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Abstract

Artificial Intelligence (AI) is playing a growing role in K-12 educa-
tion. However, curricula often lack structure and proper assessment
when paired with collaborative approaches like Design Thinking
(DT). Here, behavioral and affective dynamics are overlooked, even
though they are indicators of both performance and quality of
the learning experience, warranting a more in-depth exploration
through Multi-Modal Learning Analytics. Therefore, we engaged 63
students, divided into 29 groups (aged 11 to 15) in a DT workshop
on AJ, analyzing their performance across each stage of their experi-
ence, including their behavioral and affective (i.e., emotional) states,
using data collected from physiological sensors, audio, and video
recordings. Our results show that certain conditions (e.g., joint vi-
sual attention, boredom, and high stress) consistently predicted
positive or negative performance across all stages of the workshop,
while affective states such as confusion, frustration, high engage-
ment, and low stress fluctuate with implications on the learning
experience.
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1 Introduction

Computer Science (CS) and close disciplines underwent consider-
able reframing in recent years. With an interdisciplinary deploy-
ment that constantly grows, CS education now includes broader
considerations of social, societal, and ethical dimensions that paral-
lel the diffusion of technology into everyday life [25, 101]. Similar
progress is recommended in Al education as it is in CS education
[38, 88, 101], especially because students are more and more en-
gaged in Al-driven tools [25, 39, 98]. Grover recently described the
profound transformation of society given digital advancements,
positioning Al within CS curricula as necessary to navigate these
evolving scenarios [25]. Yet, Al education for K-12 should not be a
simple response to manage Al pervasiveness from a sole technical
perspective but also as a proactive measure that equips young learn-
ers with agency and awareness on the topic to prevent inclusion
disparities [39, 76]. Educational activities following open-ended
blueprints close to constructionism are useful to this end. To pre-
pare students for addressing the “wicked issues” of digitalization,
curricula can incorporate hands-on strategies and scaffold learner-
centered experiences for the construction of their own knowledge.
These practices can diversify in affordances, subdividing them into
project-based learning, maker education, Design Thinking (DT),
and many more. Among these, DT is a human-centered, iterative
approach that conventionally follows the stages of Empathize, De-
fine, Ideate, Prototype, and Test [71]. Its popularity in CS stems from
its alignment with computational thinking and problem-solving
techniques, fostering creativity, collaboration, and out-of-the-box
reasoning [61].

Conducted within teams, DT-related workshops supported by
digital tools promote breaking down silos between technical and
non-technical roles for collective engagement. Resulting dynamics
are subjected to Self-Regulated Learning (SRL) [28] and Socially
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Shared Regulation of Learning (SSRL) [62]. These important compo-
nents of collaborative experiences merit further exploration using
indicators extending beyond mere performance metrics [59, 90].
In fact, measuring performance alone, particularly when focused
solely on learning gains assessed at the conclusion of an activity,
provides limited insight into the dynamics that take place during
collaboration, leaving these constructs impossible to analyze in
practice. Nasir et al. draw attention to this challenge, which exac-
erbates in open-ended educational activities where solutions are
not unidirectional like those frequently found in constructionist
approaches [59]. In these contexts, understanding the in-group ex-
perience holistically requires consideration of real-time and process-
oriented indicators of SSRL. Joint learning processes unfold in com-
plex and dynamic interactions that are most often scrutinized using
non-standardized and subjective rates, resulting in a lack of consis-
tency [20]. The dual demands of evaluating collaborative learning
processes and student-driven knowledge construction call for inno-
vative assessment styles that are highly context-dependent [44]. In
response, state-of-the-art sensors and instruments enable the use of
Multi-Modal (MM) data, information collected and integrated from
multiple channels, analyzed using Learning Analytics approaches
[10, 11]. Here, we position our research, fulfilling the gap by com-
bining learners’ affective (i.e., emotional) and behavioral responses
at the group level with performance scores from each DT stage, an
area that remains highly unexplored. Chosen joint affective (i.e.,
engagement, stress, frustration) and behavioral (i.e., visual atten-
tion) measurements are flexible enough to capture the ebb and
flow of collaboration while remaining rigorous enough to deliver
actionable insights [81]. The following research questions reflect
the objective of our study:

e RQ1: How are the different Design Thinking stages related
in terms of performance outcomes?

o RQ2: What are the overall relationships between students’
affective and behavioral responses and their performance
outcomes across the Design Thinking stages?

To answer our questions, we carried out an intervention in au-
thentic K-12 school settings during usual classroom schedules. The
intervention involved a DT workshop to elaborate on Al and Ma-
chine Learning (ML) concepts collaboratively, with the scope of
creating a playable game to raise awareness of the subject. In teams,
students navigated problem-solving with different hands-on sup-
ports, such as shared paper-based sheets and a block-based pro-
gramming environment. Here, MM data (students’ physiological
responses, facial expressions, and visual attention) were captured
moment-to-moment along with team learning performance. Our
results first map association between DT stages in terms of perfor-
mance and then reveal which measurements are correlated with
performance in each stage, reflecting factors that co-occur with
higher or lower performance. This allows for a broader overview
that indicates which states are more persistent than others and
which are transient, occurring only during a single stage of the DT
process. Our contributions are summarized as:

e a) We designed and implemented a workshop “in-the-wild”,
namely in a K-12 school setting. The empirical study presents
insights from data collected from 63 students using multiple
sources, including MM data.
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o b) We show the relationship between the different DT stages,
illustrating how performance outcome in one stage corre-
lates, or does not, to subsequent stages. Moreover, we map
the affective and behavioral states that are characteristic of
performance for each DT stage.

e ¢) We provide implications for research and practice dis-
cussing the feasibility of curricula focused on Al, ML, and
related concepts paired with a DT approach. Rich and in-
novative methods provide insights into the in-classroom
orchestration of learning activities with adequate scaffold-
ing, guidance, and attention to affective well-being.

2 Background and related work
2.1 Artificial Intelligence Education for K-12

In the introduction to his book on teaching Al, Zimmerman de-
fines it as both a replicator of human intelligence and an effort to
imbue machines with human-like qualities [107]. Among young
populations, Al-driven tools and services proliferate, but most users
remain unaware of the underlying mechanisms governing these
systems, making them prone to misconceptions, misuse, and eth-
ical dilemmas. These issues remain unresolved, with guidelines
for Al integration into curricula that are still far from being so-
lidified [25, 101]. Several factors underlie the complexity of this
issue. Among others, [9], concerns about age appropriateness and
accessibility can hinder a proper access of Al and ML concepts
in education. As often applied in CS for programming [5], early
exposure can rely on “unplugged” strategies [12, 53]. These ap-
proaches do not necessarily require direct interaction with AT or
ML technologies but instead prioritize foundational principles such
as database training, pattern recognition, and functional biases.
These activities can gently introduce young learners to Al and
ML concepts, building awareness and confidence in their under-
standing before breaking down more technological aspects [25].
Moreover, situating Al and ML learning in relatable contexts helps
students apply these often abstract and distant concepts to their
own lives, extending their engagement [12, 60], and encouraging
them to think about the wider social and ethical consequences of
Al and ML. [25]. Conversely, when these connections are absent
or irrelevant, these educational activities diminish in effectiveness
because disjointed from the world outside the classroom [57, 76, 98].
Multiple initiatives have contributed to bring Al in K-12 learning
with guidelines and compendia [57]. For example, the Computer
Science Teachers Association is working closely with the Associ-
ation for the Advancement of Artificial Intelligence to revise the
United States national standards for K-12 CS education by 2026
[98]. However, tailoring these resources to resonate with everyday
in-school experiences remains an ongoing challenge. Despite the
promise of these initiatives, recent reviews warn that the general
lack of curriculum design significantly restricts the integration of
AI and ML concepts into young students’ educational journeys
[9, 92, 101]. To address this, targeted efforts to draw insights from
theoretical frameworks to inform the design of K-12 curricula are
essential to bridging the gap between feasibility and meaningful
learning experiences [76].
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2.1.1 Design Thinking for Al and ML. Academic consensus sup-
ports engaging young learners in approaching Al and ML concepts
guided by constructionist frameworks [1, 12, 26, 51]. Rooted in ex-
periential learning pedagogy, constructionism is an approach that
views students’ personal interest and collaborative first-hand expe-
rience as cornerstones of knowledge production [31]. For instance,
the symposium chaired by Morales-Navarro & Kafai compiles em-
pirical research on constructionism to support learning Al and ML
concepts in developmentally appropriate and personally relevant
ways from an early age [58]. Additionally, UNESCO’s 2022 global
report on the state of Al education in K-12 settings supports the
adoption of constructionist blueprints as a foundation for effective
learning experiences [57], especially when integrated with DT and
computational thinking modules. DT borrows from open-ended
constructionism, emphasizing active creation while channeling it
towards innovative solutions through user-centric models. It en-
courages open-mindedness, challenges assumptions, and allows for
the iterative redefinition of problems [43, 63]. A partition of DT
into five stages, Empathize, Define, Ideate, Prototype, and Test, is
now widely proposed in K-12 educational programs. This frame-
work was formalized and disseminated by the Stanford d.school
to enhance its accessibility and applicability across disciplines and
maintain references to authentic scenarios [71]. DT often partner
with computational thinking given their complementing nature
in fostering problem-solving with creativity [41] while handling
the complexity of real-world issues [61], making it more and more
popular in CS, including Al and ML learning scenarios. However,
the overall design, orchestration, and evaluation of these experi-
ences are challenging for the research community. Particularly on
the latter, the review by Li et al. on task design for Al education
in K-12 grades mapped a great availability of assessment methods.
Yet, they suffer from limited efficacy, as conventionally used in-
struments are prone to high bias, undermining the reliability and
validity of the results [51]. This position echoes Van Mechelen et al.,
who advocate for more formative assessments aimed at learners’
journeys, enhanced through feedback and tailored guidance, rather
than focusing exclusively on outcomes [101]. Consequently, curric-
ula development and testing for emerging technologies, such as Al
and ML, must investigate in-depth learners’ responses to improve
educational approaches that empower young learners to assert their
agency in current and future digital landscapes confidently.

