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ABSTRACT
Exploring navigation strategies in lunar environment contributes to understanding the unique 
navigation mechanism of humans in extraterrestrial environments. However, it is unclear 
whether human navigation strategies in lunar environments are the same as those in common 
environments. In this study, a virtual lunar exploration navigation experiment was conducted. 
Participants were required to complete spatial learning, navigation, and destination-pointing 
tasks while their behavioral performance and scalp electroencephalogram (EEG) data were 
recorded. The navigation trials (88 trials from 62 participants) were divided into two groups – 
path retracing strategy (N = 60, navigating along the known routes) and path integration 
strategy (N = 28, inferring potential shortcuts) groups – and differences in navigation perfor
mance and brain workload between them were measured. Results indicated that trials using 
the path integration strategy were more efficient in terms of time cost and pointing error. 
Particularly, navigators using the path integration strategy were adaptive in their brain work
load. Their EEG theta power spectral density (PSD) metrics differed for routes with different 
difficulties; this difference was not found in the path retracing group. This study offers insights 
into human navigation strategies and cognitive processes in virtual lunar scenes and contri
butes to future human adaptation to the lunar surface environment when conducting space 
missions.
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1. Introduction

During goal-directed activities, such as hunting, 
exploration, and commuting, humans have evolved 
various navigation strategies to reach specific destina
tions (Goodroe and Spiers 2022). These strategies have 
been effectively utilized across diverse terrestrial 
environments, from structured spaces such as urban 
and rural road networks to unstructured terrains like 
forests, mountains, and deserts. As manned space 
technology advances, understanding how humans 
navigate in extraterrestrial settings – particularly the 
lunar environment – is therefore crucial for planning 
future space exploration and habitation missions. 
Individuals employing different strategies acquire 
and utilize spatial knowledge in distinct ways. 
Previous studies have categorized navigation strategies 
according to the type of spatial knowledge employed 
(Maier et al. 2024; Marchette, Bakker, and Shelton  
2011; Wiener et al. 2013). These strategies have been 
investigated and validated in virtual environments 
through assessments of navigators’ behavioral perfor
mance and cognitive processes (Gramann et al. 2010). 
In the first strategy, navigators typically retrace their 

paths via stimulus-response actions, relying on 
learned landmark and route knowledge. Conversely, 
those employing the alternative strategy construct 
allocentric cognitive maps to plan novel routes and 
continuously update their position and orientation via 
path integration (Hegarty et al. 2022). We herein des
ignate these strategies as the “path retracing strategy” 
and the “path integration strategy” for clarity and 
specificity. Unlike common navigation scenarios, 
lunar settings lack tools such as satellites and com
passes, with limited landmark cues. Thus, whether 
humans can adapt similar navigation skills and strate
gies as those of Earth – particularly in virtual simula
tions – remains an open question and requires further 
investigation.

Previous studies have investigated behavioral and 
cognitive metrics, including time cost (Santos-Pata 
and Verschure 2018), pointing error (Barhorst-Cates, 
Rand, and Creem-Regehr 2016), and EEG-based theta 
band power (Plank et al. 2015), in spatial learning and 
navigation tasks involving path retracing and path 
integration strategies. Regarding behavioral perfor
mance, participants employing the path integration 
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strategy exhibited shorter time costs and lower point
ing errors in virtual mazes (He, Boone, and Hegarty  
2023). Accordingly, we hypothesized that participants 
using the path integration strategy would demonstrate 
superior performance in navigation and destination- 
pointing tasks within virtual lunar scenes (Hypothesis 
1a). However, given the increased difficulty in identi
fying shortcuts amid sparse lunar landmarks, we 
anticipated that this strategy might not be the predo
minant choice for navigators (Hypothesis 1b). 
Furthermore, previous research has revealed greater 
theta band activation in large-scale virtual environ
ments during the retrieval of allocentric cognitive 
maps (Teixeira De Almeida et al. 2023). Given the 
associations between path integration and cognitive 
map formation, we thus hypothesized that partici
pants employing the path integration strategy would 
exhibit greater theta band activation in virtual lunar 
scenes (Hypothesis 2).

To test these hypotheses, we conducted an experi
ment in a virtual lunar exploration environment, com
paring the impacts of navigation strategies on 
behavioral performance and brain workload. 
Participants wore a mobile EEG system during spatial 
learning, navigation, and destination-pointing tasks. 
For a comprehensive analysis of navigation strategies, 
we extracted behavioral performance and brain work
load metrics, augmented by self-reported scale scores. 
This study aimed to summarize the behavioral perfor
mance and cognitive processes underlying distinct 
navigation strategies in virtual lunar settings, thereby 
furnishing foundational insights for extraterrestrial 
human exploration missions.

2. Related work

2.1. Navigation strategies for various scenes

The path retracing and path integration strategies 
differ with respect to navigators’ inclinations toward 
shortcut-seeking and their utilization of spatial knowl
edge, including landmark, route, and survey knowl
edge (Siegel and White 1975). The path retracing 
strategy, which is dominated by habit-driven pro
cesses, relies on landmark and route knowledge. It 
emphasizes stimulus-response action sequence along 
the navigation route but does not consider the spatial 
relationships between landmarks and routes (Gardner 
et al. 2016). In contrast, the path integration strategy 
integrates landmark and path knowledge into cogni
tive maps to establish survey knowledge (Tolman  
1948). Navigators with this strategy use a cognitive 
map to determine the optimal route by inferring the 
relative spatial relationships between themselves and 
their destinations. Behaviorally, the path retracing 
strategy tends to involve familiar landmarks and 

routes, whereas the path integration strategy may 
involve identifying novel shortcuts. Previous studies 
on the neural basis of navigation tasks illustrated the 
specific activation of the two navigation strategies in 
different brain regions. Pioneering animal studies 
have revealed that place cells (O’Keefe and 
Dostrovsky 1971), head direction cells (Taube, 
Muller, and Ranck 1990), and grid cells (Hafting 
et al. 2005) in the hippocampus and entorhinal cortex 
encode Euclidean space, forming the neural basis of 
the cognitive map and path integration strategy. The 
path retracing strategy is driven by the caudate- 
putamen in the striatum (Packard and McGaugh  
1996). The outputs of these brain regions are modu
lated by the prefrontal cortex and together influence 
the navigation strategies of animals (Chersi and 
Burgess 2015).

Navigation processes are influenced by interactions 
among navigators’ spatial knowledge, navigation stra
tegies, and environmental characteristics (Brunyé et al.  
2017). In small-scale experimental scenes, such as 
virtual mazes within limited boundaries, studies have 
revealed differences in the use of shortcuts between 
the two strategies, and the navigation strategies corre
spond to activation in different brain regions 
(Anggraini, Glasauer, and Wunderlich 2018; Bohbot 
et al. 2012). In large-scale experimental scenes, such as 
virtual towns, forests, and deserts, humans usually use 
landmark information for navigation (Yesiltepe, 
Conroy Dalton, and Ozbil Torun 2021). Landmark 
saliency (Steck and Mallot 2000) and reliability (Foo 
et al. 2005; Zhao and Warren 2015) affect individuals’ 
dependence on different types of spatial knowledge 
and thus affect navigation strategies. In addition, navi
gators’ preferences for relying on egocentric and allo
centric spatial references during navigation tasks 
influence navigation strategies. Specifically, those 
who use a path retracing strategy tend to use ego
centric reference frames, whereas those who use 
a path integration strategy are more likely to plan 
navigation routes based on allocentric reference 
frames (Hegarty et al. 2022). Note that different spatial 
references may exist simultaneously in the large-scale 
navigation process through integration and conver
sion (Ekstrom, Arnold, and Iaria 2014; Wiener, 
Kmecova, and Condappa 2012). We thus differentiate 
navigation strategies instead of spatial reference 
frames based on behavioral performance in experi
mental scenes with high ecological validity.

