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Abstract

Weft-knitted spacer fabrics are thick 3D knitted structures notable for their cushioning properties, until now their mechan-
ical behaviour was almost only empirically compiled without being understood nor directly linked to the fabric’s proper-
ties. The current effort to describe the fabrics geometry focuses on extremely complex models when a mechanical model
requires a simple one. This study investigated 4 different weft-knitted spacer layer geometries through FEA simulations,
it identified the model composed of two arcs bending in opposite directions to match very well the compression behav-
iour of the samples. The Euler buckling load and Euler-Bernoulli beam theory were successfully used with the selected
geometrical model to predict the plateau force (average error 22.7%, R*=0.91) and the Young’s modulus (average error
38.7%, R?=0.66) of the experimental samples. The study also investigated a compression behaviour model describing
the compression of weft-knitted spacer fabrics until the plateau phase, giving predictions based on the fabric’s struc-
ture and materials showing a 35.8 + 18.2% average error. A simple geometrical model was also developed to predict the
buckling thickness of the spacer layer (average error of 15.9%, R?=0.85). Those finding can trigger a great acceleration
of research on spacer fabrics by reducing the important time allowed to empirical samples production and testing and
open a path of selected production helped using formulas and solvers.
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List of symbols
Apop ~ Average area of the outer layer’s loops

Apiaten  Area of the compression platen

Aunie  Average compression area of the spacer units
Cnoa  Error coefficient of the model prediction

C, Error coefficient of the invert analysis

Ceim Error coefficient of the simulation results

E Effective Young's modulus in compression of the fabric in the thickness direction
e Effective compression stiffness of the fabric in the thickness direction

e Compression stiffness of the spacer units in the thickness direction

F Compression force of the fabric in the thickness direction

F’ Compression force of the standard spacer unit in the thickness direction
Fp Buckling force of the spacer unit

Fy Buckling force of the standard unit

Fou Buckling force of the unit u
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Fp Plateau force of the spacer fabric
Fy Plateau force of the standard unit
Fou Plateau force of the unit u
Frb Model compression force of the fabric neglecting the buckling
Fo Compression force at the start of the standard analysis
G Distance between the needles on the knitting machine needle bed
H Height of the outer layer’s loop
I Irregularity of the of the fabric buckling force normal distribution
L Length of the spacer yarn between the tucks
n Needle distance between the tucks
N, Number of spacer units under the compression platen
S Standard deviation of the thickness normal distribution
Sy Standard deviation of the fabric buckling force normal distribution
Sy Standard deviation of the spacer units buckling force normal distribution
w Width of the outer layer’s loops
T Distance between the compression platen and the support during the compression
T Spacer layer thickness
Tov Average thickness of the fabric

T, Average thickness of the spacer layer
Ty Buckling thickness of the spacer fabric
T, Buckling thickness of the standard unit

Tou Buckling thickness of the unit u
T; Ideal thickness of the spacer layer
Ty Thickness of the spacer layer on the knitting machine
T, Model thickness of the spacer layer
out Thickness of the outer layer’s surface covering the spacer layer
To Thickness of the fabric at the start of the standard analysis
u Spacer unit
6 Displacement of the compression platen
b,y Displacement at the average thickness of the fabric
6, Displacement at the buckling thickness of the standard unit
6, Displacement at the initial contact between the platen and the fabric
6,0  Initial distance between the compression platen and the support
6, Displacement at the start of the standard analysis
€ Compression strain of the fabric in the thickness direction
& Compression strain of the fabric at the beginning plateau phase
f, Probability density function of the fabric thickness distribution
f/ Probability density function of the spacer layer thickness distribution
o, Cumulative distribution function of the fabric thickness distribution
fy Probability density function of the buckling force distribution
o, Cumulative distribution function of the buckling force distribution
o Compression stress of the fabric in the thickness direction
o Compression stress of the fabric at the beginning of the plateau phase

1 Introduction

Weft-knitted spacer fabrics are 3D knitted structures with a high thickness and spring-like compression properties
[1]. Despite their geometrical structure and their compression behaviour being their main interest, neither of them
can be predicted before knitting the fabrics. This study investigates 4 different geometrical models based on the
knitting machine and spacer fabrics’ geometrical properties and identifies the most suitable using a FEA. The study
then proposes a mechanical model to predict the stiffness, the thickness, the plateau force and the plateau strain of
weft-knitted spacer fabrics.
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Spacer fabrics can serve a variety of purposes [2-10], but they are mostly used for their cushioning [11-22] proper-
ties. Their compression behaviour was quite studied, but only in an empirical way [11-16, 23-26].

A compression behaviour model needs to be based on a geometrical model first. A geometrical model developed
by Wu and Xia was tested with success using FEA, but the model is complex and cannot predict a compression behav-
iour without simulations, thus it was tested on only one sample [27]. In this study, simulations are conducted using
simple geometrical models suitable for a simple mechanical model which could be later used without conducting
any simulation.

Several mechanical models have already been proposed to describe the compression behaviour of spacer fabrics,
but they could not explain nor predict the behaviour of the fabrics [28-30]. In a previous study a model decomposing
the spacer fabric as a set of springs whose characteristics followed a normal distribution was developed to describe
the flattening behaviour of weft-knitted spacer fabrics [31]. This model is now combined with the Euler-Bernoulli
beam theory to presents a complete compression behaviour model expressing the compression force of a weft-
knitted spacer fabric in function of its structure and material properties.

