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Abstract
Weft-knitted spacer fabrics are thick 3D knitted structures notable for their cushioning properties, until now their mechan-
ical behaviour was almost only empirically compiled without being understood nor directly linked to the fabric’s proper-
ties. The current effort to describe the fabrics geometry focuses on extremely complex models when a mechanical model 
requires a simple one. This study investigated 4 different weft-knitted spacer layer geometries through FEA simulations, 
it identified the model composed of two arcs bending in opposite directions to match very well the compression behav-
iour of the samples. The Euler buckling load and Euler–Bernoulli beam theory were successfully used with the selected 
geometrical model to predict the plateau force (average error 22.7%, R2 = 0.91) and the Young’s modulus (average error 
38.7%, R2 = 0.66) of the experimental samples. The study also investigated a compression behaviour model describing 
the compression of weft-knitted spacer fabrics until the plateau phase, giving predictions based on the fabric’s struc-
ture and materials showing a 35.8 ± 18.2% average error. A simple geometrical model was also developed to predict the 
buckling thickness of the spacer layer (average error of 15.9%, R2 = 0.85). Those finding can trigger a great acceleration 
of research on spacer fabrics by reducing the important time allowed to empirical samples production and testing and 
open a path of selected production helped using formulas and solvers.
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List of symbols
Aloop	� Average area of the outer layer’s loops
Aplaten	� Area of the compression platen
Aunit	� Average compression area of the spacer units
Cmod	� Error coefficient of the model prediction
Cs	� Error coefficient of the invert analysis
Csim	� Error coefficient of the simulation results
E	� Effective Young’s modulus in compression of the fabric in the thickness direction
e	� Effective compression stiffness of the fabric in the thickness direction
e’	� Compression stiffness of the spacer units in the thickness direction
F	� Compression force of the fabric in the thickness direction
F’	� Compression force of the standard spacer unit in the thickness direction
Fb	� Buckling force of the spacer unit
Fb’	� Buckling force of the standard unit
Fbu	� Buckling force of the unit u
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Fp	� Plateau force of the spacer fabric
Fp’	� Plateau force of the standard unit
Fpu	� Plateau force of the unit u
Fnb	� Model compression force of the fabric neglecting the buckling
F0	� Compression force at the start of the standard analysis
G	� Distance between the needles on the knitting machine needle bed
H	� Height of the outer layer’s loop
Ib	� Irregularity of the of the fabric buckling force normal distribution
L	� Length of the spacer yarn between the tucks
n	� Needle distance between the tucks
Nu	� Number of spacer units under the compression platen
St	� Standard deviation of the thickness normal distribution
Sb	� Standard deviation of the fabric buckling force normal distribution
Sb’	� Standard deviation of the spacer units buckling force normal distribution
W	� Width of the outer layer’s loops
T	� Distance between the compression platen and the support during the compression
T’	� Spacer layer thickness
Tav	� Average thickness of the fabric
Tav’	� Average thickness of the spacer layer
Tb	� Buckling thickness of the spacer fabric
Tb’	� Buckling thickness of the standard unit
Tbu	� Buckling thickness of the unit u
Ti	� Ideal thickness of the spacer layer
Tk	� Thickness of the spacer layer on the knitting machine
Tm	� Model thickness of the spacer layer
Tout	� Thickness of the outer layer’s surface covering the spacer layer
T0	� Thickness of the fabric at the start of the standard analysis
u	� Spacer unit
δ	� Displacement of the compression platen
δav	� Displacement at the average thickness of the fabric
δb	� Displacement at the buckling thickness of the standard unit
δc	� Displacement at the initial contact between the platen and the fabric
δmax	� Initial distance between the compression platen and the support
δ0	� Displacement at the start of the standard analysis
ε	� Compression strain of the fabric in the thickness direction
εp	� Compression strain of the fabric at the beginning plateau phase
ft	� Probability density function of the fabric thickness distribution
ft’	� Probability density function of the spacer layer thickness distribution
Фt	� Cumulative distribution function of the fabric thickness distribution
fb	� Probability density function of the buckling force distribution
Фb	� Cumulative distribution function of the buckling force distribution
σ	� Compression stress of the fabric in the thickness direction
σp	� Compression stress of the fabric at the beginning of the plateau phase

1  Introduction

Weft-knitted spacer fabrics are 3D knitted structures with a high thickness and spring-like compression properties 
[1]. Despite their geometrical structure and their compression behaviour being their main interest, neither of them 
can be predicted before knitting the fabrics. This study investigates 4 different geometrical models based on the 
knitting machine and spacer fabrics’ geometrical properties and identifies the most suitable using a FEA. The study 
then proposes a mechanical model to predict the stiffness, the thickness, the plateau force and the plateau strain of 
weft-knitted spacer fabrics.
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Spacer fabrics can serve a variety of purposes [2–10], but they are mostly used for their cushioning [11–22] proper-
ties. Their compression behaviour was quite studied, but only in an empirical way [11–16, 23–26].

A compression behaviour model needs to be based on a geometrical model first. A geometrical model developed 
by Wu and Xia was tested with success using FEA, but the model is complex and cannot predict a compression behav-
iour without simulations, thus it was tested on only one sample [27]. In this study, simulations are conducted using 
simple geometrical models suitable for a simple mechanical model which could be later used without conducting 
any simulation.

Several mechanical models have already been proposed to describe the compression behaviour of spacer fabrics, 
but they could not explain nor predict the behaviour of the fabrics [28–30]. In a previous study a model decomposing 
the spacer fabric as a set of springs whose characteristics followed a normal distribution was developed to describe 
the flattening behaviour of weft-knitted spacer fabrics [31]. This model is now combined with the Euler–Bernoulli 
beam theory to presents a complete compression behaviour model expressing the compression force of a weft-
knitted spacer fabric in function of its structure and material properties.

