
Geo-spatial Information Science

ISSN: 1009-5020 (Print) 1993-5153 (Online) Journal homepage: www.tandfonline.com/journals/tgsi20

Land cover simulation and analysis for the
Greater Bay Area of China in the context of the
2035 development plan

Gomal Amin, Majid Nazeer & Man Sing Wong

To cite this article: Gomal Amin, Majid Nazeer & Man Sing Wong (04 Sep 2025): Land
cover simulation and analysis for the Greater Bay Area of China in the context of the 2035
development plan, Geo-spatial Information Science, DOI: 10.1080/10095020.2025.2548360

To link to this article:  https://doi.org/10.1080/10095020.2025.2548360

© 2025 Wuhan University. Published by
Informa UK Limited, trading as Taylor &
Francis Group.

Published online: 04 Sep 2025.

Submit your article to this journal 

Article views: 766

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20

https://www.tandfonline.com/journals/tgsi20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10095020.2025.2548360
https://doi.org/10.1080/10095020.2025.2548360
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2025.2548360?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2025.2548360?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2025.2548360&domain=pdf&date_stamp=04%20Sep%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2025.2548360&domain=pdf&date_stamp=04%20Sep%202025
https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20


Land cover simulation and analysis for the Greater Bay Area of China in the 
context of the 2035 development plan
Gomal Amin a, Majid Nazeer a and Man Sing Wong a,b,c

aDepartment of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China; bResearch Institute for 
Sustainable Urban Development, The Hong Kong Polytechnic University, Hong Kong, China; cResearch Institute for Land and Space, The 
Hong Kong Polytechnic University, Hong Kong, China

ABSTRACT
This study focuses on the Guangdong-Hong Kong-Macao Greater Bay Area (GHM-GBA) for 
simulating Land Use Land Cover (LULC) considering the development plan for 2035. The 
research aims to quantify LULC change and simulate future LULC scenarios based on policy 
implications for 2035. In this study, Patch-Generating Land Use Simulation (PLUS) model was 
used to project future LULC under different scenarios. These scenarios include, Natural Increase 
Scenario (NIS), Ecological Conservation Scenario (ECS) and Urban Development Scenario (UDS). 
The China Land Cover Dataset (CLCD) from 2010–2022 along with eighteen driving factors for 
both historical and recent time periods and planning data were used to simulate the future 
succession of LULC patterns for 2035. This multifaceted methodology represents significant 
advancement over previous LULC simulation studies in GBA, which often relied on a more 
limited set of historical and development factors. The analysis revealed several key trends 
across the LULC categories. The simulation results (for 2022–2035) reveal that the cropland is 
expected to experience a modest increase of approximately 1.38%, indicating potential expan
sion of agricultural activities in future. However, the projections show declines in natural land 
covers, with forested areas decreasing by 2.44%, shrubland by 19.57%, grassland by 22.26%, 
water bodies by 9.15%, and barren land by 10.54%. Conversely, impervious surfaces are 
expected to increase by an average of 13.16%, suggesting urban development and infrastruc
ture expansion. The findings provide valuable insights for regional environmental planning and 
sustainable development. The comparative analysis of the PLUS model’s performance across 
different policy scenarios can aid in improving LULC change projections. A significant con
tribution of this current study is the comparative analysis of the PLUS model’s performance 
under different policy-driven scenarios, which can aid in improving LULC simulations and 
projections.
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1. Introduction

Land Use Land Cover (LULC) is a fundamental aspect 
of human activity, shaping the natural and built envir
onment in which we live, work, and interact (Zhao 
et al. 2023). LULC can be significantly modified by 
a variety of factors, including but not limited to rapid 
population growth, urbanization, intensive agricul
tural expansion, and the overexploitation of natural 
resources (Amin et al. 2024). Moreover, LULC pat
terns can aggravate resource and energy consumption 
and cause serious environmental problems (Cao et al.  
2024), as it has potential to alter the carbon stocks and 
fluxes (Kang, Zhang, and Dang 2024), land surface 
temperature (Ghaderpour et al. 2024) and water 
resources (Entezami et al. 2024). Therefore, as global 
population continues to grow, the need to effectively 
plan, manage, and simulate LULC in multiple scenar
ios has become increasingly critical (Wang, Liu, et al.  
2024; Wu, Wang, and Gou 2024). Importantly, LULC 

simulation and scenario analysis provide crucial 
insights to guide decision makers in navigating com
plex land use conversion and spatial planning. This 
helps governments to strategically allocate and govern 
land resources to balance social, economic, and envir
onmental priorities (Amin et al. 2024; Chen and Ma  
2023; Li et al. 2022; Wang et al. 2019).

Over the past few decades, China has achieved 
remarkable progress in its development, positioning 
the country as a global economic powerhouse. The 
“Framework Agreement on Deepening Guangdong- 
Hong Kong-Macao Cooperation in the Development 
of the Greater Bay Area” signed in 2017 by the 
National Development and Reform Commission and 
the governments of Guangdong, Hong Kong, and 
Macao (GHM) laid the foundation for strategic colla
boration. In line with this agreement, the “Outline 
Development Plan for the Greater Bay Area” was 
promulgated in 2019. This comprehensive plan 
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establishes key development areas and outlines the 
cooperative efforts aimed at fostering the integrated 
growth and sustainable development of the Greater 
Bay Area (GBA) for 2035 (Li 2021).

The Development Plan for GBA has a primary 
objective of promoting economic integration and 
development among the target core cities. This ambi
tious plan entails substantial infrastructure develop
ment, such as the construction of roads, railways, and 
ports, which has the potential to greatly impact the 
region’s LULC pattern. Thus, to comprehend the 
dynamic process of Land Use Land Cover Change 
(LULCC), the utilization of LULC simulation models 
becomes crucial (Li et al. 2022; Tabassum et al. 2023). 
These models enable the examination of different sce
narios and aid in the promotion of sustainable land 
use patterns that strike a balance between economic 
growth and environmental protection, especially dur
ing policy implementation (Guo et al. 2023).

Researchers have explored methods and models 
using remote sensing data to predict future LULCCs 
(e.g. Amgoth, Rani, and Jayakumar 2023; Shahi, Karimi, 
and Jafari 2020). These include single/quantity and 
hybrid/spatial simulation models. The former, such as 
Markov Chain (MC), Agent-Based Model (ABM), 
Cellular Automata (CA), regression analysis, and 
System Dynamics (SD) model, focus on quantifying 
land demand but neglect transformation rules and spa
tial distribution, making them insufficient for simulat
ing complex surface evolution scenarios (Lin et al. 2023; 
Yang et al. 2023; Rahaman et al. 2022; Zhang, Kwan, 
and Yang 2023). To overcome these limitations, hybrid 
models have been proposed to meet the requirements of 
complex surface evolution simulations (Koko et al.  
2023). Hybrid models leverage historical LULCCs and 
driving factors to estimate LULC demand and their 
distribution probabilities, hence, enabling the simula
tion of future spatiotemporal LULC patterns.

