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Abstract

Hand-drawn 2D animation workflow is typically initiated with
the creation of sketch keyframes. Subsequent manual inbetweens
are crafted for smoothness, which is a labor-intensive process and
the prospect of automatic animation sketch interpolation has be-
come highly appealing. Yet, common frame interpolation meth-
ods are generally hindered by two key issues: 1) limited texture
and colour details in sketches, and 2) exaggerated alterations be-
tween two sketch keyframes. To overcome these issues, we propose
a novel deep learning method - Sketch-Aware Interpolation Net-
work (SAIN). This approach incorporates multi-level guidance that
formulates region-level correspondence, stroke-level correspon-
dence and pixel-level dynamics. A multi-stream U-Transformer is
then devised to characterize sketch inbetweening patterns using
these multi-level guides through the integration of self / cross-
attention mechanisms. Additionally, to facilitate future research
on animation sketch inbetweening, we constructed a large-scale
dataset - STD-12K, comprising 30 sketch animation series in di-
verse artistic styles. Comprehensive experiments on this dataset
convincingly show that our proposed SAIN surpasses the state-of-
the-art interpolation methods. Our code and dataset are avaliable
in https://github.com/none-master/SAIN.
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1 Introduction

Hand-drawn 2D animation is extensively used in the animation
industry for unique artistic expression, emotional depth and ver-
satility. Notably, Your Name (2016) and Big Fish & Begonia (2016)
achieved enormous success in recent years. The hand-drawn 2D
animation workflow typically involves three key stages: sketch-
ing keyframes, inbetweening keyframes to produce intermediate
sketch frames (i.e., inbetweens), and colorization to produce the
final, full-color animations. The meticulous creation of inbetweens
is crucial for achieving a smooth animation with lifelike motion
transitions, effectively conveying the intended story or message.
For a feature-length animation created through this process, the
sheer volume of required inbetweens can be staggering [33], mak-
ing it a highly specialized and labor-intensive task and serving as a
limiting factor in overall animation productivity.

To streamline the process of 2D sketch animation production, var-
ious studies have focused on the automatic synthesis of inbetween-
ing sketch frames, which take two consecutive sketch keyframes as
input and produce interpolated intermediate sketch frames (i.e.,
inbetweens) as output. These methods can be categorised into
stroke-based and image-based. The stroke-based methods often
rely on a labor-intensive pre-processing step for sketch vectorisa-
tion [27, 35, 38], whilst subpar vectorisation quality can negatively
impact the final outcomes. Image-based methods treat sketch frames
as bitmap images, applying conventional image or video interpo-
lation algorithms. However, they commonly face two significant
challenges: 1) the absence of texture and color details in gray scale
sketch frames is challenging for optical flow estimation, hindering
reliable image-based inbetweening correspondence, and 2) exag-
gerated changes due to substantial object movements between two
consecutive sketch keyframes [18]. As a result, when image-based
methods, especially devised for videos [40] and colour animations
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Figure 1: Sketch inbetweening: the limitations of relevant
methods compared to our SAIN: LDFI [ 18] for sketches, EISAI
[2] for color animations, and DQBC [40] for videos.

[2, 29], are applied to sketch interpolation, they invariably intro-
duce various artifacts into the produced interpolated frames. These
discrepancies can adversely affect the continuity and quality of the
animation produced. As shown in Figure 1, LDFI [18] proposed
for sketch interpolation generates broken strokes due to the miss-
ing sketch keypoint correspondence, while EISAI [2] proposed for
interpolating color animation frames and DQBC [40] for video
interpolation introduce blurriness (ornaments) and artifacts (e.g.,
distortion in face regions).

