human navigation strategies in lunar environments are the same as those in common
environments. In this study, a virtual lunar exploration navigation experiment was conducted.
Participants were required to complete spatial learning, navigation, and destination-pointing
tasks while their behavioral performance and scalp electroencephalogram (EEG) data were
recorded. The navigation trials (88 trials from 62 participants) were divided into two groups —
path retracing strategy (N =60, navigating along the known routes) and path integration
strategy (N = 28, inferring potential shortcuts) groups — and differences in navigation perfor-
mance and brain workload between them were measured. Results indicated that trials using
the path integration strategy were more efficient in terms of time cost and pointing error.
Particularly, navigators using the path integration strategy were adaptive in their brain work-
load. Their EEG theta power spectral density (PSD) metrics differed for routes with different
difficulties; this difference was not found in the path retracing group. This study offers insights
into human navigation strategies and cognitive processes in virtual lunar scenes and contri-
butes to future human adaptation to the lunar surface environment when conducting space
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1. Introduction

During goal-directed activities, such as hunting,
exploration, and commuting, humans have evolved
various navigation strategies to reach specific destina-
tions (Goodroe and Spiers 2022). These strategies have
been effectively utilized across diverse terrestrial
environments, from structured spaces such as urban
and rural road networks to unstructured terrains like
forests, mountains, and deserts. As manned space
technology advances, understanding how humans
navigate in extraterrestrial settings — particularly the
lunar environment - is therefore crucial for planning
future space exploration and habitation missions.
Individuals employing different strategies acquire
and utilize spatial knowledge in distinct ways.
Previous studies have categorized navigation strategies
according to the type of spatial knowledge employed
(Maier et al. 2024; Marchette, Bakker, and Shelton
2011; Wiener et al. 2013). These strategies have been
investigated and validated in virtual environments
through assessments of navigators” behavioral perfor-
mance and cognitive processes (Gramann et al. 2010).
In the first strategy, navigators typically retrace their

paths via stimulus-response actions, relying on
learned landmark and route knowledge. Conversely,
those employing the alternative strategy construct
allocentric cognitive maps to plan novel routes and
continuously update their position and orientation via
path integration (Hegarty et al. 2022). We herein des-
ignate these strategies as the “path retracing strategy”
and the “path integration strategy” for clarity and
specificity. Unlike common navigation scenarios,
lunar settings lack tools such as satellites and com-
passes, with limited landmark cues. Thus, whether
humans can adapt similar navigation skills and strate-
gies as those of Earth - particularly in virtual simula-
tions — remains an open question and requires further
investigation.

Previous studies have investigated behavioral and
cognitive metrics, including time cost (Santos-Pata
and Verschure 2018), pointing error (Barhorst-Cates,
Rand, and Creem-Regehr 2016), and EEG-based theta
band power (Plank et al. 2015), in spatial learning and
navigation tasks involving path retracing and path
integration strategies. Regarding behavioral perfor-
mance, participants employing the path integration
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strategy exhibited shorter time costs and lower point-
ing errors in virtual mazes (He, Boone, and Hegarty
2023). Accordingly, we hypothesized that participants
using the path integration strategy would demonstrate
superior performance in navigation and destination-
pointing tasks within virtual lunar scenes (Hypothesis
la). However, given the increased difficulty in identi-
fying shortcuts amid sparse lunar landmarks, we
anticipated that this strategy might not be the predo-
minant choice for navigators (Hypothesis 1b).
Furthermore, previous research has revealed greater
theta band activation in large-scale virtual environ-
ments during the retrieval of allocentric cognitive
maps (Teixeira De Almeida et al. 2023). Given the
associations between path integration and cognitive
map formation, we thus hypothesized that partici-
pants employing the path integration strategy would
exhibit greater theta band activation in virtual lunar
scenes (Hypothesis 2).

To test these hypotheses, we conducted an experi-
ment in a virtual lunar exploration environment, com-
paring the impacts of navigation strategies on
behavioral performance and brain workload.
Participants wore a mobile EEG system during spatial
learning, navigation, and destination-pointing tasks.
For a comprehensive analysis of navigation strategies,
we extracted behavioral performance and brain work-
load metrics, augmented by self-reported scale scores.
This study aimed to summarize the behavioral perfor-
mance and cognitive processes underlying distinct
navigation strategies in virtual lunar settings, thereby
furnishing foundational insights for extraterrestrial
human exploration missions.

2. Related work
2.1. Navigation strategies for various scenes

The path retracing and path integration strategies
differ with respect to navigators’ inclinations toward
shortcut-seeking and their utilization of spatial knowl-
edge, including landmark, route, and survey knowl-
edge (Siegel and White 1975). The path retracing
strategy, which is dominated by habit-driven pro-
cesses, relies on landmark and route knowledge. It
emphasizes stimulus-response action sequence along
the navigation route but does not consider the spatial
relationships between landmarks and routes (Gardner
et al. 2016). In contrast, the path integration strategy
integrates landmark and path knowledge into cogni-
tive maps to establish survey knowledge (Tolman
1948). Navigators with this strategy use a cognitive
map to determine the optimal route by inferring the
relative spatial relationships between themselves and
their destinations. Behaviorally, the path retracing
strategy tends to involve familiar landmarks and

routes, whereas the path integration strategy may
involve identifying novel shortcuts. Previous studies
on the neural basis of navigation tasks illustrated the
specific activation of the two navigation strategies in
different brain regions. Pioneering animal studies
have revealed that place cells (O’Keefe and
Dostrovsky 1971), head direction cells (Taube,
Muller, and Ranck 1990), and grid cells (Hafting
et al. 2005) in the hippocampus and entorhinal cortex
encode Euclidean space, forming the neural basis of
the cognitive map and path integration strategy. The
path retracing strategy is driven by the caudate-
putamen in the striatum (Packard and McGaugh
1996). The outputs of these brain regions are modu-
lated by the prefrontal cortex and together influence
the navigation strategies of animals (Chersi and
Burgess 2015).

Navigation processes are influenced by interactions
among navigators’ spatial knowledge, navigation stra-
tegies, and environmental characteristics (Brunyé et al.
2017). In small-scale experimental scenes, such as
virtual mazes within limited boundaries, studies have
revealed differences in the use of shortcuts between
the two strategies, and the navigation strategies corre-
spond to activation in different brain regions
(Anggraini, Glasauer, and Wunderlich 2018; Bohbot
etal. 2012). In large-scale experimental scenes, such as
virtual towns, forests, and deserts, humans usually use
landmark information for navigation (Yesiltepe,
Conroy Dalton, and Ozbil Torun 2021). Landmark
saliency (Steck and Mallot 2000) and reliability (Foo
et al. 2005; Zhao and Warren 2015) affect individuals’
dependence on different types of spatial knowledge
and thus affect navigation strategies. In addition, navi-
gators’ preferences for relying on egocentric and allo-
centric spatial references during navigation tasks
influence navigation strategies. Specifically, those
who use a path retracing strategy tend to use ego-
centric reference frames, whereas those who use
a path integration strategy are more likely to plan
navigation routes based on allocentric reference
frames (Hegarty et al. 2022). Note that different spatial
references may exist simultaneously in the large-scale
navigation process through integration and conver-
sion (Ekstrom, Arnold, and Iaria 2014; Wiener,
Kmecova, and Condappa 2012). We thus differentiate
navigation strategies instead of spatial reference
frames based on behavioral performance in experi-
mental scenes with high ecological validity.