This study is pursuing two aims: providing a relevant geometrical model for the spacer layer and a mechanical
model predicting accurately the compression behaviour of the fabric. The achievement of these two aims is to be
validated by the match between the properties obtain through the simulations, the properties measured on experi-
mental samples and the properties predicted by the mechanical model.

2 Materials and methods
2.1 Materials

A spacer fabric is a three layers sandwich material: its two outer layers are parallel flat fabrics connected by spacer
yarns. The weft-knitted spacer fabrics investigated in this study have plain knitted outer layers and spacer yarns con-
necting them by successively tucking them following the weft direction (Fig. 1). The spacer yarn never knits and only
tucks and floats, the floats of the spacer yarns create a spacer layer between the outer layers (Fig. 2).

The samples were produced on a 10-gauge double-bed weft-knitting machine of the grade “SWG 091N2" (Shima
Seiki MFG. LTD.; Wakayama, Japan); the machine has a needle gap G=2.54 mm, a knitting thickness T,=3.5 mm
and knitting needles with a circular section of radius R,,=0.6 mm. The yarns properties are listed in Table 1 and are
presented with more details in the weft-knitted spacer flattening study [31]. The experimental samples are listed
in the Table 2, they were all knitted with 70 and 0 stitch values for the outer layer and the spacer layer respec-
tively except for the spacer yarn of the A12N3T S10 sample which has a stitch value of 10.

Fig. 1 (a) Isometric view, (b) (a)
warp view and (c) weft view of
a weft-knitted spacer fabric

Weft %

direction direction

(b) (c)

Spacer yarn Outer layer
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Fig.2 A spacer yarn (red)
tucking the outer layer (white
and grey) in (a) top view, (b)
warp view and (c) weft view

Table 1 Yarns properties

Commercial name Function Material Diameter (mm)  Linear den- Stiffness for Tenacity (cN/Tex)
sity (Tex) a 100mm
yarn (cN/mm)

Amossa LS1/20 Outer layer yarn PET / 50 290.70+£7.4 39.86+0.62
Dralon-Cotton Ne32/1 Cotton 50% 47.97£18.2 13.23£1.01
-acrylic 50%
Marulon ST6800 Elastic yarn Spandex / 39 0.49+0.06 6.58+0.99
Marulon S1470 15 0.15+0.02 10.52+1.97
Spacer yarn(monofilament)  Polyamide 6  0.08 54 17.60+5.54 /
0.12 12.3 38.59+4.75
/ 0.14 16.7 51.01+5.67
PET 0.08 6.9 41.58+6.18

2.2 Geometrical models

The knitting structure of a weft-knitted spacer fabric is defined by its needle distance n, which represents the number of
needles horizontally separating two following tucks. For a stable knitting, each loop of the outer layer can accommodate
only one tuck of the spacer yarn (Fig. 2), 2n different spacer yarns are required to tuck all the loops on a same row of the
outer layer. During the knitting process the spacer yarn is straight between the tucks on the flat-knitting machine, its
length L between two following tucks is calculated using the Eq. 1. When the knitting is over the spacer fabric falls from
the machine, the outer layer which is no longer held by the knitting needles shrinks until its loops reach an average

width W (Fig. 2).
L=1/T 2+ (nxG)> U

By considering that the spacer yarn remains straight during and after the shrinkage, the ideal thickness T; of the spacer
layer can be calculated using the Eq. 2. Despite ignoring T, the thickness of the outer layer covering the spacer layer,
this formula has already shown good predictions of the fabric thickness [1]. The geometry of the spacer layer between
two following tucks is called a spacer unit. Because the total geometry of the spacer layer is the repetition in both the
warp and weft directions of the spacer unit, a geometrical model of the spacer unit is sufficient to describe the geometry

of the whole spacer layer.
T, =/L2— (nx W) @
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Table 2 Weft-knitted spacer

) d Outer layer Yarn material ~ Spacer yarn material ~ Spacer yarn Needle  Elasticyarn Samplename
fabric samples properties

diameter distance
(mm)

Cotton-acrylic Polyamide 6 0.12 5 39Texyarn  DAT2N5L

7 DA12N7L

PET 0.08 5 A8BNS5L
0.12 A12N5L
0.14 AT4N5L
0.08 7 A8BN7L
0.12 A12N7L
0.14 A14N7L
0.08 3 15Texyarn  A8N3T
0.12 A12N3T
0.12 A12N3T S10
0.14 A14N3T
0.08 5 ABN5T
0.12 A12N5T
0.14 AT4N5T
0.08 7 ABN7T
0.12 A12N7T
0.14 A14N7T

PET 0.08 3 E8N3T

ES8N5T

In this article, 4 geometrical models of spacer layer are investigated:

The direct model (Fig. 3a) considers the spacer yarn to keep its shape after the knitting needles caught the spacer
yarn on the machine. It is composed of a long straight line with two small arcs of radius R, at is extremities. Those arcs
are tangent to both the horizontal outer layer and to the straight long line. This model being very similar to the ideal
geometry of the spacer layer, its thickness is considered to be T,

The S-shaped model (Fig. 3b) assumes the spacer yarn to form an arc of width G to get out of a tuck and keeps its
shape during and after the shrinkage. The two arcs are tangent to both the horizontal outer layers and to a straight long
line connecting them. The model thickness is approximated to T,.

