

Manuscript Details

Manuscript number	SOILDYN_2020_490
Title	Partially Drained Cyclic Behaviour of Granular Fill Material in Triaxial Condition
Article type	Research Paper

Abstract

The dynamic responses of granular materials subjected to cyclic loading under partially drained condition were seldom investigated, though the partially drained condition is commonly existing for the granular materials that locate nearby the drainage boundaries. Besides, the prevalent studies mainly focus on the liquefaction behaviour of granular materials under high stress levels. In this study, a granular fill material was chosen as testing material. A series of partially drained cyclic triaxial tests was conducted with low level of cyclic loading and high cycle number that are commonly experienced in the geostructures of transportation projects. Note that the cyclic triaxial test under partially drained condition is a model test rather than an element test since the distribution of excess pore water pressure is not homogeneous inside the specimen. The test results show that cyclic loading induces the reconstruction effect on the microstructure of the specimen, thereby changing the trend between permeability and void ratio. Under partially drained condition, the granular fill material normally experiences a sudden decrease of stiffness and a quick increase in deformation during the first cycles of loading, followed by gradually decreasing excess pore water pressure and stabilizing deformation. Importantly, the deformation response of the material can be contributed by two items: (a) that caused by densification effect of applied cyclic loading and (b) that due to the dissipation of excess pore water pressure. Two linear relationships were established to correlate the deformations with excess pore water pressure and applied cyclic loading.

Keywords	cyclic triaxial tests, granular material, partially drained, excess pore water pressure, permanent strain
Corresponding Author	Wei-Qiang FENG
Corresponding Author's Institution	The Southern University of Science and Technology
Order of Authors	Wen-Bo CHEN, Kai Liu, Wei-Qiang FENG, Jianhua Yin
Suggested reviewers	Wan-Huan Zhou, Lin Guo, Guanlin YE, Dongsheng XU

Submission Files Included in this PDF

File Name [File Type]

Hlighlight.docx [Highlights]

Partially drained cyclic test_text.docx [Manuscript File]

Partially drained cyclic test_figure.docx [Figure]

Partially drained cyclic test_table.docx [Table]

declaration-of-competing-interests 2020.docx [Conflict of Interest]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Research Data Related to this Submission

There are no linked research data sets for this submission. The following reason is given:
Data will be made available on request

1. Partially drained cyclic tests with low stress and high cycle number was performed.
2. Effect of microstructure reconstruction on permeability of soil was revealed.
3. Resilient and permanent strain behavior were investigated.
4. Permanent strain was correlated with stress states by simple approach.

Partially Drained Cyclic Behaviour of Granular Fill Material in Triaxial Condition

by

Wen-Bo CHEN (Ph.D., Post-Doctoral Fellow)

Department of Civil and Environmental Engineering

The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Email: geocwb@gmail.com

Kai LIU (Ph.D. Candidate)

Department of Civil and Environmental Engineering

The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Email: kevin-kai.liu@connect.polyu.hk

Wei-Qiang FENG (Ph.D., Assistant Professor) (Corresponding Author)

Department of Ocean Sciences and Engineering,

The Southern University of Science and Technology, China.

Email: fengweiqiang2015@gmail.com

Jian-Hua YIN (Ph.D., Chair Professor)

Department of Civil and Environmental Engineering,

The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Email: cejhyin@polyu.edu.hk

A manuscript submitted to *Soil Dynamics and Earthquake Engineering* for possible publication as a research paper

April 2020

28 **ABSTRACT:**

29 The dynamic responses of granular materials subjected to cyclic loading under partially drained
30 condition were seldom investigated, though the partially drained condition is commonly
31 existing for the granular materials that locate nearby the drainage boundaries. Besides, the
32 prevalent studies mainly focus on the liquefaction behaviour of granular materials under high
33 stress levels. In this study, a granular fill material was chosen as testing material. A series of
34 partially drained cyclic triaxial tests was conducted with low level of cyclic loading and high
35 cycle number that are commonly experienced in the geostructures of transportation projects.
36 Note that the cyclic triaxial test under partially drained condition is a model test rather than an
37 element test since the distribution of excess pore water pressure is not homogeneous inside the
38 specimen. The test results show that cyclic loading induces the reconstruction effect on the
39 microstructure of the specimen, thereby changing the trend between permeability and void ratio.
40 Under partially drained condition, the granular fill material normally experiences a sudden
41 decrease of stiffness and a quick increase in deformation during the first cycles of loading,
42 followed by gradually decreasing excess pore water pressure and stabilizing deformation.
43 Importantly, the deformation response of the material can be contributed by two items: (a) that
44 caused by densification effect of applied cyclic loading and (b) that due to the dissipation of
45 excess pore water pressure. Two linear relationships were established to correlate the
46 deformations with excess pore water pressure and applied cyclic loading.

47

48 **Keywords:** cyclic triaxial tests, granular material, partially drained, excess pore water pressure,
49 permanent strain.

50 **1. Introduction**

51 In the last several decades, significant progress has been advanced in understanding the
52 rationales underlying the macroscopic responses of the saturated granular materials under cyclic
53 loading. Most of the studies were conducted by implementing cyclic triaxial tests, in which the
54 granular materials were compressed or extended under drained or undrained condition [1-11].
55 The granular materials are widely adopted as filling materials in transport infrastructures, such
56 as pavement, ballasted and ballastless railways [9, 12-14]. One of the main functions of these
57 granular materials is to provide drainage paths to drain the rainwater due to their relatively high
58 permeability. Therefore, under the traffic loading, the granular materials are frequently serving
59 in a partially drained condition, in which the build-up of excess pore water pressure and
60 drainage of water in the granular materials occur simultaneously. The partially drained
61 condition commonly exists in the granular materials that locate nearby the drainage boundaries,
62 such as the surface of highway and railway embankment and the gravel or sand drains in the
63 treated ground. Compared with the behaviour of granular materials under drained or undrained
64 condition, their behaviour under partially drained condition is complexed by a coupling effect
65 of a) decrease of effective confining pressure due to the increase of excess pore water pressure,
66 and b) volumetric contraction due to the drainage of water. This coupling effect may further
67 induce an excess settlement and a loss in bearing capacity, which will probably decrease the
68 stability or even result in the failure of the geostructures.

69

70 Relative to the studies on granular materials, more studies, though not many, have been
71 conducted on the cyclic behavior of cohesive soils under partially drained condition. Hyodo et
72 al. [15] stated that the soft clay beneath nearshore or offshore structures and railway
73 embankment are subjected to a long-term cyclic wave and traffic loadings, thereby inducing
74 the alternate repetition between the generation and dissipation of excess pore pressure. A series
75 of cyclic triaxial tests with the variation of cyclic deviator stress were conducted. They proposed
76 a prediction model to describe the behaviour of clay in partially drained condition by calculating
77 the excess pore water pressure based on the results of undrained cyclic triaxial tests combined

78 with the theory of consolidation. Sakai et al. [16] implemented a series of cyclic triaxial tests
79 on silty clay under drained and undrained conditions, then, modified and validated the model
80 by Hyodo et al. [15] to incorporate the non-linear compressibility of soil. Indraratna et al. [17]
81 conducted a series of large-scale cyclic triaxial tests on kaolinite clay with prefabricated vertical
82 drain (PVD) installed in the center of the specimen under undrained and partially drained
83 conditions. The results of tests indicate that PVD assists in the dissipation of excess pore water
84 pressure in the specimen, the rate of which depends on the distance to the drain. However, the
85 above-mentioned tests only investigated the effect of effective confining pressure and cyclic
86 deviator stress on the behaviour of cohesive soil under partially drained condition.

87

88 Few attentions have been paid on the cyclic behaviour of granular materials under partially
89 drained condition. After analyzing a group of cyclic undrained and partially drained triaxial
90 tests on Toyoura sand, Yamamoto et al. [18] found that the initial liquefaction only occurs after
91 reaching a certain limit of cyclic shear stress ratio (cyclic deviator stress over the double of
92 effective confining pressure). Moreover, they concluded that permeability, drainage length, and
93 loading frequency are three core factors that control the liquefaction potential of the sand under
94 partially drained condition. A significant decrease in permeability of sand under dynamic
95 compaction was observed by Chapuis et al. [19]. Mangal [20] highlighted the effect of dilatancy
96 of sand on the build-up of excess pore water pressure in partially drained cyclic physical model
97 test of shallow foundation.

98

99 Based on the above review, it can be seen that the existing studies about the cyclic behaviour
100 of geomaterials under partially drained condition are limited to cohesive soil and clean sand
101 with a narrow gradation. Furthermore, the above studies normally paid more attention to the
102 cyclic strength of the geomaterials, particularly focusing on the critical shear stress ratio that
103 induces the failure of cohesive soils and the liquefaction (cyclic mobility) of sand, in which the
104 stress and strain levels are high. In contrast, for the granular material layers in transport
105 infrastructure, firstly, the static and cyclic stress levels are normally much lower than the

106 corresponding failure strength; secondly, the control limit of axial strain is strictly low; thirdly,
107 a large number of cyclic loading will be experienced in the service life. Therefore, the cyclic
108 behaviour of granular materials that are adopted as filling materials in transport infrastructures
109 under partially drained condition is still an open question.

