
SFP: Spurious Feature-Targeted Pruning for Out-of-Distribution
Generalization

Yingchun Wang
∗

School of Computer Science and

Technology & MOEKLINNS Lab

Xi’an Jiaotong University

Xi’an, China

Department of Computing

Hong Kong Polytechnic University

Hong Kong SAR, China

20116342r@connect.polyu.hk

Jingcai Guo
∗

Department of Computing

Hong Kong Polytechnic University

Hong Kong SAR, China

jc-jingcai.guo@polyu.edu.hk

Song Guo

Department of CSE

Hong Kong University of Science and

Technology

Hong Kong SAR, China

songguo@cse.ust.hk

Yi Liu

Department of Computing

Hong Kong Polytechnic University

Hong Kong SAR, China

csyiliu@comp.polyu.edu.hk

Jie Zhang

Department of Computing

Hong Kong Polytechnic University

Hong Kong SAR, China

jie-comp.zhang@polyu.edu.hk

Weizhan Zhang

School of Computer Science and

Technology & BDKE Lab

Xi’an Jiaotong University

Xi’an, China

zhangwzh@xjtu.edu.cn

Abstract

Recent studies reveal that even highly biased dense networks can

contain an invariant substructure with superior out-of-distribution

(OOD) generalization. While existing works commonly seek these

substructures using global sparsity constraints, the uniform im-

position of sparse penalties across samples with diverse levels of

spurious contents renders such methods suboptimal. The precise

adaptation of model sparsity, specifically tailored for spurious fea-

tures, remains a significant challenge. Motivated by the insight

that in-distribution (ID) data containing spurious features may ex-

hibit lower experiential risk, we propose a novel Spurious Feature-

targeted Pruning framework, dubbed SFP
1
, to induce the authentic

invariant substructures without referring to the above concerns.

Specifically, SFP distinguishes spurious features within ID instances

during training by a theoretically validated threshold. It then pe-

nalizes the corresponding feature projections onto the model space,

steering the optimization towards subspaces spanned by those

invariant factors. Moreover, we also conduct detailed theoretical

analysis to provide a rationality guarantee and a proof framework

for OOD structures based on model sparsity. Experiments on var-

ious OOD datasets show that SFP can significantly outperform

both structure-based and non-structure-based OOD generalization

state-of-the-art (SOTA) methods by large margins
2
.
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1 Introduction

Deep neural networks trained with empirical risk minimization

(ERM) [30] learn correlated features thoroughly to achieve supe-

rior accuracy. However, when confronted with fickle real-world

data distributions, even a slight shift renders most applications

vulnerable due to the idealistic identically and independently dis-

tributed (IID) assumption. Reasons for this failure are: firstly, if

data are generated from a fully observed causal Bayesian network

(CBN), ERM would learn all features in the Markov blanket, even

those not causally related [4, 5, 35]. Secondly, substantial works

have demonstrated that ERM’s prediction tends to exploit spurious

correlations or shortcuts that are prone to change in real-world

distributions [8, 9, 23]. Hence, understanding and restraining the

learning of spurious correlations is crucial.

Significant attention has been given to out-of-distribution (OOD)

generalization, which focuses on learning causally correlated fea-

tures that remain invariant across different domains. Most recently,

a series of studies were set out to improve OOD generalization

from the perspective of model structure. Can models with particu-

lar structures avoid neural networks being biased towards spurious
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correlation in out-of-distribution (OOD) generalization [35]? Most

studies provide a positive answer. For example, Sagawa et al. [29]
provides sufficient and intuitivemotivation for this branch, claiming

that over-parameterized models could degrade OOD performance

through data memorization and overfitting. Zhang et al. [35] have
a similar conclusion via the functional lottery ticket hypothesis: a

full network contains a subnetwork that can achieve better OOD

performance. Compared to typical causal representation learning,

structural approaches have the benefits of universality and effi-

ciency. Most works can be embedded in non-structural SOTAs to

generate slimmed networks with better OOD performance.

Despite substantial advancements, existing structural methods

are predominantly designed empirically and lack theoretical inter-

pretability. It has been observed that these approaches typically use

established techniques in a rudimentary manner without specific

refinements to unearth OOD lottery tickets, including network ar-

chitecture search, module detection, and model pruning. This may

fail to pinpoint the optimal OOD structure due to the imposition of

global sparsity constraints. More precisely, many studies enforce

equal parameter penalties for learning across diverse features. As

an illustration, Sagawa et al. [35] explicitly state that the sparsity

of structures does not exactly correspond to the sparsity of spu-

rious features in their method. Except for improper optimization

objectives, most of them rely on the guidance of fully exposed OOD

datasets, which is infeasible in real-world applications.

To address these issues, we propose a novel Spurious Feature-

targeted network Pruning method, dubbed SFP, to explore the

optimal OOD substructures. The key idea is to selectively impose

optimization constraints to prevent the leakage of spurious fea-

tures into the learned patterns. Specifically, SFP employs meticu-

lously derived thresholds from training dynamics, enabling it to

discern biased samples entangled with spurious correlations dur-

ing the training phase. Following this discernment, SFP seamlessly

incorporates the feature projection onto the model space as a regu-

larization term, effectively reining in the model’s alignment with

specific feature directions. Extensive experiments conducted on

various datasets have demonstrated that the proposed SFP achieves

superior performance than most of the state-of-the-art methods.

In summary, our contributions can be outlined as follows:

• We propose a theoretical framework that substantiates the

rationale and effectiveness of improving OOD generaliza-

tion through feature-specific model sparsity. This contribu-

tion serves to address the deficiency of theoretical guidance

present in prior research within this domain.

• We propose a novel spurious feature-targeted model pruning

to explore OOD substructures, totally without prior causal

assumptions or full exposure of out-domain data.

• To our knowledge, we are the first to theoretically unveil the

adjustable correspondence between data features and model

substructures within OOD settings, as well as leverage it to

enhance the generalization performance.

