StoreLLM: Energy Efficient Large Language Model Inference with
Permanently Pre-stored Attention Matrices

Dan Wang
The Hong Kong Polytechnic
Univeristy
Kowloon, Hong Kong
dan.wang@polyu.edu.hk

Zhaorui Zhang
The Hong Kong Polytechnic
Univeristy
Kowloon, Hong Kong
zhaorui.zhang@polyu.edu.hk

Abstract

Energy efficiency has become an important design issue in Large
Language Model (LLM) inference systems. The main energy con-
sumption goes to computing. There are studies to reduce computing
or to conduct computing in regions with green energy. In this paper,
we study an orthogonal perspective. We observe that the attention
matrices of the tokens remain largely unchanged across different
LLM inference. We argue that there can be over-computing of the
attention matrices across different LLM inference in LLM inference
systems. As the energy of computing is substantially greater than
the energy of storage access, we propose StoreLLM, an LLM infer-
ence system where the attention matrices of tokens are pre-stored
so that the computing of the attention matrices in any LLM infer-
ence can be substituted by storage access. Our analysis shows that
it is possible to permanently pre-store the attention matrices of
all tokens in storage, and we develop mechanisms to effectively
maintain the LLM inference performance. Our evaluation shows
that StoreLLM can outperform state-of-the-art LLM inference sys-
tems LazyLLM by 1.45X in energy consumption with a sacrifice of
5.05% in delays. With further improvements, StoreLLM-MoE and
StoreLLM-PTQ can achieve 2.64x and 2.83X energy reduction as
compared to state-of-the-art LLM systems.!

CCS Concepts

« Computing methodologies — Natural language generation.

Keywords
Large Language Model, KV Cache, Hierarchy Storage System

ACM Reference Format:

Dan Wang, Boan Liu, Rui Lu, Zhaorui Zhang, and Shuntao Zhu. 2025.
StoreLLM: Energy Efficient Large Language Model Inference with Per-
manently Pre-stored Attention Matrices. In The 16th ACM International

I The source code can be obtained from https://github.com/StoreLLM/StoreLLM/

This work is licensed under a Creative Commons Attribution 4.0 International License.
E-ENERGY °25, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1125-1/25/06

https://doi.org/10.1145/3679240.3734604

Boan Liu
The Hong Kong Polytechnic
Univeristy
Kowloon, Hong Kong
bo-an.liu@connect.polyu.hk

Rui Lu
The Hong Kong Polytechnic
University
Kowloon, Hong Kong
csrlu@comp.polyu.edu.hk

Shuntao Zhu
The Hong Kong Polytechnic
Univeristy
Kowloon, Hong Kong
shun-tao.zhu@connect.polyu.hk

Conference on Future and Sustainable Energy Systems (E-ENERGY °25), June
17-20, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3679240.3734604

1 Introduction

The increasing energy consumption of large language models (LLM)
has drawn much attention [8][12]. In particular, LLM inference
produces 25X more carbon emissions than training (GPT-3) [3]. In
an LLM inference system, an LLM takes prompts as inputs and
outputs the inference results for each prompt. Specifically, the LLM
inference computing consists of a Prefill stage and a Decode stage.
In the Prefill stage, the LLM processes the input tokens of a prompt
and computes the intermediate attention matrices, i.e., the KVQ
matrices, for each token. The attention matrices are then fed into
feed-forward networks (FFNs) to generate the "first" output token.
In the Decode stage, the LLM uses the cached attention matrices to
generate output tokens auto-regressively, until a stopping criterion
is met. The Prefill stage dominates LLM computing.

There are many studies to reduce LLM inference computing.
KV Cache [17] is a widely used technique that reuse previously
computed KV in decoding stages. LazyLLM [11] observes that in
many scenarios, certain input tokens are unimportant to the LLM
inference results and develops a metric to skip the computing of the
unimportant tokens. Activation-aware Weight Quantization (AWQ)
[18] observes that high-bit weight tensors could be redundant and
develops a post-training quantization method to project high-bit
weight tensors to low-bits to reduce the model size in the LLM
inference. There are also studies focusing on carbon reduction [21],
e.g., CarbonMin relocates the workloads to the locations with low
carbon power [4]. In this paper, we study an orthogonal perspective.
We observe that, given an LLM, the attention matrices, specifically
the KVQ matrices, of tokens remain largely unchanged across dif-
ferent LLM inference. For example, for two prompts, e.g., "Dogs are
friends of humankind" and "Dogs bark", the KVQ matrices "Dogs"
are highly similar in the LLM inference computing of these two
prompts. Intrinsically, the KVQ matrices for the token "Dogs" in
these two prompts rely only on their embeddings sent into the com-
puting of KVQ matrices, which are identical.? We argue that there

Yntuitively, the KVQ matrices are the "dictionary" of words/tokens. For the same
words/tokens, their "meaning” remains largely unchanged across sentences/prompts.

https://orcid.org/0000-0002-0921-2726
https://orcid.org/0000-0002-5877-9999
https://orcid.org/0000-0002-2022-3872
https://orcid.org/0000-0003-0284-1113
https://orcid.org/0000-0001-5380-0288
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3679240.3734604
https://doi.org/10.1145/3679240.3734604
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3679240.3734604&domain=pdf&date_stamp=2025-06-16

E-ENERGY ’25, June 17-20, 2025, Rotterdam, Netherlands

is an over-computing of the attention matrices, and we propose a
system that can pre-store the attention matrices across the LLM
inference. With pre-stored attention matrices, the computing of
the attention matrices during LLM inference can be substituted by
storage access. This can reduce the energy of LLM inference since
the energy of computing (per calculation) is substantially greater
than that of storage access (per read/write) by 20X to 100X [16].

We observe three challenges in developing LLM inference sys-
tems with attention pre-storage: (1) the effectiveness depends on the
amount of tokens where the attention matrices are pre-computed
and stored. Storing the attention matrices of all tokens will allow
the attention matrices never to be recomputed. Yet, this may re-
quest massive storage; (2) storage access can be much slower than
computing. As such, it is a challenge to maintain the LLM inference
performance, and (3) LLM inference has many computing compo-
nents besides attention matrices; and the potential improvement of
the attention pre-storage should be clarified.

First, we argue that storing the attention matrices of all tokens
is acceptable. For example, the prompt trace WikiText-103 [22]
has 100 million tokens, yet the distinct tokens are 267,735. The
storage requirement is 257GB for the attention matrices of these
distinct tokens. For BookCorpus [37], there are over 1.3 million
distinct tokens, requiring storage of 1.2TB. Pre-storing all tokens
can enjoy the reuse and maximally avoid recomputing. This can
largely amortize the pre-computation energy. For example, the
average recurrence of the tokens of WikiText-103 is 380.53.

