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Abstract

This paper provides an efficient training-free painterly image har-
monization (PIH) method, dubbed FreePIH, that leverages only a
pre-trained diffusion model to achieve state-of-the-art harmoniza-
tion results. Unlike existing methods that require either training
auxiliary networks or fine-tuning a large pre-trained backbone,
or both, to harmonize a foreground object with a painterly-style
background image, our FreePIH tames the denoising process as a
plug-in module for foreground image style transfer. Specifically, we
find that the very last few steps of the denoising (i.e., generation)
process strongly correspond to the stylistic information of images,
and based on this, we propose to augment the latent features of
both the foreground and background images with Gaussians for a
direct denoising-based harmonization. To guarantee the fidelity of
the harmonized image, we make use of latent features to enforce the
consistency of the content and stability of the foreground objects in
the latent space, and meanwhile, aligning both fore-/back-grounds
with the same style. Moreover, to accommodate the generation
with more structural and textural details, we further integrate text
prompts to attend to the latent features, hence improving the gen-
eration quality. Quantitative and qualitative evaluations on COCO
and LAION 5B datasets demonstrate that our method can surpass
representative baselines by large margins.
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1 Introduction

Image compositing is a fundamental task in image editing, enabling
users to merge foreground and background images to create new
artwork. Often, the foreground and background images have vary-
ing colors and structures. Our objective is to seamlessly integrate
a foreground item into a different background image, producing
a natural and visually pleasing result. In recent years, there has
been a growing interest in image compositing, with researchers
exploring various methods to improve the quality of composite
images [3, 5, 13, 23]. The overall framework utilized in these studies
remains largely unchanged. Typically, a set of loss terms (such as
content loss, style loss, and stability loss) is designed based on a
pre-trained feature extractor network, often VGG-19 [40]. These
loss terms are then iteratively optimized to update the pixel values
of the foreground image. One notable advantage of this frame-
work is its avoidance of the need for additional data collection or
resource-intensive model training or fine-tuning processes, making
it a plug-in module built upon an off-the-shelf pre-trained model.

Recent advancements in image generation techniques have led re-
searchers to explore the use of Text to Image Diffusion Models (T2I-
DM) for image compositing [20, 24, 34, 37, 42]. T2I-DM[9, 17, 32, 34],
combined with CLIP [35], enables users to generate images based
on natural language prompts. However, one of the challenges faced
with T2I-DM is the loss of control over the generated images. In
scenarios where users want to composite specific items into an
image and describe them using natural language, T2I-DM may
not generate the desired output or may be difficult to guide us-
ing simple words. Previous work, such as Dreambooth [38, 45],
can inject specific items into output images, but this approach re-
quires lengthy fine-tuning processes. Other works like text-driven
editing approaches[1, 4, 18, 21, 30, 43] are insufficient for image
compositing, as it is sometimes challenging to provide accurate ver-
bal representations to capture the details or preserve the identity
and appearance of a given object image.

Enabling T2I-DM with image compositing capabilities can be
achieved through a direct approach involving the use of T2I-DM
to generate the background image, followed by the application
of an image compositing algorithm to blend the foreground item
into the generated image. However, this method often yields a
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Figure 1: Example of painterly image harmonization with our proposed FreePIH.

foreground image that does not harmonize with the style of the
background, resulting in unnatural fused results. Additionally, pre-
vious approaches typically utilize VGG-19 as the feature extractor,
necessitating the use of both the neural network module employed
by the T2I-DM and VGG-19 for compositing. However, we find that
the modules within T2I-DM already serve as effective multi-scale
feature extractors. Unlike VGG-19, which is trained for classifi-
cation, the modules in T2I-DM are specifically trained for image
generation and possess the ability to extract multi-scale feature
maps, thereby surpassing VGG-19 in handling the complex feature
representations required for image editing.

In this paper, we leverage the pre-trained T2I-DM to conduct
image compositing and introduce a method named "FreePIH". The
background can either be the images generated by the T2I-DM
or provided by the user. This approach differs from text-driven
editing with diffusion models, as it allows users to add items to
specific locations while preserving their structure and appearance,
providing greater control over their AIGC (Artificial Intelligence
Generated Content) artworks. Specifically, our framework takes a
tuple (xG, X7, m) that represents the background, foreground, and
mask, respectively. We utilize the Variational Autoencoder (VAE)
image encoder in T2I-DM to extract low-level content feature maps.
While methods like ControlNet [48, 51], T2I-adapter[31, 47] can
achieve controllable generation, they are only suitable for scenar-
ios where there is no expected output. For instance, if we want a
sunflower with specific details in the target position, these methods
often fail to preserve the provided details, resulting in a different
sunflower. Our work contributes by enabling this type of control-
lable editing while preserving the details of the provided images.