2 Related Work

Out-of-Distribution Generalization. Existing research on OOD

generalization can be roughly divided into two categories, includ-

ing non-structure-based methods and structure-based methods.

Specifically, the non-structure-based methods focus on the feature

level and usually limit models over learning on spurious features

by designing heuristic learning paradigms or separating different

features in high dimensions. For example, Arjovsky et al. [2] aims

to extract nonlinear invariant predictive features across multiple

environments. IIB [18] performs invariant feature prediction by

limiting the mutual information between the learned representation

and the ground truth. While effective, unstructured methods yield

only partial benefits from representation learning, resulting in an

over-parametric final model that may compromise generalization

performance. Differently, the structure-based methods investigate

the impact of different modules on OOD generalization. Early work

can be traced back to [26], which affirms that models with specific

structures under linear conditions can avoid false correlations in

OOD generalization. Most recently, Zhang et al. [35] proposes the
functional lottery hypothesis, which further confirms the improve-

ment of model structure on OOD generalization performance under

OOD setting and nonlinear condition. Moreover, this positive im-

pact can be superimposed on most previous non-structure-based

methods. However, these methods directly utilize model compression
algorithms while ignoring the relationship between data features and
model structures, potentially leading to suboptimal results.
Model Pruning. A series of network pruning methods have been

proposed to eliminate unnecessaryweights from over-parameterized

networks. Early research [17] usually tries to remove weight pa-

rameters based on the Hessian matrix of the objective function.

Similarly, Han et al. [11] proposes to remove the weights or nodes

with small-norm from DNNs. However, these kinds of unstructured

pruning (i.e., discrete weights or nodes) can hardly reduce reason-

ing time without specialized hardware [33]. Therefore, structured

pruning [20, 33], i.e., channels/filters, is more applicable and be-

comes mainstream. For example, He et al. [12] resets less important

filters at every epoch while updating all other filters. Zhao et al. [37]
uses stochastic variational inference to remove the channels with

smaller mean/variance. Despite all that, previous methods essentially
follow the traditional empirical risk-guided model pruning paradigm;
thus, the obtained feature-untargeted sparse model is suboptimal for
OOD generalization.

3 Proposed Method

We start by formalizing the model structure-based OOD problem

in a complete inner product space and then provide a theoretical

analysis to investigate the impact of ID data and out-domain data

on model performance. Based on this framework, we elaborate on

the optimization objective of SFP and theoretically demonstrate its

effectiveness.

3.1 Notations and Preliminaries

3.1.1 Linear Parameterized Notations. Let 𝑋𝑖𝑑 ∈ R𝑝×𝑑 and 𝑋𝑜𝑜𝑑 ∈
R𝑞×𝑑 be the in-domain and out-domain datasets, respectively, where

𝑝 and 𝑞 denote the numbers of data instances, and 𝑑 is the feature

dimension. Consequently, the entire training dataset can be rep-

resented as 𝑋 = 𝑋𝑖𝑑 ∪ 𝑋𝑜𝑜𝑑 , where 𝑋 ∈ R𝑛×𝑑 with 𝑛 = 𝑝 + 𝑞.

The corresponding ground truth of the feature projection is rep-

resented by 𝑌 . Additionally, let 𝑝𝑖 and 𝑝𝑜 signify the proportions

of instances with and without spurious features in the training
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Figure 1: The training pipeline of SFP.

set, respectively, such that 𝑝𝑖 + 𝑝𝑜 = 1. To rigorously elucidate

our analysis and proofs, we align with the theoretical framework

established by previous works [6, 16, 32]. Specifically, they consider

a linear format for the feature extractor and define logits as the

projection length of input onto a specific subspace. Based on the

“implicit regularization effect of initialization [25]” and the “deep

multi-layer homogeneity [7]”, this non-convex optimization prob-

lem is approximated by reasoning about the trajectory of gradient

methods starting from the initialization. Under such circumstances,

we employ W ∈ R𝑚×𝑑
as the parameters for the feature extractor,

where𝑚 denotes the dimension of logits. To formulate the learnable

networks, we define 𝑅 = 𝑪 (W⊤), 𝑆 = 𝑪 (𝑋⊤
𝑖𝑑
), and 𝑈 = 𝑪 (𝑋⊤

𝑜𝑜𝑑
)

as the subspaces spanned by the row vectors of the parameterized

network, in-domain data, and out-domain data, respectively. Ad-

ditionally, let 𝐸 ∈ R𝑑×dim(𝑅)
, 𝐹 ∈ R𝑑×dim(𝑆 )

, and 𝐺 ∈ R𝑑×dim(𝑈 )

serve as the orthogonal bases for 𝑅, 𝑆 , and 𝑈 , respectively. Conse-

quently, the algebraic representation of the model and domains can

be reformulated linearly as spanning spaces over a set of learnable

basis vectors. In this complete inner product space, the following

proposition can be claimed as follows:

Proposition 3.1. Model substructures and the feature representa-
tions can be effectively corresponded in linear form by the singular
value decomposition (SVD) of the feature projections of data into the
model space.

