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ABSTRACT

This study focuses on the Guangdong-Hong Kong-Macao Greater Bay Area (GHM-GBA) for
simulating Land Use Land Cover (LULC) considering the development plan for 2035. The
research aims to quantify LULC change and simulate future LULC scenarios based on policy
implications for 2035. In this study, Patch-Generating Land Use Simulation (PLUS) model was
used to project future LULC under different scenarios. These scenarios include, Natural Increase
Scenario (NIS), Ecological Conservation Scenario (ECS) and Urban Development Scenario (UDS).
The China Land Cover Dataset (CLCD) from 2010-2022 along with eighteen driving factors for
both historical and recent time periods and planning data were used to simulate the future
succession of LULC patterns for 2035. This multifaceted methodology represents significant
advancement over previous LULC simulation studies in GBA, which often relied on a more
limited set of historical and development factors. The analysis revealed several key trends
across the LULC categories. The simulation results (for 2022-2035) reveal that the cropland is
expected to experience a modest increase of approximately 1.38%, indicating potential expan-
sion of agricultural activities in future. However, the projections show declines in natural land
covers, with forested areas decreasing by 2.44%, shrubland by 19.57%, grassland by 22.26%,
water bodies by 9.15%, and barren land by 10.54%. Conversely, impervious surfaces are
expected to increase by an average of 13.16%, suggesting urban development and infrastruc-
ture expansion. The findings provide valuable insights for regional environmental planning and
sustainable development. The comparative analysis of the PLUS model’s performance across
different policy scenarios can aid in improving LULC change projections. A significant con-
tribution of this current study is the comparative analysis of the PLUS model’s performance
under different policy-driven scenarios, which can aid in improving LULC simulations and
projections.
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1. Introduction simulation and scenario analysis provide crucial
insights to guide decision makers in navigating com-
plex land use conversion and spatial planning. This
helps governments to strategically allocate and govern
land resources to balance social, economic, and envir-
onmental priorities (Amin et al. 2024; Chen and Ma
2023; Li et al. 2022; Wang et al. 2019).

Over the past few decades, China has achieved
remarkable progress in its development, positioning
the country as a global economic powerhouse. The
“Framework Agreement on Deepening Guangdong-

Hong Kong-Macao Cooperation in the Development

Land Use Land Cover (LULC) is a fundamental aspect
of human activity, shaping the natural and built envir-
onment in which we live, work, and interact (Zhao
et al. 2023). LULC can be significantly modified by
a variety of factors, including but not limited to rapid
population growth, urbanization, intensive agricul-
tural expansion, and the overexploitation of natural
resources (Amin et al. 2024). Moreover, LULC pat-
terns can aggravate resource and energy consumption
and cause serious environmental problems (Cao et al.
2024), as it has potential to alter the carbon stocks and

fluxes (Kang, Zhang, and Dang 2024), land surface
temperature (Ghaderpour et al. 2024) and water
resources (Entezami et al. 2024). Therefore, as global
population continues to grow, the need to effectively
plan, manage, and simulate LULC in multiple scenar-
ios has become increasingly critical (Wang, Liu, et al.
2024; Wu, Wang, and Gou 2024). Importantly, LULC

of the Greater Bay Area” signed in 2017 by the
National Development and Reform Commission and
the governments of Guangdong, Hong Kong, and
Macao (GHM) laid the foundation for strategic colla-
boration. In line with this agreement, the “Outline
Development Plan for the Greater Bay Area” was
promulgated in 2019. This comprehensive plan
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establishes key development areas and outlines the
cooperative efforts aimed at fostering the integrated
growth and sustainable development of the Greater
Bay Area (GBA) for 2035 (Li 2021).

The Development Plan for GBA has a primary
objective of promoting economic integration and
development among the target core cities. This ambi-
tious plan entails substantial infrastructure develop-
ment, such as the construction of roads, railways, and
ports, which has the potential to greatly impact the
region’s LULC pattern. Thus, to comprehend the
dynamic process of Land Use Land Cover Change
(LULCC), the utilization of LULC simulation models
becomes crucial (Li et al. 2022; Tabassum et al. 2023).
These models enable the examination of different sce-
narios and aid in the promotion of sustainable land
use patterns that strike a balance between economic
growth and environmental protection, especially dur-
ing policy implementation (Guo et al. 2023).

Researchers have explored methods and models
using remote sensing data to predict future LULCCs
(e.g. Amgoth, Rani, and Jayakumar 2023; Shahi, Karimi,
and Jafari 2020). These include single/quantity and
hybrid/spatial simulation models. The former, such as
Markov Chain (MC), Agent-Based Model (ABM),
Cellular Automata (CA), regression analysis, and
System Dynamics (SD) model, focus on quantifying
land demand but neglect transformation rules and spa-
tial distribution, making them insufficient for simulat-
ing complex surface evolution scenarios (Lin et al. 2023;
Yang et al. 2023; Rahaman et al. 2022; Zhang, Kwan,
and Yang 2023). To overcome these limitations, hybrid
models have been proposed to meet the requirements of
complex surface evolution simulations (Koko et al.
2023). Hybrid models leverage historical LULCCs and
driving factors to estimate LULC demand and their
distribution probabilities, hence, enabling the simula-
tion of future spatiotemporal LULC patterns.

Examples of such hybrid models include CA-Markov,
Patch-generating Land Use Simulation (PLUS),
Conversion of Land Use and its Effects at Small extent
model (CLUE-S), and Land Transformation Model
(LTM) (Liang et al. 2021; Liu et al. 2017). Several regional
studies have utilized these hybrid models to determine
the future dynamics of LULC (Shahi, Karimi, and Jafari
2020; Wang, Guan, et al. 2023; Zhong et al. 2023). Among
these, PLUS model has been widely employed in regional
studies for a variety of applications such as to assess flood
risk probability (Wang, Guan, et al. 2023), carbon storage
simulation (Yue, Ji, et al. 2023), prediction of ecological
carrying capacity, and for monitoring urban expansion
(Yu, Zhao, et al. 2023).

In the context of GBA for instance, research has
focused on ecosystem services assessment (Liao and
Zhang 2023; Wang, Oguchi, and Liang 2023), climate
risk assessment (Wang, Liu, et al. 2024), habitat

quality (Wang, Oguchi, and Liang 2023), terrain gra-
dient (Chen et al. 2023) and coastal vulnerability
(Wang and Chen 2022) to simulate LULC scenarios
for future. However, these or similar studies have not
used the “Outline Development Plan for the GHM-
GBA” as a reference, nor have they incorporated the
spatial planning layers within their modeling
approach specific to GBA. This represents a gap that
the current study aims to address as a whole for future
LULC scenario.