This study is pursuing two aims: providing a relevant geometrical model for the spacer layer and a mechanical 
model predicting accurately the compression behaviour of the fabric. The achievement of these two aims is to be 
validated by the match between the properties obtain through the simulations, the properties measured on experi-
mental samples and the properties predicted by the mechanical model.

2 � Materials and methods

2.1 � Materials

A spacer fabric is a three layers sandwich material: its two outer layers are parallel flat fabrics connected by spacer 
yarns. The weft-knitted spacer fabrics investigated in this study have plain knitted outer layers and spacer yarns con-
necting them by successively tucking them following the weft direction (Fig. 1). The spacer yarn never knits  and only 
tucks and floats, the floats of the spacer yarns create a spacer layer between the outer layers (Fig. 2). 

The samples were produced on a 10-gauge double-bed weft-knitting machine of the grade “SWG 091N2” (Shima 
Seiki MFG. LTD.; Wakayama, Japan); the machine has a needle gap G = 2.54 mm, a knitting thickness Tk = 3.5 mm 
and knitting needles with a circular section of radius Rn = 0.6 mm. The yarns properties are listed in Table 1 and are 
presented with more details in the weft-knitted spacer flattening study [31]. The experimental samples are listed 
in the Table 2, they were all knitted with 70 and 0 stitch values for the outer layer and the spacer layer respec-
tively except for the spacer yarn of the A12N3T S10 sample which has a stitch value of 10.

Fig. 1   (a) Isometric view, (b) 
warp view and (c) weft view of 
a weft-knitted spacer fabric
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2.2 � Geometrical models

The knitting structure of a weft-knitted spacer fabric is defined by its needle distance n, which represents the number of 
needles horizontally separating two following tucks. For a stable knitting, each loop of the outer layer can accommodate 
only one tuck of the spacer yarn (Fig. 2), 2n different spacer yarns are required to tuck all the loops on a same row of the 
outer layer. During the knitting process the spacer yarn is straight between the tucks on the flat-knitting machine, its 
length L between two following tucks is calculated using the Eq. 1. When the knitting is over the spacer fabric falls from 
the machine, the outer layer which is no longer held by the knitting needles shrinks until its loops reach an average 
width W (Fig. 2).

By considering that the spacer yarn remains straight during and after the shrinkage, the ideal thickness Ti of the spacer 
layer can be calculated using the Eq. 2. Despite ignoring Tout the thickness of the outer layer covering the spacer layer, 
this formula has already shown good predictions of the fabric thickness [1]. The geometry of the spacer layer between 
two following tucks is called a spacer unit. Because the total geometry of the spacer layer is the repetition in both the 
warp and weft directions of the spacer unit, a geometrical model of the spacer unit is sufficient to describe the geometry 
of the whole spacer layer.

(1)L =

√
Tk

2 + (n × G)2

(2)Ti =

√
L2 − (n ×W)2

Fig. 2   A spacer yarn (red) 
tucking the outer layer (white 
and grey) in (a) top view, (b) 
warp view and (c) weft view

Table 1   Yarns properties

Commercial name Function Material Diameter (mm) Linear den-
sity (Tex)

Stiffness for 
a 100mm 
yarn (cN/mm)

Tenacity (cN/Tex)

Amossa LS1/20 Outer layer yarn PET / 50 29.70 ± 7.4 39.86 ± 0.62
Dralon-Cotton Ne32/1 Cotton 50% 

-acrylic 50%
47.97 ± 18.2 13.23 ± 1.01

Marulon ST6800 Elastic yarn Spandex / 39 0.49 ± 0.06 6.58 ± 0.99
Marulon S1470 15 0.15 ± 0.02 10.52 ± 1.97

Spacer yarn(monofilament) Polyamide 6 0.08 5.4 17.60 ± 5.54 /
0.12 12.3 38.59 ± 4.75

/ 0.14 16.7 51.01 ± 5.67
PET 0.08 6.9 41.58 ± 6.18
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In this article, 4 geometrical models of spacer layer are investigated:
The direct model (Fig. 3a) considers the spacer yarn to keep its shape after the knitting needles caught the spacer 

yarn on the machine. It is composed of a long straight line with two small arcs of radius Rn at is extremities. Those arcs 
are tangent to both the horizontal outer layer and to the straight long line. This model being very similar to the ideal 
geometry of the spacer layer, its thickness is considered to be Ti.

The S-shaped model (Fig. 3b) assumes the spacer yarn to form an arc of width G to get out of a tuck and keeps its 
shape during and after the shrinkage. The two arcs are tangent to both the horizontal outer layers and to a straight long 
line connecting them. The model thickness is approximated to Ti.

The curved model (Fig. 3c) is based on the hypothesis that the spacer yarn initially forms arcs of width G to get out of 
the tucks on both outer layers, but that during the shrinkage the spacer yarn extremities are pushed toward one another 
contracting one arc into an arc of width W (Fig. 2) and bending the line in the middle. The three arcs are tangent to each 
other and to the horizontal outer layers. The model thickness is approximated to Ti.