Discussion (Model): Define 𝐸⊤𝐹 ∈ Rdim(𝑅)×dim(𝑆 )
as the basis of

𝑪 (𝑋𝑖𝑑W⊤) spanning the ID (spurious) feature projections. Simi-

larly, 𝐸⊤𝐺 ∈ Rdim(𝑅)×dim(𝑈 )
is the basis of 𝑪 (𝑋𝑜𝑜𝑑W⊤) spanning

the out-domain feature projections. Since the column of 𝐸 span

𝑅, we have W = 𝐸𝑟 for some 𝑟 ∈ Rdim(𝑅)
. For every ID instance,

the feature projection 𝑟1 = 𝐸⊤𝐹𝑎 is used for some 𝑎 ∈ 𝑪 (𝐸⊤𝐹 ),
where 𝑎 is a column vector of Rdim(𝑆 )

. Similarly, for every out-

domain instance, the feature projection 𝑟2 = 𝐸⊤𝐺𝑏 is used for some

𝑏 ∈ 𝑪 (𝐸⊤𝐺), where 𝑏 is a column vector of Rdim(𝑈 )
. Therefore, the

feature projections of the whole training dataset in the model space

can be defined as 𝑟 = 𝑝𝑖𝑟1 + 𝑝𝑜𝑟2. Assume W∗
is the optimal set

of model parameters, W∗ = 𝐸𝑟∗, where 𝑟∗ = 𝑝𝑖𝐸
⊤𝐹𝑎∗ + 𝑝𝑜𝐸

⊤𝐺𝑏∗,
and 𝑎∗, 𝑏∗ be the true feature projections.
Discussion (Data): In 𝑆 = 𝑪 (𝑋⊤

𝑖𝑑
) with basis 𝐹 spanning 𝑋𝑖𝑑 ,

∀ 𝑥𝑖 ∈ 𝑋𝑖𝑑 , ∃ 𝑧 ∈ Rdim(𝑆 )
, 𝑥 = (𝐹𝑧)⊤.𝑋𝑖𝑑 = (𝐹𝑍 )⊤, where 𝑍 = {𝑧}.

Similarly, in 𝑈 = 𝑪 (𝑋⊤
𝑜𝑜𝑑

) with basis 𝐺 , ∀ 𝑥𝑜𝑜𝑑 ∈ 𝑋𝑜𝑜𝑑 , ∃ 𝑣 ∈
Rdim(𝑈 )

, 𝑥𝑜𝑜𝑑 = (𝐺𝑣)⊤. 𝑋𝑜𝑜𝑑 = (𝐺𝑉 )⊤, where 𝑉 = {𝑣}.

3.1.2 Preliminary Optimization Target.

Definition 3.2. Under the OOD setting, applying the same opti-

mization objective to ID data with spurious features and out-domain

data without the same spurious features is called undirected learn-

ing

Definition 3.3. Trained independently from scratch for the same

number of iterations, the substructure within the original model

having the best OOD generalization performance is defined as the

OOD lottery [35].

For the structure-based approach searching the OOD lottery based

on undirected learning, the optimization target can be formulated

as:

min L(W, 𝑋,𝑌 ) = E𝑋 ∥𝑋W − 𝑌 ∥2

2
+ S (W) , (1)

where L is the task-dependent loss function, and S is the func-

tion that induces the sparsity of the model structure to find the tar-

get subnetwork. The domain-generalized substructure is described

by layer-wise channel saliencies in SFP. To this end, S is imple-

mented by the squeeze-and-excitation module as suggested in [13].

The value of relevant parameters in 𝑡-th iteration is represented by

subscript 𝑡 , and the optimal value is represented by superscript ∗.
Thus, the task loss in 𝑡-th iteration can be calculated as:

L𝑡 = ∥𝑋W𝑡 − 𝑌 ∥2

2
=


𝑋W𝑡 − 𝑋W∗

2

2
, (2)

and the gradient is:

𝜕L𝑡

𝜕W𝑡
= 2

(
W𝑡 −W∗) 𝑋⊤𝑋 . (3)

The orthogonal basis of the model space is regarded as the left sin-

gular vectors when performing SVD on the feature projections of

data. The right singular vectors correspond to input data features,

and the corresponding singular values can be defined as indica-

tors of the importance of features of the current input w.r.t. the

model structure. To internally observe the impact of ID and out-

domain features on the model, the gradient accumulation is further

transformed into a linear form:

𝜕L𝑡

𝜕W𝑡
= 2(𝑝2

𝑖 (𝑎𝑡 − 𝑎∗ )Σ2

𝐸⊤𝐹,𝑡𝑋𝑖𝑑 + 𝑝2

𝑜 (𝑏𝑡 − 𝑏∗ )Σ2

𝐸⊤𝐺,𝑡
𝑋𝑜𝑜𝑑 ), (4)
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where Σ denotes the corresponding singular value matrix, and for

simplicity, we omit 𝑡 under Σ in the following discussion. The proof

of Eq. Equation (4) is provided in [Appendix] A.1.

Since dim(𝑈 ) = 𝑞 ≪ dim(𝑆) = 𝑝 , we have min Σ𝐹⊤𝐺 =

min Σ𝐺⊤𝐹 = 𝜎
𝑞

𝐺⊤𝐹
. Similarly, min Σ𝐹⊤𝐸 = min Σ𝐸⊤𝐹 = 𝜎𝑚

𝐸⊤𝐹 ,

and min Σ𝐺⊤𝐸 = min Σ𝐸⊤𝐺 = 𝜎𝑚
𝐸⊤𝐺 . Finally, the model parame-

ters can be calculated as:

W∞ = W0 − 2𝑙𝑟

∞∑︁
𝑡=1

𝑚∑︁
𝑖=1

𝑝2

𝑖 (𝑎𝑡 − 𝑎∗)𝜎2

𝐸⊤𝐹,𝑡,𝑖𝑋𝑖𝑑

− 𝑝2

𝑜 (𝑏𝑡 − 𝑏∗)𝜎2

𝐸⊤𝐺,𝑡,𝑖
𝑋𝑜𝑜𝑑 .

(5)

3.1.3 Biased Performance on Out-domain and ID Data. Based on

the gradient flow trajectories, we compare the learning process

and final performance of the model for spurious and invariant

features, respectively. We observe that the model structure obtained

by undirected learning clearly differs in performance between ID

data and out-of-domain data. With this observation, we propose

the following propositions.