The GHM-GBA represents unique case study due
to its rapid urbanization and significant infrastructure
development. The 2019 Outline Development Plan for
GBA puts forward the vision of transforming the GBA
into a globally renowned urban cluster and a prime
example of exceptional livability with high-quality
development. Considering this strategic vision, it is
crucial to conduct a comprehensive examination of
the transformations in LULC patterns within the
GBA, as well as simulate the potential future trajectory
of LULC in light of relevant policies. However, pre-
vious LULC simulation and scenario analysis studies
for GBA have largely overlooked the implications of
this comprehensive development plan, instead focus-
ing on understanding the drivers of urban expansion
and habitat quality changes. Conducting research in
the GBA will address the existing gap by explicitly
aligning the LULC simulation with the strategic objec-
tives outlined in the region’s 2035 development plan
(Li et al. 2022). Such an investigation can provide
valuable insights into the potential influence of
planned transportation networks, development
zones, and urban expansion on the dynamics of land
use and cover in the region.

Therefore, this study selects the GHM-GBA region
as a case to investigate the projected LULCCs for
the year 2035 under multiple scenarios aligned with
the “Outline Development Plan for the GHM-GBA”
policy document. Also, this study aims to incorporate
the latest and historical factors to refine the probabil-
ity of land use transitions and minimize errors in the
overall simulation process. The objectives of this
research are (i) to quantify the LULCCs that occurred
in the GHM-GBA region from 2010 to 2022, (ii) to
using PLUS model to simulate and analyze different
future LULC scenarios under the influence of devel-
opment policy, to provide valuable insights for deci-
sion making on sustainable land use planning and
management.

2. Materials and methods
2.1. Study area

GBA is a city agglomeration consisting of nine cities,
including Dongguan, Foshan, Guangzhou, Huizhou,
Jiangmen, Shenzhen, Zhuhai, Zhongshan, Zhaoqing,



Hong Kong and Macao (Figure 1). With an approx-
imate administrative land area of 57,000 km?, it had
a population of over 86 million in 2020 (Li, Chen, et al.
2023). Recognized as one of China’s most economic-
ally advanced and densely populated urban agglom-
erations, the GBA recorded a GDP of USD
1668.8 billion in 2020, based on annual data from
Guangdong Province, the Hong Kong Special
Administrative Region Government (SARG), and the
Macao SARG (Wang, Wu, et al. 2021).

2.2. Datasets

2.2.1. China Land Cover Dataset (CLCD)

Considering the characteristics of GBA as a mega-
urban agglomeration, and to ensure high accuracy,
we acquired the LULC data (2010-2022) from the
annual China Land Cover Dataset (CLCD) (J. Yang
and Huang 2021). The relevant data for CLCD was
produced using the Landsat imagery for each period as
the main data source at a spatial resolution of 30 m.
According to the CLCD image classification, the
LULC classes for the GBA region encompass Barren,
Cropland, Grassland, Forest, Shrub, Water, and
Impervious. These categories represent the various
types of land cover observed in the region.

The CLCD used in this research has been widely
adopted in various LULC simulation studies in China
due to its high accuracy and comprehensive coverage
(Fan et al. 2023; Ji et al. 2023; Zhao et al. 2023; Zhu
et al. 2023). CLCD has been evaluated for its data quality
in various studies which confirmed the overall accuracy
could essentially reach about 76% (Zhao et al. 2023).
Moreover, in its original paper the rate of accuracy for
CLCD dataset was about 79.31%, which was greater than
the mean accuracy of the MODIS (Moderate Resolution
Imaging Spectroradiometer) land cover product
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(MCD12Q1), European Space Agency-Climate Change
Initiative (ESACCI) land cover product, and
GlobalLand30 datasets (Yang and Huang 2021). In the
context of GBA, CLCD has been successfully employed
for multi-scenario simulations which shows its high
reliability and applicability for this research (Ding et al.
2022; Wu, Wang, and Gou 2024). Based on these studies,
we are confident that the CLCD data is of sufficient
quality and has suitability for the LULC simulation and
scenario analysis undertaken in the study area.

2.2.2. Driving factors

Taking into account the data availability and a review
of existing relevant studies (Guo et al. 2021; Huang
et al. 2023; Li, Li, et al. 2023; Wang et al. 2022), 18
driving factors were selected from geographical, cli-
matic, socioeconomic, location aspects (Table 1 and
Figure 2). Among these driving factors, slope and
aspect were derived using Advanced Spaceborne
Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model (GDEM).
The location factors for the years 2010 and 2022
were obtained from Open Street Map (OSM) archives.
While the future planning data collected includes
information on three factors, i.e. distance to express-
way, distance to railroads, and airports.

3. Method

The method proposed in this work aims to simulate
the LULC and spatial patterns by considering the
influence of development plan of GBA for 2035 by
employing the PLUS model (Figure 3). Moreover, as
part of the preprocessing stage, all input data under-
went projection transformation to ensure uniformity,
aligning it with the desired coordinate system (WGS
1984 UTM Zone 49N). Subsequently, resampling
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Figure 1. Map of study area with buffer of 10 km around the administrative boundaries of cities.



4 (&) G.AMINETAL.

Table 1. Information of the input driving factors data. Where KD and ED represent the Kernal density and Euclidean distance,

respectively.

