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ABSTRACT
The pedestrian tracking and motion detection system (P-TMDS) using distributed inertial 
sensors has broad application potential toward many emerging fields, such as motion tracking, 
emergency rescue, and others, due to its advanced autonomous navigation capabilities under 
signal-denied scenarios. The performance of current P-TMDS is constrained by the cumulative 
error of low-cost sensors, low accuracy of human motion detection, and lack of effective multi- 
sensor integration algorithms. This paper proposes a motion-constrained P-TMDS based on the 
adaptive integration of distributed inertial sensors and ultrasonic ranging (MP-TMDS). An 
enhanced position–attitude update algorithm is developed for the single-sensor module, 
which integrates the inertial navigation system (INS) mechanization with multi-level constraints 
and observations. In addition, a bi-directional long short-term memory (Bi-LSTM) structure is 
adopted to detect the outlier in ultrasonic ranging results and provide accurate distance 
observations for dual sensor module-based positioning systems. For the overall MP-TMDS, 
the measurements provided by distributed sensor modules and ultrasonic ranging are adopted 
as the input vector of designed spatial–temporal network training for human motion detection 
and walking speed estimation, and the detected human motion modes are further applied as 
the constraints for multi-module position–attitude update. Finally, an enhanced data and 
model dual-driven structure is proposed to adaptively integrate motion features acquired 
from distributed sensor modules and results of velocity and motion detection provided by 
spatial–temporal network. Real-world experiments in complex scenes represent that the 
developed MP-TMDS effectively increases the precision of traditional P-TMDS and outperforms 
existing algorithms under both positioning and motion detection accuracy indexes, and the 
estimated accuracy improvement is more than 18.4% compared with state-of-the-art 
algorithms.
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1. Introduction

Accurate human tracking and motion detection sys
tem (P-TMDS) holds significant potential for applica
tions in numerous emerging fields under urban spaces 
where the global navigation satellite system (GNSS) is 
unavailable. Examples of these fields include intelli
gent elderly care (Qian et al. 2021), emergency 
response (Zhu et al. 2020), and activity surveillance 
(Chen, Zhu, and Hammad 2020).

At present, P-TMDS can be realized in two ways: 
external equipment-supported location systems and 
independent positioning systems, both of which are 
widely applied. Especially, for equipment-supported 
positioning systems, technologies such as Wi-Fi (Yu 
et al. 2022), Bluetooth (Sun et al. 2021), ultra-wide
band (UWB) (Barbieri et al. 2021), sound source (Liu 
et al. 2024), the 5th generation mobile networks (5G) 

(Chen et al. 2021a), and micro-electromechanical sys
tem (MEMS) sensors (Shi et al. 2022) are commonly 
used. These technologies provide the public available 
access to location accuracy from the level of centi
meters to room-scale accuracy. However, these posi
tioning systems come with certain constraints. 
Additional stations are usually required to establish 
fingerprinting databases or receive wireless observa
tions and are greatly influenced by dynamic and com
plex urban environments and artificial magnetic 
interference. Especially under extremely difficult 
underground or indoor conditions, without enough 
deployed local stations and supporting facilities, the 
mentioned approaches cannot achieve efficient and 
precise indoor positioning. Therefore, they need to 
be integrated with existing independent location 
sources to enhance positioning accuracy.
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Independent localization systems usually consist of 
sequence matching that uses acquired magnetic vec
tors (Kuang et al. 2022), simultaneous localization and 
mapping (SLAM) (Bao et al. 2022), and multiple 
source integration (Yu et al. 2023). In this scenario, 
sequence matching is achieved based on the similarity 
calculation of magnetic properties between the gath
ered vector and the reference vector in the database, 
eliminating the requirement for extra stations. 
However, at this stage, the frameworks of magnetic 
matching algorithms necessitate the length of the 
acquired magnetic sequence and are affected by arti
ficial interference in complex indoor environments 
(Zhang et al. 2023). In some cases where the magnetic 
characteristics are not obvious, for instance, long cor
ridors and tunnels, the accuracy of magnetic matching 
would decrease due to the lack of useful features. 
Furthermore, visual-based positioning structures are 
influenced by light change and movement modes, 
which also leads to the decrease in localization preci
sion (Qin, Li, and Shen 2018). Another effective 
approach is the distributed built-in sensor positioning 
systems, by deploying sensor modules into different 
human body parts, including feet, waist, arms, head, 
and thigh, to extract comprehensive motion features 
from the whole pedestrian body and is usually applied 
in signal-denied areas.

At present, the built-in sensor-based positioning 
system generally includes two location cumulating 
approaches: pedestrian dead reckoning (PDR) 
(Mehrabian and Ravanmehr 2023) and inertial navi
gation system (INS) (Wu, Kuang, and Niu 2022). The 
PDR mechanization is made up of four phases: stride 
recognition, stride-length estimation, heading calcula
tion, and location accumulation. However, a drawback 
of the PDR mechanization is that the accuracy of the 
final updated position is influenced by the changeable 
deployment mode of sensor modules and individual’s 
movement characteristics. Unlike PDR mechaniza
tion, INS mechanization is robust to complex motion 
and handheld modes but is constrained by the fast 
divergence positioning error.