Examples of such hybrid models include CA-Markov, 
Patch-generating Land Use Simulation (PLUS), 
Conversion of Land Use and its Effects at Small extent 
model (CLUE-S), and Land Transformation Model 
(LTM) (Liang et al. 2021; Liu et al. 2017). Several regional 
studies have utilized these hybrid models to determine 
the future dynamics of LULC (Shahi, Karimi, and Jafari  
2020; Wang, Guan, et al. 2023; Zhong et al. 2023). Among 
these, PLUS model has been widely employed in regional 
studies for a variety of applications such as to assess flood 
risk probability (Wang, Guan, et al. 2023), carbon storage 
simulation (Yue, Ji, et al. 2023), prediction of ecological 
carrying capacity, and for monitoring urban expansion 
(Yu, Zhao, et al. 2023).

In the context of GBA for instance, research has 
focused on ecosystem services assessment (Liao and 
Zhang 2023; Wang, Oguchi, and Liang 2023), climate 
risk assessment (Wang, Liu, et al. 2024), habitat 

quality (Wang, Oguchi, and Liang 2023), terrain gra
dient (Chen et al. 2023) and coastal vulnerability 
(Wang and Chen 2022) to simulate LULC scenarios 
for future. However, these or similar studies have not 
used the “Outline Development Plan for the GHM- 
GBA” as a reference, nor have they incorporated the 
spatial planning layers within their modeling 
approach specific to GBA. This represents a gap that 
the current study aims to address as a whole for future 
LULC scenario.

The GHM-GBA represents unique case study due 
to its rapid urbanization and significant infrastructure 
development. The 2019 Outline Development Plan for 
GBA puts forward the vision of transforming the GBA 
into a globally renowned urban cluster and a prime 
example of exceptional livability with high-quality 
development. Considering this strategic vision, it is 
crucial to conduct a comprehensive examination of 
the transformations in LULC patterns within the 
GBA, as well as simulate the potential future trajectory 
of LULC in light of relevant policies. However, pre
vious LULC simulation and scenario analysis studies 
for GBA have largely overlooked the implications of 
this comprehensive development plan, instead focus
ing on understanding the drivers of urban expansion 
and habitat quality changes. Conducting research in 
the GBA will address the existing gap by explicitly 
aligning the LULC simulation with the strategic objec
tives outlined in the region’s 2035 development plan 
(Li et al. 2022). Such an investigation can provide 
valuable insights into the potential influence of 
planned transportation networks, development 
zones, and urban expansion on the dynamics of land 
use and cover in the region.

Therefore, this study selects the GHM-GBA region 
as a case to investigate the projected LULCCs for 
the year 2035 under multiple scenarios aligned with 
the “Outline Development Plan for the GHM-GBA” 
policy document. Also, this study aims to incorporate 
the latest and historical factors to refine the probabil
ity of land use transitions and minimize errors in the 
overall simulation process. The objectives of this 
research are (i) to quantify the LULCCs that occurred 
in the GHM-GBA region from 2010 to 2022, (ii) to 
using PLUS model to simulate and analyze different 
future LULC scenarios under the influence of devel
opment policy, to provide valuable insights for deci
sion making on sustainable land use planning and 
management.

2. Materials and methods

2.1. Study area

GBA is a city agglomeration consisting of nine cities, 
including Dongguan, Foshan, Guangzhou, Huizhou, 
Jiangmen, Shenzhen, Zhuhai, Zhongshan, Zhaoqing, 
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Hong Kong and Macao (Figure 1). With an approx
imate administrative land area of 57,000 km2, it had 
a population of over 86 million in 2020 (Li, Chen, et al.  
2023). Recognized as one of China’s most economic
ally advanced and densely populated urban agglom
erations, the GBA recorded a GDP of USD 
1668.8 billion in 2020, based on annual data from 
Guangdong Province, the Hong Kong Special 
Administrative Region Government (SARG), and the 
Macao SARG (Wang, Wu, et al. 2021).

2.2. Datasets

2.2.1. China Land Cover Dataset (CLCD)
Considering the characteristics of GBA as a mega- 
urban agglomeration, and to ensure high accuracy, 
we acquired the LULC data (2010–2022) from the 
annual China Land Cover Dataset (CLCD) (J. Yang 
and Huang 2021). The relevant data for CLCD was 
produced using the Landsat imagery for each period as 
the main data source at a spatial resolution of 30 m. 
According to the CLCD image classification, the 
LULC classes for the GBA region encompass Barren, 
Cropland, Grassland, Forest, Shrub, Water, and 
Impervious. These categories represent the various 
types of land cover observed in the region.

The CLCD used in this research has been widely 
adopted in various LULC simulation studies in China 
due to its high accuracy and comprehensive coverage 
(Fan et al. 2023; Ji et al. 2023; Zhao et al. 2023; Zhu 
et al. 2023). CLCD has been evaluated for its data quality 
in various studies which confirmed the overall accuracy 
could essentially reach about 76% (Zhao et al. 2023). 
Moreover, in its original paper the rate of accuracy for 
CLCD dataset was about 79.31%, which was greater than 
the mean accuracy of the MODIS (Moderate Resolution 
Imaging Spectroradiometer) land cover product 

(MCD12Q1), European Space Agency-Climate Change 
Initiative (ESACCI) land cover product, and 
GlobalLand30 datasets (Yang and Huang 2021). In the 
context of GBA, CLCD has been successfully employed 
for multi-scenario simulations which shows its high 
reliability and applicability for this research (Ding et al.  
2022; Wu, Wang, and Gou 2024). Based on these studies, 
we are confident that the CLCD data is of sufficient 
quality and has suitability for the LULC simulation and 
scenario analysis undertaken in the study area.

2.2.2. Driving factors
Taking into account the data availability and a review 
of existing relevant studies (Guo et al. 2021; Huang 
et al. 2023; Li, Li, et al. 2023; Wang et al. 2022), 18 
driving factors were selected from geographical, cli
matic, socioeconomic, location aspects (Table 1 and 
Figure 2). Among these driving factors, slope and 
aspect were derived using Advanced Spaceborne 
Thermal Emission and Reflection Radiometer 
(ASTER) Global Digital Elevation Model (GDEM). 
The location factors for the years 2010 and 2022 
were obtained from Open Street Map (OSM) archives. 
While the future planning data collected includes 
information on three factors, i.e. distance to express
way, distance to railroads, and airports.