The curved model (Fig. 3¢) is based on the hypothesis that the spacer yarn initially forms arcs of width G to get out of
the tucks on both outer layers, but that during the shrinkage the spacer yarn extremities are pushed toward one another
contracting one arc into an arc of width W (Fig. 2) and bending the line in the middle. The three arcs are tangent to each
other and to the horizontal outer layers. The model thickness is approximated to T,

The arc model (Fig. 3d) considers that the spacer layer is composed of two equal arcs of angle 2a and radius R, the
arcs are tangent to each other and to the outer layers. The spacer yarn has totally lost the straight shape it had on the

(a) (b) (d)

Rn N N
i Ti
Ti Rm g
Rn
v v
nWw ’ nW ’

Fig. 3 (a) Direct model; (b) S-shaped model; (c) curved model; (d) arc model
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Fig.4 (a) Straight model; .
J J Warp view Weft view A 4

(b) bent model; (c) model

bending only within the plan (c) J
during the compression; (d)

model bending only out of

the plan during the com- (a)
pression; (e) model bending

within and out of the plan

during th i * ¥
o L

(b)

(e) ¢
Fig.5 Geometry of the bent
model (a) on the machine and (a) nxW (b)
(b) after the shrinkage I |

/X

bending plan

o

nxG

Warp view Bending plan

knitting machine; to keep the spacer yarn length equal to L the model cannot have a thickness T,. The arc model has a
model thickness T,, given by the Egs. 3 and 4.

2a=\/10—2\/30”>zw—5 3)

Th=nxWxXtana (4)

A spacer layer geometrical model can be straight (Fig. 4a) with the spacer yarn going from one tuck to the other
while remaining within a plan normal to the warp direction. A model could also be bent (Fig. 4b) with the spacer yarn
going from one tuck to the other following a 3D trajectory projecting an arc on the plan normal to the weft direction.
The straight models can show three different compression behaviours: the spacer yarn can bend only within the plan
normal to the warp direction (Fig. 4c), it can buckle at the beginning of the compression and then bend out of the plan
(Fig. 4d), or it can start to bend within the plan to then buckle and bend in the warp direction (Fig. 4e). The bent models
cannot bend only within the plan and don’t need to buckle to bend in the warp direction. If the geometry of the spacer
yarn in the plan provides too much resistance the spacer unit will tend to bend mostly in the warp direction (Fig. 4d), if
not the spacer yarn will bend in both ways (Fig. 4e).

The geometry of the bent models can be determined considering that the spacer yarn bends within a bending plan
generated by both the warp direction and the direct line between the two tucks (Fig. 5a). The spacer yarn bends as a
perfect arc within the bending plan, keeping its total length L. For an initial bending angle 6, the distance between two
tucks in the plan normal to the warp direction becomes Ly and the thickness becomes 7O (Egs. 5 and 6) (Fig. 5b).
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sin@
L,=Lx—
0 0 (5)

T, =\/Ly* — (n x W)? 6)

2.3 Simulation conditions

The geometry of a spacer unit strongly depends on the loop width W which can only be known from the measurement
of the outer layer’s weft density after its shrinkage. Because the fabric shrinkage cannot be simulated, model dimen-
sions for the loops of the outer layer are used. The simplified geometrical model of a weft knitted loop developed by
Pierce [32] gives the model values for the average loop width W=4D,_, and the loop height H=2 V3x D, in function of
the outer layer yarn’s diameter D, (Fig. 2). The model value of the diameter of a cotton yarn D, (m) is calculated in
function of its linear density A(Tex) using the Eq. 7 [33]. The PET and cotton-acrylic yarns are considered to have a similar
porosity and structure to the cotton yarns but different fibre densities. The cotton fibres have a density d_ ,,=1.54 9/
cm? while the PET has a density dper=1.38 g/cm?. Because the acrylic has a density of 1.18 g/cm? the cotton-acrylic yarns
are considered to have an average fibre density similar to d,,... The two outer layer yarns having a linear density A=50Tex,
the Egs. 7 and 8 give the model value D,,,=0.381 mm for both yarns.

out

Deotton = (—0.10284 +1.592 1/ ﬁ) x 1073 -

d
D — D X cotton (8)

out cotton
dpet

The simulation models were designed on SolidWorks2020 by sweeping a circular section on the different spacer unit
geometries. The models were then meshed on Femap using hexahedral parts with volumes of a scale 10-°mm?3. The finite
element analysis was conducted on LS-Dyna were the three parts of each model (the top layer, the spacer layer and the
bottom layer) were connected by mortar contacts. The top surface of the top layer was subjected to a forced displacement
of speed 0.1 mm s~'in the thickness direction (on the y-axis) while the bottom surface of the bottom layer was fixed in
the thickness direction. The lateral edges of the spacer units are symmetry plans, the surfaces on those edges were fixed
in the warp and weft directions (respectively the x-axis and z-axis) to insure that during the compression the unit model is
only deformed in the thickness direction (Fig. 6). The edge surfaces normal to the weft direction also had fixed rotations on
every axis since within the fabric the spacer yarn is hold tightly in the tuck and cannot rotate. The spacer yarn material was

Fig.6 Simulation conditions
from the warp view (a), the (a) (b) (C)

and half models (c)

Spacer yarn
Bottom layer * Z
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Table 3 Simulation models of a A12N5 spacer unit

Spacer yarn material Spacer yarn diameter Needle distance n Geometrical model Simulation model Simula-
tion model
name