Unlike the Earth environment, the lunar surface 
presents unique landscapes, such as impact craters 
and expansive plains, with landmark cues that are 
simpler than those of the Earth. Investigating human 
navigational behaviors and cognitive processes in the 
virtual lunar environments can offer valuable insights 
for future long-term extraterrestrial exploration and 
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habitation. Therefore, this study introduced a large- 
scale, high ecological validity lunar surface simulation 
to explore human navigation strategies.

2.2. Behavioral performance, cognitive load, and 
brain workload measurement method

Measuring navigators’ behavioral performance is cru
cial for understanding the differences in behavior 
among users of different navigation strategies. In 
small-scale maze environments, the proportion of 
trials involving shortcut usage has been evaluated to 
quantify the preferences between the two navigation 
strategies (Marchette, Bakker, and Shelton 2011). The 
time cost and trajectory length are commonly used to 
assess the efficiency of navigation (Santos-Pata and 
Verschure 2018). The path integration strategy is fre
quently linked to shorter time and distance costs, 
owing to effective shortcut employment. To evaluate 
mastery of survey knowledge, researchers have used 
pointing tasks and analyzed pointing errors between 
the pointing direction and the destination direction 
(Barhorst-Cates, Rand, and Creem-Regehr 2016; He, 
Boone, and Hegarty 2023). Beyond behavior metrics, 
certain studies have quantitatively analyzed trajec
tories using morphological metrics, such as heading 
direction errors (Smith, McKeith, and Howard 2013) 
and trajectory circuity Ballou, Rahardja, and Sakai 
(2002). These metrics can be used to measure the 
degree to which a route detours to destination and 
thus to infer navigation performance. Spatial ability, 
which has been proven to influence navigation strat
egy and performance (Riecke, Veen, and Bülthoff  
2002; Schug 2016), has been quantified by a series of 
self-reported scales, such as the Santa Barbara Sense of 
Direction scale (SBSOD) (Hegarty et al. 2002) and the 
spatial anxiety scale (Lawton 1994).

The cognitive load is linked to the workload in navi
gation tasks. Previous studies have measured cognitive 
load via scales, physiological and brain metrics. The 
cognitive load scales focus on participants’ self-reports 
of task performance, effort, time pressure, mental pres
sure, physical workload, negative emotions, and other 
factors (Paas and Van Merrienboer 1993; Reid et al.  
1988), represented by the NASA Task Load Index 
(NASA-TLX) scale (Hart and Staveland 1988). 
Physiological metrics, including heart rate variability 
(Christensen and Wright 2014), the galvanic skin 
response (Yang et al. 2021), eye blinks (Kosch et al.  
2018; Nourbakhsh, Wang, and Chen 2013; Zheng et al.  
2012), and pupil dilation (Condappa and Wiener 2014; 
Yang and Kim 2019), are commonly used to assess the 
level of effort and stress levels in tasks. EEG-derived 
brain signals provide a more interpretable representation 
of cognitive processes compared to physiological data by 
combining the cognitive function across various cerebral 
cortical regions, which can explain the variation in brain 

workload, including cognitive load, learning process, 
attention allocation, and working memory (Miyakoshi 
et al. 2021; Paas et al. 2003; Saitis and Kalimeri 2016). 
Specifically, frontal theta band waves are associated with 
human cognitive control processing (Cavanagh and 
Frank 2014) and working memory (Gevins and Smith  
2000; Kahana, Seelig, and Madsen 2001). Chrastil et al. 
(2022) reported that participants undertaking complex 
tasks in virtual environments presented greater frontal 
theta power. In addition, the increasing task load leads to 
theta and alpha oscillations in the occipital region 
(Cheng et al. 2022).

In the large-scale lunar environment, characterized 
by sparse landmarks and absent satellite-based naviga
tion, navigators must undertake complex spatial learn
ing and navigation decisions. Accordingly, we 
extracted behavioral performance and brain workload 
metrics to comprehensively understand the differ
ences in navigation strategies in the virtual lunar 
environment. In addition, time series analysis of beha
vioral and EEG data was applied to explore the navi
gators’ behavioral and cognitive processes during the 
tasks.

3. Methodology

3.1. Experiments and data collection

To explore behavioral and cognitive processes during 
spatial navigation tasks, previous research has com
monly conducted experiments in virtual scenes 
(Cornwell et al. 2008; Weidemann, Mollison, and 
Kahana 2009). Hence, a scenario was established for 
future manned lunar exploration missions, with the 
assumption that a lunar rover departs from a lunar 
exploration base and autonomously explores the lunar 
surface (Figure 1(a)). In the case of a loss of satellite 
signals, manual control is required for the rover to 
return to the lunar base and deliver soil samples. The 
participants completed three experimental tasks: spa
tial learning, navigation, and destination-pointing. 
During these complex tasks, the behavioral and cog
nitive data of the participants were recorded. Unlike 
functional MRI (fMRI), which presents stimuli only in 
the form of static images or videos, EEGs have been 
used to measure participants’ cerebral cortex signals in 
many existing studies of large-scale high ecological 
validity scenes (Caplan et al. 2003; Liu, Singh, and 
Lin 2022). Hence, the EEG tool was applied to record 
and measure the brain workload metrics.

3.1.1. Experimental setups
First, a virtual lunar terrain model was built based on 
lunar observation data. The selected experimental 
area on the lunar surface is located between 44.1°N 
− 44.2°N and 64.5°E − 64.6°E, forming a rectangular 
region approximately 5.8 km long and 4.5 km wide 
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(Figure 1(b)). The terrain is predominantly flat, but 
several large ringed mountains and small impact 
craters are interspersed in this lunar region. Local 
visibility conditions are suboptimal; thus, the diffi
culty level for spatial cognition tasks is moderate. 
Based on the lunar digital elevation model (DEM) 
data, we developed a virtual simulation experiment 
system within the Unity 3D 5.0 engine to support 
spatial cognition tasks.

In this experimental system, participants can 
navigate the lunar virtual environment by perform
ing forward and backward movements, making 
turns and climbing slopes, exploring the terrain, 
and performing navigation tasks. To simulate the 
turning and climbing performance of a lunar rover 
in a natural lunar exploration environment, we con
figured the mobility settings of the virtual lunar 
rover within the virtual system and imposed specific 
limitations on its turning angular velocity and 
climbing capabilities. During the experiment, the 
participants could monitor the rover’s speed in real- 
time.

As shown in Figure 1(c), we designed three naviga
tion routes with an average length of 2050 virtual 
meters. These routes started from the lunar base 
located at the center of the experimental area and 
extended toward three different lunar craters in the 
west, north, and southeast directions, respectively, 
followed by a detour before they reached the turn
around points. To enrich the spatial cues of the 
scene, a series of landmarks were integrated into the 
virtual scene. According to Steck and Mallot (2000), 
these landmarks included navigation start and end 
points (depicting the location of the lunar base and 
the route turnaround point), global landmarks (visible 
within the whole area and providing stable directional 
cues for navigators), and local landmarks (visible 

within a limited area, located on either side of the 
navigation route, and offering participants small- 
scale spatial cues).