Category Spatial data Analysis Year Original Resolution Source
Geographical factors Slope - 2013 30m ASTER GDEM- USGS
Aspect - 2013 30 m ASTER GDEM- USGS
DEM - 2013 30 m ASTER GDEM- USGS
Soil - 1995 1 km FAO -Harmonized World Soil Database
Climatic factors Temperature - 2010, 2022 0.5° MERRA
Precipitation - 2010, 2022 0.05° CHIRPS Pentad
Socioeconomic factors population density - 2010, 2022 100 m GHS-POP-JRC
GDP - 2010, 2022 1 km RESDC China
Location factors Hotel distribution density KD 2022 30m Open Street Map
Supermarket density KD 2010, 2022 30m Open Street Map
Distance to city center ED 2022 30m Open Street Map
Distance to town center ED 2022 30m Open Street Map
Distance to expressway ED 2010, 2022 30m Open Street Map
Distance to waters streams ED 2022 30m Open Street Map
Distance to primary roads ED 2022 30m Open Street Map
Distance to railroad ED 2022 30m Open Street Map
Distance to bus stops ED 2010, 2022 30m Open Street Map
Distance from Airports ED 2022 30m Open Street Map
Restricted areas Open water/Inland water - 2022 30m ESRI-ArcGIS Hub
Nature reserves - 2022 30m Protected Planet/HKSARG
Protected areas - 2022 30m Protected Planet/HKSARG
Planning data Distance to expressway ED Planned 30m Bay area-HKSARG
Distance to railroad ED Planned 30 m Bay area-HKSARG
Airports ED Planned 30 m King & Wood Mallesons

techniques were applied to achieve a consistent grid
size of 30 m. This uniform grid size, along with the
matching row and column numbers, served as funda-
mental requirements for the subsequent modeling
procedures. Multiple analyses such as, Euclidean
Distance (for proximity analysis), kernel density (for
hotel distribution density, and supermarket density
data), and rasterization (for soil data) were also per-
formed. These processing steps ensured the harmoni-
zation among all input data layers in terms of pixel size
and coverage, enabling their seamless integration into
the PLUS model.

Compared to other LULC simulation models,
PLUS model distinguishes itself through the integra-
tion of multiple advanced components. These include
a CA based on multi-type random patch seeds
(CARS), the land expansion rule mining framework
(LEAS), along with the multi-type stochastic seed
mechanism. Through this integration, the PLUS
model achieves highly accurate and detailed simula-
tions of land use changes at patch level, as verified by
previous studies (Wang and Chen 2022; Wang, Guan,
et al. 2023). To address the allocation of optimal land
demand for various scenarios in the year 2035, we
employed both Linear Regression (LR) and Markov
Chain (MC) models, leveraging historical data (2010-
-2022) and planning information to establish indivi-
dual projections for the future demand matrix of each
LULC class.

In this study, we commissioned a two-step
approach to generate the LULC conversion patterns.
Initially, 18 drivers were selected (Table 1) and the
Random Forest (RF) model was used to predict the
LULC conversion patterns across the study area. After
establishing the land demand, we proceeded to

implement the LULC conversion rules, which incor-
porated the neighborhood parameter and the land use
conversion cost matrix. The neighborhood parameter
played a crucial role in determining the ease of LULC
type conversion, with higher values indicating a lower
probability of such conversions occurring. This para-
meter helps capture the spatial relationships and influ-
ences between different land use types in the modeling
process. These parameter values were defined based
on the LULC transfer rate observed between 2010 and
2022, resulting in assigned values of 0.26, 0.30, 0.01,
0.01, 0.03, 0.01, and 0.40 for cropland, forest, shrub,
grassland, water, barren, and impervious land use
types, respectively. Moreover, we employed the cost
matrix (Table 2) for each scenario, which restricted the
conversion of LULC classes based on the values (1, 0).
The value of “1” signifies that a particular LULC type
can be transformed to another type, whereas a value of
“0” shows that a specific LULC type cannot be trans-
formed to another type. Additionally, in the current
study, we converted protected areas, nature reserves,
and open water/inland water to a raster with a value of
0, effectively treating them as restricted areas (Liang
et al. 2018). This setting of restricted areas reflects the
actual situation of the study area, where certain zones
are designated as exclusion zones and land use con-
version is prohibited (Peng et al. 2023).

Subsequently, we added the aforementioned para-
meters (Table 1) and the LULC data for GBA in PLUS
model. To assess the model’s performance, we conducted
historical testing and optimization using LULC data
from 2010 to 2022. Calibration of the PLUS model was
considered successful when the Kappa Coefficient (KC)
and Overall Accuracy (OA) for the year 2022 simulated
LULC pattern exceeded 90% (Liu et al. 2024). With the
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best-fit model parameters in place, we proceeded to
examine the future simulation of LULC patterns.

3.1. Patch-generating land use simulation model

As discussed, PLUS model is a powerful stand-alone
simulation program that combines the LEAS module
along with CA model by using multi-class random
patch seeding (Liang et al. 2021). The spatial
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characteristics of land use expansion and the underlying
driving forces at different stages of LULCC are evaluated.
The model utilizes the RF algorithm to sample land
expansion and calculate the probability of development
for each land type. The overall probability of comprehen-
sive LULCC is determined using an adaptive inertial
competition mechanism known as roulette. The final
LULC pattern is optimized by integrating random patch
generation, a transition matrix, and a threshold decline
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Table 2. The cost matrix for three scenarios developed in this study.
NIS ECS ubs

Scenario Setting ca F Sh G Wr Br Ip C F Sh GI Wr Br Ip d F Sh G Wr Br Ip
cl 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1
Fr 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1
Sh 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1
Gl 1 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 1
Wr 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1
Br 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1
Ip 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1

Note: The “NIS” stands for Natural Increase Scenario, “ECS” is Ecological Conservation Scenario and “UDS” is Urban Development Scenario. Where the values
“1" or “0" denote whether cell conversion is allowed or not allowed, respectively. Cropland (Cl), Forest (Fr), Shrub (Sh), Grassland (Gl), Water (Wr), Barren
(Br), and Impervious (Ip) represent the respective LULC type.

mechanism. This approach allows for a thorough and  3.1.2. CA model based on multi-type random patch
dynamic analysis of land use changes in the designated  seeds (CARS)

area. The CARS module includes a patch-generation
mechanism which integrates “top-down” factors,
3.1.1. LEAS (land expansion analysis strategy) such as global land use demands, and “bottom-up”

The LEAS module of the PLUS model employs the factors, including local land use competition (Liang
RF algorithm to analyze the factors influencing the et al. 2021). The CARS module also incorporates
expansion of individual LULC categories. It enables 2 stochastic seed mechanism that considers various
the estimation of probabilities associated with spe-  factors, such as neighborhood weights, transformation
cific drivers contributing to land use expansion  COst matrices, and decreasing thresholds. This combi-
over time. The RF algorithm handles high-  nhation enables a comprehensive analysis of complex

dimensional data, multicollinearity, and provides interactions in LULC dynamics, capturing the influ-
growth probabilities. ence of different scales on LULCCs.



3.2. Scenario design

Three scenarios were developed for LULC simulation
including the (i) Natural Increase Scenario, (ii)
Ecological Conservation Scenario, and (iii) Urban
Development Scenario. These scenarios depict poten-
tial futures for the GBA in which development is
guided by a comprehensive land use framework, and
they are closely aligned with the development strate-
gies outlined in the 14™ Five-Year National Strategy
and GBA Development Outline Plan for 2035.