Proposition 3.4. Undirected learning (full or sparse training) on
biased data distributions can lead to significantly different forward
speeds of the model learning along different data feature directions,
and the difference has a second-order relationship with the proportion
of different data distributions in the training set, i.e.:���� 𝜕W𝑡

𝜕(𝑎𝑡 − 𝑎∗) −
𝜕W𝑡

𝜕(𝑏𝑡 − 𝑏∗)

���� ≈ 2(𝑝2

𝑖 Σ
2

𝐸⊤𝐹 − 𝑝2

𝑜Σ
2

𝐸⊤𝐺 ). (6)

Discussion (Update Gradient): We compute the direction gra-

dients along the directions of the feature projections of ID and

out-domain data, respectively. As shown in Eq. 6, with 𝑝𝑖 ≥ 𝑝𝑜 in

the context of OOD, the learning of the basis of the model space

is gradually biased towards the directions of spurious features. By

performing SVD on the projection of the basis vector of the fea-

ture space through the model space, the obtained singular value

matrix can be regarded as the fitting degree of the model on the

corresponding data distribution at 𝑡𝑡ℎ iteration.

Proposition 3.5. Undirected learning (full or sparse training) on
biased data distributions causes the model to be more biased towards
training features with a larger proportion, bringing about significant
performance differences in different data distributions, i.e.:

L𝑜𝑜𝑑 − L𝑖𝑑 ≈ (𝑝2

𝑖 − 𝑝2

𝑜 ) (1 − Σ𝐹⊤𝐺 ) + 𝜖 > 0, (7)

where 𝜖 is the difference of initial feature projections between ID and
out-domain data due to model initialization error. The full proof of
Eq. 7 is provided in [Appendix] A.2.

Taking the risk difference between ID data and out-domain data

of the trained model as the measurement of the OOD generalization,

the following conclusion is derived, i.e.,

Corollary 3.6. Undirected learning of networks on highly biased
training domains (the dataset consists of a majority data group with
spurious features) can only lead to substructures with sub-optimal
OOD generalization performance.

Discussion (Performance Difference): The result intuitively

shows that the undirectly learned model performs better on feature

distributions with larger instance numbers. As shown in Eq. 7, the

Figure 2: Identification of the ID instances dominated by spu-

rious features. At epoch t, if no intervention is applied, the

average loss drop on all data (blue b) should be smaller than

that on ID data (blue a) and larger than that on out-domain

data (blue c). The red line denotes an ideal regularization

effect: the loss drops uniformly on all data.

difference in model performance between out-domain data and

ID data is linearly related to the proportion of the corresponding

instances and the correlation degree between the different feature

distributions. Moreover, when the out-domain data has the same

proportion as ID data in the training dataset (i.e., 𝑝𝑖 = 𝑝𝑜 ) or the

data distributions of them are consistent, the task loss difference

between out-domain and ID data can be reduced to zero.

3.2 SFP: An Spurious Feature-Targeted Model

Pruning Method

To address the problem of sub-optimal OOD substructure caused

by undirected training, we propose a novel method to effectively

remove model branches that are only strongly correlated with spuri-

ous features. As demonstrated in Fig. 1, the pipeline consists of two

stages, including spurious feature identification and model sparse

training. Specifically, SFP identifies large spurious feature compo-

nents within ID instances with high probability by observing the

loss during training. It then can perform spurious feature-targeted

model sparsity by analyzing the SVD of the feature projection ma-

trix between the data and model space. We also provide a detailed

theoretical analysis of both stages of the proposed SFP in the fol-

lowing part.

3.2.1 Spurious Feature Identification. As shown in Proposition. 3.5,

if no intervention is applied, a model trained on a highly biased data

distribution can be gradually biased towards ID data with lower

prediction loss. Since the loss difference between ID and out-domain

data can be approximately computed by (𝑝2

𝑖
− 𝑝2

𝑜 ) (1 − 𝜎𝐹⊤𝐺 ), it is,
therefore, can be adopted as the identification criterion for spurious

features in each iteration. In brief, if the loss corresponding to the

current data is lower than a threshold Δ, then the current data is

likely to be an ID instance dominated by spurious features. Then

we can further prune the spanning sets of model space along the

directions of these spurious feature projections. To compute Δ, we
first investigate the average loss in the 𝑡 − 1-th iteration as:

¯L𝑡−1 ≈ L𝑡−1

𝑖𝑑
+ 𝑝𝑜 (𝑝𝑖 − 𝑝𝑜 ) (1 − 𝜎𝑡−1

𝐹⊤𝐺 ) . (8)
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As shown in Fig. 2, since L𝑡
𝑖𝑑

< L𝑡−1

𝑖𝑑
, we have:

supL𝑡
𝑖𝑑

= | ¯L𝑡−1 − 𝑝𝑜 (𝑝𝑖 − 𝑝𝑜 ) (1 − 𝜎𝑡−1

𝐹⊤𝐺 ) |. (9)

Similar with Eq. 8, the lower bound of the loss on ID data at 𝑡-th

iteration can be computed as:

inf L𝑡
𝑖𝑑

= | ¯L𝑡 − 𝑝𝑜 (𝑝𝑖 − 𝑝𝑜 ) (1 − 𝜎𝑡
𝐹⊤𝐺 ) |. (10)

The spurious feature-targeted regularization forces the model to

learn invariant features and achieve fair loss reduction on all in-

stances: |L𝑡
𝑖𝑑

− L𝑡−1

𝑖𝑑
| = | ¯L𝑡 − ¯L𝑡−1 |. Therefore, the ideal lower

bound of the ID loss at 𝑡-th iteration is:

inf L𝑡
𝑖𝑑

= | ¯L𝑡−1 − 𝑝𝑜 (𝑝𝑖 − 𝑝𝑜 ) (1 − 𝜎𝑡−1

𝐹⊤𝐺 ) |

− | ¯L𝑡 − ¯L𝑡−1 |.
(11)

Thus, L𝑡
𝑖𝑑

is highly likely to be located in the range of [min inf L𝑡
𝑖𝑑
,

supL𝑡
𝑖𝑑
]. The upper bound is used to compute Δ for identifying

instances dominated by spurious features.