3. Method

The method proposed in this work aims to simulate 
the LULC and spatial patterns by considering the 
influence of development plan of GBA for 2035 by 
employing the PLUS model (Figure 3). Moreover, as 
part of the preprocessing stage, all input data under
went projection transformation to ensure uniformity, 
aligning it with the desired coordinate system (WGS 
1984 UTM Zone 49N). Subsequently, resampling 

Figure 1. Map of study area with buffer of 10 km around the administrative boundaries of cities.
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techniques were applied to achieve a consistent grid 
size of 30 m. This uniform grid size, along with the 
matching row and column numbers, served as funda
mental requirements for the subsequent modeling 
procedures. Multiple analyses such as, Euclidean 
Distance (for proximity analysis), kernel density (for 
hotel distribution density, and supermarket density 
data), and rasterization (for soil data) were also per
formed. These processing steps ensured the harmoni
zation among all input data layers in terms of pixel size 
and coverage, enabling their seamless integration into 
the PLUS model.

Compared to other LULC simulation models, 
PLUS model distinguishes itself through the integra
tion of multiple advanced components. These include 
a CA based on multi-type random patch seeds 
(CARS), the land expansion rule mining framework 
(LEAS), along with the multi-type stochastic seed 
mechanism. Through this integration, the PLUS 
model achieves highly accurate and detailed simula
tions of land use changes at patch level, as verified by 
previous studies (Wang and Chen 2022; Wang, Guan, 
et al. 2023). To address the allocation of optimal land 
demand for various scenarios in the year 2035, we 
employed both Linear Regression (LR) and Markov 
Chain (MC) models, leveraging historical data (2010
–2022) and planning information to establish indivi
dual projections for the future demand matrix of each 
LULC class.

In this study, we commissioned a two-step 
approach to generate the LULC conversion patterns. 
Initially, 18 drivers were selected (Table 1) and the 
Random Forest (RF) model was used to predict the 
LULC conversion patterns across the study area. After 
establishing the land demand, we proceeded to 

implement the LULC conversion rules, which incor
porated the neighborhood parameter and the land use 
conversion cost matrix. The neighborhood parameter 
played a crucial role in determining the ease of LULC 
type conversion, with higher values indicating a lower 
probability of such conversions occurring. This para
meter helps capture the spatial relationships and influ
ences between different land use types in the modeling 
process. These parameter values were defined based 
on the LULC transfer rate observed between 2010 and 
2022, resulting in assigned values of 0.26, 0.30, 0.01, 
0.01, 0.03, 0.01, and 0.40 for cropland, forest, shrub, 
grassland, water, barren, and impervious land use 
types, respectively. Moreover, we employed the cost 
matrix (Table 2) for each scenario, which restricted the 
conversion of LULC classes based on the values (1, 0). 
The value of “1” signifies that a particular LULC type 
can be transformed to another type, whereas a value of 
“0” shows that a specific LULC type cannot be trans
formed to another type. Additionally, in the current 
study, we converted protected areas, nature reserves, 
and open water/inland water to a raster with a value of 
0, effectively treating them as restricted areas (Liang 
et al. 2018). This setting of restricted areas reflects the 
actual situation of the study area, where certain zones 
are designated as exclusion zones and land use con
version is prohibited (Peng et al. 2023).

Subsequently, we added the aforementioned para
meters (Table 1) and the LULC data for GBA in PLUS 
model. To assess the model’s performance, we conducted 
historical testing and optimization using LULC data 
from 2010 to 2022. Calibration of the PLUS model was 
considered successful when the Kappa Coefficient (KC) 
and Overall Accuracy (OA) for the year 2022 simulated 
LULC pattern exceeded 90% (Liu et al. 2024). With the 

Table 1. Information of the input driving factors data. Where KD and ED represent the Kernal density and Euclidean distance, 
respectively.

Category Spatial data Analysis Year Original Resolution Source

Geographical factors Slope – 2013 30 m ASTER GDEM- USGS
Aspect – 2013 30 m ASTER GDEM- USGS
DEM – 2013 30 m ASTER GDEM- USGS
Soil – 1995 1 km FAO -Harmonized World Soil Database

Climatic factors Temperature – 2010, 2022 0.5° MERRA
Precipitation – 2010, 2022 0.05° CHIRPS Pentad

Socioeconomic factors population density – 2010, 2022 100 m GHS-POP-JRC
GDP – 2010, 2022 1 km RESDC China

Location factors Hotel distribution density KD 2022 30 m Open Street Map
Supermarket density KD 2010, 2022 30 m Open Street Map
Distance to city center ED 2022 30 m Open Street Map
Distance to town center ED 2022 30 m Open Street Map
Distance to expressway ED 2010, 2022 30 m Open Street Map
Distance to waters streams ED 2022 30 m Open Street Map
Distance to primary roads ED 2022 30 m Open Street Map
Distance to railroad ED 2022 30 m Open Street Map
Distance to bus stops ED 2010, 2022 30 m Open Street Map
Distance from Airports ED 2022 30 m Open Street Map

Restricted areas Open water/Inland water – 2022 30 m ESRI-ArcGIS Hub
Nature reserves – 2022 30 m Protected Planet/HKSARG
Protected areas – 2022 30 m Protected Planet/HKSARG

Planning data Distance to expressway ED Planned 30 m Bay area-HKSARG
Distance to railroad ED Planned 30 m Bay area-HKSARG
Airports ED Planned 30 m King & Wood Mallesons
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best-fit model parameters in place, we proceeded to 
examine the future simulation of LULC patterns.

3.1. Patch-generating land use simulation model

As discussed, PLUS model is a powerful stand-alone 
simulation program that combines the LEAS module 
along with CA model by using multi-class random 
patch seeding (Liang et al. 2021). The spatial 

characteristics of land use expansion and the underlying 
driving forces at different stages of LULCC are evaluated. 
The model utilizes the RF algorithm to sample land 
expansion and calculate the probability of development 
for each land type. The overall probability of comprehen
sive LULCC is determined using an adaptive inertial 
competition mechanism known as roulette. The final 
LULC pattern is optimized by integrating random patch 
generation, a transition matrix, and a threshold decline 

Figure 2. Driving factors used in the study.
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mechanism. This approach allows for a thorough and 
dynamic analysis of land use changes in the designated 
area.

3.1.1. LEAS (land expansion analysis strategy)
The LEAS module of the PLUS model employs the 
RF algorithm to analyze the factors influencing the 
expansion of individual LULC categories. It enables 
the estimation of probabilities associated with spe
cific drivers contributing to land use expansion 
over time. The RF algorithm handles high- 
dimensional data, multicollinearity, and provides 
growth probabilities.

3.1.2. CA model based on multi-type random patch 
seeds (CARS)
The CARS module includes a patch-generation 
mechanism which integrates “top-down” factors, 
such as global land use demands, and “bottom-up” 
factors, including local land use competition (Liang 
et al. 2021). The CARS module also incorporates 
a stochastic seed mechanism that considers various 
factors, such as neighborhood weights, transformation 
cost matrices, and decreasing thresholds. This combi
nation enables a comprehensive analysis of complex 
interactions in LULC dynamics, capturing the influ
ence of different scales on LULCCs.