Polyamide 6 0.12mm 5 Direct straight—half A12N5-DH

straight—full A12N5-D
e=1° A12N5-D1
=5 A12N5-D5
S-shaped straight—half A12N5-SH
straight—full A12N5-S
6=1° AT2N5-S1
6=5° A12N5-S5
Curved straight—half A12N5-CH
straight—full A12N5-C
6=1° A12N5-C1
6=5° A12N5-C5
Arc straight—half A12N5-AH
straight—full A12N5-A
6=1° AT2N5-A1
6=5° A12N5-A5

Table4 Simulation models

o Spacer yarn material Spacer yarn diameter (mm)  Needle distance Simula-
of a spacer unit using the arc tion model
geometrical model name

PET 0.08 3 E8N3-A
Polyamide 6 A8N3-A
0.12 A12N3-A
0.14 AT4N3-A
PET 0.08 5 E8N5-A
Polyamide 6 A8N5-A
0.12 A12N5-A
0.14 AT4N5-A
0.08 7 A8BN7-A
0.12 A12N7-A
0.14 A14N7-A

considered isotropic, respective Young's modulus of 3.4 and 8.3GPa were used for the Polyamide 6 and the PET. The simula-
tion neglected the friction due to the spacer yarn being tightly held in the outer layer tuck.

A first group of simulations was conducted with 16 different models of a spacer unit A12N5 of needle distance n=5 and
Polyamide 6 spacer yarn of diameter D, =0.12 mm, the simulation models are listed in the Table 3. Each of the 4 geo-
metrical models (direct, S-shaped, curved and arc) was used to produce 4 simulations models: a straight full model, a straight
half model, a bent model of initial angle ©=1° and a bent model of initial angle ©=5°.

A second group of simulations was then conducted using only the straight full arc models listed in the Table 4, 11 differ-
ent models of spacer unit of different needle distances n, spacer yarn materials and spacer yarn diameters Dy, Were used.
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Fig.7 Compression behaviour /
of the spacer fabrics F
Fp 1 /—l—'"i
E
0 Flattening Linear Plateau Densification /6-

compression
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2.4 Mechanical model
2.4.1 Compression behaviour model

A spacer fabric compressed in its thickness direction between two flat compression platens initially at a distance
Omax ShOws a compression behaviour following four phases: the flattening, the linear compression, the plateau and
the densification [11, 14, 31] (Fig. 7). The densification phase is caused by the compression of the outer layers afters
the spacer layer has lost all its thickness; it is not investigated in this study.

The spacer units are considered to behave like independent springs with linear compression behaviours of a same
stiffness e’. The outer layer does not participate to the spring-like compression behaviour; to describe this behaviour
this study uses the spacer layer thickness T'=T-2T_,. A spacer unit u has a thickness T, and starts its linear compres-
sion at a displacement §,=6,,,,~T,-27T,,.. When the compression resistance F, of the unit u reaches its buckling force
Fy. the spacer yarn buckles, and the force drops to a plateau force F, to remain constant. Each loop of the top outer
layer being supported by two units (Figs. 2, 8a), the average compression area of the units A, is half the average
loop area Ay,,,. The total compression force of a specimen is the sum of the compression forces F, of all the N, spacer
units subjected to the compression (Egs. 9, 10). Due to the diversity of unit thickness within the fabric the units do
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not start their compression at the same time (Fig. 8a, b), the fabric starts to show a linear compression behaviour
only when most of the units are being pressed (Fig. 8c). The units buckle one after the other, therefor the fabric
compression reaches its plateau phase gradually. Because the difference of force between F,, and F,,, can neither be
predicted nor measured they are considered equal by this study.

N = Aplaten _ 2 ><Aplaren _ 2 ><Aplaz‘en (9)
! Aunit Aloop W xH
u=N,
HOEDIWNAC! (10)

The spacer units pressed together during a compression test cannot be characterised directly, the characterisation of the
fabric focus on the determination of a standard spacer unit. This standard unit is defined as average in all its characteristics:
it has an average thickness T, (Eq. 11), an average buckling thickness T, (Eq. 12) and an average plateau force Fp’ (Eqg. 13).
The standard unit compression force F(8) shows a linear behaviour from 6,,=6,,,,,~1,,-2T,,: and buckles at the force F,'to
remain constant at the force F,, in the study F,’is considered equal to F,for simplification (Eqg. 14) (Fig. 9a).

Ny
Zu=‘| TLI
N

!
7-av_

(13)

06 < Spax = T)y = 2 X Toue

F’(5)= e’ x (5_5max+Tav)5 > 5max_T;v_2><Tout (14)

Fpo > Omax — Ty = 2 X Toye

(c)

Tou (mm)
F" Linear i Plateau
T'( Tav' ITo'
. ) 1 1
F' 4

0.84

F 4 |
r\suckling 05
I
| - 0.16
0 6av 6b'26P' 6 < g +

Fig. 9 (a) Model compression behaviour of the standard spacer unit. Normal distributions (grey) and its cumulative function (black) of the
spacer units (b) thickness and (c) buckling forces
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The distribution of unit thickness follows a normal law of mean T,,” and standard deviation S,. By considering the outer
layer thickness T, to be constant, the fabric thickness distribution can be described by a normal law of mean T, =T, '+ 2T,
and standard deviation S, (Fig. 9b). Its density function f,and a cumulative function @, are given in function of the compres-
sion displacement & by the Eqgs. 15 and 16. The function @, (8) gives the proportion of units having already started their
compression at the displacement §, and @.. Since all the units have the same stiffness €', a compression force F,,, neglecting
the buckling can be calculated (Eqg. 17). F,,, is the ideal force of an infinite elastic compression, it needs to be corrected by
adding the buckling behaviour to the model.

