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Abstract

Recent studies reveal that even highly biased dense networks can
contain an invariant substructure with superior out-of-distribution
(OOD) generalization. While existing works commonly seek these
substructures using global sparsity constraints, the uniform im-
position of sparse penalties across samples with diverse levels of
spurious contents renders such methods suboptimal. The precise
adaptation of model sparsity, specifically tailored for spurious fea-
tures, remains a significant challenge. Motivated by the insight
that in-distribution (ID) data containing spurious features may ex-
hibit lower experiential risk, we propose a novel Spurious Feature-
targeted Pruning framework, dubbed SFP 1, to induce the authentic
invariant substructures without referring to the above concerns.
Specifically, SFP distinguishes spurious features within ID instances
during training by a theoretically validated threshold. It then pe-
nalizes the corresponding feature projections onto the model space,
steering the optimization towards subspaces spanned by those
invariant factors. Moreover, we also conduct detailed theoretical
analysis to provide a rationality guarantee and a proof framework
for OOD structures based on model sparsity. Experiments on var-
ious OOD datasets show that SFP can significantly outperform
both structure-based and non-structure-based OOD generalization

state-of-the-art (SOTA) methods by large margins 2.
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1 Introduction

Deep neural networks trained with empirical risk minimization
(ERM) [30] learn correlated features thoroughly to achieve supe-
rior accuracy. However, when confronted with fickle real-world
data distributions, even a slight shift renders most applications
vulnerable due to the idealistic identically and independently dis-
tributed (IID) assumption. Reasons for this failure are: firstly, if
data are generated from a fully observed causal Bayesian network
(CBN), ERM would learn all features in the Markov blanket, even
those not causally related [4, 5, 35]. Secondly, substantial works
have demonstrated that ERM’s prediction tends to exploit spurious
correlations or shortcuts that are prone to change in real-world
distributions [8, 9, 23]. Hence, understanding and restraining the
learning of spurious correlations is crucial.

Significant attention has been given to out-of-distribution (OOD)
generalization, which focuses on learning causally correlated fea-
tures that remain invariant across different domains. Most recently,
a series of studies were set out to improve OOD generalization
from the perspective of model structure. Can models with particu-
lar structures avoid neural networks being biased towards spurious
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correlation in out-of-distribution (OOD) generalization [35]? Most
studies provide a positive answer. For example, Sagawa et al. [29]
provides sufficient and intuitive motivation for this branch, claiming
that over-parameterized models could degrade OOD performance
through data memorization and overfitting. Zhang et al. [35] have
a similar conclusion via the functional lottery ticket hypothesis: a
full network contains a subnetwork that can achieve better OOD
performance. Compared to typical causal representation learning,
structural approaches have the benefits of universality and effi-
ciency. Most works can be embedded in non-structural SOTAs to
generate slimmed networks with better OOD performance.

Despite substantial advancements, existing structural methods
are predominantly designed empirically and lack theoretical inter-
pretability. It has been observed that these approaches typically use
established techniques in a rudimentary manner without specific
refinements to unearth OOD lottery tickets, including network ar-
chitecture search, module detection, and model pruning. This may
fail to pinpoint the optimal OOD structure due to the imposition of
global sparsity constraints. More precisely, many studies enforce
equal parameter penalties for learning across diverse features. As
an illustration, Sagawa et al. [35] explicitly state that the sparsity
of structures does not exactly correspond to the sparsity of spu-
rious features in their method. Except for improper optimization
objectives, most of them rely on the guidance of fully exposed OOD
datasets, which is infeasible in real-world applications.

To address these issues, we propose a novel Spurious Feature-
targeted network Pruning method, dubbed SFP, to explore the
optimal OOD substructures. The key idea is to selectively impose
optimization constraints to prevent the leakage of spurious fea-
tures into the learned patterns. Specifically, SFP employs meticu-
lously derived thresholds from training dynamics, enabling it to
discern biased samples entangled with spurious correlations dur-
ing the training phase. Following this discernment, SFP seamlessly
incorporates the feature projection onto the model space as a regu-
larization term, effectively reining in the model’s alignment with
specific feature directions. Extensive experiments conducted on
various datasets have demonstrated that the proposed SFP achieves
superior performance than most of the state-of-the-art methods.

In summary, our contributions can be outlined as follows:

e We propose a theoretical framework that substantiates the
rationale and effectiveness of improving OOD generaliza-
tion through feature-specific model sparsity. This contribu-
tion serves to address the deficiency of theoretical guidance
present in prior research within this domain.

o We propose a novel spurious feature-targeted model pruning
to explore OOD substructures, totally without prior causal
assumptions or full exposure of out-domain data.

o To our knowledge, we are the first to theoretically unveil the
adjustable correspondence between data features and model
substructures within OOD settings, as well as leverage it to
enhance the generalization performance.