Second, storing attention matrices requires disk space. To im-
prove the computing performance, we develop two mechanisms: (1)
a Hierarchical Cache Model: to cache the high-frequency tokens in
DRAM. We select the top tokens from the Corpus of Contemporary
American English (COCA) [6]. These tokens can cover the majority
of token access regardless of whether the trace is Wikitext-103 or
BookCorpus and (2) a Computing-storage scheduler: given delay
requirements, to re-compute some low-frequency tokens stored in
the disk to reduce the completion delay of the prompts. We de-
velop a fully functional StoreLLM. It has an offline profiling phase
and a runtime inference phase. In offline, we profile computing
components of LLM inference, e.g., KVQ-Linear, FFN, etc., in terms
of their computing time, storage access time, and the respective
energy consumed on specific pieces of computer hardware. We use
the AccelWattch model [15] to profile the energy in computing and
the model in [23] to profile the energy in storage access. We use
Powenetics v2 [5], a Power Measurement Device, to calibrate the
energy profiles. In runtime, the KVQ matrices are accessed from
storage or recomputed following our scheduler.

Third, our evaluation shows that computing the attention matri-
ces and FFN accounts for 35% and 50% of the energy consumption
of the LLM computing. FFN parses the relation of a word/token
within a sentence/prompt and is prompt-dependent. Thus, FFN has
to be computed for each prompt. FFN computing has redundancy,
and many mechanisms have been developed to compress FFN. To
improve the potential energy reduction, we employ two mecha-
nisms: (1) StoreLLM-MoE, where we employ the Mixture of Experts
(MoE) [7] for FFN and MokEfication[35] to activate a part of FFN
and (2) StoreLLM-PTQ, where we apply quantization [18] to FFN.

399

Dan Wang, Boan Liu, Rui Lu, Zhaorui Zhang, and Shuntao Zhu

Our evaluation shows that StoreLLM achieves an energy saving
(Joule per token) of 1.45X as compared to state-of-the-art LLM in-
ference systems, LazyLLM [11], with a slight delay increase of 2.87%
while maintaining 96.87% accuracy performance. With FFN com-
pression mechanisms, StoreLLM-MoE and StoreLLM-PTQ show
energy savings of 2.64X, 2.83X with over 86.27% accuracy. We plan
to open source StoreLLM once it goes public.

2 Related Work

Sustainable computing has attracted many studies, e.g., energy
accounting [2, 9] and energy-aware computing [25, 31, 32] for
various computer systems and applications.

Our work falls into energy-aware computing for a key energy-
consuming application, LLM inference. We present a new observa-
tion on energy overrun by over-computing the attention matrices in
LLM inference and a new solution using storage access to substitute
computing. We comment that using cache to accelerate computing
performance is not new. Specifically in LLM inference, the KVQ
matrices are cached in the Decode phase, and CacheGen [19], Q-
Hitter [36] also cache KVQ matrices to accelerate LLM. Yet all these
studies only cache the KVQ matrices for the current prompt, and
the KVQs have to be recomputed for a new prompt. There are only
a few hundred tokens in a prompt with limited recurrence. As a
comparison, we store the KVQ matrices of all tokens. Our storage
works across prompts that can reach hundreds of millions of tokens.

We comment that there are also studies showing that the en-
ergy of storage systems is also significant, and proposed solutions
[26][13]. We are orthogonal since StoreLLM uses storage to substi-
tute computing, which has orders more energy consumption.

3 StoreLLM Design

3.1 Overview

The overall problem of StoreLLM is that given a well-trained LLM
and a computing server with GPU/CPU and storage DRAM/SSD;
and given a prompt and a delay requirement for this prompt,
StoreLLM computes or reads attention matrices of the tokens and
executes LLM inference, to minimize the energy consumption. The
energy consumption is measured by energy per token, and the delay
is measured as the time-to-first-token (TTFT) [29].

StoreLLM pre-computes and stores the attention matrices of all
tokens in disk storage (SSD). To support the delay requirements,
StoreLLM employs two mechanisms: (1) StoreLLM selects a small
number of high-frequency tokens and employs a hierarchical cache
model (§3.2) to store their attention matrices in DRAM for fast
access and (2) for the majority low-frequency tokens, StoreLLM has
a compute-storage scheduler to recompute the attention matrices
when necessary to ensure the LLM inference delay requirements.

StoreLLM consists of an offline profiling phase and a runtime
inference phase. The offline Profilers (§3.3) profile the LLM infer-
ence components, i.e., the KVQ-Linears, FFN, etc., in terms of their
computing time, storage access time, and the respective energy. In
runtime (§3.4), StoreLLM first accesses DRAM for the KVQ matrices
of a token. If there is a miss, StoreLLM applies a compute-storage
scheduler to determine whether to re-compute the KVQ matrices
or to access the KVQ matrices from disk storage.

StoreLLM: Energy Efficient Large Language Model Inference with Permanently Pre-stored Attention Matrices

3.2 The Hierarchical Cache Model

StoreLLM employs a two-level hierarchical cache. Specifically, we
allocate a portion of the DRAM to store the KVQ matrices for high-
frequency tokens. Linguistics shows that word frequency adheres
to Zipf’s Law [24]. Following COCA [6], this corpus represents
American English and is prompt-agnostic. We select the top-Kpram
words/tokens from this corpus. Let Spram represent the capacity of
the DRAM, and Ppray denote the proportion of DRAM allocated
for storing high-frequency tokens. Sk (M), Sy (M), So(M) are the
profiled sizes of the KVQ matrices of each token, we have

Kpram = Spram - PDram/(Sk (M) + Sy (M) +So (M) (1)
Again, Kpray is influenced by the allocated DRAM size and the

word database (COCA) but not by prompt traces. It is possible to
develop context-aware Kprap, and we leave it to future work.

3.3 Offline Profilers

We present the details of the physics of computing and storage (SSD
and DRAM) in Appendix A. To schedule the disk access (DRAM is
negligible) and the computing of the KVQ matrices of a token, we
profile the energy and the delay of each computing component in
the LLM inference, as well as the energy and the delay of the KVQ
disk access. We first present the energy models for LLM inference.
We then present the StoreLLM offline profilers.

The Energy Model for Computing. We present the energy
model for GPU. We follow the AccelWattch power model [15]. Let
P;(f) be the power of a GPU when executing LLM layer i,

Pi(f) = BiCf* +wif + Py @
where f is the core frequency of the GPU, and C is the gate capac-
itance decided by the GPU type. Parameters f5; and 7; depend on
the specific GPU when executing LLM layer i. Py is the constant
power caused by peripheral components such as onboard fans. Mod-
ern GPUs usually employ Dynamic Voltage and Frequency Scaling
(DVEFS) [27], which adjusts the frequency according to the workload
demands, which is our future work. According to [9], the execution
time TC; for an LLM layer i is

FLOP(i,p)

TCi= ——— 2 3
' 7 FLOPSpear - ff; ®

where FLOP(i) is the number of the Floating point operations
(FLOPs) of layer i, p is the input prompt, FLOPS,¢q is the GPU
peak throughput count by Floating point operations per seconds
(FLOPS), eff; is the hardware efficiency representing the actual
computing throughput divided by the peak throughput.

The energy consumption for computing an LLM layer i is

EC; = Pi(f) - TC; 4)

Given an LLM M with N layer and the specification of GPU, we can
profile the FLOP(-), G = {Po, FLOPSpear, {Bi}. {zi}. {effi}. f. C}.