The arc model (Fig. 3d) considers that the spacer layer is composed of two equal arcs of angle 2α and radius Rm, the 
arcs are tangent to each other and to the outer layers. The spacer yarn has totally lost the straight shape it had on the 

Table 2   Weft-knitted spacer 
fabric samples properties

Outer layer Yarn material Spacer yarn material Spacer yarn 
diameter 
(mm)

Needle 
distance

Elastic yarn Samplename

Cotton-acrylic Polyamide 6 0.12 5 39Tex yarn DA12N5L
7 DA12N7L

PET 0.08 5 A8N5L
0.12 A12N5L
0.14 A14N5L
0.08 7 A8N7L
0.12 A12N7L
0.14 A14N7L
0.08 3 15Tex yarn A8N3T
0.12 A12N3T
0.12 A12N3T S10
0.14 A14N3T
0.08 5 A8N5T
0.12 A12N5T
0.14 A14N5T
0.08 7 A8N7T
0.12 A12N7T
0.14 A14N7T

PET 0.08 3 E8N3T
5 E8N5T

Fig. 3   (a) Direct model; (b) S-shaped model; (c) curved model; (d) arc model
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knitting machine; to keep the spacer yarn length equal to L the model cannot have a thickness Ti. The arc model has a 
model thickness Tm given by the Eqs. 3 and 4.

A spacer layer geometrical model can be straight (Fig. 4a) with the spacer yarn going from one tuck to the other 
while remaining within a plan normal to the warp direction. A model could also be bent (Fig. 4b) with the spacer yarn 
going from one tuck to the other following a 3D trajectory projecting an arc on the plan normal to the weft direction. 
The straight models can show three different compression behaviours: the spacer yarn can bend only within the plan 
normal to the warp direction (Fig. 4c), it can buckle at the beginning of the compression and then bend out of the plan 
(Fig. 4d), or it can start to bend within the plan to then buckle and bend in the warp direction (Fig. 4e). The bent models 
cannot bend only within the plan and don’t need to buckle to bend in the warp direction. If the geometry of the spacer 
yarn in the plan provides too much resistance the spacer unit will tend to bend mostly in the warp direction (Fig. 4d), if 
not the spacer yarn will bend in both ways (Fig. 4e).

The geometry of the bent models can be determined considering that the spacer yarn bends within a bending plan 
generated by both the warp direction and the direct line between the two tucks (Fig. 5a). The spacer yarn bends as a 
perfect arc within the bending plan, keeping its total length L. For an initial bending angle ϴ, the distance between two 
tucks in the plan normal to the warp direction becomes Lϴ and the thickness becomes Tϴ (Eqs. 5 and 6) (Fig. 5b). 

(3)2� =

√
10 − 2

√
30

n ×W

L
− 5

(4)Tm = n ×W × tan�

Fig. 4   (a) Straight model; 
(b) bent model; (c) model 
bending only within the plan 
during the compression; (d) 
model bending only out of 
the plan during the com-
pression; (e) model bending 
within and out of the plan 
during the compression

Fig. 5   Geometry of the bent 
model (a) on the machine and 
(b) after the shrinkage
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2.3 � Simulation conditions

The geometry of a spacer unit strongly depends on the loop width W which can only be known from the measurement 
of the outer layer’s weft density after its shrinkage. Because the fabric shrinkage cannot be simulated, model dimen-
sions for the loops of the outer layer are used. The simplified geometrical model of a weft knitted loop developed by 
Pierce [32] gives the model values for the average loop width W = 4Dout and the loop height H = 2 

√
3× Dout in function of 

the outer layer yarn’s diameter Dout (Fig. 2). The model value of the diameter of a cotton yarn Dcotton (m) is calculated in 
function of its linear density λ(Tex) using the Eq. 7 [33]. The PET and cotton-acrylic yarns are considered to have a similar 
porosity and structure to the cotton yarns but different fibre densities. The cotton fibres have a density dcotton = 1.54 g/
cm3 while the PET has a density dpet = 1.38 g/cm3. Because the acrylic has a density of 1.18 g/cm3 the cotton-acrylic yarns 
are considered to have an average fibre density similar to dpet. The two outer layer yarns having a linear density λ = 50Tex, 
the Eqs. 7 and 8 give the model value Dout = 0.381 mm for both yarns.

The simulation models were designed on SolidWorks2020 by sweeping a circular section on the different spacer unit 
geometries. The models were then meshed on Femap using hexahedral parts with volumes of a scale 10−6mm3. The finite 
element analysis was conducted on LS-Dyna were the three parts of each model (the top layer, the spacer layer and the 
bottom layer) were connected by mortar contacts. The top surface of the top layer was subjected to a forced displacement 
of speed 0.1 mm s−1 in the thickness direction (on the y-axis) while the bottom surface of the bottom layer was fixed in 
the thickness direction. The lateral edges of the spacer units are symmetry plans, the surfaces on those edges were fixed 
in the warp and weft directions (respectively the x-axis and z-axis) to insure that during the compression the unit model is 
only deformed in the thickness direction (Fig. 6). The edge surfaces normal to the weft direction also had fixed rotations on 
every axis since within the fabric the spacer yarn is hold tightly in the tuck and cannot rotate. The spacer yarn material was 

(5)L� = L ×
sin�

�

(6)T� =

√
L�

2 − (n ×W)2

(7)Dcotton =

(
−0.10284 + 1.592 ×

√
�

590,5

)
× 10−3

(8)Dout = Dcotton ×

√
dcotton

dpet

Fig. 6   Simulation conditions 
from the warp view (a), the 
weft view for straight-full (b) 
and half models (c)
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considered isotropic, respective Young’s modulus of 3.4 and 8.3GPa were used for the Polyamide 6 and the PET. The simula-
tion neglected the friction due to the spacer yarn being tightly held in the outer layer tuck.