Unlike the Earth environment, the lunar surface
presents unique landscapes, such as impact craters
and expansive plains, with landmark cues that are
simpler than those of the Earth. Investigating human
navigational behaviors and cognitive processes in the
virtual lunar environments can offer valuable insights
for future long-term extraterrestrial exploration and



habitation. Therefore, this study introduced a large-
scale, high ecological validity lunar surface simulation
to explore human navigation strategies.

2.2. Behavioral performance, cognitive load, and
brain workload measurement method

Measuring navigators” behavioral performance is cru-
cial for understanding the differences in behavior
among users of different navigation strategies. In
small-scale maze environments, the proportion of
trials involving shortcut usage has been evaluated to
quantify the preferences between the two navigation
strategies (Marchette, Bakker, and Shelton 2011). The
time cost and trajectory length are commonly used to
assess the efficiency of navigation (Santos-Pata and
Verschure 2018). The path integration strategy is fre-
quently linked to shorter time and distance costs,
owing to effective shortcut employment. To evaluate
mastery of survey knowledge, researchers have used
pointing tasks and analyzed pointing errors between
the pointing direction and the destination direction
(Barhorst-Cates, Rand, and Creem-Regehr 2016; He,
Boone, and Hegarty 2023). Beyond behavior metrics,
certain studies have quantitatively analyzed trajec-
tories using morphological metrics, such as heading
direction errors (Smith, McKeith, and Howard 2013)
and trajectory circuity Ballou, Rahardja, and Sakai
(2002). These metrics can be used to measure the
degree to which a route detours to destination and
thus to infer navigation performance. Spatial ability,
which has been proven to influence navigation strat-
egy and performance (Riecke, Veen, and Biilthoff
2002; Schug 2016), has been quantified by a series of
self-reported scales, such as the Santa Barbara Sense of
Direction scale (SBSOD) (Hegarty et al. 2002) and the
spatial anxiety scale (Lawton 1994).

The cognitive load is linked to the workload in navi-
gation tasks. Previous studies have measured cognitive
load via scales, physiological and brain metrics. The
cognitive load scales focus on participants’ self-reports
of task performance, effort, time pressure, mental pres-
sure, physical workload, negative emotions, and other
factors (Paas and Van Merrienboer 1993; Reid et al.
1988), represented by the NASA Task Load Index
(NASA-TLX) scale (Hart and Staveland 1988).
Physiological metrics, including heart rate variability
(Christensen and Wright 2014), the galvanic skin
response (Yang et al. 2021), eye blinks (Kosch et al.
2018; Nourbakhsh, Wang, and Chen 2013; Zheng et al.
2012), and pupil dilation (Condappa and Wiener 2014;
Yang and Kim 2019), are commonly used to assess the
level of effort and stress levels in tasks. EEG-derived
brain signals provide a more interpretable representation
of cognitive processes compared to physiological data by
combining the cognitive function across various cerebral
cortical regions, which can explain the variation in brain
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workload, including cognitive load, learning process,
attention allocation, and working memory (Miyakoshi
et al. 2021; Paas et al. 2003; Saitis and Kalimeri 2016).
Specifically, frontal theta band waves are associated with
human cognitive control processing (Cavanagh and
Frank 2014) and working memory (Gevins and Smith
2000; Kahana, Seelig, and Madsen 2001). Chrastil et al.
(2022) reported that participants undertaking complex
tasks in virtual environments presented greater frontal
theta power. In addition, the increasing task load leads to
theta and alpha oscillations in the occipital region
(Cheng et al. 2022).

In the large-scale lunar environment, characterized
by sparse landmarks and absent satellite-based naviga-
tion, navigators must undertake complex spatial learn-
ing and navigation decisions. Accordingly, we
extracted behavioral performance and brain workload
metrics to comprehensively understand the differ-
ences in navigation strategies in the virtual lunar
environment. In addition, time series analysis of beha-
vioral and EEG data was applied to explore the navi-
gators’ behavioral and cognitive processes during the
tasks.

3. Methodology
3.1. Experiments and data collection

To explore behavioral and cognitive processes during
spatial navigation tasks, previous research has com-
monly conducted experiments in virtual scenes
(Cornwell et al. 2008; Weidemann, Mollison, and
Kahana 2009). Hence, a scenario was established for
future manned lunar exploration missions, with the
assumption that a lunar rover departs from a lunar
exploration base and autonomously explores the lunar
surface (Figure 1(a)). In the case of a loss of satellite
signals, manual control is required for the rover to
return to the lunar base and deliver soil samples. The
participants completed three experimental tasks: spa-
tial learning, navigation, and destination-pointing.
During these complex tasks, the behavioral and cog-
nitive data of the participants were recorded. Unlike
functional MRI (fMRI), which presents stimuli only in
the form of static images or videos, EEGs have been
used to measure participants’ cerebral cortex signals in
many existing studies of large-scale high ecological
validity scenes (Caplan et al. 2003; Liu, Singh, and
Lin 2022). Hence, the EEG tool was applied to record
and measure the brain workload metrics.

3.1.1. Experimental setups

First, a virtual lunar terrain model was built based on
lunar observation data. The selected experimental
area on the lunar surface is located between 44.1°N
— 44.2°N and 64.5°FE — 64.6°E, forming a rectangular
region approximately 5.8 km long and 4.5 km wide
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(a)

(b)
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Lunar DEM data
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Figure 1. Experimental scene setups. (a) Virtual lunar exploration interface. (b) lllustration of the experimental area. The DEM data
of the experimental area were transformed into a virtual terrain model. (c) lllustration of the three experimental routes, which
ranged in length from approximately 1900 to 2300 virtual meters (vm). In the virtual lunar scene, global landmarks, local
landmarks, the lunar base, and turnaround points were placed to provide spatial cues for the participants.

(Figure 1(b)). The terrain is predominantly flat, but
several large ringed mountains and small impact
craters are interspersed in this lunar region. Local
visibility conditions are suboptimal; thus, the diffi-
culty level for spatial cognition tasks is moderate.
Based on the lunar digital elevation model (DEM)
data, we developed a virtual simulation experiment
system within the Unity 3D 5.0 engine to support
spatial cognition tasks.

In this experimental system, participants can
navigate the lunar virtual environment by perform-
ing forward and backward movements, making
turns and climbing slopes, exploring the terrain,
and performing navigation tasks. To simulate the
turning and climbing performance of a lunar rover
in a natural lunar exploration environment, we con-
figured the mobility settings of the virtual lunar
rover within the virtual system and imposed specific
limitations on its turning angular velocity and
climbing capabilities. During the experiment, the
participants could monitor the rover’s speed in real-
time.

As shown in Figure 1(c), we designed three naviga-
tion routes with an average length of 2050 virtual
meters. These routes started from the lunar base
located at the center of the experimental area and
extended toward three different lunar craters in the
west, north, and southeast directions, respectively,
followed by a detour before they reached the turn-
around points. To enrich the spatial cues of the
scene, a series of landmarks were integrated into the
virtual scene. According to Steck and Mallot (2000),
these landmarks included navigation start and end
points (depicting the location of the lunar base and
the route turnaround point), global landmarks (visible
within the whole area and providing stable directional
cues for navigators), and local landmarks (visible

within a limited area, located on either side of the
navigation route, and offering participants small-
scale spatial cues).

