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Figure 1: Given a few images of the subject of interest, the proposed method is capable of generating diverse personalized
images in different contexts, such as moon, throne, rococo, etc.

Abstract

This paper presents a pilot study that explores the application of ac-
tive learning, traditionally studied in the context of discriminative
models, to generative models. We specifically focus on image syn-
thesis personalization tasks. The primary challenge in conducting
active learning on generative models lies in the open-ended nature
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of querying, which differs from the closed form of querying in
discriminative models that typically target a single concept. We in-
troduce the concept of anchor directions to transform the querying
process into a semi-open problem. We propose a direction-based
uncertainty sampling strategy to enable generative active learning
and tackle the exploitation-exploration dilemma. Extensive experi-
ments are conducted to validate the effectiveness of our approach,
demonstrating that an open-source model can achieve superior
performance compared to closed-source models developed by large
companies, such as Google’s StyleDrop. The source code is available
at https://github.com/zhangxulu1996/GAL4Personalization.
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1 Introduction

Recently, generative models, such as large language models (e.g.,
ChatGPT [17], Llama [32]) and image generation models DALL.E
[20], Stable Diffusion [22]), have demonstrated impressive capabil-
ities in producing compelling and diverse results. The key to the
success lies in the availability of high-quality training samples on an
incredibly large scale. In addition to the real-world datasets that are
expensive to collect, numerous studies [2, 16] have demonstrated
that incorporating synthetic samples can effectively improve the
capability and generalization of models. However, as the number
of generated samples can be extensive and of varying quality, a cru-
cial question arises: how can we select the most informative samples
with minimal cost for training? This issue has been extensively dis-
cussed in the field of active learning, which attempts to maximize
a model’s performance while annotating the fewest samples [31].
However, traditional active learning approaches primarily focus on
improving discriminative models. The application of active learning
in generative models, particularly in utilizing synthetic samples
to enhance model performance, remains an open and challenging
research area.

In this paper, we present a pilot study on the application of active
learning in generative models, specifically focusing on the image
synthesis personalization (ISP) [18]. ISP is a representative family
of generative tasks that requires the cost-effective selection of syn-
thetic data for training. The learning objective of ISP is to model
the user’s “subject of interest” (Sol) based on a limited number of
reference images and generate new images that feature the Sol. For
instance, in the case of learning from a few images of the user’s
pet cat, as illustrated in Figure 1, the trained model should be ca-
pable of generating diverse scenes with the cat, such as the cat on
the moon or sitting on the Iron Throne, depending on the given
prompt [23]. Similarly, when the Sol revolves around a specific
style, like Van Gogh paintings or the user’s own artwork, the ISP
model should be able to adopt that style and generate new images
with the same artistic characteristics [28]. Given the highly specific
nature of personal interests, the availability of reference images is
often limited. Therefore, selecting good samples from the newly
generated images to augment the reference set has proven to be
a more practical approach [28]. This can be done in an iterative
manner, which aligns well with the framework of active learning.

While the idea of bringing active learning from discriminative
models to generative models holds promise, it also presents sev-
eral challenges. One key challenge is the causal loop in the
querying strategy design. In discriminative active learning (DAL),
informative samples are selected and queried from a closed set of
unlabeled data, typically for tasks like recognizing predefined sim-
ple concepts (e.g., dog). This closed-set nature makes it feasible
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to design strategies that compare the information carried by dif-
ferent unlabeled samples (e.g., entropy in uncertainty sampling)
so as to prioritize directions in the feature space for querying. In
contrast, generative active learning (GAL) faces a scenario where
the querying is open to all directions, because the user may com-
bine the Sol with all possible prompts, which can carry much more
complex and undetermined semantics. This openness makes the
sample-evaluation-based DAL querying strategies infeasible in GAL.
This is because generated samples are not readily available unless
prompts are given, and it is not easy to design prompts before de-
termining the directions to query. This creates a typical causal loop,
making it challenging to establish a clear sequence of actions be-
tween determining what to generate and knowing which directions
to query.