The Energy Model for Disk Access. Given a storage reading
operation, the energy depends on the amount of reading data. To
formulate the energy consumption of reading demanding data of
an LLM layer i, we use the model in [23]:

ES; =EmB - S Q)
Here, S; is the data amount of layer i, and Ep;p is the energy of the

reading operations per MByte data, counted in Joule/MByte. The
storage model can be profiled as S = {Epp, {Si}}.

400

E-ENERGY ’25, June 17-20, 2025, Rotterdam, Netherlands

Figure 1: Energy profiling by Powenetics v2. It connects the
GPU through an 8-pin plug and it connects the SSD through
a PCle expansion card.

StoreLLM offline profiler: We profile the execution of each
LLM inference component. Given a physical computing environ-
ment, we need to profile G, S, FLOPS(-). Intrinsically, we employ
a uniform sampling method with a delay cutoff to filter infeasi-
ble configurations during profiling. This allows us to quantify the
hardware efficiency and calculate the delay and energy for LLM
layers, enhancing profiling efficiency while ensuring accuracy. The
profiling detail and results are shown in Appendix C.

3.4 Runtime Inference

The low-frequency tokens are only stored in SSD. Although the
overall number of access to these tokens is small, they will increase
the delay (TTFT).? We develop a scheduler to either disk access or
re-compute the tokens in a prompt to reduce delays.

The problem for this scheduler is that, given a delay constraint
of a prompt, for each token, schedules either (re-)compute the KVQ
matrices of this token or disk access the KVQ matrices of this token
with the objective of minimizing the energy per token. This prob-
lem exhibits a bounded Knapsack structure. Intuitively, each token
has a "value" on energy saving (disk access instead of computing)
and a "weight" of execution time. The value/energy saving of a
token differs for different prompts. Due to space limitations, we
omit further problem analysis. The details of our algorithm is in
Appendix D. Intuitively, our scheduler takes the offline profiles and
the time deduction of the pipeline parallel scheme as inputs and
employs a dynamic programming search algorithm.

3.5 StoreLLM with FFN Compression

There are a number of components in the LLM computing pipeline.
The two dominant components are KVQ matrices and FFN. There
are mechanisms to compress the redundancy of FEN. We incorpo-
rate StoreLLM with FFN compression mechanisms.

StoreLLM-MokE: In LLM inference, the majority of the neurons will
not be activated. Mixture-of-Experts (MoE) is developed. MoE is a
model architecture of Transformer that uses multiple sub-models
named expert to replace the FFNs, allowing only some of them to
be selectively active during inference. The activated neurons are
determined by the input token and controlled by an expert router.
While existing MoE can expand the knowledge of LLMs for complex
tasks, MoEfication reorganizes and divides FFN parameters into

3Prompt: "Why, thou owest God a death” (1 Henry IV, William Shakespeare). Here,
thou and owest are rare, but they will delay the TTFT of this prompt.

E-ENERGY ’25, June 17-20, 2025, Rotterdam, Netherlands

Dan Wang, Boan Liu, Rui Lu, Zhaorui Zhang, and Shuntao Zhu

Vanilla [JAWQ
X] LazyLLM = + StoreLLM —
100 -

©
S

=2}
(=}
T

80 1

60 1

404

1N}
S

0.0.010.0]
Energy (m]/token)
S
o

Accuracy (%)
Ay
T =

20 11

FH K-Linear [[I]V-Linear Q-Linear Vallina [] AWQ
ES O-Linear [XJFFN B Other [X] LazyLLM * » StoreLLM
—~ 100 ~ 100 10
g VoA g o -
V. L V2 3 -)
B0V A M 2 B0V A o 8 53 AR
o i) ﬁ L L £ of +
= 60] S| = eo{] E 64 ol
E s (S BE £ Cps s > 97
o 40TEE ;'<~ o, 40 ;% = :5 % 44~
I H & = o +|
g 20 g 20 N ALl P I o
& 5 55 o
= B, 0 [R
OPT Lla SLM WikiText BookCorpus WikiText103 BookCorpus
(a) Models (b) Traces

Figure 2: Energy comparison of StoreLLM and

0 0
WikiText103BookC . Q © P A% of
ikiTex! ookCorpus qao\\,\aﬂv\;;\“ @V\%\A PR
e &

Figure 3: Delay compar- Figure 4: Accuracy com- Figure 5: Energy compari-

Baselines under different models and traces. ison of StoreLLM and parison of StoreLLM son of StoreLLM-MoE and

(V: Vanilla; L: LazyLLM; A: AWQ; S: StoreLLM) Baselines.

small MoEs to compress FFNs for computational cost reduction.
StoreLLM-MoE employs the MoEfication scheme in [35].
StoreLLM-PTQ: The LLM parameters have high precision and are
redundant in many scenarios. Quantization reduces the LLM size
by transforming the floating-point values used in model weights,
activations, and gradients into integers or other discrete forms.
The number of bits decides the memory storage, the energy con-
sumption, and the delay of the inference. By carefully deciding
the precision of data, the accuracy of the quantized model can be
maintained. Post-Training Quantization (PTQ) is one quantization
technique to quantize the model that has already been trained in
high precision (e.g., FP32 or FP16). PTQ avoids retraining the model
from scratch. StoreLLM-PTQ employs PTQ in [18].

4 Implementation and Evaluation

4.1 Implementation

We implement StoreLLM on a server with an Nvidia RTX3090 GPU
under maximum frequency 2130MHz, 32GB DRAM, and a Samsung
980 Pro PCle 4.0 2TB SSD. We implement three typical LLMs, OPT-
6.7B [34], Llama 7B [30], and StableLM-7B [1]. Our default testing
model is OPT-6.7B. Other details are shown in Appendix B.

4.2 Evaluation

In this section, we evaluate the overall performance of StoreLLM.
Other comparisons under various input prompts, DRAM, and delay
requirements are listed in Appendix E.

4.2.1 Evaluation Methodology.

Benchmarks. We evaluate using two datasets [20, 28]: Wikitext-
103 [22], and BookCorpus [37]. The default one is Wikitext-103,
with 100 prompt length. 10% of 32GB DRAM for KVQ matrices, i.e.,
Ppram = 10%. We can store the top 3,495 tokens from COCA [6].
Wikitext-103 and BookCorpus contain 267,735 and 1,316,420 distinct
tokens, occupying 257 GB and 1.263 TB storage, respectively. The
top 3,495 tokens make up 1.30% and 0.26% of total tokens; however,
accounting for 81.26% and 90.18% of all token access.

Baselines. (i) LazzyLLM develops a metric to skip computing
unimportant tokens; (ii) AWQ develops PTQ to project high-bit
weight tensors to low-bits to reduce the model size also the delay.
(iii) Vanilla executes all layers exclusively on the GPU.

Metrics. (i) energy per token (mJ/token). (ii) delay (s): TTFT of
output. (iii) accuracy (%): PPL score regarding to Vanilla.