3.1.2. Participants

62 participants—42 females and 20 males - aged
18-30 years (M =22.53, SD=2.67) were recruited
from the college for the virtual simulation experiment.
These participants were selected from a total of 165
applicants based on their answers to a questionnaire
that investigated their thorough understanding of the
experimental tasks and spatial navigation abilities that
were necessary for the experiment. All participants
had normal or corrected-to-normal vision and no
astigmatism.

3.1.3. Experimental procedure

As shown in Figure 2(a), after arriving at the labora-
tory, each participant confidentially provided demo-
graphic information, including gender and age, via an
online questionnaire. The participants were then
granted access to the virtual simulation experiment
system and familiarized themselves with basic opera-
tions, such as forward and backward movements and
turning left and right. Additionally, the experimenter
provided a detailed overview of the experimental pro-
cedure to ensure that the participants thoroughly
understood the experiment. To minimize the impact
of learning effects, the practice virtual environment
closely mirrored the formal experimental setting in
terms of terrain and environmental features but had
distinct landmark cues. After the resting-state EEG
data were collected, the participants were randomly
allocated to undertake two individual trials among
three routes, with approximately 3 min of rest between
the two trials. Within each trial, the participants were
required to perform three tasks:
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Figure 2. Experimental procedure and experimental scene. (a) Experimental procedure. The participants were required to
complete three tasks in each virtual simulation experiment trial, as illustrated below (LN: spatial learning, NV: navigation, PT:
destination-pointing). (b) Experimental scene in the laboratory and EEG electrode distribution (32 electrodes according to the

10-20 system).

3.1.3.1. Spatial learning (LN) task. Participants pas-
sively traversed predefined exploration routes on the
lunar surface toward the turnaround points. The par-
ticipants could not move forward or backward
throughout the route, but could rotate their viewpoint
to observe the landmarks along the route and were
instructed to memorize the route and direction. The
participants could replay the completed routes until
they felt that they had fully learned spatial knowledge.

3.1.3.2. Navigation (NV) task. After completing the
LN task and reaching the turnaround points, the parti-
cipants were instructed to utilize their acquired spatial
knowledge to plan the shortest homing route to the
lunar base without maps or satellite navigation. Note
that the routes in the LN task were not the shortest ones.
Instead, the NV task encouraged participants to explore
homing shortcuts on the other side of the crater to
examine the participants’ preferences between the
path retracing and path integration strategies.
Throughout the task, the lunar base was mostly hidden
from view until the participants reached the final stage,
when the lunar base’s structures were displayed. The
task was deemed unsuccessful if a participant failed to
navigate back to the base within 400 s.

3.1.3.3. Destination-pointing (PT) task. Participants
performed three PT tasks during the NV task. In each
task, the participants were required to rotate the rover

in the direction of the lunar base while it remained
invisible. The system automatically recorded the time
cost and pointing error. Based on the distance between
the real-time individual position of the participant and
the location of the lunar base, the participants com-
pleted three pointing tasks at positions 100%, 75%,
and 50% of the total distance. These task phases are
referred to as PT1, PT2, and PT3, respectively.
Additionally, each navigation task phase was separated
into three PT tasks, which were named NV1, NV2,
and NV3.

After completing two trials, the participants com-
pleted the online scales, including the Santa Barbara
Sense of Direction scale (SBSOD) (Hegarty et al. 2002)
and the NASA-TLX (Hart and Staveland 1988). These
two representative scales were widely applied to collect
feedback on participants’ spatial ability and cognitive
load (Fabroyir and Teng 2018; Taillade, N'Kaoua, and
Sauzéon 2016). In the SBSOD scale, participants self-
evaluate their spatial abilities across 15 dimensions.
The NASA-TLX scale prompted participants to self-
evaluate the cognitive load across six dimensions
(including mental demand, physical demand, tem-
poral demand, performance, effort, and frustration
level) for the two completed routes and assign weights
to six dimensions relative to their importance.

The experiment was conducted in an indoor labora-
tory. The experimental scene is shown in Figure 2(b).
The virtual simulation experiment system was run on
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a laptop computer (Intel Core i7 4900MQ CPU 2.80
GHz, with a screen size of 34.6 x 1080 and a screen
resolution of 1920 x 1080). EEG data from the partici-
pants were collected by the Enobio 32 EEG system at
a sampling rate of 500 Hz. The cortical electrical signals
were acquired from 32 evenly distributed electrodes
across the scalp. The EEG signals had a sampling band-
width of 0-125 Hz, covering the brain signal bandwidth,
with a reference electrode placed at the participant’s right
mastoid. Before the EEG data were recorded, the impe-
dance of the electrodes was checked. For most electrodes,
the impedances were kept below 10 kQ), whereas a few
were between 10 and 15 kQ. The EEG data acquisition
process was controlled by the NE NIC2 2.0.11 software.
All the data acquisition devices were connected to
a laptop. The event markers were manually annotated
at the beginning and end stages of the experiment to
facilitate subsequent data processing and ensure the syn-
chronization of multiple data streams. The alignment
was based on the markers recorded during the experi-
mental process. The time discrepancy between all the
data points was confirmed to be less than 100 ms.
Ethical approval for this study was obtained from
the Ethics Committee of Beijing Normal University
before the experiment (approval document number:
202304070068). Before the formal experiment com-
menced, all the participants signed informed consent
forms and were informed that they could terminate
the experiment at any time if they felt uncomfortable.
The entire experimental procedure lasted approxi-
mately 45-50 min for each participant. After finishing
the experiment, each participant received a payment
of 150-180 CNY (approximately 21-25 USD), which
was correlated with their experimental performance.

3.2. Data processing and analysis

3.2.1. Behavioral performance and trajectory
morphology metrics

A total of 124 trials were conducted by 62 participants
(with two trials for each participant). However, since
the participants in some trials failed to reach the
destination within the time limit (Figure Al), only 88
trials were considered for further analysis. These 88
trials were divided into two strategy group:

e Path retracing group (PR): Participants selected
the original route (i.e. the longer, superior arc
along the crater rim) to return to the lunar base
during the navigation (NV) task.

e Path integration group (PI): Participants chose
a shortcut (i.e. the shorter, minor arc across the
crater) to return to the lunar base during the NV
task.

The distribution of trials in each route and strategy
group is presented in Figure 3(a). Overall, the number

(a)

Route [ Route II Route III Total
Group N Group N Group N Group N
PR 18 PR 22 PR 20 PR 60
PI 11 PI 7 PI 10 PI 28
Total 29 Total 29 Total 30 Total 88

(b)

Route |
v "\"\' L )

Figure 3. Participants were divided into “path retracing strategy
(PR)" and “path integration strategy (PI)” groups. (a) Number of
trials in each route and each group. (b) Navigation trajectories in
the NV task.

of trials for the three routes was consistent, with
approximately two-thirds of the trials involving the
path retracing strategy. In these cases, the participants
tended to navigate to the lunar base following the
route learned in the LN task. The navigation trajec-
tories are shown in Figure 3(b). Owing to the deliber-
ately designed detour in the passive navigation route
learned by participants in the LN task, there was
a divergence in their decision-making during the
return trip. Furthermore, since the participants were
informed during the practice phase that the lunar
rover had limited climbing capabilities, all participants
opted to circumvent the circular mountains to avoid
traversing areas with steep slopes.