The process of developing these scenarios involved
parameterization of the transition cost matrix within
the PLUS model, where the assigned values reflect the
hypothetical policies and priorities associated with
each scenario, considering factors such as agricultural
needs, ecological conservation, urban development
goals, and preservation of key ecosystems.

3.2.1. Natural increase Scenario

In this scenario, the cropland conversion was per-
mitted for agricultural support, while forest conver-
sion was allowed to meet the increasing demand for
land. Shrub conversion was allowed for diverse vege-
tation and wildlife habitat. Water body conversion was
not allowed to protect aquatic ecosystems and water
resources. Barren land conversion was permitted for
various uses, including infrastructure. Impervious sur-
face conversion (e.g. buildings, roads) was allowed for
urban development and human activities. In the simu-
lation, we assumed that the historical growth pattern
would persist, which led to the absence of significant
constraints or restrictions.

3.2.2. Ecological conservation Scenario

This scenario signifies a commitment to foster sustain-
able development practices and protecting the ecolo-
gical environment for present and future generations.
In this scenario, we implemented a reduction in the
probability of converting forest and grassland into
other types of land, while permitting the conversion
from cropland, barren land, or impervious to forest,
grassland, or water.

3.2.3. Urban development Scenario

In UDS, the priority was given to facilitate the eco-
nomic growth of urban areas by expanding the con-
struction land. To achieve this, we permitted the
conversion of cropland, forest, grassland, or water
into impervious category. Additionally, we decreased
the likelihood of conversion from built-up areas to any
other land types. This scenario reflects a concentrated
emphasis on urban development, where the preserva-
tion of impervious surfaces such as buildings and
roads take precedence over the preservation of other
LULC types.

GEO-SPATIAL INFORMATION SCIENCE . 7

4. Results
4.1. Model validation and testing

The PLUS model implementation consisted of two
simulation periods: model calibration and validation,
and scenario simulation. The model was calibrated
and validated from 2010 to 2022 to assess the perfor-
mance of the Random Forest Classifier (RFC) and to
ensure accurate simulation results. Following this, the
scenario simulation was conducted specifically for the
period from 2022 to 2035, utilizing the calibrated
model parameters determined through a trial-and-
error method (Liang et al. 2021). This phase ensured
that the model produces reliable and precise results.

The two trials, Trial#1 and Trial#2 were conducted
with varying parameter values (Table 3), except for the
neighborhood cell size and mTry value which corre-
spond to number of features for training the RF were
kept constant. In Trial#1, the model was configured
with 20 trees, a sampling rate of 0.01, and a thread
value set at 1. This configuration resulted in a KC of
0.82 and an OA of 0.89, indicating a relatively good
performance. However, in Trial#2, certain adjust-
ments were made to enhance the modeling of LULC
dynamics. Such as, the number of RF trees were
increase to 50, allowing for more comprehensive and
refined analysis. Additionally, the sampling rate was
adjusted to 0.05 (5%), indicating a denser data collec-
tion, and the number of threads used for the simula-
tion was also reduced to 1.

The results of Trial#2 demonstrated a significant
improvement in performance compared to Trial#1.
The model achieved an OA of 0.98 and KC of 0.96
during calibration, indicating higher accuracy and
agreement with actual data. This improvement can
be attributed to the increased number of trees and
thread values in the model, which allowed for a more
thorough exploration of the parameter space and
a better representation of the underlying dynamics.
These findings also highlight the importance of para-
meter selection in land simulation models, emphasiz-
ing the need for careful consideration and
optimization to achieve the best possible results.

The validation results (Figure 4) show the model’s
robust performance in predicting various land cover
classes. Cropland classification achieved a high

Table 3. Comparison of parameter configurations in Trial#1
and Trial#2 for PLUS model.

Module Parameters Trial#1 Trial#2
LEAS Uniform sampling Yes Yes
Forest regression trees 20 50
Sampling rate 0.01 0.05
mTry 18 18
Thread 3 1
CARS Neighborhood size 3 3
Patch generation threshold 0.2 0.5
Accuracy OA 0.89 0.98
KC 0.82 0.96




8 (&) G.AMINETAL.

Normalized Confusion Matrix

Cropland 0.01

0.97

Forest

Shrub

Grassland

True label

Water 0.00

Barren

Impervious

0.01 0.07
0.09
0.00

0.00 .

0.00

0.15

0.6

0.4

0.00

(:rov\"“‘d forest S“YUberaSS\"’“(\Na‘ef E*"’ﬂer\\r\‘\?e‘\'-‘ou5

Predicted label

Figure 4. Confusion matrix of the predicted (simulated) land use pattern versus the true (actual) pattern in 2022 for trial#2.

normalized accuracy of 0.99, while the model’s forest
and barren class prediction exhibited equally strong
results, reaching a normalized accuracy of 0.99.
Furthermore, the model displayed commendable
accuracy in differentiating between shrub and grass-
land classes, with values of 0.98 and 0.99, respectively.
Remarkably, the model attained perfect accuracy in
predicting water, as indicated by a value of 1.00 in the
corresponding diagonal elements. The impervious
class also registered a relatively higher accuracy of
0.86. The model achieved a KC of 0.96 and an OA of
97.93%, demonstrating its higher accuracy in simulat-
ing future land cover types.

Figure 5 shows the visualization of the land use
pattern for the year 2022, depicting both the actual
(Figure 5(a)) and the simulated LULC (Figure 5(b)).
By comparing these two figures, it becomes possible to
assess the accuracy and effectiveness of the simulation
in capturing the real-world land use dynamics. This
visualization aids in evaluating the model’s perfor-
mance and provides valuable insights into the simu-
lated land use pattern for the specified year.

Table 4 displays the evaluation metrics for dif-
ferent LULC categories, namely cropland, forest,
grassland, shrub, barren land, water, and imper-
vious areas. The metrics include the Root Mean
Square Error (RMSE) and the Out-of-Bag RMSE
(OOB RMSE). The RMSE values indicate the aver-
age prediction error for each land cover category,
with lower values indicating higher accuracy, while
OOB RMSE values represent the prediction error
for the out-of-bag samples.