3.1.2. Participants
62 participants—42 females and 20 males – aged 
18–30 years (M = 22.53, SD = 2.67) were recruited 
from the college for the virtual simulation experiment. 
These participants were selected from a total of 165 
applicants based on their answers to a questionnaire 
that investigated their thorough understanding of the 
experimental tasks and spatial navigation abilities that 
were necessary for the experiment. All participants 
had normal or corrected-to-normal vision and no 
astigmatism.

3.1.3. Experimental procedure
As shown in Figure 2(a), after arriving at the labora
tory, each participant confidentially provided demo
graphic information, including gender and age, via an 
online questionnaire. The participants were then 
granted access to the virtual simulation experiment 
system and familiarized themselves with basic opera
tions, such as forward and backward movements and 
turning left and right. Additionally, the experimenter 
provided a detailed overview of the experimental pro
cedure to ensure that the participants thoroughly 
understood the experiment. To minimize the impact 
of learning effects, the practice virtual environment 
closely mirrored the formal experimental setting in 
terms of terrain and environmental features but had 
distinct landmark cues. After the resting-state EEG 
data were collected, the participants were randomly 
allocated to undertake two individual trials among 
three routes, with approximately 3 min of rest between 
the two trials. Within each trial, the participants were 
required to perform three tasks:

Figure 1. Experimental scene setups. (a) Virtual lunar exploration interface. (b) Illustration of the experimental area. The DEM data 
of the experimental area were transformed into a virtual terrain model. (c) Illustration of the three experimental routes, which 
ranged in length from approximately 1900 to 2300 virtual meters (vm). In the virtual lunar scene, global landmarks, local 
landmarks, the lunar base, and turnaround points were placed to provide spatial cues for the participants.
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3.1.3.1. Spatial learning (LN) task. Participants pas
sively traversed predefined exploration routes on the 
lunar surface toward the turnaround points. The par
ticipants could not move forward or backward 
throughout the route, but could rotate their viewpoint 
to observe the landmarks along the route and were 
instructed to memorize the route and direction. The 
participants could replay the completed routes until 
they felt that they had fully learned spatial knowledge.

3.1.3.2. Navigation (NV) task. After completing the 
LN task and reaching the turnaround points, the parti
cipants were instructed to utilize their acquired spatial 
knowledge to plan the shortest homing route to the 
lunar base without maps or satellite navigation. Note 
that the routes in the LN task were not the shortest ones. 
Instead, the NV task encouraged participants to explore 
homing shortcuts on the other side of the crater to 
examine the participants’ preferences between the 
path retracing and path integration strategies. 
Throughout the task, the lunar base was mostly hidden 
from view until the participants reached the final stage, 
when the lunar base’s structures were displayed. The 
task was deemed unsuccessful if a participant failed to 
navigate back to the base within 400 s.

3.1.3.3. Destination-pointing (PT) task. Participants 
performed three PT tasks during the NV task. In each 
task, the participants were required to rotate the rover 

in the direction of the lunar base while it remained 
invisible. The system automatically recorded the time 
cost and pointing error. Based on the distance between 
the real-time individual position of the participant and 
the location of the lunar base, the participants com
pleted three pointing tasks at positions 100%, 75%, 
and 50% of the total distance. These task phases are 
referred to as PT1, PT2, and PT3, respectively. 
Additionally, each navigation task phase was separated 
into three PT tasks, which were named NV1, NV2, 
and NV3.

After completing two trials, the participants com
pleted the online scales, including the Santa Barbara 
Sense of Direction scale (SBSOD) (Hegarty et al. 2002) 
and the NASA-TLX (Hart and Staveland 1988). These 
two representative scales were widely applied to collect 
feedback on participants’ spatial ability and cognitive 
load (Fabroyir and Teng 2018; Taillade, N’Kaoua, and 
Sauzéon 2016). In the SBSOD scale, participants self- 
evaluate their spatial abilities across 15 dimensions. 
The NASA-TLX scale prompted participants to self- 
evaluate the cognitive load across six dimensions 
(including mental demand, physical demand, tem
poral demand, performance, effort, and frustration 
level) for the two completed routes and assign weights 
to six dimensions relative to their importance.

The experiment was conducted in an indoor labora
tory. The experimental scene is shown in Figure 2(b). 
The virtual simulation experiment system was run on 

Figure 2. Experimental procedure and experimental scene. (a) Experimental procedure. The participants were required to 
complete three tasks in each virtual simulation experiment trial, as illustrated below (LN: spatial learning, NV: navigation, PT: 
destination-pointing). (b) Experimental scene in the laboratory and EEG electrode distribution (32 electrodes according to the 
10–20 system).
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a laptop computer (Intel Core i7 4900MQ CPU 2.80  
GHz, with a screen size of 34.6 × 1080 and a screen 
resolution of 1920 × 1080). EEG data from the partici
pants were collected by the Enobio 32 EEG system at 
a sampling rate of 500 Hz. The cortical electrical signals 
were acquired from 32 evenly distributed electrodes 
across the scalp. The EEG signals had a sampling band
width of 0–125 Hz, covering the brain signal bandwidth, 
with a reference electrode placed at the participant’s right 
mastoid. Before the EEG data were recorded, the impe
dance of the electrodes was checked. For most electrodes, 
the impedances were kept below 10 kΩ, whereas a few 
were between 10 and 15 kΩ. The EEG data acquisition 
process was controlled by the NE NIC2 2.0.11 software. 
All the data acquisition devices were connected to 
a laptop. The event markers were manually annotated 
at the beginning and end stages of the experiment to 
facilitate subsequent data processing and ensure the syn
chronization of multiple data streams. The alignment 
was based on the markers recorded during the experi
mental process. The time discrepancy between all the 
data points was confirmed to be less than 100 ms.

Ethical approval for this study was obtained from 
the Ethics Committee of Beijing Normal University 
before the experiment (approval document number: 
202304070068). Before the formal experiment com
menced, all the participants signed informed consent 
forms and were informed that they could terminate 
the experiment at any time if they felt uncomfortable. 
The entire experimental procedure lasted approxi
mately 45–50 min for each participant. After finishing 
the experiment, each participant received a payment 
of 150–180 CNY (approximately 21–25 USD), which 
was correlated with their experimental performance.

3.2. Data processing and analysis

3.2.1. Behavioral performance and trajectory 
morphology metrics
A total of 124 trials were conducted by 62 participants 
(with two trials for each participant). However, since 
the participants in some trials failed to reach the 
destination within the time limit (Figure A1), only 88 
trials were considered for further analysis. These 88 
trials were divided into two strategy group:

● Path retracing group (PR): Participants selected 
the original route (i.e. the longer, superior arc 
along the crater rim) to return to the lunar base 
during the navigation (NV) task.

● Path integration group (PI): Participants chose 
a shortcut (i.e. the shorter, minor arc across the 
crater) to return to the lunar base during the NV 
task.

The distribution of trials in each route and strategy 
group is presented in Figure 3(a). Overall, the number 

of trials for the three routes was consistent, with 
approximately two-thirds of the trials involving the 
path retracing strategy. In these cases, the participants 
tended to navigate to the lunar base following the 
route learned in the LN task. The navigation trajec
tories are shown in Figure 3(b). Owing to the deliber
ately designed detour in the passive navigation route 
learned by participants in the LN task, there was 
a divergence in their decision-making during the 
return trip. Furthermore, since the participants were 
informed during the practice phase that the lunar 
rover had limited climbing capabilities, all participants 
opted to circumvent the circular mountains to avoid 
traversing areas with steep slopes.