’I _ (6=8ay)?

f(6) = ————e =7
15
\/2ﬂ5r2 15)
6
$(8) = J f,00dx (16)
dF,,(6) _ ,
—5— = (B xN, xe (17)

The distribution of unit buckling forces follows a normal law of mean F,"and standard deviation S’ (Fig. 9c), its density
function f'is given in function of the average compression force of a spacer unit F/N,, (Eq. 18). The function @, (F,;,) gives
the proportion of units having already buckled at the force F,, (Egs. 19, 20) (Fig. 10c). The buckled units do not participate
to the increase of the compression force, it enables the calculation of the compression force of a fabric using the 6 variables:
N, €T, S, F,’and S, (Eq. 21).

[Fnb/NufF;]
fé(Fnb/Nu> =1 e = (18)
\/2775;2
(Fnb’FP)
1 Y
fo(Fro) = e % =Ty ><’Z(F”"/N ) (19

h ToTav Tb Tp
e'x Nu+ 1r
- 5 0.75 }
E et
2
by 0.5
-
o=
]
0.25
Bso.
0 0

8: 60 5av 6b GP
8 (mm)

Fig. 10 (a) Compression force in function of the displacement of the DA12N5L_1 specimen (grey), its model compression force (long black
dots) and its infinite elasticity model compression force F,, (small black dots); (b) derivative of the compression force in function of the
displacement of the DAT12N5L_1 specimen (grey), its model derivative (long black dots) and its infinite elasticity model derivative dF,, / dé
(small black dots); (c) proportion of pressed units (grey), proportion of buckled units (long black dots) and proportion of none buckled units
(small black dots)
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Fnb 27_:
bo(Fop) = J fol0dx = [ f00)dx 20)
dF(s) dF,,(8)

The experimental value of the compression force derivative is calculated with the least squares method (Eq. 22). The
experimental force derivative first increases as more units are compressed, after a local maximum is reached the force
derivative decreases as more units have buckled until a local minimum before increasing again due to the densifica-
tion phase. When the derivative reaches the local minimum or becomes negative the compression behaviour enters its
plateau phase, the plateau force F, and plateau thickness T, of the fabric are measured at this point. The plateau force of
the standard unit F,’=F /N, is then calculated.

NXZ—N/ 4N, F(5i+j)><5i+j— [Z—N/ 4N, F(5i+j)]X[E—N/ 4N, 5i+j]
_ 29<72 29<72 29<72 )

2
N x 5ioj)? — Biaj
XN, N, ) [Z—N/2<j<N/2 ,+,]

dF
%(5:‘)

The experiment data was processed using a mathematical inverse analysis procedure with a function of the MS-
Excel solver [34]. The analysis is a procedure used to determine the fabric average thickness T,,, the thickness standard
deviation S,, the unit stiffness e’ and the buckling standard deviation S,. The analysis starts at §,=8,,-S, and finishes at
8= max—T, When the plateau phase is reached. The analysis cannot start too early because the initial stiffness of the
fabric is often caused by its waviness rather than the compression of the thickest spacer units (Fig. 10a, b). The analysis
is setting the values of the four variables: the average thickness T, the thickness standard deviation S,, the unit stiffness
e’and the buckling standard deviation S,. The parameters 6,,,, and N, are set manually, the parameters &,, Fy, 6,,, €, T,
F, and T, are automatically calculated by the Excell sheet. An error coefficient C; is calculated by summing the square of
the difference between the measured and calculated values of dF/dé (Eq. 23). The analysis sets the optimal combination
of variable values for T, 5, €"and S, to reach the minimum value of the error coefficient C,. After the solver determined
the parameters T,,, S, e’ and S,, the compression force F(6) is calculated from &, by adding the integral of the model force
derivative between §,and & to F, the force at §, (Eq. 24) (Fig. 10a). The analysis measures the properties of the standard
unit: T,,, Ty, F,, F,"and e”. The variable T, =6,,,,~6, is measured at F,(6,) = F, and when half of the units have buckled.
The thickness T,,”and T, are calculated by removing the double of T, to T,, and T,,. F,,"is automatically measured before
the analysis and e’is directly given by the solver. The standard unit buckling force F,’is calculated using the Eq. 25 with

the measured values of T, T’ and e".

dF(s dF,,(6)]°
CS(F’ 5max'Nu’ Tav’ e/lsrfsb) = Z5o<5<5 [% - (1 - ¢b(Fnb)) X d—b(s() (23)
y d
F
F(6) = Fy + /(1 = ¢ (F¥))) X ZI—"X(X)dx (24)
o
Fl,) =e'x (Tév - Té) =€ x(Ty, = Tp) (25)

2.4.2 Spacer yarn bending model
During the compression the spacer yarn bends within the plan normal to the warp direction with each half of the yarn

bending in an opposite direction. When the yarn finally takes the shape of an S and has its central part almost vertical, it
buckles out of the plan. The buckling force of the standard unit can be estimated using the Euler’s buckling load formula
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Fig. 12 (a) Bending behaviour of the spacer yarn; (b) bending behaviour according to the beam theory; (c) model bending force of the
standard unit of the sample DA12N5