4.2.2 Evaluation Results.

401

and Baselines. StoreLLM-PTQ.

StoreLLM performance under LLMs and traces: Fig. 2 presents
the energy comparison among StoreLLM and baselines across dif-
ferent LLMs and traces. The energy consumption for Vanilla is
72.31 m]/token, 75.68 mJ/token, and 86.7 mJ/token for OPT-6.7B,
Llama-7B, and StableLM-7B, respectively. In comparison, LazyLLM
consumes 63.69 mJ/token, 67.51 mJ/token, and 76.19 m]/token,
and AWQ consumes 67.27 m]/token, 72.21 mJ/token, and 80.49
mJ/token. StoreLLM is only 43.82 mJ/token, 46.44 mJ/token, and
55.36 mJ/token. Therefore, the energy of Vanilla, LazyLLM, and
AWQ is 1.47%, 1.45%, and 1.40X to that of StoreLLM. We also present
the energy breakdown of the LLM components, showing that the
energy savings come from the KVQ-Linear. For example, in the
OPT-6.7B model, the KVQ-Linear computing is 27.63m]J/token, and
the storage access is 0.30mJ/token.

Fig. 3 shows the delay comparison among StoreLLM and base-
lines for various traces. We observe that StoreLLM exhibits a slight
increase in delay. For instance, in BookCorpus, StoreLLM is 8.95
ms, with an increase of 5.05% and 2.87% compared to LazyLLM and
AWQ, respectively. The variation in delay arises from the differing
proportions of cached tokens in each dataset and the increased delay
associated with accessing SSDs instead of computing by GPUs.

Fig. 4 shows the accuracy comparison among StoreLLM and

baselines. We observe that StoreLLM has a similar accuracy per-
formance, about 96.87%, compared to other baselines. It is because
StoreLLM does not change the value of the KVQ matrices of tokens
but only accesses them from the storage instead of re-computing
them, as they have been computed before.
Performance of StoreLLM-MoE and StoreLLM-PTQ: Fig. 5
shows the energy comparison of StoreLLM-MoE and StoreLLM-
PTQ with baselines for OPT-6.7B in Wikitext-103. Here, we set the
number of MoE as 4 and 8, denoted as M-4E and M-8E, and the
quantization level of PTQ is INT8 and INT4, denoted as Q-8B and Q-
4B. M-4E and M-8E are 33.52 mJ/token and 25.56 m]/token, which
is 2.01%, 2.64X improvement compared to LazyLLM and 2.15X,
2.83%X to AWQ, respectively. Q-8B and Q-4B are 37.84 mJ/token
and 27.52 m]J/token, which is 1.78%, 2.45X improvement compared
to LazyLLM and 1.91X, 2.62X to AWQ, respectively. The results
demonstrate that with decreasing FFN, the energy saving could
gain more with our design and exceed others.

5 Conclusion and Discussions

In this paper, we observed that in the LLM inference computing, the
attention matrices of the tokens remain largely unchanged across
different LLM inference. Intrinsically, the knowledge embedded in
the tokens remains unchanged. We also noted that the computing

StoreLLM: Energy Efficient Large Language Model Inference with Permanently Pre-stored Attention Matrices

operations are substantially energy consuming than the storage
access operations due to their intrinsic differences in physics. We
proposed StoreLLM, where the attention matrices are permanently
stored, and the computing of attention matrices is substituted by
the storage access of the pre-stored attention matrices. We believe
that using storage access to substitute computing has applications
beyond LLM inference. Human beings memorize and extract knowl-
edge rather than computing it from scratch; this saves our energy.

Acknowledgments

Dan Wang’s work is supported in part by RGC GRF 15200321,
15201322, 15230624, ITC ITF-ITS/056/22MX, I1TS/052/23MX, and
PolyU 1-CDKK, G-SACS.

References

[1] Stability AL 2023. StableLM: Stability AI Language Models. https://github.com/
Stability- Al/StableLM.

[2] Anvita Bhagavathula et al. 2024. Understanding the Implications of Uncertainty
in Embodied Carbon Models for Sustainable Computing. (2024).

[3] Andrew A Chien, Liuzixuan Lin, Hai Nguyen, Varsha Rao, Tristan Sharma, and
Rajini Wijayawardana. 2023. Reducing the Carbon Impact of Generative Al Infer-
ence (today and in 2035). In Proc. of workshop on sustainable computer systems.

[4] Andrew A Chien, Liuzixuan Lin, Hai Nguyen, Varsha Rao, Tristan Sharma, and
Rajini Wijayawardana. 2023. Reducing the Carbon Impact of Generative Al
Inference (today and in 2035). In Proc. of the 2nd Workshop on Sustainable Computer
Systems (HotCarbon’23). Boston, MA, USA.

[5] Cybernetucs. 2024. Cybenetics Labs - PSU Efficiency Noise Level Certifications -
Powenetics. https://www.cybenetics.com/index.php?option=powenetics. [Ac-
cessed 07-04-2024].

[6] Mark Davies. 2010. The Corpus of Contemporary American English as the first
reliable monitor corpus of English. Literary and linguistic computing 25, 4 (2010),
447-464.

[7] Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin,
Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, et al. 2022. Glam:
Efficient scaling of language models with mixture-of-experts. In Proc. of the
International Conference on Machine Learning (ICML’22). Baltimore, MD, USA.

[8] Mariam Elgamal, Doug Carmean, Elnaz Ansari, Okay Zed, Ramesh Peri, Sri-
latha Manne, Udit Gupta, Gu-Yeon Wei, David Brooks, Gage Hills, et al. 2023.
Carbon-Efficient Design Optimization for Computing Systems. In Proc. of the 2nd
Workshop on Sustainable Computer Systems (HotCarbon’23). Boston, MA, USA.

[9] Ahmad Faiz, Sotaro Kaneda, Ruhan Wang, Rita Osi, Prateek Sharma, Fan Chen,

and Lei Jiang. 2024. LLMCARBON: MODELING THE END-TO-END CARBON

FOOTPRINT OF LARGE LANGUAGE MODELS. In Proc. of International Confer-

ence on Learning Representations (ICLR’24).

William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers:

Scaling to trillion parameter models with simple and efficient sparsity. Journal

of Machine Learning Research 23, 120 (2022), 1-39.

[11] Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, Mohammad Rastegari,
and Mahyar Najibi. 2024. LazyLLM: Dynamic Token Pruning for Efficient Long
Context LLM Inference. arXiv preprint:2407.14057 (2024).

[12] Walid A Hanafy, Roozbeh Bostandoost, Noman Bashir, David Irwin, Mohammad
Hajiesmaili, and Prashant Shenoy. 2023. The war of the efficiencies: Understand-
ing the tension between carbon and energy optimization. In Proc. of the 2nd
Workshop on Sustainable Computer Systems (HotCarbon’23). Boston, MA, USA.

[13] Yuto Hayamizu, Masaru Kitsuregawa, and Kazuo Goda. 2024. Proactive Energy
Management in Database Systems. (2024).

