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ABSTRACT

The pedestrian tracking and motion detection system (P-TMDS) using distributed inertial
sensors has broad application potential toward many emerging fields, such as motion tracking,
emergency rescue, and others, due to its advanced autonomous navigation capabilities under
signal-denied scenarios. The performance of current P-TMDS is constrained by the cumulative
error of low-cost sensors, low accuracy of human motion detection, and lack of effective multi-
sensor integration algorithms. This paper proposes a motion-constrained P-TMDS based on the
adaptive integration of distributed inertial sensors and ultrasonic ranging (MP-TMDS). An
enhanced position-attitude update algorithm is developed for the single-sensor module,
which integrates the inertial navigation system (INS) mechanization with multi-level constraints
and observations. In addition, a bi-directional long short-term memory (Bi-LSTM) structure is
adopted to detect the outlier in ultrasonic ranging results and provide accurate distance
observations for dual sensor module-based positioning systems. For the overall MP-TMDS,
the measurements provided by distributed sensor modules and ultrasonic ranging are adopted
as the input vector of designed spatial-temporal network training for human motion detection
and walking speed estimation, and the detected human motion modes are further applied as
the constraints for multi-module position-attitude update. Finally, an enhanced data and
model dual-driven structure is proposed to adaptively integrate motion features acquired
from distributed sensor modules and results of velocity and motion detection provided by
spatial-temporal network. Real-world experiments in complex scenes represent that the
developed MP-TMDS effectively increases the precision of traditional P-TMDS and outperforms
existing algorithms under both positioning and motion detection accuracy indexes, and the
estimated accuracy improvement is more than 18.4% compared with state-of-the-art
algorithms.
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1. Introduction (Chen et al. 2021a), and micro-electromechanical sys-

Accurate human tracking and motion detection sys-
tem (P-TMDS) holds significant potential for applica-
tions in numerous emerging fields under urban spaces
where the global navigation satellite system (GNSS) is
unavailable. Examples of these fields include intelli-
gent elderly care (Qian et al. 2021), emergency
response (Zhu et al. 2020), and activity surveillance
(Chen, Zhu, and Hammad 2020).

At present, P-TMDS can be realized in two ways:
external equipment-supported location systems and
independent positioning systems, both of which are
widely applied. Especially, for equipment-supported
positioning systems, technologies such as Wi-Fi (Yu
et al. 2022), Bluetooth (Sun et al. 2021), ultra-wide-
band (UWB) (Barbieri et al. 2021), sound source (Liu
et al. 2024), the 5th generation mobile networks (5G)

tem (MEMS) sensors (Shi et al. 2022) are commonly
used. These technologies provide the public available
access to location accuracy from the level of centi-
meters to room-scale accuracy. However, these posi-
tioning systems come with certain constraints.
Additional stations are usually required to establish
fingerprinting databases or receive wireless observa-
tions and are greatly influenced by dynamic and com-
plex urban environments and artificial magnetic
interference. Especially under extremely difficult
underground or indoor conditions, without enough
deployed local stations and supporting facilities, the
mentioned approaches cannot achieve efficient and
precise indoor positioning. Therefore, they need to
be integrated with existing independent location
sources to enhance positioning accuracy.
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Independent localization systems usually consist of
sequence matching that uses acquired magnetic vec-
tors (Kuang et al. 2022), simultaneous localization and
mapping (SLAM) (Bao et al. 2022), and multiple
source integration (Yu et al. 2023). In this scenario,
sequence matching is achieved based on the similarity
calculation of magnetic properties between the gath-
ered vector and the reference vector in the database,
eliminating the requirement for extra stations.
However, at this stage, the frameworks of magnetic
matching algorithms necessitate the length of the
acquired magnetic sequence and are affected by arti-
ficial interference in complex indoor environments
(Zhang et al. 2023). In some cases where the magnetic
characteristics are not obvious, for instance, long cor-
ridors and tunnels, the accuracy of magnetic matching
would decrease due to the lack of useful features.
Furthermore, visual-based positioning structures are
influenced by light change and movement modes,
which also leads to the decrease in localization preci-
sion (Qin, Li, and Shen 2018). Another effective
approach is the distributed built-in sensor positioning
systems, by deploying sensor modules into different
human body parts, including feet, waist, arms, head,
and thigh, to extract comprehensive motion features
from the whole pedestrian body and is usually applied
in signal-denied areas.

At present, the built-in sensor-based positioning
system generally includes two location cumulating
approaches: pedestrian dead reckoning (PDR)
(Mehrabian and Ravanmehr 2023) and inertial navi-
gation system (INS) (Wu, Kuang, and Niu 2022). The
PDR mechanization is made up of four phases: stride
recognition, stride-length estimation, heading calcula-
tion, and location accumulation. However, a drawback
of the PDR mechanization is that the accuracy of the
final updated position is influenced by the changeable
deployment mode of sensor modules and individual’s
movement characteristics. Unlike PDR mechaniza-
tion, INS mechanization is robust to complex motion
and handheld modes but is constrained by the fast
divergence positioning error.

