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Abstract

This demonstration showcases a verifiable multi-chain querying
system. The proliferation of blockchain-driven applications has cre-

ated a demand for on-chain data analysis across multiple blockchains.

However, existing solutions face challenges in seamlessly integrat-
ing with existing blockchains, maintaining compatible with various
database engines, and ensuring the integrity of query results. In
response, we develop a blockchain indexing system that utilizes a
novel verifiable virtual filesystem (V2ES) for query authentication.
Our demonstration focuses on highlighting the key features of our
system, including blockchain data indexing, verifiable multi-chain
query processing, and the usability and performance of our solu-
tion. Additionally, we provide an interactive visualization module
to enhance attendees’ understanding and insights.
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1 Introduction

The proliferation of blockchain-driven applications has created a
growing demand for on-chain data analysis. With the emergence of
diverse blockchains, it becomes indispensable to query data from
multiple blockchains for tasks like data aggregation and correlation.
For example, a financial analyst may need to analyze transaction
data from multiple blockchains to gain insight into market trends
and make informed investment decisions.

However, several challenges are associated with handling multi-
chain queries. First, the querying system should integrate seam-
lessly with existing blockchains without requiring modifications.
Second, the system needs to be adaptable to various database en-
gines and support diverse query types. Third, the system should
allow users to verify the integrity of the query results.

Unfortunately, existing solutions fail to meet all these require-
ments simultaneously. For instance, The Graph [1] is a decentral-
ized protocol for blockchain indexing services. It incentivizes a
set of nodes known as indexers to aggregate data from multiple
blockchains and provide flexible query services. While it features a
dispute mechanism that allows users to challenge query responses
from indexers, it does not guarantee integrity for all queries and suf-
fers from long dispute resolution delays. To enable strong integrity
assurance and support diverse query types, one might explore gen-
eral verifiable computation (VC) schemes that can generate crypto-
graphic proofs for arbitrary computing tasks. Nevertheless, general
VC schemes have drawbacks in terms of high time complexity and
significant engineering challenges, which make them impractical
for real-world query applications.

To fully address the challenges of blockchain compatibility, data-
base compatibility, and strong integrity assurance, we develop a
novel blockchain indexing system that employs a verifiable virtual
filesystem (V2FS) proposed in our prior work [5]. Unlike traditional
approaches that focus on verifying computation, VZFS employs data
verification for query authentication. In the system, the client lever-
ages an off-the-shelf database engine to evaluate queries using data
fetched on-demand from a remote indexing service provider (ISP). A
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Figure 2: System Architecture

Merkle-based authenticated data structure (ADS) is used to authen-
ticate the data, which offers both efficiency and a strong integrity
guarantee. V2FS acts as a pluggable module that seamlessly bridges
the client’s query evaluation layer and the ISP’s storage layer. This
enables a smooth integration with existing database engines. To en-
sure compatibility with various blockchains, the system leverages
the DCert framework [3], a decentralized certification framework
compatible with any existing blockchains, to certify blocks from
different blockchains. To our best knowledge, our system is the
first to simultaneously achieve blockchain compatibility, database
compatibility, and strong integrity assurance. In this demonstration,
we aim to showcase the usability and performance of our system,
including a visualization module that provides attendees with an
interactive experience of verifiable multi-chain query processing.
The rest of the demonstration proposal is organized as follows.
Section 2 provides an overview of our system and explains the
techniques used. Section 3 describes the system implementation.
Section 4 presents the interface and demonstration details.

2 Technical Background

This section outlines our system design, including system archi-
tecture, database maintenance, and query processing, followed by
optimizations to improve the query efficiency.

2.1 System Design

System Overview. Our system model, depicted in Figure 1, con-
sists of five parties: (i) Source Chains, (ii) DCert Certificate Issuers
(DCert CIs), (iii) V2FS Certificate Issuer (V2FS CI), (iv) Indexing Service
Provider (ISP), and (v) Query Client. Source Chains refer to existing
blockchains that synchronize data with other parties. A DCert CI
is incorporated for each blockchain to certify the latest state of the
blockchain. The VZFS CI is responsible for certifying the integrity
of our proposed V2FS. The ISP indexes the data from source chains
and provides verifiable query services. The query client is a light-
weight node which maintains up-to-date block headers from source
chains and processes queries using the data from the ISP.