Figure 3. Simulation model framework based on PLUS for the GBA considering multiple scenarios.

Table 2. The cost matrix for three scenarios developed in this study.

Scenario Setting

NIS ECS UDS

Cl Fr Sh Gl Wr Br Ip Cl Fr Sh Gl Wr Br Ip Cl Fr Sh Gl Wr Br Ip

Cl 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1
Fr 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1
Sh 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1
Gl 1 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 1
Wr 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1
Br 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1
Ip 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1

Note: The “NIS” stands for Natural Increase Scenario, “ECS” is Ecological Conservation Scenario and “UDS” is Urban Development Scenario. Where the values 
“1” or “0” denote whether cell conversion is allowed or not allowed, respectively. Cropland (Cl), Forest (Fr), Shrub (Sh), Grassland (Gl), Water (Wr), Barren 
(Br), and Impervious (Ip) represent the respective LULC type.
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3.2. Scenario design

Three scenarios were developed for LULC simulation 
including the (i) Natural Increase Scenario, (ii) 
Ecological Conservation Scenario, and (iii) Urban 
Development Scenario. These scenarios depict poten
tial futures for the GBA in which development is 
guided by a comprehensive land use framework, and 
they are closely aligned with the development strate
gies outlined in the 14th Five-Year National Strategy 
and GBA Development Outline Plan for 2035.

The process of developing these scenarios involved 
parameterization of the transition cost matrix within 
the PLUS model, where the assigned values reflect the 
hypothetical policies and priorities associated with 
each scenario, considering factors such as agricultural 
needs, ecological conservation, urban development 
goals, and preservation of key ecosystems.

3.2.1. Natural increase Scenario
In this scenario, the cropland conversion was per
mitted for agricultural support, while forest conver
sion was allowed to meet the increasing demand for 
land. Shrub conversion was allowed for diverse vege
tation and wildlife habitat. Water body conversion was 
not allowed to protect aquatic ecosystems and water 
resources. Barren land conversion was permitted for 
various uses, including infrastructure. Impervious sur
face conversion (e.g. buildings, roads) was allowed for 
urban development and human activities. In the simu
lation, we assumed that the historical growth pattern 
would persist, which led to the absence of significant 
constraints or restrictions.

3.2.2. Ecological conservation Scenario
This scenario signifies a commitment to foster sustain
able development practices and protecting the ecolo
gical environment for present and future generations. 
In this scenario, we implemented a reduction in the 
probability of converting forest and grassland into 
other types of land, while permitting the conversion 
from cropland, barren land, or impervious to forest, 
grassland, or water.

3.2.3. Urban development Scenario
In UDS, the priority was given to facilitate the eco
nomic growth of urban areas by expanding the con
struction land. To achieve this, we permitted the 
conversion of cropland, forest, grassland, or water 
into impervious category. Additionally, we decreased 
the likelihood of conversion from built-up areas to any 
other land types. This scenario reflects a concentrated 
emphasis on urban development, where the preserva
tion of impervious surfaces such as buildings and 
roads take precedence over the preservation of other 
LULC types.

4. Results

4.1. Model validation and testing

The PLUS model implementation consisted of two 
simulation periods: model calibration and validation, 
and scenario simulation. The model was calibrated 
and validated from 2010 to 2022 to assess the perfor
mance of the Random Forest Classifier (RFC) and to 
ensure accurate simulation results. Following this, the 
scenario simulation was conducted specifically for the 
period from 2022 to 2035, utilizing the calibrated 
model parameters determined through a trial-and- 
error method (Liang et al. 2021). This phase ensured 
that the model produces reliable and precise results.

The two trials, Trial#1 and Trial#2 were conducted 
with varying parameter values (Table 3), except for the 
neighborhood cell size and mTry value which corre
spond to number of features for training the RF were 
kept constant. In Trial#1, the model was configured 
with 20 trees, a sampling rate of 0.01, and a thread 
value set at 1. This configuration resulted in a KC of 
0.82 and an OA of 0.89, indicating a relatively good 
performance. However, in Trial#2, certain adjust
ments were made to enhance the modeling of LULC 
dynamics. Such as, the number of RF trees were 
increase to 50, allowing for more comprehensive and 
refined analysis. Additionally, the sampling rate was 
adjusted to 0.05 (5%), indicating a denser data collec
tion, and the number of threads used for the simula
tion was also reduced to 1.

The results of Trial#2 demonstrated a significant 
improvement in performance compared to Trial#1. 
The model achieved an OA of 0.98 and KC of 0.96 
during calibration, indicating higher accuracy and 
agreement with actual data. This improvement can 
be attributed to the increased number of trees and 
thread values in the model, which allowed for a more 
thorough exploration of the parameter space and 
a better representation of the underlying dynamics. 
These findings also highlight the importance of para
meter selection in land simulation models, emphasiz
ing the need for careful consideration and 
optimization to achieve the best possible results.

The validation results (Figure 4) show the model’s 
robust performance in predicting various land cover 
classes. Cropland classification achieved a high 

Table 3. Comparison of parameter configurations in Trial#1 
and Trial#2 for PLUS model.

Module Parameters Trial#1 Trial#2

LEAS Uniform sampling Yes Yes
Forest regression trees 20 50
Sampling rate 0.01 0.05
mTry 18 18
Thread 3 1

CARS Neighborhood size 3 3
Patch generation threshold 0.2 0.5

Accuracy OA 0.89 0.98
KC 0.82 0.96
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normalized accuracy of 0.99, while the model’s forest 
and barren class prediction exhibited equally strong 
results, reaching a normalized accuracy of 0.99. 
Furthermore, the model displayed commendable 
accuracy in differentiating between shrub and grass
land classes, with values of 0.98 and 0.99, respectively. 
Remarkably, the model attained perfect accuracy in 
predicting water, as indicated by a value of 1.00 in the 
corresponding diagonal elements. The impervious 
class also registered a relatively higher accuracy of 
0.86. The model achieved a KC of 0.96 and an OA of 
97.93%, demonstrating its higher accuracy in simulat
ing future land cover types.

Figure 5 shows the visualization of the land use 
pattern for the year 2022, depicting both the actual 
(Figure 5(a)) and the simulated LULC (Figure 5(b)). 
By comparing these two figures, it becomes possible to 
assess the accuracy and effectiveness of the simulation 
in capturing the real-world land use dynamics. This 
visualization aids in evaluating the model’s perfor
mance and provides valuable insights into the simu
lated land use pattern for the specified year.

Table 4 displays the evaluation metrics for dif
ferent LULC categories, namely cropland, forest, 
grassland, shrub, barren land, water, and imper
vious areas. The metrics include the Root Mean 
Square Error (RMSE) and the Out-of-Bag RMSE 
(OOB RMSE). The RMSE values indicate the aver
age prediction error for each land cover category, 
with lower values indicating higher accuracy, while 
OOB RMSE values represent the prediction error 
for the out-of-bag samples.