In addition, we examined the demographic proper-
ties and found no statistically significant differences in
the participants’ age (#(86) = —0.314, p = 0.754) or gen-
der (#(86)=-0.064, p=0.949) between the two
groups. Therefore, the distributions of both age and
sex between the two groups were deemed statistically
consistent. As a result, in subsequent analyses, it was
unnecessary to consider demographic attributes as
covariates.

To evaluate the participants’ performance in the
virtual simulation experiments, we computed five
unique behavioral metrics, including three perfor-
mance metrics and two trajectory morphological
metrics (Table 1). For the time cost (TC) and tra-
jectory length (TL) metrics, we conducted a two-way
ANOVA using a factorial design of 2 (strategy
group: PR vs. PI) x 3 (route: route I vs. II vs. III).
For the pointing error (PE) metric, we conducted
a three-way ANOVA via a factorial design of 2
(strategy group: PR vs. PI) x 3 (route: route I vs. II



Table 1. Behavioral metric definitions.

GEO-SPATIAL INFORMATION SCIENCE . 7

Indicator Definition
Performance Time cost (TC) The reaction time used for finishing LN, NV, and PT tasks.
indicators
Trajectory length (TL) The length of the return trajectory in the NV task.
Pointing error (PE) (Barhorst-Cates, Rand,  The angle between the participants’ pointing direction and the actual destination
and Creem-Regehr 2016) direction for the PT1, PT2, and PT3 tasks.
Trajectory Heading error (HE) (Smith, McKeith, and The angle between the return trajectory heading and the participants’ pointing
morphology Howard 2013) direction towards the destination for NV1/PT1, NV2/PT2, and NV3/PT3 tasks.
indicators Circuity (CR) (Ballou, Rahardja, and Sakai 2002) Trajectory length divided by the Euclidean distance.

vs. IIT) x 3 (task phase: PT1 vs. PT2 vs. PT3). For the
heading error (HE) and circuity (CR) metrics, we
conducted a three-way ANOVA via a factorial
design of 2 (strategy group: PR vs. PI) x 3 (route:
route I vs. I vs. III) x 3 (task phase: NV1 vs. NV2 vs.
NV3). All the main effects and interaction effects of
the independent variables were examined. For the
significant effects, we further performed a post-hoc
T-test.

3.2.2. Scale scores

The reliability of the scale score data was assessed via
Cronbach’s a coefficient. The results indicated high
reliability for the SBSOD and NASA-TLX scales, with
Cronbach’s a values of 0.922 and 0.737, respectively.
Subsequently, Pearson’s correlation coefficient was
employed to examine the correlation between the
scale scores and TC metrics in the NV/PT tasks. We
also explored the correlation between TC and the
scores for individual questions at both scales. The
SBSOD score was analyzed at the participant level
(N =62), whereas the NASA-TLX score was analyzed
at the trial level (N = 88).

3.2.3. EEG-based brain workload metric

For the preprocessing of EEG signals, we initially
imported the raw EEG data and determined the posi-
tions of 32 electrodes according to the 10-20 system.
We subsequently employed the average potential of all
32 electrodes as the reference electrode and re-
referenced the raw data. A bandpass filter ranging
from 0.1 Hz to 80 Hz was applied to eliminate noise
signals outside the brain signal frequency domain.
Additionally, a notch filter from 47 Hz to 53 Hz was
used to effectively attenuate power line signals centered
at approximately 50 Hz. Noise artifacts associated with
eye blinks, head movements and muscle activity were
manually identified and removed via independent com-
ponent analysis (ICA) (Vigario 1997).

We performed a time-frequency analysis for each
EEG event via the Morlet wavelet transform by map-
ping the EEG waveforms in the 1-27 Hz frequency
range from the time domain to the frequency domain.
Following previous literature, the number of cycles for
the Morlet wavelet was set to 3. Relative theta power is
a commonly used EEG metric (Bian et al. 2014; Cheng

et al. 2022). Referring to previous studies, we subse-
quently extracted the relative theta power for each
event based on the power spectral density (PSD) via
the following equation:

Pipet;
P j— theta
PieltatPrheta +Palpha+Pbela (1)

where P represents the relative theta power, and Pgea,
Piretas Paiphas and Pyeiy denote the power values corre-
sponding to the delta (1-3 Hz), theta (4-8 Hz), alpha
(9-13 Hz), and beta wavebands (14-27 Hz), respectively.

Statistical analysis was performed using the relative
theta PSD of 32 electrodes across the whole brain. We
first conducted a three-way ANOVA using a factorial
design of 2 (strategy group: PR vs. PI) x 3 (route: route
I vs. IT vs. IIT) x 3 (task phase: LN vs. NV vs. PT) to
detect main effects and interaction effects.
Considering the intersubject variability and nonnor-
mal distribution of the data, before the ANOVA test,
we applied a square root transformation to mitigate
the skewness of the data. Furthermore, we employed
a threshold of three times the median absolute devia-
tion (MAD) to remove outliers. We subsequently cre-
ated a temporal sequence by partitioning the LN and
NV tasks into 40 time bins consisting of 20 bins for
LN, 5 for NV1, 5 for NV2, and 10 for NV3. At each
time bin, we conducted T-tests to explore the differ-
ences in the relative theta PSD among participants and
qualitatively examined the temporal dynamics of the
relative theta PSD. Finally, Spearman correlation ana-
lyses were conducted to assess the relationships
between the relative theta PSD and the morphological
metrics of the two trajectories.

The data analysis process reported in this section
was conducted with the EEGLAB 14.1.1 toolbox
(Delorme and Makeig 2004), MNE-Python 1.3.0
(Gramfort et al. 2013), FieldTrip toolbox (Oostenveld
et al. 2011), SPSS 26 (IBM 2019), and Psychometrica
(Lenhard and Lenhard 2022).

4. Results

4.1. Behavioral performance and trajectory
morphological results

We observed a significant main effect of strategy on
time cost (TC) in the NV task (F(1,86) =28.681, p <
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0.001; effect size f=1.201, Figure 4(a)). Additionally,
the post-hoc T-test revealed significant differences
between the two strategies (p < 0.001), indicating that
the path integration group required less time to finish
the NV task than the path retracing group did. The TC
differences were significant for route I (p < 0.001) and
route III (p < 0.01), and there was a similar pattern in
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route I, but not statistically significant (Figure 4(b)).
However, no significant main or interaction effects
were found on the TC metric of the LN and PT tasks.