For applications involving human positioning and 
motion detection, the distributed built-in sensor- 
based structure can be classified into a single-mod
ule-based approach and multi-module-based 
approach. Single-module-based approaches typically 
include foot-mounted positioning systems (FPS) and 
waist-mounted positioning systems (WPS) that can 
acquire human motion and location information by 
only one deployed sensor module. The problem with a 
single-module-based approach is that the single mod
ule cannot effectively represent the full body move
ment characteristics of a user, and its accuracy is also 
constrained by cumulative errors, for example, sys
tematic heading error and rough velocity estimation 
results (Qi et al. 2023). Aiming at the existing 

challenges of the single-module-based approach, the 
dual-module-based approach is developed to reduce 
the systematic heading deviation, and ultrasonic ran
ging between two feet is also applied to provide more 
accurate velocity estimation results. Niu et al. (2019) 
presented that a dual foot-mounted positioning sys
tem (D-FPS) does not contain ultrasonic observations 
to improve the performance of a single-module-based 
approach, which uses multiple observations and con
straints to constrain the effects of systematic heading 
deviations and inaccurate velocity calculations. Zhu, 
Wu, and Luo (2021) further integrated the ultrasonic 
distance measurement results with D-FPS and pro
vided an enhanced multi-source fusion structure to 
provide accurate walking speed estimation and loca
tion update performance.

Furthermore, the combination of FPS modules 
with WPS modules is able to realize a more com
prehensive representation of human motion, and 
the cooperation of distributed modules can yield 
more motion-related features and enhance the 
accuracy of heading and moving velocity calcula
tions. Yu et al. (2019) compared the positioning 
accuracy and robustness using different modules 
including FPS, WPS, and smartphones, and various 
advanced filters were used for multi-source integra
tion. Based on extensive experiments, the waist- 
mounted method achieves greater precision than 
the existing methods, and different route paths 
significantly affect the positioning performance. 
Qiu et al. (2022) developed a motion tracking sys
tem that contains 15 sensor modules to detect the 
user’s motion and position based on the proposed 
unconstrained traversal algorithm, and gradient 
descent optimization is used for sensor integration, 
significantly handling error divergence. The disad
vantage of the existing multi-sensor node position
ing system is that it cannot effectively mine the 
constraint relationships between different nodes to 
cope with complex and disturbed positioning envir
onments, making it difficult to effectively control 
speed estimation and heading drift errors.

To improve the accuracy of distributed sensor 
module-based positioning systems, this paper intro
duces a motion-constrained P-TMDS that merges a 
wearable sensor network with ultrasonic ranging (MP- 
TMDS). This system can preserve positioning accu
racy in the face of complex pedestrian motion patterns 
and magnetic disturbances in challenging environ
ments. The innovations of this paper are outlined as 
follows:

(1) This article extracts multi-level constraints and 
observations to eradicate the cumulative error 
caused by low-cost sensor-based INS mechan
ization. This method independently calculates 
and compensates for the bias of inertial sensors 
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using extracted motion features, thereby pre
serving the accuracy of the single inertial sensor 
module under long navigation terms.

(2) This article presents a novel dual-module-based 
position–attitude estimation structure that 
adaptively merges ultrasonic ranging results 
and dual-sensor modules. This structure 
includes a Bi-LSTM-based outlier detector for 
ultrasonic ranging and an enhanced ellipsoid 
constraint model for sensor fusion and posi
tion–attitude updates.

(3) This article develops a hybrid spatial–temporal 
network for human walking velocity prediction 
and motion detection. This method considers 
and extracts complex motion features provided 
by distributed sensor modules and ultrasonic 
ranging and effectively improves the perfor
mance of walking speed prediction under dif
ferent motion modes.

(4) This article introduces a robust data and model 
dual-driven model (DMDD) that autonomously 
combines motion data originated from distrib
uted sensor modules and velocity and motion 
detection results provided by the spatial–tem
poral model. Multi-level constraints and obser
vations are derived and modeled for improving 
the accuracy of the whole MP-TMDS structure.

The layout of our paper is organized as follows: 
Section 2 introduces the single- and dual-module- 

based positioning algorithms. Section 3 presents the 
spatial–temporal network-based speed and motion 
prediction and the overall distributed sensor module- 
based position–attitude estimation structure. Section 
4conducts extensive experiments to validate the pre
sented MP-TMDS.

2. Single- and dual-module-based position– 
attitude estimator

This part introduces the single-module- and dual 
sensor-module-based positioning frameworks con
tinuously, in which the single-module positioning 
system (S-MPS) includes the existing FPS and 
WPS, while the dual-module-based positioning 
system (D-MPS) combines two single S-NPSs 
with ultrasonic ranging modules together for 
advanced positioning performance. Finally, the 
overall framework of the proposed MP-TMDS sys
tem, which amalgamates three different sensor 
modules and ultrasonic ranging modules, is 
described in Figure 1.