For applications involving human positioning and
motion detection, the distributed built-in sensor-
based structure can be classified into a single-mod-
ule-based approach and multi-module-based
approach. Single-module-based approaches typically
include foot-mounted positioning systems (FPS) and
waist-mounted positioning systems (WPS) that can
acquire human motion and location information by
only one deployed sensor module. The problem with a
single-module-based approach is that the single mod-
ule cannot effectively represent the full body move-
ment characteristics of a user, and its accuracy is also
constrained by cumulative errors, for example, sys-
tematic heading error and rough velocity estimation
results (Qi et al. 2023). Aiming at the existing

challenges of the single-module-based approach, the
dual-module-based approach is developed to reduce
the systematic heading deviation, and ultrasonic ran-
ging between two feet is also applied to provide more
accurate velocity estimation results. Niu et al. (2019)
presented that a dual foot-mounted positioning sys-
tem (D-FPS) does not contain ultrasonic observations
to improve the performance of a single-module-based
approach, which uses multiple observations and con-
straints to constrain the effects of systematic heading
deviations and inaccurate velocity calculations. Zhu,
Wu, and Luo (2021) further integrated the ultrasonic
distance measurement results with D-FPS and pro-
vided an enhanced multi-source fusion structure to
provide accurate walking speed estimation and loca-
tion update performance.

Furthermore, the combination of FPS modules
with WPS modules is able to realize a more com-
prehensive representation of human motion, and
the cooperation of distributed modules can yield
more motion-related features and enhance the
accuracy of heading and moving velocity calcula-
tions. Yu et al. (2019) compared the positioning
accuracy and robustness using different modules
including FPS, WPS, and smartphones, and various
advanced filters were used for multi-source integra-
tion. Based on extensive experiments, the waist-
mounted method achieves greater precision than
the existing methods, and different route paths
significantly affect the positioning performance.
Qiu et al. (2022) developed a motion tracking sys-
tem that contains 15 sensor modules to detect the
user’s motion and position based on the proposed
unconstrained traversal algorithm, and gradient
descent optimization is used for sensor integration,
significantly handling error divergence. The disad-
vantage of the existing multi-sensor node position-
ing system is that it cannot effectively mine the
constraint relationships between different nodes to
cope with complex and disturbed positioning envir-
onments, making it difficult to effectively control
speed estimation and heading drift errors.

To improve the accuracy of distributed sensor
module-based positioning systems, this paper intro-
duces a motion-constrained P-TMDS that merges a
wearable sensor network with ultrasonic ranging (MP-
TMDS). This system can preserve positioning accu-
racy in the face of complex pedestrian motion patterns
and magnetic disturbances in challenging environ-
ments. The innovations of this paper are outlined as
follows:

(1) This article extracts multi-level constraints and
observations to eradicate the cumulative error
caused by low-cost sensor-based INS mechan-
ization. This method independently calculates
and compensates for the bias of inertial sensors



using extracted motion features, thereby pre-
serving the accuracy of the single inertial sensor
module under long navigation terms.

(2) This article presents a novel dual-module-based
position-attitude estimation structure that
adaptively merges ultrasonic ranging results
and dual-sensor modules. This structure
includes a Bi-LSTM-based outlier detector for
ultrasonic ranging and an enhanced ellipsoid
constraint model for sensor fusion and posi-
tion-attitude updates.

(3) This article develops a hybrid spatial-temporal
network for human walking velocity prediction
and motion detection. This method considers
and extracts complex motion features provided
by distributed sensor modules and ultrasonic
ranging and effectively improves the perfor-
mance of walking speed prediction under dif-
ferent motion modes.

(4) This article introduces a robust data and model
dual-driven model (DMDD) that autonomously
combines motion data originated from distrib-
uted sensor modules and velocity and motion
detection results provided by the spatial-tem-
poral model. Multi-level constraints and obser-
vations are derived and modeled for improving
the accuracy of the whole MP-TMDS structure.

The layout of our paper is organized as follows:
Section 2 introduces the single- and dual-module-
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based positioning algorithms. Section 3 presents the
spatial-temporal network-based speed and motion
prediction and the overall distributed sensor module-
based position-attitude estimation structure. Section
4conducts extensive experiments to validate the pre-
sented MP-TMDS.

2. Single- and dual-module-based position-
attitude estimator

This part introduces the single-module- and dual
sensor-module-based positioning frameworks con-
tinuously, in which the single-module positioning
system (S-MPS) includes the existing FPS and
WPS, while the dual-module-based positioning
system (D-MPS) combines two single S-NPSs
with ultrasonic ranging modules together for
advanced positioning performance. Finally, the
overall framework of the proposed MP-TMDS sys-
tem, which amalgamates three different sensor
modules and ultrasonic ranging modules, is
described in Figure 1.