Figure 4(c) displays the ANOVA results for the
trajectory length (TL) metric and shows significant
main effects of strategy (F(1,86) =64.063, p <0.001; f
= 0.836) and route (F(2,85) = 7.615, p < 0.001; f = 0.429)
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Figure 4. ANOVA results of the performance metrics. (@) The main effects of the time cost metric in the NV task. (b) The
strategyxroute interaction effect of the time cost metric in the NV task. (c) The main effects of the trajectory length metric. (d)
Stratexgyxroutexroute interaction effect of the trajectory length metric. (e) The main effects of the pointing error metric. (f) The
strategyxtask phase interaction effect of the pointing error metric. (The blue boxes represent the path retracing (PR) group, and
the orange boxes represent the path integration (Pl) group. * p< 0.05, ** p< 0.01, *** p< 0.001).



along with asignificant interaction effect between the
two factors (F(5,82) =3.205, p <0.05; f=0.968). We
explored the interaction effect between strategy and
route (Figure 4(d)). The TL metric of the path integration
group is significantly shorter for all three routes (p <
0.001). Qualitatively, the TL of the path retracing group
was closer to the passive navigation route in the LN task,
whereas the TL of the path integration group exhibited
significant differences due to shortcuts.

Figure 4(e) displays the ANOVA results for the point-
ing error (PE) metric. We observed asignificant main
effect of strategy (F(1,260) =17.772, p <0.01; f=0.256),
and the post-hoc T-test revealed significant differences
between the two strategies (p < 0.001), indicating that the
path integration group performed significantly better
than the path retracing group did in the PT task.
Additionally, we observed asignificant interaction effect
between strategy and task phase (F(5,256) = 3.529, p <
0.05; f=0.313). We found that the PE of the path retra-
cing group was significantly greater than that of the path
integration group in the PT1 (p <0.001) and PT2 (p <
0.05) phases, but the difference was not significant in the
PT3 phase (Figure 4(f)).
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Figure 5(a) displays the ANOVA results for the
heading error (HE) metric. We observed asignificant
main effect of strategy (F(1,260) = 7.341, p <0.01; f=
0.179), and the post-hoc T-test revealed significant dif-
ferences between the two strategies (p < 0.01), indicat-
ing that the path integration group was more inclined to
navigate in the pointing direction. In contrast, the path
retracing group tended to travel with greater angular
offsets. We explored the interaction effect between the
strategy and task phases (Figure 5(b)). The HE of the
path retracing group was significantly greater than that
of the path integration group in the NV2 phase (p
<0.05).

Figure 5(c) displays the ANOVA results for the cir-
cuity (CR) metric. We observed asignificant main effect
of the strategy (F(1,255)=15.316, p <0.001; f=0.228).
Post-hoc T-tests revealed asignificant difference between
the CRs of the two strategy groups (p < 0.001). In parti-
cular, we focused on the interaction effect between the
strategy and task phases (F(5,251) =3.778, p < 0.05; f=
0.262, Figure 5(d)). The CR of the path retracing group
was significantly greater than that of the path integration
group in the NV1 phase (p <0.001) and the NV2 phase
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Figure 5. ANOVA results of trajectory morphological metrics. (a) ANOVA results of the heading error metric. (b) Strategyxtaskxtask
phase interaction effect of the heading error metric. (c) ANOVA results for the circuity metric. (d) Strategyxtaskxtask phase
interaction effect of the circuity metric. (the blue boxes represent the path retracing (PR) group, and the orange boxes represent
the path integration (PI) group. *p < 0.05, **p < 0.01, ***p < 0.001).
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(p <0.05). However, in the NV3 phase, there was no
significant difference between the two groups, indicating
that the morphological differences mainly appeared in
the first half of the NV task.

The detailed data that supported the T-test results
in this section can be found in Table Al.

4.2. Scale score results

The correlation analysis revealed asignificant negative
correlation between the SBSOD score and the total
time cost of NV and PT (r=-0.282, p < 0.05) (Figure 6
(a)). Additionally, the exploratory analysis indicated that
the TC correlated with the participants’ feedback for Q8
(“I have no difficulty understanding directions”) (r=
-0.252, p <0.05), Q9 (“I am good at reading maps”) (r
=-0.336, p<0.01), Q14 (“I usually remember anew
route after walking it once”) (r=-0.336, p <0.01), and
Q15 (“I have agood mental map of my environment”) (r
=-0.318, p <0.05). However, the significance of the
individual question correlations could not be corrected
by the FDR (Table A2) . Similarly, the NASA-TLX score
was significantly correlated with the total TC of the NV
and PT tasks (r=0.358, p <0.001) (Figure 6(b)). Further
exploration revealed asignificant correlation between the
“performance” score and TC (r=0.287, p < 0.05, FDR-
corrected, Table A2).

4.3. EEG-based brain workload results

We first tested the correlation between NASA-TLX
scores (covering six dimensions: mental demand, phy-
sical demand, temporal demand, performance, effort,
and frustration level) and the relative theta power
during the tasks. We found 26 of 32 electrodes corre-
lated with the “physical demand” component of the
NASA-TLX score (p < 0.05, FDR-corrected, Table A3).
In addition, we observed a significant interaction
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effect between strategy and route for 16 out of 32
electrodes (Figure 7(a,b)) and

Table A4, p < 0.05 FDR-corrected). The electrodes
with significant interaction effects were clustered
into regions of interest (ROIs) based on the f values.
Considering the spatial adjacency of the electrodes,
these electrodes were divided into three ROIs, includ-
ing the frontal region (F4, AF4, F8, and FC6), tem-
poral region (T7, CP1, and CP5), and parietal region
(Pz, PO3, and PO4). The interaction effects were
further analyzed in these three regions, as shown in
Table 2 and Figure 7(c)-(e). The relative theta PSD
on three ROIs between the two strategies exhibited
significant differences on route I (PR > PI). However,
the relative theta PSD associated with the frontal
region for individuals in the path integration group
on route II was significantly greater than that for
individuals in the path retracing group. Finally, the
ROI did not significantly differ between the two
groups on route III. We also performed the electrode-
by-electrode t-tests on these ROIs, and the results
were presented in Figure A3-A5. We observed some
significant differences at individual electrodes that
were not evident at the ROI level, such as the CP5
electrode in route III (theta PSD: PR > PI, Figure A4,
left plot) and the T7 and CP1 electrodes in route II
(theta PSD: PR < PI, Figure A4, middle and right
plot).

We conducted a time series analysis on the whole-
brain average relative theta PSD, focusing on route I as
a case study (Figure 7(f)). Overall, we observed that
the path retracing group resulted in a greater theta
power, with significant differences primarily concen-
trated in the middle phases of the LN task and the NV
task (NV2), whereas no significant differences were
found in other task phases. Through temporal analy-
sis, we found an upward trend in the brain workload
for the path retracing group during the NV2 phase.
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Figure 6. Correlation analysis results between the total time cost of the NV & PT tasks and (a) SBSOD score and (b) NASA-TLX score.
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Finally, we identified correlations between the rela-
tive theta PSD and trajectory morphology. We observed
a significant correlation between heading error and the
frontal FC2 electrode (r=0.197, p<0.05, FDR-
corrected).

5. Discussion

5.1. The differences between the two navigation
strategies are manifested in the mastery of
Euclidean space

In this study, we categorized participants into path retra-
cing and path integration groups based on their decision-
making differences in a virtual navigation environment.
We then analyzed behavioral performance, scale scores,

brain workload main effects, and interaction effects
across different routes and task phases. At the behavioral
level, our findings demonstrated the Hypothesis 1a and
1b: while the path integration was not the predominant
strategy (Figure 3 (a) and Figure A1), it yielded superior
performance in the NV task, with lower time costs and
a shorter trajectory length (Figure 4). These results ver-
ified the effectiveness of shortcuts found by navigators in
the path integration group in reducing the temporal and
spatial costs of the NV task. Moreover, the SBSOD score
showed that the performance of the NV task was related
to the representation of Euclidean space, such as the
sense of direction and distance (although not significant),
and that the participants who used the path integration
strategy had greater spatial ability. We validated the
reliance of the path retracing group on known landmarks
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Table 2. T-test results for three routes in three regions of interest.