In this paper, we tackle this challenge by transforming the open
querying problem into a semi-open one. Our approach involves
collecting prompts to create a pool of querying intentions. The
prompt embeddings serve as anchors in the target space, indicating
the candidate directions to query and explore. During each iteration
of the GAL process, we generate samples using these prompts for
evaluation. This semi-open scheme strikes a balance by constrain-
ing the candidate directions for querying while allowing enough
freedom to explore the target space through the generation of sam-
ples. Although this approach provides access to generated samples,
the sample-based evaluation commonly used in DAL cannot
be directly applied to GAL due to the fundamental differences
between discriminative and generative models. Discriminative mod-
els learn a single distribution to distinguish simple semantics (e.g.,
dog), resulting in semantically consistent information carried by
positive (negative) samples [21]. However, generative models focus
on generalizing to various mixed semantics (e.g., to generate images
not only of the user’s pet dog in a forest but also of the dog on
Tokyo street) [20]. Consequently, generative models need to handle
multiple sub-distributions, each modeling a specific combination of
semantics. The information carried by samples from different sub-
distributions are not consistent, rendering sample-based evaluation
infeasible. To address this issue, we propose a distribution-based
querying strategy that adapts the classical Uncertainty Sampling
[31, 35] to the new generative scenario. It considers the distribu-
tional aspects of generative models and provides a more suitable
framework for querying and evaluating samples in GAL.

Another challenge is the exploitation-exploration dilemma
[38]. In DAL, the collected samples from different iterations are
accumulated for training, and the learned distribution or decision
boundary may gradually shift from the samples collected in the
early iterations. This is generally not a problem as long as it benefits
the classifier’s performance. In contrast, in GAL, the fidelity to the
reference images is of great importance which pushes the generated
samples towards the references. Additionally, samples generated
in the early iterations have been shown to have a higher likeli-
hood of fulfilling the fidelity criteria compared to later iterations,
and thus should be exploited as new references with greater atten-
tion. However, the generated samples cannot be too close to the
references, otherwise, this causes over-fitting. Meanwhile, the gen-
erated samples need to be generalized to a certain target direction
indicated by corresponding prompt, which attracts them to move
toward the target direction against the references. The GAL process
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needs to learn how to navigate this balance between adhering to
the references and exploring new directions. We propose a balanc-
ing scheme that evaluates the importance of references, thereby
allowing us to weigh the contributions of different iterations.

The contribution of this paper can be summarized as: 1) A pilot
work to discuss the application of active learning in generative
models; 2) A distribution-based querying strategy for personalized
image synthesis; and 3) A strategy to balance the exploitation and
exploration in GAL.

2 Related Work

2.1 Active Learning

Active learning is a subfield of machine learning, which aims to
find an optimal querying strategy to maximize model performance
with the fewest labeling cost. The most common strategies in-
clude uncertainty sampling [31, 35], query by committee [26], and
representation-based sampling [8, 25], etc. The rationale behind
is to provide the most valuable samples to learn a better decision
boundary. However, acquiring real-world datasets still poses chal-
lenges in certain scenarios, such as few-shot learning. To address
this issue, the use of generative networks for data augmentation has
been investigated. For example, GAAL [45] first introduced GAN
[9] to generate training samples. However, this random generation
does not guarantee more informative samples compared to the orig-
inal dataset. In contrast, BGADL [33] jointly trained a generative
network and a classifier so as to generate samples in disagreement
regions [31]. Subsequent approaches, such as VAAL [27] and TA-
VAAL [12] employed adversarial training for data augmentation
to improve the feature representation. It is important to note that
while these works have explored the use of generative models, their
primary focus is on improving the discriminative model’s ability.