2.1. Single-module-based position-attitude
estimator

This section proposes a robust single sensor-module-
based position-attitude estimator, which can adapt
both FPS and WPS by using multi-level constraints
and observations to eliminate the cumulative error

I
I
I
I
I
I
I
I
I
I
I
3D PVA [
I
I
I
I
I
I
I
I
I
I

——
| Floor Inderxes| MP-TMDS

_______________ d



4 L QIETAL.

originating from inertial sensors. In the single mod-
ule-based position-attitude estimator, the INS
mechanization is adopted as the basic model for 3D
position and attitude update (Qi et al. 2023):

pn wfl,vn
V= | Cift = (2w wp,) x V' T (1)
o Cp(whx) = (whx)Cp

where p" =[¢ A h]" indicates the pedestrian’s
real-time 3D location (latitude, longitude, and height);

VVI

= [vy vg vp]Trepresents the 3D velocity; C;
indicates the rotation matrix between body coordinate
system and navigation coordinate system; g” indicates
the local gravity value; w!, represents the rotation
angular rate between the e-frame and i-frame; w?,
indicates the rotation angular rate between the naviga-
tion coordinate system and the ECEF coordinate sys-
tem; w0 ! indicates a 3 x 3 matrix related to the
latitude py and the ellipsoidal height & of the moving
object.

The Earth rotation-related indicators wf, and !,
are able to be omitted due to the high noise level of
MEMS sensors, and the simplified state update equa-

tion is described as (Niu et al. 2019):

Op" = —w! X 6p" + V"

8V = — (2wl + @ )0V + f" X Y + C}€a + Wha)
¥ = — (0 + @) x ¥ — (g + wig)

& = &g/ Tpg + Wig

éu = Su/Tbu + W

)

where §p”, 6v", and y indicate state error values; &,
and ¢, indicate the biases of gyroscope and acceler-
ometer, respectively; f" represents the acquired local
gravity vector; wy, and wy, represent the noises of
sensor measurements.

The state vector of INS mechanization is
extracted as:

OX = [(6p")1xs (8v")145 (€a)15c3]

©)
For the foot-mounted positioning system, the

quasi-static (QS) periods can be detected and applied
for ZUPT update:

(sg)l><3

1¢/1><3

0Z) = Ving — Voo = V' + 1, (4)

where v}y indicates the INS mechanization provided
velocity vector; v, =1[0 0 0]" indicates the zero-

ero

constrained vector. Since ZUPT is unable to constrain

the heading drift among QS periods, and ZARU is

further proposed for heading alignment (Zhang et al.
2023):

6Zg = Ojys — 0,

refer

=00+ ng (5)

where 0} indicates the INS provided heading infor-

mation, 0, indicates the reference heading

observation under the recognized QS phase, and ng
indicates the Gaussian white noise.

For the low-cost sensor-based INS mechanization,
the PDR provided gait-length feature is modeled to
constrain the drift error of position-attitude update
(Qi et al. 2023):

Vepr = [MDEHO 0 0} (6)

where a, represents the PDR originated step-length. y,
and y,, indicate the start and end timestamps of one
recognized step period, respectively, and then the PDR
updated 2D position is also adopted as one position
observation:

T it Jt cos(6k) ]
Pl=|11|+ Vepr(k)| . dkc (7
R KR R RG] e R
where 7, and 7} represent the PDR provided 2D posi-

tion observation; 0y is the INS mechanization pro-
vided heading value.

The overall observation model of PDR
mechanization:
8Zv = Vpdr — VS—NPS (8)
0Z, = Ppar — Ps_nps

where v, and Py, represent the 3D location and
velocity provided by PDR mechanization, respectively;
vs_nps and Ps_yps indicate the 3D location and velo-
city provided by INS mechanization, respectively.

To improve the accuracy of positioning, this paper
employs the straightline (SL) constraint to minimize
the drift error typically observed in conventional walk-
ing trajectories (Niu et al. 2021). Additionally, the
heading observation derived from successive step
intervals is utilized for the identification of SL
movement.

1, max{|6® — mean(6°)|} <Ti
L= {0,others ©)

{ 95 = {9Sm747 6;,73’ te Qsm}

J— n n n
g, = atan2(ry7m — Tt Tem

Ly (0

x,m—1

where (r} .1, ,,) indicates the m-th gait location pro-

vided by S-MPS; if L, = 1, the SL constraint can be
modeled as:

Hsm — 6Sm—4

=0
At [ 1x13

+ &y

secOsing secfcos|X;

(11)

where 6 and ¢ indicate the roll and pitch measure-
ments calculated by S-NPS; ¢, indicates the measure-
ment error.

Compared with FPS, the WPS integrates more
MEMS sensors, such as magnetometers and barom-
eters, and is necessitated by the inherently rich



features extracted from the motion data they collect,
in contrast to the data from foot-mounted position-
ing systems. As a result, the system leverages the
constraint of magnetic vector, stair-originated
height, and barometer-derived altitude measure-
ments. The magnetic feature constraint is specifically
articulated in Equation (34) within the final MP-
TMDS.

In complex 3D environments that encompass mul-
tiple levels, the estimation of altitude is of paramount
importance, particularly when tracking pedestrian
movement on staircases. This study adopts stair-
extracted altitude observations, which are carefully
modeled to decrease the altitude update error inherent
in S-MPS:

0Z = hytair — hs—_mps (12)

where hy,;, is the altitude observation originating from
stair observations; hs_yps indicates the S-MPS origi-
nating height information.