2 Related Work

Out-of-Distribution Generalization. Existing research on OOD
generalization can be roughly divided into two categories, includ-
ing non-structure-based methods and structure-based methods.
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Specifically, the non-structure-based methods focus on the feature

level and usually limit models over learning on spurious features

by designing heuristic learning paradigms or separating different

features in high dimensions. For example, Arjovsky et al. [2] aims

to extract nonlinear invariant predictive features across multiple

environments. IIB [18] performs invariant feature prediction by
limiting the mutual information between the learned representation

and the ground truth. While effective, unstructured methods yield

only partial benefits from representation learning, resulting in an

over-parametric final model that may compromise generalization

performance. Differently, the structure-based methods investigate

the impact of different modules on OOD generalization. Early work
can be traced back to [26], which affirms that models with specific

structures under linear conditions can avoid false correlations in

OOD generalization. Most recently, Zhang et al. [35] proposes the

functional lottery hypothesis, which further confirms the improve-
ment of model structure on OOD generalization performance under
OOD setting and nonlinear condition. Moreover, this positive im-
pact can be superimposed on most previous non-structure-based
methods. However, these methods directly utilize model compression
algorithms while ignoring the relationship between data features and
model structures, potentially leading to suboptimal results.

Model Pruning. A series of network pruning methods have been

proposed to eliminate unnecessary weights from over-parameterized
networks. Early research [17] usually tries to remove weight pa-
rameters based on the Hessian matrix of the objective function.
Similarly, Han et al. [11] proposes to remove the weights or nodes

with small-norm from DNNs. However, these kinds of unstructured
pruning (i.e., discrete weights or nodes) can hardly reduce reason-
ing time without specialized hardware [33]. Therefore, structured

pruning [20, 33], i.e., channels/filters, is more applicable and be-
comes mainstream. For example, He et al. [12] resets less important

filters at every epoch while updating all other filters. Zhao et al. [37]

uses stochastic variational inference to remove the channels with

smaller mean/variance. Despite all that, previous methods essentially
follow the traditional empirical risk-guided model pruning paradigm;
thus, the obtained feature-untargeted sparse model is suboptimal for
OOD generalization.

3 Proposed Method

We start by formalizing the model structure-based OOD problem
in a complete inner product space and then provide a theoretical
analysis to investigate the impact of ID data and out-domain data
on model performance. Based on this framework, we elaborate on
the optimization objective of SFP and theoretically demonstrate its
effectiveness.

3.1 Notations and Preliminaries

3.1.1 Linear Parameterized Notations. Let X;3 € RP*4 and X,,4 €
R be the in-domain and out-domain datasets, respectively, where
p and q denote the numbers of data instances, and d is the feature
dimension. Consequently, the entire training dataset can be rep-
resented as X = Xy U X,,4, where X € R™4 withn = p +q.
The corresponding ground truth of the feature projection is rep-
resented by Y. Additionally, let p; and p, signify the proportions
of instances with and without spurious features in the training
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Figure 1: The training pipeline of SFP.

set, respectively, such that p; + p, = 1. To rigorously elucidate
our analysis and proofs, we align with the theoretical framework
established by previous works [6, 16, 32]. Specifically, they consider
a linear format for the feature extractor and define logits as the
projection length of input onto a specific subspace. Based on the
“implicit regularization effect of initialization [25]” and the “deep
multi-layer homogeneity [7]”, this non-convex optimization prob-
lem is approximated by reasoning about the trajectory of gradient
methods starting from the initialization. Under such circumstances,
we employ W € R™*4 a5 the parameters for the feature extractor,
where m denotes the dimension of logits. To formulate the learnable
networks, we define R = C(‘WT), S = C(Xi-;l), and U = C(X;';d)
as the subspaces spanned by the row vectors of the parameterized
network, in-domain data, and out-domain data, respectively. Ad-
ditionally, let E € RA%dim(R) F ¢ gdxdim(S) and G ¢ RI*dim(U)
serve as the orthogonal bases for R, S, and U, respectively. Conse-
quently, the algebraic representation of the model and domains can
be reformulated linearly as spanning spaces over a set of learnable
basis vectors. In this complete inner product space, the following
proposition can be claimed as follows:

Proposition 3.1. Model substructures and the feature representa-
tions can be effectively corresponded in linear form by the singular
value decomposition (SVD) of the feature projections of data into the
model space.