A first group of simulations was conducted with 16 different models of a spacer unit A12N5 of needle distance n = 5 and 
Polyamide 6 spacer yarn of diameter Dspacer = 0.12 mm, the simulation models are listed in the Table 3. Each of the 4 geo-
metrical models (direct, S-shaped, curved and arc) was used to produce 4 simulations models: a straight full model, a straight 
half model, a bent model of initial angle ϴ = 1˚ and a bent model of initial angle ϴ = 5˚.

A second group of simulations was then conducted using only the straight full arc models listed in the Table 4, 11 differ-
ent models of spacer unit of different needle distances n, spacer yarn materials and spacer yarn diameters Dspacer were used.

Table 3   Simulation models of a A12N5 spacer unit

Spacer yarn material Spacer yarn diameter Needle distance n Geometrical model Simulation model Simula-
tion model 
name

Polyamide 6 0.12 mm 5 Direct straight—half A12N5-DH
straight—full A12N5-D
ϴ = 1˚ A12N5-D1
ϴ = 5˚ A12N5-D5

S-shaped straight—half A12N5-SH
straight—full A12N5-S
ϴ = 1˚ A12N5-S1
ϴ = 5˚ A12N5-S5

Curved straight—half A12N5-CH
straight—full A12N5-C
ϴ = 1˚ A12N5-C1
ϴ = 5˚ A12N5-C5

Arc straight—half A12N5-AH
straight—full A12N5-A
ϴ = 1˚ A12N5-A1
ϴ = 5˚ A12N5-A5

Table 4   Simulation models 
of a spacer unit using the arc 
geometrical model

Spacer yarn material Spacer yarn diameter (mm) Needle distance Simula-
tion model 
name

PET 0.08 3 E8N3-A
Polyamide 6 A8N3-A

0.12 A12N3-A
0.14 A14N3-A

PET 0.08 5 E8N5-A
Polyamide 6 A8N5-A

0.12 A12N5-A
0.14 A14N5-A
0.08 7 A8N7-A
0.12 A12N7-A
0.14 A14N7-A
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2.4 � Mechanical model

2.4.1 � Compression behaviour model

A spacer fabric compressed in its thickness direction between two flat compression platens initially at a distance 
δmax shows a compression behaviour following four phases: the flattening, the linear compression, the plateau and 
the densification [11, 14, 31] (Fig. 7). The densification phase is caused by the compression of the outer layers afters 
the spacer layer has lost all its thickness; it is not investigated in this study.

The spacer units are considered to behave like independent springs with linear compression behaviours of a same 
stiffness e’. The outer layer does not participate to the spring-like compression behaviour; to describe this behaviour 
this study uses the spacer layer thickness T’ = T–2Tout. A spacer unit u has a thickness Tu and starts its linear compres-
sion at a displacement δu = δmax–Tu–2Tout. When the compression resistance Fu of the unit u reaches its buckling force 
Fbu, the spacer yarn buckles, and the force drops to a plateau force Fpu to remain constant. Each loop of the top outer 
layer being supported by two units (Figs. 2, 8a), the average compression area of the units Aunit is half the average 
loop area Aloop. The total compression force of a specimen is the sum of the compression forces Fu of all the Nu spacer 
units subjected to the compression (Eqs. 9, 10). Due to the diversity of unit thickness within the fabric the units do 

Fig. 7   Compression behaviour 
of the spacer fabrics

Fig. 8   Spacer units (a) 
geometry and (b) spring-like 
characteristics; (c) fabric com-
pression behaviour
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not start their compression at the same time (Fig. 8a, b), the fabric starts to show a linear compression behaviour 
only when most of the units are being pressed (Fig. 8c). The units buckle one after the other, therefor the fabric 
compression reaches its plateau phase gradually. Because the difference of force between Fbu and Fpu can neither be 
predicted nor measured they are considered equal by this study.

The spacer units pressed together during a compression test cannot be characterised directly, the characterisation of the 
fabric focus on the determination of a standard spacer unit. This standard unit is defined as average in all its characteristics: 
it has an average thickness Tav’ (Eq. 11), an average buckling thickness Tb’ (Eq. 12) and an average plateau force Fp’ (Eq. 13). 
The standard unit compression force F’(δ) shows a linear behaviour from δav = δmax–Tav’–2Tout and buckles at the force Fb’ to 
remain constant at the force Fp’, in the study Fb’ is considered equal to Fp’ for simplification (Eq. 14) (Fig. 9a). 

(9)Nu =
Aplaten

Aunit

=
2 × Aplaten

Aloop

=
2 × Aplaten

W × H

(10)F(�) =
∑u=Nu

u=1
Fu(�)

(11)T �
av

=

∑Nu

u=1
Tu

Nu

(12)F�
p
=

∑Nu

u=1
Fpu

Nu

=
Fp

Nu

(13)T �
b
=

∑Nu

u=1
Tbu

Nu

(14)F�(𝛿) =

⎧⎪⎨⎪⎩

0𝛿 ≤ 𝛿max − T �
av
− 2 × Tout

e� ×
�
𝛿 − 𝛿max + Tav

�
𝛿 > 𝛿max − T �

av
− 2 × Tout

F�
p
𝛿 > 𝛿max − T �

b
− 2 × Tout

Fig. 9   (a) Model compression behaviour of the standard spacer unit. Normal distributions (grey) and its cumulative function (black) of the 
spacer units (b) thickness and (c) buckling forces
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The distribution of unit thickness follows a normal law of mean Tav’ and standard deviation St. By considering the outer 
layer thickness Tout to be constant, the fabric thickness distribution can be described by a normal law of mean Tav = Tav’ + 2Tout 
and standard deviation St (Fig. 9b). Its density function ft and a cumulative function Фt are given in function of the compres-
sion displacement δ by the Eqs. 15 and 16. The function Фt (δ) gives the proportion of units having already started their 
compression at the displacement δ, and Фt. Since all the units have the same stiffness e’, a compression force Fnb neglecting 
the buckling can be calculated (Eq. 17). Fnb is the ideal force of an infinite elastic compression, it needs to be corrected by 
adding the buckling behaviour to the model.