(Eq. 26) with the Young’s modulus and the second moment of area / (Eq. 27) of the spacer yarn. During the compression
the mechanical constraints on the central part of the spacer yarn prevent its extremities to move freely but not to rotate,
then the column effective length factor is K= 1. The only unknown variable of the Eq. 26 is the length L, of the buckling
part of the spacer yarn.The length L, is equal to T, only if the buckling happens when the central part of the yarn is made
perfectly straight and vertical before the buckling. By considering that the standard units buckles when it has bent until
the spacer yarn took the shape of two equal horizontal lines connected by two equal and opposite arcs, a simple model
of the buckling thickness T, can be proposed (Eq. 28) (Fig. 11).

m?XEx| _ x?xEXI

Fy= (26)
b (KLb>2 Lb2
4
I (27)
4 2
T = L—nxW

On the knitting machine the spacer yarn is straight, but it starts to bend during the shrinkage and continue to do so
during the compression test (Eqg. 24). By considering that the two halves of the yarn bend as perfect arcs (Eqs. 29-34)
(Fig. 12a), the Euler-Bernoulli beam theory can estimate the bending force P(J) of each half of the yarn (Eq. 35) (Fig. 12b)
and the total compression force F'(8) of the standard unit (Eq. 36). The model values of F'(6) give the compression behav-
iour of the standard unit from the shrinkage to the densification phase of the spacer fabric (Fig. 12c). The force F(T'=T,,)
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gives the compression force applied on the standard unit by the outer layer’s contraction. Above the force F(T=T,) the
standard unit buckles and the behaviour model is not relevant anymore, the compression stiffness e’ of the standard
unit is then estimated between T, and T,/ (Eq. 37).

T'@)=T,-8 (29)

L.(6) = %\/ T'(8)* + n2W?2 (30)
nW

Cosﬂ(é) = m (31)

a(é):\/1o—2\/6o@—5 (32)

R(6) = L
T 4 xald) (33)
U, (8) = R(8) — R(8) X cosa(5) (34)
48 X Ex1xU,(8)
P(8) = 3 (35)
Lc(5)

e 2XP(8)

Fo) = cosp(6) (36)

 F(T=T)-F(T=T)
e = T (37)
av b

The thickness distribution following a normal law, only 0.13% of the spacer units have a thickness higher than T,,"+ 35,,
this thickness is considered to be T; the maximum potential thickness of the units. By starting the compression model at
T=T;(Eq.29) it can be set that §,,=3S,;and T,,'=T-3S,, this prediction of T,, gives a simplified expression of @, (Eq. 38).The
value of S,'is strongly dependant of the value of F,, it is more relevant to use the buckling irregularity I,=S,'/F,’=S,/F,.
Because S,, and /, represent the irregularity of the fabric their values cannot be predicted, the average experimental
values are used. After introducing /, and the Euler’s buckling load formula (Eq. 26) into the Eq. 20, a simplified expression
of @, is given by the Eq. 39.

é

1 _(r—3><s£)2
¢t(5)=/—e s dt (38)

Zeo/27 xS,

2 (e V1
e - T -

T \/2n(lb X 4 x m2E x l)2

Those variables predictions and formulas (Egs. 36, 38, 39, 40) can predict the compression behaviour of a spacer
fabric from the beginning of the flattening to the end of the plateau phase (Fig. 13a). This model compression force was
calculated for each sample before being compared to the experimental compression forces of its 3 specimens using an
error coefficient C,,.4 (Eq. 41). The model compression starts at =0 mm for simplification but it is not the case during
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the experiment, the experimental compression is considered to start at the experimental displacement 6=46,,-3S,. The
value 35, is then removed to the experimental displacement data to make the experimental and model compressions
start together. On the opposite the model values can also be adapted to makes a prediction of the compression behav-
iour including the fabric thickness (Fig. 13b). The model displacement does not start at §=0 anymore but at §=5,,,,

-T-2xT,, (Eq.42).
dF,,(6) dF’(6)
D = (8) XN 40
o5 = GO XN, x — (40)
ép
average|F,,,(6) — F’"Ode’(é)|o<5<5 5[ . Fexp = Fimoder|d5
Crod = == (41)
average (Fe,(8)) s %
<<% J Fepds
=0
5_(5max_Ti_2XTuut) 5
-I _(t=3xSp)
N e w)
Yo \/ 27 X St2
2.5 Method

The specimens were pressed uncut by a circular compression platen of 116 mm diameter with 6,,,,,=16 mm on a bench-
top universal testing machine of the grade “EZ-S 500N” (Shimadzu Corporation; Kyoto, Japan) following the protocol
reported in the flattening study [31].

3 Results and discussion

3.1 Outer layer properties

The loop height H and loop width W show average experimental values of 1.38+0.11 mm and 1.86+0.16 mm for
model values of 1.32 mm and 1.52 mm (Fig. 14a—d). The Pierce model predicts a loop area of 2.0Tmm?, which is 21.6%

lower than the experimental Aj,,,=2.56 +£0.33 mm?, the W values used for the simulation models can be considered
suitable. Despite not including the T, ,,, the ideal thickness T; matches well the average thickness, showing on average
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only a 5.2% variation from T,, (Fig. 14e). This indicates that after the shrinkage the spacer yarn bends a little, the lost
thickness is balanced by the thickness T, .. The model thickness T,, shows a very high corelation with T,, (R*=0.97)
while always remaining lower than T,, due to the outer layer thickness T, = (T,,~T,,)/2. The difference between T, and
T,, is stable as the outer layer’s thickness is regular, it tends to show that T,, estimates well the spacer layer’s thickness .