2.2 Affective and Behavioral Dynamics in
Collaborative Learning Experiences

Multiple mechanisms characterize learning experiences and shape
how individuals acquire knowledge. Within the Self-Regulated
Learning (SRL) framework, the concept of being “socially situated”
[28, p. 85] emphasizes that the process is both a personal endeavor
and socially embedded. When collaboration happens on a shared
task, bound by a collective commitment, learners form a dynamic
social system with shared regulatory processes [79]. This phenom-
enon is called Shared Regulation of Learning (SSRL) [62] , and
literature on the subject does not center on cognition only but also
involves affective and behavioral dynamics. For example, the evolv-
ing nature of emotions (e.g., frustration, delight) during learning
experiences and their impact [45]. Applicable at both individual and

278

IDC ’25, June 23-26, 2025, Reykjavik, Iceland

collaborative levels [103], D’Mello and Graesser proposed a model
of affective dynamics to explore how emotional states impact and
are influenced by cognitive processes [18]. They refer to cognitive
equilibrium as a balanced state where two or more participants
operating on the same task share similar cognitive states, such
as common progress expectations, favoring conditions for learn-
ing with sustained communication and engagement [16]. However,
the sophistication of learning activities (e.g., open-ended and/or
collaborative ones) requires higher cognitive alignment between
partners. In fact, tasks with greater complexity demand greater
mental coordination, making the attainment of the cognitive equi-
librium more critical [23, 97]. This condition is not static; rather,
it oscillates between cognitive equilibrium and cognitive disequilib-
rium. The latter arises from a contradiction or mismatch between
a given task and learners’ pre-existing mental models, resulting
in confusion. However, cognitive disequilibrium can also initiates
knowledge growth, as it it compels learners to reassess, adapt, and
expand their mental models, ultimately leading to the restoration
of cognitive equilibrium through knowledge acquisition [19, 50].

Described dynamics interconnect with group-level phenomena:
emotional exchange, cognitive appraisal, coping mechanisms, and
feedback loops, among others. Van Kleef explains how emotions
serve as relational signals that influence interpersonal attitudes [99].
Positive states can quickly spread among collaborative settings, fos-
tering cohesion and reinforcing a shared sense of purpose. When
one team member displays engagement, it can create a ripple effect,
stimulating the morale and investment of the group. Negativity can
also propagate within a team. Frustration or boredom exhibited
by one individual can evoke similar feelings in others, resulting
in tension, miscommunication, and a decline in group harmony
[32]. These negative emotions may exacerbate conflicts and mine
motivation, derailing performance if they are not acknowledged or
managed. Even though emotional exchange is characterized by in-
voluntary responses, such as automatic mimicry [66], its occurrence
is neither uniform nor deterministic. Diverse factors, including the
emotional awareness of team members [100], influence the degree
of emotional contagion. Emotional awareness concerns the interpre-
tation of one’s own learning experience and the emotional states of
others. A key component in developing such awareness is cognitive
appraisal. Scherer and Moors define “appraisal” as the evaluation
of a circumstance in relation to an individual’s well-being (e.g.,
satisfaction or perceived harm) [77]. This evaluative process is cen-
tral to emotional episodes, as it differentiates them into specific
types, such as anger, sadness, or joy, and their direction towards a
target [66]. As cognitive appraisal does not merely demarcate the
nature of affective states but also subsequent behaviors, reframing
appraisals can redirect actions to improve collaboration [91]. For
instance, interpreting a team member’s frustration as a call for help
rather than a mistake promotes a more empathetic and supportive
environment [37].

Similarly, coping mechanisms [66] manage social experiences,
either by directly influencing the emotion itself or by changing
the individual’s response to it. In collaborative learning, coping
mechanisms enable team members to adapt their emotional state
and respond effectively to the feelings of others. An example is con-
ceptualizing failures as learning opportunities instead of setbacks,
possibly mitigating feelings of anger and defeat. The conscious
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alteration of a negative emotional perspective into a more construc-
tive view can lessen its impact [74]. Seeking support in the form
of advice, reassurance, or clarification is another strategy to pre-
vent feeling overwhelmed and to reestablish understanding. Such
coping mechanisms are not exclusive to the individual level but
also concern collective efforts to handle emotional climates. Teams
may develop norms or practices over time to sustain a supportive
atmosphere, such as regular check-ins or feedback sessions to ad-
dress feelings related to the activity. Moreover, the circulation of
emotions among team members can create feedback loops that can
reciprocally influence cognitive load [102]. In fact, performance may
suffer due to negative emotional contagion throughout the group.
However, team members may adjust their emotional responses or
behaviors when performance declines to restore emotional and
cognitive equilibrium [68]. The study of SSRL and its dynamics
applied to pedagogy and learning design looks at how affective,
behavioral, and cognitive factors influence students’ engagement
with open-ended activities like DT and complex topics such as Al
and ML. These factors are shaped by both the educational frame-
work and the digital tools used, highlighting their significance in
designing learning experiences.

2.3 Multi-Modal Approaches to Collaborative
Learning

Despite being well-established, traditional data collection methods
alone may fail to capture the complexity and richness of data gen-
erated during collaborative experiences. For instance, self-reports,
observations, and standardized tests easily overlook the subtle shifts
that occur throughout group interactions in affective, behavioral,
and cognitive states [6, 106]. Adding to this, curricula with open-
ended and hands-on modules introduce further complexity [93].
Collaborative, constructionist approaches like DT require assess-
ment methods that can capture the nuances of this learning experi-
ence without disrupting the creative flow [44, 59, 90]. Technological
advancements granted novel instruments and sensors to detect fine-
tuned, real-time responses, tracking both behavioral and affective
indicators with greater precision [35]. These assets also allow for
further entry points from which data can be drawn, especially when
the learning experience is digitally mediated or asks for digital in-
teraction [90]. In this context, Multi-Modal (MM) data refers to the
simultaneous collection and/or combination of different streams
of information and takes the name MM Learning Analytics when
leveraged to debrief the process of learning [11, 22, 81]. Over the
years, the integration of behavioral data such as eye-gaze [48], ges-
tures [89, 90], and speech [90] has become increasingly prevalent
in research. These markers provide a window into how students
interact with content, where their attention is directed, and how
they are processing information. Spikol et al. used facial move-
ments and orientations to analyze students’ project-based group
work in an LA approach. Their findings revealed collaborative fea-
tures that predict artifact quality, providing data-driven insights for
guiding constructionist pedagogies [90]. Additionally, emotional re-
sponses from facial expressions [87, 96], and physiological sensors
[20, 95, 105] offer a deeper understanding of the learner’s affec-
tive states, their levels, and fluctuations. Finally, MM data, when
combined with metrics for tracking knowledge acquisition, has
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demonstrated efficacy in various studies [65, 72, 96]. While metrics
like Relative Learning Gain (RLG) account for the proportional im-
provement in learning progress [75], they may miss a fuller picture
of the learning experience by overlooking individual variations
in affective and behavioral responses. For instance, electrodermal
activity, measured via skin-contact sensors, can represent shared
engagement, as physiological arousal tends to increase with sus-
tained attention [13, 81, 95]. Similarly, heart rate and its variability
can significantly reflect learners’ ability to maintain balance and
adapt to stress-related stimuli [72, 74, 81].