Therefore, in this study, we propose a novel deep learning method
for sketch interpolation, the Sketch-Aware Interpolation Network
(SAIN), to comprehend and model the intricate and sparse patterns
found in hand-drawn animation sketches. SAIN adopts a sketch-
aware approach that integrates multi-level sketch-related guidance
through three distinct aspects: 1) pixel-level dynamics at a fine level
with a bi-directional optical flow estimation module, 2) stroke-level
correspondence with a stroke matching and tracking mechanism for
obtaining stroke keypoint traces and 3) region-level correspondence
at a coarse level with a region matching and bi-directional optical
flow aggregation module. The usage of term "stroke" here align with
the stroke-based methods, referring to every single lines or outlines
in a sketch keyframe. Guided by these multi-level perspectives,
a multi-stream U-Transformer architecture is further devised to
produce the intermediate sketch frames. It consists of two attention-
based building blocks: convolution and self-attention block (CSB)
and the convolution and cross-attention block (CCB) to leverage the
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diverse multi-level insights for producing precise inbetween sketch
patterns. To facilitate the research on hand-drawn animation sketch
inbetweening, we constructed a large-scale sketch triplet dataset:
STD-12K, from 30 sketch animation series over 25 hours with vari-
ous artistic styles. Comprehensive experiments demonstrate that
our SAIN achieves the state-of-the-art performance.

Overall, the key contributions of this study are as follows:

o A novel deep learning architecture, SAIN, for sketch inter-
polation by effectively formulating sparse sketch patterns
with sketch-aware multi-level guidance.

o Anovelself/ cross-attention based multi-stream U-Transformer
design with the multi-level guidance.

o Alarge-scale sketch triplet dataset with various artistic styles
constructed for the research community.

2 Related Work
2.1 Sketch Interpolation

Sketch interpolation is to produce raw animated sketch frames to
streamline the 3-stage process of 2D sketch animation. Generally,
existing studies can be categorised into stroke-based [11, 35, 37]
and image-based approaches [18, 32]. 1) Stroke-based methods for
hand-drawn frames generally start with stroke vectorisation, and
then perform stroke deformation [35] or construct specific struc-
ture units with vertices [37]. Recently, transformer-based methods
Sketchformer [21] and Animelnbet [27] were introduced. The pre-
liminary processing heavily relies on extra techniques, and human
animators often need to fine-tune the results of vectorization to en-
sure a smooth and accurate portrayal of intended movements,which
makes stroke-based methods challenging to apply into the anima-
tion workflow. While interactive matching algorithms have been
investigated for this process in [37], scalability issues become promi-
nent when the number of strokes increases with subpar quality
of hand-drawns. 2) Image-based methods were initially studied in
[32], where an as-rigid-as image registration and an interpolation
scheme were introduced to bypass the vectorization phase inherent
in stroke-based methods, demonstrating its potential in dealing
with intricate stroke patterns. Recently, optical flow of sketches has
been adopted to characterize the motions of characters and objects
within an animation. In LDFI [18], a distance transform mechanism
was used to engage the intensity gradients of the sketches. How-
ever, the mechanism can compromise sketch details, particularly in
complex scenarios that strokes undergo significant changes.

2.2 Animation Interpolation

Different from natural videos in the real-world, cartoon animations
mainly consist of expressive strokes and colour pieces. They often
contain various non-linear and exaggerated motions. SGCVI [13] al-
lowed users to generate inbetween frames guided by one user-input
sketch. Animelnterp [29] introduced a segment-guided matching
module to estimate the optical flow for different colour pieces sep-
arately and a recurrent prediction module to address non-linear
motions. EISAI [2] was recently proposed with a forward-warping
interpolation architecture SoftsplatLite and a distance transform
module to improve the perceptual quality. AnimeRun [28] provided
a comprehensive benchmark for evaluating optical flow and seg-
ment matching methods in animation.
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Figure 2: [llustration of the proposed Sketch-Aware Interpolation Network (SAIN).

2.3

Early video interpolation studies were based on the optical flows to
represent and formulate motion patterns, exemplified by methods
using a bidirectional optical flow method, such as [5]. With the
success of deep learning techniques [6, 17], kernel-based methods
integrated convolution neural networks (CNNs) [12, 20] for efficient
motion estimation and generation. Recently, due to the great success
of visual transformers [4, 14, 31], transformer-based methods with
self-attentions have been studied for video interpolation, adaptively
addressing long-range pixel dependencies. Self-attentions were
utilized to formulate the representation of each input frame in
[24]. Cross-attentions between the input frame pairs were further
studied in [9]. Optical flows were introduced to the transformer
modelling to assist the formulation of motion dynamics [16]. DQBC
[40] followed the flow-based paradigm and integrated correlation
modeling to enhance the flow estimation.