The simulated LULCC model for 2022 demon-
strated favorable performance, with lower errors
observed for forest and shrubland classes compared

to cropland. The RMSE analysis indicated that the
model achieved relatively low errors for specific
land use classes. The cropland class had RMSE of
0.13, suggesting a moderate level of error in pre-
dicting this land use category. The Forest class
exhibited a slightly better performance than
Cropland with RMSE of 0.10, indicating
a relatively lower level of error in predicted
forested areas. Notably, the Shrub class demon-
strated the highest accuracy, indicated by RMSE
of 0.00, signifying precise prediction of shrubland.
Similar trends were observed in the OOB RMSE
metric, where the cropland class had the highest
value of 0.38, indicating a larger margin of error.
The forest class showed a lower prediction error
with an OOB RMSE of 0.30. Once again, the shrub
class exhibited excellent performance with an OOB
RMSE of 0.01, indicating high accuracy in predict-
ing shrubland.

4.2. Spatiotemporal change in LULC (2010-2022)

The land use dynamics and changes in GBA for dif-
ferent categories were analyzed using classified images
acquired from the CLCD, spanning from 2010 to 2022
(Figure 6(a)). The time-series analysis of each LULC
showed that the cropland exhibited a consistent
upward trend, expanding from 16,522.5 km? in 2010
to 17,394.94 km? in 2022. This increase reflects the
expansion of agricultural activities and potentially
indicates shifts in land management practices or
changes in land-use policies.

In contrast, the forest category demonstrated
a slight decline in area, decreasing from 39,549.74
km? in 2010 to 38,719.16 km” in 2022. This reduction
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Figure 5. Visualization of land use pattern for the year 2022 with (a) actual LULC and (b) simulated LULC. The circular snippets

show the zoomed area of each city center between actual and simulated image.

Table 4. Evaluation metrics for model validation.

Evaluation metric Cropland Forest Shrub Grassland Water Barren Impervious
RMSE 0.13 0.10 0.00 0.02 0.04 0.01 0.09
00B RMSE 0.38 0.30 0.01 0.05 0.11 0.04 0.26

may be attributed to factors such as deforestation,
urbanization, or natural disturbances. The shrub cate-
gory experienced a substantial decrease in area, declin-
ing from 16.90km?> in 2010 to 7.11km?> in 2022
(—58%). This significant reduction raises concerns
about the loss of shrubland habitats, which play crucial
roles in supporting biodiversity, soil stabilization, and
carbon sequestration. Grassland areas also showed
a consistent decreasing trend, with the area decreasing
from 117.77 km? in 2010 to 36.39 km? in 2022 (-69%).
This decline in grassland area may be attributed to
land-use changes, conversion to other LULC types, or
alterations in agricultural practices.

Contrarily, the Barren category exhibited a minimal
change, shifting from 19.69 km” in 2010 to 20.18 km?
in 2022 (2%). While the area remained relatively con-
stant, it is important to investigate the underlying
reasons for this barren land and assess whether it
represents degraded or unproductive areas. Finally,
the Impervious class, which includes urban and built-
up areas, demonstrated a steady growth, increasing
from 5,877.64 km?* in 2010 to 7,276.10 km?> in 2022
(24%). This expansion reflects urbanization and

infrastructure development, with potential implica-
tions for land fragmentation, habitat loss, and changes
on local scale.

The results (Figure 6) provide some insights—the
cropland category demonstrated a consistent expansion
conversely the forest and shrub categories exhibited
declines, raising concerns about deforestation and habi-
tat loss. While water bodies and barren land showed
a relatively stable or minimal changes as compared to
the impervious LULC which increased in area over the
time suggesting urbanization and infrastructure growth.

4.3. Exploring the driving forces of LULC

The research utilized the PLUS model with the LEAS
module to examine the relationship between different
LULC and the driving factors behind them. Figure 7
illustrates the outcomes of these influencing factors that
shaped LULCC as well as expansion in the GBA from
2010 to 2022. It also provides a visual representation of
the impact and significance of these diverse factors on
the growth of each LULC type. It was observed that the
variables with relatively higher importance across
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multiple LULC type include population density, DEM,
and GDP. Population density stands out as a significant
factor for cropland, forest, grassland, barren land, and
impervious surfaces, indicating that the density of the
population in an area has a considerable influence on
the growth and distribution of these land covers.
Moreover, the population density emerges as the most
influential factor with a value of 0.18, indicating its
significant impact on the growth and distribution of
impervious surfaces. Other factors such as distance to
bus stop, DEM, GDP, distance to expressway, distance
to railroad, distance to primary roads, distance to town
center, slope, temperature, and soil also contributed to
impervious LULC to a lesser extent, with importance
values ranging from 0.01 to 0.08. Factors like aspect,
precipitation, supermarket density, hotel distribution
density, and distance to water streams have relatively
lower importance, with values ranging from 0.03 to
0.08, suggesting a minimal influence on the overall
growth and distribution of impervious land cover.

4.4. Simulation of LULC for future scenarios

We simulated the future LULC for three different
scenarios (i.e. ECS, NIS, and UDS) under the
influence of GBA development plan for 2035
based on MC (Figure 8(a,c,e)) and LR (Figure 8
(b,d,f)) models. The results of the LULC analysis
for the year 2035 (Table 5), based on the both
models, indicate the predicted values for various
LULC categories.

The results of the LULC analysis for the year
2035, based on the Markov Chain model, provide
valuable insights into the predicted distribution of
various land cover categories for each scenario.
Cropland, representing cultivated agricultural land,
is projected to cover 17,624.41 km? in the ECS
17,624.83 km?® in the NIS, and 17,622.19 km” in the
UDS. These values suggest relatively stable cropland
across the scenarios. Forest is estimated to occupy
37,996.27 km? in the ECS 37,996.18 km” in the NIS,
and 37,998.34km? in the UDS. Shrubland is pro-
jected to cover 6.67 km? in the ECS, 3.75km? in the
NIS, and 6.85 km” in the UDS. These values suggest
variability in the extent of shrubland, particularly
between the NIS and other scenarios. Grassland is
estimated to occupy 30.63km* in the ECS, 27.09
km? in the NIS, and 28.84 km? in the UDS. These
values indicate a potential decrease in grassland area,
particularly in the NIS. Water bodies, including
lakes, rivers, and reservoirs, are projected to cover
2,343.74km” in the ECS, 2,647.74km? in the NIS,
and 2,289.12km? in the UDS. Barren land is esti-
mated to occupy 15.42 km” in the ECS, 15.38 km” in
the NIS, and 15.41 km? in the UDS. These values
indicate a relatively stable extent of barren land
across the scenarios. Moreover, impervious surfaces,
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such as buildings, roads, and pavement, are pro-
jected to cover 8,084.03 km? in the ECS, 7,786.21
km? in the NIS, and 8,140.41 km? in the UDS.