The distribution of unit buckling forces follows a normal law of mean Fp’ and standard deviation Sb’ (Fig. 9c), its density 
function fb’ is given in function of the average compression force of a spacer unit F / Nu (Eq. 18). The function Фb (Fnb) gives 
the proportion of units having already buckled at the force Fnb (Eqs. 19, 20) (Fig. 10c). The buckled units do not participate 
to the increase of the compression force, it enables the calculation of the compression force of a fabric using the 6 variables: 
Nu, e’, Tav’, St, Fp’ and Sb (Eq. 21).

(15)ft(�) =
1√
2�St

2

e
−

(�−�av )
2

2St
2

(16)�t(�) =
�∫

−∞
ft(x)dx

(17)
dFnb(�)

d�
= �t(�) × Nu × e�

(18)f �
b

�
Fnb∕Nu

�
=

1�
2�S�2

b

e
−

⎛⎜⎜⎝
Fnb∕Nu

−F�p

⎞⎟⎟⎠

2

2S�2
b

(19)fb
(
Fnb

)
=

1√
2�S2

b

e
−
(Fnb−Fp)

2

2S2
b = 1∕Nu

× f �
b

(
Fnb∕Nu

)

Fig. 10   (a) Compression force in function of the displacement of the DA12N5L_1 specimen (grey), its model compression force (long black 
dots) and its infinite elasticity model compression force Fnb (small black dots); (b) derivative of the compression force in function of the 
displacement of the DA12N5L_1 specimen (grey), its model derivative (long black dots) and its infinite elasticity model derivative dFnb / dδ 
(small black dots); (c) proportion of pressed units (grey), proportion of buckled units (long black dots) and proportion of none buckled units 
(small black dots)
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The experimental value of the compression force derivative is calculated with the least squares method (Eq. 22). The 

experimental force derivative first increases as more units are compressed, after a local maximum is reached the force 
derivative decreases as more units have buckled until a local minimum before increasing again due to the densifica-
tion phase. When the derivative reaches the local minimum or becomes negative the compression behaviour enters its 
plateau phase, the plateau force Fp and plateau thickness Tp of the fabric are measured at this point. The plateau force of 
the standard unit Fp’ = Fp/Nu is then calculated.

The experiment data was processed using a mathematical inverse analysis procedure with a function of the MS-
Excel solver [34]. The analysis is a procedure used to determine the fabric average thickness Tav, the thickness standard 
deviation St, the unit stiffness e’ and the buckling standard deviation Sb. The analysis starts at δ0 = δav–St and finishes at 
δp = δmax–Tp when the plateau phase is reached. The analysis cannot start too early because the initial stiffness of the 
fabric is often caused by its waviness rather than the compression of the thickest spacer units (Fig. 10a, b). The analysis 
is setting the values of the four variables: the average thickness Tav, the thickness standard deviation St, the unit stiffness 
e’ and the buckling standard deviation Sb. The parameters δmax and Nu are set manually, the parameters δ0, F0, δav, e, Tp, 
Fp, and Tb are automatically calculated by the Excell sheet. An error coefficient Cs is calculated by summing the square of 
the difference between the measured and calculated values of dF/dδ (Eq. 23). The analysis sets the optimal combination 
of variable values for Tav, St, e’ and Sb to reach the minimum value of the error coefficient Cs. After the solver determined 
the parameters Tav, St, e’ and Sb, the compression force F(δ) is calculated from δ0 by adding the integral of the model force 
derivative between δ0 and δ to F0 the force at δ0 (Eq. 24) (Fig. 10a). The analysis measures the properties of the standard 
unit: Tav’, Tb’, Fb’, Fp’ and e’. The variable Tb = δmax–δb is measured at Fnb(δb) = Fp and when half of the units have buckled. 
The thickness Tav’ and Tb’ are calculated by removing the double of Tout to Tav and Tb. Fp’ is automatically measured before 
the analysis and e’ is directly given by the solver. The standard unit buckling force Fb’ is calculated using the Eq. 25 with 
the measured values of Tav’, Tb’ and e’.

2.4.2 � Spacer yarn bending model

During the compression the spacer yarn bends within the plan normal to the warp direction with each half of the yarn 
bending in an opposite direction. When the yarn finally takes the shape of an S and has its central part almost vertical, it 
buckles out of the plan. The buckling force of the standard unit can be estimated using the Euler’s buckling load formula 
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(Eq. 26) with the Young’s modulus and the second moment of area I (Eq. 27) of the spacer yarn. During the compression 
the mechanical constraints on the central part of the spacer yarn prevent its extremities to move freely but not to rotate, 
then the column effective length factor is K = 1. The only unknown variable of the Eq. 26 is the length Lb of the buckling 
part of the spacer yarn. The length Lb is equal to Tb’ only if the buckling happens when the central part of the yarn is made 
perfectly straight and vertical before the buckling. By considering that the standard units buckles when it has bent until 
the spacer yarn took the shape of two equal horizontal lines connected by two equal and opposite arcs, a simple model 
of the buckling thickness Tb’ can be proposed (Eq. 28) (Fig. 11).