Video Interpolation

3 Methodology

As shown in Figure 2, SAIN takes two consecutive sketch keyframes
as input and outputs an interpolated intermediate frame. It involves
region, stroke, and pixel-level guidance to capture and recognize
the sparse characteristics of sketch animations. Correspondingly, a
multi-stream U-Transformer is devised with self and cross-attention
based building blocks to produce intermediate sketches in a multi-
scale manner. In this section, we first explain the problem formu-
lation, then the details of SAIN’s key components. To clarify and
avoid ambiguity, it should be noted that the term stroke refers to
each individual pen or brush movement that contributes to the
creation of the complete sketch keyframes during drawing.

3.1 Problem Formulation

Denote two consecutive animation sketch keyframes as Ip,I; €
RIXWXC \where H, W, and C denote their height, width and the
number of channels, respectively. Animation sketch interpolation
takes the two sketch keyframes to estimate an interpolated sketch
frame I; € RHXWXC for the ground truth I; € REXWXC (0 < t <
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1), where f = 0.5 for an intermediate frame between the keyframes
by following the existing practices in the literature [16, 18].

3.2 Pixel-Level Motion Dynamics

To capture pixel-level motion dynamics, optical flows are estimated
between the keyframes Iy and I;. This allows us to output refined
sketch keyframes, denoted as Iy and I, that incorporate these mo-
tion dynamics. Pixel-level dynamics are good at characterizing the
patterns of all pixels, and they can also maintain the patterns that
might be missed in the subsequent sketch- and region-level pat-
terns. Given a target timestamp #, an optical flow estimator [16]
predicts the bi-directional flows: O7_, and O7_,. Next, the refined
keyframes with pixel-level motion dynamics can be obtained as:

Ip = Wy, 07_,0), 11 = W(I1, 0z_,1), (1)

where W is an image warping function [7] to fuse the two inputs
with a pre-defined sampling strategy.

3.3 Stroke-Level Correspondence

To characterise sketch-based motion patterns for interpolation,
stroke-level correspondence is formulated between sketch keyframes.
A stroke keypoint matching and tracking mechanism is devised for
this purpose, which assists in a cross-frame stroke understanding.
Point-wise matching aims to produce a set of matched salient
points between the input strokes in Iy and I1, encompassing a salient
point identification step for individual keyframes and a salient point
matching step between the paired keyframes. First, given a sketch
frame, the stroke salient points can be identified with their feature
descriptors that characterise their local point-wise patterns, which
can be formulated by algorithms such as SuperPoint [3]. We denote
the identified salient points as p; = (xj,y;,¢;) and their visual
RP? for the ith detected stroke point. In detail, x;
and y; are the coordinates of the ith salient point, and ¢; indicates
the detection confidence. To this end, given the two keyframes, the

descriptor as d; €

stroke salient point detection finds NSIO and NSIl points with their

local features as: pf" and df", i=1, ...,NSI‘] for Iy, and pﬁ.l and dﬁ?,

j=1., NSI1 for Iy, respectively.



MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

Salient point matching further establishes the point correspon-
dence between paired keyframes in line with their feature descrip-
tors and obtains a set of point pairs with confidence scores. Mathe-
matically, we have their confidence as:

cij = ‘Ll(pfo,p?,dll.o,d;‘),\ﬁ, s 2)

where U is a function to evaluate the confidence with the point
coordinates and descriptors. A SuperGlue [23] method is adopted
for this purpose. As shown in Figure 2, colorful line connections
indicate the matched point pairs with high confidence scores over
a threshold 0, where their colours indicate the magnitude of the
confidence scores: red for a higher score and blue for a lower score.
Point-wise tracking. For a brief interval between Iy and Iy, the
movements are assumed to follow a linear path with respect to a
temporal indicator ¢, t € [0, 1]. Mathematically, consider a matched
pair of salient points, such as the i keypoint in Iy and the j
keypoint in Iy; we have:

I I I
pi;tipl.0+(l—t)><pj1, 3)

where pg is an estimation of the intermediate trace of the stroke
salient point at time ¢.