The simulated LULCC model for 2022 demon
strated favorable performance, with lower errors 
observed for forest and shrubland classes compared 

to cropland. The RMSE analysis indicated that the 
model achieved relatively low errors for specific 
land use classes. The cropland class had RMSE of 
0.13, suggesting a moderate level of error in pre
dicting this land use category. The Forest class 
exhibited a slightly better performance than 
Cropland with RMSE of 0.10, indicating 
a relatively lower level of error in predicted 
forested areas. Notably, the Shrub class demon
strated the highest accuracy, indicated by RMSE 
of 0.00, signifying precise prediction of shrubland. 
Similar trends were observed in the OOB RMSE 
metric, where the cropland class had the highest 
value of 0.38, indicating a larger margin of error. 
The forest class showed a lower prediction error 
with an OOB RMSE of 0.30. Once again, the shrub 
class exhibited excellent performance with an OOB 
RMSE of 0.01, indicating high accuracy in predict
ing shrubland.

4.2. Spatiotemporal change in LULC (2010–2022)

The land use dynamics and changes in GBA for dif
ferent categories were analyzed using classified images 
acquired from the CLCD, spanning from 2010 to 2022 
(Figure 6(a)). The time-series analysis of each LULC 
showed that the cropland exhibited a consistent 
upward trend, expanding from 16,522.5 km2 in 2010 
to 17,394.94 km2 in 2022. This increase reflects the 
expansion of agricultural activities and potentially 
indicates shifts in land management practices or 
changes in land-use policies.

In contrast, the forest category demonstrated 
a slight decline in area, decreasing from 39,549.74  
km2 in 2010 to 38,719.16 km2 in 2022. This reduction 

Figure 4. Confusion matrix of the predicted (simulated) land use pattern versus the true (actual) pattern in 2022 for trial#2.
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may be attributed to factors such as deforestation, 
urbanization, or natural disturbances. The shrub cate
gory experienced a substantial decrease in area, declin
ing from 16.90 km2 in 2010 to 7.11 km2 in 2022 
(−58%). This significant reduction raises concerns 
about the loss of shrubland habitats, which play crucial 
roles in supporting biodiversity, soil stabilization, and 
carbon sequestration. Grassland areas also showed 
a consistent decreasing trend, with the area decreasing 
from 117.77 km2 in 2010 to 36.39 km2 in 2022 (−69%). 
This decline in grassland area may be attributed to 
land-use changes, conversion to other LULC types, or 
alterations in agricultural practices.

Contrarily, the Barren category exhibited a minimal 
change, shifting from 19.69 km2 in 2010 to 20.18 km2 

in 2022 (2%). While the area remained relatively con
stant, it is important to investigate the underlying 
reasons for this barren land and assess whether it 
represents degraded or unproductive areas. Finally, 
the Impervious class, which includes urban and built- 
up areas, demonstrated a steady growth, increasing 
from 5,877.64 km2 in 2010 to 7,276.10 km2 in 2022 
(24%). This expansion reflects urbanization and 

infrastructure development, with potential implica
tions for land fragmentation, habitat loss, and changes 
on local scale.

The results (Figure 6) provide some insights–the 
cropland category demonstrated a consistent expansion 
conversely the forest and shrub categories exhibited 
declines, raising concerns about deforestation and habi
tat loss. While water bodies and barren land showed 
a relatively stable or minimal changes as compared to 
the impervious LULC which increased in area over the 
time suggesting urbanization and infrastructure growth.

4.3. Exploring the driving forces of LULC

The research utilized the PLUS model with the LEAS 
module to examine the relationship between different 
LULC and the driving factors behind them. Figure 7 
illustrates the outcomes of these influencing factors that 
shaped LULCC as well as expansion in the GBA from 
2010 to 2022. It also provides a visual representation of 
the impact and significance of these diverse factors on 
the growth of each LULC type. It was observed that the 
variables with relatively higher importance across 

Table 4. Evaluation metrics for model validation.
Evaluation metric Cropland Forest Shrub Grassland Water Barren Impervious

RMSE 0.13 0.10 0.00 0.02 0.04 0.01 0.09
OOB RMSE 0.38 0.30 0.01 0.05 0.11 0.04 0.26

Figure 5. Visualization of land use pattern for the year 2022 with (a) actual LULC and (b) simulated LULC. The circular snippets 
show the zoomed area of each city center between actual and simulated image.
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Figure 6. (a) Distribution of land cover classes of GBA from year 2010–2022. (b) Change in LULC area (km2) between the year 
2010–2022. Where olive and orchid color bars indicate decrease and increase in LULC class area, respectively.

Figure 7. The relative importance and contribution of driving factors in land expansion and growth in GBA between the year 
2010–2022.
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multiple LULC type include population density, DEM, 
and GDP. Population density stands out as a significant 
factor for cropland, forest, grassland, barren land, and 
impervious surfaces, indicating that the density of the 
population in an area has a considerable influence on 
the growth and distribution of these land covers. 
Moreover, the population density emerges as the most 
influential factor with a value of 0.18, indicating its 
significant impact on the growth and distribution of 
impervious surfaces. Other factors such as distance to 
bus stop, DEM, GDP, distance to expressway, distance 
to railroad, distance to primary roads, distance to town 
center, slope, temperature, and soil also contributed to 
impervious LULC to a lesser extent, with importance 
values ranging from 0.01 to 0.08. Factors like aspect, 
precipitation, supermarket density, hotel distribution 
density, and distance to water streams have relatively 
lower importance, with values ranging from 0.03 to 
0.08, suggesting a minimal influence on the overall 
growth and distribution of impervious land cover.

4.4. Simulation of LULC for future scenarios

We simulated the future LULC for three different 
scenarios (i.e. ECS, NIS, and UDS) under the 
influence of GBA development plan for 2035 
based on MC (Figure 8(a,c,e)) and LR (Figure 8 
(b,d,f)) models. The results of the LULC analysis 
for the year 2035 (Table 5), based on the both 
models, indicate the predicted values for various 
LULC categories.