3.2.2 Spurious Feature-Targeted Pruning. SFP reacts to spurious

feature-related instances by weakening their corresponding spu-

rious feature projections into the model space, which can prevent

the model from over-fitting on identified spurious features. To an-

alyze the projections from data into the model space, we define

Ξ ∈ R𝑚×𝑚
, Λ ∈ R𝑝×𝑝 , and Γ ∈ R𝑞×𝑞 as the normalized orthogo-

nal basis of 𝑪 (𝐸⊤𝐸), 𝑪 (𝐸⊤𝐹 ), and 𝑪 (𝐸⊤𝐺), spanning the optimal

model projections, the feature projections of ID data into the model

space, and the feature projections of out-domain data into the model

space, respectively. 𝜉𝑖 , 𝜆𝑖 , and 𝛾𝑖 denote the 𝑖-th column vectors

in Ξ, Λ, and Γ, respectively. The following lemma illustrates the

effectiveness of SFP, and its proof can be found in [Appendix] A.3.

Lemma 3.7. Spurious feature-targeted model sparsity can effectively
reduce the performance deviation of the learned model between in-
domain data and out-domain data:���� R(𝑋𝑜𝑜𝑑 ) − R(𝑋𝑖𝑑 )

R(𝑋𝑜𝑜𝑑 )𝑠𝑝𝑎𝑟𝑠𝑒 − R(𝑋𝑖𝑑 )𝑠𝑝𝑎𝑟𝑠𝑒

����
≈
�����
∑𝑚

𝑗=1
𝑝𝑜𝜎 𝑗 𝜉 𝑗𝛾 𝑗𝑋𝑜𝑜𝑑 −∑𝑚

𝑖=1
𝑝𝑖𝜎𝑖𝜉𝑖𝜆𝑖𝑋𝑖𝑑∑𝑚

𝑗=1
𝑝𝑜𝜎 𝑗 𝜉 𝑗𝛾 𝑗𝑋𝑜𝑜𝑑 −∑𝜗

𝑖=1
𝑝𝑖𝜎𝑖𝜉𝑖𝜆𝑖𝑋𝑖𝑑

����� ≥ 1,

(12)

where R(·) is the empirical risk function. 𝜎𝑖 and 𝜎̃𝑖 is the 𝑖-th maxi-
mum in Σ𝐸⊤𝐹 and Σ𝐸⊤𝐺 , and we have 𝜎 > 0 since the singular values
are non-negative.𝑚 and 𝜗 are the rank of the singular value matrix
after performing compact SVD and truncated SVD on the projections,
respectively.

Proof of Lemma 3.7. Asmentioned earlier, the projection space

before the model sparsity can be represented as:

𝐸𝑟 =

𝑚∑︁
𝑖=1

(
𝑝𝑖𝜎𝑖𝜉𝑖𝜆

⊤
𝑖 + 𝑝𝑜𝜎𝑖𝜉𝑖𝛾

⊤
𝑖

)
. (13)

Specifically, SFP first performs SVD on the feature projections,

which maps input data to a set of coordinates based on the orthog-

onal basis of model space. The matrices of left and right singular

vectors correspond to the standard orthogonal basis of the model

space and data space, respectively. The matrix of singular values

corresponds to the direction weight of the action vectors in the

projection matrix. SFP prunes the model by trimming the smallest

singular values in Σ as well as their corresponding left and right

singular vectors. In this way, SFP can remove the spurious features

in ID data space and substructures in the model space simultane-

ously in a spurious feature-targeted manner along the directions

with weaker actions for projection. Then, the projection space with

only the most important 𝜗 singular values can be formalized as:

𝐸𝑟𝑠𝑝𝑎𝑟𝑠𝑒 = 𝑝𝑖ΞΣ𝐸⊤𝐹Λ
−1 + 𝑝𝑜𝜉Σ𝐸⊤𝐺Γ−1

=

𝜗∑︁
𝑖=1

𝑝𝑖𝜎𝑖𝜉𝑖𝜆
⊤
𝑖 +

𝑚∑︁
𝑗=1

𝑝𝑜𝜎 𝑗 𝜉 𝑗𝛾
⊤
𝑗 .

(14)

Based on the representation of the projection spaces, the model

response to data features R(𝑋 ) = 𝐸𝑟𝑋 can be calculated as:

R(𝑋 ) =
{
𝑝𝑖ΞΣ𝐸⊤𝐹Λ

−1 + 𝑝𝑜𝜉Σ𝐸⊤𝐺Γ−1
}⊤

𝑋⊤

=

𝑚∑︁
𝑖=1

{
𝑝𝑖𝜎𝑖𝜉𝑖𝜆

⊤
𝑖 𝑋

⊤ + 𝑝𝑜𝜎𝑖𝜉𝑖𝛾
⊤
𝑖 𝑋

⊤} . (15)

□

3.3 Correspondence between Model

Substructure and Spurious Features

In this section, we theoretically demonstrate that, with a reasonable

setting of the sparse penalty for ID data, SFP can effectively reduce

the overfitting of the model on spurious features while retaining

the learning on invariant features. Specifically, we define 𝑓 𝑙 (𝑥) as
the feature maps output of 𝑥 at layer 𝑙 . It represents the projection

of 𝑥 onto the model space defined over the spanning set 𝐸 to be

learned. We abbreviate the final probabilities as 𝑓 (𝑥) for simplifica-

tion. Referring to Sec. 3.2.1, we have 𝑥 ∈ 𝑋𝑖𝑑 if L𝑐𝑒 (𝑥) ≤ Δ. Thus,
the optimization target of SFP can be formulated as:

min

𝐸
E𝑥∼𝑋L𝑐𝑒 (𝑥,W) + 𝜂

𝐿∑︁
𝑙=1

E𝑥∼𝑋𝑖𝑑
| |𝑓 𝑙 (𝑥) | |1, (16)

where 𝜂 is the sparsity factor imposed on the feature projections

for the identified ID data. Lemma 3.8 elucidates the setting of 𝜂. For

a detailed proof, please refer to [Appendix] A.4.