To this end, the trace of these salient points at time ¢ can be
conceptualized as a 2D frame, characterized by their coordinates.
It is treated as the stroke-level correspondence, denoted by P; €

RHXWXC '+ ¢ [0, 1], with the same dimension as I and I.

3.4 Region-Level Correspondence

Sketch frames generally contain clear outline strokes and enclosed
areas. To leverage this regional nature for interpolation, region-
correspondence is constructed between two sketch keyframes. Specif-
ically, regions can be identified as segmentation maps using meth-
ods such as the trapped-ball algorithm. For Iy and I, N}O and N;l
regions are identified, respectively. Pre-trained CNN features for
these maps can be formulated, allowing the pixel-based features
within a region to be pooled as a D,-dimensional vector, thereby
characterizing each region. Given the coordinates and features
of these regions, a match can be established between the regions
across keyframes akin to stroke correspondence.

For a region pair (i, j), where i indicates the ith region in Iy and
j indicates the j region in I, bi-directional optical flows can be es-
timated based on their features as f7_,; (i, j) and f;_,o(j, i). By sum-
ming up all regional optical flows, we have Fz_,; = 3. (; j) fr—1 (i, J)
and F;_, = 2(ji) fr=0(J, i). To this end, the keyframes are refined
with region-level correspondence information as follows:

fo = W(Io, Fi—y1), T = W(I1, i), 4

where the ‘W is an image warping function.

3.5 Multi-Stream U-Transformers

A multi-stream U-Transformer is devised to characterise the inbe-
tweening patterns by jointly considering region, stroke and pixel-
level dynamics. These streams are based on two building blocks:
convolution and self-attention block (CSB) and convolution and
cross-attention block (CCB).
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CSB U-Transformer stream. This stream fully adopts the multi-
level dynamics for the motion patterns between Iy and Iy. Specif-
ically, a concatenation is conducted on patterns regarding pixel-
level (I, I1), stroke-level (P;) and region-level (Ip,I;), followed by a
number of convolution layers to obtain a coarse-level intermediate
sketch representation Xcoarse. To further formulate the inbetween-
ing patterns from a fine-level perspective, CSB with self-attentions
[34] is introduced to construct a U-Net [22] like a stream with an
encoder-decoder architecture.

The encoder consists of a series of CSBs. Specifically, a CSB
consists of a convolution layer for modelling local sketch patterns
and a multi-head self-attention for a global modelling purpose.
In pursuit of an overall encoder pyramid structure of S scales, a
downsampling operator is introduced with CSB to formulate a
feature map at its corresponding scale. For the st CSB, which is for
the sth scale, s =0, ...,S — 1, its output feature map is obtained as:

XEB = CSBy(XS$5B), (5)
CSB ><‘/V-CSB ><CCSB

where XSCEP € RESTWer Gl Particularly, the first CSB takes
XOCSB = Xcoarse as its input.

In detail, X$B is first with a convolution layer for local mod-
elling. Note that for notation simplicity we keep using X$°B as
the convolution-filtered results for the following discussion. Next,
XE5B s divided into KB = HESBWESB /M2 sub-patches of size
M x M; following the general practice of a visual transformer [15].
By treating the pixel-wise values within the k™ patch as a repre-

giB c RngcSCSB’ XgSB

T T .
form, where XESB = [xf?B XCchss ]. Then, the matrices of
5 S,

Key, Query, and Value in a self-attention can be computed to obtain
a frame-level sketch understanding:

sentation vector x can be viewed in a matrix

CSB _ y+CSByx7/CSB 1~CSB _ +,CSByx7CSB +/CSB _ ,CSByx;CSB
$P = XFPWEP RSP = XPPWESP, v = XESPWUSE, ()

where W indicates a matrix with learnable parameters for a linear
projection. Next, the attention can be computed as:

QCSB KCSB T
XEB = softmax(=——_—)VESB, )

s+1
/ dCSB
S

where is the dimension of queries, keys and values. We denote
Xfine = XgSB as a fine-level feature map. Note that this encoder
structure, along with its CSB blocks, can work seamlessly with
multi-head self-attentions, which enables the extension of frame-
level sketch patterns from multiple perspectives. Furthermore, the
structure is compatible with the Swin-based window strategies
used during patch construction, keeping efficiency in considera-
tion. Finally, the decoder with a number of deconvolution layers
upsamples Xge as a synthetic CSB frame feature map igSB.
CCB U-Transformer stream. In the CSB stream, multi-level pat-
terns contribute equally to the formulation of the feature map.
Leveraging the stroke and region-based characteristics of sketch
animes, CCB U-Transformer streams with an encoder-decoder struc-
ture are devised to provide diversified modelling perspectives for
sketch interpolation.

For its encoder, similar to the CSB stream, a series of CCBs are
adopted for different pyramid scales s = 0, ..., S — 1. For the s CCB,

dg:SB
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a feature map is formulated as:

XCCB = CCB; (XSCCB, YECB),

s+1

CCB y, 147CCB 5 ~CCB
where XSCB,YECB € RHEs XWX Gy

®

. Specifically, stroke-level
patterns P; are concatenated and downsampled with learnable
convolutions as YSCB for key and value computations in the cross-
attention. In terms of query, pixel-level dynamics and region-level
correspondence are utilized. Since they are bi-directional, dual
CCB U-Transformer streams are introduced for concatenated query
features io and I, or I and I;. In particular, the first CCB takes
FOCCB = Cono(ip, Iy) or Conov(iy,Iy) as its inputs, where Cono is a
function for concatenation and downsampling, (i, Ip)and (iy,1;)
can be viewed as the forward and backward streams.

Finally, decoders produce synthetic intermediate feature maps:
i?gB or i?ch are obtained from the two streams regarding the inputs
XOCCB = io and XOCCB =1, respectively.

Multi-stream fusion. Upon obtaining the intermediate feature
maps i?SB, igOCB and i?fB from the CSB and CCB streams, a fusion

mechanism then yields the final estimation I; of the interpolated
frame I, by which all feature maps are concatenated and go through
a series of convolutions.

3.6 Training Loss

We denote the computations of the proposed method as a function f
with learnable weights ©. To obtain ©, #; reconstruction based loss
is adopted to optimise pixel-wise difference between the ground
truth sketch frame I; and the interpolated frame i:

L1 = |[i; - X115 = f(To, 11 [©). )
To further improve the synthesized details, we apply a perceptual

LPIPS loss [39], denoted as Lip;ps. Jointly, the proposed model is
optimized as:

(10)

argming L = A1 L + AlpiPSLIpiPS'

4 Experiments & Discussions
4.1 Dataset

Due to the lack of publicly available datasets for animation sketch
interpolation, by following the protocols of existing video inter-
polation datasets such as Vimoe-90K [36] and UCF101 [30], we
constructed an animation sketch dataset based on ATD-12K [29],
namely Sketch Triplet Dataset-12K (STD-12K), for evaluation and fa-
cilitating the research on this topic. Different with existing datasets
such as MixamoLine240 [27] and AnimeRun[28], which are con-
verted from 3D animations, STD-12K is a large-scale sketch triplet
dataset extracted from 30 2D animation movies with extensive artis-
tic styles. To convert an animation frame to a sketch frame, Sketch
Keras was first used to detect and extract the contours in a frame
and rough strokes can be obtained. Next, a sketch simplification
procedure [25, 26] was introduced to remove blurry and trivial
strokes, which also refined the basic and necessary sketch lines.
Figure 3 depicts the key steps to construct this dataset.

4.2 Implementation Details

Network architecture. For P; in stroke matching and tracking,
we specified a stroke correspondence sequence with t = 0.5. An
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Figure 3: Illustration of the key steps in the pipeline con-
structing STD-12K from an animation in color.

appropriate setting to use these temporal information would have
impact on the interpolation accuracy as indicated in the experi-
ments. For the optical flow computations, we first predicted the
coarse flows using convolutional flow prediction network and then
refined the coarse flows in a coarse-to-fine manner following an
existing practice as in VFIformer [16]. For the CSB component, a
swin-based strategy was adopted with a window size of 8 X 8. The
number of channels in its convolution layer was set to 24. The
CCB component was with the same setting as CSB. Each U-Net like
transformer stream contained 3 CSBs or CCBs.