The results of the LULC analysis for the year 
2035, based on the Markov Chain model, provide 
valuable insights into the predicted distribution of 
various land cover categories for each scenario. 
Cropland, representing cultivated agricultural land, 
is projected to cover 17,624.41 km2 in the ECS 
17,624.83 km2 in the NIS, and 17,622.19 km2 in the 
UDS. These values suggest relatively stable cropland 
across the scenarios. Forest is estimated to occupy 
37,996.27 km2 in the ECS 37,996.18 km2 in the NIS, 
and 37,998.34 km2 in the UDS. Shrubland is pro
jected to cover 6.67 km2 in the ECS, 3.75 km2 in the 
NIS, and 6.85 km2 in the UDS. These values suggest 
variability in the extent of shrubland, particularly 
between the NIS and other scenarios. Grassland is 
estimated to occupy 30.63 km2 in the ECS, 27.09  
km2 in the NIS, and 28.84 km2 in the UDS. These 
values indicate a potential decrease in grassland area, 
particularly in the NIS. Water bodies, including 
lakes, rivers, and reservoirs, are projected to cover 
2,343.74 km2 in the ECS, 2,647.74 km2 in the NIS, 
and 2,289.12 km2 in the UDS. Barren land is esti
mated to occupy 15.42 km2 in the ECS, 15.38 km2 in 
the NIS, and 15.41 km2 in the UDS. These values 
indicate a relatively stable extent of barren land 
across the scenarios. Moreover, impervious surfaces, 

such as buildings, roads, and pavement, are pro
jected to cover 8,084.03 km2 in the ECS, 7,786.21  
km2 in the NIS, and 8,140.41 km2 in the UDS.

Furthermore, the results of the LULC simulation 
analysis using the LR model for various scenarios 
suggest that the estimated area of cropland remains 
relatively stable, with values of 17,644.14 km2 in the 
ECS 17,645.64 km2 in the NIS, and 17,643.14 km2 in 
the UDS. Similarly, the forested areas show consis
tency, occupying 37,608.52 km2 in the ECS 
37,606.69 km2 in the NIS, and 37,608.97 km2 in the 
UDS. However, the extent of shrubland exhibits 
variability, with 6.87 km2 in the ECS, 2.06 km2 in 
the NIS, and 6.93 km2 in the UDS. Grassland 
shows potential differences, with 30.39 km2 in the 
ECS, 24.80 km2 in the NIS, and 28.11 km2 in the 
UDS, indicating minor changes. Water bodies are 
projected to cover 2,343.77 km2 in the ECS, 
2,647.29 km2 in the NIS, and 2,280.65 km2 in the 
UDS. Barren land remains relatively stable, with 
values of 20.04 km2 in both the ECS and NIS, and 
20.03 km2 in the UDS. Impervious surfaces, repre
senting urban and developed areas, are estimated to 
occupy 8,447.43 km2 in the ECS, 8,154.64 km2 in the 
NIS, and 8,513.34 km2 in the UDS.

A comparison between LR and MC models reveals 
interesting differences (Table 5) for land cover projec
tions. The LR model shows relatively consistent esti
mates for cropland, forests, barren land, and 
impervious surfaces across the scenarios. In contrast, 
the MC model predicts slightly lower cropland areas in 
the UDS and higher shrubland areas in the NIS com
pared to the LR results. The LULC projections based 
on the LR model show cropland area increasing by 
1.32% to 1.44% across the scenarios, while forest area 
is expected to decline by −2.87%. Shrubland is esti
mated to decrease, with notable reductions of −3.38% 
in the ECS and −71.03% in the NIS. Grassland area is 
anticipated to decrease, with the largest decline of 
−31.85% in the NIS. Water body area is projected to 
decrease in the ECS (−11.47%) and UDS (−13.85%) 
scenarios, while remaining stable in the NIS. Barren 
land area is expected to see the most substantial reduc
tion of −23.78% in the NIS, and impervious (built-up) 
area is predicted to increase between 12.07% and 17%. 
The MC model projections exhibited similar trends, 
corroborating the expected changes in land cover 
across the different categories and scenarios.

5. Discussion

5.1. Analysis of driving factors and their influence 
on LULCC in GBA

The study utilized LEAS module within the PLUS 
model to investigate the relationship between LULCC 
and the driving factors behind them in GBA from 2010 
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to 2022 (Figure 7). Based on the analysis of the con
tributing factors to changes in each land use class, 
certain variables demonstrate relatively higher impor
tance across multiple land use types. These variables 
include population density, DEM, and GDP, which is 
consistent with previous findings (Guo et al. 2023).

From the driving factors, population density 
emerges as a significant factor influencing the changes 
in cropland, forest, grassland, barren land, and imper
vious surfaces. Higher population densities drive 
urbanization and agricultural expansion, leading to 
the conversion of natural land covers into impervious 

Figure 8. Spatial distribution of simulated LULC in 2035 under three scenarios developed for GBA based on Markov Chain (a, c, and 
e) and Linear Regression (b, d and f) for ECS, NIS, and UDS.

Table 5. Predicted LULC areas (km2) in 2035 under different scenarios based on Linear Regression & Markov Chain model, and 
percentage difference in LULC area between 2022–2035 for ECS, NIS, and UDS.

Model Scenario Cropland Forest Shrub Grassland Water Barren Impervious

Linear Regression ECS (km2) 17,644.14 37,608.52 6.87 30.39 2343.77 20.04 8447.43
ECS (%) 1.43 −2.87 −3.38 −16.48 −11.47 −0.68 16.1
NIS (km2) 17,645.64 37,606.69 2.06 24.8 2647.29 20.04 8154.64
NIS (%) 1.44 −2.87 −71.03 −31.85 0.00 −0.68 12.07
UDS (km2) 17,643.14 37,608.97 6.93 28.11 2280.65 20.03 8513.34
UDS (%) 1.43 −2.87 −2.53 −22.75 −13.85 −0.73 17.00

Markov Chain ECS (km2) 17,624.41 37,996.27 6.67 30.63 2343.74 15.42 8084.03
ECS (%) 1.32 −1.87 −6.19 −15.82 −11.47 −23.58 11.1
NIS (km2) 17,624.83 37,996.18 3.75 27.09 2647.74 15.38 7786.21
NIS (%) 1.32 −1.87 −47.26 −25.55 0.02 −23.78 7.01
UDS (km2) 17,622.19 37,998.34 6.85 28.84 2289.12 15.41 8140.41
UDS (%) 1.31 −1.86 −3.66 −20.74 −13.53 −23.63 11.88
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surfaces. Furthermore, the significance of GDP for 
certain land cover types, such as shrubland, grassland, 
impervious surfaces, and water, suggests that eco
nomic factors and development patterns play 
a substantial role in shaping land use distribution. As 
economic growth drives changes in land use, it is 
crucial to integrate environmental considerations 
into economic planning processes. This can be 
achieved through the implementation of green infra
structure initiatives, conservation programs, and 
smart growth strategies which balance the economic 
development with the environmental protection. 
Moreover, the elevation of the terrain, as represented 
by DEM, emerges as a critical factor influencing the 
presence and extent of forest, shrubland, water, and 
impervious surfaces. Areas with high elevations may 
be more suitable for forest conservation, while low- 
lying areas may be more prone to impervious surface 
expansion, as previously observed by He et al. (2023).

Furthermore, this study highlights the varying 
influence of environmental variables on land cover 
patterns. Factors such as temperature, distance to pri
mary roads, distance to expressways, distance to rail
roads, and hotel distribution density exhibit moderate 
importance in shaping LULC patterns. These variables 
can be used to identify areas susceptible to specific 
LULC types and guide targeted conservation efforts or 
infrastructure planning. However, their overall influ
ence is secondary to population density, economic 
factors, and elevation. Therefore, a comprehensive 
understanding of multiple factors is crucial for effec
tive land use management based on promulgation.