Although the accuracy of attitude determination via
the S-MPS is prone to rapid error accumulation, the
waist-mounted positioning system mitigates this issue
by incorporating an altitude constraint derived from
barometric readings for effective divergence error
control (Shi et al. 2022):

oz = hy — " (13)

where hj is the barometer-originated altitude infor-
mation, h7 is the height information provided by
S-MPS

2.2. Dual-module-based position-attitude
estimator

As elucidated in the previous section, the S-MPS typi-
cally integrates the INS mechanization and the QS
detection results and employs multi-tiered constraints
for ZUPT/ZARU and the SL observation.
Nevertheless, the challenge of effectively mitigating
the inherent systematic heading deviation associated
with the S-MPS necessitates the development of the D-
MPS. This system is specifically engineered to mini-
mize the systematic deviation when deploying S-MPS.
The presented D-NPS encompasses three distinct
multi-source fusion structures of the S-MPS. The fun-
damental state vector of the D-MPS is constructed
using a dual-subsystem approach, which encompasses
different FPSs:

XAl — [X(Ol) X(OZ)} (14)

where X" and X(®? indicate state vectors of single
foot-mounted S-MPS, and the state update equation is
described as:

6X,A” = Fi—18Xﬁll + Giflw?flll (15)
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where w indicates noise vectors which follow the
Gaussian distribution; F;_; indicates the augmented
state matrix, and G;_, indicates the augmented noise
gain matrix.

In this paper, the Bi-directional Long Short-Term
Memory (Bi-LSTM) structure (Pham and Suh 2021) is
utilized for outlier detection of ultrasonic ranging
results between two feet. The input vector of the Bi-
LSTM network is extracted based on the combined
motion and ranging information provided by sensors
and ultrasonic modules, and the input features of Bi-
LSTM are extracted as:

(1) Quasi-static (QS) indexes k; of dual foot-
mounted modules provided by 1D-CNN.

(2) Distance measurement results Df calculated by
the dual foot-mounted modules.

(3) Distance measurement difference ADiS calcu-
lated by the dual foot-mounted modules.

(4) Distance measurement results D,-U calculated by
the dual foot-mounted modules.

(5) Distance measurement difference ADiU pro-
vided by the ultrasonic module.

(6) Residual w = }Df - DiU’ between ultrasonic
and sensor modules based ranging results.

(7) Walking speed V; estimated by the waist-
mounted module.

Subsequently, the output features of the presented Bi-
LSTM are utilized as the input features for the MLP
network, and the reference ultrasonic outlier detection
result is designated as the output vector:

v, = MLP(ht) (16)

where vy, represents the ultrasonic outlier detection
result with the classification of 0 and 1.

Subsequently, the ultrasonic distance measurement
results are utilized as one of the multi-level constraints
in conjunction with the positions of FPS modules to
reduce the systematic heading deviation. Initially, for
the D-MPS, the observation model is formulated as
follows (Qi et al. 2022):

0Z = DFPS - Dultm (17)

where Z denotes the discrepancy between the distance
measured by ultrasonic signals and the S-MPS for the
different feet. An analysis of the D-MPS step dynamics
reveals that the inter-foot distance is a variable and can
be defined as follows:

Drps = HX; + w; (18)

H=[L 0312 —L 03] (19)

In the multi-source fusion step, the ultrasonic out-
lier detector is employed to recognize and eliminate
captured abnormal values to enhance the raw
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measurements. This procedure aids in maintaining the
positioning accuracy of D-MPS.

3. Motion-constrained pedestrian tracking
system

In this section, the subsystems of WPS and FPS mod-
ules are combined for more accurate recognition of
pedestrian motion modes and positions. A hybrid
deep-learning model is suggested for simultaneous
walking speed estimation and human motion detec-
tion, utilizing the information provided by sensor
nodes and ultrasonic modules. Furthermore, a data
and model dual-driven structure is developed for
adaptive integration of distributed modules. The
structure of the MP-TMDS is illustrated in Figure 2:

3.1. Hybrid human motion and walking speed
estimator

The efficacy of S-MPS is subjected to the intricacies of
user motion and the accumulation of errors. To
address these challenges, this part introduces a novel

Sensdrs Node 1:

qp

Ultrasonic Node:

Figure 2. Hardware deployment of proposed MP-TMDS.

spatial-temporal-based estimator for motion and
walking speed. The designed spatial-temporal model
comprehensively combines LSTM and GCN networks
and considers both spatial and temporal features
extracted from the sensor-originated motion data.
This estimator synergizes features extracted from var-
ious nodes to accurately determine human motion
modes and provide a reliable reference for walking
speed. Unlike the instantaneous models explored in
prior research, this part develops a hybrid deep-learn-
ing framework for walking speed estimation. This
framework considers motion features derived from a
period of motion and ultrasonic ranging data outputs
from distributed sensor modules. The architecture of
the designed spatial-temporal network is illustrated in
Figure 3.

Figure 3 presents the basic model of the proposed
spatial-temporal network. For the temporal part, we
mainly use the LSTM backbone for feature extraction.
Specifically, we define the state at each time point as
X € R/, where f is the dimension of features, and ¢ is
the number of time steps. The LSTM contains a cell
state C; and a hidden state H;. At each round ¢, the

Waist-mounted

Foot-mounted

\ Temporal dependency \
i Motion
attention map
o
Features ﬁ_F
\ Temporal moduly
- Concat
;" h PY
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— We R ﬁ
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Figure 3. Structure of the spatial-temporal model.