[14] Hongyu He, Michal Friedman, and Theodoros Rekatsinas. 2023. EnergAt: Fine-
Grained Energy Attribution for Multi-Tenancy. In Proc. of the 2nd Workshop on
Sustainable Computer Systems (HotCarbon’23). Boston, MA, USA.

[15] Vijay Kandiah, Scott Peverelle, Mahmoud Khairy, Junrui Pan, Amogh Manjunath,

Timothy G Rogers, Tor M Aamodt, and Nikos Hardavellas. 2021. AccelWattch: A

power modeling framework for modern GPUs. In Proc. of the IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO’21). Virtual Event.

Sven Kohler, Benedict Herzog, Henriette Hofmeier, Manuel Végele, Lukas Wenzel,

Andreas Polze, et al. 2023. Carbon-Aware Memory Placement. In Proc. of the 2nd

Workshop on Sustainable Computer Systems (HotCarbon’23). Boston, MA, USA.

[17] Wonbeom Lee, Jungi Lee, et al. 2024. {InfiniGen}: Efficient generative inference
of large language models with dynamic {KV} cache management. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI'24). 155-172.

[18] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen
Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. 2024. AWQ:

[10

[16

402

E-ENERGY ’25, June 17-20, 2025, Rotterdam, Netherlands

Activation-aware Weight Quantization for On-Device LLM Compression and
Acceleration. Proc. of Machine Learning and Systems (MLSys’24) (2024).

[19] Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng

Zhang, Kuntai Du, Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, et al. 2024.

CacheGen: KV Cache Compression and Streaming for Fast Large Language Model

Serving. In Proc. of ACM SIGCOMM’24.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. Llm-pruner: On the struc-

tural pruning of large language models. In Proc. of the Advances in Neural Infor-

mation Processing Systems (NeurIPS’23). New Orleans, LA, USA.

Priyanka Mary Mammen, Noman Bashir, Ramachandra Rao Kolluri, Eun Kung

Lee, and Prashant Shenoy. 2023. Cuff: A configurable uncertainty-driven fore-

casting framework for green ai clusters. In Proceedings of the ACM International

Conference on Future Energy Systems (e-Energy’23).

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016.

Pointer sentinel mixture models. arXiv:1609.07843 (2016).

Vidyabhushan Mohan, Trevor Bunker, Laura Grupp, Sudhanva Gurumurthi,

Mircea R Stan, and Steven Swanson. 2013. Modeling power consumption of nand

flash memories using flashpower. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems 32, 7 (2013), 1031-1044.

Mark EJ Newman. 2005. Power laws, Pareto distributions and Zipf’s law. Con-

temporary physics 46, 5 (2005), 323-351.

Sophia Nguyen, Beihao Zhou, Yi Ding, and Sihang Liu. 2024. Towards Sustainable

Large Language Model Serving. In Proc. of the Workshop on Sustainable Computer

Systems (HotCarbon’24).

[26] Varsha Rao and Andrew A Chien. 2024. Understanding the Operational Carbon

Footprint of Storage Reliability and Management. In Proc. of the Workshop on

Sustainable Computer Systems (HotCarbon’24).

Hamid Sarbazi-Azad. 2016. Advances in GPU research and practice. Morgan

Kaufmann. 471-505 pages.

Weijia Shi, Julian Michael, Suchin Gururangan, and Luke Zettlemoyer. 2022.

kNN-Prompt: Nearest Neighbor Zero-Shot Inference. arXiv:2205.13792 (2022).

Jovan Stojkovic, Esha Choukse, Chaojie Zhang, Inigo Goiri, and Josep Torrellas.

2024. Towards Greener LLMs: Bringing Energy-Efficiency to the Forefront of

LLM Inference. arXiv:2403.20306 (2024).

[30] Hugo Touvron, Thibaut Lavril, Gautier Izacard, et al. 2023. Llama: Open and

efficient foundation language models. arXiv:2302.13971 (2023).

Grant Wilkins et al. 2024. Hybrid Heterogeneous Clusters Can Lower the Energy

Consumption of LLM Inference Workloads. In Proc. of the ACM International

Conference on Future and Sustainable Energy Systems (e-Energy’24).

Grant Wilkins et al. 2024. Offline Energy-Optimal LLM Serving: Workload-Based

Energy Models for LLM Inference on Heterogeneous Systems. In Proc. of the

Workshop on Sustainable Computer Systems (HotCarbon’24).

Thomas Wolf, Lysandre Debut, Victor Sanh, et al. 2020. Transformers: State-of-

the-Art Natural Language Processing. In Proc. of the Empirical Methods in Natural

Language Processing: System Demonstrations (EMNLP’20). Virtual Event.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, et al. 2022. Opt: Open

pre-trained transformer language models. arXiv:2205.01068 (2022).

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.

2022. MoEfication: Transformer Feed-forward Layers are Mixtures of Experts. In

Findings of the Association for Computational Linguistics(ACL’22).

Zhenyu Zhang, Shiwei Liu, Runjin Chen, et al. 2024. Q-Hitter: A Better Token

Oracle for Efficient LLM Inference via Sparse-Quantized KV Cache. Pro. of

Machine Learning and Systems (MLSys’24) (2024).

[37] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies and reading books. In Proc. of
the IEEE international conference on computer vision (ICCV’15). Santiago, Chile.

[20

[21

[22

[23

[24

[25

[27

[28

[29

[31

'@
&,

[33

[34

[35

[36

A Background on the Energy of Computing
Processors and Storage

Processors and storage have fundamental differences in terms
of physics, leading to differences in their energy consumption. Pro-
cessors consist of the Control Unit and the Arithmetic Logic Unit
(ALU), with many logic circuits. Logic circuits are composed of
logic gates with transistors. A current flows through when a logic
gate processes a bit of data. A simple calculation operation will
activate a large number of logic gates.

There are two types of storage, disk (e.g., SSD) and memory (e.g.,
DRAM). The primary storage component of an SSD is the NAND
Flash Memory Chip, and its basic storage unit is the Floating Gate
Transistor (FGT). An FGT has a control gate and a floating gate.

https://github.com/Stability-AI/StableLM
https://github.com/Stability-AI/StableLM
https://www.cybenetics.com/index.php?option=powenetics

E-ENERGY ’25, June 17-20, 2025, Rotterdam, Netherlands

Take the reading operation as an example, the floating gate stores
the bits by the electrons adhered to the floating gate. A reading
operation will power up the control gates with various voltages;
and if a voltage matches the corresponding threshold voltage, the
current will pass through, and a reading operation completes. The
basic storage unit of a DRAM consists of a transistor and a capacitor.
The data is represented by whether the capacitor is charged or
not. A reading operation will power up the transistor first, and if
the capacitor has been charged (representing '1°), a current will
pass through the transistor. Unlike the FGT, ordinary transistors
have only one threshold voltage and it is normally very low. The
refresh operation for maintaining the data integrity is also usually
negligible. Hence, the operational power of the memory is much
lower than that of the SSD. In general, the energy of a processor is
20X to 50X greater than that of an SSD, and the energy of an SSD
is 50X greater than that of a DRAM [14].