2.2 Personalized Content Generation

Text-to-image synthesis has earned significant attention for its
potential applications in content creation, virtual reality, and com-
puter graphics. Impressive works such as DALL.E [20], Stable Diffu-
sion [22], Imagen [24], have shown immense potential to generate
compelling and diverse images. As an application of image gen-
eration, personalized image synthesis offers user an opportunity
to create customized object or style that is difficult to generate
using pre-trained models. To accomplish content personalization,
some studies [5, 14, 40, 41] have concentrated on training a unified
model capable of personalizing any input image. However, these
approaches struggle to perform satisfactory fidelity with the ref-
erences. In contrast, other research studies [1, 4, 13, 23] enhance
subject appearance preservation by adopting fine-tuning approach
on pre-trained models for each reference group. In particular, Tex-
tual Inversion [6] aims to find an optimal token embedding to
reconstruct the training images without additional regularization
samples. DreamBooth [23] retrains the entire diffusion model and
incorporates a prepared regularization dataset to alleviate the over-
fitting problem. Following this training framework and regulariza-
tion approach, other works focus on enhancing different aspects
of personalized image synthesis, like training acceleration [13]
and multiple concepts composition [15, 30, 43]. As for expanding
training samples, SVDIff [10] applies image stitching techniques,
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Algorithm 1 Generative Active Learning

Input: anchor embedding set A, reference images x, subject of
interest €*, non-Sol €*, pre-trained model fp, number of synthetic
samples per prompt m
Initialize training set T = {(x,e* ® €*)}.
repeat
Fine-tune fy on T
for a; in A do
for j=1tomdo
Generate image I;; on a; by fp
Verify whether 1;; is overfitted by Equation 8
end for
Calculate Q(a;) according to Equation 6
end for
Update T with top-k anchor embeddings
Update openness score according to Equation 9
until Stopping criterion is met according to Equation 10

but does not explore the use of generated samples. In summary,
although additional training samples are adopted in the training
process, no generated samples are involved in these studies.

2.3 Personalized Style Generation

Style generation is one of the notable advancements in the field
of image synthesis. Style transfer [7, 36, 44] aims to transform the
visual style of a given image to another input image while preserv-
ing its contents. However, these methods do not offer the chance to
generate images based on text prompts. Meanwhile, another line of
research focuses on personalized style generation, which aims to
reverse visual styles on textual descriptions. A recent study, Style-
Drop [28], introduces a parameter-efficient fine-tuning method and
an iterative training framework with feedback to facilitate style
recreation. Specifically, preset prompts are used to generate images
and these images are then subject to user filtering, where users will
identify high-quality images that can be used for further training.
While this approach leverages human feedback to enhance model
performance, the need for human inspection and the equal weight-
ing of selected samples pose limitations. In this paper, we propose
methods that effectively alleviate the burden on human resources
through active learning and reduce selection bias by balancing the
importance of synthetic and real samples.

3 Method

In this section, we introduce our implementation of generative
active learning for image synthesis personalization. The algorithm,
along with its pseudo-code, is depicted in Algorithm 1.

3.1 Preliminaries for Image Synthesis
Personalization

The current state-of-the-art methods for Image Synthesis Person-

alization (ISP) are all based on diffusion models [11, 29]. What

sets diffusion models apart is their “generate-by-denoise” approach.

During training, a text-image pair is used, and the process begins

by iteratively adding noise to the image x according to the Markov
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Figure 2: Overfitted and well-aligned generations. The model
has to exclude the non-Sol for successful generations.

chain, resulting in a noisy image x;. The noisy image is then com-
bined with the text embedding e to create a new noisy image em-
bedded with the text semantics, denoted as x; o e. Learning then
proceeds to denoise this image and reconstruct the original image
x, which is represented as

X =fp(xt0€) (1)
The objective is to minimize the reconstruction loss
Lyec =E [Wt||f(—X||§] (2)

where w; is a time-dependent weight. During the inference, the
prompt embedding € is then fused with a random noise € to generate
the image X = fyp(e o €) that aligns with the semantics of interest.