Discussion (Model): Define ETF € REM(R)Xdim(S) o4 the basis of
C(X;qWT) spanning the ID (spurious) feature projections. Simi-
larly, ETG € REMR)xdim(U) jg the basis of C(X,0q W) spanning
the out-domain feature projections. Since the column of E span
R, we have ‘W = Er for some r € R4M(R)_ For every ID instance,
the feature projection r; = E' Fa is used for some a € C(ETF),
where a is a column vector of R4M(S), Similarly, for every out-
domain instance, the feature projection r, = ET Gb is used for some
b € C(ETG), where b is a column vector of RAim(U), Therefore, the
feature projections of the whole training dataset in the model space
can be defined as r = p;ry + porz2. Assume W* is the optimal set
of model parameters, W* = Er*, where r* = p;ET Fa* + poE " Gbx,
and a*, b* be the true feature projections.

Discussion (Data): In S = C(Xl.-;) with basis F spanning X,
Vxi € Xjg, 3z € RING) 5 = (F2)T.X;; = (FZ)T, where Z = {z}.
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Similarly, in U = C(X;d) with basis G, V x,04 € Xyog, 30 €
RIMWU) 5 = (Go)T. Xp0q = (GV)T, where V = {0}.

3.1.2  Preliminary Optimization Target.

Definition 3.2. Under the OOD setting, applying the same opti-
mization objective to ID data with spurious features and out-domain
data without the same spurious features is called undirected learn-
ing

Definition 3.3. Trained independently from scratch for the same
number of iterations, the substructure within the original model
having the best OOD generalization performance is defined as the
OOD lottery [35].

For the structure-based approach searching the OOD lottery based
on undirected learning, the optimization target can be formulated
as:

min L(W,X,Y) =Ex [[XW - Y|5+S (W), (1)

where L is the task-dependent loss function, and § is the func-
tion that induces the sparsity of the model structure to find the tar-
get subnetwork. The domain-generalized substructure is described
by layer-wise channel saliencies in SFP. To this end, S is imple-
mented by the squeeze-and-excitation module as suggested in [13].
The value of relevant parameters in ¢-th iteration is represented by
subscript ¢, and the optimal value is represented by superscript .
Thus, the task loss in #-th iteration can be calculated as:

Ly = |IXW, = V|2 = [XWe - XW*2, )
and the gradient is:
aLt _ _ * T
awt_z((wt W) XTX. ®3)

The orthogonal basis of the model space is regarded as the left sin-
gular vectors when performing SVD on the feature projections of
data. The right singular vectors correspond to input data features,
and the corresponding singular values can be defined as indica-
tors of the importance of features of the current input w.r.t. the
model structure. To internally observe the impact of ID and out-
domain features on the model, the gradient accumulation is further
transformed into a linear form:

oL,

H‘Wt

=2(pf(ar = a")25r  Xia + P (br = b)E%r 5 Xooa):  (4)
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where ¥ denotes the corresponding singular value matrix, and for
simplicity, we omit ¢ under ¥ in the following discussion. The proof
of Eq. Equation (4) is provided in [Appendix] A.1.

Since dim(U) = q <« dim(S) = p, we have min Zprg =
min XgTp = agTF. Similarly, min Yptg = min Jgtp = agfrF,
and min YXgTg = min Xgrg = UZ’T - Finally, the model parame-
ters can be calculated as:

o m
W™ =W, -2Ir Z ZP,-Z(W - a*)o}ZETF’t,iXid
t=1 i=1
2 *y 2
—pobr —b )O'ETG,t!iXooa'-

®)

3.1.3 Biased Performance on Out-domain and ID Data. Based on
the gradient flow trajectories, we compare the learning process
and final performance of the model for spurious and invariant
features, respectively. We observe that the model structure obtained
by undirected learning clearly differs in performance between ID
data and out-of-domain data. With this observation, we propose
the following propositions.

Proposition 3.4. Undirected learning (full or sparse training) on
biased data distributions can lead to significantly different forward
speeds of the model learning along different data feature directions,
and the difference has a second-order relationship with the proportion
of different data distributions in the training set, i.e.:
oW, oW,
d(a; —a*) I(b; —b*)

~2piSep — pa3iig). (6)

Discussion (Update Gradient): We compute the direction gra-
dients along the directions of the feature projections of ID and
out-domain data, respectively. As shown in Eq. 6, with p; > p, in
the context of OOD, the learning of the basis of the model space
is gradually biased towards the directions of spurious features. By
performing SVD on the projection of the basis vector of the fea-
ture space through the model space, the obtained singular value
matrix can be regarded as the fitting degree of the model on the
corresponding data distribution at ¢, iteration.

Proposition 3.5. Undirected learning (full or sparse training) on
biased data distributions causes the model to be more biased towards
training features with a larger proportion, bringing about significant
performance differences in different data distributions, i.e.:

Lood = Lia (b = p3)(1=3prg) +€ >0, @)
where € is the difference of initial feature projections between ID and
out-domain data due to model initialization error. The full proof of
Eq. 7 is provided in [Appendix] A.2.