2.1. Single-module-based position–attitude 
estimator

This section proposes a robust single sensor-module- 
based position–attitude estimator, which can adapt 
both FPS and WPS by using multi-level constraints 
and observations to eliminate the cumulative error 
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originating from inertial sensors. In the single mod
ule-based position–attitude estimator, the INS 
mechanization is adopted as the basic model for 3D 
position and attitude update (Qi et al. 2023): 

where pn ¼ ½φ λ h �T indicates the pedestrian’s 
real-time 3D location (latitude, longitude, and height); 
vn ¼ ½ vN vE vD �

Trepresents the 3D velocity; Cn
b 

indicates the rotation matrix between body coordinate 
system and navigation coordinate system; gn indicates 
the local gravity value; ωn

ie represents the rotation 
angular rate between the e-frame and i-frame; ωn

en 
indicates the rotation angular rate between the naviga
tion coordinate system and the ECEF coordinate sys
tem; $� 1 indicates a 3 × 3 matrix related to the 
latitude pN and the ellipsoidal height h of the moving 
object.

The Earth rotation-related indicators ωn
ie and ωn

en 
are able to be omitted due to the high noise level of 
MEMS sensors, and the simplified state update equa
tion is described as (Niu et al. 2019): 

where δpn, δvn, and ψ indicate state error values; εg 
and εa indicate the biases of gyroscope and acceler
ometer, respectively; f n represents the acquired local 
gravity vector; wbg and wba represent the noises of 
sensor measurements.

The state vector of INS mechanization is 
extracted as: 

For the foot-mounted positioning system, the 
quasi-static (QS) periods can be detected and applied 
for ZUPT update: 

where vn
INS indicates the INS mechanization provided 

velocity vector; vn
zero ¼ ½ 0 0 0 �T indicates the zero- 

constrained vector. Since ZUPT is unable to constrain 
the heading drift among QS periods, and ZARU is 
further proposed for heading alignment (Zhang et al.  
2023): 

where θn
INS indicates the INS provided heading infor

mation, θn
refer indicates the reference heading 

observation under the recognized QS phase, and nθ 
indicates the Gaussian white noise.

For the low-cost sensor-based INS mechanization, 
the PDR provided gait-length feature is modeled to 
constrain the drift error of position–attitude update 
(Qi et al. 2023): 

where αs represents the PDR originated step-length. μ1 
and μ0 indicate the start and end timestamps of one 
recognized step period, respectively, and then the PDR 
updated 2D position is also adopted as one position 
observation: 

where rt
x and rt

y represent the PDR provided 2D posi
tion observation; θk is the INS mechanization pro
vided heading value.

The overall observation model of PDR 
mechanization: 

where vpdr and Ppdr represent the 3D location and 
velocity provided by PDR mechanization, respectively; 
vS� NPS and PS� NPS indicate the 3D location and velo
city provided by INS mechanization, respectively.

To improve the accuracy of positioning, this paper 
employs the straightline (SL) constraint to minimize 
the drift error typically observed in conventional walk
ing trajectories (Niu et al. 2021). Additionally, the 
heading observation derived from successive step 
intervals is utilized for the identification of SL 
movement. 

where ðrn
x;m; rn

y;mÞ indicates the m-th gait location pro
vided by S-MPS; if L1 ¼ 1, the SL constraint can be 
modeled as: 

where θ and ϕ indicate the roll and pitch measure
ments calculated by S-NPS; εψ indicates the measure
ment error.

Compared with FPS, the WPS integrates more 
MEMS sensors, such as magnetometers and barom
eters, and is necessitated by the inherently rich 
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features extracted from the motion data they collect, 
in contrast to the data from foot-mounted position
ing systems. As a result, the system leverages the 
constraint of magnetic vector, stair-originated 
height, and barometer-derived altitude measure
ments. The magnetic feature constraint is specifically 
articulated in Equation (34) within the final MP- 
TMDS.

In complex 3D environments that encompass mul
tiple levels, the estimation of altitude is of paramount 
importance, particularly when tracking pedestrian 
movement on staircases. This study adopts stair- 
extracted altitude observations, which are carefully 
modeled to decrease the altitude update error inherent 
in S-MPS: 

where hstair is the altitude observation originating from 
stair observations; hS� MPS indicates the S-MPS origi
nating height information.