In addition, we examined the demographic proper
ties and found no statistically significant differences in 
the participants’ age (t(86) = −0.314, p = 0.754) or gen
der (t(86) = −0.064, p = 0.949) between the two 
groups. Therefore, the distributions of both age and 
sex between the two groups were deemed statistically 
consistent. As a result, in subsequent analyses, it was 
unnecessary to consider demographic attributes as 
covariates.

To evaluate the participants’ performance in the 
virtual simulation experiments, we computed five 
unique behavioral metrics, including three perfor
mance metrics and two trajectory morphological 
metrics (Table 1). For the time cost (TC) and tra
jectory length (TL) metrics, we conducted a two-way 
ANOVA using a factorial design of 2 (strategy 
group: PR vs. PI) × 3 (route: route I vs. II vs. III). 
For the pointing error (PE) metric, we conducted 
a three-way ANOVA via a factorial design of 2 
(strategy group: PR vs. PI) × 3 (route: route I vs. II 

Figure 3. Participants were divided into “path retracing strategy 
(PR)” and “path integration strategy (PI)” groups. (a) Number of 
trials in each route and each group. (b) Navigation trajectories in 
the NV task.
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vs. III) × 3 (task phase: PT1 vs. PT2 vs. PT3). For the 
heading error (HE) and circuity (CR) metrics, we 
conducted a three-way ANOVA via a factorial 
design of 2 (strategy group: PR vs. PI) × 3 (route: 
route I vs. II vs. III) × 3 (task phase: NV1 vs. NV2 vs. 
NV3). All the main effects and interaction effects of 
the independent variables were examined. For the 
significant effects, we further performed a post-hoc 
T-test.

3.2.2. Scale scores
The reliability of the scale score data was assessed via 
Cronbach’s α coefficient. The results indicated high 
reliability for the SBSOD and NASA-TLX scales, with 
Cronbach’s α values of 0.922 and 0.737, respectively. 
Subsequently, Pearson’s correlation coefficient was 
employed to examine the correlation between the 
scale scores and TC metrics in the NV/PT tasks. We 
also explored the correlation between TC and the 
scores for individual questions at both scales. The 
SBSOD score was analyzed at the participant level 
(N = 62), whereas the NASA-TLX score was analyzed 
at the trial level (N = 88).

3.2.3. EEG-based brain workload metric
For the preprocessing of EEG signals, we initially 
imported the raw EEG data and determined the posi
tions of 32 electrodes according to the 10–20 system. 
We subsequently employed the average potential of all 
32 electrodes as the reference electrode and re- 
referenced the raw data. A bandpass filter ranging 
from 0.1 Hz to 80 Hz was applied to eliminate noise 
signals outside the brain signal frequency domain. 
Additionally, a notch filter from 47 Hz to 53 Hz was 
used to effectively attenuate power line signals centered 
at approximately 50 Hz. Noise artifacts associated with 
eye blinks, head movements and muscle activity were 
manually identified and removed via independent com
ponent analysis (ICA) (Vigário 1997).

We performed a time-frequency analysis for each 
EEG event via the Morlet wavelet transform by map
ping the EEG waveforms in the 1–27 Hz frequency 
range from the time domain to the frequency domain. 
Following previous literature, the number of cycles for 
the Morlet wavelet was set to 3. Relative theta power is 
a commonly used EEG metric (Bian et al. 2014; Cheng 

et al. 2022). Referring to previous studies, we subse
quently extracted the relative theta power for each 
event based on the power spectral density (PSD) via 
the following equation: 

where P represents the relative theta power, and Pdelta, 
Ptheta, Palpha, and Pbeta denote the power values corre
sponding to the delta (1–3 Hz), theta (4–8 Hz), alpha 
(9–13 Hz), and beta wavebands (14–27 Hz), respectively.

Statistical analysis was performed using the relative 
theta PSD of 32 electrodes across the whole brain. We 
first conducted a three-way ANOVA using a factorial 
design of 2 (strategy group: PR vs. PI) × 3 (route: route 
I vs. II vs. III) × 3 (task phase: LN vs. NV vs. PT) to 
detect main effects and interaction effects. 
Considering the intersubject variability and nonnor
mal distribution of the data, before the ANOVA test, 
we applied a square root transformation to mitigate 
the skewness of the data. Furthermore, we employed 
a threshold of three times the median absolute devia
tion (MAD) to remove outliers. We subsequently cre
ated a temporal sequence by partitioning the LN and 
NV tasks into 40 time bins consisting of 20 bins for 
LN, 5 for NV1, 5 for NV2, and 10 for NV3. At each 
time bin, we conducted T-tests to explore the differ
ences in the relative theta PSD among participants and 
qualitatively examined the temporal dynamics of the 
relative theta PSD. Finally, Spearman correlation ana
lyses were conducted to assess the relationships 
between the relative theta PSD and the morphological 
metrics of the two trajectories.

The data analysis process reported in this section 
was conducted with the EEGLAB 14.1.1 toolbox 
(Delorme and Makeig 2004), MNE-Python 1.3.0 
(Gramfort et al. 2013), FieldTrip toolbox (Oostenveld 
et al. 2011), SPSS 26 (IBM 2019), and Psychometrica 
(Lenhard and Lenhard 2022).

4. Results

4.1. Behavioral performance and trajectory 
morphological results

We observed a significant main effect of strategy on 
time cost (TC) in the NV task (F(1,86) = 28.681, p <  

Table 1. Behavioral metric definitions.
Indicator Definition

Performance 
indicators

Time cost (TC) The reaction time used for finishing LN, NV, and PT tasks.

Trajectory length (TL) The length of the return trajectory in the NV task.
Pointing error (PE) (Barhorst-Cates, Rand, 

and Creem-Regehr 2016)
The angle between the participants’ pointing direction and the actual destination 

direction for the PT1, PT2, and PT3 tasks.

Trajectory 
morphology 
indicators

Heading error (HE) (Smith, McKeith, and 
Howard 2013)

The angle between the return trajectory heading and the participants’ pointing  
direction towards the destination for NV1/PT1, NV2/PT2, and NV3/PT3 tasks.

Circuity (CR) (Ballou, Rahardja, and Sakai 2002) Trajectory length divided by the Euclidean distance.
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0.001; effect size f = 1.201, Figure 4(a)). Additionally, 
the post-hoc T-test revealed significant differences 
between the two strategies (p < 0.001), indicating that 
the path integration group required less time to finish 
the NV task than the path retracing group did. The TC 
differences were significant for route II (p < 0.001) and 
route III (p < 0.01), and there was a similar pattern in 

route I, but not statistically significant (Figure 4(b)). 
However, no significant main or interaction effects 
were found on the TC metric of the LN and PT tasks.

Figure 4(c) displays the ANOVA results for the 
trajectory length (TL) metric and shows significant 
main effects of strategy (F(1,86) = 64.063, p < 0.001; f  
= 0.836) and route (F(2,85) = 7.615, p < 0.001; f = 0.429) 

Figure 4. ANOVA results of the performance metrics. (a) The main effects of the time cost metric in the NV task. (b) The 
strategy×route interaction effect of the time cost metric in the NV task. (c) The main effects of the trajectory length metric. (d) 
Stratexgy×route×route interaction effect of the trajectory length metric. (e) The main effects of the pointing error metric. (f) The 
strategy×task phase interaction effect of the pointing error metric. (The blue boxes represent the path retracing (PR) group, and 
the orange boxes represent the path integration (PI) group. * p< 0.05, ** p< 0.01, *** p< 0.001).
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along with asignificant interaction effect between the 
two factors (F(5,82) = 3.205, p < 0.05; f = 0.968). We 
explored the interaction effect between strategy and 
route (Figure 4(d)). The TL metric of the path integration 
group is significantly shorter for all three routes (p <  
0.001). Qualitatively, the TL of the path retracing group 
was closer to the passive navigation route in the LN task, 
whereas the TL of the path integration group exhibited 
significant differences due to shortcuts.