B Details of Implementation.

Offline Profilers. We implement the LLM energy profiler using

Powenetics v2, a Power Measurements Device (PMD) developed by
Cybernetics [5], see Fig. 1. It can measure and monitor the power of
running computer hardware through its 13 sensors to read voltage
and amperage up to 1000 times per second with the resolution
1mV and 5mA, respectively. The results are shown in Appendix C,
Table 5 and Table 6.
Runtime Inference. We implement StoreLLM by the Transform-
ers [33]. During inference, we can either compute the KVQ matri-
ces or access them from storage. This is achieved by intercepting
KV,Q=Linear.forward() and using K,V,Q = torch.load(address). We
maintain a hashtable to track the addresses of each cached KVQ
token. If the KVQ is in DRAM, the address points to the DRAM
location; if it’s on the SSD, it indicates the file path. We implement
MoE based on SwitchTransformer [10]. We extend the Auto-GPTQ
to enable the quantization of the FFN. We modify the BaseQuan-
tizeConfig class to provide model quantization functions.

C Details of Offline Profilers

Methodology: We employ a uniform sampling method with a
defined delay cutoff to filter out infeasible configurations. Given the
monotonic relationship between delay and frequency, we discard
invalid configurations and redistribute saved samples, ensuring
uniform exploration of valid configurations within the search space.
Given the LLM profilesM = {V, h, hpgn, N } in Table 1 with prompt
length n, where V is the Vocabulary size, h is the hidden size, hppn
is the hidden size of FFN and N, is the number of experts, we can
compute the computation complexity model FLOP(-) as follows:

2nhV, i = Embedding,

2nh? +n®h, i =K/V/Q/O-Linear,
FLOP(i,n) = { 16nh%p;, i = FFN, (6)

16nh%p/Ne, i =MoE,

2nhV, i = Head.

403

Dan Wang, Boan Liu, Rui Lu, Zhaorui Zhang, and Shuntao Zhu

Algorithm 1: Read-compute Scheduling Algorithm
Input: {EC;}, {ESi} {TCi} ATSi} tmax, P =
{to, to, . .., tn}, Algorithm Step €.
Output: Read/Compute Controller W
T = tmax - (EN 1C - 2KV ¢y,
2 Initialize a 2D array dp[n + 1][|T/e] + 1] with oo;
for j «— 1tondo
. . K|V, K/V,
s | elilon el = 25 V@ Esi/n n5 V9 BCin
. . K/V K/V,
s | tlitlol it = 2V TS xR 1 n
6 fori < 1tondo
7 for j «— 0to |T/e] do
8 for k « 1to2do
9 if j-e >t[i—1][k — 1] then

L

W « argmin,, (dp[n][j] for j =0to [T/e]);
Return W;

-

w

dpli][j] < min(dp[i][j].dp[i-1][Jj -
Leli = 111k - 1]/e]] + eli = 1] [k = 1]);

Using the generated samples and the GPU profiles G (shown in
Table 2), we can quantify the energy parameters ({f;}, {z;}) listed
in Table 3 and the hardware efficiency {eff;} in Table 4.

For the Quantization of LLM, assuming that the hardware effi-
ciency of existing LLM M is in FP32 is eff;, after the quantization of
LLM, the quantized hardware efficiency can be computed as:

eft = eff; x QF, ™)

Table 1: Profiles of LLMs M = {V, h, hppN, Ne}.

LLM \4 h hrrn Ne
OPT 50272 4096 16384 6

Llama 32000 4096 11008 152
StableLM 50432 6144 24576 87

where F € {FP16, FP8, INT16, INT8, INT4} is the target quantized
data format. Note that after quantization, the Qf is also required to
re-profile. This is because the hardware efficiency is influenced by
factors such as the implementation of CUDA or the use of acceler-
ators, which can significantly impact performance. However, the
quantization of experts plays a crucial role in reducing the model
size and the computation required for each expert. By lowering the
precision of certain model components, quantization can lead to
substantial savings in both memory and computational costs.

We then calculate the computing delay TC; and energy EC; of
an LLM layer i using the formulation in Eq. 3 and Eq. 4 as shown
in Table 5, as well as the storage reading delay TS; and energy
ES; in Table 6 allowing us to determine energy consumption. This
approach enhances profiling efficiency while ensuring accurate
and reliable delay and power consumption models, ultimately im-
proving performance and energy management for LLM inference
tasks.

StoreLLM: Energy Efficient Large Language Model Inference with Permanently Pre-stored Attention Matrices

Table 2: Profiles of typical GPU G = (FLOPS_peak, Py, f).

GPU FLOPS_peak (FLOPs) Py (W) f (MHz)
NVIDIA RTX 3090 35.58T 109 1995
NVIDIA RTX 4090 83T 61.8 2880

NVIDIA RTX 4070Ti 40.09T 33 2835

Table 3: Energy consumption parameters (C, r) for LLM

components on different GPUs.

GPU LLM EMB (fC, 7) LIN (fC, 7) FEN (BC, 7)

OPT (1.71E—8,-7.08E—2) (147E —8,~5.85E—2) (1.49E —8,—6.05E —2)
RTX 3090 Llama (1.61E -8 -543E—2) (1.66E -8, —5.97E —2) (1.67E —8,—6.01E — 2)
StableLM (9.57E—9,-2.07E—2) (9.6E—9,-2.09E—2) (9.79E = 9,~2.2E - 2)
OPT (1.81E—9,-582E—3) (1.82E—-9,-59E—-3) (1.84E—9,—6.06E — 3)

RTX4090 Llama (1.82E—-9,-6.12E—3) (1.82E—9,—6.04E —3) (1.81E — 9,—6E — 3)
StableLM (2.03E —9,~7.22E —3) (2.03E—9,-7.22E—3) (2.03E - 9,~7.22E - 3)
OPT (1.75E—9,—6.95E—3) (1.73E —9,—6.54E —3) (1.73E — 9,—6.62E — 3)
RTX 4070Ti ~ Llama (1.31E-9,-2.38E—3) (1.34E—9,-2.74E —3) (1.33E - 9,~2.73E — 3)
StableLM (1.73E —9,-5.84E —3) (1.75E = 9,-6.27E —3) (1.75E — 9, -6.26E — 3)

EMB: Embedding Layer. LIN: K/V/Q/O Linear Layers. FFN: Feed

F d L .
Table 4: Hardware eﬂic%gg; (eﬁ{)e?or LLM components on

different GPUs.

GPU LLM EMB (eff) LIN (eff) FFN (eff)
OPT 2% 1% 9%
NVIDIA RTX 3090 Llama 59% 36% 4%
StableLM 71% 41% 20%
OPT 9% 2% 29% EMB:
NVIDIA RTX 4090 Llama 37% 65% 10%
StableLM 59% 76% 65%
OPT 2% 1% 8%
NVIDIA RTX 4070Ti Llama 52% 32% 3%
StableLM 74% 40% 19%

Embedding Layers. LIN: K/V/Q/O Linear Layers. FFN: Feed
Forward Layers.