To achieve harmonious image composition, we design a two-
branch fusion process based on the pipeline of DM. Foreground
and background images follow different branches during the com-
position process. For the background branch, after injecting noise,
background images follow the normal DM denoising pipeline to
remove the added noise step by step. For the foreground branch,
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we use different features to control the denoising process in order
to achieve content preservation and style transfer simultaneously.
Specifically, to obtain high-level style feature maps, we first apply
data augmentation to the latent features extracted by the VAE based
on the diffusion forward process. Based on three key observations:
(1) the denoising process in DM can be divided into two parts[8, 14],
with the early denoising steps generating the overall structure and
outline, while the remaining denoising steps refine the details and
style gradually. (2) Injecting excessive noise can disrupt the struc-
ture of the original image and lead to a loss of control over the image
content. (3) With only a small amount of noise injection, we only
need to denoise a few steps, thereby accelerating the overall harmo-
nization process. As a result, to ensure consistency between input
and output images and save inference time, the level of forward
noise injection in the data augmentation needs to be controlled.
The augmented latent features then interact with the text input in
the DM module using a cross-attention mechanism. The resulting
feature map serves as our high-level style representation. Through
iterative optimization, we seamlessly blend the foreground into
the background. Importantly, our method eliminates the need for
model fine-tuning, distinguishing it from existing baselines, partic-
ularly DM-based approaches which rely on auxiliary modules and
hundreds of GPU hours for image fusion training. Furthermore, our
method empowers T2I-DM users with increased control over their
AIGC artworks.
Our contributions can be summarized as follows:

e We propose FreePIH, which can work as a plug-in mod-
ule to enable image harmonization on off-the-shelf T2I-DM
without the need for collecting new data, training auxiliary
networks, and fine-tuning pre-trained models.

e We conduct noise augmentation on the latent features and
leverage the corresponding output to accurately capture
stylistic information based on the feature of DM.
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e With the composition capacity of FreePIH, users gain en-
hanced autonomy in shaping their AIGC artworks when
using DM-based genetative model.

e Qualitative and quantitative analysis reveals that our FreePIH
method can generate more natural fusion images compared
with other baselines.

2 Related work
2.1 Image Compositing

Image compositing has historically presented a formidable chal-
lenge in the realm of image editing, aiming to seamlessly integrate
a given foreground image into a target background image. The
prevailing body of work is rooted in the framework devised by [11].
This framework employs a pre-trained neural network model to
extract multi-scale feature maps, which are subsequently utilized
to compute a set of loss terms encompassing style loss, content
loss, and stability loss. Subsequent endeavors have concentrated
on refining the design of these loss terms and the feature extractor.

Certain studies, such as DPH[27] and DIB[49], optimize the op-
timization process by integrating diverse loss terms such as Pois-
son image loss and histogram loss. Others, including PHDNet[3]
and FDIT[2], have ascertained that transforming the feature maps
into the frequency domain can enhance appearance preservation
and compositing harmonization. Furthermore, CNN-based net-
works such as RainNet[23], DoveNet [6], and BAIN [13], as well
as attention-based networks like SAM[7] and CDTNet [5], have
been enlisted to supplant the former VGG-19 feature extractor. Di-
verging from the aforementioned research, we harness the latent
potential of off-the-shelf T2I-DM models to capitalize on their im-
age harmonization capabilities. Given that the modules within the
T2I-DM models are trained on a large-scale dataset for image gen-
eration, the features extracted by these modules inherently serve
as zero-shot multi-scale feature extractors for image compositing
and harmonization tasks.