LSTM takes input x; and previous hidden state H;_;
and then updates the states as:

iy = 0(Wyix; + WyiH; 1 + WGy + b;)

ﬁ = (T(foxt + thHtfl + chct,l + bf)

Ci = freCi_y + ir e tanh(Wyex, + Wy Hy—y + b.)
0y = G(onxt + WhoHt—l + Wcoct + bo)

H; = o, e tanh(C;)

(20)

where o is the sigmoid function, and e denotes ele-
ment-wise multiplication. The LSTM can capture
long-term dependencies and model the temporal
dynamics in the sequence.

For the spatial part, we mainly use the graph neural
network to extract features. Specifically, we define the
spatial information as a graph G = (V, A), where V is
the feature of nodes, i.e. the positions, and A € R"*" is
the set of edges for describing the relationship between
the positions at each time step. However, in real situa-
tions, it is difficult to describe the relationship between
various locations by a fixed matrix, so here, we use a
matrix A that can be learned to describe the spatial
relationships at different timestamps. The graph con-
volutional network (GCN) is a state-of-the-art
(SOTA) graph neural network that can extract features

from graph-structured data. The output H*! € R"*/
of the I'" layer of GCN is computed as:

H'*™' = o(AV'WY) (21)

where A=D'?2AD ' A=A+1,D; = Zinj’
W' is the weight matrix, and ¢ is the activation func-
tion. By stacking multiple graph convolution layers,
the network can aggregate spatial features from a
node’s wider neighborhood. The graph structure pro-
vides an explicit model for capturing interactions
between spatial entities.

After extracting the spatial and temporal features,
we use the fusion module to fuse these features.
Specifically, we employ the attention mechanism to
fuse the features in a learnable way. The attention
mechanism is a popular method for learning the rela-
tionship between different features. Denote the com-
bined features as X, € R”X<d1+d2), where N is the
number of spatial units, and d, and d, are the feature
dimensions of the outputs. The self-attention mechan-
ism learns a soft alignment between each pair of spa-
tial and temporal features, capturing the relevance
between them. Formally, the output of self-attention
mechanism Z is computed as:

T
Z = soft max(Qi)V (22)
Vg
where Q = X. W K = X, WK, vV = X. WV, with w9,
WK, and wV being the learnable parameters of the
query, key, and value, and dy is the dimension of the
key vectors.
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To achieve better performance of simultaneous
human motion detection and walking speed predic-
tion, the following features are calculated based on the
extracted motion features of sensors and ultrasonic
modules, in which the following motion modes are
considered during the model training, prediction, and
multi-source fusion phases: static, typical walking,
running, backward walking, lateral walking, go up/
downstairs, and taking elevator. The input values for
the proposed spatial-temporal network are shown as:

1) Collected 3-axis acceleration data ay, a,, a., and
related norms of acquired acceleration vectors
extracted from all the foot-mounted and waist-
mounted modules:

Normge, = y/a*> + a,® + a;? (23)

2) Collected 3-axis angular rate data g,, g, g, and
related norms of acquired gyroscope data extracted
from all the foot-mounted and waist-mounted

modules:
Nortigyr, = 4 /g +gy2 + g2 (24)

(1) Variances of calculated norms of acceleration
and angular rate vectors o> and ¢>.

(2) The barometer-originated altitude change value
Ahj provided by waist-mounted module (Qi et
al. 2022).

(3) Foot-mounted modules provided velocity
values v; and v,.

(4) Distance measurement result u; originated
from ultrasonic ranging.

(5) Distance measurement difference u, originated
from ultrasonic ranging.

(6) Walking velocity value provided by the WPS
module using the linear step-length equation:

«-[0.7 + B(H — 1.75) + ¢ - L1720

L= 25
| p— (25)

in which «, 8, ¢ are the human body characteristics, F;
is the gait frequency, and H is the height information.

9) Walking velocity values provided by the WPS
module using the nonlinear step-length equation:

L =Ky Amax - Amin (26)

where An.x and A, indicate the detected peak and
valley values of accelerometer data in one gait phase,
and K is the scale parameters.

10) Updated frequency F; of gait-length provided
by the WPS module.

The output dimension of the developed motion and
walking speed estimator contains 1D walking speed
prediction results and types of human motion modes
described by the number indexes from 0 to 7, consid-
ering the impact of complex pedestrian motion modes
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on the walking speed estimation. Hence, the presented
spatial-temporal network efficiently integrates the
influence of complex human motio, and feedback
motion features into the estimated human velocity,
which is further applied as a constraint vector in the
final DMDD structure.

3.2. Data and model dual-driven based fusion
structurer

This section proposes a novel DMDD structure, taking
into account the human motion features extracted
from hybrid sensor modules, the ultrasonic ranging
module, magnetic reference, and the output of the
spatial-temporal model. This structure achieves an
adaptive combination of indoor positioning using dis-
tributed MEMS sensor modules. The overall state vec-
tor of the proposed MP-TMDS, which includes three
different sensor node-based subsystems, is modeled as
follows (Zhu, Wu, and Luo 2021):

Xfub ] (27)

where X!, and X2, are state vectors of foot-mounted
modules; X7, is the state vector of waist-mounted
modules. The overall state vector of each subsystem
contains state values with dimension of 16:

XZ

sub

XAll — [Xl

sub

), (W ]
(28)

‘SX;ub: (60")1x3 (V")1xs Pixs

where 8p", 6v" and ¢ represent the state error of 3D
position, walking velocity, and attitude, respectively;
&g, V4, and by, represent related biases of the gyroscope,
accelerometer, and barometer, respectively.