Group Descriptive Inferential
Route ROI Strategy N M sSD t p d
| Frontal PR 53 2.795 0.726 2536 0.013* 0.573
Pl 31 2.392 0.659
Temporal PR 53 2.797 0.667 2.029 0.046* 0.459
Pl 31 2.486 0.697
Parietal PR 53 2.819 0.772 3429 0.007*** 0.775
Pl 31 2.224 0.758
Il Frontal PR 64 2.630 0.737 -2.225 0.029* -0.560
Pl 21 3.042 0.734
Temporal PR 64 2.734 0.770 -1.155 0.251 —-0.290
Pl 21 2.948 0.622
Parietal PR 64 2.688 0.829 -1.054 0.295 —-0.265
Pl 21 2912 0.902
I Frontal PR 59 2712 0.602 0.583 0.562 0.132
Pl 29 2.627 0.707
Temporal PR 59 2.644 0.598 1.368 0.175 0.310
Pl 29 2.456 0.623
Parietal PR 59 2551 0.696 0.447 0.656 0.101
Pl 29 2476 0.806

PR refers to path retracing strategy, Pl refers to path integration strategy, *p < 0.05, **p < 0.01, ***p < 0.001.

and route knowledge, as evidenced by the alignment
between the learned route in the LN task phase and the
homing route. Additionally, we observed significantly
greater pointing errors in the path retracing group, par-
ticularly in the PT1 and PT2 tasks — consistent with
findings of He, Boone, and Hegarty (2023) and suggest
an increase in pointing error with increasing distance to
the destination, which is commonly attributed to cumu-
lative errors in path integration (Cooper, Manka, and
Mizumori 2001). This suggests that some participants,
unable to mitigate integration errors in the virtual lunar
terrain, defaulted to safer retracing strategies. These con-
clusions can be interpreted as a fusion of egocentric and
allocentric reference frames during navigation (Burgess
2006; Ekstrom, Huffman, and Starrett 2017) while also
suggesting a partial dissociation in human spatial refer-
ences across different scales (Hegarty et al. 2006). Finally,
the analysis of the trajectory morphology revealed that
the path integration strategy group tended to navigate
closer to their self-perceived destination, whereas the
trajectory circuity and heading error of the path retracing
group were significantly greater. Notably, owing to the
medium effect size of the trajectory morphology results,
further experiments are still needed to confirm the relia-
bility of our results.

5.2. The cognitive load and brain workload of
participants using the path integration strategy
differ adaptively for routes with different levels of
difficulty

Through feedback from the NASA-TLX scale, we dis-
covered a strong positive correlation between the par-
ticipants’ time costs and self-reported cognitive load.
Furthermore, exploratory analysis revealed that this
subjective perception of cognitive load stemmed
from negative feelings about task performance.
Besides, we analyzed failed attempts (see Section

“Exploratory analyses of failed trials” in the
Appendix for details) and found that the participants
in failed attempts reported that they felt more time
pressure, whereas the participants using the path inte-
gration strategy felt less (Figure A2). In addition, the
self-reported SBSOD scale results showed that the
participants who believed that they had worse spatial
ability tended to spend more time navigating home.
Hence, we can infer that time pressure and a lack of
spatial ability led to unconfident and negative emo-
tions in task performance among navigators; thus,
they tended to follow safer homing routes rather
than taking risks to try shortcuts under time pressure.
Although existing research has questioned the relia-
bility and validity of self-reported scales (Boone,
Gong, and Hegarty 2018), in this study, the SBSOD
and the NASA-TLX scale were applied as supplements
to the behavioral and cognitive data and provided new
empirical evidence and explanations for how subjec-
tive cognitive load and emotions affect task perfor-
mance (Chen et al. 2022; Galoyan et al. 2021Nakamura
et al. 2022).

We found that the relative theta power was asso-
ciated with “physical demand” components of the
NASA-TLX scale. This suggests the relative theta
power in this study may be correlated with the parti-
cipants’ physiological fatigue from sustained manual
and visual tasks. Our results support Li and Chmiel
(2024) that relative theta power is not entirely equiva-
lent to cognitive load and may not always correlate
with it. However, our findings indicate that relative
theta power can serve to verify and supplement the
cognitive dimensions assessed by subjective scales in
cognitive experimental research. We also detected an
interaction effect between strategy and route across
multiple brain regions, including the ROIs in the
frontal, temporal, and parietal regions. Among these
ROIs, we observed that on route I, the theta power of



the path retracing group was greater than that of the
path integration group, whereas the frontal theta
power of the path integration group on route II was
greater in contrast. Such findings were partially incon-
sistent with the Hypothesis 2. Previous studies have
shown that the brain activities in the above regions are
involved in memory (Blankenship et al. 2016; Jensen
and Tesche 2002), visual information, and landmark
knowledge processing (Cheng et al. 2023; Sulpizio
et al. 2023). Therefore, we can infer that in specific
routes, the brain workload of the navigators of the two
strategies is reflected in the processing and memory of
landmark cues. Considering the special navigation
environment on the virtual lunar surface and the
characteristics of different experimental routes, we
try to explain this novel finding. This finding may be
attributed to route II being the most extended and
curved of the three routes; it imposed the greater
theta power on participants in the path integration
group and thus changed the difference between the
two strategies. We can infer that in the virtual lunar
surface, brain workload showed flexible adaptation
among different routes when navigators used the
path integration strategy, whereas no such adaptation
was observed with the path retracing strategy.
Different from the navigation research in the common
virtual environments, the above conclusion does not
prove a universal difference in brain workload
between the two strategies. This may suggest that in
our setups, path retracing in our paradigm necessitates
active spatial awareness rather than mere habitual
execution. Furthermore, both path retracing and
path integration strategies appear to require complex
spatial processing on the navigator’s brain workload.
Through time series analysis, we observed that both
strategies peaked in theta power during the mid-phase
of the NV task at the whole-brain average level. This
finding indicates that in the early phase of the NV task,
there is a continuous accumulation of brain workload
due to the construction of cognitive maps, whereas
there is a reduction in the brain’s demand for working
memory as the participants approach the destination
in the late phase. Finally, we also observed
a correlation between the activation in the frontal,
parietal, and occipital regions and between route cir-
cuity and heading error. This finding is consistent
with the mental cost measured by a vector-based
pedestrian navigation model (Bongiorno et al. 2021).