Although the accuracy of attitude determination via 
the S-MPS is prone to rapid error accumulation, the 
waist-mounted positioning system mitigates this issue 
by incorporating an altitude constraint derived from 
barometric readings for effective divergence error 
control (Shi et al. 2022): 

where hn
B is the barometer-originated altitude infor

mation, hn
INS 

is the height information provided by 
S-MPS

2.2. Dual-module-based position–attitude 
estimator

As elucidated in the previous section, the S-MPS typi
cally integrates the INS mechanization and the QS 
detection results and employs multi-tiered constraints 
for ZUPT/ZARU and the SL observation. 
Nevertheless, the challenge of effectively mitigating 
the inherent systematic heading deviation associated 
with the S-MPS necessitates the development of the D- 
MPS. This system is specifically engineered to mini
mize the systematic deviation when deploying S-MPS. 
The presented D-NPS encompasses three distinct 
multi-source fusion structures of the S-MPS. The fun
damental state vector of the D-MPS is constructed 
using a dual-subsystem approach, which encompasses 
different FPSs: 

where Xð01Þ and Xð02Þ indicate state vectors of single 
foot-mounted S-MPS, and the state update equation is 
described as: 

where wAll
i� 1 indicates noise vectors which follow the 

Gaussian distribution; Fi� 1 indicates the augmented 
state matrix, and Gi� 1 indicates the augmented noise 
gain matrix.

In this paper, the Bi-directional Long Short-Term 
Memory (Bi-LSTM) structure (Pham and Suh 2021) is 
utilized for outlier detection of ultrasonic ranging 
results between two feet. The input vector of the Bi- 
LSTM network is extracted based on the combined 
motion and ranging information provided by sensors 
and ultrasonic modules, and the input features of Bi- 
LSTM are extracted as:

(1) Quasi-static (QS) indexes κi of dual foot- 
mounted modules provided by 1D-CNN.

(2) Distance measurement results DS
i 

calculated by 
the dual foot-mounted modules.

(3) Distance measurement difference ΔDS
i 

calcu
lated by the dual foot-mounted modules.

(4) Distance measurement results DU
i 

calculated by 
the dual foot-mounted modules.

(5) Distance measurement difference ΔDU
i 

pro
vided by the ultrasonic module.

(6) Residual $ ¼ DS
i
� DU

i

�
�

�
� between ultrasonic 

and sensor modules based ranging results.
(7) Walking speed Vi estimated by the waist- 

mounted module.

Subsequently, the output features of the presented Bi- 
LSTM are utilized as the input features for the MLP 
network, and the reference ultrasonic outlier detection 
result is designated as the output vector: 

where ψt represents the ultrasonic outlier detection 
result with the classification of 0 and 1.

Subsequently, the ultrasonic distance measurement 
results are utilized as one of the multi-level constraints 
in conjunction with the positions of FPS modules to 
reduce the systematic heading deviation. Initially, for 
the D-MPS, the observation model is formulated as 
follows (Qi et al. 2022): 

where Z denotes the discrepancy between the distance 
measured by ultrasonic signals and the S-MPS for the 
different feet. An analysis of the D-MPS step dynamics 
reveals that the inter-foot distance is a variable and can 
be defined as follows: 

In the multi-source fusion step, the ultrasonic out
lier detector is employed to recognize and eliminate 
captured abnormal values to enhance the raw 
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measurements. This procedure aids in maintaining the 
positioning accuracy of D-MPS.

3. Motion-constrained pedestrian tracking 
system

In this section, the subsystems of WPS and FPS mod
ules are combined for more accurate recognition of 
pedestrian motion modes and positions. A hybrid 
deep-learning model is suggested for simultaneous 
walking speed estimation and human motion detec
tion, utilizing the information provided by sensor 
nodes and ultrasonic modules. Furthermore, a data 
and model dual-driven structure is developed for 
adaptive integration of distributed modules. The 
structure of the MP-TMDS is illustrated in Figure 2:

3.1. Hybrid human motion and walking speed 
estimator

The efficacy of S-MPS is subjected to the intricacies of 
user motion and the accumulation of errors. To 
address these challenges, this part introduces a novel 

spatial–temporal-based estimator for motion and 
walking speed. The designed spatial–temporal model 
comprehensively combines LSTM and GCN networks 
and considers both spatial and temporal features 
extracted from the sensor-originated motion data. 
This estimator synergizes features extracted from var
ious nodes to accurately determine human motion 
modes and provide a reliable reference for walking 
speed. Unlike the instantaneous models explored in 
prior research, this part develops a hybrid deep-learn
ing framework for walking speed estimation. This 
framework considers motion features derived from a 
period of motion and ultrasonic ranging data outputs 
from distributed sensor modules. The architecture of 
the designed spatial–temporal network is illustrated in 
Figure 3.

Figure 3 presents the basic model of the proposed 
spatial–temporal network. For the temporal part, we 
mainly use the LSTM backbone for feature extraction. 
Specifically, we define the state at each time point as 
X 2 R f�t , where f is the dimension of features, and t is 
the number of time steps. The LSTM contains a cell 
state Ct and a hidden state Ht. At each round t, the 

Figure 3. Structure of the spatial–temporal model.

Figure 2. Hardware deployment of proposed MP-TMDS.
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LSTM takes input xt and previous hidden state Ht� 1 

and then updates the states as: 

where σ is the sigmoid function, and e denotes ele
ment-wise multiplication. The LSTM can capture 
long-term dependencies and model the temporal 
dynamics in the sequence.