3.2 Efficiency of the invert analysis

The models generated by the invert analysis matched the experimental data of the compression force and its deriva-
tive very accurately, showing respective average coefficient R? of 0.9740 and 0.9997. The dropping of the compres-
sion force during the buckling cannot be measured by the compression behaviour model because it considers that
F,=F,. Subsequently the invert analysis systematically provides a value of F, extremely close to F,,, the later is simply
measured with £, and N, without using the analysis; F, shows on average only 2.4% variation from F,,.

3.3 Simulation results
3.3.1 Simulation results of the different geometrical models

The compression force of all the direct models and S-shape models increases sharply at the beginning of the com-
pression to reach its plateau phase extremely quickly and then slowly decreases afterward (Fig. 15a—d). Surprisingly,
the straight models and S-shape models both buckles within the plan normal to the warp direction at the beginning
of the simulation (Fig. 16a—f). The curved models reach a plateau phase a bit more slowly, without any buckling
(Figs. 15e, f, 164, h).

The straight full arc model follows an almost linear compression behaviour until it buckles and starts its plateau
behaviour (Fig. 15g). This simulation result matches the model compression behaviour model of the standard spacer
unit and provides precise values for F,’, Fp’and T,’ (Fig. 9a). This model also shows a deformation behaviours close to
the experimental behaviour: the yarn bends within the plan to take the shape of a Z, when the central part is almost
vertical the yarn bends out of the plan. (Fig. 16i-k). The straight half model keeps bending within the plan without
buckling; despite showing an accurate prediction during the linear compression phase it never enters a plateau phase
(Fig. 15g). The bend models present results close to the straight full model without showing any buckling, they gradu-
ally enter a plateau phase (Fig. 15h). Those models are less interesting than the straight full model for two reasons:
they require to set an arbitrary initial bending angle © and they do not indicate clearly F,’, F,"and T}’ like the straight
full model does. Some simulations show instability (Fig. 15a, ¢, e, f) or even stopped before their programmed ends
(Fig. 15¢, d, h) due to convergence errors, those errors are mainly caused by the limited surface area of the simulation
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Fig. 15 Stress—strain curves of the average experimental values of the sample A12N5 (long black dots, grey error bars) with the simulation
values of the straight models (full: line, half: dots) (a) direct, (c) S-shaped, (e) curved, (g) arc and the simulation values of the bent models
(©=1":line, ©6=5": dots) (b) direct, (d) S-shaped, (f) curved, (h) arc

outer layers. When the spacer yarn bends out of the plan too much, it loses it support from the bottom layer and
becomes unstable (Fig. 17). Those errors do not affect the results as they always occur during the plateau phase.

3.3.2 Simulation results of the full straight arc model

For all the simulations using the full straight arc model the force—displacement curves show until the buckling a
linear behaviour of average linear coefficient of determination R?=0.993+0.001 (Fig. 18). An error coefficient C;,, is
calculated until the strain £=0.4 to measure the variation of the simulation stress—strain curve from the experimental
one (Eq. 43), it shows an average value of 49.6 + 38.5%.

1 04 aexp('g) — Ogim(€)
0<e<0.4 ’ 0 Oexp(€)

The simulations predict the plateau stress 0, and the Young’s modulus £ with a moderate accuracy, showing respec-
tively on average 29.7% and 39.5% variation from the experimental values (Fig. 19a, b). The simulations predict well
the plateau strain €, with only a 16.6% average variation from the experimental values. The value of ¢, is relatively
stable, with an average value of 0.246 +0.020 for the simulations and 0.257 £ 0.072 for the experimental samples.
The experimental values are higher because they give the strain of the fabric when the last units reach the plateau
phase while the simulation values give ¢, for the standard units.

The simulation predicts accurately the buckling thickness of the standard unit T,’, showing on average a 14.3%
variation from the experimental value (Fig. 19¢). The simulation T,  values for models of a same n value are extremely
stable, showing on average a 0.06 mm standard deviation for a same knitting structure. It is observed that the average
value of T, for a given needle distance can be well estimated by L/2. The simulation results always show a drop of
the compression force at the buckling point, the buckling force F,’ dropping on average of 13.2 +6.6% to reach the

c O—exp(g) ~ Osim (e) (43)
aexp(s)

sim = average
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Fig. 17 Weft direction view of //—"\

an extremely bent simulation ’ spacer yarn
spacer yarn leaving the bot-
tom layer
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plateau force F,". The simulations predict well the buckling F,’ (Fig. 19d) and plateau force F,’ (Fig. 19e) of the stand-
ard unit, respectively showing average variations of 26.7% and 28.8% of from the experimental values. The simula-
tion tends to underestimate the spacer unit stiffness e’ at the exception of the stiffest samples, showing an average
variation of 50.1% from the experimental values (Fig. 19f). Those simulation results lead to the conclusion that the
spacer yarn mechanically behaves as two bending opposite arcs, it tends to validate the spacer yarn bending model.
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(k) A14N7

3.4 Mechanical model results

Surprisingly the value of S, is not correlated at all to the thickness, showing a coefficient of determination R*=0.019 with
T, It has an average value of 0.45+0.18 mm which could be linked to the knitting machine geometry or to the shrink-
age irregularity. The value of /, is less stable, showing an average value of 0.55 +0.30. Because the analysis prevented the
value of I, to be over 1, the proportion of initially buckled units @, is limited to 16%.