Figure 4(e) displays the ANOVA results for the point
ing error (PE) metric. We observed asignificant main 
effect of strategy (F(1,260) = 17.772, p < 0.01; f = 0.256), 
and the post-hoc T-test revealed significant differences 
between the two strategies (p < 0.001), indicating that the 
path integration group performed significantly better 
than the path retracing group did in the PT task. 
Additionally, we observed asignificant interaction effect 
between strategy and task phase (F(5,256) = 3.529, p <  
0.05; f = 0.313). We found that the PE of the path retra
cing group was significantly greater than that of the path 
integration group in the PT1 (p < 0.001) and PT2 (p <  
0.05) phases, but the difference was not significant in the 
PT3 phase (Figure 4(f)).

Figure 5(a) displays the ANOVA results for the 
heading error (HE) metric. We observed asignificant 
main effect of strategy (F(1,260) = 7.341, p < 0.01; f =  
0.179), and the post-hoc T-test revealed significant dif
ferences between the two strategies (p < 0.01), indicat
ing that the path integration group was more inclined to 
navigate in the pointing direction. In contrast, the path 
retracing group tended to travel with greater angular 
offsets. We explored the interaction effect between the 
strategy and task phases (Figure 5(b)). The HE of the 
path retracing group was significantly greater than that 
of the path integration group in the NV2 phase (p  
< 0.05).

Figure 5(c) displays the ANOVA results for the cir
cuity (CR) metric. We observed asignificant main effect 
of the strategy (F(1,255) = 15.316, p < 0.001; f = 0.228). 
Post-hoc T-tests revealed asignificant difference between 
the CRs of the two strategy groups (p < 0.001). In parti
cular, we focused on the interaction effect between the 
strategy and task phases (F(5,251) = 3.778, p < 0.05; f =  
0.262, Figure 5(d)). The CR of the path retracing group 
was significantly greater than that of the path integration 
group in the NV1 phase (p < 0.001) and the NV2 phase 

Figure 5. ANOVA results of trajectory morphological metrics. (a) ANOVA results of the heading error metric. (b) Strategy×task×task 
phase interaction effect of the heading error metric. (c) ANOVA results for the circuity metric. (d) Strategy×task×task phase 
interaction effect of the circuity metric. (the blue boxes represent the path retracing (PR) group, and the orange boxes represent 
the path integration (PI) group. *p < 0.05, **p < 0.01, ***p < 0.001).

GEO-SPATIAL INFORMATION SCIENCE 9



(p < 0.05). However, in the NV3 phase, there was no 
significant difference between the two groups, indicating 
that the morphological differences mainly appeared in 
the first half of the NV task.

The detailed data that supported the T-test results 
in this section can be found in Table A1.

4.2. Scale score results

The correlation analysis revealed asignificant negative 
correlation between the SBSOD score and the total 
time cost of NV and PT (r = −0.282, p < 0.05) (Figure 6 
(a)). Additionally, the exploratory analysis indicated that 
the TC correlated with the participants’ feedback for Q8 
(“I have no difficulty understanding directions”) (r =  
−0.252, p < 0.05), Q9 (“I am good at reading maps”) (r  
= −0.336, p < 0.01), Q14 (“I usually remember anew 
route after walking it once”) (r = −0.336, p < 0.01), and 
Q15 (“I have agood mental map of my environment”) (r  
= −0.318, p < 0.05). However, the significance of the 
individual question correlations could not be corrected 
by the FDR (Table A2) . Similarly, the NASA-TLX score 
was significantly correlated with the total TC of the NV 
and PT tasks (r = 0.358, p < 0.001) (Figure 6(b)). Further 
exploration revealed asignificant correlation between the 
“performance” score and TC (r = 0.287, p < 0.05, FDR- 
corrected, Table A2).

4.3. EEG-based brain workload results

We first tested the correlation between NASA-TLX 
scores (covering six dimensions: mental demand, phy
sical demand, temporal demand, performance, effort, 
and frustration level) and the relative theta power 
during the tasks. We found 26 of 32 electrodes corre
lated with the “physical demand” component of the 
NASA-TLX score (p < 0.05, FDR-corrected, Table A3). 
In addition, we observed a significant interaction 

effect between strategy and route for 16 out of 32 
electrodes (Figure 7(a,b)) and

Table A4 , p < 0.05 FDR-corrected). The electrodes 
with significant interaction effects were clustered 
into regions of interest (ROIs) based on the f values. 
Considering the spatial adjacency of the electrodes, 
these electrodes were divided into three ROIs, includ
ing the frontal region (F4, AF4, F8, and FC6), tem
poral region (T7, CP1, and CP5), and parietal region 
(Pz, PO3, and PO4). The interaction effects were 
further analyzed in these three regions, as shown in 
Table 2 and Figure 7(c)–(e). The relative theta PSD 
on three ROIs between the two strategies exhibited 
significant differences on route I (PR > PI). However, 
the relative theta PSD associated with the frontal 
region for individuals in the path integration group 
on route II was significantly greater than that for 
individuals in the path retracing group. Finally, the 
ROI did not significantly differ between the two 
groups on route III. We also performed the electrode- 
by-electrode t-tests on these ROIs, and the results 
were presented in Figure A3-A5. We observed some 
significant differences at individual electrodes that 
were not evident at the ROI level, such as the CP5 
electrode in route III (theta PSD: PR > PI, Figure A4, 
left plot) and the T7 and CP1 electrodes in route II 
(theta PSD: PR < PI, Figure A4, middle and right 
plot).

We conducted a time series analysis on the whole- 
brain average relative theta PSD, focusing on route I as 
a case study (Figure 7(f)). Overall, we observed that 
the path retracing group resulted in a greater theta 
power, with significant differences primarily concen
trated in the middle phases of the LN task and the NV 
task (NV2), whereas no significant differences were 
found in other task phases. Through temporal analy
sis, we found an upward trend in the brain workload 
for the path retracing group during the NV2 phase.

Figure 6. Correlation analysis results between the total time cost of the NV & PT tasks and (a) SBSOD score and (b) NASA-TLX score.
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Finally, we identified correlations between the rela
tive theta PSD and trajectory morphology. We observed 
a significant correlation between heading error and the 
frontal FC2 electrode (r = 0.197, p < 0.05, FDR- 
corrected).