The low-cost sensor-based INS mechanization is sub-
jected to cumulative and divergence errors, making it
unsuitable for standalone applications. In the proposed
DMDD structure, an unscented Kalman filter (UKF) is
ultimately employed in the data integration process.
Multi-level observations and constraints, which can
depict the overall motion characteristics and relation-
ships between different sensors and ultrasonic modules,
are extracted and modeled as the observation equation:

1) The spatial-temporal (ST) model predicted
motion-related walking speed reference is utilized as
the first-level observation:

N __
{SZV = Vor — V.

n n n 29
SZPZPST_pINS (25)

where v{; and pg, represent the ST model output
speed and location information, respectively, v - and
p are the INS originated walking speed and location
information, respectively.

2) To lessen the effects of the influenced magnetic
field, this paper utilizes the magnetic observation vec-
tor of the WPS module from the identified quasi-static

magnetic field (QSMF) to calibrate the heading error
(Sun et al. 2021):

no_ b b b b
6z, =C gome— G omyg

n

(30)

where Cﬁ,p Cﬁlk, m?, and mzl represent the attitude
matrix and magnetic field vector extracted from the
first epoch of QSMF periods and other epochs,
respectively.

3) In this paper, a height-related zero-velocity
update method (H-ZUPT) is presented to eradicate
the altitude estimation drift, in which the bias of the
barometer is modeled as a random walk procedure,
and the state update equation is formulated as (Qi et

al. 2022):
bh — a bh + Up,

where wy, is the noise of acquired altitude; 7;, and vy,
are the correlation time and the driving noise of the
random walk process, respectively. When the height-
related QS periods are detected, the observation equa-
tion of H-ZUPT is modeled as:

(31)

h— by = Oh + by + ny, (32)

where ; indicates the barometer originated altitude; ho
indicates the first epoch of height-related QS phases.

4) Considering that the SL constraint is used to
restrict the drift error when the pedestrian walks
straight forward, and the heading observations calcu-
lated by adjacent step phases provided by S-MPS sub-
systems are further integrated into the final DMDD
for enhanced straightline recognition:

— l,max{ew - mean(@f)} <Ty
0, others

Lg (33)

where 6" and ¢ indicate the reference heading provided
by waist-mounted and foot-mounted modules,
respectively.

5) In this research, taking into account the relation-
ship between different sensors and ultrasonic mod-
ules, the hybrid maximum and minimum ranging
distance observations provided by various S-MPSs,
and ultrasonic ranging are modeled as constraints to
improve positioning accuracy. Assuming that the sen-
sor module originated distances R; and R, represent
the distances between different sensor modules, and
D, jrq represents the ultrasonic ranging, the minimum
distance among the three modules is modeled as:

6Zmin =Ry + Ry — Dyjtra (34)

In typical walking scenarios, the calculated dis-
tances provided by ultrasonic ranging and sensor
modules are equal.

For outlier instances in ultrasonic ranging, the non-
light-of-sight (NLOS) effect is incorporated into the



distance observations based on ultrasonic ranging. Hence,
for the maximum distance, the ranging result among foot-
mounted modules is utilized as the reference distance
value, amalgamated with a control factor to offset the initial
bias between step length and calculated distance:

6Zmax = Rl + R2 - DFPS + 60 (35)

To sum up, in the ultimate DMDD-amplified MP-
TMDS, to integrate all the movement attributes offered
by various nodes and take into account the limiting con-
nection between different sensor nodes, the subsequent
actions are implemented. Initially, INS mechanization is
utilized as the core location-attitude update algorithm,
with the error measurements of three different sensor
modules modeled as the overall state vector of MP-
TMDS. Subsequently, to effectively decrease the cumula-
tive error of the overall system, observations and con-
straints derived from distributed sensor modules and
pedestrian movement data are employed, aiming at com-
prehensive pedestrian movement constraint features.
These encompass the ST network predicted movement
modes and walking velocity, QSMF, H-ZUPT, enhanced
SL, and minimum and maximum distance observations.

4. Experimental results

In this section, extensive experiments are carried out to
validate the accuracy of the presented S-NPS, D-NPS, and
the comprehensive MP-TMDS. Three distinct seamless
scenarios are selected as the real-world test sites, and
comparative tests are conducted alongside SOTA meth-
ods and frameworks. In the experiments, distributed
sensor modules are placed on different feet and waist
parts of the human body, as depicted in Figure 4 (Qi et
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al. 2024), and all the sensor and ultrasonic data acquired
from dual foot-mounted modules are sent to the waist-
mounted module using wired transmission method for
time synchronization. The precision specifications of the
MEMS sensors incorporated within the S-NPS are
detailed in Table 1.