The rising interest in SSRL within Child-Computer Interaction
(CCI) reflects the significance of understanding how collaborative
dynamics take place in digitally rich educational environments.
With a focus on learners’ responses beyond cognition and their
impact, the orchestration of collaborative educational experiences
and the resultant performance can be optimized [52]. Moreover,
because SSRL aligns closely with research in Computer-Supported
Collaborative Learning (CSCL) [104], it can be harnessed in dig-
itally rich educational environments, potentially leading to new
insights into how technology-mediated collaboration impacts learn-
ing performance [34, 74]. Summarizing the field, Laimsai et al. report
how future CSCL research would benefit from investigating group
dynamics through time-sensitive analytics, offering a deeper under-
standing of how learning unfolds and is shaped by temporal factors
[46]. With empirical validation, the contribution by Térménen et al.
combined observation, video recordings, and arousal state detection
to explore affective conditions in emotion regulation at the team
level. For a more comprehensive overview of students’ emotional
awareness and its support, the same authors advocate for further
interventions centered on the interplay between cognitive and af-
fective states during collaborative experiences [97]. By engaging
middle schoolers in a coding workshop, Lee-Cultura et al. show-
case the efficacy of combining visual attention data with emotional
states retrieved at the group level to explore their causality and
impact on coding production and quality [48]. Delving deeper on a
theoretical level, Jarvela et al. conceptualized “triggers” as specific
events or cues that prompt regulatory responses in CSCL with the
introduction of a framework to contextualize adaptive and maladap-
tive SRL [33]. On this count, Li et al. draw from an MM dataset to
investigate cognitive, behavioral, and emotional responses elicited
by such triggers during a group project, providing a simulated yet
authentic setting for social adaptation [52]. The findings highlight
the diagnostic link between knowledge acquisition and emotional
attitudes, which opens up possibilities for developing orchestra-
tion methods or support tools that provide scaffolded assistance to
students. These insights can be expanded by looking at the collab-
orative process as a whole. Further research is needed to analyze
hands-on experiences, such as DT for K-12, using objective metrics
[55].

3 Method
3.1 Participants

In 2024, three middle schools in Norway participated in the research
intervention. The intervention consisted of a six-hour DT workshop
integrated into the regular school schedule (see Figure 1a). A total
of 108 students aged 11 to 15 years (6th to 9th grades) took part in
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(a) Empathize stage in the classroom

(b) Examples of personas

(c) Teams setting during the Ideate stage

Figure 1: Extracts from the Design Thinking workshop

the workshop. None had prior experience with the technologies
used. Of these, 63 students (30 boys, 27 girls, 2 other, 4 undisclosed;
Mean age = 12.79, SD = 1.18) joined the data collection. While
all students participated in the workshop, inclusion in the data
collection required parental consent and student willingness. The
data collection adhered to GDPR regulations and received prior
approval from SIKT 1.

3.2 Design Thinking Workshop for ML and Al
Learning

The workshop was split into two days of three hours each, including
the regular recesses. It was led by a facilitator with a pre-service
teaching background. Two researchers managed data collection
and ensured the proper functioning of the technology. Students
were subdivided into teams of both dyads and triads, with access
to a shared laptop. This grouping was primarily based on logistical
considerations, prioritizing dyads while also accounting for stu-
dents’ collaboration preferences. During the prototyping stage, the
SorBET (Sorting Based on Educational Technology) website > was ac-
cessed through the shared device. SorBET is an online open-source
platform where the learner can design, modify, and play sorting
games by acting on a block-based coding interface [24]. The plat-
form provides multiple customization options, such as embedding
external resources, enabling the design of tailored activities that
adapt flexibly to diverse contexts (Al and ML, in our case).

3.2.1 Design Thinking Workshop Steps. The DT workshop unfolded
in five steps based on the Extend(DT)? activity plan 3, with the scope
of creating a playable game and raising awareness on the topic. In
the following lines, each step is detailed. a. Empathize: The facil-
itator introduced fundamental AT and ML concepts using videos
(e.g., How do machines learn?”, What is a database?”), illustrating
their everyday presence and potential ethical and societal biases.
A discussion encouraged students to connect these concepts to
their personal experiences and knowledge, fostering reflection and
inspiration for the next stage. b. Define: Each team received a
paper-based practice sheet to develop problem-solving skills by
expanding the empathy exercise and defining a persona (example

The Norwegian Agency for Shared Services in Education and Research
2The SorBET platform: https://extendt2.com/widgets/sorbet/
3European Project Extend(DT)*: https://extendt2.eu/
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in Figure 1b) based on real-world references. Students analyzed
user needs by identifying their personas’ challenges and applied
creative thinking to brainstorm Al-driven tools or systems to ad-
dress them. An example outcome was: This grandma wants new
recipes for the Easter lunch to satisfy all her grandkids tastes! Perhaps
a fancy Al helper could lend a hand!”. c. Ideate: Teams received a
new sheet to elaborate on the chosen challenges. This sheet guided
students through a storyboard exercise, prompting them to expand
on their persona’s scenario (Figure 1c). They had to analyze Al
applications and limitations by describing how the Al-driven tool
or system would function, its successes, and potential shortcomings
(e.g., Oh no, all the recipes created by Al contain eggs, and one grand-
kid is allergic!”). Overall, teams identified lessons learned about the
design and limitations of Al and ML connected to their practical
applications. Teams then engaged with SorBET to understand data
organization for Al training. They ideated a fictitious database for
their chosen Al-driven tool or system and applied categorization
skills by selecting items and defining classifications. For example, a
recipe suggestion system differentiated dishes into "Kid’s Favorites,"
"Very Popular,” "Moderately Popular," "Occasionally Liked," and "Un-
popular” This activity helped students grasp how Al systems rely
on structured data to function effectively. d. Prototype: This stage
aimed to develop computational thinking by transforming the de-
signed database into an interactive format. Each team created game-
play within SorBET, integrating their database into a sorting game
that tested their Al-driven categorization. Using SorBET’s block-
based interface, students applied logical reasoning to conceptualize
and implement gameplay mechanics, demonstrating how Al clas-
sifies information. e. Test and Feedback: After completing the
game, teams exchanged their outcomes with another group to test
the SorBET game. A feedback session encouraged reflection on Al
decision-making and user experience design, serving as a closing
discussion before the workshop concluded.

3.3 Data Collection

The 63 students participating in data collection were organized
into 29 teams (24 dyads, 5 triads). The process incorporated three
sources: individual pre- and post-knowledge tests, team artifacts,
and MM data acquired in real-time. Figure 3 provides an overview
of the data collection process. The pre-knowledge test was adminis-
tered at the beginning of the workshop, while the post-knowledge
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Figure 2: Different data collection modalities

test was conducted at the end. Both consisted of multiple-choice
questions divided into two sections. The first section assessed stu-
dents’ understanding of Al and ML concepts introduced during
Empathize, while the second evaluated their ability to apply these
concepts in a block-based coding environment, SorBET (Figure 2c),
aligning with the Prototyping stage. Students’ artifacts included
Paper Sheet 1 from Define, Paper Sheet 2 (Figure 2b), and the Sor-
BET database from the Ideate stage. Finally, MMD was gathered
continuously throughout the DT workshop. A wide-angle camera
on the laptop captured video and audio, including all team mem-
bers (Figure 2c). Each team member wore an Empatica EmbracePlus
(N=35) or Empatica E4 (N=28) wristband to collect biometric data
continuously (Figure 2a). These devices measured key physiological
parameters, considering students’ Heart-Rate Variation (HRV) at
1Hz, blood volume pulse (64Hz), Electrodermal Activity (EDA) at
4Hz, and skin temperature at 4Hz. While this study did not use skin
temperature or blood volume pulse, these data were retained for
future research, particularly for forecasting applications. Video, au-
dio, and biometric data were collected in a synchronized 30-second
time window.

3.4 Data Pre-processing

3.4.1 Mounted Camera Data: Our video data was collected on-site
in a school environment, presenting challenges typical of natu-
ralistic research settings. While the raw footage was high quality
and free from signal-based noise, variations in team arrangements
(dyads or triads) during sessions posed difficulties for facial decod-
ing. These changes occurred when students reached out to their
classmates, left their teams temporarily, or unintentionally rotated
the camera or device, resulting in other faces being captured in the
frame. A deep learning-based face-tracking algorithm was used to
monitor and trace team members consistently throughout the ses-
sions, drawing on methodologies from similar studies [83, 86, 96].
This reduced biases related to team composition and unintended
camera movements. Moreover, we performed video enhancement
for facial feature detection to facilitate eye-tracking approximation
via computer vision and deep learning [14]. To this end, we im-
proved the resolution of key features in the eye area (e.g., eyebrows)
to make them more distinguishable and enable the estimation of
the location and movement of the gaze.
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3.4.2  Wristband Data: We pre-processed the HRV and EDA data
with a sliding window average. Namely, we used a moving window
of 100 samples with overlapping 50 sample windows to remove
any unwanted peak in the time series. Based on previous studies
[21, 83, 84], the moving window approach allows for analyzing
continuous data in smaller segments that overlap by 50%, preserv-
ing temporal continuity while enabling a more detailed analysis
across different time scales. To account for potential subjective and
contextual distortions (e.g., individual physical conditions), we con-
sidered the initial 30 seconds of each data stream to compute the
mean and standard deviation, which were then used to normalize
the subsequent time series for each student using z-scores. Previ-
ous studies have employed similar normalization techniques for
HRV and EDA processing [8, 27, 47]. In this context, such a method
ensures baseline control of physiological responses, thereby en-
hancing the reliability of group-level analyses.