5. Discussion

5.1. The differences between the two navigation 
strategies are manifested in the mastery of 
Euclidean space

In this study, we categorized participants into path retra
cing and path integration groups based on their decision- 
making differences in a virtual navigation environment. 
We then analyzed behavioral performance, scale scores, 

brain workload main effects, and interaction effects 
across different routes and task phases. At the behavioral 
level, our findings demonstrated the Hypothesis 1a and 
1b: while the path integration was not the predominant 
strategy (Figure 3 (a) and Figure A1), it yielded superior 
performance in the NV task, with lower time costs and 
a shorter trajectory length (Figure 4). These results ver
ified the effectiveness of shortcuts found by navigators in 
the path integration group in reducing the temporal and 
spatial costs of the NV task. Moreover, the SBSOD score 
showed that the performance of the NV task was related 
to the representation of Euclidean space, such as the 
sense of direction and distance (although not significant), 
and that the participants who used the path integration 
strategy had greater spatial ability. We validated the 
reliance of the path retracing group on known landmarks 

Figure 7. Relative theta PSD results. (a) The topomap of the strategy×route interaction effect is represented by effect size f values. 
(b) Effect size f value of each electrode. We clustered three regions of interest (ROIs), namely, frontal, temporal, and parietal 
regions, based on effect size and electrode adjacency relationship. (c)–(e) interaction effect plots depicting the relative theta PSD 
across different routes and strategies in the (c) frontal region (including F4, AF4, F8, and FC6); (d) temporal region (including T7, 
CP1, and CP5); and (e) parietal region (including Pz, PO3 and PO4). (f) The time series analysis results display the whole-brain 
relative theta PSD for route I. (“*” and “+” indicate p < 0.05, “**” indicates p < 0.01, “***” indicates p < 0.001, and the p-value is 
corrected by FDR.).
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and route knowledge, as evidenced by the alignment 
between the learned route in the LN task phase and the 
homing route. Additionally, we observed significantly 
greater pointing errors in the path retracing group, par
ticularly in the PT1 and PT2 tasks – consistent with 
findings of He, Boone, and Hegarty (2023) and suggest 
an increase in pointing error with increasing distance to 
the destination, which is commonly attributed to cumu
lative errors in path integration (Cooper, Manka, and 
Mizumori 2001). This suggests that some participants, 
unable to mitigate integration errors in the virtual lunar 
terrain, defaulted to safer retracing strategies. These con
clusions can be interpreted as a fusion of egocentric and 
allocentric reference frames during navigation (Burgess  
2006; Ekstrom, Huffman, and Starrett 2017) while also 
suggesting a partial dissociation in human spatial refer
ences across different scales (Hegarty et al. 2006). Finally, 
the analysis of the trajectory morphology revealed that 
the path integration strategy group tended to navigate 
closer to their self-perceived destination, whereas the 
trajectory circuity and heading error of the path retracing 
group were significantly greater. Notably, owing to the 
medium effect size of the trajectory morphology results, 
further experiments are still needed to confirm the relia
bility of our results.

5.2. The cognitive load and brain workload of 
participants using the path integration strategy 
differ adaptively for routes with different levels of 
difficulty

Through feedback from the NASA-TLX scale, we dis
covered a strong positive correlation between the par
ticipants’ time costs and self-reported cognitive load. 
Furthermore, exploratory analysis revealed that this 
subjective perception of cognitive load stemmed 
from negative feelings about task performance. 
Besides, we analyzed failed attempts (see Section 

“Exploratory analyses of failed trials” in the 
Appendix for details) and found that the participants 
in failed attempts reported that they felt more time 
pressure, whereas the participants using the path inte
gration strategy felt less (Figure A2). In addition, the 
self-reported SBSOD scale results showed that the 
participants who believed that they had worse spatial 
ability tended to spend more time navigating home. 
Hence, we can infer that time pressure and a lack of 
spatial ability led to unconfident and negative emo
tions in task performance among navigators; thus, 
they tended to follow safer homing routes rather 
than taking risks to try shortcuts under time pressure. 
Although existing research has questioned the relia
bility and validity of self-reported scales (Boone, 
Gong, and Hegarty 2018), in this study, the SBSOD 
and the NASA-TLX scale were applied as supplements 
to the behavioral and cognitive data and provided new 
empirical evidence and explanations for how subjec
tive cognitive load and emotions affect task perfor
mance (Chen et al. 2022; Galoyan et al. 2021Nakamura 
et al. 2022).

We found that the relative theta power was asso
ciated with “physical demand” components of the 
NASA-TLX scale. This suggests the relative theta 
power in this study may be correlated with the parti
cipants’ physiological fatigue from sustained manual 
and visual tasks. Our results support Li and Chmiel 
(2024) that relative theta power is not entirely equiva
lent to cognitive load and may not always correlate 
with it. However, our findings indicate that relative 
theta power can serve to verify and supplement the 
cognitive dimensions assessed by subjective scales in 
cognitive experimental research. We also detected an 
interaction effect between strategy and route across 
multiple brain regions, including the ROIs in the 
frontal, temporal, and parietal regions. Among these 
ROIs, we observed that on route I, the theta power of 

Table 2. T-test results for three routes in three regions of interest.
Group                              Descriptive Inferential

Route ROI Strategy N M SD t p d

I Frontal PR 53 2.795 0.726 2.536 0.013* 0.573
PI 31 2.392 0.659

Temporal PR 53 2.797 0.667 2.029 0.046* 0.459
PI 31 2.486 0.697

Parietal PR 53 2.819 0.772 3.429 0.001*** 0.775
PI 31 2.224 0.758

II Frontal PR 64 2.630 0.737 −2.225 0.029* −0.560
PI 21 3.042 0.734

Temporal PR 64 2.734 0.770 −1.155 0.251 −0.290
PI 21 2.948 0.622

Parietal PR 64 2.688 0.829 −1.054 0.295 −0.265
PI 21 2.912 0.902

III Frontal PR 59 2.712 0.602 0.583 0.562 0.132
PI 29 2.627 0.707

Temporal PR 59 2.644 0.598 1.368 0.175 0.310
PI 29 2.456 0.623

Parietal PR 59 2.551 0.696 0.447 0.656 0.101
PI 29 2.476 0.806

PR refers to path retracing strategy, PI refers to path integration strategy, *p < 0.05, **p < 0.01, ***p < 0.001.
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the path retracing group was greater than that of the 
path integration group, whereas the frontal theta 
power of the path integration group on route II was 
greater in contrast. Such findings were partially incon
sistent with the Hypothesis 2. Previous studies have 
shown that the brain activities in the above regions are 
involved in memory (Blankenship et al. 2016; Jensen 
and Tesche 2002), visual information, and landmark 
knowledge processing (Cheng et al. 2023; Sulpizio 
et al. 2023). Therefore, we can infer that in specific 
routes, the brain workload of the navigators of the two 
strategies is reflected in the processing and memory of 
landmark cues. Considering the special navigation 
environment on the virtual lunar surface and the 
characteristics of different experimental routes, we 
try to explain this novel finding. This finding may be 
attributed to route II being the most extended and 
curved of the three routes; it imposed the greater 
theta power on participants in the path integration 
group and thus changed the difference between the 
two strategies. We can infer that in the virtual lunar 
surface, brain workload showed flexible adaptation 
among different routes when navigators used the 
path integration strategy, whereas no such adaptation 
was observed with the path retracing strategy. 
Different from the navigation research in the common 
virtual environments, the above conclusion does not 
prove a universal difference in brain workload 
between the two strategies. This may suggest that in 
our setups, path retracing in our paradigm necessitates 
active spatial awareness rather than mere habitual 
execution. Furthermore, both path retracing and 
path integration strategies appear to require complex 
spatial processing on the navigator’s brain workload.

Through time series analysis, we observed that both 
strategies peaked in theta power during the mid-phase 
of the NV task at the whole-brain average level. This 
finding indicates that in the early phase of the NV task, 
there is a continuous accumulation of brain workload 
due to the construction of cognitive maps, whereas 
there is a reduction in the brain’s demand for working 
memory as the participants approach the destination 
in the late phase. Finally, we also observed 
a correlation between the activation in the frontal, 
parietal, and occipital regions and between route cir
cuity and heading error. This finding is consistent 
with the mental cost measured by a vector-based 
pedestrian navigation model (Bongiorno et al. 2021).