Table 5: Computing Energy Profiling Results (EC;, TC;) per
token of LLM components on different GPUs.

GPU LLM EMB (EC;, TC;) LIN (EC;, TC;) FEN (EC;, TC;)

OPT (388.61mJ,4.18ms) (438.84mJ,5.94ms) (34.15m],0.40ms)

RTX 3090 Llama (358.41mJ,3.17ms) (76.80mJ,0.79ms) (52.31m],0.54ms)
StableLM (678.32m],7.33ms) (119.23m]J,1.11ms) (46.74m],0.42ms)

OPT (887.69m],13.75ms) (39.88m],0.59ms) (12.03mJ,0.18ms)

RTX 4090 Llama (88.11mJ, 1.24ms) (26.08m],0.39ms) (17.03m],0.25ms)
StableLM (95.41m]J, 1.38ms) (38.56mJ,0.54ms) (12.63m],0.17ms)

OPT (111.23mJ, 3.45ms) _ (103.04mJ, 2.90ms) (12.30mJ], 0.33ms)

RTX 4070Ti Llama (59.34m]J, 1.57ms) (23.72m],0.60ms) (16.71m], 0.42ms)
StableLM (76.67m], 2.05ms) (29.75m],0.72ms) (14.47m], 0.34ms)

EMB: Embedding Layers. LIN: K/V/Q/O Linear Layers. FFN: Feed Forward

Layers.

D The Computing-Storage Scheduler

Our scheduler utilizes offline profiles and time deductions from
the pipeline parallel scheme, employing a dynamic programming
search algorithm, as introduced in Algorithm 1. This problem resem-
bles a bounded Knapsack structure, where each token has a "value"
representing energy savings (from storage access instead of compu-
tation) and a "weight" reflecting execution time. The value/energy
saving of a token differs for different prompts. Specifically, the input
of this algorithm is the profiling results from Section C, including
{EC;i},{ESi}, {TC;i},{TS;}. The LLM inference system also needs

404

E-ENERGY ’25, June 17-20, 2025, Rotterdam, Netherlands

Table 6: Reading Energy Profiling Results (ES, TS) per token
of KVQ-Linears on different GPUs.

Storage LLM LIN (ES, TS)
OPT (0.092mJ, 0.083ms)
DRAM Llama (0.086mJ/,0.079ms)
StableLM (0.129m],0.116ms)
OPT (2.64mJ, 0.789ms)
SSD Llama (2.61mJ,0.779ms)
StableLM (3.89m], 1.17ms)

to set up a maximum delay for the inference as t; 4y, for the prompt
p = {to,to,...,tn}. We also need to setup an algorithm step € to
control the algorithm iteration. The output of this algorithm is the
Read/compute controlling parameter matrix W = {w;} to notice
if the KVQ matrices read from storage. w; = 0 if computing from
storage, otherwise, w; = 1.

Line 1 first computes the actual maximum necessary delay T,
excluding the necessary computing time of each token, such as
the computing time of embedding, FFN, etc. Line 2 initializes a 2D
dynamic programming array dp, which will store the minimum
energy required for each combination of items and time values. All
values are initially set to infinity, indicating that no solution has
been found yet. Lines 3 to 5 initialize the array to store the possible
energy consumed from storage or re-computing. From lines 6 to
10, if the time condition is satisfied, the algorithm updates the DP
table at dp[i][j]. It compares the current energy value and the new
potential value formed by choosing the current process for item
i. This takes the minimum of The existing value dp[i][j], or the
energy from the previous item at i — 1, with the remaining time after
considering the current execution times. In line 11, after populating
the DP table, the algorithm looks for the minimum energy value
and saves the controlling parameter from the last item across all
possible time slots. Figure 13 illustrates the effectiveness of our
scheduling strategy in reducing output delay. Under two different
data sources, our algorithm achieves a 17.77% improvement in delay
reduction compared to methods without the hierarchical scheduling
strategy.

E Additional Evaluation

Impact of the prompt with distinct length. We now present an
experiment of the delay per token of StoreLLM under the different
lengths of input prompts, as shown in Fig. 6. We select prompts
with 128, 256, 512, and 1024 lengths from the dataset WikiText103.
The results show that the overall delay of prompts and the length
are positively correlated.

Impact of the available size of DRAM. We present an experiment
of the delay per token of StoreLLM under the available size of
DRAM (Spram - PDraMm), as shown in Fig. 7. We select 16 GB, 32
GB, and 128 GB that can store top-28k, top-56k, and top-224k of
frequently used tokens in COCA. We also set StoreLLM with no
hierarchical cache model as 0 GB. The results show that the delay
of 0 GB DRAM size is 1.84% greater than that of StoreLLM. When
improving to 16 GB, the delay reduces to 10.12ms. This is because
the reading speed of DRAM is 10 times faster than that of SSD, and
with our hierarchical cache model, the most frequently used tokens
are accessed from DRAM, and this reduces the delay significantly.
Impact of the maximum delay. We then present an experiment
of the energy consumption under distinct maximum delay t,4x of

E-ENERGY ’25, June 17-20, 2025, Rotterdam, Netherlands

12.0 — 20.0
10.0 — 16.0 -
2 8.0 g
< E120 -
ke 6.0 — %, = .
8 4.0 o 8.0
A 40
2.0 A .
=HENEN ool HH H L
1282565121024 ’ 0G 16G 32G128G

Prompt Length Size of DRAM

Figure 6: The impact of Figure 7: The impact of the

prompts with distinct computing and disk access
length. coordination.
80
100 S—
= _ HH
SootHm - _ HEK -0
g _ 7 ==
Y - = | - ;é
19} M H
Eao 2 0 =HH K
> El H H
5 8 H H §
S g H H
g 20 “ xs+-HEHEK
3] H H
o UL 0 e
AD AL AB AG AR oS ESes e L
e &°

Maximum Delay

Figure 8: Impact of the maxi-Figure 9: Accuracy perfor-
mum delay. mance of FFN compression.

inference. We set the t,4x from 10s to 20s, and the input prompt is
from the Wikitext dataset with a 1024 average length. The results
are shown in Fig. 8. We observe that when the t;,4x is lower than
10, the energy that is consumed is 1.29 times greater than when
tmax = 20. It is because, in this scenario, all the tokens are required
to be computed since reading from the storage is time costly. When
tmax is over 20, the energy per token achieves the minimal values
at about 51mJ/token. It is because the maximum delay is larger than
reading all tokens from storage, which can save 28.76% of energy
overall.

Accuracy performance of FFN compression. We present an
experiment comparing the accuracy of StoreLLM-PTQ with baseline
models as shown in Fig. 9. The quantization levels for PTQ are INT8
and INT4, referred to as Q-8B and Q-4B. Q-8B and Q-4B achieve
81.23% and 86.27% accuracy. Accuracy decreases as the quantization
level shifts from Q-8B to Q-4B, while energy consumption reduces
by 27.2%. The results indicate that FFN compression has a limited
impact on accuracy, making it applicable in practice. Note that here,
do not evaluate the accuracy performance of StoreLLM-MoE since
it requires the retraining of the applied LLMs. We leave it as our
future works.