To perform an ISP process, a pre-trained model fp is typically fine-
tuned using reference images that contain the Subject of Interest
(Sol). A pseudo text word S* is utilized to represent the Sol and
is incorporated into simple sentences, such as “a photo of S*,” as
a reference prompt. The training process involves updating the
parameters of the model fj to establish the association between the
visual appearance of the Sol (indicated by given reference images
I;) and its corresponding semantic embedding e*. After the fine-
tuning, new images of Sol can be generated with prompts like “S*
running on the street” if the Sol is an object. In case the Sol is a
specific style, new images can be generated using prompts like “a
drawing of New York City with style $*”.

3.2 Direction-based Uncertainty Sampling

It is evident that a limited number of reference images for the Sol
is insufficient to ensure the fine-tuned model’s generalizability to
a broader range of semantics. We need to generate new samples
to augment the references, which requires prompts to determine
the direction to query. However, the querying remains open to all
directions since users may combine the pseudo text word S* with
various unseen concepts in future prompts. To address this, we
transform the problem into a semi-open one by incorporating the
Sol with a set of predefined concepts (e.g., cat and table) that can
be gathered from existing benchmarks. Inspired by [37], we set
these concepts as anchors in the target space, with each anchor
representing a specific direction for querying when combined with
the Sol to form anchor prompts (e.g., “S* with a dog”). The model’s
ability to generate high-quality samples for these anchor prompts
determines its level of generalization. While the anchor directions
are predetermined, the querying process remains open due to the
introduction of random noise €, which leads to variations in the
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generated images for the same prompt. To ease the discussion, let
us denote the anchor embedding set as A = {a;},i € N and the
set of embeddings of anchor prompts or directions to query can be
denoted as

e"dA={e"®a;},i e N. (3)
where @ is a model-dependent operator, which is typically imple-
mented by directly inputting the embeddings as a sequence.

In each iteration of the generative active learning (GAL), we
generate m samples for each anchor prompt. We need to initiate the
next round of GAL by selecting informative ones from the generated
samples as new references. However, as discussed, conventional
sample-based querying is infeasible in GAL, because evaluating
performance on individual samples lacks of global perspective to
measure the model’s generalizability. Additionally, relying solely
on generalizability to build a metric is challenging because higher
generalizability may indicate well-explored directions, where sam-
ples would not provide novel information for improving the model.
This is similar to the situation in Discriminative Active Learning
(DAL), where including samples from well-classified locations does
not contribute to performance improvement and instead hinders ex-
ploration. A popular solution is Uncertainty Sampling [31], which
selects samples from areas where the model exhibits uncertainty.
In the context of GAL, we can adapt this idea to identify direc-
tions where the quality of model-generated samples lies between
well-generalized and overfitted. Let I;;, j € [1, m] denote an image
generated for the i*" anchor direction a; as

Lij=fo(eo(e" ®ay)) (4)
and there is an oracle function to verify whether I;; is overfitted as
(1) € {0,1}, (5)

The direction-based uncertainty sampling is implemented by mea-
suring the entropy on the portions of overfitted (non-overfitted)
samples as

Q(a;) = = [(1 - pi) log(1 = i) + filog fi]
2 (1))

m

(6)

1

@)

In DAL, the learning employs human annotators as oracles. How-
ever, due to the computational expense of current diffusion models,
it becomes impractical for human annotators to wait for the results
of each iteration, resulting in significant delays. Hiring human an-
notators as oracles can be extremely costly, which might be one of
the reasons why successful ISP models using generated results as
argumentation are predominantly developed by large companies
like Google [5, 28], who can afford such expenses. In our study, we
found the oracle function ®(I;;) can be estimated by evaluating the
generated image I;;’s fidelity to both the anchor direction and irrel-
evant semantics in the reference prompt. This observation stems
from the fact that the reference prompt consists of two components:
the Sol and non-Sol semantics. Most previous studies focus on the
fidelity to the Sol semantics, while the non-Sol semantics are not
fully leveraged. These non-Sol semantics can be considered distrac-
tor semantics that the generated images should avoid, similar to
negative labels in discriminative models. One such example can
be found in Figure 2, in which the Sol is the drawing style while
the non-Sol is the concept cat. The overfitted samples are those
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failed to disentangle the cat from the generation. Therefore, we
propose a straightforward metric to simulate the oracle function.
Let €* denote the non-Sol embedding, the function is written as

O(1;5) ={

where the sim() is a fidelity metric of an image to a semantics. In
this study, we simply adopt the CLIP similarity [19].