Taking the risk difference between ID data and out-domain data
of the trained model as the measurement of the OOD generalization,
the following conclusion is derived, i.e.,

Corollary 3.6. Undirected learning of networks on highly biased
training domains (the dataset consists of a majority data group with
spurious features) can only lead to substructures with sub-optimal
OOD generalization performance.

Discussion (Performance Difference): The result intuitively
shows that the undirectly learned model performs better on feature
distributions with larger instance numbers. As shown in Eq. 7, the
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Figure 2: Identification of the ID instances dominated by spu-
rious features. At epoch t, if no intervention is applied, the
average loss drop on all data (blue b) should be smaller than
that on ID data (blue a) and larger than that on out-domain
data (blue c). The red line denotes an ideal regularization
effect: the loss drops uniformly on all data.

difference in model performance between out-domain data and
ID data is linearly related to the proportion of the corresponding
instances and the correlation degree between the different feature
distributions. Moreover, when the out-domain data has the same
proportion as ID data in the training dataset (i.e., p;j = po) or the
data distributions of them are consistent, the task loss difference
between out-domain and ID data can be reduced to zero.

3.2 SFP: An Spurious Feature-Targeted Model
Pruning Method

To address the problem of sub-optimal OOD substructure caused
by undirected training, we propose a novel method to effectively
remove model branches that are only strongly correlated with spuri-
ous features. As demonstrated in Fig. 1, the pipeline consists of two
stages, including spurious feature identification and model sparse
training. Specifically, SFP identifies large spurious feature compo-
nents within ID instances with high probability by observing the
loss during training. It then can perform spurious feature-targeted
model sparsity by analyzing the SVD of the feature projection ma-
trix between the data and model space. We also provide a detailed
theoretical analysis of both stages of the proposed SFP in the fol-
lowing part.

3.2.1 Spurious Feature ldentification. As shown in Proposition. 3.5,
if no intervention is applied, a model trained on a highly biased data
distribution can be gradually biased towards ID data with lower
prediction loss. Since the loss difference between ID and out-domain
data can be approximately computed by (pi2 - p2)(1 - oprg), it s,
therefore, can be adopted as the identification criterion for spurious
features in each iteration. In brief, if the loss corresponding to the
current data is lower than a threshold A, then the current data is
likely to be an ID instance dominated by spurious features. Then
we can further prune the spanning sets of model space along the
directions of these spurious feature projections. To compute A, we
first investigate the average loss in the t — 1-th iteration as:

L7~ L7+ po(pi = po) (1= op7gy). ()
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T : t t-1 .
As shown in Fig. 2, since Lid < ‘Cid , we have:

sup L, =1L = po(pi = po) (1 = o7 ). ©)
Similar with Eq. 8, the lower bound of the loss on ID data at ¢-th
iteration can be computed as:
inf Li; =1L = po(pi = po) (1 = o ).
The spurious feature-targeted regularization forces the model to
learn invariant features and achieve fair loss reduction on all in-
stances: |L§d - 'Ez?d_1| = |£! — L£'71|. Therefore, the ideal lower
bound of the ID loss at ¢-th iteration is:
inf £, =L = po(pi = po) (1 — ok7g,)|
—| Lt - £,
Thus, Lf ; is highly likely to be located in the range of [min inf Lf "

sup Ll.t ;1. The upper bound is used to compute A for identifying
instances dominated by spurious features.

(10)

(11)

3.2.2 Spurious Feature-Targeted Pruning. SFP reacts to spurious
feature-related instances by weakening their corresponding spu-
rious feature projections into the model space, which can prevent
the model from over-fitting on identified spurious features. To an-
alyze the projections from data into the model space, we define
E e RMXM A € RPXP and T € R9*Y as the normalized orthogo-
nal basis of C(ETE), C(ET F), and C(ET G), spanning the optimal
model projections, the feature projections of ID data into the model
space, and the feature projections of out-domain data into the model
space, respectively. &;, 4;, and y; denote the i-th column vectors
in E, A, and T, respectively. The following lemma illustrates the
effectiveness of SFP, and its proof can be found in [Appendix] A.3.

Lemma 3.7. Spurious feature-targeted model sparsity can effectively
reduce the performance deviation of the learned model between in-
domain data and out-domain data:
R(Xood) = R(Xia)
R(Xood)sparse _ R(Xid)sparse
2L po0jEjYiXood — Lity PiitiAiXia
~ 9
2L po0iEjYiXood — Lizy PioitiAiXia
where R(-) is the empirical risk function. o; and &; is the i-th maxi-
mum in XgTp and 2T, and we have o > 0 since the singular values
are non-negative. m and 9 are the rank of the singular value matrix
after performing compact SVD and truncated SVD on the projections,
respectively.