When a new block is added to a source chain, it is sent to the
corresponding DCert CI, V2FS CI, and ISP (€), @, and © in Fig-
ure 1). Simultaneously, the block header is broadcasted to the client
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(@). Then, the DCert CI generates a DCert certificate (Cp1k) to
certify the current state of the blockchain and transmits it to the
V2FS CI (@). After validating the Cpik, the V2FS CI updates the
data storage and constructs a VZFS certificate Cy2p5 securely inside
an SGX enclave [2] (@). The Cz¢g serves as the ADS to certify
the integrity of V2FS. The ISP manages its own storage, following
a procedure similar to the V2FS CI when it receives a new block.
The only difference is that no SGX is used since we do not rely on
the trustworthiness of the ISP. During query processing, the client
firstly requests a certificate C\2rg from the ISP and verifies it against
the latest block headers observed in the blockchain network (@).
After that, it evaluates the query locally using data retrieved from
the ISP (@ and @). At the end of query processing, a verification
object (VO) consisting of a Merkle proof proof 74 is returned to
verify the data integrity (@)

System Architecture. Figure 2 illustrates our four-layer archi-
tecture. The user interface includes a visualization module that
visualizes the workflow of V2FS CI, ISP, and client interactively.
To ensure maximum database compatibility, V2FS is designed to
decouple storage from computation. It extends the widely-adopted
POSIX 1/0 interface and support off-the-shelf database engines. As
shown in Figure 2, V2FS acts as a middleware between the comput-
ing and storage layers. The computing layer contains a database
engine, responsible for computational tasks in query evaluation
and database updates. Meanwhile, the storage layer stores the un-
derlying data synchronized from source chains. The data storage
adopts a common filesystem as its primary I/O interface, which
stores underlying data as regular files. It is responsible for providing
pages of these files to the computing layer as needed. To establish
strong integrity guarantee, we integrate a Merkle-based ADS into
the storage layer. The V2FS, consisting of a verification engine and
ADS engine, offers trustworthy integrity verification and certificate
construction during query processing and V2FS maintenance.

To summarize, the adoption of the DCert framework allows our
system to be compatible with existing blockchains. The design of
V2FS enables seamless integration with various database engines.
The incorporation of a Merkle-based ADS provides efficient and
strong integrity assurance.

V2FS Maintenance. As mentioned earlier, an ADS is used to
verify the integrity of V2FS. To this end, we propose a two-layer
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Merkle tree [4] structure as the ADS to authenticate the filesystem.
The lower-layer ADS is a complete binary tree built on the pages of
each file, while the upper-layer ADS is a trie structure built on the
file path. For example, hy = H(ho||h10) and hy = H(var||H (h4||hs)),
as shown in Figure 3. The root digests of lower-layer ADSes serve as
leaves of the upper-layer ADS. The root digest h¢ of the upper-layer
ADS is used to authenticate all the files in the storage layer.

During V2FS maintenance, updates are made to relevant files in
the filesystem, and the ADS is accordingly maintained for subse-
quent verifiable query processing. In a decentralized environment
where the trustworthiness of the V2FS CI cannot be assumed, we
propose a solution that leverages an SGX enclave to handle database
updates. As depicted in Figure 2, the enclave serves as the host for
both the database engine and ADS engine, while the storage layer is
positioned outside the enclave to optimize enclave memory usage.
The database engine is responsible for performing computations
based on the new block, while utilizing ADS engine for data access
through read and write operations. These operations are translated
into outside calls (OCalls) to interact with the storage layer out-
side the enclave. Since the outside-enclave storage is inherently
untrusted, the ADS engine provides verification for data retrieved
from the storage layer. Upon completing the database computa-
tion, the enclave program requests the external storage layer to
generate Merkle proof 7, for the accessed pages during the compu-
tation. Additionally, the storage layer provides the corresponding
Merkle paths 7,, for updating the ADS. If these Merkle proofs can
be successfully verified against the previous ADS root signed by
the previous Cy2gs, the enclave program proceeds to compute a
new ADS root. Subsequently, a new certificate C\;ZF Rt generated
to authenticate the updated database and ADS.