110

111 In this study, a poorly-graded coarse-grained soil is adopted as the testing material. A detailed
112 characterization of soil at micro and macro scale was implemented and presented. Then, three
113 static compression tests were conducted on the saturated specimens under drained condition.
114 Subsequently, a series of cyclic triaxial tests on the saturated soil specimens under partially
115 drained condition with variations of initial effective confining pressure (σ'_3), cyclic deviator
116 stress (q_{cyc}), frequency (f), cycle number (N), and consolidation stress ratio (σ'_1/σ'_3). The
117 changes of excess pore water pressure (Δu), resilient modulus (M_r), permanent volumetric and
118 axial strains ($\Delta \varepsilon_v$ and $\Delta \varepsilon_a$), and the Poisson's ratio (ν) during cyclic loading tests will be
119 presented and discussed. Several specimens subjected to cyclic loading were followed by
120 drained static compression tests to evaluate the post-cyclic behaviour of the specimen. This
121 investigation was aimed to provide a detailed database of experimental evidence of partially
122 drained behaviour of granular fill materials in transport infrastructures.

123

124 **2. Testing material, specimen preparation, apparatus and scheme**

125 *Testing material*

126 The tested granular soil is a filling material, that is adopted in the high-filled embankment of
127 an airport. The soil is classified as poorly-graded gravel with sand according to ASTM D 2487-
128 06 [21]. Note that all particles larger than 20 mm in diameter were removed by sieving. Figure
129 1 shows the particle size distribution curve of the tested fill material after scaling. The scaled-
130 down soil was first divided into eight groups characterized by eight particle size ranges: 10–20
131 mm, 5–10 mm, 2–5 mm, 0.3–2 mm, 0.212–0.3mm, 0.15–0.212 mm, 0.063–0.15mm, and
132 <0.063 mm. For the soil specimens in characterization and triaxial tests, the predetermined mass
133 of each group size was weighed and mixed together, according to the particle distribution curve

134 as shown in Figure 1. The basic index values are listed in Table 1.

135

136 For better understanding the soil behaviour at the particle scale, microhardness of single
137 particles was measured. Several particles from the size range of 2-5 mm were selected and cast
138 by Epoxy to form a sliced specimen. Then, the sliced specimen was carefully polished by a
139 grinding&polishing equipment (Buehler AutoMet 250) until the soil particles were clearly
140 exposed to the air [22, 23, 24]. Figure 2(a) presents a typical microscopic view of the cross-
141 section of a single soil particle. The soil particle comprises angular particles (bright areas) and
142 the bonding materials (dim areas). The measurements were repeated for dry and saturated
143 specimens. Figures 2(b) and 2(c) show the typical indentations on bright angular particles and
144 bonding materials. As shown in Figure 3(a), when the soil particles are air-dried, the average
145 Vickers microhardness (VM) of bright particles and bonding materials are 1387.1 kg/mm^2 and
146 66.5 kg/mm^2 , respectively. Combined with the analysis of the content of oxide by X-ray
147 fluorescence (XRF) test, as listed in Table 2, it is reasonable to conclude that the bright angular
148 particles and bonding materials are quartz and clay minerals, respectively. Figure 3(b) shows
149 that the VM values of bright particles and bonding materials will decrease to 1317.7 kg/mm^2 ,
150 and 23.3 kg/mm^2 , respectively, after saturation. The electron microscope scan of a typical
151 particle is shown in Figure 4. It clearly shows that the particle is a clump of agglutinated
152 materials, including angular particles and the attached small sheets. Therefore, it can be inferred
153 that the compression of the specimen is accompanied by particle crushing due to the
154 disaggregation of clay minerals under the effects of loading and soaking [25].

155

156 *Specimen preparation*

157 According to the particle size distribution curve shown in Figure 1, the oven-dried soil in
158 predetermined mass from each size group was weighed and mixed together. Subsequently, the
159 de-aired water was added into the soil to achieve the optimum water content. After mixing
160 thoroughly, the soil was matured for at least 24 hrs. Then, the matured soil was compacted in a
161 mold with an internal diameter of 100 mm using a rotary hammer in five layers. Each soil layer

162 was compacted to achieve a height of 40 mm and a target dry density of 1.87 Mg/m³ (88% of
163 MDD). After finishing the compaction of each layer, the surface of the layers was scratched to
164 ensure proper bonding with the subsequent soil layer.

165

166 *Testing apparatus and scheme*

167 An electro-hydraulically actuated servo-controlled loading apparatus (GCTS, USA) was
168 utilized for the cyclic triaxial tests. For each triaxial specimen, as shown in Figure 5, two high-
169 precision Linear Variable Differential Transformers (LVDTs) (RDP, UK) were attached at
170 diametrically opposite sides of specimen for measuring the local vertical strain. For each
171 specimen consolidated under an effective confining pressure of 100 kPa, a new LVDTs-based
172 radial strain measurement device was attached at the middle height of the specimen. The new
173 device is capable of measuring radial strain of specimen under both static and cyclic loadings.
174 The details of this system are systematically introduced in Chen et al. [26]. With the results of
175 radial strain, the Poisson's ratio can be calculated. The test scheme is listed in Table 3. Three
176 levels of initial effective confining pressure (50, 100, 200 kPa) were selected in consolidation
177 stage for static and cyclic triaxial tests. For three static compression tests, the specimens were
178 sheared under drained condition. The effects of loading frequency and consolidation stress ratio
179 are only investigated on the specimens consolidated under 100 kPa initial effective confining
180 pressure. In the cyclic triaxial test, a series of stepwise-increased cyclic deviator stresses at an
181 interval of 25 or 30 kPa was applied. The stress paths for cyclic tests are presented in Figure 6.
182 Considering the control limit of axial strain in transport infrastructure is quite strict, especially
183 for the pavement of airport and the embankment of railway, the stepwise-increased cyclic
184 loadings were stopped after the accumulated (permanent) axial strain of the specimen reached
185 3 to 4 %. For each level of cyclic loading, 10000 loading cycles were applied. Note that post-
186 cyclic compression was conducted in drained condition after the completion of cyclic loading
187 for three specimens such that the post-cyclic strength and deformation behaviour can be
188 evaluated. For the specimen consolidated under 200 kPa, the isotropic consolidation stress was
189 increased step by step. The permeability tests were conducted after each stage of consolidation

190 and cyclic loading to determine the relationship between void ratio and permeability.

191

192 To facilitate the saturation of specimens, all the specimens were flushed by Carbon Dioxide for
193 20 minutes. Then, the de-aired water was introduced from the bottom of the specimens to
194 occupy the majority of voids in the specimen under the cell pressure of 25 kPa. Lastly, the back
195 pressure saturation method was adopted to achieve a minimum B-value of 0.97. The typical
196 changes of volumetric strain, axial strain and radial strain of one specimen during introducing
197 water, which is also called collapse deformation, are presented in Figure 7. It can be seen that
198 all the strains increase quickly at the beginning, then gradually tend to level off. Chen et al. [27]
199 prepared the specimens with the same material and followed the same procedure. They stated
200 that the matric suction of the specimens after compaction ranged from 20 kPa to 40 kPa and the
201 air entry value on the drying path was 1.8 kPa. Therefore, the changes of strains can be inferred
202 to be mainly induced by the release of matric suction. The strain levels showed in Figure 7 also
203 indicate that the tested material is not prone to collapse under wetting.

204

205 Note that during cyclic loading, the drainage valve at the bottom of the specimen was kept open
206 and excess pore water pressure of specimen was measured at the top of specimen. Therefore,
207 the cyclic triaxial test resembles a model test rather than an element test since the distribution
208 of excess pore water pressure is not homogeneous inside the specimen.

209

210 **3. Test results and discussions**

211 *Hydraulic conductivity of tested granular fill material*

212 For the specimen consolidated under 200 kPa, a series of stepwise-increased isotropic effective
213 confining pressures (10 kPa, 20 kPa, 50 kPa, 100 kPa, 150 kPa, and 200 kPa) was applied. At
214 each stage of loading, the vertical permeability of the specimen was measured after the
215 completion of consolidation. Four levels of constant water head difference were maintained
216 between the top and bottom of the specimen to determine the permeability at one stress state,
217 then the average value of permeability was calculated. The corresponding void ratio was

218 calculated based on the initial void ratio and the water volume draining out from the specimen
219 under cyclic loadings. The same approach was applied to determine the permeability of the
220 specimen after each stage of cyclic loading. Figure 8(a) shows the relationship between the
221 permeability and void ratio under isotropic consolidation. The blanked circle dots represent the
222 measured results and the solid fitting line shows that the logarithmic value of permeability
223 decreases almost linearly with decreasing void ratio. Other five sets of data from literature are
224 plotted in Figure 8(a) for comparison. It can be seen that the permeability level of the tested soil
225 locates between that of uniformly-graded clean sand (silica sand or Toyoura sand) and the silt
226 or silty sand, though the particles with diameter larger than 1 mm account for more than 50%
227 in mass. This proves that the permeability is more dominated by the existence of the finer
228 particles. For one specific soil, the void ratio plays a significant role in its drainage capacity,
229 which inversely influences the compressibility of the soil, *i.e.* the change of void ratio.

230

231 As shown in Figure 8(b), an obvious sudden change occurs for the permeability after the lowest
232 cyclic loading (25 kPa) is applied. Then the trend of permeability with void ratio differs greatly
233 with that under multi-stage isotropic loading. It can be seen that the decreasing rate of
234 permeability with the void ratio under cyclic loading increases compared to that under isotropic
235 loading. This is possibly induced by the reconstruction effect from cyclic loading on the
236 microstructure of specimen, which is presented by the increase of micro-pores and the decrease
237 of macro-pores. The disaggregation of particles of the tested soil is aggravated under cyclic
238 loading, leading to an increase in the percentage of fine particles and further resulting in the
239 increase of micro-pores. It can be concluded that the change of particle size distribution curve
240 (the crushing behavior of particles), except the change of void ratio, should be taken into
241 account when investigating the hydraulic conductivity of one specific soil.