5.2. Comparison of simulated LULC under 
different land demands and scenarios

Comparison between LR and MC models reveals 
important insights into the anticipated trends in 
LULC categories. The results indicate an expected 
increase in cropland area across all scenarios, empha
sizing the significance of agricultural activities in the 
region (Chen et al. 2023; Li et al. 2022; Li, Huang, et al.  
2023; Wang, Cong, et al. 2021). However, both land 
demand models predict a decline in forested areas, 
raising concerns about the loss of forest cover and 
the associated ecological services. Shrubland and 
grassland areas are also projected to decrease, warrant
ing attention to the conservation of these ecosystems. 
While, the impervious surfaces, representing urban 
and developed areas, are projected to increase in all 
scenarios. This finding reflects the ongoing urbaniza
tion and infrastructure development trends within the 
GBA (Chen et al. 2023; Ding et al. 2022). Managing 
the expansion of impervious surfaces is crucial to 
minimize the environmental footprint of urban 
areas, protect natural habitats, and enhance the overall 

sustainability of the region (Li, Li, et al. 2023). It was 
revealed by Wang and Chen (2022) that if an eco
nomic-first development model is adopted, the 
ongoing urban expansion in GBA is projected to 
have a substantial detrimental effect on ecosystem 
services. It is estimated that by 2035, this development 
trajectory could lead to a total loss of ecosystem service 
values amounting to USD 28.1 billion.

The LR model generally showed more consistent 
estimates across the scenarios, the MC model pre
dicted slightly different distributions. These variations 
highlight the inherent uncertainties and limitations 
associated with LULCC modeling, as observed pre
viously in a study by Li, Li, et al. (2023). Thus, it is 
essential to consider these uncertainties when using 
model outputs for decision making and to employ 
a combination of modeling approaches to enhance 
the accuracy of predictions.

While numerous studies have conducted multi- 
scenario LULC simulations for GBA with different 
perspectives and objectives, directly comparing the 
quantitative results of these studies is challenging. 
This is primarily due to the differences in the input 
LULC datasets used, as well as the varying time peri
ods considered for predictions. However, some gen
eral insights can be drawn from a qualitative 
comparison of the simulation results.

For instance, in contrast to a previous study (B. 
Wang, Oguchi, and Liang 2023) which projected 
a 42% expansion of the total urban area from 2020 to 
2040 using MC model, our model estimates a more 
modest 12% increase in impervious area from 2022 to 
2035. This difference in the magnitude of projected 
urban growth highlights the importance of aligning 
land use simulation with the specific development 
plans and policies outlined for the GBA region. 
Additionally, the model projections indicate that 
urban growth will be highly compacted, with 
a tendency to spread along the current urban periph
eries, resulting in the formation of high-density urban 
clusters. The simulation results from the current study 
indicate that forest, cropland, and grassland areas are 
projected to show decreasing trends from 2022 to 2035 
under various scenarios. This aligns with the findings of 
a previous study over GBA by Wang and Chen (2022), 
who also reported the declining trends for these LULC 
from 2020 to 2035. Similarly, a recent habitat quality 
simulation study (Wu, Wang, and Gou 2024) found 
reductions in cultivated land, forest, and water bodies, 
except for artificial surfaces which showed continuous 
increase across multiple scenarios between 2020 and 
2030. Another study that simulated urban expansion 
under multiple scenarios between 2020–2025–2035 also 
verified the decrease in ecological land cover (e.g. for
ests and grasslands) and the increase in urban land, with 
the extent of these changes dependent on the specific 
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restrictions imposed during the modeling process (Liao 
and Zhang 2023).

While the direct quantitative comparisons of litera
ture may be limited, the overall directional trends 
observed in these prior studies align with the findings 
of the current research results. The current study’s 
projections of declining forest, cropland, and grassland 
areas, coupled with the increase in compact and high- 
density urban expansion, corroborate the broader pat
terns of land use change anticipated for the GBA region. 
This also reinforces the need for comprehensive and 
coordinated land use planning efforts to balance the 
economic development and ecological conservation 
objectives in the rapidly evolving GBA.

5.3. Policy implications on future LULCC in GBA

Policies play a crucial role in fostering overall develop
ment of regions and countries (Setturu and 
Ramachandra 2021). Examining the influence of 
policy(s) on future LULCC is a significant aspect in 
understanding the dynamics of development and envir
onmental sustainability within the GHM-GBA. The 
“Outline Development Plan for the Guangdong-Hong 
Kong-Macao Greater Bay Area” served as the key policy 
reference for designing the LULC simulation scenarios 
in this study. This strategic framework aims to enhance 
connectivity, innovation, and sustainable development 
within the GBA region. Specifically, the plan promotes 
the development of green and low-carbon cities, the 
conservation of natural resources, and the preservation 
of cultural heritage. It emphasizes the importance of 
sustainable land use practices, urban planning, and 
environmental protection in achieving a harmonious 
and balanced development across the GBA.

While the policy objectives may have a significant 
influence on future LULCC within the GBA core cities, 
the plan also provides a comprehensive strategic vision 
and guidelines for decision-making processes related to 
economic development, innovation, urban growth, 
infrastructure planning, and environmental manage
ment. Various studies have explored the policy implica
tions on future LULC patterns under different scenarios 
in other regions (Jin et al. 2023; Wang, Liu, et al. 2023).

Drawing on the insights from the current LULC 
simulations study, we propose the following policy 
recommendations to guide the future land use trajec
tories in the GBA: 

(1) The projected increase in cropland area within 
the GBA region suggests a need to focus on 
sustainable agricultural development. This 
trend may be driven by factors such as popula
tion growth, rising demand for food, and the 
region’s efforts to enhance food security. 
Continued implementation of existing policies 
and initiatives that support precision farming 

techniques, water management strategies, and 
agricultural diversification can help optimize 
land use productivity while maintaining envir
onmental sustainability. For instance, the pro
motion of high-yielding crop varieties, improved 
irrigation systems, and diversification into cash 
crops and specialty agricultural products can 
contribute to more efficient and ecologically 
responsible use of the limited land resources in 
the densely populated GBA. Encouraging the 
adoption of advanced agricultural technologies 
and promoting diversification of crop cultiva
tion can further enhance the region’s agricul
tural productivity and resilience.