5.3. The distinctiveness of virtual lunar
navigation

Although the study of path retracing versus path inte-
gration strategy is a classic research field, our study
focused more on a unique virtual lunar navigation
scenario that provided new empirical findings.
Unlike virtual urban areas (Brunyé et al. 2012, 2017)
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and virtual maze scenes (He, Boone, and Hegarty
2023; Marchette, Bakker, and Shelton 2011), the
unstructured nature of the lunar surface impedes navi-
gators from constructing cognitive maps based on
road network information. In contrast, navigators
find it easier to infer locations through the learned
positional relationships between landmarks and tra-
jectories. As a result, this study revealed that naviga-
tors’ choice of path integration strategy was inhibited.
Besides, in natural virtual environments, lunar scenes
also differ from the Earth’s forest and desert scenes
(Foo et al. 2005). The unique landscape features of the
lunar surface, such as impact craters, gravel, and the
sky, are quite different from the familiar landscapes on
Earth. Even if a desert scene has terrain similar to that
of a lunar surface scene, the characteristics of the lunar
surface and the maneuverability of the virtual lunar
rover may be unfamiliar to the navigator, increasing
the difficulty of adapting to the navigation environ-
ment on the lunar surface. The analysis results sug-
gested that the lunar landscape without navigational
aids likely contributed to a heightened mental burden
and excessive cognitive processing, particularly for
participants with limited spatial ability. Notably, the
behavior and cognitive status of participants in large-
scale high ecological validity scenes can better repre-
sent real-world performance than those in cases with
highly controlled experimental scenes (Dong et al.
2022). Although previous studies have examined
human cognitive processes during navigation through
rigorous control variable experimental paradigms, we
have demonstrated that these cognitive processes are
not entirely consistent in virtual lunar scenes.

5.4. Limitations and future work

In this study, we classified participants dichotomously
into path retracing and path integration groups, yet
did not yet did not address potential hybrid combina-
tions or dynamic transitions between these strategies —
avenues warranting exploration in subsequent studies.
Such explorations could entail assessing neural circuit
activations (e.g. the “what” and “where” pathways)
through a controlled paradigm employing fMRI tech-
niques. In future research, deeper insights by integrat-
ing advanced EEG analyses with participant interviews
to enhance our understanding of navigators” decision-
making processes and emotional responses, and to
achieve more reliable cross-validation.

Furthermore, the experimental design could
enhance immersion by using VR devices and dynamic
landmark cues to encourage participants to make deci-
sions that are more correlated with the real scene. The
experimental design could also involve an unknown
Earth environment without navigation aids, thereby
examining whether performance and cognitive differ-
ences exist in similar challenging setups.
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Finally, this study detected no demographic differ-
ences across the two strategy groups; consequently, such
metrics were deprioritized in analyses. With respect to
existing studies (Dabbs et al. 1998; Kithn et al. 2014;
Wiener et al. 2013), future efforts should consider the
influences of gender, age, and video gaming expertise
on navigation performance in virtual lunar scenes.

6. Conclusions

Previous studies have compared the behavioral and
cognitive processes of path retracing and path integra-
tion strategies. However, few studies have investigated
these two strategies within virtual lunar surface simu-
lations characterized by high ecological validity. In this
study, a novel virtual lunar surface exploration scene
was developed to analyze navigators’ performance and
brain workload across spatial learning, navigation, and
destination-pointing tasks. Based on the behavioral,
scale, and EEG data, our findings confirmed better
performance for the path integration strategy. In addi-
tion, the path integration strategy was found to allow
for dynamic modulation of cognitive resources in
response to the navigation scene complexity, enabling
navigators to better adapt to diverse navigation sce-
narios. Our primary contribution lies in providing
empirical evidence for the navigation behaviors and
cognitive mechanisms of path retracing and path inte-
gration strategies in virtual lunar scenes, which will
not only facilitate the training of lunar exploration
personnel but also help in the development of intelli-
gent, adaptive navigation systems for forthcoming
space missions.
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Appendices
Appendix A. Exploratory analyses of failed trials

In this study, we focused on navigation process differences between participants using path retracing and path integration
strategies. We excluded 36 samples where participants failed to return to the lunar base from the main analysis since we could
not subjectively assign failed trajectories to either strategy group. In this section, we conducted exploratory analyses to
investigate navigational decision-making and self-reported cognitive load in these failure cases.

In Figure A1, we first illustrate the homing trajectories of failed cases. By comparing these failed attempts with the learned
routes, we observed that most failed trajectories initially align closely with the learned routes but become more scattered in
later sections. Notably, only in route I and route II did we see one trajectory each that appears to attempt a shortcut, a pattern
absents in route III. We hypothesized that this difference may be due to participants in failed attempts initially relying on
a path retracing strategy. However, accumulated errors and limited landmark cues likely led to disorientation and failure
outcomes.

We also explored the self-reported NASA-TLX scores of the failed trials. Thus, we performed a one-way ANOVA
for the NASA-TLX score on different groups (due to the participant’s misunderstanding of the scale, 2 trials from the
path retracing group, 1 trial from the path integration group, and 2 trials from the failed group were removed from
this analysis). The ANOVA results for the NASA-TLX score revealed a significant effect on subject workload between
the path retracing, path integration, and failed trial groups (F(2,116) = 35.663, p < 0.001, FDR-corrected; f=0.835). We
further examined the post-hoc T-test results for the six workload dimensions and found that the “temporal demand”
dimension significantly differed between the path retracing and path integration groups (#(83) =2.473, p <0.05), the
path retracing and failed groups (£(90) =-3.480, p <0.05), and the path integration and failed groups (¢(59) =-5.433, p
<0.001) (Figure A2).

== Learned route
~ Failed attempts

Figure A1. Trajectories of the failed attempts on (a) route I, (b) route I, (c) route Il
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Figure A2. Time pressure scale score between different strategies and failed trials (*p < 0.05, **p < 0.01, ***p < 0.001, FDR-
corrected).
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Appendix B. Summary figures and tables of detailed statistical data

In this section, we report the statistical data, including post-hoc T-tests results for the behavioral metrics, correlations
between each scale score and time costs, between relative theta power and NASA-TLX scores, and the interaction

effect of strategyxroute for each EEG electrode. For brevity, these data are not presented in the main text.
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Figure A3. Interaction effect plots depicting the relative theta PSD across different routes and strategies in the frontal region (F4,
AF4, F8, and FC6 included. The blue boxes represent the path retracing group, and the orange boxes represent the path
integration group. *p < 0.05, **p < 0.01, FDR-corrected).
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Figure A4. Interaction effect plots depicting the relative theta PSD across different routes and strategies in the temporal region
(CP1, T7, and CP5 included. The blue boxes represent the path retracing group, and the orange boxes represent the path
integration group. *p < 0.05, **p < 0.01, FDR-corrected).
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Figure A5. Interaction effect plots depicting the relative theta PSD across different routes and strategies in the parietal region (pz,
PO3 and PO4 included. The blue boxes represent the path retracing group, and the orange boxes represent the path integration
group. **p < 0.01, FDR-corrected).