2.2 Text to Image Diffusion

The Diffusion Model (DM)[16] represents a pioneering Al model
inspired by non-equilibrium thermodynamics. It functions by es-
tablishing a Markov chain of diffusion steps, gradually introducing
random noise to data, and subsequently learning to reverse the
diffusion process to generate desired data samples from the noise.
In the realm of image generation, DM initiates the process by gener-
ating a random Gaussian noise image and progressively eliminates
noise in a step-by-step fashion until a clear image is obtained.
Through integration with the CLIP text encoder, DM acquires
the capability to employ natural language prompts to steer the
diffusion generation process. Noteworthy models such as Stable
Diffusion[37], DallE-[36], and Midjourney have showcased remark-
able proficiency in executing text-to-image (T2I) guided generation.
However, while T2I-DM serves as a potent tool for image genera-
tion, there are scenarios where the generated images may not align
with the user’s expectations. For instance, if the desired prompt
is "dog sitting in front of a door," providing T2I-DM with the text
prompt "dog" might yield an entirely different image with a dog
sitting elsewhere. Consequently, the challenge of providing users
with enhanced control over their Al-generated artworks persists.
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2.3 Guide Diffusion

To enhance the control of DM, researchers have proposed several
updated versions of T2I-DM. Works such as Dreambooth[38] and
text-inversion[10] address this issue by tailoring T2I-DM genera-
tion to users’ personalized requirements. However, these methods
necessitate extensive time and computational resources, as they
involve hours of fine-tuning a pre-trained T2I-DM model. Addi-
tionally, Dreambooth requires a significant amount of images with
similar semantic content, which may not always be available.

An alternative approach, known as prompt-to-prompt, facilitates
image editing by modifying the cross-attention modules of T2I-
DM][15, 44]. However, the edited images generated through this
method are limited to those produced by T2I-DM itself, as the
attention editing operation relies on the previous attention feature
map. Consequently, it is not ideal for editing user-provided images.

Recent research endeavors have attempted to equip T2I-DM
with text-driven editing capabilities[1]. Nevertheless, accurately
and concisely describing a personalized demand can be challenging
in some cases. Furthermore, even when an appropriate text prompt
is provided (e.g., a precise description of a dog’s ears, eyes, and
nose features), T2I-DM may capture these features but ultimately
generate a dog with different characteristics which diverges from
the original intention.

2.4 Diffusion for Image Harmonization

Over the last year, many efforts have been made to adapt the power-
ful pre-train DM into the image harmonization tasks. For instance,
the CDC [12] introduced a technique for conditioning at the time of
inference that incorporates high-frequency background details and
low-frequency foreground style for image creation. However, the
assumption made by CDC that high-frequency and low-frequency
features in an image always represent style and content informa-
tion respectively is not always accurate. The InST[50] project was
inspired by the idea that a one-of-a-kind piece of art cannot be
adequately described using words. As a result, it developed an en-
coding module that translates a style image into the text domain
using a CLIP image encoder. On the other hand, PHDDiffusion[26]
enhances SD with a lightweight adaptive encoder, with the goal of
extracting the necessary condition information (such as background
style and image content) from the composite image. Nevertheless,
previous diffusion-based techniques are unable to offer strong style
guidance and maintain content in image harmonization process.

3 Method

Given an input image, denoted as xg, which can be either provided
by the user or generated by the T2I-DM model using a semantic
prompt d, our objective is to blend this image with another user-
provided image, xj, using a binary mask m. The goal is to create a
fused image, xr, where the content in the masked region, xr o m,
closely resembles the structure and texture of the original image xj.
In other words, we want xp o m to be approximate to xj (denoted as
element-wise multiplication o). Additionally, the unmasked region
should remain unchanged, meaning xr o (1 —m) = xg. It is also im-
portant to ensure that the blended region xr o m and unchangeable
region Xg o (1 —m) have a consistent style, resulting in a seamless
and natural transition between the two regions.
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Figure 2: The architecture of our FreePIH, we modify the pre-train stable diffusion model and add several loss terms to control

the style transformation of foreground items.

To achieve this, we propose a method that utilizes the inter-
mediate results from T2I-DM to guide the style transfer of the
user-provided image. This is done by introducing a blending loss
that consists of content loss, style loss, and stability loss.

3.1 Overall Workflow

As depicted in Figure 2, we leverage a pre-train T2I-DM architec-
ture for our task. We have found that the VAE and Unet module in
T2I-DM serve as excellent feature extractors. Prior to compositing
the foreground and background images, we utilize the VAE image
encoder to convert xg and Xy into latent features X and X;. Then
we conduct the noise augmentation to the output VAE feature based
on the forward diffusion process. The aim of noise augmentation is
to weaken the original style of the foreground image. But we should
not inject too much noise during this process considering the con-
trollability and time. Subsequently, we initialize a learnable latent
feature X7, with the same value as Xy as a starting point. The objec-
tive of our method is to optimize the learnable feature Xy so that it
seamlessly integrates with X while preserving the majority of the
features observed in x7. To achieve this goal, we introduce noise
into the latent features X and Xy . These augmented latent features
are then fed through the DM network, and the resulting output
is used to calculate the style loss. By performing backpropagation
with both content loss and stability loss, we are able to update the
learnable feature X;. We denote the updated result as )A(IC_IA Next,
we update X using the input mask, which can be expressed as:

ot—1 ot st-1

X5 =DMg(x;) o (1—m)+DMg(x;" ") om, (1)
where the f(i_l, f(gl then work as the input for next iteration. We
repeat this process until ¢+ = 0. Finally, we have Xp = )Eoc, and

we can use the VAE image decoder to decode the latent feature
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XF to xp, which is our final output. Note that in the compositing
process, only the learnable parts are updated, while the DM, and
VAE modules are frozen. Additionally, the compositing process can
be completed within a few seconds, whereas fine-tuning a T2I-DM
with Dreambooth may require as long as a day. This streamlined
approach allows for efficient and timely image compositing while
minimizing the overall computational burden.

3.2 Augmentation and Denoising

T t+1 t 0

*: DGM

: ge .Augmenlalion
Figure 3: Conduct the noise augmentation only on the last

steps of the denoising process. We avoid the denoising calcu-
lation from T to ¢ + 1.

Latent
Feature

To capture the stylistic information with T2I-DM, we first con-
duct the augmentation over the input latent feature X, X by in-
jecting noise into the input latent feature. The results distribution
after noise augmentation is as follows:

q(Xp %) = N (Rp; Varkr, (1 - @)D, @)

where t is a hyperparameter that controls the noise inject level.
Typically, we set ¢ to be less than 0.2 times the total denoising steps
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(T), as depicted in Figure 3. This decision is based on three key
observations. Firstly, previous studies [8, 14] have demonstrated
that the denoising process in DM can be divided into two parts. After
generating an image from a purely noisy image x”, the majority of
the content remains unchanged from the first part. Subsequently,
in the remaining denoising steps, the details and style are gradually
refined. Therefore, to capture the style features, we only need to
introduce a small amount of noise to modify the style. Secondly,
our observations indicate that injecting excessive noise can disrupt
the structure of the original image. Since the denoising process
involves inherent randomness, injecting too much noise can lead
to a loss of control over the image content and result in a different
background. Thirdly, by ensuring that ¢ is less than T, we can
expedite the inference process. If we inject ¢ steps of noise, we only
need to denoise the same number of steps, thereby accelerating the
overall process.

The denoising steps follow the normal DM process which we
have:

(' 0) = N (x' ' [pg, 0°D), ©)
where €y represents a neural network that takes the noised image
x!, the time index ¢, and additional conditions as inputs, and predicts
the noise that should be removed from x*. The solver used to sample
x*~1in Eq. ((3)) can be any solver proposed by previous works, such
as DDPM[16], DDIM[41], DPM++[25], and so on.

Since the output of DM is already the noise version of the input
(ie., x!~1 = DM(x!, 1)), we can directly update g using Eq. (1)),
which is shown as the intermediate line in Figure 2. The updated
value can then serve as the input for the next iteration. As for X,
we retain the noise injection steps with different ¢.

3.3 Loss

The fundamental concept behind style transfer is to utilize multiple
loss functions to achieve a balance between various objectives,
including transferring the visual style from image x to the style of
image X, preserving the structure and details of the input image
x1, and seamlessly merging xy into xg. The overall loss function
can be represented as follows:

©

L= wstyLsty +wcLe + wstaLsta-

The loss functions for the mentioned objectives, denoted as .[:sty, Le, Lsta,

are used to measure and optimize the model’s performance. These
objectives represent different aspects and are assigned weights rep-
resented by ws;y, wc, @stq to ensure a balanced combination of the
losses. The distinguishing factor among various works lies in their
formulation of these loss functions and the feature extractors em-
ployed. In our research, we take a different approach from previous
studies that utilize VGG-Net as the feature extractor. Instead, we
capitalize on the modules present in the T2I-DM, which themselves
serve as exceptional multi-scale feature extractors. This allows us to
harness the features extracted by these modules for the calculation
of different loss functions, thus enhancing the overall performance
of the model.