(12)

~ >1

= L

ProoF oF LEMMA 3.7. Asmentioned earlier, the projection space

before the model sparsity can be represented as:
m

Er= )" (pioi&id] +poditiv] ). (13)
i=1

Specifically, SFP first performs SVD on the feature projections,
which maps input data to a set of coordinates based on the orthog-
onal basis of model space. The matrices of left and right singular
vectors correspond to the standard orthogonal basis of the model
space and data space, respectively. The matrix of singular values
corresponds to the direction weight of the action vectors in the
projection matrix. SFP prunes the model by trimming the smallest
singular values in ¥ as well as their corresponding left and right
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singular vectors. In this way, SFP can remove the spurious features
in ID data space and substructures in the model space simultane-
ously in a spurious feature-targeted manner along the directions
with weaker actions for projection. Then, the projection space with
only the most important J singular values can be formalized as:
ErsPse = piESprp A" + poéipral ™!
b m (14)
T c oy T
i=1 j=1
Based on the representation of the projection spaces, the model
response to data features R(X) = ErX can be calculated as:

R(X) = {piEZETFA71 +pO§ZETGI‘71}TXT
S . (15)
= 3 {pioi&A] X + poditiy X7}

i=1

3.3 Correspondence between Model
Substructure and Spurious Features

In this section, we theoretically demonstrate that, with a reasonable
setting of the sparse penalty for ID data, SFP can effectively reduce
the overfitting of the model on spurious features while retaining
the learning on invariant features. Specifically, we define f° I(x) as
the feature maps output of x at layer . It represents the projection
of x onto the model space defined over the spanning set E to be
learned. We abbreviate the final probabilities as f (x) for simplifica-
tion. Referring to Sec. 3.2.1, we have x € X4 if Lce(x) < A. Thus,
the optimization target of SFP can be formulated as:
L
min By x Lee (6 W) +1 ) Bxyl I ()],
I=1
where 7 is the sparsity factor imposed on the feature projections
for the identified ID data. Lemma 3.8 elucidates the setting of 1. For
a detailed proof, please refer to [Appendix] A.4.

(16)

Lemma 3.8. Definee = |f*(x) — f(x)| as the Iy -norm between the
groudtruth f*(x) and f(x). Whenn < 2e, SFP can effectively reduce
the learning of the model towards spurious features while keeping the
performance on the other features.

Proor oF LEMMA 3.8: The prediction errors of feature projec-
tions Ly can be defined as:

Ly =1f"(x) - f(x)[?
= Y (@i ETA —aipETy)s (17
L,j=j1YJj2
and the corresponding gradient is:
aLf de? de
= = 2e
90i,jy i 90ij&i  90ijLi 18)

-0ip&iTr)|

*(x) = 01j,EiTA;
:26|f ( ) l,]1§l J1 ——Zeljl,

90 j&;
where i and j are the index of column vectors in the orthogonal basis

for model space and feature space, respectively. For out-domain data,
the gradient of the column vectors in the OOD projection matrix
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interacting with the j;, feature vector is —2ey;,. Then, split the in-
domain features into spurious features F” and invariant features IN
and out-domain features into unknown features G’ and invariant
features IN. With a high probability under the OOD setting, we
assume F’ and G’ are orthogonal. To achieve the spurious feature-
targeted unlearning and invariant feature-targeted learning of the
model, we need to satisfy the following constraint:

2epiAIN + 2epoYIN — PilAIN > 2epoYG
< zePiAIN +2epoYIN — 2epoyG’ ~ 2 (19)
- PiAIN '

=7
]

Since the de-learning rate of the spurious feature is positively
correlated with 5, the upper bound n = 2e is taken.

4 Experiments

In this section, we conducted extensive experiments on the Do-
mainBed benchmarks [10] and other datasets that are widely used
in the latest OOD studies. Due to space constraints, some experi-
mental details are provided in [Appendix] B and C.

4.1 Experimental Setting

Datasets and Procedure. The proposed method is initially eval-
uated within the DomainBed framework using four datasets: Col-
oredMNIST (CMNIST), RotatedMNIST (RMNIST), as well as the
multi-domain image classification datasets PACS, OfficeHome,
Terralnc, and DomainNet [10]. To ensure comprehensive bench-
marking, three synthetic datasets — FullColoredMNIST (FCMNIST),
ColoredObject, and SceneObject — are included, along with two
real-world image datasets, CelebA [22] and WaterBirds [31]. Fig. 3
illustrates the three synthetic datasets not encompassed within Do-
mainBed, and more details are provided in [Appendix] C.1.