5.3. The distinctiveness of virtual lunar 
navigation

Although the study of path retracing versus path inte
gration strategy is a classic research field, our study 
focused more on a unique virtual lunar navigation 
scenario that provided new empirical findings. 
Unlike virtual urban areas (Brunyé et al. 2012, 2017) 

and virtual maze scenes (He, Boone, and Hegarty  
2023; Marchette, Bakker, and Shelton 2011), the 
unstructured nature of the lunar surface impedes navi
gators from constructing cognitive maps based on 
road network information. In contrast, navigators 
find it easier to infer locations through the learned 
positional relationships between landmarks and tra
jectories. As a result, this study revealed that naviga
tors’ choice of path integration strategy was inhibited. 
Besides, in natural virtual environments, lunar scenes 
also differ from the Earth’s forest and desert scenes 
(Foo et al. 2005). The unique landscape features of the 
lunar surface, such as impact craters, gravel, and the 
sky, are quite different from the familiar landscapes on 
Earth. Even if a desert scene has terrain similar to that 
of a lunar surface scene, the characteristics of the lunar 
surface and the maneuverability of the virtual lunar 
rover may be unfamiliar to the navigator, increasing 
the difficulty of adapting to the navigation environ
ment on the lunar surface. The analysis results sug
gested that the lunar landscape without navigational 
aids likely contributed to a heightened mental burden 
and excessive cognitive processing, particularly for 
participants with limited spatial ability. Notably, the 
behavior and cognitive status of participants in large- 
scale high ecological validity scenes can better repre
sent real-world performance than those in cases with 
highly controlled experimental scenes (Dong et al.  
2022). Although previous studies have examined 
human cognitive processes during navigation through 
rigorous control variable experimental paradigms, we 
have demonstrated that these cognitive processes are 
not entirely consistent in virtual lunar scenes.

5.4. Limitations and future work

In this study, we classified participants dichotomously 
into path retracing and path integration groups, yet 
did not yet did not address potential hybrid combina
tions or dynamic transitions between these strategies – 
avenues warranting exploration in subsequent studies. 
Such explorations could entail assessing neural circuit 
activations (e.g. the “what” and “where” pathways) 
through a controlled paradigm employing fMRI tech
niques. In future research, deeper insights by integrat
ing advanced EEG analyses with participant interviews 
to enhance our understanding of navigators’ decision- 
making processes and emotional responses, and to 
achieve more reliable cross-validation.

Furthermore, the experimental design could 
enhance immersion by using VR devices and dynamic 
landmark cues to encourage participants to make deci
sions that are more correlated with the real scene. The 
experimental design could also involve an unknown 
Earth environment without navigation aids, thereby 
examining whether performance and cognitive differ
ences exist in similar challenging setups.
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Finally, this study detected no demographic differ
ences across the two strategy groups; consequently, such 
metrics were deprioritized in analyses. With respect to 
existing studies (Dabbs et al. 1998; Kühn et al. 2014; 
Wiener et al. 2013), future efforts should consider the 
influences of gender, age, and video gaming expertise 
on navigation performance in virtual lunar scenes.

6. Conclusions

Previous studies have compared the behavioral and 
cognitive processes of path retracing and path integra
tion strategies. However, few studies have investigated 
these two strategies within virtual lunar surface simu
lations characterized by high ecological validity. In this 
study, a novel virtual lunar surface exploration scene 
was developed to analyze navigators’ performance and 
brain workload across spatial learning, navigation, and 
destination-pointing tasks. Based on the behavioral, 
scale, and EEG data, our findings confirmed better 
performance for the path integration strategy. In addi
tion, the path integration strategy was found to allow 
for dynamic modulation of cognitive resources in 
response to the navigation scene complexity, enabling 
navigators to better adapt to diverse navigation sce
narios. Our primary contribution lies in providing 
empirical evidence for the navigation behaviors and 
cognitive mechanisms of path retracing and path inte
gration strategies in virtual lunar scenes, which will 
not only facilitate the training of lunar exploration 
personnel but also help in the development of intelli
gent, adaptive navigation systems for forthcoming 
space missions.
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Appendices

Appendix A. Exploratory analyses of failed trials

In this study, we focused on navigation process differences between participants using path retracing and path integration 
strategies. We excluded 36 samples where participants failed to return to the lunar base from the main analysis since we could 
not subjectively assign failed trajectories to either strategy group. In this section, we conducted exploratory analyses to 
investigate navigational decision-making and self-reported cognitive load in these failure cases.

In Figure A1, we first illustrate the homing trajectories of failed cases. By comparing these failed attempts with the learned 
routes, we observed that most failed trajectories initially align closely with the learned routes but become more scattered in 
later sections. Notably, only in route I and route II did we see one trajectory each that appears to attempt a shortcut, a pattern 
absents in route III. We hypothesized that this difference may be due to participants in failed attempts initially relying on 
a path retracing strategy. However, accumulated errors and limited landmark cues likely led to disorientation and failure 
outcomes.

We also explored the self-reported NASA-TLX scores of the failed trials. Thus, we performed a one-way ANOVA 
for the NASA-TLX score on different groups (due to the participant’s misunderstanding of the scale, 2 trials from the 
path retracing group, 1 trial from the path integration group, and 2 trials from the failed group were removed from 
this analysis). The ANOVA results for the NASA-TLX score revealed a significant effect on subject workload between 
the path retracing, path integration, and failed trial groups (F(2,116) = 35.663, p < 0.001, FDR-corrected; f = 0.835). We 
further examined the post-hoc T-test results for the six workload dimensions and found that the “temporal demand” 
dimension significantly differed between the path retracing and path integration groups (t(83) = 2.473, p < 0.05), the 
path retracing and failed groups (t(90) = -3.480, p < 0.05), and the path integration and failed groups (t(59) = -5.433, p  
< 0.001) (Figure A2).

Figure A1. Trajectories of the failed attempts on (a) route I, (b) route II, (c) route III.

Figure A2. Time pressure scale score between different strategies and failed trials (*p < 0.05, **p < 0.01, ***p < 0.001, FDR- 
corrected).
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Appendix B. Summary figures and tables of detailed statistical data

In this section, we report the statistical data, including post-hoc T-tests results for the behavioral metrics, correlations 
between each scale score and time costs, between relative theta power and NASA-TLX scores, and the interaction 
effect of strategy×route for each EEG electrode. For brevity, these data are not presented in the main text.

Figure A3. Interaction effect plots depicting the relative theta PSD across different routes and strategies in the frontal region (F4, 
AF4, F8, and FC6 included. The blue boxes represent the path retracing group, and the orange boxes represent the path 
integration group. *p < 0.05, **p < 0.01, FDR-corrected).

Figure A4. Interaction effect plots depicting the relative theta PSD across different routes and strategies in the temporal region 
(CP1, T7, and CP5 included. The blue boxes represent the path retracing group, and the orange boxes represent the path 
integration group. *p < 0.05, **p < 0.01, FDR-corrected).
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Figure A5. Interaction effect plots depicting the relative theta PSD across different routes and strategies in the parietal region (pz, 
PO3 and PO4 included. The blue boxes represent the path retracing group, and the orange boxes represent the path integration 
group. **p < 0.01, FDR-corrected).

Table A1. T-test results of behavioral metrics between two strategy groups across different conditions (*p < 0.05, **p < 0.01, ***p  
< 0.001).