 
On the knitting machine the spacer yarn is straight, but it starts to bend during the shrinkage and continue to do so 

during the compression test (Eq. 24). By considering that the two halves of the yarn bend as perfect arcs (Eqs. 29–34) 
(Fig. 12a), the Euler–Bernoulli beam theory can estimate the bending force P(δ) of each half of the yarn (Eq. 35) (Fig. 12b) 
and the total compression force F’(δ) of the standard unit (Eq. 36). The model values of F’(δ) give the compression behav-
iour of the standard unit from the shrinkage to the densification phase of the spacer fabric (Fig. 12c). The force F’(T’ = Tav’) 
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Fig. 11   Geometrical model of 
the standard unit just before 
the buckling

Fig. 12   (a) Bending behaviour of the spacer yarn; (b) bending behaviour according to the beam theory; (c) model bending force of the 
standard unit of the sample DA12N5
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gives the compression force applied on the standard unit by the outer layer’s contraction. Above the force F’(T = Tb’) the 
standard unit buckles and the behaviour model is not relevant anymore, the compression stiffness e’ of the standard 
unit is then estimated between Tav’ and Tb’ (Eq. 37).

The thickness distribution following a normal law, only 0.13% of the spacer units have a thickness higher than Tav’ + 3St, 
this thickness is considered to be Ti the maximum potential thickness of the units. By starting the compression model at 
T = Ti (Eq. 29) it can be set that δav = 3St and Tav’ = Ti–3St, this prediction of Tav gives a simplified expression of Фt (Eq. 38). The 
value of Sb’ is strongly dependant of the value of Fb’, it is more relevant to use the buckling irregularity Ib = Sb’/Fb’ = Sb/Fb. 
Because St, and Ib represent the irregularity of the fabric their values cannot be predicted, the average experimental 
values are used. After introducing Ib and the Euler’s buckling load formula (Eq. 26) into the Eq. 20, a simplified expression 
of Фb is given by the Eq. 39.

Those variables predictions and formulas (Eqs. 36, 38, 39, 40) can predict the compression behaviour of a spacer 
fabric from the beginning of the flattening to the end of the plateau phase (Fig. 13a). This model compression force was 
calculated for each sample before being compared to the experimental compression forces of its 3 specimens using an 
error coefficient Cmod (Eq. 41). The model compression starts at δ = 0 mm for simplification but it is not the case during 
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the experiment, the experimental compression is considered to start at the experimental displacement δ = δav–3St. The 
value 3St is then removed to the experimental displacement data to make the experimental and model compressions 
start together. On the opposite the model values can also be adapted to makes a prediction of the compression behav-
iour including the fabric thickness (Fig. 13b). The model displacement does not start at δ = 0 anymore but at δ = δmax 
-Ti–2 × Tout (Eq. 42).

2.5 � Method

The specimens were pressed uncut by a circular compression platen of 116 mm diameter with δmax = 16 mm on a bench-
top universal testing machine of the grade “EZ-S 500N” (Shimadzu Corporation; Kyoto, Japan) following the protocol 
reported in the flattening study [31].

3 � Results and discussion

3.1 � Outer layer properties

The loop height H and loop width W show average experimental values of 1.38 ± 0.11 mm and 1.86 ± 0.16 mm for 
model values of 1.32 mm and 1.52 mm (Fig. 14a–d). The Pierce model predicts a loop area of 2.01mm2, which is 21.6% 
lower than the experimental Aloop = 2.56 ± 0.33 mm2, the W values used for the simulation models can be considered 
suitable. Despite not including the Tout, the ideal thickness Ti matches well the average thickness, showing on average 
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Fig. 13   Experimental (line) 
and model (dots) values of 
the spacer fabric compression 
force in function of the platen 
displacement (a) by consider-
ing that the experimental 
compression starts at δ = δav 
− 3St and (b) by predicting the 
fabric thickness
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only a 5.2% variation from Tav (Fig. 14e). This indicates that after the shrinkage the spacer yarn bends a little, the lost 
thickness is balanced by the thickness Tout. The model thickness Tm shows a very high corelation with Tav (R2 = 0.97) 
while always remaining lower than Tav due to the outer layer thickness Tout = (Tav–Tm)/2. The difference between Tav and 
Tm is stable as the outer layer’s thickness is regular, it tends to show that Tm estimates well the spacer layer’s thickness .

3.2 � Efficiency of the invert analysis

The models generated by the invert analysis matched the experimental data of the compression force and its deriva-
tive very accurately, showing respective average coefficient R2 of 0.9740 and 0.9997. The dropping of the compres-
sion force during the buckling cannot be measured by the compression behaviour model because it considers that 
Fp = Fb. Subsequently the invert analysis systematically provides a value of Fb extremely close to Fp , the later is simply 
measured with Fp and Nu without using the analysis; Fp shows on average only 2.4% variation from Fb.

3.3 � Simulation results

3.3.1 � Simulation results of the different geometrical models

The compression force of all the direct models and S-shape models increases sharply at the beginning of the com-
pression to reach its plateau phase extremely quickly and then slowly decreases afterward (Fig. 15a–d). Surprisingly, 
the straight models and S-shape models both buckles within the plan normal to the warp direction at the beginning 
of the simulation (Fig. 16a–f ). The curved models reach a plateau phase a bit more slowly, without any buckling 
(Figs. 15e, f, 16g, h). 