Ay ™ e [k
(c) SceneObject

(a) FCMNIST

(b) ColoredObject

Figure 3: Visualization of three synthetic OOD datasets.

Model and Implementation. To ensure a robust and equitable
evaluation, the experimental settings in this work are consistent
with the common practice established in antecedent studies. Specif-
ically, for Rotated, Colored, and FCMNIST datasets, we use the
4-layer 3x3 ConvNet architecture as introduced in DomainBed. For
the VLCS and PACS datasets, we utilize the ResNet-18 architecture
as in IIB [18], with the default hyperparameters set in DomainBed.
Additionally, for other larger datasets, we adopt the ResNet-50 ar-
chitecture following the experimental settings outlined by previous
works [27, 28]. All experiments are conducted on a workstation
equipped with 8 Nvidia GTX 3090TI GPUs and a 3.6-GHZ Intel
Core i9-9900KF CPU. The learning rate is initialized at 0.001 for
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digit datasets and 0.01 for object datasets. We employ the Adam op-
timizer for optimization in relatively simple image datasets, while
SGD for more complex ones.

4.2 Comparison on DomainBed Benchmark

The experiment results on DomainBed demonstrate the superior
performance of SFP over the state-of-the-art approaches. As shown
in Table 1, SFP achieves the highest average accuracy of 72.8%, out-
performing the benchmarked ERM (which is meticulously tuned
within DomainBed and serves as a robust baseline) by 2.2%. On
smaller datasets such as Colored and Rotated MNIST, most meth-
ods exhibit limited effectiveness. In contrast, SFP stands out by
achieving an accuracy improvement of up to 14.0%, highlighting
its robust feature-based recognition and suppression capabilities
against correlation shifts. On larger datasets, SFP maintains satisfac-
tory performance, demonstrating a remarkable accuracy increase
up to 2.9% and 9.4% on VLCS and PACS, respectively. Notably, on
the OfficeHome dataset, SFP boosts the OOD accuracy from 68.6%
to 71.8%. The results also underscore the disadvantages of SOTAS
in effectively addressing the correlation and diversity shifts simul-
taneously. For instance, while the ARM method excels in mitigating
correlation shifts on Colored MNIST, it falters when confronted
with diversity shifts in the OfficeHome dataset. Conversely, IIB
performs well in scenarios involving diversity shifts but exhibits
mediocre performance in correlation shift scenarios. Differently,
SFP exhibits superior performance in most cases, emerging as a lead-
ing approach in the field of OOD generalization. More experimental
details are provided in [Appendix] C.2.

4.3 Comparison on Other Benchmarks

We also conduct experiments on several widely-used datasets not
included in DomainBed. For synthetic FCMNIST and ColoredObject
datasets, bias coefficients (indicating the extent of data shift) are set
as (0.8,0.6,0.0). This implies that the digits in the two training do-
mains are spuriously colored with probabilities of 0.8 and 0.6, while
images in the test domain are randomly colored. For SceneObject
dataset, we set the biased ratios as (0.9, 0.7, 0.0), further hampering
the model’s capture of invariant features.

We compare SFP with the most comparable MRM, as well as
their combined variants with IRM [2], V-REx [15], and DRO [28],
on three synthetic datasets including FCMNIST, ColoredObject, and
SceneObject. The results are shown in Table 2, demonstrating the
superior performance of SFP under both independent and combined
modes. To be specific, the results show that MRM compromises
the generalization performance of the original algorithm in some
cases. For example, the DRO algorithm independently achieves a
test accuracy of 31.31% on SceneObject. However, when combined
with MRM, the performance drops to 29.38%, while SFP contributes
to an increased accuracy of 31.78%.

We also compare SFP with state-of-the-art SparseIRM [38] on
FCMNIST with two different architectures, i.e., ResNet18 and MLP.
Specifically, SFP outperforms SparseIRM with 3.41% higher test
accuracy on MLP and even 29.12% on ResNet18. An interesting phe-
nomenon is that, on small MLP, SparseIRM exhibits an obvious two-
stage trend, which is consistent with regular non-feature-targeted
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Table 1: DomainBed benchmark: Performance comparison (Accuracy %) between the proposed SFP method and the state-of-the-

« »

art domain generalization methods.

represents the missing data due to partially different settings. “Average” reports the

average accuracy over all the datasets. We format first, second, and worse than ERM results.