3.5 Measurements

The following section details the measurements resulting from the
data collection and employed in the data analysis. As depicted in
Figure 3, the Group Relative Learning Gain (RLG) and Group artifact
performance score rate teams’ performance from each DT stage.
These measurements served to answer RQ1. Affective aspects of
SSRL were assessed through Joint Engagement (JEng), Joint Stress
(JStr), and Joint Emotional States (JES), while Joint Visual Attention
(JVA) represented the behavioral dimension. This subset of MM
measurements was used with performance scores to address RQ2.

3.5.1 Group Relative Learning Gain (RLG). The Relative Learn-
ing Gain (RLG) quantitatively evaluates how much students had
learned during the workshop. Specifically, it measures the relative
improvement in students’ knowledge (Empathize) and skills (Pro-
totyping) from the pre-knowledge test to the post-test [65, 72, 96].
We calculated the individual RLG using the following formula, as
proposed by Sangin et al., for pre- and post-knowledge tests using
the questions that correspond to each of the mentioned stages [75].
We computed the RLG, which is considered a more meaningful
measure than absolute learning, which does not account for prior
knowledge. To compute the RLG at the team level, we aggregated
the individual RLG scores and then calculated their mean average.
Thus, the RLG was used to measure the Empathize performance
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score (range from 0-1) and the Prototyping performance score (range
from 0-1).
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3.5.2  Group artifact performance score: A quality score was as-
signed to three artifacts created by the teams during the workshop.
Paper Sheet 1, produced in the Define stage, was the first artifact.
The second and third artifacts, Paper Sheet 2 and the digital data-
base in SorBET, were developed during the Ideate stage. Researchers
with expertise in DT and computational thinking evaluated these
artifacts using custom-designed rubrics (see Appendix Tables 7, 8,
9). These rubrics, developed in collaboration with four educational
experts, ensured both relevance and accuracy. Key evaluation cri-
teria included the elaboration, feasibility, and variety of solutions
proposed by teams. The scores of each rubric, represent the per-
formance scores of the Define (range from 0-15) and Ideate (range
from 0-27) stages.

3.5.3 Joint Stress (JStr) High and Low: We derived physiological
stress levels based on HRV recorded by the wristband. As a well-
established physiological marker of stress, HRV reflects fluctua-
tions in inter-beat intervals, with decreased variability commonly
indicating heightened sympathetic activation and reduced parasym-
pathetic regulation [36, 42, 78]. After determining stress levels for
each team member, we sorted the data in ascending order and cate-
gorized the time series into high and low stress. Our data follows
a normal distribution. We did not observe a bimodal distribution.
Therefore, a median split was deemed unsuitable, as values near
the 49th and 51st percentiles would be almost identical. To better
distinguish high and low stress, the 33rd and 66th percentiles were
used as thresholds. Time series above the 66th percentile were clas-
sified as high stress, while those below the 33rd percentile were
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categorized as low stress. To determine joint stress high (JStr-High)
and joint stress low (JStr-Low), cross-recurrence analysis [86] was
applied to the high- and low-stress time series for all team members
(see Figure 4).

3.5.4 Joint Engagement (JEng) High and Low: We retrieved EDA
data from wristbands to measure engagement, as it reflects sympa-
thetic nervous system activity, with higher electrodermal responses
indicating increased investment and enhanced information pro-
cessing [7, 13, 30, 95]. This study focused on the mean phasic EDA
signal component, whose rapid fluctuations indicate physiological
arousal, following the method outlined by Di Lascio et al. [13]. As
for stress, once we retrieved the individual engagement, we divided
its time series into high- and low-engagement segments. Again, we
set the 66th percentile as the threshold for high-engagement and
the 33rd percentile for low-engagement. We then computed the
cross-recurrence [86] of the high engagement time series for team
members as a measure of joint engagement high (JEng-High). Sim-
ilarly, the cross-recurrence [86] of the low engagement time series
for team members served as a measure of low joint engagement
(JEng-Low).

3.5.5 Joint Visual Attention (JVA): JVA is defined as the proportion
of time that students within the same team spend gazing at the same
group of elements within a set time window. We follow these steps
to compute the JVA from the recorded videos of students collaborat-
ing in dyads and triads: a) faces were detected in each frame of the
video, b) for each detected face, its gaze direction was calculated
using the facial image in the frame. This involved generating a 3D
gaze vector pointing toward the screen (see visual representation
in Figure 5a) with the software OpenFace [2, 4], ¢) the exact location
of where the students are looking is the intersection point between
the laptop screen plane and the 3D gaze vector. We referred to
the location as “gaze-point”, d) Once the gaze points for all team
members were identified, we divided the laptop screen space into
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Figure 4: Cross-recurrent matrix to plot affective and behavioral synchrony. Adapted from Sharma et al. [86].
The two series are the two dimensions of the matrix. The red diagonal illustrates a perfect synchrony of states.
This bi-dimensional matrix (for dyads) can be extended to three dimensions for triads.

20 rectangular regions, arranged in a four per five grid (Figure 5b).
Each gaze-point was assigned to one region, and e) once again,
we calculated the cross-recurrence [86] among students present
in the video to determine their JVA. To ensure fair comparisons,
we normalized the results based on the group size. We normalized
using the chance level proportions of two people looking at the
same region out of 20 at the same time and three people looking
at the same region out of 20 at the same time. The probability of
the first event is 1/20, while the probability of the second event is
1/320; therefore, the ratio of these values is used to normalize the
group size.

3.5.6 Joint Emotional State (JES) Boredom, Confusion, Frustration,
Delight: JES is defined as the proportion of time that students within
the same team spend in a specific emotional state in the same set
time window. We focused on four emotional states, frustration,
boredom, confusion, and delight, which are identified as the most
prominent across various studies [15, 17]. These states are also
grounded in the affective subset outlined by D’Mello and Graesser in
their “Cognitive Disequilibrium Theory” [18]. To identify emotions,
we used Action Units (AUs) from the Facial Action Coding System,
an anatomy-based framework [29] (Figure 4). The combination of
AUs defines a specific emotion (Table 1). Moreover, the AUs’ overall
intensity reflects each detected emotion’s prominence.

We describe the process to retrieve the JES for each team with
these passages: a) faces were detected in each frame of the video,
b) we followed the method described in Sharma et al. [87] to en-
sure consistency: we matched the same face in every frame of the
video and assigned a unique ID to it, ¢) After assigning correct IDs
to the faces, we used OpenFace [2, 4] to extract the AUs [56] for
each frame, d) using the AUs, we calculated the proportions of the
four emotions, delight, frustration, boredom, and confusion, over a
fixed ten-second time window [86]. We used a generalized additive
model to integrate the AUs and compute the expressions [54], and
e) with the calculated proportions, we assessed how aligned the
emotional states of the team members were by using the cosine sim-
ilarity between the emotional probabilities of each student. A high
cosine similarity indicates shared emotional experiences, while a
low similarity suggests divergent emotional responses.

3.6 Data Analysis

3.6.1 Checking for Potential Confounds. As a first step, we check
for potential confounding variables. An independent T-test (i.e.,
two-sample T-test) compared the means of the two kinds of teams,
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Emotions Combination of AUs

Boredom AU4, AU7, AU12

Frustration AU12, AU43

AU1, AU4, AU7, AU12

AU4, AU7, AU12, AU25, AU26

Confusion

Delight

Table 1: AUs combinations grounded in the “Cognitive Dise-
quilibrium Theory” [18]

namely dyads and triads, engaged in the Empathize, Define, Ideate,
and Prototype stages of the DT workshop. This analysis was in-
tended to eliminate group size (dyads vs. triads) as a confound in
our further analyses, ensuring that any differences observed in
performance were not due to the size of the group. Also, we con-
ducted a T-test to check for any gender-related confounds, while
age-related confounds were examined using a Pearson correlation
analysis. Across all measurements, there was no evidence of gender
or age-related confounds, either at the group or individual level.

3.6.2 Correlation Between Performances in Different DT Stages.
Following this, a Pearson correlation analysis was conducted to
examine the relationships between performance scores across the
different stages of the DT workshop: Empathize, Define, Ideate, and
Prototyping. This analysis measures the linear relationship between
two variables, represented by a correlation coefficient (r) and a
p-value. Positive values signify a direct correlation, while negative
values suggest an inverse relationship. The p-value determines
whether the observed relationship is statistically significant, with
values greater than 0.05 indicating a lack of statistical significance.
This analysis aimed to identify which stages were more closely
connected in terms of performance and understand how progress
in one stage may influence outcomes in the following ones.

3.6.3 Correlation of Performance and Affective/Behavioral Responses.
Next, we performed another Pearson correlation analysis to explore
the relationship between each joint MM affective (i.e., JEng, JStr,
and JESs) and behavioral measurement (i.e., JVA) and the perfor-
mance scores from each DT stage. This determined the patterns
of association between affective and behavioral responses and stu-
dents’ performance during the workshop. Overall, we are using
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Figure 5: Passages for Joint Visual Attention calculation.
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Figure 6: AUs from the Facial Action Coding System [29]

Pearson correlation for the following reasons: a) there is no theo-
retical or empirical basis for hypothesizing non-linear relationships
between the MM measurements and performance variables in this
study. b) MM measurements are temporal, while performance scores
were collected at single points during each DT stage rather than
continuously; this setup does not allow for cross-correlation or
cross-recurrence analysis. c) our data follows a normal distribution
(as confirmed by the Shapiro-Wilk test), the measurements are con-
tinuous rather than ordinal, and we did not observe outliers. The
Bonferroni correction was applied to adjust p-values for multiple
comparisons, accounting for the increased risk of false positives by
modifying the threshold for statistical significance.