For the spatial part, we mainly use the graph neural 
network to extract features. Specifically, we define the 
spatial information as a graph G ¼ ðV;AÞ, where V is 
the feature of nodes, i.e. the positions, and A 2 R n�n is 
the set of edges for describing the relationship between 
the positions at each time step. However, in real situa
tions, it is difficult to describe the relationship between 
various locations by a fixed matrix, so here, we use a 
matrix A that can be learned to describe the spatial 
relationships at different timestamps. The graph con
volutional network (GCN) is a state-of-the-art 
(SOTA) graph neural network that can extract features 
from graph-structured data. The output Hlþ1 2 R n�f 

of the lth layer of GCN is computed as: 

where Â ¼ ~D� 1=2 ~A~D� 1=2,~A ¼ Aþ In,~Dii ¼
P

j
~Aij, 

W l is the weight matrix, and σ is the activation func
tion. By stacking multiple graph convolution layers, 
the network can aggregate spatial features from a 
node’s wider neighborhood. The graph structure pro
vides an explicit model for capturing interactions 
between spatial entities.

After extracting the spatial and temporal features, 
we use the fusion module to fuse these features. 
Specifically, we employ the attention mechanism to 
fuse the features in a learnable way. The attention 
mechanism is a popular method for learning the rela
tionship between different features. Denote the com
bined features as Xc 2 R n�ðd1þd2Þ, where N is the 
number of spatial units, and d1 and d2 are the feature 
dimensions of the outputs. The self-attention mechan
ism learns a soft alignment between each pair of spa
tial and temporal features, capturing the relevance 
between them. Formally, the output of self-attention 
mechanism Z is computed as: 

where Q ¼ XcWQ, K ¼ XcWK , V ¼ XcWV , with WQ, 
WK , and WV being the learnable parameters of the 
query, key, and value, and dk is the dimension of the 
key vectors.

To achieve better performance of simultaneous 
human motion detection and walking speed predic
tion, the following features are calculated based on the 
extracted motion features of sensors and ultrasonic 
modules, in which the following motion modes are 
considered during the model training, prediction, and 
multi-source fusion phases: static, typical walking, 
running, backward walking, lateral walking, go up/ 
downstairs, and taking elevator. The input values for 
the proposed spatial–temporal network are shown as:

1) Collected 3-axis acceleration data ax, ay, az, and 
related norms of acquired acceleration vectors 
extracted from all the foot-mounted and waist- 
mounted modules: 

2) Collected 3-axis angular rate data gx, gy, gz, and 
related norms of acquired gyroscope data extracted 
from all the foot-mounted and waist-mounted 
modules: 

(1) Variances of calculated norms of acceleration 
and angular rate vectors σ2

g and σ2
a.

(2) The barometer-originated altitude change value 
Δhn

B provided by waist-mounted module (Qi et 
al. 2022).

(3) Foot-mounted modules provided velocity 
values v1 and v2.

(4) Distance measurement result u1 originated 
from ultrasonic ranging.

(5) Distance measurement difference u2 originated 
from ultrasonic ranging.

(6) Walking velocity value provided by the WPS 
module using the linear step-length equation: 

in which α, β, ς are the human body characteristics, Ft 
is the gait frequency, and H is the height information.

9) Walking velocity values provided by the WPS 
module using the nonlinear step-length equation: 

where Amax and Amin indicate the detected peak and 
valley values of accelerometer data in one gait phase, 
and K is the scale parameters.

10) Updated frequency Ft of gait-length provided 
by the WPS module.

The output dimension of the developed motion and 
walking speed estimator contains 1D walking speed 
prediction results and types of human motion modes 
described by the number indexes from 0 to 7, consid
ering the impact of complex pedestrian motion modes 
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on the walking speed estimation. Hence, the presented 
spatial–temporal network efficiently integrates the 
influence of complex human motio, and feedback 
motion features into the estimated human velocity, 
which is further applied as a constraint vector in the 
final DMDD structure.

3.2. Data and model dual-driven based fusion 
structurer

This section proposes a novel DMDD structure, taking 
into account the human motion features extracted 
from hybrid sensor modules, the ultrasonic ranging 
module, magnetic reference, and the output of the 
spatial–temporal model. This structure achieves an 
adaptive combination of indoor positioning using dis
tributed MEMS sensor modules. The overall state vec
tor of the proposed MP-TMDS, which includes three 
different sensor node-based subsystems, is modeled as 
follows (Zhu, Wu, and Luo 2021): 

where X1
sub and X2

sub are state vectors of foot-mounted 
modules; X3

sub is the state vector of waist-mounted 
modules. The overall state vector of each subsystem 
contains state values with dimension of 16: 

where δpn, δvn and ϕ represent the state error of 3D 
position, walking velocity, and attitude, respectively; 
εg , Ña, and bh represent related biases of the gyroscope, 
accelerometer, and barometer, respectively.