242

243 *Static compression and post-cyclic strength*

244 Figure 9 shows the stress-strain behaviour of the specimens with and without cyclic loading.
245 For the specimens with cyclic loading, the deviator stress rose from zero point since the cyclic

246 deviator stress was totally released before compression commenced. It can be seen that the
247 initial modulus of post-cyclic compression curve is much higher than that of the specimen
248 compressed under the same pressure without cyclic loading. Moreover, the strain level of the
249 turning point, at which the deviator stress starts to level off, becomes smaller in the post-cyclic
250 compression cases. Importantly, the maximum deviator stresses for the specimens consolidated
251 under 50 kPa, 100 kPa and 200 kPa decreased by 15.5%, 9.6% and 13.9 %, respectively. This
252 finding shows that the tested fill material degrades due to cyclic loading so that the design
253 parameters for the embankment based on the conventional triaxial tests without cyclic loading
254 are on the unsafe side. Therefore, the stability problem of the geostructure should take the effect
255 of cyclic loading into consideration.

256

257 *Excess pore water pressure*

258 As mentioned in Section 2, the cyclic tests in this study resemble more a model test rather than
259 an element test such that the pore water pressure distribution is not homogeneous throughout
260 the specimen. Note that the build-up of excess pore water pressure corresponding to the cyclic
261 loading is quite complex under partially drained condition. The profile of excess pore water
262 pressure along the height of the specimen keeps varying from time to time depending on the
263 stress level, loading frequency, void ratio, drainage path distance, and the change of particle
264 size distribution. Based on the assumption adopted by Hyodo et al. [15], the pore water pressure
265 measured at the top of the specimen can be reasonably regarded as the maximum one in the
266 specimen due to its longest drainage path to the draining boundary, which is located at the
267 bottom of the specimen. Figure 10 shows the build-up of excess pore water pressure of all
268 specimens under cyclic loading. As the cyclic deviator stress is relatively small, the tests were
269 all stopped before the liquefaction was triggered, i.e., the excess pore water pressure is equal to
270 the initial effective confining pressure. It can be observed that the excess pore water pressure
271 shoots up to a high level, then followed by a gradual decrease. Figure 10(a) shows the build-up
272 of excess pore water pressure under different levels of confining pressure and the same loading
273 frequency of 1 Hz. Unexpectedly, the maximum excess pore water pressure occurred when the

274 specimen was consolidated under 50 kPa and subjected to a cyclic loading of 50 kPa. The
275 transient high level of excess pore water pressure dropped down to a small level immediately.
276 This dramatic change possibly resulted from the relatively high compressibility or high void
277 ratio, which led to an instant volume contraction of the specimen. Then the high permeability
278 enabled a quick dissipation of excess pore water pressure. If the excess pore water pressure is
279 normalized by the initial effective confining pressure, it can be concluded that higher initial
280 effective confining pressure increases the resistance to the build-up of excess pore water
281 pressure. As shown in Figure 10(b), the higher loading frequency results in the higher maximum
282 value of excess pore water pressure. With the increase of cyclic deviator stress, the specimens
283 loaded under 0.25, 0.5 and 1 Hz showed a general decreasing trend of maximum pore water
284 pressure. However, the specimen with cyclic loading of 2 Hz obtained its highest excess pore
285 water pressure when the cyclic deviator stress of 130 kPa was applied, showing that the
286 increasing frequency and cyclic stress level are two adverse factors in evaluating the
287 liquefaction resistance or stability problem of the layer of fill materials in the embankment. For
288 railway engineering projects, fortunately, the high-speed passenger trains normally exert low
289 levels of dynamic stress on the subgrade, while heavy freight trains normally run at slow speed.
290 On the contrary, it is necessary to consider the combined effects of high stress level and loading
291 frequency for the embankment of the airport, which will experience the transient high level of
292 dynamic stress of high frequency during the landing and take-off of the airplanes. Figure 10(c)
293 shows that a slightly higher level of excess pore water pressure is reached for the specimens
294 consolidated under a higher consolidation stress ratio. It can be speculated that this small
295 difference is mainly due to the smaller void ratio, which represents the lower permeability.

296

297 *Resilient modulus*

298 Resilient modulus is defined as the ratio of the amplitude of cyclic deviator stress to the
299 recoverable axial strain in one loading cycle. It is a fundamental parameter to describe the
300 stiffness of soil under cyclic loading and commonly adopted for characterizing the compacted
301 fill materials in substructures of pavement or railway [12, 14]. Figure 11 presents the variation

302 of M_r with increasing cycle number under different stress states. As can be observed in Figure
303 11(a), with the same loading frequency of 1 Hz, M_r generally becomes larger under higher
304 confining pressure, which confirms with the findings by the majority of studies [e.g. 30, 31]. It
305 can also be noted that the cyclic deviator stress is less influencing to M_r compared to the
306 confining pressure for this specific granular fill material. When a higher level of cyclic loading
307 is applied, M_r shows a sudden decrease in the first several loading cycles, then followed by a
308 gradual increase until a stable state is achieved. The sudden decrease is most significant for the
309 specimen under the confining pressure of 50 kPa. This is in accordance with the trend of the
310 build-up of excess pore water pressure, which decreases the effective confining pressure
311 sustained by soil skeleton, thereby facilitating the interparticle slip and skeleton deformation.
312 After the dissipation of excess pore water pressure, the soil specimen regains stiffness due to
313 the increase of effective confining pressure. This indicates that the granular fill material at the
314 top part of the subgrade is prone to fail at low effective confining pressure. Furthermore, with
315 the development of rutting and the possible particle suffusion in gap-graded granular materials,
316 the effective confining pressure will decrease further due to the drop of bulk density or unit
317 weight. When coupling with saturated condition, the stability problem of the surface part will
318 be fatal to the serviceability of the whole embankment. As for the effect of consolidation stress,
319 it shows a slight strengthening effect on the resilient modulus when the cyclic deviator stress is
320 relatively small (from 20 to 100 kPa), as shown in Figure 11(c). The higher consolidation stress
321 would lead to a more densely contacted soil particle structure, in which the average area of each
322 contact point is increased, and the macroscopic compressibility of the soil specimen is
323 decreased. The increasing cyclic deviator stress gradually diminishes this strengthening effect.
324 Therefore, for some typical practical projects, e.g. ballastless High-speed Railway, with the
325 dynamic stress transferred from concrete slab to the embankment smaller than 20 kPa [32, 33],
326 the resilient modulus tests on the specimens under anisotropic consolidation are inevitable,
327 which, however, is normally overlooked in the prevalent standards, e.g. EN 13286-7 [34] and
328 AASHTO T307-99 [35].

329

330 *Poisson's ratio*

331 In this study, the radial strain measurement system was only utilized for the specimens
332 consolidated under 100 kPa. The corresponding values of Poisson's ratio were calculated and
333 presented in Figure 12. It is challenging to measure accurately the radial strain change during
334 each cycle of loading [26], thus some slight fluctuations can be observed in the figure. Generally,
335 the Poisson's ratio increases with increasing cyclic deviator stress. Under higher loading
336 frequency, the Poisson's ratio generally becomes larger. In contrast, the higher consolidation
337 stress ratio induces a lower value of Poisson's ratio.

338

339 *Accumulated axial and volumetric strains*

340 The accumulated strain is defined as the sum of the irrecoverable strain occurs during each
341 cycle of loading. Estimating the accumulated strain of granular materials in embankment
342 subjected to cyclic loading is a major challenge for transport engineering projects. The control
343 limits of the settlement after construction are very strict for the embankment of High-speed
344 Railway (<15mm) or the embankment of airport (<50mm). Also, the strain levels of differential
345 settlement should be strictly lower than 0.1-0.15% for the embankment of airport and 0.15-0.45%
346 for High-speed Railway. However, accumulated strain behavior is less investigated compared
347 to that of resilient modulus as it needs a larger number of specimens and much more time and
348 effort. To the knowledge of authors, the accumulated strains (axial and volumetric strains) of
349 granular fill materials under long-term cyclic loading and partially drained condition has never
350 been investigated. As shown in Figure 13(a), the rising effective confining pressure increases
351 the deformation resistance of the specimen. Figure 13(b) presents the effect of loading
352 frequency on the development of accumulated axial strain. Generally, the specimens
353 experienced higher accumulated axial strain when the loading frequency was higher. The
354 accumulated axial strain normally increased quickly in the first cycles, followed by a stable
355 state. Excessive deformation occurred for the specimen subjected to a 2 Hz cyclic loading when
356 cyclic deviator stress reached 130 kPa. Figure 13(c) shows that the accumulated axial strain
357 becomes larger with increasing consolidation stress ratio under each level of cyclic deviator

358 stress. Therefore, the simplification of using isotropic confining pressure for permanent strain
359 in EN 13286-7 [34] may underestimate the real strain level in the field, where the embankment
360 is normally subjected to an anisotropic stress condition with larger vertical stress and lower
361 lateral stress.