Furthermore, the results of the LULC simulation
analysis using the LR model for various scenarios
suggest that the estimated area of cropland remains
relatively stable, with values of 17,644.14 km? in the
ECS 17,645.64 km” in the NIS, and 17,643.14 km? in
the UDS. Similarly, the forested areas show consis-
tency, occupying 37,608.52km” in the ECS
37,606.69 km® in the NIS, and 37,608.97 km” in the
UDS. However, the extent of shrubland exhibits
variability, with 6.87km” in the ECS, 2.06 km® in
the NIS, and 6.93km? in the UDS. Grassland
shows potential differences, with 30.39 km? in the
ECS, 24.80km” in the NIS, and 28.11km” in the
UDS, indicating minor changes. Water bodies are
projected to cover 2,343.77km’ in the ECS,
2,647.29km’ in the NIS, and 2,280.65km® in the
UDS. Barren land remains relatively stable, with
values of 20.04 km? in both the ECS and NIS, and
20.03km” in the UDS. Impervious surfaces, repre-
senting urban and developed areas, are estimated to
occupy 8,447.43km? in the ECS, 8,154.64 km” in the
NIS, and 8,513.34km” in the UDS.

A comparison between LR and MC models reveals
interesting differences (Table 5) for land cover projec-
tions. The LR model shows relatively consistent esti-
mates for cropland, forests, barren land, and
impervious surfaces across the scenarios. In contrast,
the MC model predicts slightly lower cropland areas in
the UDS and higher shrubland areas in the NIS com-
pared to the LR results. The LULC projections based
on the LR model show cropland area increasing by
1.32% to 1.44% across the scenarios, while forest area
is expected to decline by —2.87%. Shrubland is esti-
mated to decrease, with notable reductions of —3.38%
in the ECS and -71.03% in the NIS. Grassland area is
anticipated to decrease, with the largest decline of
-31.85% in the NIS. Water body area is projected to
decrease in the ECS (-11.47%) and UDS (-13.85%)
scenarios, while remaining stable in the NIS. Barren
land area is expected to see the most substantial reduc-
tion of —23.78% in the NIS, and impervious (built-up)
area is predicted to increase between 12.07% and 17%.
The MC model projections exhibited similar trends,
corroborating the expected changes in land cover
across the different categories and scenarios.

5. Discussion

5.1. Analysis of driving factors and their influence
on LULCC in GBA

The study utilized LEAS module within the PLUS
model to investigate the relationship between LULCC
and the driving factors behind them in GBA from 2010
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Figure 8. Spatial distribution of simulated LULC in 2035 under three scenarios developed for GBA based on Markov Chain (a, ¢, and
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Table 5. Predicted LULC areas (km?) in 2035 under different scenarios based on Linear Regression & Markov Chain model, and
percentage difference in LULC area between 2022-2035 for ECS, NIS, and UDS.

Model Scenario Cropland Forest Shrub Grassland Water Barren Impervious

Linear Regression ECS (km?) 17,644.14 37,608.52 6.87 30.39 2343.77 20.04 8447.43
ECS (%) 143 -2.87 -3.38 -16.48 -11.47 —-0.68 16.1
NIS (km?) 17,645.64 37,606.69 2.06 24.8 2647.29 20.04 8154.64
NIS (%) 1.44 -2.87 -71.03 -31.85 0.00 —0.68 12.07
UDS (km?) 17,643.14 37,608.97 6.93 28.11 2280.65 20.03 8513.34
UDS (%) 143 -2.87 -2.53 —22.75 -13.85 -0.73 17.00

Markov Chain ECS (km?) 17,624.41 37,996.27 6.67 30.63 2343.74 15.42 8084.03
ECS (%) 1.32 -1.87 -6.19 —15.82 -11.47 —23.58 1.1
NIS (km?) 17,624.83 37,996.18 3.75 27.09 2647.74 15.38 7786.21
NIS (%) 1.32 -1.87 —47.26 —25.55 0.02 -23.78 7.01
UDS (km?) 17,622.19 37,998.34 6.85 28.84 2289.12 15.41 8140.41
UDS (%) 1.31 -1.86 -3.66 —-20.74 -13.53 —23.63 11.88

to 2022 (Figure 7). Based on the analysis of the con-
tributing factors to changes in each land use class,
certain variables demonstrate relatively higher impor-
tance across multiple land use types. These variables
include population density, DEM, and GDP, which is
consistent with previous findings (Guo et al. 2023).

From the driving factors, population density
emerges as a significant factor influencing the changes
in cropland, forest, grassland, barren land, and imper-
vious surfaces. Higher population densities drive
urbanization and agricultural expansion, leading to
the conversion of natural land covers into impervious



surfaces. Furthermore, the significance of GDP for
certain land cover types, such as shrubland, grassland,
impervious surfaces, and water, suggests that eco-
nomic factors and development patterns play
a substantial role in shaping land use distribution. As
economic growth drives changes in land use, it is
crucial to integrate environmental considerations
into economic planning processes. This can be
achieved through the implementation of green infra-
structure initiatives, conservation programs, and
smart growth strategies which balance the economic
development with the environmental protection.
Moreover, the elevation of the terrain, as represented
by DEM, emerges as a critical factor influencing the
presence and extent of forest, shrubland, water, and
impervious surfaces. Areas with high elevations may
be more suitable for forest conservation, while low-
lying areas may be more prone to impervious surface
expansion, as previously observed by He et al. (2023).
Furthermore, this study highlights the varying
influence of environmental variables on land cover
patterns. Factors such as temperature, distance to pri-
mary roads, distance to expressways, distance to rail-
roads, and hotel distribution density exhibit moderate
importance in shaping LULC patterns. These variables
can be used to identify areas susceptible to specific
LULC types and guide targeted conservation efforts or
infrastructure planning. However, their overall influ-
ence is secondary to population density, economic
factors, and elevation. Therefore, a comprehensive
understanding of multiple factors is crucial for effec-
tive land use management based on promulgation.