Lemma 3.8. Define 𝑒 = |𝑓 ∗ (𝑥) − 𝑓 (𝑥) | as the 𝑙1-norm between the
groudtruth 𝑓 ∗ (𝑥) and 𝑓 (𝑥). When 𝜂 < 2𝑒 , SFP can effectively reduce
the learning of the model towards spurious features while keeping the
performance on the other features.

Proof of Lemma 3.8: The prediction errors of feature projec-

tions 𝐿𝑓 can be defined as:

𝐿𝑓 = |𝑓 ∗ (𝑥) − 𝑓 (𝑥) |2

=
∑︁

𝑖, 𝑗=𝑗1∪𝑗2
(𝑓 ∗ (𝑥) − 𝜎𝑖, 𝑗1𝜉𝑖⊤𝜆 𝑗1 − 𝜎𝑖, 𝑗2𝜉𝑖⊤𝛾 𝑗2 )2, (17)

and the corresponding gradient is:

𝜕𝐿𝑓

𝜕𝜎𝑖, 𝑗1𝜉𝑖
=

𝜕𝑒2

𝜕𝜎𝑖, 𝑗 𝜉𝑖
= 2𝑒

𝜕𝑒

𝜕𝜎𝑖, 𝑗 𝜉𝑖

= 2𝑒

��𝑓 ∗ (𝑥) − 𝜎𝑖, 𝑗1𝜉𝑖⊤𝜆 𝑗1 − 𝜎𝑖, 𝑗2𝜉𝑖⊤𝛾 𝑗2 )
��

𝜕𝜎𝑖, 𝑗 𝜉𝑖
= −2𝑒𝜆 𝑗1 ,

(18)

where 𝑖 and 𝑗 are the index of column vectors in the orthogonal basis

formodel space and feature space, respectively. For out-domain data,

the gradient of the column vectors in the OOD projection matrix
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interacting with the 𝑗𝑡ℎ feature vector is −2𝑒𝛾 𝑗2 . Then, split the in-

domain features into spurious features 𝐹 ′ and invariant features 𝐼𝑁
and out-domain features into unknown features 𝐺 ′

and invariant

features 𝐼𝑁 . With a high probability under the OOD setting, we

assume 𝐹 ′ and 𝐺 ′
are orthogonal. To achieve the spurious feature-

targeted unlearning and invariant feature-targeted learning of the

model, we need to satisfy the following constraint:

2𝑒𝑝𝑖𝜆𝐼𝑁 + 2𝑒𝑝𝑜𝛾𝐼𝑁 − 𝑝𝑖𝜂𝜆𝐼𝑁 > 2𝑒𝑝𝑜𝛾𝐺 ′

⇒ 𝜂 ≤ 2𝑒𝑝𝑖𝜆𝐼𝑁 + 2𝑒𝑝𝑜𝛾𝐼𝑁 − 2𝑒𝑝𝑜𝛾𝐺 ′

𝑝𝑖𝜆𝐼𝑁
≈ 2𝑒.

(19)

□

Since the de-learning rate of the spurious feature is positively

correlated with 𝜂, the upper bound 𝜂 = 2𝑒 is taken.

4 Experiments

In this section, we conducted extensive experiments on the Do-

mainBed benchmarks [10] and other datasets that are widely used

in the latest OOD studies. Due to space constraints, some experi-

mental details are provided in [Appendix] B and C.

4.1 Experimental Setting

Datasets and Procedure. The proposed method is initially eval-

uated within the DomainBed framework using four datasets: Col-

oredMNIST (CMNIST), RotatedMNIST (RMNIST), as well as the

multi-domain image classification datasets PACS, OfficeHome,

TerraInc, and DomainNet [10]. To ensure comprehensive bench-

marking, three synthetic datasets — FullColoredMNIST (FCMNIST),

ColoredObject, and SceneObject — are included, along with two

real-world image datasets,CelebA [22] andWaterBirds [31]. Fig. 3

illustrates the three synthetic datasets not encompassed within Do-

mainBed, and more details are provided in [Appendix] C.1.

(a) FCMNIST (b) ColoredObject (c) SceneObject

Figure 3: Visualization of three synthetic OOD datasets.

Model and Implementation. To ensure a robust and equitable

evaluation, the experimental settings in this work are consistent

with the common practice established in antecedent studies. Specif-

ically, for Rotated, Colored, and FCMNIST datasets, we use the

4-layer 3x3 ConvNet architecture as introduced in DomainBed. For

the VLCS and PACS datasets, we utilize the ResNet-18 architecture

as in IIB [18], with the default hyperparameters set in DomainBed.

Additionally, for other larger datasets, we adopt the ResNet-50 ar-

chitecture following the experimental settings outlined by previous

works [27, 28]. All experiments are conducted on a workstation

equipped with 8 Nvidia GTX 3090TI GPUs and a 3.6-GHZ Intel

Core i9-9900KF CPU. The learning rate is initialized at 0.001 for

digit datasets and 0.01 for object datasets. We employ the Adam op-

timizer for optimization in relatively simple image datasets, while

SGD for more complex ones.