Training details. The proposed method was trained using an
AdamMax optimizer [10] with f; = 0.9 and 2 = 0.999. The weights
of loss terms were set to 41 = 70 and Apips = 30. The training
batch size was set to 4. The SAIN was trained for 50 epochs with a
learning rate that initially was set as 2¢~* and a weight decaying
factor was set to 1e~%. The sketch frames were resized and cropped
into a resolution of 384 X 192, and they were also augmented with
a random flipping operator. It took approximately 72 hours on an
NVIDIA A6000 GPU for the training procedure.

4.3 Overall Performance

Evaluation metrics. For quantitative evaluation, we adopt com-
monly used visual quality assessment metrics: Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index Measure (SSIM) scores,
Interpolation Error (IE) [1] which measures pixel-wise difference
between the interpolated and ground-truth sketches, and Chamfer
Distance (CD) which measures the dissimilarity between two sets
of points. For readability, IE is scaled by 1e2 and CD by 1e4.
Methods for comparisons. SAIN is compared with the recent
state-of-the-art methods, encompassing stroke-based sketch frame
interpolation method Animelnbet [27], Sketchformer [21] and image-
based LDFI [18], animation-based methods SGCVI [13] and EISAI
[2], and video-based methods: Super SloMo [8], AdaCof [12], Soft-
Splat [19], RIFE [7], VFIT [24], VFIformer [16] and DQBC [40]. All
the SOTA models were retrained on STD-12K, with the exception of
Animelnbet, for which we utilized the authors’ pre-trained model.
The decision to use the pre-trained AnimeInbet model stemmed
from the challenges we encountered in applying the authors’ rec-
ommended method for vectorizing on sparse images. It spans over
a month for preprocessing our training dataset and creates unsatis-
factory quality sketches that are not suitable for further training.
Quantitative evaluation. As shown in Table 1, our SAIN con-
sistently outperforms the other methods with PSNR 20.32, SSIM
0.8727, IE 10.09 and CD 1.54. SAIN successfully addresses the spar-
sity nature of sketch animations, as evidenced by the lowest CD



MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

Jiaming Shen, Kun Hu, Wei Bao, Chang Wen Chen, and Zhiyong Wang

W w“‘
({(..

a

VAYS

oy,

£

GT

LDFI

Overlaid Input

VFIformer Ours

Figure 4: Qualitative comparison between the proposed SAIN (Ours) and the state-of-the-art interpolation methods.

score which indicates a high degree of similarity between the inter-
polated sketch and the ground truth, given the sketch as a set of
points. Video-based methods generally underperform when com-
pared to the animation-based approach - EISAIL The only exception
is VFIformer, which slightly surpasses EISAI in terms of the IE
metric. This underscores the challenges that video-based methods
face when dealing with the sparse patterns intrinsic to animations.
When comparing our proposed SAIN to EISAL it becomes evident
that proper sketch-based mechanisms are essential, especially given
that sketch-based animations often lack color and detailed texture
structures. However, while AdaCoF performs well in terms of CD,
its PSNR is poor, suggesting that it prioritizes rough sparse struc-
tures and ignores detailed patterns. Other video-based methods
perform even worse in terms of CD metrics. EISAI an animation-
based method, achieves comparable PSNR and SSIM scores, but still
struggles with sparsity, particularly without texture and color infor-
mation. Finally, when compared to the sketch-based LDFI method,
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its intensity gradient mechanism results in inaccurate results, es-
pecially for complex scenarios with dramatic changes of strokes.
We further selected three latest state-of-the-art methods in each
interpolation areas, which are fine-tuned and evaluated on another
dataset AnimeRun [28]. As shown in Table 1, our SAIN outperforms
other methods with PSNR 20.58, SSIM 0.7191, IE 10.23, CD 3.39. This
additional evaluation provides a comprehensive understanding of
our model’s capability across different data distributions.