362

363 Figure 14 presents the relationship between the maximum mean stress (P_{\max}) under each level
364 of cyclic deviator stress and the change of void ratio. To ease the comparison, the confining
365 pressure for the calculation of maximum mean stress adopts the initial effective confining
366 pressure before applying cyclic loadings. The maximum mean stress is reached when the cyclic
367 deviator stress increases to its peak. On the other hand, the void ratio in the figure is a stable
368 value at the end of each stage of loading. A reference curve, as shown in Figure 14, is composed
369 of the mean effective stresses under different stages of isotropic confining pressure and the
370 corresponding void ratios. The void ratio decreases at an obviously higher rate under cyclic
371 loading, which is called the densification effect of cyclic loading, compared to that under
372 isotropic loading. Specifically, the changes of the void ratio of the specimens under 100 kPa
373 initial effective confining pressure are presented in Figure 15. The compression index, C_c , is
374 calculated as:

$$375 \quad C_c = -\Delta e / \Delta \log(p_{\max}) \quad (1)$$

376 The compression index for each specimen is also listed in Figure 15. The trends of C_c for
377 different frequencies and stress ratios are identical to those of permanent strain with a larger
378 value under higher frequency and higher consolidation stress ratio. A largest value of the
379 compression index was achieved by the specimen under 2 Hz cyclic loading.

380

381 According to the simplification by Hyodo et al. [15] and Sakai et al. [16], the total volume
382 change $\Delta\varepsilon_v$ can be expressed by:

$$383 \quad \Delta\varepsilon_v = \Delta\varepsilon_{vu} + \Delta\varepsilon_{vl} \quad (2)$$

384 where $\Delta\varepsilon_{vu}$ is the volumetric strain resulted from the dissipation of excess pore water pressure,
385 $\Delta\varepsilon_{vl}$ is the volumetric strain due to the densification effect of applied cyclic loading. As

386 mentioned in Section 2, the cyclic triaxial test in this study is a model test, which has a clear
 387 boundary condition. Also, the excess pore water pressure distribution is inhomogeneous
 388 throughout the specimen with the largest exists at the impermeable boundary, i.e. the top of the
 389 specimen, and the lowest (can be regarded as zero) exists at the drainage boundary, i.e. the
 390 bottom of the specimen. Hyoto et al. [15] proved that except in the vicinity of the drainage
 391 boundary the excess pore water pressure rises up with the cycle number until reaching the peak
 392 value at which the contour of excess pore water pressure is of a trapezoidal shape. Then, the
 393 excess pore water pressure dissipates while keeping a parabolic shape until reaching a marginal
 394 level. Therefore, it is reasonable to assume that the equivalent average excess pore water
 395 pressure, Δu_a , throughout the specimen can be calculated as the two-thirds of the maximum
 396 excess pore water pressure measured at the top of the specimen, as expressed by:

$$397 \quad \Delta u_a = \frac{2}{3} \Delta u_{\max} \quad (3)$$

398 This is also a common approach to estimate the average excess pore water pressure in a clay
 399 specimen with one permeable boundary and one impermeable boundary under 1D straining
 400 condition [36, 37]. Therefore, $\Delta \varepsilon_{vu}$ can be calculated as:

$$401 \quad \Delta \varepsilon_{vu} = \Delta u_a \cdot m_v = \Delta u_a \cdot [\Delta e / (1 + e_0)] / \Delta p_{\max} \quad (4)$$

402 where m_v is the coefficient of volume compressibility, e_0 is the initial void ratio and Δe is the
 403 change of void ratio. Note that m_v is a highly stress-path dependent parameter [38, 39]. On one
 404 hand, the Δu_a is bulk stress such that the corresponding m_v cannot be determined by the cyclic
 405 tests with varying deviator stress. On the other hand, no isotropic loading was applied after each
 406 stage of cyclic loading, in this study, to determine the m_v . Thus, the m_v corresponding to Δu_a
 407 was estimated based on the compression index of the normal compression line (NCL), which
 408 is shown in Figure 14 assuming that after the cyclic loading the void ratio of the specimen
 409 subjected to an isotropic loading will develop along a line that is parallel to the NCL. As shown
 410 in Figure 16, the relationship between $\Delta \varepsilon_{vu}$ and $\Delta u_{\max} / p_{\max}$ is plotted and a good linear
 411 relationship can be shown as:

$$412 \quad \Delta \varepsilon_{vu} = 0.0328 \cdot \Delta u_{\max} / p_{\max} \quad (5)$$

413 Then, $\Delta \varepsilon_{vl}$ can be easily calculated using Eq. (2), and, as shown in Figure 17, it can be well

414 correlated with q_{\max}/p_{\max} as a linear formula:

415
$$\Delta\varepsilon_{vl} = 0.0388 \cdot q_{\max}/p_{\max} \quad (6)$$

416 where q_{\max} is defined as the maximum deviator stress can be achieved during cyclic loading. It
417 can be seen that, irrespective of the confining pressure, loading frequency, and consolidation
418 stress ratio, the volumetric strain due to the densification of cyclic loading has a unique linear
419 relationship with q_{\max}/p_{\max} , with a standard error less than $\pm 15\%$, which indicates that the
420 volumetric strain due to the densification of cyclic loading under partially drained condition
421 can be easily estimated by the test results from one drained cyclic test with multi-stage cyclic
422 deviator stress.

423

424 **4. Discussions of this study**

425 In this study, the length of the drainage path (sample height) was kept constant for all the
426 specimens. Also, the drainage direction in the field would be quite different from the condition
427 in the triaxial test, where the drainage is only one-dimensional. Note that the permeability after
428 cyclic loading was only measured for one specimen such that no generalized relationship
429 between permeability and peak excess pore water pressure ratio as well as stress states can be
430 established, which will be the main research focus in the future. The research findings in this
431 study are valid for the specific ranges of loading conditions, including the confining pressure,
432 frequency, consolidation stress ratio and cyclic deviator stress, which aims to simulate the stress
433 conditions that are normally confronted in the transportation geostructures. Importantly, as a
434 common limitation for most laboratory studies, the scale of the model test (triaxial specimen)
435 may not be comparable to the actual dimensions of most practical problems.

436

437 **5. Conclusions**

438 In this study, a series of static and cyclic triaxial tests was implemented to focus on the dynamic
439 responses of a granular fill material under partially drained condition, in which the top of the
440 specimen was impermeable, and the bottom of the specimen was connected to a pressure
441 controller that maintained the water pressure and allowed water drain freely. Due to the fact

442 that the excess pore water pressure distribution inside the specimen subjected to cyclic loading
443 is inhomogeneous, the cyclic triaxial test is a model test rather than an element test. Aim to
444 simulate the condition that a granular fill material in a transport geostructure normally
445 experiences, the specimens were subjected to multi-stage cyclic deviator stress with low stress
446 level and high cycle number, instead of the investigation on liquefaction phenomenon under
447 high stress levels, which has been widely reported in extensive studies. Based on the principal
448 findings of the current results, the following conclusions can be drawn:

- 449 1. The permeability of granular fill material is more dominated by the existence of fine
450 particles. Under isotropic loading, the logarithmic value of permeability decreases almost
451 linearly with decreasing void ratio. After the cyclic loading is applied, however, the
452 permeability decreases at an obviously higher rate with the decreasing void ratio. This is
453 possibly induced by the reconstruction effect from cyclic loading on the microstructure of
454 the specimen.
- 455 2. The stress-strain behaviour of the post-cyclic specimens shows a significantly higher initial
456 modulus but lower shear strength compared to that of the specimens without subjected to
457 cyclic loading.
- 458 3. The development of excess pore water pressure results from the dynamic disequilibrium
459 between the contraction of the specimen and its drainage ability. Under partially drained
460 condition, the excess pore water pressure normally increases dramatically to a high level,
461 then followed by a gradual decrease. The increasing frequency and cyclic stress levels are
462 two adverse factors to the deformation or stability of granular fill layers in the embankment.
- 463 4. Under partially drained condition, the granular fill material normally experiences a sudden
464 decrease of stiffness and a quick increase in deformation at the first cycles of loading. The
465 deformation response of the material can be reasonably divided into that caused by
466 densification effect of applied cyclic loading and that due to the dissipation of excess pore
467 water pressure. Two linear relationships were established to correlate the permanent
468 deformations with excess pore water pressure and applied cyclic loading.

469 **Credit Author Statement**

470 Dr CHEN Wen-Bo: Data curation; Formal analysis; Investigation; Methodology;

471 Validation; Roles/Writing – original draft;

472 Mr LIU Kai: Data curation; Methodology; Validation;

473 Dr FENG Wei-Qiang: Conceptualization; Formal analysis; Writing – review & editing.

474 Professor YIN Jian-Hua: Funding acquisition; Project administration; Supervision;

476 **Acknowledgement**

477 The work in this paper is supported by a Research Impact Fund (RIF) project (R5037-18),

478 and three General Research Fund (GRF) projects (PolyU 152796/16E, PolyU 152209/17E;

479 PolyU 152179/18E) from Research Grants Council (RGC) of Hong Kong Special

480 Administrative Region Government of China. The authors also acknowledge supports from

481 Research Institute for Sustainable Urban Development, Research Centre for Urban Hazards

482 Mitigation, and three grants (BBAG, ZDBS, ZVNC) of The Hong Kong Polytechnic

483 University.

484 **References**

485 [1] Seed HB, Idriss IM. Simplified procedure for evaluating soil liquefaction potential. *J Soil*
486 *Mech Found Div* 1971;97(9):1249-1273.

487 [2] Ishihara K, Towhata I. Sand response to cyclic rotation of principal stress directions as
488 induced by wave loads. *Soils Found* 1983;23(4):11-26.

489 [3] Indraratna B, Lackenby J, Christie D. Effect of confining pressure on the degradation of
490 ballast under cyclic loading. *Géotechnique* 2005;55(4):325-328.