4 Results
4.1 Correlations Between Group Performances
in DT Stages

Our analysis shows positive correlations between the Empathize
stage and the Ideate (r = 0.51, p = 0.001) and Prototyping (r = 0.71,
p = <0.0001) stages, both of which are statistically significant. The
correlation coefficient between the Define stage and the Ideate stage

284

performance scores suggests a positive correlation (r = 0.62, p-
value = 0.0002), which also reaches statistical significance after the
correction. Conversely, the correlations between the Empathize
and Define stages (r = 0.24, p = 0.19), the Define and Prototyping
stages (r = 0.17, p = 0.37), and the Ideate and Prototyping stages (r =
0.33, p = 0.07) are not statistically significant. Table 2 presents the
correlation coefficients r and p-values between stages.

4.2 Correlations Between MM Measurements
and DT Stages Group Performances

4.2.1 Multi-Modal Measurements and the Empathize stage. We
started with computing correlations between the Empathize stage
and the MM measurements. The results (see Table 3) indicate a
significant positive correlation between the Empathize stage score
and JVA (r = 0.47, p = 0.009). Conversely, significant negative corre-
lations were observed with JES-Boredom (r = -0.53, p = 0.002) and
JStr-High (r = -0.40, p = 0.02). No significant correlations (p-value <
0.05) were found between the Empathize stage score and the remain-
ing affective states: JES-Confusion, JES-Frustration, JES-Delight,
JEng-High, JEng-Low, and JStr-Low.
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Empathize Define Ideate Prototyping
Performance score ( ! ( | ( | ( |
r, p-value, 1, p-value, 1, p-value, 1, p-value,
Mean (SD) P P P P
p-uncorr) p-uncorr) p-uncorr) p-uncorr)
Empathize
/ / / /
0.50 (0.15)
Define
0.24, 0.19, 0.03 / / /
9.86 (3.74)
Ideate
0.51, 0.001, 0.0001 0.62, 0.0002, 0.00003 / /
16.79 (5.03)
Prototyping
0.71, <0.0001, <0.00001 0.17,0.37, 0.07 0.30, 0.11, 0.01 /
0.60 (0.11)

Table 2: Correlation coefficients r and p-values between the DT stages, alongside performance scores (mean, SD).
Significant correlations are in bold. The last numbers show the p-values before the Bonferroni correction.

We used acrifjca =1 (1 - aaltered)k withk = 6.

Measurement Mean SD Coefficient r p-value p-uncorr
JVA 0.49 0.33 0.47 0.009 0.001
JES - Boredom 0.41 0.28 -0.53 0.002 0.0002
JES - Confusion 0.53 0.34 -0.22 0.24 0.03

JES - Frustration 0.42 0.26 -0.10 0.58 0.09

JES - Delight 0.57 0.25 0.05 0.77 0.15

JEng - High 0.50 0.27 -0.11 0.56 0.08

JEng - Low 0.45 0.29 -0.20 0.27 0.03

JStr - High 0.52 0.33 -0.40 0.02 0.002
JStr - Low 0.52 0.28 0.23 0.21 0.02

Table 3: Correlation of Multi-Modal Measurements with the Empathize stage scores. Significant correlations are in bold.
The last column shows the p values before the Bonferroni correction. We used ¢, jsjcq; =1 — (1 — aaltered)k with k =9.

4.2.2  Multi-Modal Measurements and the Define stage. Next, we
computed the correlation between the MM measurements and the
scores from the Define stage. From the Table 4, we observe a sig-
nificantly positive correlation with JVA (r = 0.41, p = 0.02) and
JES-Frustration (r = 0.39, p = 0.03). On the contrary, significantly
negative correlations are found with JES-Boredom (r = -0.46, p =
0.01), JEng-Low (r = -0.58, p = 0.0009), and JStr-High (r = -0.54, p
= 0.002). Finally, there is no correlation (p-value < 0.05) between
JES-Confusion, JES-Delight, JEng-High, and JStr-Low and the per-
formance score in the Define stage.

4.2.3  Multi-Modal Measurements and the Ideate stage. Proceeding
in the same manner, we computed the correlation between the MM
measurements and the performance scores from the Ideate stage.
Referring to Table 5, we observed positive correlations between the
Ideate stage score and JVA (r = 0.59, p = 0.0007), JES-Confusion (r
= 0.51, p = 0.004), JEng-High (r = 0.46, p = 0.01), and JStr-Low (r =
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0.45, p = 0.01). Conversely, the Ideate stage score was negatively
correlated with JES-Boredom (r = -0.44, p = 0.01), JES-Frustration
(r =-0.48, p = 0.007), and JStr-High (r = -0.65, p = <0.0001). Finally,
no statistically meaningful correlation (p-value > 0.05) was found
between the Ideate stage score and JES-Delight or JEng-Low.

4.24 Multi-modal Measurements and the Prototyping stage. Finally,
following the same process, we computed the correlation between
the MM measurements and the performance score from the Proto-
typing stage. Our results (Table 6) indicate that the performance
score in the Prototyping stage is positively correlated with JVA (r
=0.58, p = 0.0008), JEng-High (r = 0.40, p = 0.03), and JStr-Low (r
= 0.38, p = 0.04). Conversely, it is negatively correlated with JES-
Boredom (r = -0.50, p = 0.005), JES-Frustration (r = -0.51, p = 0.002),
and JStr-High (r = -0.55, p = 0.001). JES-Confusion, JES-Delight, and
JEng-Low do not show any statistically significant correlation (a
p-value > 0.05) with Prototyping performance score.
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Measurement Mean SD Coefficient r p-value p-uncorr
JVA 0.48 0.25 0.41 0.02 0.002
JES - Boredom 0.51 0.29 -0.46 0.01 0.001
JES - Confusion 0.43 0.28 -0.12 0.52 0.07

JES - Frustration 0.38 0.25 0.39 0.03 0.003
JES - Delight 0.51 0.28 -0.06 0.75 0.14

JEng - High 0.56 0.30 0.25 0.18 0.02
JEng - Low 0.50 0.26 -0.58 0.0009 0.0001
JStr - High 0.52 0.31 -0.54 0.002 0.0002
JStr - Low 0.50 0.31 0.25 0.18 0.02

Table 4: Correlation of Multi-Modal Measurements with the Define stage scores. Significant correlations are in bold.
The last column shows the p values before the Bonferroni correction. We used apjzjcqr =1 — (1 — aaltered)k with k =9.

Measurement Mean SD Coefficient r p-value p-uncorr
JVA 0.50 0.30 0.59 0.0007 0.00007
JES - Boredom 0.49 0.29 -0.44 0.01 0.001
JES - Confusion 0.45 0.29 0.51 0.004 0.0004
JES - Frustration 0.48 0.28 -0.48 0.007 0.0007
JES - Delight 0.40 0.29 0.29 0.12 0.01
JEng - High 0.44 0.26 0.46 0.01 0.001
JEng - Low 0.53 0.29 0.23 0.21 0.02

JStr - High 0.58 0.30 -0.65 <0.0001 <0.00001
JStr - Low 0.52 0.28 0.45 0.01 0.001

Table 5: Correlation of Multi-Modal Measurements with the Ideate stage scores. Significant correlations are in bold.
The last column shows the p values before the Bonferroni correction. We used a,,izicq; = 1 — (1 — dgjzereq)” with k = 9.

4.2.5 Summarization of all correlations. Finally, we present the
overall relationships between students’ affective (i.e., JEng, JStr, and
JESs) and behavioral (i.e., JVA) responses and their experience out-
comes across the DT stages. Figure 7 provides a visual summary of
the correlations between MM measurements and the performance
scores across the four stages: Empathize, Define, Ideate, and Prototyp-
ing. Upward arrows (1) represent positive correlations, indicating
that an increase in the MM measurement is associated with higher
performance scores. Downward arrows ({) represent negative corre-
lations, indicating that an increase in the measurement corresponds
to lower performance scores. Blank cells indicate that these MM
measurements showed no significant correlation. JVA remains con-
sistently positive across all stages, while JES-Boredom and JStr-High
consistently show negative correlations. JES-Confusion is specific
to the Ideate stage, where it correlates positively, while JEng-Low
appears only in the Define stage with a negative correlation. JEng-
High and JStr-Low show positive correlations that become more
evident in later stages. Finally, JES-Frustration correlates positively
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during Define but shifts to a negative correlation in the subsequent
stages.