Qualitative evaluation. Figure 4 illustrates interpolation examples
from simple to complex scenarios for the qualitative comparisons
among different methods. The frames with a black border are full
sketch frames, and we zoom in a specified region within a red win-
dow to observe the detailed patterns. Overall, it can be observed
that SAIN is capable to generate high-quality inbetweens, and the
results produced by other methods generally have different type
of artifacts such as blurriness and distortions. The first example is
with the simplest strokes. The results produced by LDFI and DQBC
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| Tracking strategy | PSNRT [ SSIMT [ IE| [CD/ |

| Method (Year) [PSNRT[SSIMT [ IE| | CD| |

y STD-12K \
Animelnbet (2023) 12.30 0.5796 | 25.00 | 62.20
Sketchformer (2020) | 17.23 0.7847 | 14.14 | 10.34
LDFI (2019) 18.18 0.8048 | 12.71 4.05
SGCVI (2021) 17.56 0.7850 | 13.56 3.68
EISAI (2022) 19.07 | 0.8422 | 11.62 | 1.76
Super SloMo (2018) 18.05 | 0.7995 | 12.86 | 3.82
AdaCoF (2020) 18.08 0.8027 | 12.82 4.39
SoftSplat (2020) 17.08 0.7328 | 14.17 5.61
VFIT (2022) 8.45 0.5622 | 39.03 13.59
RIFE (2022) 15.11 0.6258 | 18.37 | 641.58
VFIformer(2022) 19.05 | 0.8387 | 11.59 | 6.54
DQBC (2023) 18.60 0.8015 | 12.12 2.39
SAIN (Ours) 20.32 | 0.8727 | 10.09 1.54

’ AnimeRun
LDFI (2019) 19.80 0.6258 | 11.21 6.12
EISAI (2022) 20.55 | 0.6694 | 10.33 | 3.68
DQBC (2023) 20.03 0.5925 | 10.79 543
SAIN (Ours) 20.58 | 0.7191 | 10.23 | 3.39

Table 1: Quantitative performance of SAIN.

missed many strokes due to the limitation in exploring sketch cor-
respondence for alignments. While EISAT and VFIformer achieve
improved performance, the issue of blurriness persists due to the
lack of texture and color reference. With the increasing sketch com-
plexity, these artifacts become more significant and the contents
tend to be unrecognizable (e.g., the 3" example with DQBC) and dis-
tortion (e.g., suspecting angry face with EISAI for the 3! example).
Note that in the zoom in region, AdaCof and LDFI failed to output
contiguous strokes since insufficient correspondence information
was extracted which result in missing sketch keypoints. EISAI and
VFIformer generated either blurriness or phantom strokes due to
the lack of feature correspondence between the sketch keyframes.

4.4 Ablation Study

Ablation studies were conducted to demonstrate the effectiveness
of individual mechanisms in SAIN: from five aspects: stroke-level
correspondence module, pixel-wise dynamic formulation, region-
level correspondence module, convolution & cross-attention block
based, and convolution & self-attention block based multi-stream
transformer. To evaluate the contribution of each aspect, we re-
move one of such mechanisms in each experiment, and trained and
evaluated the corresponding model on the STD-12K dataset.
Pixel-wise dynamics. By removing the pixel-wise dynamics, the
CCB and CSB transformer streams take region-level correspon-
dence Ty and I;, and stroke-level correspondence P, as inputs. As
shown in Table 2, the absence of pixel-level motion information re-
sulted in a deteriorated performance. Moreover, as shown in Figure
5, the interpolation examples exhibits blurring results, potentially
due to the uncertain direction of pixel-level motion.
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1/4,1/2,3/4 19.92 [ 0.8643 | 1052 | 1.50
1/3,2/3 20.01 | 0.8596 | 10.46 | 1.67
1/2, 3/4 20.33 | 0.8686 | 10.07 | 1.55
1/4,1/2 2031 | 0.8694 | 10.08 | 1.54
1/2 2032 | 0.8727 | 10.09 | 1.54

Table 2: SAIN with different tracking strategies.