491 [4] Yang ZX, Li XS, Yang J. Undrained anisotropy and rotational shear in granular soil.
492 *Géotechnique*, 2007;57(4):371-384.

493 [5] Wichtmann T, Niemunis A, Triantafyllidis T. On the determination of a set of material
494 constants for a high-cycle accumulation model for non-cohesive soils. *Int J Numer Anal*
495 *Methods Geomech* 2010;34(4):409-440.

496 [6] Ishikawa T, Sekine E, Miura S. Cyclic deformation of granular material subjected to
497 moving-wheel loads. *Can Geotech J* 2011;48(5):691-703.

498 [7] Cao Z, Chen J, Cai Y, Gu C, Wang J. Effects of moisture content on the cyclic behavior of
499 crushed tuff aggregates by large-scale tri-axial test. *Soil Dyn Earthq Eng* 2017;95:1-8.

500 [8] Chen WB, Yin JH, Feng WQ, Borana L, Chen RP. Accumulated permanent axial strain of
501 a subgrade fill under cyclic high-speed railway loading. *Int J Geomech*
502 2018;18(5):04018018. DOI: 10.1061/(ASCE)GM.1943-5622.0001119

503 [9] Chen WB, Feng WQ, Yin JH, Borana L, Chen RP. Characterization of permanent axial
504 strain of granular materials subjected to cyclic loading based on shakedown theory. *Constr*
505 *Build Mater* 2019;198:751-761. DOI: 10.1016/j.conbuildmat.2018.12.012

506 [10] Xiong H, Yin ZY, Nicot F. A multiscale work- analysis approach for geotechnical
507 structures. *Int J Numer Anal Methods Geomech* 2019;43(6):1230-1250.

508 [11] Shi XS, Nie J, Zhao JD, Gao Y. A homogenization equation for the small strain stiffness
509 of gap-graded granular materials. *Comput Geotech* 2019;121:103440.
510 DOI:10.1016/j.compgeo.2020.103440.

511 [12] Wang HL, Cui YJ, Lamas-Lopez F, Dupla JC, Canou J, Calon N, Saussine G, Aimedieu

512 P, Chen RP. Effects of inclusion contents on resilient modulus and damping ratio of
513 unsaturated track-bed materials. *Can Geotech J* 2017;54(12):1672-1681.

514 [13] Wang HL, Chen RP, Qi S, Cheng W, Cui YJ. Long-term Performance of Pile-supported
515 Ballastless Track-bed at various water Levels. *J Geotech Geoenviron* 2018;144(6):
516 04018035.

517 [14] Chen WB, Feng WQ, Yin JH. Effects of water content on resilient modulus of a granular
518 material with high fines content. *Constr Build Mater* 2020;236:117542.

519 [15] Hyodo M, Yasuhara K, Hirao K. Prediction of clay behaviour in undrained and partially
520 drained cyclic triaxial tests. *Soils Found* 1992;32(4):117-127.

521 [16] Sakai A, Samang L, Miura N. Partially-drained cyclic behavior and its application to the
522 settlement of a low embankment road on silty-clay. *Soils Found* 2003;43(1):33-46.

523 [17] Indraratna B, Attya A, Rujikiatkamjorn C. Experimental investigation on effectiveness of
524 a vertical drain under cyclic loads. *J Geotech Geoenviron* 2009;135(6):835-839.

525 [18] Yamamoto Y, Hyodo M, Orense RP. Liquefaction resistance of sandy soils under partially
526 drained condition. *J Geotech Geoenviron* 2009;135(8):1032-1043.

527 [19] Chapuis RP, Gill DE, Baass K. Laboratory permeability tests on sand: influence of the
528 compaction method on anisotropy. *Can Geotech J* 1991;26(4):614-622.

529 [20] Mangal JK. Partially-drained loading of shallow foundations on sand (Doctoral
530 dissertation, University of Oxford) 1999.

531 [21] ASTM D 2487-06 Standard practice for classification of soils for engineering purposes
532 (Unified Soil Classification System). Annual Book of ASTM Standards, ASTM
533 International, West Conshohocken, PA. 2006

534 [22] Xuan DX, Zhan BJ, Poon CS. Assessment of mechanical properties of concrete
535 incorporating carbonated recycled concrete aggregates. *Cement Concrete Comp*
536 2016;65:67-74.

537 [23] Zhan BJ, Xuan DX, Poon CS. Enhancement of recycled aggregate properties by
538 accelerated CO₂ curing coupled with limewater soaking process. *Cement Concrete Comp*
539 2018;89:230-237.

540 [24] Cao S, Yilmaz E, Xue G, Yilmaz E, Song W. Loading rate effect on uniaxial compressive
541 strength behavior and acoustic emission properties of cemented tailings backfill. Constr
542 Build Mater, 2019, 213: 313-324.

543 [25] Chen WB, Liu K, Yin ZY, Yin JH. Crushing and Flooding Effects on One-Dimensional
544 Time-Dependent Behaviors of a Granular Soil. Int J Geomech 2020;20(2):04019156.

545 [26] Chen WB, Feng WQ, Yin JH, Borana L. LVDTs-based Radial Strain Measurement System
546 for Static and Cyclic Behavior of Geomaterials. Measurement 2020:107526.

547 [27] Chen WB, Liu K, Feng WQ, Borana L, Yin JH. Influence of matric suction on nonlinear
548 time-dependent compression behavior of a granular fill material. Acta Geotech
549 2020;15:615-633.

550 [28] Lambe TW, Whitman RV. Soil mechanics 1969 553 pp.

551 [29] Lourenço SD, Wang G, Sassa K, Fukuoka H. Volumetric behavior of saturated sands under
552 poor drainage conditions. J Geophys Res-Earth 2006 111(F3).

553 [30] Hicks RG, Monismith CL. Factors influencing the resilient properties of granular
554 materials. High Res Rec 1971;345:15-31.

555 [31] Lekarp F, Isacsson U, Dawson A. State of the art. I: Resilient response of unbound
556 aggregates. J Transp Eng 2000;126:66-75.

557 [32] Guo JH. Study on dynamic response of granular type A and type B fillings of high-speed
558 railway. Soil Engrg. and Found 2012;26(10):116-120. (in Chinese)

559 [33] Qu CZ, Wang YH, Wei LM, Guo ZG. In-situ test and analysis of vibration of subgrade
560 for Wuhan-Guangzhou High-Speed Railway. Rock and Soil Mech 2012;33(5):1451-1461.
561 (in Chinese)

562 [34] CEN-European Committee for Standardization Unbound and hydraulically bound
563 mixtures - Part 7: Cyclic load triaxial test for unbound mixtures. Brussels: European
564 Standard. EN 13286-7. 2004.

565 [35] AASHTO. Standard method of test for determining the resilient modulus of soils and
566 aggregate material. AASHTO T307, Washington. D.C. VA. 2007.

567 [36] Cheng CM, Yin JH. Strain-Rate Dependent Stress-Strain Behavior of Undisturbed Hong

568 Kong Marine Deposits under Oedometric and Triaxial Stress States. Mar Georesources
569 Geotechnol 2005;23(1-2):61-92.

570 [37] Yin JH, Cheng CM. Comparison of strain-rate dependent stress-strain behavior from K_0 -
571 consolidated compression and extension tests on natural Hong Kong marine deposits. Mar
572 Georesources Geotechnol 2006;24(2):119-147.

573 [38] Feng WQ, Yin JH. A new simplified hypothesis B method for calculating settlements of
574 double soil layers exhibiting creep. Int J Numer Anal Met 2017;41(6):899-917.

575 [39] Yin JH, Feng WQ. A new simplified method and its verification for calculation of
576 consolidation settlement of a clayey soil with creep, Can Geotech J 2017; 54(3):333-347.