3.3.1 Style Loss. To obtain the style feature of the background,
denoted as X, we subject it to augmentation and input it into the
DM. The output serves as the style feature representation of the
background. To better utilize the multi-modal features of T2I-DM,
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we go a step further for the foreground. We incorporate textual
information to provide DM with knowledge about the foreground
item. This is achieved by encoding the text ¢ using the CLIP text en-
coder. The encoded text then guides the denoising process through
the cross-attention mechanism.

(WQEimg) (WKEtxt)T
Vd

where Ejpg is the intermediate feature of DM and Ey; is the em-
bedding result of CLIP text encoder. Wg, Wi, Wy are attention
weights. Finally, we calculate the style loss as:

Ly = |IG(DMp(%},1,¢)) - G(DMp (35, 1,0)) ||,

Attn = Softmax( )WVEtxtx ()

(6)

where G(+) = DM9(~)DM9(-)T € RVXN js the Gram matrix. The
advantage of using the Gram matrix is that it can remove the loca-
tion impact on the style representation. Meanwhile, the product of
DM feature and its transposition can turn the local statistics feature
into a global feature[27].

3.3.2 Content Loss. Since the latent feature Xy, serves as a compre-
hensive multi-scale content feature representation, we can calculate
the content loss by measuring the difference between % and X; as
follows:

)
By minimizing this loss term, we can ensure the content in the
corresponding position of the target output have the close structure
and detail as to the user providing x;.

Le =X - x1]|.

3.3.3 Stability Loss. To increase the stability of the output and
reduce the ambiguity during the generation process, we add his-
togram loss[46] and total variation loss[19] into L;4. Histogram
loss is calculated by:

Lpis = 1%z = R0, ®)

where R(X1) = histmatch(Xr,Xg) is the histogram-remapped fea-
ture map by match Xy to Xg.
Total variation loss is calculated by:

Ly = Z(iL(l} B =% = D)2+ R j) - %3 = 1,))% (9)
Lj
where X1 (i, j) represent the feature in the position (i, j).
Finally, we have:

Lsta = Ahis-chis + Ao Lo,

where Ap;s, At are two hyperparameters to balance the influence
of these two loss terms. L, term can improve the compositing
result by producing smoother output.

(10)

3.4 Optimization

For the optimization process, we have carefully selected the values
of the weighting parameters: ws;y is set to 1e7, w is set to 1el, and
Wsta 1s set to 1. Additionally, we perform 5 rounds of optimization
in each iteration, and instead of using the Adam solver, we utilize
a quasi-Newton solver called L-BFGS to minimize the loss func-
tion instead of Adam solver as we found failed to composite the
foreground image into the background with the same number of
optimization rounds as the L-BFGS solver.
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Algorithm 1 FreePIH
Input: Foreground xj, Background xg, Mask m, Style text c,
Pre-train T2 — DMy, Augmentation strength ¢
Output: Fused image xr
: Let ENC be the VAE encoder of T2I — DMj.
: Let DEC be the VAE decoder of T2I — DMj.
: Let DM be the Unet of T2I — DMj.
: )A(G = ENC(XG),)A(I = ENC(X[).
X = X;.
. Optimizer = LBFGS(Xr)
. forie[t,..0] do
fci, f(tG = Augmentalﬁion(fgﬂ, t), Augmentation(Xg, t)
Lty = StyleLoss()}’L_l,ﬁ’G_l)
L. = MSELoss(X1,XG)
Lstq = StabilityLoss(Xr)
L= wsty-Csty +wcLe + wstaLsta
Backward (L)
Step(Optimizer)
%G = DM(XL,i,c) o (1—m) + DM(XL,i,c) om
end for
Xf = DEC()A(G)
8: return xr.

o = N T B N - I S

N
Do Wy o

16:

-
3

3.5 Second Stage Refinement.

Figure 4: Second stage refinement are adopted to enhance the
quality of the fusion image.

As shown Figure 4, though we can adapt the style of the fore-
ground image to that of the background image with our loss terms,
there are still some distortions in the output images. In order to
enhance the quality of the fusion image and minimize artifacts
in the transition areas between the foreground and background
images, we employ a square mask that encompasses the entirety
of the foreground region along with a portion of the background
region. Subsequently, we introduce a slight amount of noise into
this region and employ the same T2I-DM to denoise it. During this
stage, we extend the mask to a square region as some distortions
may be outside the original mask region. Meanwhile, we elimi-
nate all loss terms and solely retain the text prompt, making the
denoising process akin to the SDEdit process.