Stroke-level correspondence. The stroke-level correspondence
P; was removed from SAIN by excluding the CCB based transformer
streams and P; in the CSB based transformer stream. Only the
four refined sketch frames Iy, 11, Iy and I; were adopted and fused
in a single CSB transformer stream. The absence of stroke-level
correspondence resulted in lower performance compared to full
SAIN, which indicates the necessity of exploiting stroke patterns.
By zooming out details shown in Figure 5 (row with blue outlines),
SAIN without stroke correspondence has lower contrast and the
black lines are less noticeable, which indicates SAIN without stroke
correspondence have less confidence on outputs.

Convolution cross-attention block. Without CCB for a sketch
focused modelling, it can be observed that the quantitative results
shown in Table 5 are worse than those of the full SAIN. Specifi-
cally, for the second example in Figure 5, the intricate details of the
clown’s face is difficult to discern when CCB is not utilised. More-
over, CCB facilitates a robust learning with stroke correspondence,
whilst an improper stroke guidance usage may result in inferior
interpolation results for some scenarios.

Convolution self-attention block. When CSB blocks are omitted,
the quantitative results, as depicted in Table 5, demonstrate inferior
performance compared to the full SAIN. Particularly, in the first
example (inside the princess’s hair) in Figure 5, blurriness occured
in the princess’s hair when interpolation without CSB.
Region-level correspondence. By removing the region-level cor-
respondence, we instead take the refined outputs from pixel-wise
dynamics module Iy and I; to explore another situation not fully
utilizing the correspondence. SAIN without region correspondence
produces some blurriness within the closed boundaries as shown
in Figure 5 (row with red outlines), which demonstrates region
correspondence helps refine closed areas.

4.5 Sampling for Stroke Correspondence

The stroke correspondence P; is continuous in terms of ¢. An ideal
temporal modelling strategy needs to incorporate sufficient infor-
mation without causing issues due to redundant input patterns. We
investigated a number of settings as shown in Table 2. It can be ob-
served Py with t € {%} achieves the best performance. Conversely,
providing more information may lead to an over-fitting issue, es-
pecially for the case with t € {4—11, %, %}. As expected, only with the
guidance of the middle temporal point t € {%} works the worst
among all settings. However, with three sampling slices, where
t e {%, % %}, the performance is worse than all two-slice based
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Figure 5: Qualitative samples of ablation studies with different components in SAIN.
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Figure 6: An example with extremely exaggerated motions.
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Figure 7: Interpolation outcomes of different approaches for
the scenario with significant motions.

strategies, which suggest an over-fitting issue. For two-slice strate-
gies, the most effective strategy is with the early motion patterns
int= %, highlighting the importance of the initial states.

4.6 Limitations & Future Work

Our proposed SAIN relies on the result of stroke and regional cor-
respondence, which leads to limitations with the current corre-
spondence mechanism. First, a linear stroke-level correspondence
and a pre-defined temporal sampling strategy may result in less
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accurate interpolations. The future work could address this stroke-
level correspondence scheme with a learnable mechanism. Second,
improvement in the scenarios of exaggerated motions is expected.
In Figure 6, the strokes change extremely between the frames and
their keypoints are often with less confidence or incorrect for the
point-wise matching and downstream modelling. We present in-
terpolation results for two frames featuring significant motions, as
depicted in Figure 7, alongside comparisons with existing Sketch
(LDFI), Animation (EISAI) and Video (Adacof) interpolation state-
of-the-art methods. Notably, Adacof and LDFI were unable to accu-
rately capture the images within such a dynamic scene, resulting
in blank outputs. EISAI on the other hand, compromised the detail
of the foot, leading to distortion, while our method successfully
preserved the overall structure of the input. Our proposed SAIN
could further be adapted to handle freestyle, poorly-drawn sketches,
thereby expanding the application of our model to more areas. Fig-
ure 8 presents a example for such cases.

/

Sketch Input 1

Sketch Output Sketch Input 2

Figure 8: Interpolation example on a freestyle sketch.

5 Conclusion

In this paper, a deep learning method - SAIN is presented for anima-
tion sketch interpolation. Region-, stroke-, and pixel-level patterns
are explored to take the sparse nature of sketch frames for inter-
polation. A multi-stream U-Transformer architecture is devised to
utilise the multi-level guidance with CSB and CCB. Comprehensive
experiments demonstrate the state-of-the-art performance of SAIN.
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