With all necessary components built, the querying can be con-
ducted by evaluating all anchor directions and selecting the ones
with top-k uncertainty scores (using Equation 6). For each direction,
the generated image with the highest sim(I;;, a;) score (indication
of the faithfulness to the direction) is used as a new reference image.

1,
0,

sim(Lij, a;) < sim(I;j, &")
sim(I,-j, a;) > sim(I,-j,é*)

®

3.3 Balancing the Exploitation and Exploration

As aforementioned, in the progression of GAL iterations, we need
to keep the knowledge learned at past rounds while encouraging
the model to explore. This introduces an exploitation-exploration
dilemma [38, 39]. To address this challenge, we propose evaluating
the openness of the model at each round, using it as an indicator of
the expected contribution of the novel information introduced in
that round. Given that the novel information is encapsulated within
the newly included reference images, we can utilize this indicator as
a weight to regulate their impact on the learning process in the sub-
sequent round. This encourages the exploration when the expected
contribution is high, otherwise encourages the exploitation.

To assess the openness of a round, we utilize the uncertainty
score from Equation 6. Our rationale is that as the model explores
more directions, its level of openness increases. Hence, the openness
score for the round can be estimated by calculating

[A]
D Q@)
i=1

where A is a learning rate. This can be used to weight the newly
include reference images to control their degrees of influence to
the loss Lyec (Equation 2).

An additional outcome of Equation 9 is its potential to establish
an adaptive stopping criterion for GAL learning, in contrast to the
fixed number of iterations often set in DAL. The concept behind
this approach is to halt the learning process when there are fewer
directions left to explore than anticipated. The stopping criteria is
then simply written as

Afy) = % ©)

{Q(a;) | Q(a;) > 0,a; € A} < k. (10)

where k is the number of anchor prompts selected in each iteration.

4 Experiments

Datasets. We conduct experiments on two most representative
tasks, style- and object-driven personalization.

For style-driven ISP, we adopt the evaluation dataset used in
the StyleDrop [28]. This dataset comprises various styles, such
as watercolor painting, oil painting, 3D rendering, and cartoon
illustration. 190 basic text prompts sourced from the Parti prompts
dataset [42] are used to generate images, yielding 36,480 images.

For object-driven ISP, we adopt almost all concepts that have
been previously used in related studies [6, 13], comprising a total

10673

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

of 10 categories including animals, furniture, containers, houses,
plants, and toys. We use the 20 prompts in [13], which cover a wide
range of test scenarios. In total, this process generates 6,400 images
for a complete training cycle.

Evaluation Metrics. We utilize three metrics: 1) Text-alignment
(TXT-ALN) assesses how well the generated images align with
the intended textual descriptions. This can be implemented by the
similarity between the CLIP image feature and the text feature.
2) Image-alignment (IMG-ALN) measures the extent to which the
generated images capture the content or style present in the refer-
ence images. This can be implemented by the CLIP image feature
similarity. 3) Overfit (OVF) evaluates the portion of overfitting in
the test samples based on Equation 8. Lower scores indicate better
performance in terms of generalization and avoiding overfitting.

Base Model. DreamBooth [23] is a widely adopted method with
promising generation results. Thus, we utilize DreamBooth as our
baseline, with the first-round results derived directly from it without
synthetic training data. For our proposed method, we set the values
of m and A to 10 and 0.005, respectively. The initial anchor directions
comprise 18 prompts. We select top-3, along with their associated
highest-fidelity images, to serve as additional training pairs.