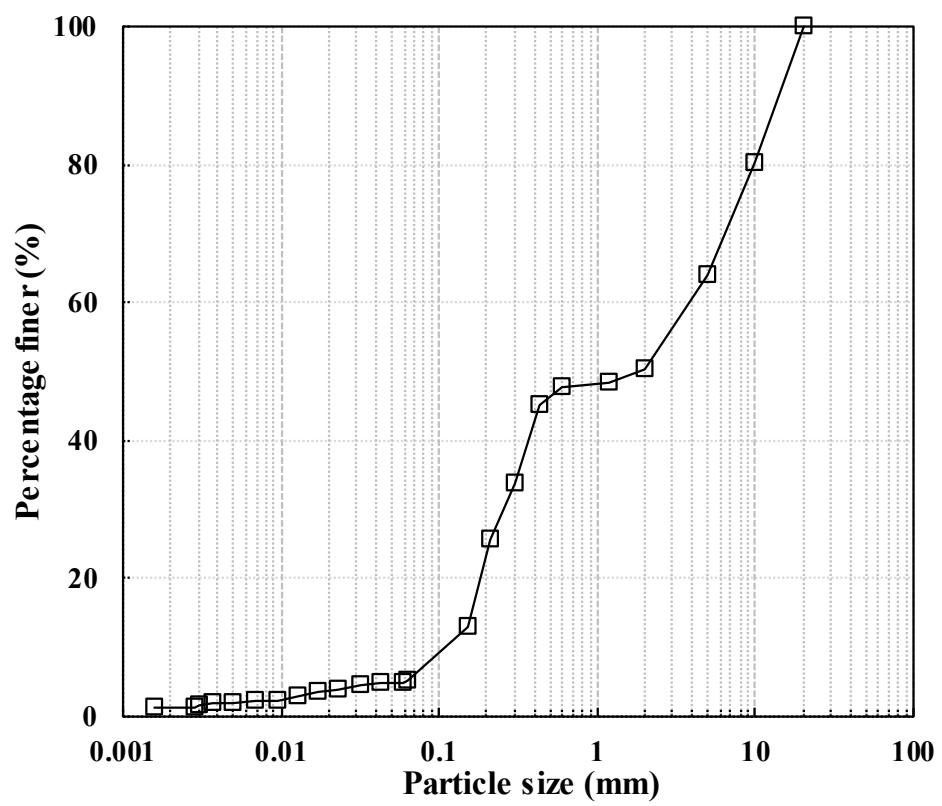


Figure 1. Particle size distribution curve of the granular fill material

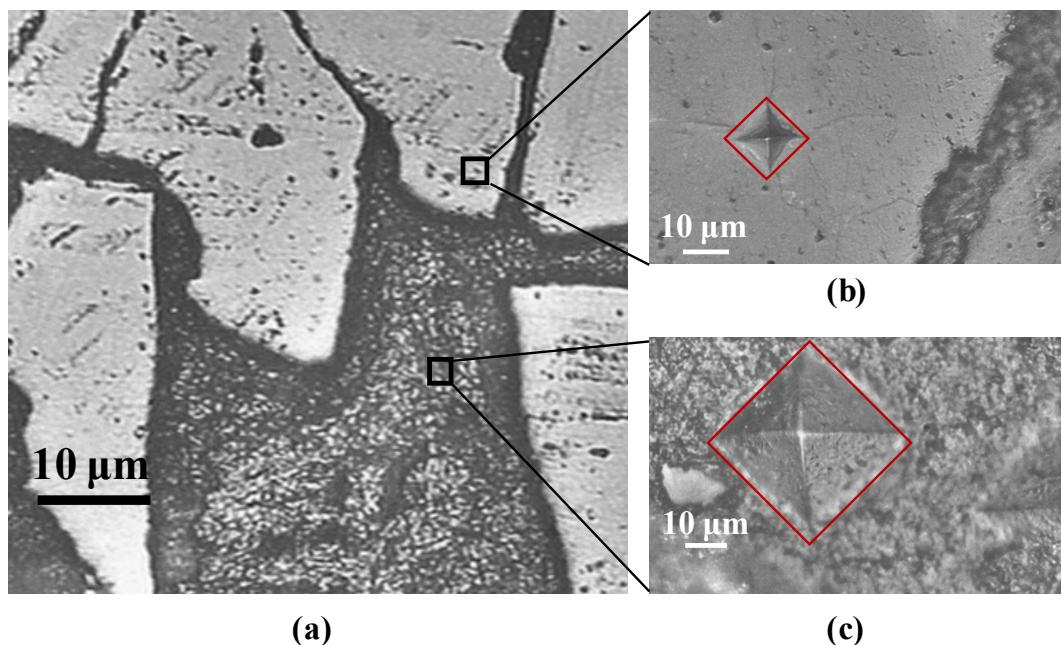


Figure 2. The microscopic view of (a) the cross-section of a single soil particle, (b) typical indentation point on an angular particle, and (c) typical indentation point on the bonding materials

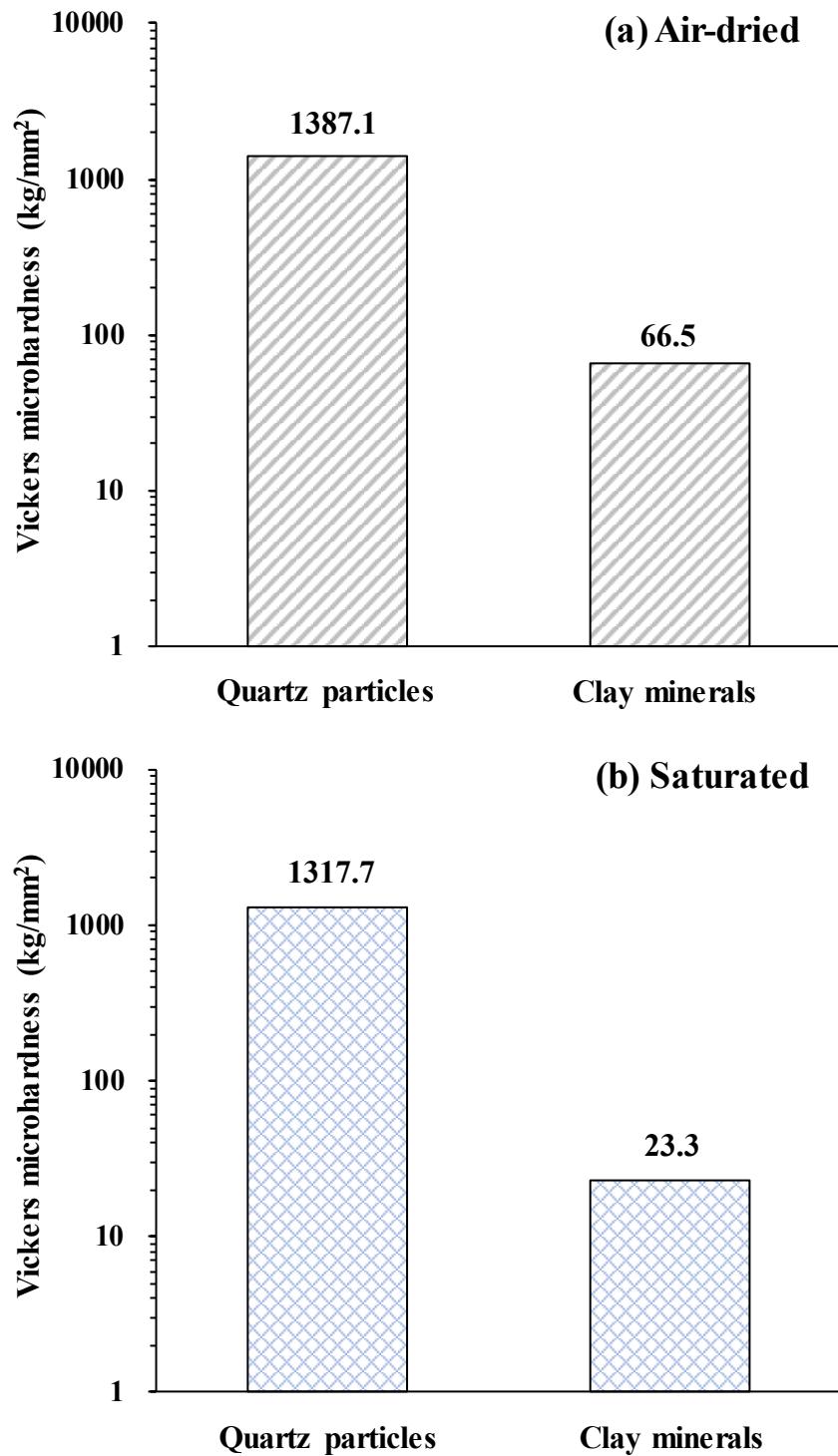


Figure 3. The Vickers microhardness of different positions on particles in (a) air dried and (b) saturated conditions

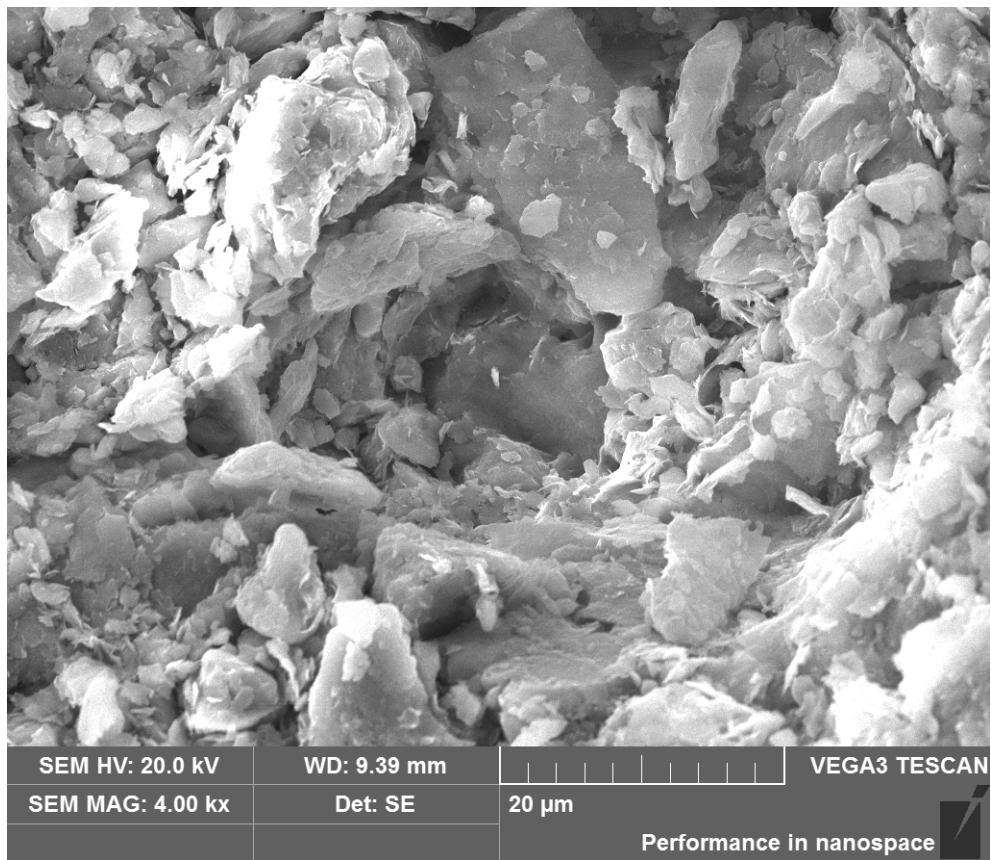


Figure 4. Electron microscope scan image of a typical particle of the granular fill material