5 Discussion

In this paper, we presented a study conducted “in-the-wild” where
students engaged in a DT workshop focused on Al and ML. Through
tests, artifacts, and MM Learning Analytics data, we captured stu-
dents’ affective and behavioral responses to uncover the underly-
ing team dynamics during the open-ended experience for a new
perspective on the CCI field. Two main points emerged from our re-
sults: a) an analysis of the correlations between different DT stages
and exhibited patterns with performance scores, and b) the rela-
tionship between students’ performance scores and their observed
behavioral and affective states. Beyond contextualizing these re-
sults, the discussion examines the feasibility of DT curricula for
tackling “wicked problems”, as the ones related to Al and ML for
insights into orchestrating student-centered learning activities with
appropriate scaffolding and guidance.
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Measurement Mean SD Coefficient r p-value p-uncorr
JVA 0.48 0.29 0.58 0.0008 0.00008
JES - Boredom 0.49 0.31 -0.50 0.005 0.0005
JES - Confusion 0.43 0.32 0.12 0.51 0.076

JES - Frustration 0.47 0.30 -0.51 0.002 0.0002
JES - Delight 0.53 0.31 0.21 0.27 0.03
JEng - High 0.48 0.32 0.40 0.03 0.003
JEng - Low 0.47 0.32 0.11 0.53 0.08

JStr - High 0.54 0.32 -0.55 0.001 0.0001
JStr - Low 0.46 0.32 0.38 0.04 0.004

Table 6: Correlation of Multi-Modal Measurements with the Prototyping stage scores. Significant correlations are in bold.
The last column shows the p values before the Bonferroni correction. We used apjzjcqr =1 - (1 — aaltered)k with k =9.

5.1 Interpretation of results

5.1.1 In respect to RQ1: To answer our RQ1, we assessed the per-
formance from each stage of DT (Empathize, Define, Ideate, and
Prototype) with measurable outcomes to identify correlations in
team performances across the DT workshop. The findings illustrate
that early-stage performance, whether high or low, is related to
patterns of success or difficulty in later stages. Notable correlations
were observed between Empathize — Ideate, Empathize — Proto-
type, and Define — Ideate. Among these, the correlation between
Define and Ideate is strong and positive, indicating that progress
in the Define stage displays a relationship with achievement in the
Ideate stage. This finding suggests that a clear problem definition
in the Define stage may support more effective brainstorming and
solution generation in the Ideate stage. In the context of high per-
formance, we align with Sun et al., who state that the discussion
of pertinent ideas can be leveraged to improve the downstream
success [93]. In our DT workshop, this link may be attributed to the
consistency of support materials, such as paper-based worksheets,
which facilitated a smoother transition. These materials enable
students to carry situational understandings developed during the
Define stage into the Ideate stage. Specifically, the situational inter-
pretation of the task, including challenges appraisal [66, 77], may
have been formed during the Define stage and seamlessly applied
in the subsequent Ideate stage. Finally, Empathize, strongly corre-
lates with Prototyping, which could initially seem counterintuitive,
given that these stages took place at opposite ends of the DT pro-
cess. Nonetheless, during the Empathize stage, students engaged
in brainstorming activities aimed at raising their peers’ awareness
of Al through the game. Therefore, a good conceptualization could
facilitate block-based programming development, helping shape
the decisions made during the gameplay design.

5.1.2  Inrespect to RQ2: Building on the performances observed for
RQ1, we analyzed their connection with students’ behavioral and
affective states to address RQ2, showing that certain states exhibit
more consistent correlations throughout the DT stages than others.
More specifically, JVA, JES-Boredom, and JStr-High characterize
conditions that, once experienced by group members collectively,
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tend to reoccur throughout the workshop. JVA presents a significant
positive correlation throughout the workshop, displaying potential
as a proxy for collaboration and shared understanding [85]. In our
DT workshop, collaborative tools (that is, paper-based sheets and
laptops) were not individualized but shared among group members.
This may have encouraged the redirection of visual attention to-
wards a common focus. In contrast, joint states of boredom and
high stress among members are associated with low performance.
The adverse effects of boredom on learning activities are well doc-
umented in the literature [16, 68, 69]. According to these theories,
boredom is best kept as a short-lived “mood” ideally confined to
a single task, as it can be difficult to reverse once it becomes pro-
longed [3]. In SSRL, boredom is an emotion with rapid contagion
among learners working on the same task, especially because of dis-
tinctive externalization [32]. This phenomenon likely occurred in
our case, where protracted boredom extended beyond individual DT
stages, dampening the overall workshop experience and calling for
reappraisal strategies [91]. Notably, boredom can persist even when
interactions vary, such as through the eventual introduction of a
digital tool. Concentrating on stress, while it can sometimes func-
tion as an activating emotion [64], tends to impair performance
when it becomes chronic [83]. Our findings show that elevated
stress levels are increasingly correlated with poor performance as
the workshop advances, peaking in Ideate. This is close to similar
entries, where stress is a disturbance in the learning process [64].
Stress disrupted the collaborative process by amplifying negative
emotions within groups. The introduction of a digital tool, namely
SorBET, coincided with increased negative group dynamics, sug-
gesting a potential association with heightened stress levels that
made recovery more difficult.

JES-Confusion, JEng-High, and JStr-Low show up as positive
drivers during the last DT stages (i.e., Ideate and Prototype). In line
with the cognitive disequilibrium theory, we report that confusion
during ideation may stimulate deeper thinking or problem-solving
efforts [19, 50]. Engaging in activities addressing Al and ML “wicked
problems” frequently mismatches with students’ existing knowl-
edge. This difficulty is further intensified by potential differences
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Figure 7: Positive and negative correlations between MM measurements and the Empathize, Define, Ideate, and Prototyping
performance scores. Upward, green arrows (1) represent positive correlations, and downward, red arrows () represent negative

correlations. Black cells indicate the absence of any correlation.

in background among team members: if confusion persists after
several unsuccessful attempts to, for example, devise a solution, stu-
dent engagement becomes at risk [19]. However, goal congruence
among peers breaks through the impasse [87]. As the workshop pro-
gresses, increased engagement among group members is associated
with higher productivity, supporting the notion that collaborative
effort enhances idea development and its implementation within
the programming platform [94]. Moreover, a state of low stress
appears crucial during the latest stages. This reflects a positive
team appraisal of the task, most likely as a manageable challenge
[66, 77]. Previous familiarization with the workshop scope aligns
with students framing their goals as achievable and reporting a
sense of success in their addressing [91]. Finally, JEng-Low nega-
tively correlates with Define, likely due to the need for sustained
effort. Incomplete input from members is likely to hinder the Define
stage, preventing the establishment of a solid foundation. Here,
struggles with workload distribution could impede the team from
advancing in the task. All the other stages show no correlation,
suggesting less dependency on maintained engagement. The Em-
pathize stage benefits from diverse contributions, even if they are
sporadic or unstructured. Likewise, the creative and exploratory
nature of Ideate and Prototyping allows for spontaneous insight and
trial-and-error, making them more adaptable to varying levels of
engagement.

Interestingly, we see JES-Frustration playing a dual role across
the stages. In Define, frustration positively correlates with perfor-
mance, indicating that mild manifestations of this state can be
interpreted as triggers that push learners to clarify goals, refine
problems, or persist through challenges at the early stages of the
DT workshop [3, 33]. However, as the workshop progresses with
Ideate and Prototyping, the presence of a joint state of frustration
negatively correlates with production quality. Thus, frustration can
serve a formative purpose in supporting the preliminary design
of solutions in DT, particularly when sequenced with engagement.
Nonetheless, it requires intervention in later stages if it disrupts
the cognitive flow [3, 16], such as during an impasse caused by,
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for instance, prolonged disagreement over unsolved programming
bugs [87]. Intelligent support systems or tailored supervision can
facilitate the reappraisal of challenging situations and coping strate-
gies to sustain performance throughout the process [49, 91]. For
instance, early intervention in response to high stress experienced
by one team member could help dissipate the sentiment and prevent
escalation into complete disengagement and the spread of frustra-
tion among peers [19]. With the cognitive disequilibrium theory,
we saw how activating negative emotions (i.e., stress, frustration)
can sharpen analytical processes. However, if left unchecked, these
emotions might induce more rigid communication, causing learners
to become entrenched in their perspectives or even lead to avoid-
ance behaviors, such as disengagement or reluctance to participate
in further discussions [18, 91].