The low-cost sensor-based INS mechanization is sub
jected to cumulative and divergence errors, making it 
unsuitable for standalone applications. In the proposed 
DMDD structure, an unscented Kalman filter (UKF) is 
ultimately employed in the data integration process. 
Multi-level observations and constraints, which can 
depict the overall motion characteristics and relation
ships between different sensors and ultrasonic modules, 
are extracted and modeled as the observation equation:

1) The spatial–temporal (ST) model predicted 
motion-related walking speed reference is utilized as 
the first-level observation: 

where vn
ST and pn

ST represent the ST model output 
speed and location information, respectively, vn

INS 
and 

pn
INS 

are the INS originated walking speed and location 
information, respectively.

2) To lessen the effects of the influenced magnetic 
field, this paper utilizes the magnetic observation vec
tor of the WPS module from the identified quasi-static 

magnetic field (QSMF) to calibrate the heading error 
(Sun et al. 2021): 

where Cb
n;1, Cb

n;k, mb
k, and mb

k;1 represent the attitude 
matrix and magnetic field vector extracted from the 
first epoch of QSMF periods and other epochs, 
respectively.

3) In this paper, a height-related zero-velocity 
update method (H-ZUPT) is presented to eradicate 
the altitude estimation drift, in which the bias of the 
barometer is modeled as a random walk procedure, 
and the state update equation is formulated as (Qi et 
al. 2022): 

where wh is the noise of acquired altitude; τbh and υbh 

are the correlation time and the driving noise of the 
random walk process, respectively. When the height- 
related QS periods are detected, the observation equa
tion of H-ZUPT is modeled as: 

where h
b 

indicates the barometer originated altitude; ĥ0 
indicates the first epoch of height-related QS phases.

4) Considering that the SL constraint is used to 
restrict the drift error when the pedestrian walks 
straight forward, and the heading observations calcu
lated by adjacent step phases provided by S-MPS sub
systems are further integrated into the final DMDD 
for enhanced straightline recognition: 

where θw and θf indicate the reference heading provided 
by waist-mounted and foot-mounted modules, 
respectively.

5) In this research, taking into account the relation
ship between different sensors and ultrasonic mod
ules, the hybrid maximum and minimum ranging 
distance observations provided by various S-MPSs, 
and ultrasonic ranging are modeled as constraints to 
improve positioning accuracy. Assuming that the sen
sor module originated distances R1 and R2 represent 
the distances between different sensor modules, and 
Dultra represents the ultrasonic ranging, the minimum 
distance among the three modules is modeled as: 

In typical walking scenarios, the calculated dis
tances provided by ultrasonic ranging and sensor 
modules are equal.

For outlier instances in ultrasonic ranging, the non- 
light-of-sight (NLOS) effect is incorporated into the 
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distance observations based on ultrasonic ranging. Hence, 
for the maximum distance, the ranging result among foot- 
mounted modules is utilized as the reference distance 
value, amalgamated with a control factor to offset the initial 
bias between step length and calculated distance: 

To sum up, in the ultimate DMDD-amplified MP- 
TMDS, to integrate all the movement attributes offered 
by various nodes and take into account the limiting con
nection between different sensor nodes, the subsequent 
actions are implemented. Initially, INS mechanization is 
utilized as the core location–attitude update algorithm, 
with the error measurements of three different sensor 
modules modeled as the overall state vector of MP- 
TMDS. Subsequently, to effectively decrease the cumula
tive error of the overall system, observations and con
straints derived from distributed sensor modules and 
pedestrian movement data are employed, aiming at com
prehensive pedestrian movement constraint features. 
These encompass the ST network predicted movement 
modes and walking velocity, QSMF, H-ZUPT, enhanced 
SL, and minimum and maximum distance observations.

4. Experimental results

In this section, extensive experiments are carried out to 
validate the accuracy of the presented S-NPS, D-NPS, and 
the comprehensive MP-TMDS. Three distinct seamless 
scenarios are selected as the real-world test sites, and 
comparative tests are conducted alongside SOTA meth
ods and frameworks. In the experiments, distributed 
sensor modules are placed on different feet and waist 
parts of the human body, as depicted in Figure 4 (Qi et 

al. 2024), and all the sensor and ultrasonic data acquired 
from dual foot-mounted modules are sent to the waist- 
mounted module using wired transmission method for 
time synchronization. The precision specifications of the 
MEMS sensors incorporated within the S-NPS are 
detailed in Table 1.

4.1. Accuracy evaluation of S-MPS

In this paper, multi-level constrains and observa
tions are applied to decrease the drift error inher
ent in the INS mechanization utilized within the 
S-NPS. To assess the efficacy of this approach, an 
archetypal indoor environment, comprising a hall
way and office space, is selected as the testing 
ground. Additionally, a publicly available dataset, 
collected within a three-dimensional office build
ing, is used to compare the performance of var
ious algorithms under identical conditions. The 
pedestrian traversed the designated offices and 
hallways for a period of 15 min (Website: http:// 
www.i2nav.com/index/newListDetail_zw.do?news 
kind_id=13a8654e060c40c69e5f3d4c13069078&ne 
winfo_id=c54efa006a33426d991235801b427f6d). 
The inertial module used in the experiment and 
the different test scenarios are depicted in Figure 
5. The calibrated biases for the gyroscope and 
accelerometer are illustrated in Figure 6. The 
final positioning precision and the associated 
errors among varying levels of constraints are jux
taposed in Figure 7(a,b).