The straight full arc model follows an almost linear compression behaviour until it buckles and starts its plateau 
behaviour (Fig. 15g). This simulation result matches the model compression behaviour model of the standard spacer 
unit and provides precise values for Fb’, Fp’ and Tb’ (Fig. 9a). This model also shows a deformation behaviours close to 
the experimental behaviour: the yarn bends within the plan to take the shape of a Z, when the central part is almost 
vertical the yarn bends out of the plan. (Fig. 16i–k). The straight half model keeps bending within the plan without 
buckling; despite showing an accurate prediction during the linear compression phase it never enters a plateau phase 
(Fig. 15g). The bend models present results close to the straight full model without showing any buckling, they gradu-
ally enter a plateau phase (Fig. 15h). Those models are less interesting than the straight full model for two reasons: 
they require to set an arbitrary initial bending angle ϴ and they do not indicate clearly Fb’, Fp’ and Tb’ like the straight 
full model does. Some simulations show instability (Fig. 15a, c, e, f ) or even stopped before their programmed ends 
(Fig. 15c, d, h) due to convergence errors, those errors are mainly caused by the limited surface area of the simulation 

Fig. 14   Average loop width 
W and loop height H of the 
fabric knitted with (a) the 
cotton-acrylic yarn and larger 
elastic, (b) the PET yarn and 
larger elastic, (c) the PET yarn 
and thinner elastic and (d) 
the prediction model; (e) 
ideal thickness Ti and model 
thickness Tm of the samples 
in function of their average 
thickness Tav
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outer layers. When the spacer yarn bends out of the plan too much, it loses it support from the bottom layer and 
becomes unstable (Fig. 17). Those errors do not affect the results as they always occur during the plateau phase.

3.3.2 � Simulation results of the full straight arc model

For all the simulations using the full straight arc model the force–displacement curves show until the buckling a 
linear behaviour of average linear coefficient of determination R2 = 0.993 ± 0.001 (Fig. 18). An error coefficient Csim is 
calculated until the strain ε = 0.4 to measure the variation of the simulation stress–strain curve from the experimental 
one (Eq. 43), it shows an average value of 49.6 ± 38.5%.

The simulations predict the plateau stress σp and the Young’s modulus E with a moderate accuracy, showing respec-
tively on average 29.7% and 39.5% variation from the experimental values (Fig. 19a, b). The simulations predict well 
the plateau strain εp with only a 16.6% average variation from the experimental values. The value of εp is relatively 
stable, with an average value of 0.246 ± 0.020 for the simulations and 0.257 ± 0.072 for the experimental samples. 
The experimental values are higher because they give the strain of the fabric when the last units reach the plateau 
phase while the simulation values give εp for the standard units.

The simulation predicts accurately the buckling thickness of the standard unit Tb’, showing on average a 14.3% 
variation from the experimental value (Fig. 19c). The simulation Tb’ values for models of a same n value are extremely 
stable, showing on average a 0.06 mm standard deviation for a same knitting structure. It is observed that the average 
value of Tb’ for a given needle distance can be well estimated by L/2. The simulation results always show a drop of 
the compression force at the buckling point, the buckling force Fb’ dropping on average of 13.2 ± 6.6% to reach the 
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Fig. 15   Stress–strain curves of the average experimental values of the sample A12N5 (long black dots, grey error bars) with the simulation 
values of the straight models (full: line, half: dots) (a) direct, (c) S-shaped, (e) curved, (g) arc and the simulation values of the bent models 
(ϴ = 1˚: line, ϴ = 5˚: dots) (b) direct, (d) S-shaped, (f) curved, (h) arc
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plateau force Fb’. The simulations predict well the buckling Fb’ (Fig. 19d) and plateau force Fp’ (Fig. 19e) of the stand-
ard unit, respectively showing average variations of 26.7% and 28.8% of from the experimental values. The simula-
tion tends to underestimate the spacer unit stiffness e’ at the exception of the stiffest samples, showing an average 
variation of 50.1% from the experimental values (Fig. 19f ). Those simulation results lead to the conclusion that the 
spacer yarn mechanically behaves as two bending opposite arcs, it tends to validate the spacer yarn bending model.

Fig. 16   Simulation straight full models of the direct model (a) initial state, (b) buckling state, (c) at 0.1 strain; of the S-shaped (d) initial state, 
(e) buckling state, (f) second buckling; of the curved model (g) initial state, (h) at 0.2 strain; of the arc model (i) initial state, (j) buckling state, 
(k) plateau state

Fig. 17   Weft direction view of 
an extremely bent simulation 
spacer yarn leaving the bot-
tom layer
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3.4 � Mechanical model results

Surprisingly the value of St is not correlated at all to the thickness, showing a coefficient of determination R2 = 0.019 with 
Tav. It has an average value of 0.45 ± 0.18 mm which could be linked to the knitting machine geometry or to the shrink-
age irregularity. The value of Ib is less stable, showing an average value of 0.55 ± 0.30. Because the analysis prevented the 
value of Ib to be over 1, the proportion of initially buckled units Фb0 is limited to 16%.

The buckling thickness model predicts relatively accurately Tb’, showing on average a 15.9% variation from the experi-
mental value (R2 = 0.85) (Figs. 19c, 20a). The model always overestimates the value of Tb’ for the spacer fabrics of needle 
distance n = 3, showing on average a 42.3 ± 4.9% variation from the experimental value for those fabrics. The spacer fabric 
with lower needle distances n may show a geometry different from the fabrics with higher needle distances.