4.2 Comparison on DomainBed Benchmark

The experiment results on DomainBed demonstrate the superior

performance of SFP over the state-of-the-art approaches. As shown

in Table 1, SFP achieves the highest average accuracy of 72.8%, out-

performing the benchmarked ERM (which is meticulously tuned

within DomainBed and serves as a robust baseline) by 2.2%. On

smaller datasets such as Colored and Rotated MNIST, most meth-

ods exhibit limited effectiveness. In contrast, SFP stands out by

achieving an accuracy improvement of up to 14.0%, highlighting

its robust feature-based recognition and suppression capabilities

against correlation shifts. On larger datasets, SFP maintains satisfac-

tory performance, demonstrating a remarkable accuracy increase

up to 2.9% and 9.4% on VLCS and PACS, respectively. Notably, on

the OfficeHome dataset, SFP boosts the OOD accuracy from 68.6%

to 71.8%. The results also underscore the disadvantages of SOTAS

in effectively addressing the correlation and diversity shifts simul-

taneously. For instance, while the ARMmethod excels in mitigating

correlation shifts on Colored MNIST, it falters when confronted

with diversity shifts in the OfficeHome dataset. Conversely, IIB

performs well in scenarios involving diversity shifts but exhibits

mediocre performance in correlation shift scenarios. Differently,

SFP exhibits superior performance inmost cases, emerging as a lead-

ing approach in the field of OOD generalization. More experimental

details are provided in [Appendix] C.2.

4.3 Comparison on Other Benchmarks

We also conduct experiments on several widely-used datasets not

included in DomainBed. For synthetic FCMNIST and ColoredObject

datasets, bias coefficients (indicating the extent of data shift) are set

as (0.8, 0.6, 0.0). This implies that the digits in the two training do-

mains are spuriously colored with probabilities of 0.8 and 0.6, while

images in the test domain are randomly colored. For SceneObject

dataset, we set the biased ratios as (0.9, 0.7, 0.0), further hampering

the model’s capture of invariant features.

We compare SFP with the most comparable MRM, as well as

their combined variants with IRM [2], V-REx [15], and DRO [28],

on three synthetic datasets including FCMNIST, ColoredObject, and

SceneObject. The results are shown in Table 2, demonstrating the

superior performance of SFP under both independent and combined

modes. To be specific, the results show that MRM compromises

the generalization performance of the original algorithm in some

cases. For example, the DRO algorithm independently achieves a

test accuracy of 31.31% on SceneObject. However, when combined

with MRM, the performance drops to 29.38%, while SFP contributes

to an increased accuracy of 31.78%.

We also compare SFP with state-of-the-art SparseIRM [38] on

FCMNIST with two different architectures, i.e., ResNet18 and MLP.

Specifically, SFP outperforms SparseIRM with 3.41% higher test

accuracy on MLP and even 29.12% on ResNet18. An interesting phe-

nomenon is that, on small MLP, SparseIRM exhibits an obvious two-

stage trend, which is consistent with regular non-feature-targeted
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Table 1: DomainBed benchmark: Performance comparison (Accuracy %) between the proposed SFP method and the state-of-the-

art domain generalization methods. “-” represents the missing data due to partially different settings. “Average” reports the

average accuracy over all the datasets. We format first, second, and worse than ERM results.

Algorithm

CMNIST RMNIST VLCS PACS OfficeHome TerraInc DomainNet

Average

MLP MLP ResNet-18 ResNet-18 ResNet-50 ResNet-50 ResNet-50

ERM [30] 57.8±0.2 97.8±0.1 77.2±0.4 83.0±0.7 66.4±0.5 53.0±0.3 41.3±0.1 70.6

IRM [2] 67.7±1.2 97.5±0.2 76.3±0.6 81.5±0.8 63.0±2.7 50.5±0.7 28.0±5.1 69.0

GroupDRO [28] 61.1±0.9 97.9±0.1 77.9±0.5 83.5±0.2 66.2±0.6 52.4±0.1 33.4±0.3 67.5

Mixup [34] 58.4±0.2 98.0±0.1 77.7±0.6 83.2±0.4 68.0±0.2 54.4±0.3 39.6±0.1 63.3

MLDG [19] 58.2±0.4 97.8±0.1 77.2±0.9 82.9±1.7 66.6±0.3 52.0±0.1 41.6±0.1 68.0

MMD [1] 63.3±1.3 98.0±0.1 77.3±0.5 83.2±0.2 66.2±0.3 52.0±0.4 23.5±9.4 66.2

CDANN [21] 59.5±2.0 97.9±0.0 77.5±0.2 78.8±2.2 65.3±0.5 50.8±0.6 38.5±0.2 66.9

MTL [3] 57.6±0.3 97.9±0.1 76.6±0.5 83.7±0.4 66.5±0.4 52.2±0.4 40.8±0.1 67.9

SagNet [24] 58.2±0.3 97.9±0.0 77.5±0.3 82.3±0.1 67.5±0.2 52.5±0.4 40.8±0.2 68.1

ARM [36] 63.2±0.7 98.1±0.1 76.6±0.5 81.7±0.2 64.8±0.4 51.2±0.5 36.0±0.2 67.4

V-REx [15] 67.0±1.3 97.9±0.1 76.7±1.0 81.3±0.9 65.7±0.3 51.4±0.5 30.1±3.7 67.2

RSC [14] 58.5±0.5 97.6±0.1 77.5±0.5 82.6±0.7 66.5±0.6 52.1±0.2 38.9±0.6 67.7

Fishr [27] 68.8±1.4 97.8±0.1 - - 68.2±0.2 53.6±0.4 41.8±0.2 -

SFP 71.6±0.3 98.3±1.4 79.2±0.7 90.7±0.1 71.8±0.1 57.8±0.3 40.0±0.7 72.8

Table 2: OOD generalization performance on FullCol-

oredMNIST, ColoredObject, and SceneObject. “MRM+X” and

“SFP+X” indicate the integration of MRM/SFP in the “X” al-

gorithm. The “Unbiased” row reports the original accuracy

for each dataset without data distribution shifts.