5.2. Comparison of simulated LULC under
different land demands and scenarios

Comparison between LR and MC models reveals
important insights into the anticipated trends in
LULC categories. The results indicate an expected
increase in cropland area across all scenarios, empha-
sizing the significance of agricultural activities in the
region (Chen et al. 2023; Li et al. 2022; Li, Huang, et al.
2023; Wang, Cong, et al. 2021). However, both land
demand models predict a decline in forested areas,
raising concerns about the loss of forest cover and
the associated ecological services. Shrubland and
grassland areas are also projected to decrease, warrant-
ing attention to the conservation of these ecosystems.
While, the impervious surfaces, representing urban
and developed areas, are projected to increase in all
scenarios. This finding reflects the ongoing urbaniza-
tion and infrastructure development trends within the
GBA (Chen et al. 2023; Ding et al. 2022). Managing
the expansion of impervious surfaces is crucial to
minimize the environmental footprint of urban
areas, protect natural habitats, and enhance the overall
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sustainability of the region (Li, Li, et al. 2023). It was
revealed by Wang and Chen (2022) that if an eco-
nomic-first development model is adopted, the
ongoing urban expansion in GBA is projected to
have a substantial detrimental effect on ecosystem
services. It is estimated that by 2035, this development
trajectory could lead to a total loss of ecosystem service
values amounting to USD 28.1 billion.

The LR model generally showed more consistent
estimates across the scenarios, the MC model pre-
dicted slightly different distributions. These variations
highlight the inherent uncertainties and limitations
associated with LULCC modeling, as observed pre-
viously in a study by Li, Li, et al. (2023). Thus, it is
essential to consider these uncertainties when using
model outputs for decision making and to employ
a combination of modeling approaches to enhance
the accuracy of predictions.

While numerous studies have conducted multi-
scenario LULC simulations for GBA with different
perspectives and objectives, directly comparing the
quantitative results of these studies is challenging.
This is primarily due to the differences in the input
LULC datasets used, as well as the varying time peri-
ods considered for predictions. However, some gen-
eral insights can be drawn from a qualitative
comparison of the simulation results.

For instance, in contrast to a previous study (B.
Wang, Oguchi, and Liang 2023) which projected
a 42% expansion of the total urban area from 2020 to
2040 using MC model, our model estimates a more
modest 12% increase in impervious area from 2022 to
2035. This difference in the magnitude of projected
urban growth highlights the importance of aligning
land use simulation with the specific development
plans and policies outlined for the GBA region.
Additionally, the model projections indicate that
urban growth will be highly compacted, with
a tendency to spread along the current urban periph-
eries, resulting in the formation of high-density urban
clusters. The simulation results from the current study
indicate that forest, cropland, and grassland areas are
projected to show decreasing trends from 2022 to 2035
under various scenarios. This aligns with the findings of
a previous study over GBA by Wang and Chen (2022),
who also reported the declining trends for these LULC
from 2020 to 2035. Similarly, a recent habitat quality
simulation study (Wu, Wang, and Gou 2024) found
reductions in cultivated land, forest, and water bodies,
except for artificial surfaces which showed continuous
increase across multiple scenarios between 2020 and
2030. Another study that simulated urban expansion
under multiple scenarios between 2020-2025-2035 also
verified the decrease in ecological land cover (e.g. for-
ests and grasslands) and the increase in urban land, with
the extent of these changes dependent on the specific
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restrictions imposed during the modeling process (Liao
and Zhang 2023).

While the direct quantitative comparisons of litera-
ture may be limited, the overall directional trends
observed in these prior studies align with the findings
of the current research results. The current study’s
projections of declining forest, cropland, and grassland
areas, coupled with the increase in compact and high-
density urban expansion, corroborate the broader pat-
terns of land use change anticipated for the GBA region.
This also reinforces the need for comprehensive and
coordinated land use planning efforts to balance the
economic development and ecological conservation
objectives in the rapidly evolving GBA.

5.3. Policy implications on future LULCC in GBA

Policies play a crucial role in fostering overall develop-
ment of regions and countries (Setturu and
Ramachandra 2021). Examining the influence of
policy(s) on future LULCC is a significant aspect in
understanding the dynamics of development and envir-
onmental sustainability within the GHM-GBA. The
“Outline Development Plan for the Guangdong-Hong
Kong-Macao Greater Bay Area” served as the key policy
reference for designing the LULC simulation scenarios
in this study. This strategic framework aims to enhance
connectivity, innovation, and sustainable development
within the GBA region. Specifically, the plan promotes
the development of green and low-carbon cities, the
conservation of natural resources, and the preservation
of cultural heritage. It emphasizes the importance of
sustainable land use practices, urban planning, and
environmental protection in achieving a harmonious
and balanced development across the GBA.

While the policy objectives may have a significant
influence on future LULCC within the GBA core cities,
the plan also provides a comprehensive strategic vision
and guidelines for decision-making processes related to
economic development, innovation, urban growth,
infrastructure planning, and environmental manage-
ment. Various studies have explored the policy implica-
tions on future LULC patterns under different scenarios
in other regions (Jin et al. 2023; Wang, Liu, et al. 2023).

Drawing on the insights from the current LULC
simulations study, we propose the following policy
recommendations to guide the future land use trajec-
tories in the GBA:

(1) The projected increase in cropland area within
the GBA region suggests a need to focus on
sustainable agricultural development. This
trend may be driven by factors such as popula-
tion growth, rising demand for food, and the
region’s efforts to enhance food security.
Continued implementation of existing policies
and initiatives that support precision farming

techniques, water management strategies, and
agricultural diversification can help optimize
land use productivity while maintaining envir-
onmental sustainability. For instance, the pro-
motion of high-yielding crop varieties, improved
irrigation systems, and diversification into cash
crops and specialty agricultural products can
contribute to more efficient and ecologically
responsible use of the limited land resources in
the densely populated GBA. Encouraging the
adoption of advanced agricultural technologies
and promoting diversification of crop cultiva-
tion can further enhance the region’s agricul-
tural productivity and resilience.

While the forest coverage within the GBA
region appears relatively stable based on the
projections, it is important to prioritize forest
conservation and sustainable management.
This relative stability may be attributable to
the region’s existing policies and initiatives
aimed at protecting and managing its forest
resources. However, to maintain healthy forest
ecosystems, preserve biodiversity, and support
the GBA’s carbon neutrality goals by 2030, it is
crucial to implement robust forest protection
measures, promote afforestation and reforesta-
tion efforts, and strengthen overall conserva-
tion initiatives. This multi-pronged approach
can help ensure the long-term viability of the
GBA'’s forest resources, which play a critical
role in climate change mitigation, ecosystem
services, and the overall environmental well-
being of the region.