5.2 Implications

5.2.1 Implication for research. The process applied in the proposed
study is built on theories that stress learning processes over the
sole outcomes for a successful knowledge acquisition [18, 28, 62].
Against this background, the analysis of SSRL through MM data
equipped a lens to examine the “hidden” mechanisms [11, 81, 105]
that characterize students’ experiences. The analysis dissects such
experiences into finer, more understandable components, namely af-
fective and behavioral factors, and outlines their impact. Our study
serves as a feasibility example in reducing assessment approxima-
tion for collaborative, complex interactions, especially when they
occur during open-ended activities for CS concepts (e.g., Al and
ML) with diversified learning supports (i.e., paper-based and digital)
[59]. Given the variation in tasks across stages, we also examined
students’ learning outcomes at each stage, incorporating a temporal
dimension of sequentiality. This approach allowed us to explore
how performance in one stage relates to the others. For example,
we introduce computational thinking during the Prototyping stage
but do not study it in isolation [72, 105]. Instead, we analyze it as
an integral component of the entire learning experience. Even if
our research focuses on DT, the lessons learned can resonate with
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all the constructivist formats that value collaboration, problem-
solving, and creativity [59]. Moreover, as students engaged in an
activity hosted on a laptop with a programming module, our find-
ings hold relevance in CSCL and CCI environments, where MM
data collection can harness the existing educational technology
infrastructure in classrooms [46, 104]. The intersection between
SSRL and CSCL, when examined through the lens of MMLA, can
push the boundaries of understanding learning in CCI. Through
this, novel perspectives on students’ journeys can be accounted
for and can foster tailored interventions and support systems that
are as flexible and dynamic as the constructionist activities they
engage in [89].

Our study builds on existing theoretical frameworks of learners’
responses, such as the D’Mello & Graesser model on affective dy-
namics [18]. While these models are foundational for understanding
emotional drivers in learning environments, they may benefit from
further expansion. This is quite relevant now, as MM tools have the
potential to analyze a vast range of emotional, cognitive, and behav-
ioral responses by tracking various signals. However, organizing
these responses into predefined groups, as established by existing
theories, may fail to capture learners’ intricate and nuanced ex-
periences exhaustively. Incorporating affective interdependencies
[32, 72], or a time-sensitive map of collaborative phenomena (e.g.,
moments of appraisal, coping, etc.), could provide a more nuanced
view of how emotions and behaviors interact in the context of
learning, updating existing theoretical standards.

5.2.2  Implications for practice. Our results offer practical impli-
cations for curriculum development and the design of children’s
interactive learning experiences. We examined the correlations be-
tween performances across the different DT stages to understand
their influence on one another. While some significant correlations
were observed, the strongest relation was performance in the Define
stage with performance in the Ideate stage. Contextualizing this
within the proposed workshop, these two stages used the same ma-
terials, even though students were tasked with different objectives
in each. This finding can orient the activity design, as it reports on
the benefits of maintaining consistency in materials used through-
out the process. At the same time, it highlights the cognitive load
MM interactions impose on students. A shift in support tools, such
as transitioning from paper-based resources to a block-based coding
platform, may impact outcome efficiency. However, we observed
that while introducing a new format can initially confuse, it may
ultimately contribute to knowledge acquisition [19]. In the context
of teaching computer science-related content like AT and ML, where
concepts are often introduced unplugged and later approached with
digital tools [53], this finding could help reconsider the facilitation
style and scaffolding to manage negative sentiments [59].
Concerning the patterns of behavioral and affective states, JVA,
JES-Boredom, and JStr-High are three variables that appear to be
central to the performance and should be key targets for interven-
tion planning to improve overall outcomes. For example, facilitating
activities that further leverage team focus and coordination in intro-
ductory phases (e.g., structured brainstorming during Empathize)
could equip teams with “virtuous circles” of feedback [102] later
applicable as the experience unfolds [46]. The use of shared tools, or
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tools having collaborative entry points, likely amplified the group’s
collective focus, reinforcing mutual appraisal as group members
worked together to achieve common outcomes with greater coher-
ence [66, 91]. The persistence of boredom and high stress is an im-
portant marker for improving instructional design and facilitation
techniques. Introducing variety, such as incorporating digital tools,
may still fail to alleviate boredom if the root causes, such as a lack
of challenges or repetitive tasks, are not addressed. Beyond thought-
ful curriculum design and effective facilitation, auxiliary devices
and the use of auxiliary devices (e.g., teacher-facing dashboards for
classroom monitoring) can help detect the onset of these negative
states. This enables timely interventions to mitigate their impact
or, ideally, to predict and prevent them altogether [80]. While such
states cannot be entirely eliminated and, in some cases, may even
play a constructive role in knowledge acquisition, proper modera-
tion is critical [73]. For example, high-stress, when combined with
engagement and confusion, can signal a peak in task investment.
Prolonged stress or boredom, however, can delay advancement.
Strategies to maintain engagement, such as introducing variety,
setting intermediate milestones, or providing stimulating tasks, can
help counteract this. Stress management interventions, such as
breaks, mindfulness exercises, or workload adjustments, should
be integrated into the workflow. Moreover, facilitators should be
equipped with real-time behavioral and affective indicators from
students to address these states proactively, ensuring they do not
persist in a way that impairs learning [80].

Moreover, affective and behavioral variables exhibit different re-
lationships with success at each stage, indicating that phase-specific
orchestration may be beneficial. Confusion has a positive correla-
tion with performance in Ideate. Ideally, the presence of confusion
in Ideate should be extended across phases to trigger students to
question assumptions and generate innovative solutions consis-
tently [19], especially in topics such as the one proposed, where
teams faced open-ended tasks about Al In fact, promoting uncer-
tainty as something to embrace while also offering guidance to
navigate through confusion might optimize performance from the
early stages [3]. Low-stress states pair with high performance in
the second half of the activity, where topics’ understanding and
goals are likely to be solidified. To sustain a more relaxed envi-
ronment, support from the facilitator is important to mitigate a
laid-back atmosphere and alleviate students’ concerns. Interestingly,
a high level of engagement is only linked to improved performance
towards the end of the activity. This may indicate that having
overly structured beginnings can reduce students’ ability to make
independent decisions, as they become overly reliant on guided
instructional approaches. Moreover, the content to elaborate on
should be diversified to match participants’ interests well before
the Define stage. Fluctuations in shared low engagement and per-
formance appear more pronounced in tasks with a narrower focus
[64]. In our case, this may be related to the instructions provided to
redirect or refine team practice. Yet, its observed pattern with lower
performance suggests that a rethinking of Define modules may be
needed for the promotion of inclusive ideation and prototyping
processes that invite contributions from all participants, regardless
of their perceived levels of engagement.
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Overall, the presence of specific affective and behavioral states
shared at the group level, is significantly associated with perfor-
mance outcomes. In the context of a DT workshop, emotional conta-
gion [99] and appraisal [77] consider not only peers as influencing
variables but also the “object-focus”, the created artifact, [66] toward
which the emotion is directed. Artifacts play an important role in
DT, and their design process can be used to act as mediators between
group members, encouraging positive attitudes and discouraging
disruptive ones. For instance, administered materials carefully de-
signed for the scope can facilitate challenges re-appraisals (e.g.,
embedded prompts, tips) or joint agreement exercises, relieving
negative sentiments spreading and/or escalation due to peer social
conformity [66].

Lastly, using MM data to capture students’ unfiltered and spon-
taneous states allows for accurate reports on regulation dynamics,
such as emotional exchange within teams (e.g., contagion degree
of boredom) and coping mechanisms (e.g., successful resolution of
confusion) [66, 99]. This approach reduces the skew caused by so-
cial desirability bias (e.g., overstating positive experiences), which
might occur when students are aware that their actions are be-
ing evaluated or when they are explicitly asked to reflect on their
emotions and behaviors [49]. Wristbands and mounted cameras pro-
vided a non-intrusive method for collecting data that ensured equal
coverage of all participants. This approach can be particularly ben-
eficial for capturing information from students who might display
non-verbal disposition or have difficulty actively articulating their
emotions [49], thereby offering a more inclusive understanding and
tailored assistance [81].

5.2.3  Ethical Considerations. Our study provides some reflections
arising from using MM instruments with ethical integrity for “in-
the-wild” studies with K-12 students. Considerations regarding
those instruments brought to the classroom should be made in
advance since they may impact its ecosystem [82]. For example,
wristbands require direct contact with the students and can possi-
bly distract from the experience or create discomfort as a wearable.
Considering this, students should be informed, according to their
age, about their use. Cameras, even if passive collectors of data,
are still conspicuous in their presence and may alter student’s
natural behavior, potentially triggering a sense of being under con-
stant “surveillance” (e.g., ‘Does the teacher see what I am doing?”)
[11]. Practitioners in the field advocate to address these concerns
[10, 11, 82]. Informed, we took steps starting from ensuring infor-
mation privacy and transparency in the process to prevent negative
responses [48, 87]. Moreover, students’ individual preferences and
needs should be accounted for by establishing dialogue and mutual
trust. Recognizing students’ willingness should involve a clear ex-
planation of procedures and tools employed to alleviate concerns
and indulge their curiosity [20]. Informing student about their data
is another step to take. “Where is my test ending up?” and other ques-
tions must be followed up to correctly inform students on the scope
of data collection, empowering them to participate confidently and
with awareness of how their contributions will be used.