4.1. Accuracy evaluation of S-MPS

In this paper, multi-level constrains and observa-
tions are applied to decrease the drift error inher-
ent in the INS mechanization utilized within the
S-NPS. To assess the efficacy of this approach, an
archetypal indoor environment, comprising a hall-
way and office space, is selected as the testing
ground. Additionally, a publicly available dataset,
collected within a three-dimensional office build-
ing, is used to compare the performance of var-
ious algorithms under identical conditions. The
pedestrian traversed the designated offices and
hallways for a period of 15min (Website: http://
www.i2nav.com/index/newListDetail zw.do?news
kind_id=13a8654e060c40c69e5f3d4c13069078&ne
winfo_id=c54efa006a33426d991235801b427f6d).
The inertial module used in the experiment and
the different test scenarios are depicted in Figure
5. The calibrated biases for the gyroscope and
accelerometer are illustrated in Figure 6. The
final positioning precision and the associated
errors among varying levels of constraints are jux-
taposed in Figure 7(a,b).

Figure 7 indicates the performance comparison
results of trajectory and related error. As illustrated
in Figure 7(a), the suggested multi-level constraints
notably improve the positioning precision by
adjusting the divergence error of inertial sensors,

Figure 4. Hardware deployment of MP-TMDS.

Figure 5. Experimental environments of public dataset (Niu et
al. 2019).

Table 1. Precision specifications of different sensors.

Specification Gyroscope Accelerometer Barometer Ultrasonic
Sampling rate 200 Hz 200 Hz 10 Hz 100 Hz
Dynamic range 2000°/s 300-1100 hPa 3-500 mm
Bias instability 10°/h 0.03 mg - -
White noise 0.16°/vh 0.02m/s/\/h - -
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Figure 7. Positioning trajectory and error comparison.

surpassing the other two constraints. Figure 7(b)
contrasts the localization error under different con-
straints. The ultimate assessed localization error of
the presented multi-level constraint model is less
than 1.85m in 75% of instances, which is signifi-
cantly less than the INS-PDR+ZUPT/ZARU model
(2.78 m under 75%) and the original INS +ZUPT/
ZARU model (3.27 m under 75%).

4.2. Accuracy evaluation of D-MPS

This paper presents the bidirectional long short-term
memory (Bi-LSTM) network as a strategy to mitigate
the impact of ultrasonic ranging outliers, which may

3
Positioning Error (m)

0 10 2 4 5

(b) Positioning error comparison

arise from hardware malfunctions or non-line-of-sight
(NLOS) effects encountered during pedestrian move-
ment. The refined ultrasonic data are subsequently
integrated with dual-sensor nodes to enhance posi-
tioning accuracy. In this work, the dimension of the
input vector of Bi-LSTM is set as 7, the length of each
round of input is set as 200 under 1 s time window, the
step-length of model training is set as 0.03, and the
hidden size is set as 100. The efficiency of the Bi-
LSTM-based anomaly detection mechanism is illu-
strated in Figure 8.

In this case, 10 distinct sets of paths are carried out
to assess the detection precision of the suggested
detector, with the conventional threshold-based
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Figure 8. Bi-LSTM based ultrasonic outlier detection.

Table 2. Detection ratio of ultrasonic outlier detectors.

Route Bi-LSTM Threshold
T01 89.2% 86.3%
T02 91.5% 89.2%
T03 92.1% 89.6%
T04 90.5% 88.1%
T05 88.7% 87.2%
T06 89.8% 86.5%
T07 91.3% 90.2%
T08 90.7% 89.9%
T09 88.2% 85.7%
T10 91.4% 86.8%
Average 90.34% 87.95%

anomaly detector used for comparison (Qi et al.
2023). A thorough accuracy comparison under var-
ious walking paths and algorithms is displayed in
Table 2.

Table 2 shows that the suggested Bi-LSTM-based
ultrasonic anomaly detector attains a higher anom-
aly detection precision compared to the threshold-
based method, with an average accuracy of 90.34%
across 10 different test walking paths.

To compare the performance of the presented S-
NPS, DFM-NU, and DFM-U, we carry out a long-
term experiment to evaluate the effectiveness of the
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dual-node-based integration model. The walking path
of the tests is portrayed in Figure 9. The walking path
starts at point A, goes through points B, C, D, E, F, and
returns to point A. This entire path is repeated 10
times for long-term performance assessment, and the
estimated paths and accuracies provided by combina-
tions of different sensor nodes are displayed in
Figure 10.

Figure 10 describes the comparison of positioning
trajectories and related errors. As seen from Figure 10
(b), the proposed dual sensor node-based positioning
model notably improves the effectiveness of the S-
MPS, mainly by eradicating the systematic heading
drift caused by a single node. Moreover, the integra-
tion of ultrasonic distance measurements further
enhances the accuracy of D-MPS. The positioning
accuracies of the three different models achieve 2.11
m, 3.81m, and 5.68m at the 75% percentile,
respectively.