The potential decrease in grassland area, par-
ticularly under the NIS, raises significant con-
cerns about habitat loss and ecological
impacts in the GBA. The simulation results
indicate that the reductions in grassland cov-
erage occurred predominantly in areas transi-
tioning to croplands and shrubs, especially in
the suburban and peri-urban zones surround-
ing major metropolitan centers and urban
clusters. Several key factors appear to be driv-
ing this decline in grasslands. Firstly, the high
demand for land to support economic devel-
opment and agricultural expansion has led to
the conversion of grasslands to other more
intensive land uses (Qin, Wang, and Meng
2024). Secondly, the improved living stan-
dards and increased demand for meat and
dairy products in the region have resulted in
a larger number of farm animals and intensi-
fied grazing practices, which can potentially
reduce grassland coverage. To address this
issue, it is crucial to implement sustainable
land management practices, such as rotational
grazing regimes and the rehabilitation of



degraded grasslands. Adopting these strategies
can help maintain the ecological integrity of
the grassland ecosystems and mitigate the
negative impacts on biodiversity and habitat
quality within the GBA region.

(4) The projected increase and expansion of imper-
vious surfaces signify major urban develop-
ments. For instance, the reference policy
document puts emphasis on expediting infra-
structural connectivity, including enhancing the
international competitiveness of the seaport and
airport clusters, and building a rapid transport
network in the GBA. This may cause conversion
of other LULCs into impervious class, which
again may have negative impacts such as urban
heat islands, traffic congestion, poor air quality
and more. Thus, it is necessary to adopt sustain-
able urban planning practices to minimize the
environmental impact of urbanization. The
GHM-GBA should incorporate some modern
interventions, also suggested in the relevant pol-
icy documents for promotion of green infra-
structure, green spaces within urban areas, and
implementation of smart growth principles to
ensure efficient land use and to reduce the eco-
logical footprint of urban development.

These policy recommendations revolve around pro-
moting sustainable land management practices, conser-
vation efforts, and integrated development strategies for
the GBA region. Striking the right balance between
economic progress and environmental protection is
crucial for achieving long-term sustainability and resi-
lience. By closely aligning the LULC simulation results
with the region’s development plans, policymakers can
make more informed decisions and develop
a comprehensive spatial planning framework.

5.4. Uncertainty analysis and limitations

A significant source of uncertainty in the current study
arises from input data, particularly remote sensing
images. Atmospheric conditions and sensor calibration
introduce variability, especially the cloud effect, which
alters reflectance values, potentially leading to classifi-
cation errors in the final LULC product. Additionally,
model selection plays a vital role, as different modeling
approaches can yield varying outcomes due to unique
assumptions and structures. For instance, linear models
might oversimplify complex relationships, while more
sophisticated models risk overfitting the data. Likewise,
uncertainty surrounding model parameters and pre-
dicted classes needs careful examination; variations in
parameter settings can impact model performance,
while classification algorithms often yield probabilistic
outputs that may misclassify due to pixel heterogeneity.
Another layer of uncertainty stems from the coarse
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resolution of some socio-economic parameters such as
GDP and population, which may not fully capture local
variations and context-specific factors critical for accu-
rately assessing LULCC.

A major shortcoming of the current study, however, is
the lack of consideration for future climate change sce-
narios and their potential impacts on regional LULC
patterns. To address this limitation, it is suggested that
future research incorporate RCPs (Representative
Concentration Pathways) projections to deepen the
understanding of how climate-driven factors may shape
the land use trajectories of the GBA in the years to come.

6. Conclusions

This study analyzed the CLCD LULC patterns and
projected future changes in the GHM-GBA, based on
the policy “Outline Development Plan for the GHM-
GBA” for 2035. To achieve the objectives, we
employed PLUS model to simulate LULCCs under
three different scenarios, including ECS, NIS, and
UDS, and considered eighteen driving factors (histor-
ical and recent) from various categories.

The analysis of LULC dynamics from 2010-2022
reveals important trends, indicating an expansion of
cropland (1.38%), suggesting stable agricultural prac-
tices. However, concerns arise from the decline in for-
est, grassland and shrubland areas, which raises issues
of habitat loss and biodiversity impacts in GBA. The
impervious class showed the highest positive change in
percentage area from 2010-2022 (13%), attributed to
urbanization, which raises concerns about land frag-
mentation and habitat loss, necessitating sustainable
urban planning to mitigate these impacts. Moreover,
the results for LULC simulation for 2035 suggest that
the Trial#2 demonstrated a significant improvement in
performance compared to Trial#1, where the RF trees
were increased, and the thread value was reduced to
improve the accuracy ( > 90%). These findings highlight
the importance of carefully selecting parameters and
fine-tuning the model to meet the best possible results.

The comparative exploration of the simulated
LULC under multiple scenarios in 2035, based on
Markov Chain and Linear Regression revealed simila-
rities in their projections. There is a small increase in
croplands of around 1.32% to 1.43%, indicating
ongoing agricultural expansion. However, they also
forecast considerable declines in forests (—2.87% to —
3.38%), grasslands (-16.48% to —31.85%), and water
bodies (—11.47% according to both). Notably, the
Markov Chain model predicts a dramatic 71.03%
reduction in shrublands. Meanwhile, urban areas
may rise substantially by 11% to 16% based on model-
ing results. These changes underscore both develop-
ment pressures and threats to critical ecosystems. If
unaddressed, such transformations could negatively
impact habitat, biodiversity, and ecosystem services.
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The findings emphasize the need for sustainable plan-
ning and governance to help guide LULC dynamics
and promote more effective resource management.

A key contribution of this study is the comprehensive
consideration of eighteen driving factors from various
categories for two-time intervals (historical and recent).
This multifaceted approach represents a significant
advancement compared to previous LULC simulation
studies in the GBA, which have typically relied only on
the factors using recent data. Importantly, the inclusion
of both historical and contemporary data for these driv-
ing variables provided a robust foundation for the mod-
eling framework, enhancing its ability to accurately
simulate future LULCCs. In future, it is recommended
to couple the PLUS model with Multi-Objective
Programming (MOP) techniques to predict the future
economic implications of LULC under different scenar-
ios. These quantitative insights would be invaluable for
policymakers in charting the future development goals
and priorities for the GHM-GBA region.
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