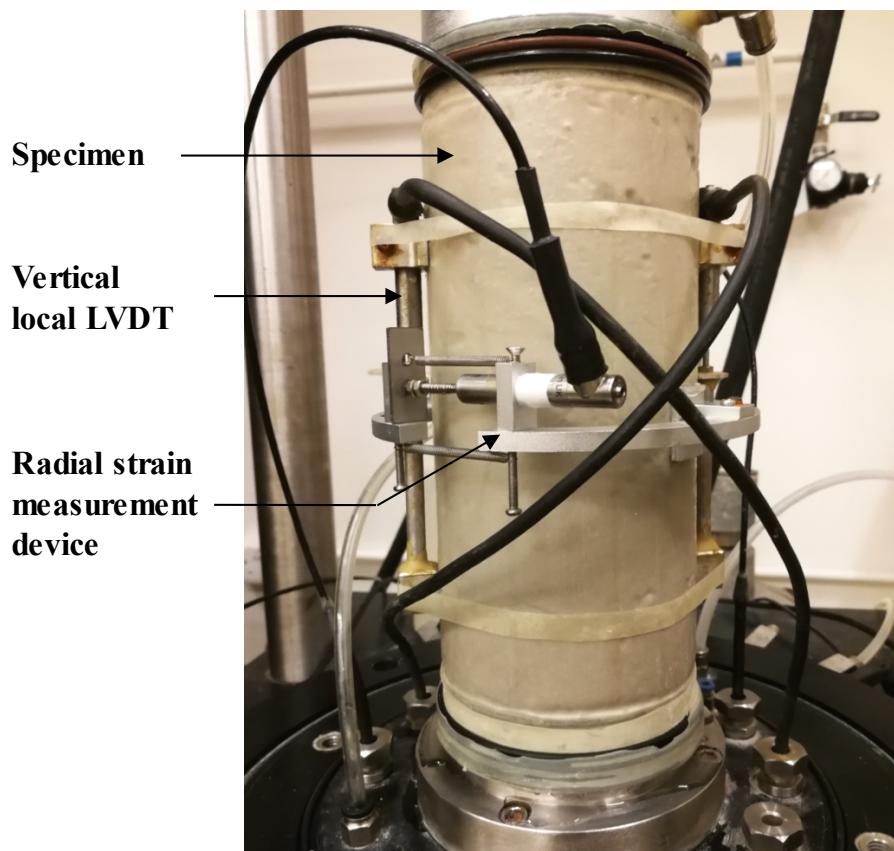


Figure 5. The setup of the on-specimen transducers for measuring vertical and radial strains of the specimen

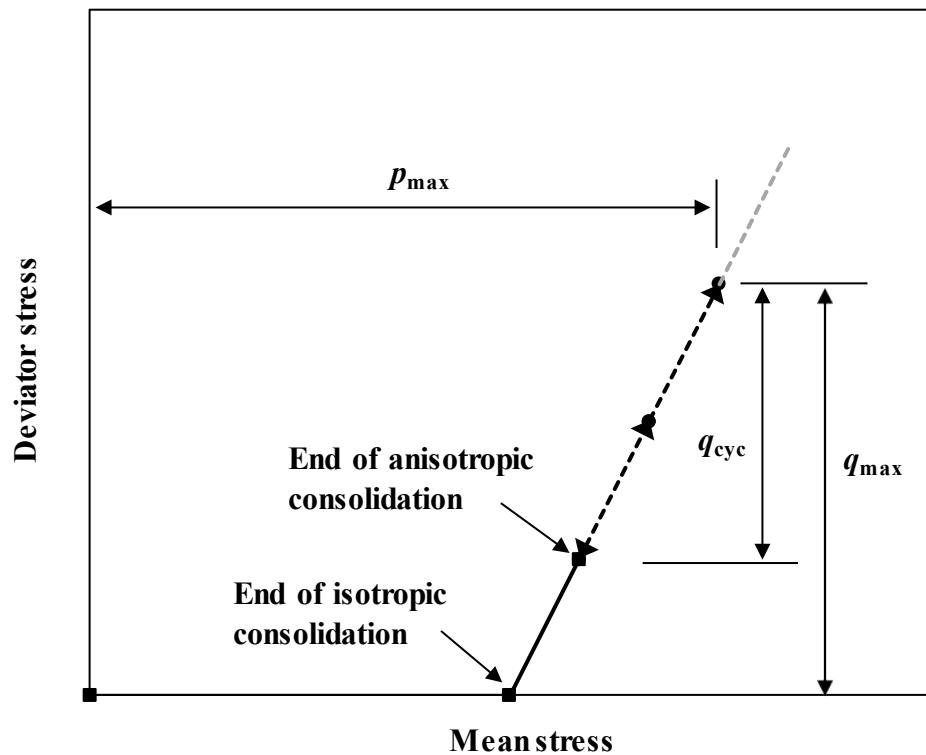


Figure 6. Illustration of stress paths for cyclic tests

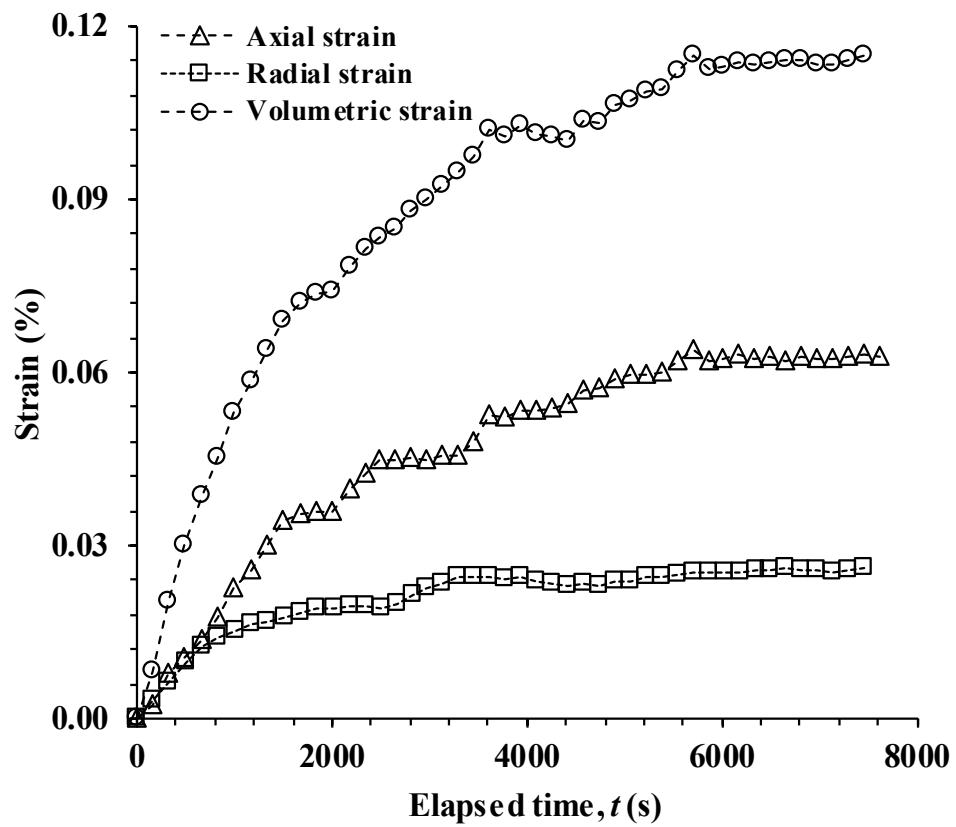


Figure 7. The typical changes of axial strain, radial strain, and volumetric strain of one specimen when introducing water into specimen during saturation stage