4.1 Does generative active learning work in ISP?

To evaluate the performance of different strategies, we compare our
method with two commonly adopted querying strategies, including
Random Sampling and Human Sampling. To be fair and efficient, we
set a maximum number of rounds to 4 in all experiments. The initial
round is based on original references without any synthetic data.
The results are shown in Table 1. It is evident from the results that
both Random and Human strategies do not necessarily enhance the
baseline performance. Instead, these strategies show a degradation
on style-personalization of 22.3% (14.5%), 10.7% (10.4%), and 91.2%
(24.0%) on TXT-ALN, IMG-ALN, and OVF, respectively. The unex-
pected degradation observed in the Human strategy, which is often
considered an oracle in DAL, confirms the fundamental distinction
between discriminative and generative tasks: while human annota-
tors can easily differentiate between positive and negative samples,
evaluating generalizability is a more challenging aspect. Therefore,
we integrate human annotators with our balancing scheme to cre-
ate a run that combines their selections and fairly weighs them
for improved learning. The results are shown as the last row in
Table 1 which demonstrates an approaching optimal performance
and thus can be used as an oracle. Spuriously, our proposed method
(Uncertainty+Balance) achieves a comparable performance with
the oracle run. This validates its effectiveness.

4.2 How does the uncertainty sampling work?

To gain deeper insights, we conduct a case study to observe the
rationale behind the uncertainty sampling.

Figure 3 shows the distribution of images generated by the an-
chor prompts. Within the feature space, multiple sub-distributions
can be observed. One particular distribution is centered around the
reference, consisting of poor-quality images that exhibit non-Sol
of the reference, such as the failure cases illustrated in Figure 3.
In contrast, images that align well are located far from the ref-
erence, forming smaller distributions that exclude non-Sol, like
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Table 1: The performance of different GAL strategies including random selection (Random), human feedback (Human),
direction-based uncertainty sampling (Uncertainty), direction-based uncertainty sampling with balance scheme (Uncertainty +
Balance), human feedback with balance scheme (Human + Balance).

Object Style
Models TXT-ALN] IMG-ALNT OVF | | TXI-ALN | IMG-ALNT OVF |
Baseline (DreamBooth) 0.298 0.796 0.363 0.318 0.694 0.171
Random 0.285 0.714 0.391 0.247 0.620 0.327
Human 0.297 0.721 0.331 0.272 0.622 0.212
Uncertainty (ours) 0.305 0.755 0.268 0.286 0.628 0.110
Uncertainty + Balance (ours) 0.309 0.771 0.268 0.337 0.669 0.058
Human + Balance (Oracle + ours) 0.307 0.772 0.254 0.342 0.650 0.023
Reference Abillboard in A golden key in Candy in Dining table in Banana in
style S* style S* style S* style S* billooard bl style S* style S*
billboard '

Groups exhibiting HIGH entropy with diverse sample distributions

banat

b
© g
o

candy

?
*w » e ?

*
@ - © Anchor Directions

¢ %

Reference

Groups with LOW entropy and homogeneous distributions

Figure 3: Examples of images generated by anchor prompts in round 2 with higher priority (left) and lower priority (right). Their
CLIP image features are highlighted in the tSNE [34] space (middle). Poor-quality images that exhibit non-Sol are distributed
near the reference, while high-quality images are located far from the reference.

Round 1

Reference

Round 2

Test Prompt: a dragon in style S*

Round 3 Round 4

Early Stopped

el
Fu

S* on wooden stand

Figure 4: Results of GAL over iterations. The images shown in the 1/ and

Test Prompt: S* wearing sunglasses

2" groups are for style- and object-driven ISP,

respectively. The non-Sol and Sol are gradually disentangled and dragons or glasses are generated.

the successful samples of generated billboard, key, and candy im-
ages. Additionally, the distributions of good and bad samples across
these three directions demonstrate significant diversity, suggesting
a limited ability to generalize along these directions. As a result,
these directions are given higher priority for querying based on our
uncertainty metric. On the other hand, distributions at the direc-
tions of table and banana are homogeneous. Consequently, these
directions exhibit lower entropy and lower querying priority. This
observation aligns with the rationale we presented earlier.
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4.3 How does GAL progress over iterations?