Number of Experts. We evaluate the impact of the number of
experts on energy savings. Fig. 5 shows that increasing the number
of experts leads to greater energy savings. When the number of
expert is 8, energy per token is 31.14% lower than 4. This can be
attributed to the higher sparsity of the MoE model, as a larger

405

Dan Wang, Boan Liu, Rui Lu, Zhaorui Zhang, and Shuntao Zhu

number of non-activated experts reduces the overall computational
overhead.

Prompts Complexity. We also studied how the complexity of
prompts affects the energy. We created five different prompts based
on the usage frequency of the words comprising the prompts. In
each prompt, the word usage frequency fell into the following
ranges: 0%-20%, 20%-40%, 40%-60%, 60%-80%, and 80%-100%. Re-
sults in Figure 10 showed that the energy consumption for each
group of prompts was consistent. The results indicate that prompt
complexity has no significant impact on energy consumption. This
result is also intuitive, as more complex prompts do not necessarily
contain more complex words. By caching the tokens within these
prompts, we can achieve the same energy savings regardless of
their complexity.

60

40

20

Energy (m]J/token)

0

T T T T

N
Difficulty of Prompts

Figure 10: Impact of the dif-
ferent difficulty.

Quantization Level. Figure 14 shows the energy impact on dif-
ferent quantization levels. Compared with naive StoreLLM, model
quantized to 4 bit can save more than 68.75% energy. We observe
that quantization to no more than 8 bits has minimal impact on
performance while offering significant energy savings.

Model Hidden Size. Different models have different hidden sizes,
which result in varying KVQ sizes, as shown in Table 7. For example,
the Llama 2 7B and 13B models have hidden sizes of 4096 and 5120,
respectively, leading to a 25% difference in their KVQ sizes. Results
on Wikitext-103 show that excluding only the tokens with frequen-
cies in the last 20% from the cache system led to less than a 5%
difference in energy consumption between the models. Therefore,
regardless of the KVQ size, StoreLLM demonstrates consistently
good performance.

Model Name | Hidden Size | KVQ Size per Token
Llama2 7B 4096 786KB
Llama2 13B 5120 983KB
OPT 6.7B 4096 786KB
OPT 13B 5120 1228KB
StableLM 7B 6144 1179KB
StableLM 12B 6144 1327KB

Table 7: Hidden Size of Different Models.

Cached Ratio.The proportions also affect the energy saving.
Essentially, caching more tokens increases the potential for energy

StoreLLM: Energy Efficient Large Language Model Inference with Permanently Pre-stored Attention Matrices

savings but also results in higher latency. Figure 11 and Figure 12
show the impact of different cache ratios on both energy and de-
lay. As the cache ratio gradually decreases, energy consumption
increases significantly while delay decreases slowly. This is because
StoreLLM reduces energy consumption substantially at the cost of
only a small increase in delay.

80 10
- ~ I
S 60 — _ 8
8 - %)
S oA E
g0 > 5
K]
2 2
3 20
o 2
s3]
oA I E oA EI I E

O 20 30 90 O
Cache Ratio

AP e 0 90 O
Cache Ratio

Figure 11: Impact of different Figure 12: Impact of different
cache ratios on energy. cache ratios on delay.

E-ENERGY ’25, June 17-20, 2025, Rotterdam, Netherlands

involve designing a resource allocation strategy based on workload
characteristics, allowing the system to dynamically allocate mem-
ory based on task priority and demand. Additionally, we will explore
memory access pattern analysis to optimize memory access paths,
reducing latency and energy consumption. With these improve-
ments, we expect to improve system stability and responsiveness
in complex operational environments significantly.

StoreLLM for Latency-sensitive Tasks. In StoreLLM, we con-
trol the balance between latency and energy consumption by the
Compute-storage Scheduler. It allows StoreLLM to sacrifice more
energy to fulfill the latency constraints. When meeting latency-
sensitive tasks, it could be unsolvable under a specific hardware.
There are several trade-offs to study in depth in the future, e.g.,
adopting faster storage hardware to reduce latency. We plan to
test our StoreLLM system on the latest high-performance disks to
accelerate disk access. Specifically, we aim to leverage advanced
storage technologies, such as NVMe 2.1 and PCle 5.0, which offer
significantly higher speed and lower latency, as shown in Tab. 8.
For example, if using Corsair MP700 SSD, the latency is expected to
be reduced 42.86%, while the energy consumption will reduce over
30%. Additionally, we will analyze the interaction between disk
performance and workload characteristics to optimize StoreLLM
for different scenarios, further enhancing its scalability and respon-
siveness.

Vallina .. StoreLLM
X3 NoHierarchy SLLM [X] Q-4B [] Q-8B
12 ~ 70.0
5
~ 10 [[X 56.0
2 s S _
g)) 24208 F .
Elh I N\ =]
= 1 1 28.0
SN N s :
2] N T 14.0 %
4 4 g .
0 . . M .0k . :
WikiText103 BookCorpus Lla OPT SLM

Figure 13: Ablation study of Figure 14: Impact of the dif-
the scheduling algorithm. ferent quantization level.

F Discussion and Future Works

Tokens Distribution Shift. Token distributions shift in two sit-
uations: when language habits evolve over time and in specific
language domains or scenarios. The first is a slow process, taking
years, and can be ignored during runtime inference. The second
is more common, like in multi-language conversations or profes-
sional discussions. For example, the most frequently used tokens
in French-English bilingual conversations or professional medical
discussions have distinct token distributions compared to those
we ranked in the general English corpus. As a result, for optimal
system performance the cached KVQ matrices of frequently used
tokens are required to dynamically adapt the contents inputted
during inferences, which is the subject of our future work.

Dynamic DRAM Allocation. We plan to incorporate dynamic
DRAM allocation into our system to improve memory efficiency
and system performance. Specifically, we aim to develop an algo-
rithm that monitors the memory requirements of tasks in real-time
and adjusts the DRAM allocation accordingly, thereby minimizing
memory contention and optimizing resource utilization. This will

406

Disk Read (MB/s) Capacity (TB) PCle Gen
Samsung 980 Pro 7,000 0.25/0.5/1/2 4.0
WD Black SN850X 7,300 1/2/4/8 4.0
Seagate FireCuda 530 7,300 0.5/1/2/4 4.0
Crucial T700 12,400 1/2/4 5.0
Corsair MP700 10,000 1/2 5.0

Table 8: SSD to be tested.

	Abstract
	1 Introduction
	2 Related Work
	3 StoreLLM Design
	3.1 Overview
	3.2 The Hierarchical Cache Model
	3.3 Offline Profilers
	3.4 Runtime Inference
	3.5 StoreLLM with FFN Compression

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Evaluation

	5 Conclusion and Discussions
	Acknowledgments
	References
	A Background on the Energy of Computing Processors and Storage
	B Details of Implementation.
	C Details of Offline Profilers
	D The Computing-Storage Scheduler
	E Additional Evaluation
	F Discussion and Future Works