Table A1. T-test results of behavioral metrics between two strategy groups across different conditions (*p < 0.05, **p < 0.01, ***p

<0.001).
Descriptive Inferential
Path retracing strategy Path integration strategy T-test Effect size
Metric Condition N M sD N M sD t p Cohen’s d
Time cost (TC) All routes 60 280.12 48.90 28 224.63 39.67 5.248 0.000*** 1.201
Route | 18 269.89 35.64 1 243.20 45.81 1.757 0.090 0.672
Route Il 22 298.42 51.86 7 218.13 25.67 391 0.001*** 1.697
Route Il 20 269.20 52.01 10 208.74 34.88 3.308 0.003** 1.281
Trajectory length All routes 60 1949.73 285.87 28 1526.55 159.70 7.305 0.000*** 1.672
(TL) Route | 18 1879.16 114.64 1 1641.16 137.46 5.032 0.000%** 1.926
Route Il 22 2119.11 300.92 7 1569.05 67.78 4.742 0.000*** 2.058
Route Il 20 1826.93 296.83 10 1370.74 89.54 4.717 0.000%** 1.827
Pointing error All phases 178 27.97 25.84 84 16.53 11.90 3.868 0.000%** 0.512
(PE) PT1 58 37.51 33.50 28 15.19 10.74 3.433 0.0071*** 0.790
PT2 60 24.46 22.15 28 13.90 9.89 2.407 0.018* 0.551
PT3 60 22.26 17.12 28 20.49 14.03 0.478 0.634 0.109
Heading error All phases 178 24.14 19.00 84 17.86 13.94 2.703 0.007** 0.358
(HE) NV1 58 27.75 21.95 28 19.50 13.87 1.820 0.072 0.418
NV2 60 23.80 18.36 28 14.38 12.95 2.444 0.017* 0.559
NV3 60 20.99 16.05 28 19.72 14.77 0.354 0.724 0.081
Circuity (CR) All phases 174 1.09 0.10 83 1.05 0.06 3.425 0.0071*** 0.449
NV1 55 1.12 0.1 28 1.03 0.05 3.602 0.007*** 0.954
NV2 60 1.09 0.09 28 1.05 0.04 2.315 0.023* 0514
NV3 59 1.06 0.09 27 1.05 0.08 0.116 0.908 0.115
Table A2. The detailed correlation analysis results between scale scores and time cost (*p < 0.05, FDR-corrected).
Scale Question r p
SBSOD Overall —0.282 0.026*
1.1 am good at giving directions. -0.218 0.089
2. | seldom forget where | put things. 0.120 0.355
3.1 am good at judging distances. —-0.126 0.329
4. | have a good sense of direction. —-0.209 0.103
5.1 tend to think about my surroundings in terms of cardinal directions (e.g. north, south, east, west). —0.240 0.060
6. | get lost hard in an unfamiliar city. —-0.164 0.201
7.1 enjoy looking at maps. —-0.214 0.095
8. | have no difficulty understanding directions. —-0.252 0.049
9. | am good at reading maps. -0.336 0.008
10. When | am a passenger in a car, | usually remember the route. —0.066 0.610
11. | enjoy giving directions. -0.172 0.181
12. Knowing where | am is important to me. —-0.250 0.050
13. On long trips, | seldom let someone else take charge of navigation. —-0.137 0.288
14. | usually remember a new route after walking it once. -0.336 0.008
15. | have a good mental map of my environment. —-0.318 0.012
NASA-TLX Overall 0.358 0.001*
Mental Demand 0.180 0.100
Physical Demand 0.134 0.221
Temporal Demand 0.253 0.019
Performance 0.287 0.008*
Effort 0.211 0.053
Frustration Level 0.222 0.042
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Table A3. Correlations between relative theta power and NASA-TLX scores, including its six components (*p < 0.05, **p < 0.01,

FDR-corrected).

Electrode TLX score Mental demand Physical demand Temporal demand Performance Effort Frustration level
AF3 0.104 0.061 0.303* 0.098 -0.129 0.065 0.167
AF4 0.050 0.095 0.324* -0.174 —-0.061 0.106 0.088
a 0.093 0.018 0.387** —-0.048 -0.016 0.084 0.153
c4 0.100 0.122 0.332* -0.110 -0.057 0.150 0.117
CP1 0.024 0.042 0.267 —-0.046 -0.119 0.061 0.054
CcP2 0.026 -0.018 0.307* —0.080 —-0.069 0.087 0.076
CP5 0.034 0.009 0.317* -0.177 0.010 0.036 0.139
CP6 0.041 0.047 0.261 —-0.033 -0.106 0.064 0.081
Cz —-0.005 —-0.035 0.298* -0.105 —-0.099 0.018 0.123
F3 0.102 0.074 0.280 0.038 -0.103 0.110 0.142
F4 0.035 0.027 0.361* -0.036 -0.132 0.059 0.080
F7 0.069 0.002 0.354* 0.011 -0.075 0.030 0.156
F8 0.143 0.082 0.397** 0.074 —0.080 0.081 0.196
FC1 0.088 0.044 0.307* 0.047 -0.094 0.034 0.175
FC2 0.055 0.012 0.256 -0.010 -0.097 0.115 0.098
FC5 0.088 0.048 0.368* 0.049 -0.113 0.057 0.134
FC6 0.151 0.153 0.324* 0.012 -0.078 0.123 0.191
Fp1 0.075 0.012 0.182 0.060 -0.067 0.004 0.212
Fp2 0.133 0.037 0.323* 0.026 -0.007 0.062 0.245
Fz 0.101 0.039 0.391** —0.047 -0.024 0.057 0.192
01 0.056 —-0.048 0.423** —-0.060 0.055 -0.060 0.157
02 —-0.036 —-0.025 0.320* -0.167 -0.102 0.056 0.008
0z -0.047 -0.048 0.428** -0.179 -0.104 -0.022 0.048
P3 0.115 0.033 0.341* —0.043 0.014 0.118 0.164
P4 0.077 0.039 0.305* —-0.054 —-0.050 0.074 0.163
P7 0.051 0.004 0.380** —-0.131 -0.011 0.039 0.149
P8 0.069 0.056 0.270 -0.039 -0.089 0.070 0.159
P03 0.048 —0.024 0.424** —-0.094 -0.016 —-0.013 0.173
PO4 —-0.005 -0.018 0.347* —-0.145 —-0.081 0.045 0.071
Pz -0.077 -0.110 0.308* -0.167 —-0.085 -0.010 0.020
T7 0.074 0.041 0.408** -0.065 -0.081 0.076 0.147
T8 0.092 0.001 0.342* 0.040 —0.035 0.036 0.163

Table A4. Interaction effect of strategyxroute on relative theta PSD at the whole-brain level (*p < 0.05, FDR-corrected).

Electrode F p f Electrode F p f

AF3 3.153 0.045 0.123 CP5 6.271 0.002* 0.280
AF4 6.987 0.001* 0.241 CP1 3.993 0.020* 0.211
Fp1 1.806 0.167 0.114 CP2 1.877 0.155 0.148
Fp2 5.493 0.005* 0.182 CP6 1.705 0.184 0.120
F7 3.750 0.025* 0.200 P7 3.306 0.038 0.185
F3 1.459 0.235 0.118 P3 1.844 0.161 0.171
Fz 4.237 0.016* 0.204 Pz 5411 0.005* 0.247
F4 7.116 0.001* 0.298 P4 2.763 0.065 0.182
F8 5.385 0.005* 0.226 P8 2.262 0.106 0.116
FC5 3.771 0.024* 0.178 PO3 5.748 0.004* 0.287
FC1 0.353 0.703 0.087 PO4 4.437 0.013* 0.224
FC2 1.31 0.272 0.133 01 1.768 0.173 0.196
FC6 3.757 0.025* 0.211 0z 1.429 0.242 0.152
a 2.063 0.129 0.183 02 2.404 0.093 0.201
Cz 0.768 0.465 0.126 T7 4.879 0.008* 0.212
c4 4.139 0.017* 0.206 T8 3.853 0.023* 0.183
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