(2) While the forest coverage within the GBA 
region appears relatively stable based on the 
projections, it is important to prioritize forest 
conservation and sustainable management. 
This relative stability may be attributable to 
the region’s existing policies and initiatives 
aimed at protecting and managing its forest 
resources. However, to maintain healthy forest 
ecosystems, preserve biodiversity, and support 
the GBA’s carbon neutrality goals by 2030, it is 
crucial to implement robust forest protection 
measures, promote afforestation and reforesta
tion efforts, and strengthen overall conserva
tion initiatives. This multi-pronged approach 
can help ensure the long-term viability of the 
GBA’s forest resources, which play a critical 
role in climate change mitigation, ecosystem 
services, and the overall environmental well- 
being of the region.

(3) The potential decrease in grassland area, par
ticularly under the NIS, raises significant con
cerns about habitat loss and ecological 
impacts in the GBA. The simulation results 
indicate that the reductions in grassland cov
erage occurred predominantly in areas transi
tioning to croplands and shrubs, especially in 
the suburban and peri-urban zones surround
ing major metropolitan centers and urban 
clusters. Several key factors appear to be driv
ing this decline in grasslands. Firstly, the high 
demand for land to support economic devel
opment and agricultural expansion has led to 
the conversion of grasslands to other more 
intensive land uses (Qin, Wang, and Meng  
2024). Secondly, the improved living stan
dards and increased demand for meat and 
dairy products in the region have resulted in 
a larger number of farm animals and intensi
fied grazing practices, which can potentially 
reduce grassland coverage. To address this 
issue, it is crucial to implement sustainable 
land management practices, such as rotational 
grazing regimes and the rehabilitation of 
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degraded grasslands. Adopting these strategies 
can help maintain the ecological integrity of 
the grassland ecosystems and mitigate the 
negative impacts on biodiversity and habitat 
quality within the GBA region.

(4) The projected increase and expansion of imper
vious surfaces signify major urban develop
ments. For instance, the reference policy 
document puts emphasis on expediting infra
structural connectivity, including enhancing the 
international competitiveness of the seaport and 
airport clusters, and building a rapid transport 
network in the GBA. This may cause conversion 
of other LULCs into impervious class, which 
again may have negative impacts such as urban 
heat islands, traffic congestion, poor air quality 
and more. Thus, it is necessary to adopt sustain
able urban planning practices to minimize the 
environmental impact of urbanization. The 
GHM-GBA should incorporate some modern 
interventions, also suggested in the relevant pol
icy documents for promotion of green infra
structure, green spaces within urban areas, and 
implementation of smart growth principles to 
ensure efficient land use and to reduce the eco
logical footprint of urban development.

These policy recommendations revolve around pro
moting sustainable land management practices, conser
vation efforts, and integrated development strategies for 
the GBA region. Striking the right balance between 
economic progress and environmental protection is 
crucial for achieving long-term sustainability and resi
lience. By closely aligning the LULC simulation results 
with the region’s development plans, policymakers can 
make more informed decisions and develop 
a comprehensive spatial planning framework.

5.4. Uncertainty analysis and limitations

A significant source of uncertainty in the current study 
arises from input data, particularly remote sensing 
images. Atmospheric conditions and sensor calibration 
introduce variability, especially the cloud effect, which 
alters reflectance values, potentially leading to classifi
cation errors in the final LULC product. Additionally, 
model selection plays a vital role, as different modeling 
approaches can yield varying outcomes due to unique 
assumptions and structures. For instance, linear models 
might oversimplify complex relationships, while more 
sophisticated models risk overfitting the data. Likewise, 
uncertainty surrounding model parameters and pre
dicted classes needs careful examination; variations in 
parameter settings can impact model performance, 
while classification algorithms often yield probabilistic 
outputs that may misclassify due to pixel heterogeneity. 
Another layer of uncertainty stems from the coarse 

resolution of some socio-economic parameters such as 
GDP and population, which may not fully capture local 
variations and context-specific factors critical for accu
rately assessing LULCC.

A major shortcoming of the current study, however, is 
the lack of consideration for future climate change sce
narios and their potential impacts on regional LULC 
patterns. To address this limitation, it is suggested that 
future research incorporate RCPs (Representative 
Concentration Pathways) projections to deepen the 
understanding of how climate-driven factors may shape 
the land use trajectories of the GBA in the years to come.

6. Conclusions

This study analyzed the CLCD LULC patterns and 
projected future changes in the GHM-GBA, based on 
the policy “Outline Development Plan for the GHM- 
GBA” for 2035. To achieve the objectives, we 
employed PLUS model to simulate LULCCs under 
three different scenarios, including ECS, NIS, and 
UDS, and considered eighteen driving factors (histor
ical and recent) from various categories.

The analysis of LULC dynamics from 2010–2022 
reveals important trends, indicating an expansion of 
cropland (1.38%), suggesting stable agricultural prac
tices. However, concerns arise from the decline in for
est, grassland and shrubland areas, which raises issues 
of habitat loss and biodiversity impacts in GBA. The 
impervious class showed the highest positive change in 
percentage area from 2010–2022 (13%), attributed to 
urbanization, which raises concerns about land frag
mentation and habitat loss, necessitating sustainable 
urban planning to mitigate these impacts. Moreover, 
the results for LULC simulation for 2035 suggest that 
the Trial#2 demonstrated a significant improvement in 
performance compared to Trial#1, where the RF trees 
were increased, and the thread value was reduced to 
improve the accuracy ( > 90%). These findings highlight 
the importance of carefully selecting parameters and 
fine-tuning the model to meet the best possible results.

The comparative exploration of the simulated 
LULC under multiple scenarios in 2035, based on 
Markov Chain and Linear Regression revealed simila
rities in their projections. There is a small increase in 
croplands of around 1.32% to 1.43%, indicating 
ongoing agricultural expansion. However, they also 
forecast considerable declines in forests (−2.87% to −  
3.38%), grasslands (−16.48% to − 31.85%), and water 
bodies (−11.47% according to both). Notably, the 
Markov Chain model predicts a dramatic 71.03% 
reduction in shrublands. Meanwhile, urban areas 
may rise substantially by 11% to 16% based on model
ing results. These changes underscore both develop
ment pressures and threats to critical ecosystems. If 
unaddressed, such transformations could negatively 
impact habitat, biodiversity, and ecosystem services. 
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The findings emphasize the need for sustainable plan
ning and governance to help guide LULC dynamics 
and promote more effective resource management.

A key contribution of this study is the comprehensive 
consideration of eighteen driving factors from various 
categories for two-time intervals (historical and recent). 
This multifaceted approach represents a significant 
advancement compared to previous LULC simulation 
studies in the GBA, which have typically relied only on 
the factors using recent data. Importantly, the inclusion 
of both historical and contemporary data for these driv
ing variables provided a robust foundation for the mod
eling framework, enhancing its ability to accurately 
simulate future LULCCs. In future, it is recommended 
to couple the PLUS model with Multi-Objective 
Programming (MOP) techniques to predict the future 
economic implications of LULC under different scenar
ios. These quantitative insights would be invaluable for 
policymakers in charting the future development goals 
and priorities for the GHM-GBA region.
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