Method FCMNIST ColoredObject SceneObject

ERM 62.2 59.2 27.4

MRM 81.0 60.7 26.7

SFP 84.3 61.01 28.4

IRM 78.0 62.9 36.9

MRM +IRM 89.3 64.5 36.9

SFP+IRM 89.9 65.8 38.1

V-REx 87.8 64.7 36.7

MRM +V-REx 92.2 64.5 36.7

SFP+V-REx 93.4 66.1 37.9

DRO 62.9 66.8 31.3

MRM +DRO 80.5 66.2 29.4

SFP+DRO 85.2 68.4 31.8

UNBIASED 94.0 75.8 45.5

model pruning. Differently, SFP consistently shows a stable learn-

ing process and achieves higher performance in both ID (train) and

OOD (test) environments. Due to space constraints, the experimen-

tal details are provided in [Appendix] C.3.

4.4 Ablation Study

Loss Tracking. We visualize and compare loss values between

ERM and our proposed SFP to assess the efficacy of our introduced
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Figure 4: Training loss visualization

regularization term. As shown in Fig. 4, throughout the training

process, the loss of in-domain (ID) instances consistently remains

lower than that of out-domain instances, validating Proposition 3.5.

In ERM, the rapid convergence of ID instance loss (depicted by

red lines) indicates an excessive focus on biased data, leading to

overfitting spurious features and neglecting invariant features. Con-

versely, in SFP, the gap between loss values for ID and out-domain

instances narrows significantly, underscoring the effectiveness of

spurious feature-targeted pruning. What’s more, the optimization

of SFP won’t hinder convergence speed as well as adversely affects

the performance of ID instances.

Prediction Confidence. The inherent motivation of SFP origi-

nates from scrutinizing the behavioral disparities between ID sam-

ples and OOD samples under ERM, which is illustrated via two

empirical experiments as follows. We first measure the bias be-

tween the maximum value and other values in the logits vectors

corresponding to different samples, where the maximum typically

represents the prediction. A large logits discrepancy suggests a
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Figure 5: The probability density of bias between the max

value and the others in predicted distribution.

significant divergence between the probability densities of the pre-

dicted class and others, which can be used as a metric for gauging

the prediction confidence. The results, depicted in Fig. 5a, reveal

that ID samples generally exhibit larger logits discrepancies com-

pared to OOD samples, indicating a tendency of the current model

to allocate greater confidence to the predictions of ID samples.

Additionally, we evaluate the 𝑙1-norm between the predicted

and true distributions over different classes to gauge the degree of

the model capturing different features. The results are shown in

Fig. 5b. It’s evident that the distribution loss of ID samples sharply

decreases in the early training stages but gradually slows down

afterward. Conversely, OOD samples initially show a slight increase

in distribution loss, followed by a steep decrease. This early training

behavior suggests that the model initially prioritizes spurious corre-

lations, but as training progresses, SFP mitigates the fit of spurious

correlations while promoting the learning of invariant features. As

a result, the downward trend of distribution loss for ID samples

decelerates, while the trend for OOD samples starts to rise.

Sparsity Analysis. Prior structure-based OOD studies usually

utilize human-crafted hyperparameters to find a suitable functional

OOD substructure. In contrast, our method treats the sparsity coef-

ficients (Δ, 𝜂) as dynamic variables that are calculated dynamically

during training, i.e., the proposed SFP intelligently determines the
optimal OOD sparsity and structure based on inherent data attributes.
Specifically, (Δ) gives a sparsity threshold based on inherent statis-

tical and geometric biases within the data (e.g., Eqs. 9-11), and 𝜂 ad-

justs the penalty strength based on dynamic training feedback (e.g.,

Eq. 6). To empirically evaluate the sparsity of our model and, at the

same time, provide a quantitative impact of 𝜂 on OOD accuracy, we

conduct experiments on varied offsets to the theoretically computed

𝜂 (2e). Specifically, the offsets are ranged in [-1.0, -0.5, 0.0, 0.5, 1.0].

The results regarding model sparsity and test accuracy are shown in

Fig. 6. The corresponding OOD accuracy are [73.01262%, 79.84853%,

86.30715%, 84.19074%, 76.23703%], and the pruning rates are ranged

in [27.94951%, 45.09116%, 56.70407%, 62.09122%, 74.40112%]. The

results demonstrate that the autonomous acquisition of sparsity

and sparse structures (offset of 0) yields superior OOD performance

than empirical sparse settings.

Feature Visualization. We visualize the extracted features us-

ing t-distributed stochastic neighbor embedding (t-SNE) for dimen-

sionality reduction to explore the SFP model’s learned representa-

tions. Experiments are conducted on FullColoredMNIST datasets.

The models are trained on domain-related samples and tested on
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Figure 6: The effect of different𝜂 values on themodel sparsity

and accuracy.

(a) (b)

Figure 7: The visualization of the features learned by SFP.

domain-unrelated samples with random colors. The results are

shown in Fig. 7, where each data point represents an image. No-

tably, the spatial arrangement corresponds to the reduced shape

features. The features cluster into ten groups. The left subplots

color each point based on invariant features, i.e., samples with the

same digit are colored identically. For example, as shown in Fig. 7a,

each cluster contains points belonging to one class. Conversely, all

right subplots color each point based on spurious features, where

samples with the same spurious feature (e.g., red 2 and red 3) are

colored identically. The results are shown in Fig. 7b, each cluster

(class) involves diverse spurious features, indicating that the cur-

rent classification results are independent of spurious features. This

suggests that clustered features are specific to invariant digit shapes

and remain unaffected by color variations, demonstrating that SFP

could successfully acquire disentangled representations.

5 Conclusion

In this paper, we introduce a novel spurious feature-targeted model

pruning framework, dubbed SFP, designed to automatically explore

the optimal model substructure for improved out-of-distribution

(OOD) generalization. By effectively identifying spurious features

within in-distribution (ID) instances during training, SFP can se-

lectively remove model branches that heavily depend on these

spurious features. As a result, SFP attenuates the impact of spuri-

ous features on the model’s representation space and guides the

model learning process toward invariant features. Additionally, we

provide a detailed theoretical analysis to establish the rationality of

our approach and offer a proof framework for understanding OOD

structures via model sparsity. Experimental results corroborate the

effectiveness of our proposed method.
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