To examine the progress of GAL over iterations, we present the
performance in each round in Figure 5, and visualize the evolu-
tion through the cases in Figure 4. One notable observation is the
dramatic and consistent decrease in performance of the Random
strategy due to the inferior samples by random selection. After
adopting a better querying strategy, the rate of decrease becomes
much slower, and Uncertainty sampling begins to outperform the
baseline on TXT-ALN for object-driven personalization, which sug-
gests the effectiveness of valuable samples in enhancing generative
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Figure 5: The curves shown in the figure resemble clock arms
extending from the baseline performance points. As these
arms move in an anti-clockwise direction towards the top-
right corners, better performance is observed.

Table 2: Comparison with SOTA methods for object-driven
ISP. Results marked with T indicate our re-implementation
using publicly available codebases.

Models TXT-ALN IMG-ALN OVF
IP-Adapter’ 0.270 0.858 0.734
Textual Inversion’ 0.277 0.778 0.441
Custom Diffusion’ 0.301 0.776 0.287
DreamBooth 0.298 0.796 0.363
+ Uncertainty + Balance (R2) 0.304 0.781 0.300
+ Uncertainty + Balance (R3) 0.308 0.769 0.248
+ Uncertainty + Balance (R4) 0.309 0.771 0.268
+ Oracle + Bablance (R4) 0.307 0.772 0.254

models. The best overall progress is achieved by the combined strate-
gies of Uncertainty sampling and the balancing scheme. We can
find that TXT-ALN consistently improves and reaches its highest
alignment in round 4, while IMG-ALN remains within a reasonable
range. This trend is evident in Figure 4, where the non-Sol seman-
tics gradually disappear, and the number of successful generations
of glasses placed on S* or dragon in style S* increases. Meanwhile,
the Sol is maintained throughout the rounds. These results indicate
a progressive improvement by GAL as the iterations proceed.

4.4 Comparison with SOTA methods

For object driven-personalization, we compare 4 popular state-of-
the-art (SOTA) methods including Textual Inversion [6], Custom
Diffusion [13], DreamBooth [23], IP-Adapter [41]. The results are
shown in Table 2. Compared to IP-Adapter, Textual Inversion, and
Custom Diffusion, our method demonstrates significant improve-
ments on TXT-ALN and OVF throughout almost all rounds, achiev-
ing 14.4%(63.5%), 11.6%(39.2%), and 2.7%(6.6%) on TXT-ALN (OVF)
in terms of round 4. Since the non-Sol semantics dominate the out-
puts of the other approaches, our method exhibits a slight decrease
on IMG-ALN. Figure 6 provides visual evidence of our method’s
superior text and object fidelity. The success in higher text fidelity
can be observed in the accurate placement of the cat statue in the
Grand Canyon and the realistic interaction between the marigold
flowers and the teapot. Furthermore, our method enhances object
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Table 3: Comparison with SOTA methods for style-driven
ISP. Results marked with ¥ are obtained from [28].

Models TXT-ALN IMG-ALN OVF
Imagen* 0.337 0.569 -
DB on Imagen* 0.335 0.644 -
Muse* 0.323 0.556 -
StyleDrop* 0.313 0.705 -
StyleDrop-Random? 0.316 0.678 -
StyleDrop-CF* 0.329 0.673 -
StyleDrop-HF* 0.322 0.694 -
DreamBooth 0.318 0.694 0.171
+ Uncertainty + Balance (R2) 0.328 0.683 0.097
+ Uncertainty + Balance (R3) 0.336 0.671 0.059
+ Uncertainty + Balance (R4) 0.337 0.669 0.058
+ Oracle + Balance (R4) 0.342 0.650 0.023

Table 4: The percentage of user preference on our pro-
posed method (Uncertainty + Balance) compared to Round 1
(DreamBooth) and Oracle feedback (Human + Balance).