Example. In the example shown in Figure 2, assume that a new
block involves (i) reading po; and (ii) updating ps to p; in the file
/var/main.sqlite. At the end of database updates, two Merkle proofs
7y = {/, h1, var, ha, main.sqlite, hs, h1o} and m., = {/, h1, var, ha,
main.sqlite, hy, h11, h12} are generated and passed to the enclave.
To verify the integrity of the accessed pages, the enclave program
uses 7ty and 1., to reconstruct the ADS root. If the reconstructed ADS
root is the same as hy, it implies that the page po retrieved to the
enclave via OCall and the neighboring nodes related to p3 in the ADS
are correct. The enclave program computes the new ADS root hy =
H(/I|H (hy||H (var||H (hq||H (main.sqlite||H (h7]|H (h11]|H(p3))))))))
and generates a new V2FS certificate C\;ZFS using hy,¢. Finally, p} is
flushed to the external storage and the ADS is updated accordingly.

Query Processing. As depicted in Figure 2, the client utilizes
the same database engine as the V2FS CI and ISP for query process-
ing. The storage layer is located at the ISP. Therefore, the database
engine accesses the underlying storage through the V2FS via net-
work communication. This involves retrieving data pages from the
ISP as needed. Additionally, the ISP provides the necessary Merkle
proofs 774 and the corresponding C\z¢ as a verification object (VO)
for integrity validation. To reduce communication costs, the ISP
consolidates all Merkle proofs and transmits a single VO at the end
of query processing. With this VO, the client can verify that the
database engine is utilizing data from the latest blocks in the source
chains through C,2¢g, and ensure the correctness of all received
pages using the Merkle proofs 74 and hg in Cyzf.
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2.2 Query Optimizations
Observing that network transmission bottlenecks query processing,
we propose three cache-based strategies to improve performance.

Query with Intra-query Cache. We have noticed that certain
pages are visited repeatedly within a single query during query
processing. To reduce the network overhead, the client can employ
an intra-query cache which keeps recently accessed pages in mem-
ory. Once a page is required, the client first checks if it is already in
the intra-query cache. A page presenting in the intra-query cache
can be directly fetched for subsequent computing. This eliminates
the need for network retrieval and boosts query performance.

Query with Inter-query Cache. Similarly, caching commonly
accessed pages in memory can reduce the impact of repeated net-
work requests. To address the issue of cached pages becoming stale
due to blockchain updates between queries, we propose an effi-
cient inter-query cache structure. It allows the client to confirm the
freshness of multiple pages with a single request. The cache com-
prises multiple Merkle subtrees that include cached pages and their
ancestor nodes in the ADS. Each node is tagged with a freshness
flag indicating fresh or unknown. If a required page in the cache is
marked as unknown, the client sends its complete Merkle path to
the ISP. The ISP then traverses the path top-down. If a digest in the
path matches its counterpart in the current ADS, it indicates that
the page, along with other pages covered by the matching node, are
fresh. The ISP confirms this by returning the matching node and
generates a Merkle proof. The client verifies the Merkle proof to
ensure the integrity of the ISP’s response and forwards the cached
page to the database engine for query processing. Conversely, if
none of the digests in the path align with their corresponding nodes
in the ADS, it signifies that the requested page has been updated,
and the ISP returns the updated page. The client adds the updated
page to the cache and returns it to the database engine.