The Euler’s buckling load formula (Eq. 26) predicts the buckling force Fb’ of the standard unit with a moderate accuracy 
if it considers that Lb = Tb’. The model values given by the Euler’s formula using the experimental (Fig. 20a, b) and model 
values (Fig. 20c) of Tb’ show respective average variation from the experimental Fb’ values of 50.9 and 47.2%. This suggests 
that Lb does not correspond to Tb’ and that the central part of the spacer yarn buckles without being vertical. The use of 

Fig.18   Stress–strain curves of the average experimental values of the samples (long black dots, grey error bars) and simulation values of the 
straight full arc models (black line) for (a) E8N3, (b) A8N3, (c) A12N3, (d) A14N3, (e) E8N5, (f) A8N5, (g) A12N5, (h) A14N5, (i) A8N7, (j) A12N7, 
(k) A14N7
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L/2 for the buckling length Lb appears much more efficient, it predicts accurately Fb’ with only an average variation from 
the experimental result of 22.7% (Fig. 20d). This accuracy is evenly distributed to the samples of different needle distance 
n, it suggests a regularity of the spacer unit’s geometry during the buckling. The model value of Fb’ calculated with Lb = L/2 
can be multiplied by the experimental number of unit Nu to obtain a model value of Fp, showing too on average 22.7% 
variation from the experimental results (Fig. 20e). By knowing n, the diameter and Young’s modulus of the spacer yarn 
and the warp and weft densities of the outer layers, the plateau stress of a weft-knitted spacer fabric can be predicted. 
The buckling forces calculated using the simulation buckling thickness are extremely close to the buckling forces given 
by the simulation (Fig. 20f ), this indicates that the simulation uses the Euler’s formula to simulate the buckling.

The spacer yarn bending behaviour model is very linear until the buckling, the model F’(δ) shows on average R2 = 0.9997 
between Tav’ and Tb’ (Fig. 12c). The model predicts the stiffness e’ with a moderate accuracy, showing an average vari-
ation of 48.1% from the experimental value (Fig. 20g). The model predicts the value of E (Eq. 44) with a slightly higher 
accuracy, showing an average variation of 38.7% from the experimental value (Fig. 20h). The invert analysis could have 
overestimated e’ and compensated by underestimating Tav to reduce Cs, when calculating E those two errors would 
balance each other. The model values are again very close to the simulation value, it validates the spacer yarn bending 
model by showing that LS-Dyna uses a very similar model to simulate compression of the arc models (Fig. 20i).

(44)E =
e� × Tav

Aunit

Fig. 19   The experimental values of the (a) plateau stress and the (b) Young’s modulus in function of their simulation values, (c) experimental 
and simulation average values of the buckling thickness Tb in function on the needle distance, (d) experimental values of the standard unit 
buckling force Fb’ , (e) plateau force ep and (f) stiffness e’ in function of their simulation values
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Fig. 20   (a) Experimental values of the buckling thickness Tb’ in function of the model values; Experimental values of the standard unit buck-
ling force Fb’ in function of Fb’ calculated using (b) the experimental buckling thickness, (c) the model buckling thickness and (d) half the 
spacer yarn length; (e) Experimental values of the plateau force in function of their model values; (f ) Simulation values of standard unit 
buckling force Fb’ in function of Fb’ calculated using the simulation buckling thickness; Experimental values of (g) the unit stiffness and (h) 
the Young’s modulus of the samples in function of their model values; (i) Simulation values of the unit stiffness in function of their model 
values
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The hypothesis that Tav’ + 3St matches Ti the maximum potential thickness of the units appears to be correct, the for-
mula Tav + 3St–2Tout only shows an average variation of 3.4% from Ti. The model can predict the compression behaviour 
of the sample with a satisfying accuracy by using the average experimental values of St and Ib, showing an average error 
coefficient Cmod = 35.8 ± 18.2%. The specimen DA12N5_1 shows a Cmod value of 53.2% (Fig. 13a). The value of Cmod doesn’t 
seem to be correlated with any of the fabric’s characteristics.

Those results are extremely satisfying, they open the door to easy and quick predictions of weft-knitted spacer fabrics 
compression behaviour. With a better understanding of the fabric irregularities and a good prediction model for the 
shrinkage, the compression behaviour could be instantly predicted without even producing any samples nor running 
a FEA. Solvers could integrate those models to find the exact knitting structure and components to use to knit a spacer 
fabric with exactly the desired properties. This will be a major economy of time and money for both the academic field 
and the industry.

4 � Conclusion

In this study a total of 20 weft-knitted spacer fabrics with 5 independent parameters was knitted and characterised by a 
compression test. An invert analysis was conducted with a newly developed compression behaviour model to precisely 
identify the fabrics average thickness Tav, the spacer layers stiffness e’, buckling thickness Tb’ and buckling forces Fb’. Four 
simple different geometrical models for the spacer layer were investigated using FEA, the simulation results established 
that during the compression the spacer yarn behaves like two arcs bending in opposite directions. A second simple 
geometrical model was developed to describe the geometry of the spacer yarn when it buckles, this model could pre-
dict accurately the buckling thickness of the spacer layer Tb’ (average error of 15.9%, R2 = 0.85). The Euler’s critical load 
formula was successfully used to predict the buckling force Fb’ of the spacer yarn, giving accurate predictions by using 
half the spacer yarn length as the supported length (average error of 22.7%, R2 = 0.94). By using the Euler–Bernoulli beam 
theory with the two arcs geometrical model, a linear model (R2 = 0.9997) of the bending behaviour of the spacer yarn 
can predict with a moderate accuracy the stiffness e’ and the Young’s modulus E of the spacer fabric (respective average 
error of 48.1% and 38.7%). By using the spacer fabric compression behaviour model, the spacer yarn bending model 
and the critical load formula it was possible to predict the fabrics compression force until the plateau phase with only a 
35.8 ± 18.2% average error. These discoveries make possible easy and fast predictions of the mechanical behaviour of the 
weft-knitted spacer fabrics without going through  the production and testing of samples. If the outer layer’s densities 
can be predicted, the presented model can predict the compression behaviour of any weft-knitted spacer fabric using 
a few simple formulas.
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