6 Limitations and Future Work

We discussed our findings, in light of the promise of MM data
and LA as a window into students’ collaborative experiences in
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hands-on contexts. However, to identify further opportunities for
advancement, we must acknowledge the study’s limitations. First
and foremost, relying solely on quantitative analysis is a shortcom-
ing, given the richness of the instruments used (e.g., paper-based
sheets and game artifacts, video recordings). The data generated
from these sources should be leveraged through qualitative ap-
proaches, such as thematic analysis, for more context-reliant im-
plications. Additionally, while we employed a range of affective
and behavioral responses to draw inferences about group-level dy-
namics, there is considerable room to expand this pool of data. For
instance, measures that capture students’ joint motivation [44], or
joint mental effort [85] can be incorporated or explore different
affective states from established frameworks (e.g., achievement-
related emotions from the Control-Value Theory [67, 70]). Lastly,
because performance is evaluated at discrete points and MM mea-
surements are collected continuously, Pearson correlations cannot
account for time-dependent influences or delayed effects between
variables. Future work could address this by applying time-series
analysis techniques, such as cross-correlation. We also report on
the limitations in achieving full accuracy in emotion recognition.
Given potential biases in the training libraries (e.g., cultural dif-
ferences, neurodiversities), the algorithm may misidentify certain
groups [40]. It is worth noting that the flexibility of DT can chal-
lenge the transferability of our results to larger scales. For instance,
our performance assessment (i.e., quantitative analysis on tests
and artifacts) may not align seamlessly with alternative DT de-
ployments, which could impact the comparability of results. Future
contributions should address a larger pool of students and introduce
additional variables, such as fully digitalizing DT stages, to enhance
the generalizability of results across different DT deployment styles.

7 Conclusion

We conducted an empirical intervention to unravel the “hidden”
dynamics when students collaborate for a DT project centered on
Aland ML. Therefore, data were collected from 63 students grouped
into 29 teams. We assessed their performance in each DT stage and
monitored their interaction responses with MM channels, adding a
new layer of interpretation through behavioral and affective states.
The results show close connections and notable divergences in per-
formance across DT stages, suggesting that the way students engage
with each stage of the process is dynamic and context-dependent.
For each stage, students’ joint states were mapped and correlated
with performance to determine whether these responses displayed
patterns with success or potential barriers to quality in their col-
laborative outcomes. Implications call for specificity in designing
DT activities, ensuring that the most productive responses for each
stage are harnessed (e.g., using confusion during the Ideate stage)
to maximize learning outcomes. Our contribution hopes to leverage
the intersection between educational psychology, constructionism,
and CSCL to empower researchers, learners, and other stakeholders
to make CCI experiences more impactful.

Selection and Participation of Children

Our research prioritized the willingness of children and made every
effort to accommodate their preferences, placing their engagement
and well-being at the forefront. The participation of children in the
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study and data collection was regulated by an information letter
and consent form signed by students’ parents or guardians. These
documents were designed in accordance with the requirements
mandated by SIKT and approved by the same system, ensuring
full compliance with national regulations and GDPR standards for
the gathering, handling, anonymization, and protection of personal
data. Detailed information about the research was shared in advance
with children, their guardians, and other figures involved (e.g., the
teacher and the institution) to facilitate an informed decision about
joining the study. Children were able to opt out of the data collection
process at any point.
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Criteria Description Example 3 Points 2 Points 1 Point 0 Points
Topic Variety How many topics does the The group considered more than one  The group  The group con- The group  No topics were
group consider while explor- initial topic. E.g., “Creating the perfect  considered sidered two to  considered one  considered
ing everyday issues pertaining ~ menu” more than  three topics topic
to the chosen persona? three topics
Topic To what extent does the group  The group elaborates and details chal- The group pre- The group  The group  No challenges
Elaboration elaborate on the chosen per- lenges for the chosen persona. E.g., sented detailed presented mentioned one  were identified
sonas’ challenges to explore?  “Grandma’s problem is creating the per-  and varied  challenges, but  challenge with
fect menu for all the grandkids for Easter ~ challenges with  limited little detail
lunch” elaboration.

Topic To what extent does the group  The group listed topics with elaboration =~ The group pre- The group pre- The group No solutions
Relevance elaborate solutions to explore  from videos’ information and discussions ~ sented a well- sented a basic mentioned one  were identified
directly addressing Al & ML?  among peers. E.g., “We can create an AI-  developed AI- Al-driven solu- solution with

driven recipe database to inspire her” driven solution  tion, but with little detail
limited elabora-
tion.
Topic To what extent does the group ~ The group elaborated on the system re-  The group  The group  The group No discussion
Awareness elaborate solutions to explore  liability: “It seems trustable because a lot  presented addressed trust  mentioned of trust was
addressing trust in Al & ML?  of people use AL but the Grandma should ~ solutions dis- but lacked  trust with  present
check the outcome in any case” cussing trust depth minimal elabo-
and reliability ration
Topic To what extent does the work- ~ The connection between sheet points 3,  The solutionis  The solutionis The solution No relevance
Consistency sheet show the usefulness of 4, and 5 shows consistency and relevance ~ consistent and  somewhat rel- shows limited to AI & ML
the proposed solution with re-  in proposing a solution relevant to AI  evant to Al & relevance to AI was  demon-
spect to Al & ML? & ML ML & ML strated
Table 7: Rubric A, the rubric to assess the Paper Sheet 1
Criteria Description Example 3 Points 2 Points 1 Point 0 Points
Topic To what extent does a scenario  The scenario built presents elements re-  The scenariois ~ The scenariois The scenario No relevant
Relevance belonging to an ML & Al topic  lated to ML & Al E.g., the description of ~ consistent and  relevant to AI ~ shows limited consistent was
unfold? an Al-driven digital tool or service relevant to AI & ML relevance to AI  demonstrated
& ML & ML
Topic To what extent does the sce- The scenario is built around the chosen =~ The scenario The scenario The scenario The scenario
Consistency nario maintain consistency  persona. For example, at least one of the ~ fully  aligns  partially only loosely does not relate
with the chosen persona and ~ Grandma’s challenges is addressed with chal- addresses relates to chal-  to challenges
their challenges? lenges and  challenges, lenges and/or
expands on  with some lacks detail
their context misalignment
or gaps
Topic Com- To what extent does the sce- The scenario built presents elements able ~ The scenario The scenario The scenario The scenario
munication nario hold communicative sig-  to instruct peers about ML & Al-driven  explains con- conveys con- includes basic  does not
nificance (message clarity) in  tools and services, how they can solve  cepts in a way cepts but with ML & Al communi-
the domain of ML & AI? everyday problems peers can eas- some gaps or elements but cate concepts
ily understand.  lack of clarity lacks clarity or  clearly
detail
Critical Does the scenario address is-  The scenario discusses challenges. E.g., Challenges are ~ Some chal- The scenario The scenario
Thinking sues (or how to avoid/prevent  “The grandma should ask every year toup-  thoroughly lenges are  mentions chal- does not ad-

them) related to AI & ML us-
age?

date the recipe collection to avoid assump-
tions on grandchildren’s taste”

addressd with
suggestions to
mitigate them

identified, with
limited or gen-
eral solutions

lenges but does
not  provide
meaningful
solutions

dress potential
limitations

Table 8: Rubric B.1, the rubric to assess the Paper Sheet 2
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Criteria Description Example 3 Points 2 Points 1 Point 0 Points
Database To what extent does the ar- The database presents four categoriza- More than 5 to 4 cat- 3 to 2 cate- 1 or no cate-
design tifact present complexity in  tion options for items. E.g., “My Grand- 5 categories egories  are goriesincluded  gories included
complexity items’ categorization (number  children’s Favourites”, “Moderately tasty”,  included included
of categories)? etc.
Database To what extent does the ar- The database presents fifteen items that More than 6 6 to5itemsin- 5 to4itemsin- Less than 3
design tifact present complexity in  can be categorized. E.g., “Blueberry pie”, items included  cluded cluded items included
complexity items’ categorization (number  “Fish soup”, “Falafels”, “Grilled vegetables”,
of items)? etc.
External To what external resources are  Each item is described with a picture. The =~ More than 4 to 3 pictures 2 to 1 pictures  No pictures in-
media employed to develop the cho- background has been changed to match 4 pictures  included included cluded
embeddment  sen scenario and enrich the ex-  the theme included
perience?
Topic To what extent does the Sor- The scenario built presents elements The scenario The scenario The scenario The scenario
Relevance A BET database include a built  (items, classification descriptions) related ~ is thoroughly  aligns with an loosely con- does not relate
scenario belongingtoan ML &  to ML & Al aligned with ML & Altopic nects to an toan ML & Al
Al topic? an ML & AI but lacks full ML & Altopic, topic
topic and inte-  detail or depth ~ with  signifi-
grates relevant cant gaps or
examples inaccuracies
Topic To what extent does the Sor- The scenario built presents elements The scenario The scenario The scenario The scenario
Relevance B BET database include a built  (items, classification descriptions) related ~ fully incor- partially in- includes ele- does not reflect
scenario belonging to the cho-  to the specific ML & Al topic chosen by ~ porates  the corporates the ments of the the chosen
sen Al & ML topic? the group chosen topic chosen topic, topic but with  topic
with clear but with gaps misalignment
descriptions in relevance

Table 9: Rubric B.2, the rubric to assess the SorBET database artifact
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