4.3. Accuracy evaluation of MP-TMDS

This paper presents the hybrid spatial-temporal
network to estimate human movement modes
and related walking velocity based on a combina-
tion of distributed sensors and ultrasonic modules.
To estimate the effectiveness of the proposed spa-
tial-temporal network, the temporal network
LSTM (Liu et al. 2022), and a typical spatial
graph (SG) network (Chen et al. 2021b) is
employed as baseline models. The hybrid velocity
and motion dataset is generated based on the
reference of high-precision Lidar device and
SLAM algorithm, with manually annotated motion
patterns (Bao et al. 2022). In the proposed hybrid
spatial-temporal network, the dimension of the
input vector of Bi-LSTM is set as 13 including
dual IMU and ultrasonic values, the length of
each round of input is set as 200 under 1 s time
window, the step-length of model training is set as

i [

T DT T T
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Figure 9. Test route of sensor node.
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Table 3. Accuracy of motion mode detection.

Motion/Model ST LSTM SG

Static 100% 100% 100%
Typical walking 100% 100% 100%
Running 100% 100% 100%
Backward walking 92.8% 89.6% 88.7%
Lateral walking 91.5% 87.2% 86.8%
Go up stairs 98.7% 95.8% 94.9%
Go down stairs 99.1% 96.3% 93.6%
Taking elevator 98.4% 97.8% 97.5%
Average 97.6% 95.8% 95.2%

Table 4. Walking velocity prediction error comparison.

Index/Model ST LSTM SN

Mean (m/s) 0.032 0.043 0.047
Std (m/s) 0.021 0.024 0.026
Max (m/s) 0.085 0.113 0.124
Min (m/s) 0.003 0.009 0.012
75th (m/s) 0.048 0.061 0.068
Median (m/s) 0.025 0.031 0.036

0.03, and the hidden size of LSTM and GCN is set
as 100 and 50, respectively. The comparison
results of predicted success rate of human move-
ment modes and walking velocity with baseline
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models are described in Table 3 and Table 4,
respectively:

Table 2 and Table 3 show that the suggested spa-
tial-temporal model attains the highest precision in
movement mode detection and walking pace predic-
tion compared to two existing models, including the
temporal model LSTM and a typical spatial graph
model. The calculated walking speed prediction error
is less than 0.048 in 75%, and the average precision of
human movement detection reaches 97.6%.

Finally, the proposed MP-TMDS is assessed under
complex real-world test scenarios and contrasted with
SOTA D-MPS methods. The evaluation path contains
multi-floor indoor scenarios as depicted in Figures 9
and 11. Testers start at point A, walk pass points B-A,
H-G, and back to point A. The time period and total
route length are 380 s and 500 m.

The effectiveness of the suggested MP-TMDS in
predicting paths under different sensor nodes, includ-
ing modules mounted on the waist and foot, is por-
trayed in Figure 12(a,b)

Figure 12 indicates that the proposed MP-TMDS
structure exhibits enhanced performance compared to
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Figure 11. Test path in 9th floor.
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Figure 12. Positioning trajectories and errors of MP-TMDS.

the single-sensor module and dual-sensor nodes, with
the integrated positioning error effectively diminished
through the application of multi-level constraints and
observations. The final estimated positioning accura-
cies of the presented MP-TMDS structure under foot-
mounted and waist-mounted modules achieve 1.74 m,
1.62 m, and 1.24 m at the 75% level.

Finally, the overall MP-TMDS is compared with
SOTA D-NPS algorithms: f* IMU-R (M. Zhu, Wu,
and Luo 2021), FPS-DU (Qi et al. 2023), and H-PPS
(Qi et al. 2024), under the same test path, with the
evaluated localization errors provided by different D-
NPS algorithms as:

Figure 13 shows that the developed MP-TMDS dis-
plays superior tracking effectiveness compared to
existing D-NPS methods. The evaluated localization
errors in the tested scenarios achieve 1.24m in 75%
(MP-TMDS), 1.52 m in 75% (H-PPS), 1.75m in 75%
(f? IMU-R), and 1.87m in 75% (FPS-DU), which
improve the final positioning accuracy by more than
18.4% compared with state-of-the-art algorithms.
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For the sensitivity of proposed MP-TMDS struc-
ture, the performance of MP-TMDS is affected
following factors: the first is the complexity of
positioning environments, the harsh environment
that contains complex layout and magnetic inter-
ference will decrease the accuracy of multi-node
positioning; the second of the distribution of IMU
nodes, since the combination of dual feet-mounted
nodes and waist-mounted node show the high
accuracy, the other distribution of IMU nodes
such as head and thigh will also be potentially
feasible; the third is the noise level of selected
inertial sensors, which will lead to the changes in
positioning base accuracy due to the level of the
inertial sensors; the last is the robustness of motion
detection, which is affected by the more complex
human motion modes, and leads to the decreased
accuracy of walking speed estimation.

In summary, this paper proposes the MP-
TMDS structure that combines the distributed
inertial sensor nodes together and improves the
positioning accuracy of the overall system com-
pared with a single inertial-sensor node.
Specially, the physical model is proposed that sup-
ports both foot-mounted modules and waist-
mounted modules, using the accurate heading
information provided by waist-mounted modules
and walking speed information provided by foot-
mounted modules to overcome the disadvantages
of each. A spatial-temporal network is proposed
to extract the motion features of the overall
human body from distributed inertial sensor
nodes and combined with a physical model to
enhance the accuracy and robustness of the overall
MP-TMDS.
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