The buckling thickness model predicts relatively accurately T,’, showing on average a 15.9% variation from the experi-
mental value (R?=0.85) (Figs. 19¢, 20a). The model always overestimates the value of T, for the spacer fabrics of needle
distance n=3, showing on average a 42.3 +4.9% variation from the experimental value for those fabrics. The spacer fabric
with lower needle distances n may show a geometry different from the fabrics with higher needle distances.

The Euler’s buckling load formula (Eq. 26) predicts the buckling force F,’ of the standard unit with a moderate accuracy
if it considers that L, =T, The model values given by the Euler’s formula using the experimental (Fig. 20a, b) and model
values (Fig. 20c) of T’ show respective average variation from the experimental F,’ values of 50.9 and 47.2%. This suggests
that L, does not correspond to T, and that the central part of the spacer yarn buckles without being vertical. The use of
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and simulation average values of the buckling thickness T, in function on the needle distance, (d) experimental values of the standard unit
buckling force F,’, () plateau force e, and (f) stiffness €’in function of their simulation values

L/2 for the buckling length L, appears much more efficient, it predicts accurately F,’ with only an average variation from
the experimental result of 22.7% (Fig. 20d). This accuracy is evenly distributed to the samples of different needle distance
n, it suggests a regularity of the spacer unit’s geometry during the buckling. The model value of F,’ calculated with L, =1/2
can be multiplied by the experimental number of unit N, to obtain a model value of F,,, showing too on average 22.7%
variation from the experimental results (Fig. 20e). By knowing n, the diameter and Young'’s modulus of the spacer yarn
and the warp and weft densities of the outer layers, the plateau stress of a weft-knitted spacer fabric can be predicted.
The buckling forces calculated using the simulation buckling thickness are extremely close to the buckling forces given
by the simulation (Fig. 20f), this indicates that the simulation uses the Euler’s formula to simulate the buckling.

The spacer yarn bending behaviour model is very linear until the buckling, the model F/(6) shows on average R?=0.9997
between T,,"and T,’ (Fig. 12c). The model predicts the stiffness e’ with a moderate accuracy, showing an average vari-
ation of 48.1% from the experimental value (Fig. 20g). The model predicts the value of E (Eq. 44) with a slightly higher
accuracy, showing an average variation of 38.7% from the experimental value (Fig. 20h). The invert analysis could have
overestimated e’ and compensated by underestimating T, to reduce C,, when calculating E those two errors would
balance each other. The model values are again very close to the simulation value, it validates the spacer yarn bending
model by showing that LS-Dyna uses a very similar model to simulate compression of the arc models (Fig. 20i).

e'xT,

=— (44)

unit
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The hypothesis that T,,’+ 35, matches T; the maximum potential thickness of the units appears to be correct, the for-
mula T, +35-2T,,, only shows an average variation of 3.4% from T;. The model can predict the compression behaviour
of the sample with a satisfying accuracy by using the average experimental values of S, and /,, showing an average error
coefficient C,,,;=35.8+18.2%. The specimen DA12N5_1 shows a C,,,,, value of 53.2% (Fig. 13a). The value of C,,,, doesn’t
seem to be correlated with any of the fabric’s characteristics.

Those results are extremely satisfying, they open the door to easy and quick predictions of weft-knitted spacer fabrics
compression behaviour. With a better understanding of the fabric irregularities and a good prediction model for the
shrinkage, the compression behaviour could be instantly predicted without even producing any samples nor running
a FEA. Solvers could integrate those models to find the exact knitting structure and components to use to knit a spacer
fabric with exactly the desired properties. This will be a major economy of time and money for both the academic field

and the industry.

4 Conclusion

In this study a total of 20 weft-knitted spacer fabrics with 5 independent parameters was knitted and characterised by a
compression test. An invert analysis was conducted with a newly developed compression behaviour model to precisely
identify the fabrics average thickness T, the spacer layers stiffness e’, buckling thickness T,’and buckling forces F,’. Four
simple different geometrical models for the spacer layer were investigated using FEA, the simulation results established
that during the compression the spacer yarn behaves like two arcs bending in opposite directions. A second simple
geometrical model was developed to describe the geometry of the spacer yarn when it buckles, this model could pre-
dict accurately the buckling thickness of the spacer layer T, (average error of 15.9%, R?=0.85). The Euler’s critical load
formula was successfully used to predict the buckling force F,’ of the spacer yarn, giving accurate predictions by using
half the spacer yarn length as the supported length (average error of 22.7%, R>=0.94). By using the Euler-Bernoulli beam
theory with the two arcs geometrical model, a linear model (R?=0.9997) of the bending behaviour of the spacer yarn
can predict with a moderate accuracy the stiffness e’ and the Young's modulus E of the spacer fabric (respective average
error of 48.1% and 38.7%). By using the spacer fabric compression behaviour model, the spacer yarn bending model
and the critical load formula it was possible to predict the fabrics compression force until the plateau phase with only a
35.8+18.2% average error. These discoveries make possible easy and fast predictions of the mechanical behaviour of the
weft-knitted spacer fabrics without going through the production and testing of samples. If the outer layer’s densities
can be predicted, the presented model can predict the compression behaviour of any weft-knitted spacer fabric using
a few simple formulas.
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