Figure 7 indicates the performance comparison 
results of trajectory and related error. As illustrated 
in Figure 7(a), the suggested multi-level constraints 
notably improve the positioning precision by 
adjusting the divergence error of inertial sensors, 

Figure 4. Hardware deployment of MP-TMDS.

Table 1. Precision specifications of different sensors.
Specification Gyroscope Accelerometer Barometer Ultrasonic

Sampling rate 200 Hz 200 Hz 10 Hz 100 Hz
Dynamic range 2000°/s 16 g 300–1100 hPa 3–500 mm
Bias instability 10°/h 0.03 mg – –
White noise 0:16�=

ffiffiffi
h
p

0:02m=s=
ffiffiffi
h
p

– –

Figure 5. Experimental environments of public dataset (Niu et 
al. 2019).
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surpassing the other two constraints. Figure 7(b) 
contrasts the localization error under different con
straints. The ultimate assessed localization error of 
the presented multi-level constraint model is less 
than 1.85 m in 75% of instances, which is signifi
cantly less than the INS-PDR+ZUPT/ZARU model 
(2.78 m under 75%) and the original INS +ZUPT/ 
ZARU model (3.27 m under 75%).

4.2. Accuracy evaluation of D-MPS

This paper presents the bidirectional long short-term 
memory (Bi-LSTM) network as a strategy to mitigate 
the impact of ultrasonic ranging outliers, which may 

arise from hardware malfunctions or non-line-of-sight 
(NLOS) effects encountered during pedestrian move
ment. The refined ultrasonic data are subsequently 
integrated with dual-sensor nodes to enhance posi
tioning accuracy. In this work, the dimension of the 
input vector of Bi-LSTM is set as 7, the length of each 
round of input is set as 200 under 1 s time window, the 
step-length of model training is set as 0.03, and the 
hidden size is set as 100. The efficiency of the Bi- 
LSTM-based anomaly detection mechanism is illu
strated in Figure 8.

In this case, 10 distinct sets of paths are carried out 
to assess the detection precision of the suggested 
detector, with the conventional threshold-based 
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Figure 6. Calibrated biases of gyroscope and accelerometer.

(a) Positioning trajectory comparison (b) Positioning error comparison
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anomaly detector used for comparison (Qi et al.  
2023). A thorough accuracy comparison under var
ious walking paths and algorithms is displayed in 
Table 2.

Table 2 shows that the suggested Bi-LSTM-based 
ultrasonic anomaly detector attains a higher anom
aly detection precision compared to the threshold- 
based method, with an average accuracy of 90.34% 
across 10 different test walking paths.

To compare the performance of the presented S- 
NPS, DFM-NU, and DFM-U, we carry out a long- 
term experiment to evaluate the effectiveness of the 

dual-node-based integration model. The walking path 
of the tests is portrayed in Figure 9. The walking path 
starts at point A, goes through points B, C, D, E, F, and 
returns to point A. This entire path is repeated 10 
times for long-term performance assessment, and the 
estimated paths and accuracies provided by combina
tions of different sensor nodes are displayed in 
Figure 10.

Figure 10 describes the comparison of positioning 
trajectories and related errors. As seen from Figure 10 
(b), the proposed dual sensor node-based positioning 
model notably improves the effectiveness of the S- 
MPS, mainly by eradicating the systematic heading 
drift caused by a single node. Moreover, the integra
tion of ultrasonic distance measurements further 
enhances the accuracy of D-MPS. The positioning 
accuracies of the three different models achieve 2.11  
m, 3.81 m, and 5.68 m at the 75% percentile, 
respectively.

4.3. Accuracy evaluation of MP-TMDS

This paper presents the hybrid spatial–temporal 
network to estimate human movement modes 
and related walking velocity based on a combina
tion of distributed sensors and ultrasonic modules. 
To estimate the effectiveness of the proposed spa
tial–temporal network, the temporal network 
LSTM (Liu et al. 2022), and a typical spatial 
graph (SG) network (Chen et al. 2021b) is 
employed as baseline models. The hybrid velocity 
and motion dataset is generated based on the 
reference of high-precision Lidar device and 
SLAM algorithm, with manually annotated motion 
patterns (Bao et al. 2022). In the proposed hybrid 
spatial–temporal network, the dimension of the 
input vector of Bi-LSTM is set as 13 including 
dual IMU and ultrasonic values, the length of 
each round of input is set as 200 under 1 s time 
window, the step-length of model training is set as 
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Figure 8. Bi-LSTM based ultrasonic outlier detection.