4 Experiment

The foreground items in our experiment are extracted from COCO
datasets[22], which is a large-scale object detection, segmentation,
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and captioning dataset. COCO has 80 object categories, 1.5 million
object instances, we use the pycocotools library to fetch content
and mask from this dataset. The background images are randomly
selected from LAION[39] (acronym for Large-scale Artificial In-
telligence Open Network) which is a number of large datasets of
image-caption pairs. Now the dataset contain more than 5 billion
image-text pairs of various artistic styles.

4.1 Baselines

For comparison, we choose several baseline methods including non-
DM-based Poisson image editing (PIE)[33], Deep Image Blending
(DIB)[49], PHDNet[3] and DM-based SDEdit[29], SD-Text[37], and
BlendDM[1]. Meanwhile, following the previous works, we also
use recent work CDC[12], InST[50], PHDIff[26] as the baselines.

Among these, SD-Text necessitates detailed textual information
about output images, while other DM-based methods only require
simple textual input about the foreground items. All of the codes
and pre-trained weights have been made available by the authors.
For all the baselines, we obtained the code from their official GitHub
repositories. For methods PIE and DIB, they solely utilize the pre-
trained VGG-19. In the case of PHDNet, it requires VGG-19 and
another specialized neural network trained on large image datasets.
We acquired their pre-trained model from their repositories to con-
duct the evaluation. As for SDEdit, it utilizes the pre-trained stable
diffusion model with version sd-v1-5. In contrast, for SD-text, we
need to conduct several fine-tuning iterations of the pre-trained
stable diffusion model with various foreground items, akin to the
Dreambooth setting[38]. In the context of text-driven image editing
BlendDM, we obtained their pre-trained unconditional diffusion
model to carry out the subsequent evaluation. CDC, InST, and PHD-
iff are all grounded on stable diffusion 1.4. Notably, for InST, we
acquired the andre-derain embedding provided by the authors for
our evaluation. For PHDIff, we utilized SD1.4 and the PHDiffusion-
WithRes checkpoints provided in the GitHub repository.

For our FreePIH, we use the pretrain model sd-v1-5 released
by Stability Al, all the parameters of every SD modules are frozen
during our inference and we only update the latent feature of fore-
ground content so we are actually training-free. Specially, in our
modified version of the SD, we have introduced several additional
loss terms to optimize the latent feature, with the goal of transfer-
ring its style. It is worth noting that the only learnable part in our
pipeline is the latent feature of the foreground items. During the
inference process, we freeze all the modules including the Image
Encoder, Text Encoder, DGM, and Image Decoder. This approach
allows us to avoid heavy training costs and enables quick utiliza-
tion for painterly image harmonization sourced from the internet.
We implement FreePIH and test all the baselines on ubuntu 18.04
LTS operation system, with 64GB memory, a 12900K Intel CPU
@3.20GHz and an NVIDIA RTX 4090 GPU. The pytorch version is
2.0.0. And the output image size is 512 X 512.

4.2 Quantitative Evaluation

As mentioned in prior research, accurately computing common met-
rics such as MSE, PSNR, and SSIM for harmonized images proves
to be challenging, particularly when foreground and background
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Figure 6: Example results of DM-based painterly image harmonization baselines and our FreePTH.

images are randomly selected. To surmount this challenge and quan-
titatively assess performance, we conducted a user study. Initially,
we randomly selected 100 foreground and background pairs from
the COCO2017 evaluation dataset [22] and LAION 5B dataset[39],
respectively. Subsequently, we applied our method, alongside all
the baselines, to generate the composited images. Using a subset
of these images, we designed a questionnaire in which each query
featured the same images but produced by different methods. Par-
ticipants were tasked with selecting the top-1 harmonious image,
and a subset of the respondents also rated the images on a scale
from one (poor) to five (excellent).

In total, we amassed 365 votes from 73 users. Subsequently, we
aggregated the average top-1 rate and computed the Mean Opinion
Score (MOS) based on the users’ ratings[28]. The outcomes are
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illustrated in Figure 7, where we obtained approximately a 20%
top-1 Rate across all the tests, while the second-best baseline CDC
received about a 17% top-1 Rate. Furthermore, based on the voting
results, our FreePIH garnered the highest MOS score (4), surpassing
other baselines such as CDC (3.5), PHDIff (3.2), and so forth. The
voting outcomes underscore that our FreePIH method outperforms
the other baselines in our human evaluation test.