Bloom Filter Integrated Freshness Checking. To further
reduce network communication costs, we design a versioned bloom
filter (VBF) that summarizes the historical update information of all
pages. The VBF is managed by the V2FS CI inside the SGX enclave.
When query processing reveals a needed page in the cache marked
as unknown, the VBF steps in first to check its freshness. If the VBF
indicates that the page has not been updated since last access, it
is ensured to be fresh. Otherwise, the VBF cannot guarantee the
freshness of the page due to potential false positives of the bloom
filter. In this case, the client reverts to freshness validation through
the inter-query cache.

3 System Implementation

We implement a prototype system using Rust programming lan-
guage. The system architecture, as depicted in Figure 2, comprises
four layers. At the base, the storage layer manages the underlying
data and a Merkle-based ADS using 256-bit BLAKE2b! as the hash
function and RocksDB? as the underlying storage. The V2FS middle-
ware extends POSIX I/O interface with integrity checks, bridging
the storage and computing layers. For the V2FS CI and ISP, an ADS
engine handles storage layer updates and proof verification during
V2FS maintenance. On the client side, a verification engine enables

!https://github.com/oconnor663/blake2_simd
Zhttps://rocksdb.org
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integrity verification for retrieved data during query processing.
The computing layer encompasses an off-the-shelf database en-
gine responsible for query evaluation, which is implemented using
the Rusqlite library.> For the V2FS CI, the database engine and
ADS engine run inside an SGX enclave to construct trustworthy
certificate. Finally, the user interface layer includes a visualization
module, which showcases the system working process and provides
an interactive demonstration experience.

4 Demonstration Scenarios

Our demonstration showcase how our system handles blockchain
data indexing and verifiable multi-chain queries in four scenarios.

Scenario 1: Subscribing to Multi-chain Indexing Services.
Users can subscribe to multi-chain indexing services by uploading
a manifest file through the uploading interface (Figure 4). The man-
ifest, represented as a YAML file, provides essential information
for the indexing service, including data sources, types, target table
schema, and other metadata. The manifests processing informa-
tion can be viewed in the V2FS CI dashboard (Figure 5). Users can
check the status and detailed information of a manifest on Panel
1 and Panel 2, respectively. Once a manifest is processed, users
can view the maintenance performance, including database update
time, proof generation time, proof size, and the number of accessed
pages. Meanwhile, Panel 4 presents the newly constructed Cz¢g
and visualizes the distribution of page access.

Scenario 2: Verifying Multi-chain Queries. Users can issue
SQLite queries and verify their results through the client dashboard
(Figure 6). Upon submitting a query on Panel 1, the query results

3https://github.com/rusqlite/rusqlite
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are displayed on Panel 2. A @ mark indicates successful verifica-
tion, signifying that the query results are (i) sound: correct and
untampered with, and (ii) complete: including all valid results. On
the other hand, a ® mark reveals one of the following conditions:
(i) the Cy2¢ fails to be verified against the latest blockchain states
and SGX public key; or (ii) certain page retrieved from the ISP are
tampered or missing. Users can check the performance metrics for
query processing such as query processing time and verification
time on Panel 3. Additionally, Panel 3 presents the cache hit ratio
and the number and types of visited pages. This information allows
users to understand the query efficiency based on the effectiveness
of the cache structures. Moreover, Panel 4 offers a visualization of
page access during query processing for better insights.

Scenario 3: Understanding the Impact of Queries. Users
can explore the impact of different queries on system performance.
On the one hand, different data distributions for the same query
can lead to varying cache utilization. On the other hand, different
query types may have different complexity, which causes various
cache hit ratios. By varying query distributions and types, users
can observe their influence on the cache hit ratio, consequently
affecting the overall query performance.

Scenario 4: Understanding the Impact of Cache Algorithms.
Users can also analyze the query performance and page access pat-
terns of cache-based algorithms to understand the effectiveness
of optimizations. Specifically, users can experiment with different
optimization approaches and adjust the cache size when entering
a query on Panel 1 of Figure 6. Then they can compare the query
performance in terms of query processing time, verification time,
cache hit ratio, and VO size. Additionally, they can analyze the page
access distributions resulting from various optimization techniques
and cache sizes.
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