Table 2. Detection ratio of ultrasonic outlier detectors.
Route Bi-LSTM Threshold

T01 89.2% 86.3%
T02 91.5% 89.2%
T03 92.1% 89.6%
T04 90.5% 88.1%
T05 88.7% 87.2%
T06 89.8% 86.5%
T07 91.3% 90.2%
T08 90.7% 89.9%
T09 88.2% 85.7%
T10 91.4% 86.8%
Average 90.34% 87.95%

Figure 9. Test route of sensor node.
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0.03, and the hidden size of LSTM and GCN is set 
as 100 and 50, respectively. The comparison 
results of predicted success rate of human move
ment modes and walking velocity with baseline 

models are described in Table 3 and Table 4, 
respectively:

Table 2 and Table 3 show that the suggested spa
tial–temporal model attains the highest precision in 
movement mode detection and walking pace predic
tion compared to two existing models, including the 
temporal model LSTM and a typical spatial graph 
model. The calculated walking speed prediction error 
is less than 0.048 in 75%, and the average precision of 
human movement detection reaches 97.6%.

Finally, the proposed MP-TMDS is assessed under 
complex real-world test scenarios and contrasted with 
SOTA D-MPS methods. The evaluation path contains 
multi-floor indoor scenarios as depicted in Figures 9 
and 11. Testers start at point A, walk pass points B–A, 
H–G, and back to point A. The time period and total 
route length are 380 s and 500 m.

The effectiveness of the suggested MP-TMDS in 
predicting paths under different sensor nodes, includ
ing modules mounted on the waist and foot, is por
trayed in Figure 12(a,b) 

Figure 12 indicates that the proposed MP-TMDS 
structure exhibits enhanced performance compared to 

(a) Positioning trajectories (b) Positioning errors
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Figure 10. Trajectory and error comparison.

Table 3. Accuracy of motion mode detection.
Motion/Model ST LSTM SG

Static 100% 100% 100%
Typical walking 100% 100% 100%
Running 100% 100% 100%
Backward walking 92.8% 89.6% 88.7%
Lateral walking 91.5% 87.2% 86.8%
Go up stairs 98.7% 95.8% 94.9%
Go down stairs 99.1% 96.3% 93.6%
Taking elevator 98.4% 97.8% 97.5%
Average 97.6% 95.8% 95.2%

Table 4. Walking velocity prediction error comparison.
Index/Model ST LSTM SN

Mean (m/s) 0.032 0.043 0.047
Std (m/s) 0.021 0.024 0.026
Max (m/s) 0.085 0.113 0.124
Min (m/s) 0.003 0.009 0.012
75th (m/s) 0.048 0.061 0.068
Median (m/s) 0.025 0.031 0.036

Figure 11. Test path in 9th floor.
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the single-sensor module and dual-sensor nodes, with 
the integrated positioning error effectively diminished 
through the application of multi-level constraints and 
observations. The final estimated positioning accura
cies of the presented MP-TMDS structure under foot- 
mounted and waist-mounted modules achieve 1.74 m, 
1.62 m, and 1.24 m at the 75% level.

Finally, the overall MP-TMDS is compared with 
SOTA D-NPS algorithms: f2 IMU-R (M. Zhu, Wu, 
and Luo 2021), FPS-DU (Qi et al. 2023), and H-PPS 
(Qi et al. 2024), under the same test path, with the 
evaluated localization errors provided by different D- 
NPS algorithms as:

Figure 13 shows that the developed MP-TMDS dis
plays superior tracking effectiveness compared to 
existing D-NPS methods. The evaluated localization 
errors in the tested scenarios achieve 1.24 m in 75% 
(MP-TMDS), 1.52 m in 75% (H-PPS), 1.75 m in 75% 
(f2 IMU-R), and 1.87 m in 75% (FPS-DU), which 
improve the final positioning accuracy by more than 
18.4% compared with state-of-the-art algorithms.

For the sensitivity of proposed MP-TMDS struc
ture, the performance of MP-TMDS is affected 
following factors: the first is the complexity of 
positioning environments, the harsh environment 
that contains complex layout and magnetic inter
ference will decrease the accuracy of multi-node 
positioning; the second of the distribution of IMU 
nodes, since the combination of dual feet-mounted 
nodes and waist-mounted node show the high 
accuracy, the other distribution of IMU nodes 
such as head and thigh will also be potentially 
feasible; the third is the noise level of selected 
inertial sensors, which will lead to the changes in 
positioning base accuracy due to the level of the 
inertial sensors; the last is the robustness of motion 
detection, which is affected by the more complex 
human motion modes, and leads to the decreased 
accuracy of walking speed estimation.

In summary, this paper proposes the MP- 
TMDS structure that combines the distributed 
inertial sensor nodes together and improves the 
positioning accuracy of the overall system com
pared with a single inertial-sensor node. 
Specially, the physical model is proposed that sup
ports both foot-mounted modules and waist- 
mounted modules, using the accurate heading 
information provided by waist-mounted modules 
and walking speed information provided by foot- 
mounted modules to overcome the disadvantages 
of each. A spatial–temporal network is proposed 
to extract the motion features of the overall 
human body from distributed inertial sensor 
nodes and combined with a physical model to 
enhance the accuracy and robustness of the overall 
MP-TMDS.
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Figure 12. Positioning trajectories and errors of MP-TMDS.
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