Object Style
TXT-ALN IMG-ALN | TXT-ALN IMG-ALN
Ours vs. Round 1 60.4 % 325 % 77.8% 59.8%
Ours vs. Oracle 53.8 % 46.2 % 47.0% 67.8%

fidelity by accurately reconstructing only one spout and better
preserving the color of the cat statue.

For style-driven personalization, we conduct a comparison be-
tween four variations of StyleDrop [28]: base model, random feed-
back (StyleDrop-Random), clip-based feedback (StyleDrop-CF), and
human feedback (StyleDrop-HF). Additionally, we include the re-
sults of DreamBooth on Imagen [24] as well as other pre-trained
models like Imagen and Muse [3], as reported by [28]. It is clear that
our method significantly outperforms the pre-trained models and
achieves superior performance in terms of 4.7% and 2.4% on TXT-
ALN compared to the dedicated human feedback and clip-based
feedback of StyleDrop. It is worth noting that the closed-source
StyleDrop is built on a more powerful backbone, Muse, compared
to Stable Diffusion. This indicates that the open-sourced ISP models
are able to achieve better performance with GAL.

4.5 User Study

We conduct a user study involving two comparison tasks. Partici-
pants are presented with reference images and a text prompt, and
are asked to choose the more faithful result in terms of object/style
and text fidelity. This process yields a total of 4800 responses from
8 participants. The results are shown in Table 4. It is clear that our
method significantly improves the text alignment, with particularly
notable gains in style-driven ISP where both text and style fidelity
surpass round 1. This indicates the superior performance of GAL
when users can only provide fewer samples. By comparing the ora-
cle feedback, our automatic uncertainty sampling strategy performs
comparable results. Notably, a majority of users prefer our style
renderings rather than those trained from human selection. This
further validates the effectiveness of our method.
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Figure 6: Qualitative comparison between our method and SOTA methods for personalized content generation. Our method
produces text-aligned images compared with other methods.
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Figure 7: Illustration of ablation experiments on style-driven ISP. (a) Variation in performance with the parameter 1. (b) Effects
of different anchor set sizes. (c) Impact of selecting the top-k prompts per iteration. (d) Results from varying the prompt

composition within the anchor set.

4.6 Ablations

Figure 7 presents ablation studies on style-driven ISP.

Learning Rate A on Openness. Subfigures (a) depicts the effect
of the learning rate A, which controls the scale of the openness
score in Equation 9. Obviously, a relatively higher A does not exhibit
promising results. And a A below 0.05 results in stable performance.

Size of Anchor Set. In subfigures (b), increasing size of the
anchor embedding set enhances style fidelity but reduces text align-
ment. Conversely, a smaller anchor size exhibits the opposite effect.
Therefore, we consider a moderate size of 18 as our default setting.

Top-k Anchor Prompts. Because of the trade-off between IMG-
ALN and TXT-ALN metrics, as shown in subfigures (c), there is no
globally optimal top-k setting. Consequently, we adopt the top-3
selection as a standard practice based on relative performance.

Anchor Set Variability. Finally, we change the prompts in the
anchor set, forming 3 distinct sets, each differing by at least 50%.
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The results in subfigures (d) reveal our model’s robustness against
prompt variations. This also indicates that the uncertainty sampling
method selects the most constructive direction for training.

5 Conclusion

This paper presents a pilot study that investigates the application of
active learning to generative models, specifically focusing on image
synthesis personalization tasks. To solve the open-ended nature
of querying in generative active learning, this paper introduces
anchor directions, transforming the querying process into a semi-
open problem. An uncertainty sampling strategy is introduced to
select informative directions, and a balance scheme is proposed to
solve the exploitation-exploration dilemma. Through extensive ex-
periments, the effectiveness of the approach is validated, indicating
new possibilities for leveraging active learning techniques in the
context of generative models.
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