. CMNIST RMNIST VLCS PACS OfficeHome TerralInc DomainNet
Algorithm Average
MLP MLP ResNet-18 ResNet-18 ResNet-50 ResNet-50 ResNet-50
ERM [30] 57.8+0.2 97.8+0.1 77.2+0.4 83.0+0.7 66.4+0.5 53.0+0.3 41.3+0.1 70.6
IRM [2] 67.7+1.2 97.5+0.2 76.3+0.6 81.5+0.8 63.0+2.7 50.5+0.7 28.0+5.1 69.0
GroupDRO [28]  61.1x0.9 97.9+0.1 77.9+0.5 83.5+0.2 66.2+0.6 52.4x0.1 33.4+03 67.5
Mixup [34] 58.4+0.2 98.0+0.1 77.7+0.6 83.2+0.4 68.0=0.2 54.4+0.3 39.6+0.1 63.3
MLDG [19] 58.2+0.4 97.8+0.1 77.2+0.9 82.9+1.7 66.6+0.3 52.0+0.1 41.6+0.1 68.0
MMD [1] 63.3+1.3 98.0+0.1 77.3+0.5 83.2+0.2 66.240.3 52.0+0.4 23.549.4 66.2
CDANN [21] 59.5+2.0 97.9+0.0 77.5+0.2 78.8+2.2 65.3+0.5 50.8+0.6 38.5+0.2 66.9
MTL [3] 57.6+0.3 97.9+0.1 76.6+0.5 83.7+0.4 66.5+0.4 52.2+0.4 40.8+0.1 67.9
SagNet [24] 58.2+0.3 97.9+0.0 77.5+0.3 82.320.1 67.5+0.2 52.5+0.4 40.8+0.2 68.1
ARM [36] 63.2+0.7 98.1+0.1 76.6+0.5 81.7+0.2 64.8+0.4 51.2+0.5 36.0=+0.2 67.4
V-REx [15] 67.0+1.3 97.9+0.1 76.7+1.0 81.3+0.9 65.7+0.3 51.4+0.5 30.1£3.7 67.2
RSC [14] 58.5+0.5 97.6£0.1 77.5%0.5 82.6£0.7 66.5+0.6 52.1x0.2 38.9+0.6 67.7
Fishr [27] 68.8+1.4 97.8+0.1 - - 68.2+0.2 53.6+0.4 41.8+0.2 -
SFP 71.6+0.3 98.3+1.4 79.2+0.7 90.7+0.1 71.8+0.1 57.8+0.3 40.00.7 72.8
Table 2: OOD generalization performance on FullCol- 30 T
oredMNIST, ColoredObject, and SceneObject. “MRM+X” and 25 —%—00D_loss_ERM
“SFP+X” indicate the integration of MRM/SFP in the “X” al- v 20l —o- gagnslso; sSFr;RM
gorithm. The “Unbiased” row reports the original accuracy § ' -
for each dataset without data distribution shifts. op 1.5
£ 10/
Method FCMNIST ColoredObject SceneObject = 05 Q
ERM 62.2 59.2 27.4 Boeo-00 & € B —0-0
MRM 81.0 60.7 26.7 1
SFP 84.3 61.01 28.4 0 5 10 5 20 2 30
IRM 78.0 62.9 36.9 Epochs
MRM +IRM 593 645 369 Figure 4: Training loss visualization
SFP+IRM 89.9 65.8 38.1
V-REx 87.8 64.7 36.7 regularization term. As shown in Fig. 4, throughout the training
MRM +V-REx 92.2 64.5 36.7 process, the loss of in-domain (ID) instances consistently remains
SEP+V-REx 93.4 66.1 37.9 lower than that of out-domain instances, validating Proposition 3.5.
DRO 62.9 66.8 31.3 In ERM, the rapid convergence of ID instance loss (depicted by
MRM +DRO 80.5 66.2 29.4 red lines) indicates an excessive focus on biased data, leading to
SFP+DRO 85.2 68.4 31.8 overfitting spurious features and neglecting invariant features. Con-
UNBIASED 910 758 455 versely, in SFP, the gap between loss values for ID and out-domain

model pruning. Differently, SFP consistently shows a stable learn-
ing process and achieves higher performance in both ID (train) and
OOD (test) environments. Due to space constraints, the experimen-
tal details are provided in [Appendix] C.3.

4.4 Ablation Study

Loss Tracking. We visualize and compare loss values between
ERM and our proposed SFP to assess the efficacy of our introduced
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instances narrows significantly, underscoring the effectiveness of
spurious feature-targeted pruning. What’s more, the optimization
of SFP won’t hinder convergence speed as well as adversely affects
the performance of ID instances.