Furthermore, we conducted a survey of 30 participants on their
preferences of the most important factor when we pick the top-1
harmonization images and rank them according to the vote results.
The results are shown in Table 1. The results show that artistic effect,
the color tone and saturability siginificantly impact the participants’
preference when they conduct the user study.
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Figure 7: Left The average Top-1 rate of all the baselines.
Right The mean opinion score of different baselines, with a
score from one Bad to five Excellent.

Table 1: Important factor impact the top-1 decision

Visual factors

Similar artistic effect on fore/back-grounds image style 1
Same color tone and saturability of fore/back-grounds image 2
No obvious error at the connect region 3
Foreground image maintain the original details 4
Background image maintain the original details 5

4.3 Qualitative Evaluation

The qualitative assessment of non-diffusion-based baselines is de-
picted in Figure 5. In our experiment, we observed that PIE retains
the original foreground feature after optimization; however, the op-
timized foreground occasionally becomes transparent. As a result,
the foreground content fails to obscure the background image, lead-
ing to the visibility of background people, which appears unnatural.
Furthermore, in some instances, DIB is unable to complete the trans-
formation, as evidenced in the first three rows. Additionally, certain
foreground regions are heavily influenced by the background style,
resulting in a clear separation between different areas. For example,
in row 4, the center of the bus exhibits discordant blue and appears
brighter than the rest. While PHDNet demonstrates improved per-
formance compared to the previous baselines, there are instances
where the foreground becomes excessively harmonious, leading to
the loss of its original texture and details. This is evident in the first
and third rows, where the bus and pyramid assume the color of the
sky. Particularly in row 3, the other two pyramids blend into the
sky, leaving only one pyramid noticeable at first glance.

In the Figure 6, SDEdit effectively preserves the texture of the
foreground items but falls short in transforming their style. Con-
versely, with SD-Text the foreground and background may signif-
icantly deviate from our expectations. BlendDM can introduce a
new item into the designated mask region, but the generated item
may not align with the one originally inputted. CDC achieves the
most harmonious results in the second image. However, the har-
monization results in other cases are not satisfactory. InST can
result in a lack of control over the entire images, leading to entirely
different foreground/background images. PHDIff encounters the
same issue as PHDNet, where the foreground becomes excessively
transparent, leading to the loss of original details.

In contrast, our FreePIH effectively preserves the texture and
structure of both the foreground and background, seamlessly fusing
them. For instance, FreePIH transforms the original deep red to a
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red similar to the house in row 1 and successfully optimizes the
boundary while preserving the colorful foreground in rows 2-4.

4.4 Ablation Study

Figure 8: Ablation results of noise step.

To evaluate the impact of hyperparameters, we conducted ab-

Rank lation experiments on the noise level. The experiment results are

shown in Figure 8. We adjusted the noise level (represented by t/T)
for the same harmonization task. We added different levels of loss
in the forward process. As depicted in the figure, when the noise
level is small, we were able to successfully fuse the foreground sun-
flower with the background painting. However, as the noise level
increased, the texture and details of the foreground sunflower grad-
ually deteriorated. Ultimately, when t/T reached values less than or

equal to 0.5, the foreground became unrecognizable sunflowers.
In particular, we also conduct an ablation study to analyse the
impact of different loss term to the final output. As illustrated
in Figure 9, using only content loss preserves the details of the
foreground, but the result appears inharmonious. If we only use
content loss, the details of foreground image can be perversed,
however the composition results seems to be inharmonious. If we
only use style loss, the details of foreground may lost finally. As for
the stability loss, it seems our methods may not be sensitive to this
loss. But empirically, the weight of this loss should not be too large.
All Loss

45

No Loss

TS

Figure 9: Ablation of different loss.

5 Conclusion

In this paper, we present a pioneering approach to painterly image
harmonization using diffusion-based techniques without the need
for training. Our method leverages the observation that the final
stages of the diffusion generation process capture crucial stylis-
tic information in images. By utilizing the output features of the
Diffusion Model (DM), we achieve a seamless transformation of
foreground styles into background styles, resulting in harmonious
image compositions. Notably, our method stands out from other
baselines, particularly DM-based approaches, as it eliminates the
requirement for extensive fine-tuning or training auxiliary modules
on new data. It can be conveniently employed as a plug-in module
for existing stable diffusion frameworks. Through both quantitative
and qualitative evaluations, we demonstrate the superiority of our
proposed FreePIH.
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