Metric Condition

Descriptive Inferential

Path retracing strategy Path integration strategy T-test Effect size
N M SD N M SD t p Cohen’s d

Time cost (TC) All routes 60 280.12 48.90 28 224.63 39.67 5.248 0.000*** 1.201
Route I 18 269.89 35.64 11 243.20 45.81 1.757 0.090 0.672
Route II 22 298.42 51.86 7 218.13 25.67 3.911 0.001*** 1.697
Route III 20 269.20 52.01 10 208.74 34.88 3.308 0.003** 1.281

Trajectory length 
(TL)

All routes 60 1949.73 285.87 28 1526.55 159.70 7.305 0.000*** 1.672
Route I 18 1879.16 114.64 11 1641.16 137.46 5.032 0.000*** 1.926
Route II 22 2119.11 300.92 7 1569.05 67.78 4.742 0.000*** 2.058
Route III 20 1826.93 296.83 10 1370.74 89.54 4.717 0.000*** 1.827

Pointing error 
(PE)

All phases 178 27.97 25.84 84 16.53 11.90 3.868 0.000*** 0.512
PT1 58 37.51 33.50 28 15.19 10.74 3.433 0.001*** 0.790
PT2 60 24.46 22.15 28 13.90 9.89 2.407 0.018* 0.551
PT3 60 22.26 17.12 28 20.49 14.03 0.478 0.634 0.109

Heading error 
(HE)

All phases 178 24.14 19.00 84 17.86 13.94 2.703 0.007** 0.358
NV1 58 27.75 21.95 28 19.50 13.87 1.820 0.072 0.418
NV2 60 23.80 18.36 28 14.38 12.95 2.444 0.017* 0.559
NV3 60 20.99 16.05 28 19.72 14.77 0.354 0.724 0.081

Circuity (CR) All phases 174 1.09 0.10 83 1.05 0.06 3.425 0.001*** 0.449
NV1 55 1.12 0.11 28 1.03 0.05 3.602 0.001*** 0.954
NV2 60 1.09 0.09 28 1.05 0.04 2.315 0.023* 0.514
NV3 59 1.06 0.09 27 1.05 0.08 0.116 0.908 0.115

Table A2. The detailed correlation analysis results between scale scores and time cost (*p < 0.05, FDR-corrected).
Scale Question r p

SBSOD Overall −0.282 0.026*
1. I am good at giving directions. −0.218 0.089
2. I seldom forget where I put things. 0.120 0.355
3. I am good at judging distances. −0.126 0.329
4. I have a good sense of direction. −0.209 0.103
5. I tend to think about my surroundings in terms of cardinal directions (e.g. north, south, east, west). −0.240 0.060
6. I get lost hard in an unfamiliar city. −0.164 0.201
7. I enjoy looking at maps. −0.214 0.095
8. I have no difficulty understanding directions. −0.252 0.049
9. I am good at reading maps. −0.336 0.008
10. When I am a passenger in a car, I usually remember the route. −0.066 0.610
11. I enjoy giving directions. −0.172 0.181
12. Knowing where I am is important to me. −0.250 0.050
13. On long trips, I seldom let someone else take charge of navigation. −0.137 0.288
14. I usually remember a new route after walking it once. −0.336 0.008
15. I have a good mental map of my environment. −0.318 0.012

NASA-TLX Overall 0.358 0.001*
Mental Demand 0.180 0.100
Physical Demand 0.134 0.221
Temporal Demand 0.253 0.019
Performance 0.287 0.008*
Effort 0.211 0.053
Frustration Level 0.222 0.042

20 B. SHI ET AL.



Table A3. Correlations between relative theta power and NASA-TLX scores, including its six components (*p < 0.05, **p < 0.01, 
FDR-corrected).

Electrode TLX score Mental demand Physical demand Temporal demand Performance Effort Frustration level

AF3 0.104 0.061 0.303* 0.098 −0.129 0.065 0.167
AF4 0.050 0.095 0.324* −0.174 −0.061 0.106 0.088
C3 0.093 0.018 0.387** −0.048 −0.016 0.084 0.153
C4 0.100 0.122 0.332* −0.110 −0.057 0.150 0.117
CP1 0.024 0.042 0.267 −0.046 −0.119 0.061 0.054
CP2 0.026 −0.018 0.307* −0.080 −0.069 0.087 0.076
CP5 0.034 0.009 0.317* −0.177 0.010 0.036 0.139
CP6 0.041 0.047 0.261 −0.033 −0.106 0.064 0.081
Cz −0.005 −0.035 0.298* −0.105 −0.099 0.018 0.123
F3 0.102 0.074 0.280 0.038 −0.103 0.110 0.142
F4 0.035 0.027 0.361* −0.036 −0.132 0.059 0.080
F7 0.069 0.002 0.354* 0.011 −0.075 0.030 0.156
F8 0.143 0.082 0.397** 0.074 −0.080 0.081 0.196
FC1 0.088 0.044 0.307* 0.047 −0.094 0.034 0.175
FC2 0.055 0.012 0.256 −0.010 −0.097 0.115 0.098
FC5 0.088 0.048 0.368* 0.049 −0.113 0.057 0.134
FC6 0.151 0.153 0.324* 0.012 −0.078 0.123 0.191
Fp1 0.075 0.012 0.182 0.060 −0.067 0.004 0.212
Fp2 0.133 0.037 0.323* 0.026 −0.007 0.062 0.245
Fz 0.101 0.039 0.391** −0.047 −0.024 0.057 0.192
O1 0.056 −0.048 0.423** −0.060 0.055 −0.060 0.157
O2 −0.036 −0.025 0.320* −0.167 −0.102 0.056 0.008
Oz −0.047 −0.048 0.428** −0.179 −0.104 −0.022 0.048
P3 0.115 0.033 0.341* −0.043 0.014 0.118 0.164
P4 0.077 0.039 0.305* −0.054 −0.050 0.074 0.163
P7 0.051 0.004 0.380** −0.131 −0.011 0.039 0.149
P8 0.069 0.056 0.270 −0.039 −0.089 0.070 0.159
PO3 0.048 −0.024 0.424** −0.094 −0.016 −0.013 0.173
PO4 −0.005 −0.018 0.347* −0.145 −0.081 0.045 0.071
Pz −0.077 −0.110 0.308* −0.167 −0.085 −0.010 0.020
T7 0.074 0.041 0.408** −0.065 −0.081 0.076 0.147
T8 0.092 0.001 0.342* 0.040 −0.035 0.036 0.163

Table A4. Interaction effect of strategy×route on relative theta PSD at the whole-brain level (*p  < 0.05, FDR-corrected).
Electrode F p f Electrode F p f

AF3 3.153 0.045 0.123 CP5 6.271 0.002* 0.280
AF4 6.987 0.001* 0.241 CP1 3.993 0.020* 0.211
Fp1 1.806 0.167 0.114 CP2 1.877 0.155 0.148
Fp2 5.493 0.005* 0.182 CP6 1.705 0.184 0.120
F7 3.750 0.025* 0.200 P7 3.306 0.038 0.185
F3 1.459 0.235 0.118 P3 1.844 0.161 0.171
Fz 4.237 0.016* 0.204 Pz 5.411 0.005* 0.247
F4 7.116 0.001* 0.298 P4 2.763 0.065 0.182
F8 5.385 0.005* 0.226 P8 2.262 0.106 0.116
FC5 3.771 0.024* 0.178 PO3 5.748 0.004* 0.287
FC1 0.353 0.703 0.087 PO4 4.437 0.013* 0.224
FC2 1.311 0.272 0.133 O1 1.768 0.173 0.196
FC6 3.757 0.025* 0.211 Oz 1.429 0.242 0.152
C3 2.063 0.129 0.183 O2 2.404 0.093 0.201
Cz 0.768 0.465 0.126 T7 4.879 0.008* 0.212
C4 4.139 0.017* 0.206 T8 3.853 0.023* 0.183
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