Prediction Confidence. The inherent motivation of SFP origi-
nates from scrutinizing the behavioral disparities between ID sam-
ples and OOD samples under ERM, which is illustrated via two
empirical experiments as follows. We first measure the bias be-
tween the maximum value and other values in the logits vectors
corresponding to different samples, where the maximum typically
represents the prediction. A large logits discrepancy suggests a


https://github.com/eigenailab/SFP

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

~—&—00D sample 1
——00D sample 2
— 4 D sample 1

— - 00D sample 1
—O— 00D sample 2
—=&—|D sample 1

Z —>—ID sample 2 e 1of —0— ID sample 2
2 004 £
b1 8 0.8
© o03 2%%, & el
2, oo
F-Y

bias distribution divergence

(a) Bias density (b) Distribution divergence
Figure 5: The probability density of bias between the max
value and the others in predicted distribution.

significant divergence between the probability densities of the pre-
dicted class and others, which can be used as a metric for gauging
the prediction confidence. The results, depicted in Fig. 5a, reveal
that ID samples generally exhibit larger logits discrepancies com-
pared to OOD samples, indicating a tendency of the current model
to allocate greater confidence to the predictions of ID samples.

Additionally, we evaluate the /;-norm between the predicted
and true distributions over different classes to gauge the degree of
the model capturing different features. The results are shown in
Fig. 5b. It’s evident that the distribution loss of ID samples sharply
decreases in the early training stages but gradually slows down
afterward. Conversely, OOD samples initially show a slight increase
in distribution loss, followed by a steep decrease. This early training
behavior suggests that the model initially prioritizes spurious corre-
lations, but as training progresses, SFP mitigates the fit of spurious
correlations while promoting the learning of invariant features. As
a result, the downward trend of distribution loss for ID samples
decelerates, while the trend for OOD samples starts to rise.

Sparsity Analysis. Prior structure-based OOD studies usually
utilize human-crafted hyperparameters to find a suitable functional
OOD substructure. In contrast, our method treats the sparsity coef-
ficients (A, n) as dynamic variables that are calculated dynamically
during training, i.e., the proposed SFP intelligently determines the
optimal OOD sparsity and structure based on inherent data attributes.
Specifically, (A) gives a sparsity threshold based on inherent statis-
tical and geometric biases within the data (e.g., Egs. 9-11), and 7 ad-
justs the penalty strength based on dynamic training feedback (e.g.,
Eq. 6). To empirically evaluate the sparsity of our model and, at the
same time, provide a quantitative impact of 7 on OOD accuracy, we
conduct experiments on varied offsets to the theoretically computed
1 (2e). Specifically, the offsets are ranged in [-1.0, -0.5, 0.0, 0.5, 1.0].
The results regarding model sparsity and test accuracy are shown in
Fig. 6. The corresponding OOD accuracy are [73.01262%, 79.84853%,
86.30715%, 84.19074%, 76.23703%], and the pruning rates are ranged
in [27.94951%, 45.09116%, 56.70407%, 62.09122%, 74.40112%). The
results demonstrate that the autonomous acquisition of sparsity
and sparse structures (offset of 0) yields superior OOD performance
than empirical sparse settings.

Feature Visualization. We visualize the extracted features us-
ing t-distributed stochastic neighbor embedding (t-SNE) for dimen-
sionality reduction to explore the SFP model’s learned representa-
tions. Experiments are conducted on FullColoredMNIST datasets.
The models are trained on domain-related samples and tested on
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Figure 6: The effect of different 7 values on the model sparsity
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Figure 7: The visualization of the features learned by SFP.

domain-unrelated samples with random colors. The results are
shown in Fig. 7, where each data point represents an image. No-
tably, the spatial arrangement corresponds to the reduced shape
features. The features cluster into ten groups. The left subplots
color each point based on invariant features, i.e., samples with the
same digit are colored identically. For example, as shown in Fig. 7a,
each cluster contains points belonging to one class. Conversely, all
right subplots color each point based on spurious features, where
samples with the same spurious feature (e.g., red 2 and red 3) are
colored identically. The results are shown in Fig. 7b, each cluster
(class) involves diverse spurious features, indicating that the cur-
rent classification results are independent of spurious features. This
suggests that clustered features are specific to invariant digit shapes
and remain unaffected by color variations, demonstrating that SFP
could successfully acquire disentangled representations.

5 Conclusion

In this paper, we introduce a novel spurious feature-targeted model
pruning framework, dubbed SFP, designed to automatically explore
the optimal model substructure for improved out-of-distribution
(OOD) generalization. By effectively identifying spurious features
within in-distribution (ID) instances during training, SFP can se-
lectively remove model branches that heavily depend on these
spurious features. As a result, SFP attenuates the impact of spuri-
ous features on the model’s representation space and guides the
model learning process toward invariant features. Additionally, we
provide a detailed theoretical analysis to establish the rationality of
our approach and offer a proof framework for understanding OOD
structures via model sparsity. Experimental results corroborate the
effectiveness of our proposed method.
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