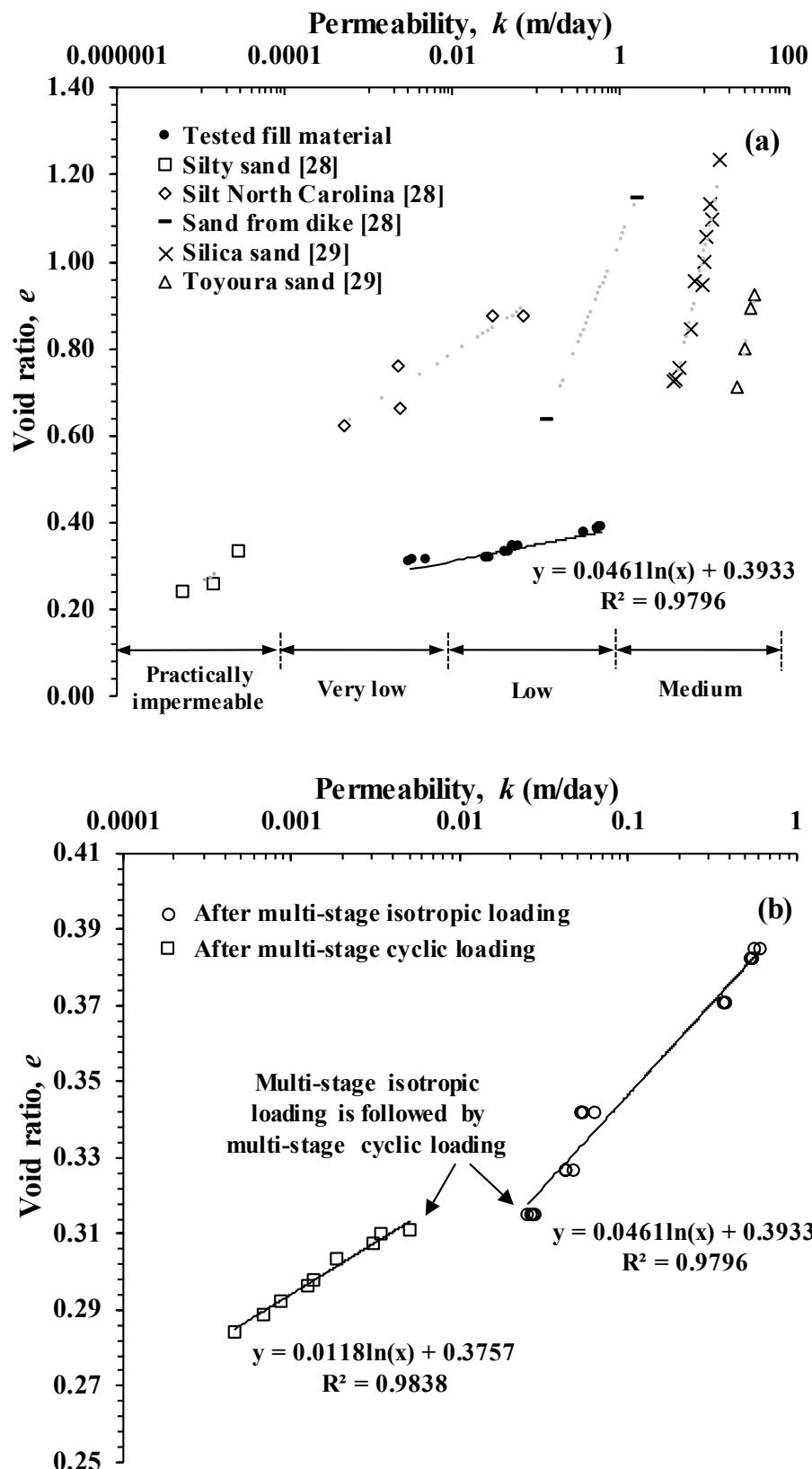


Figure 8. The relationships between permeability and void ratio (a) under multi-stage isotropic consolidation stress, and (b) after applying multi-stage cyclic loading

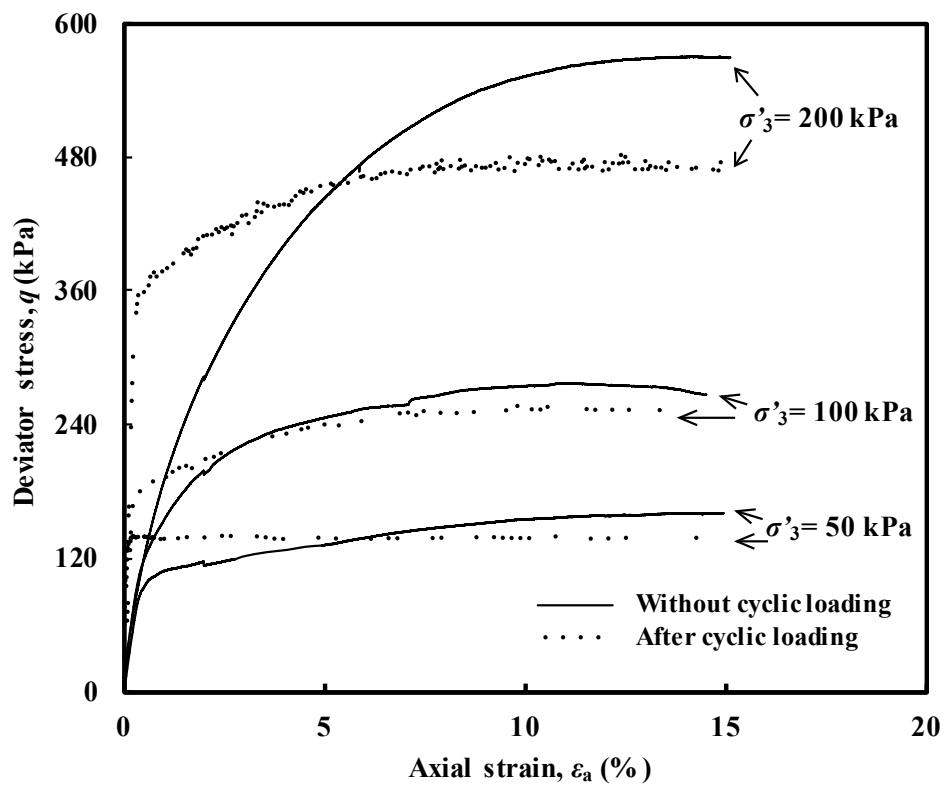
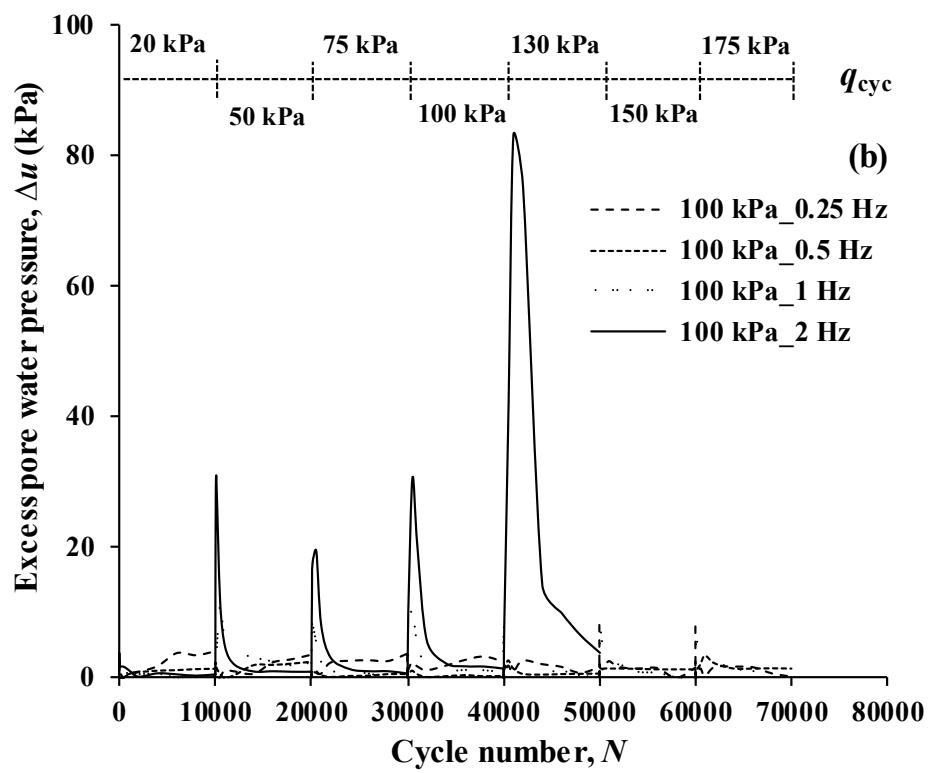
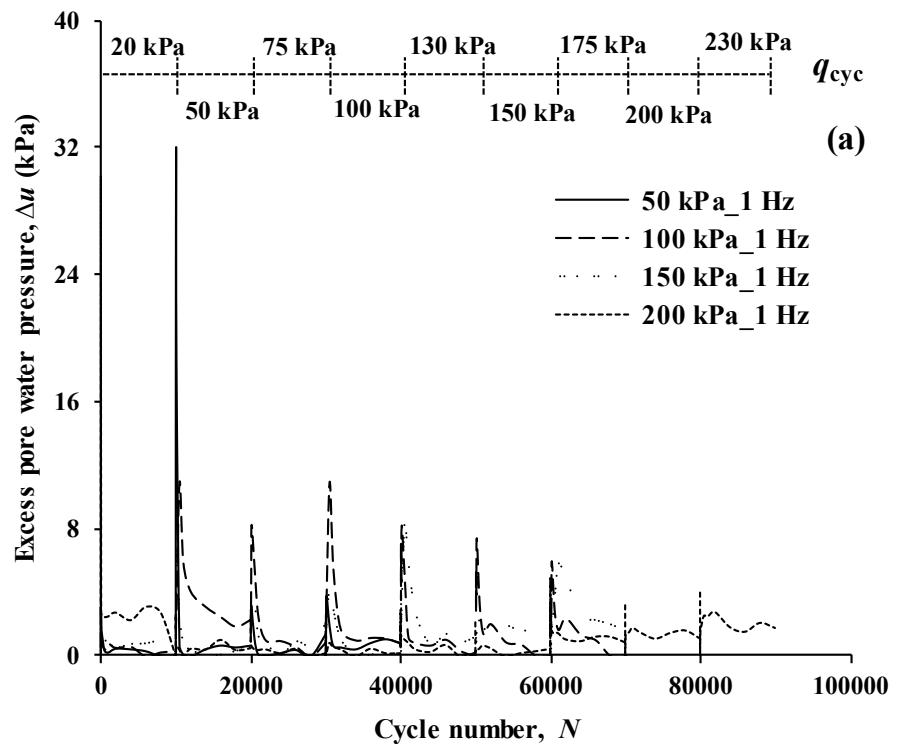




Figure 9. The stress-strain behaviour of the specimens after and without cyclic loading

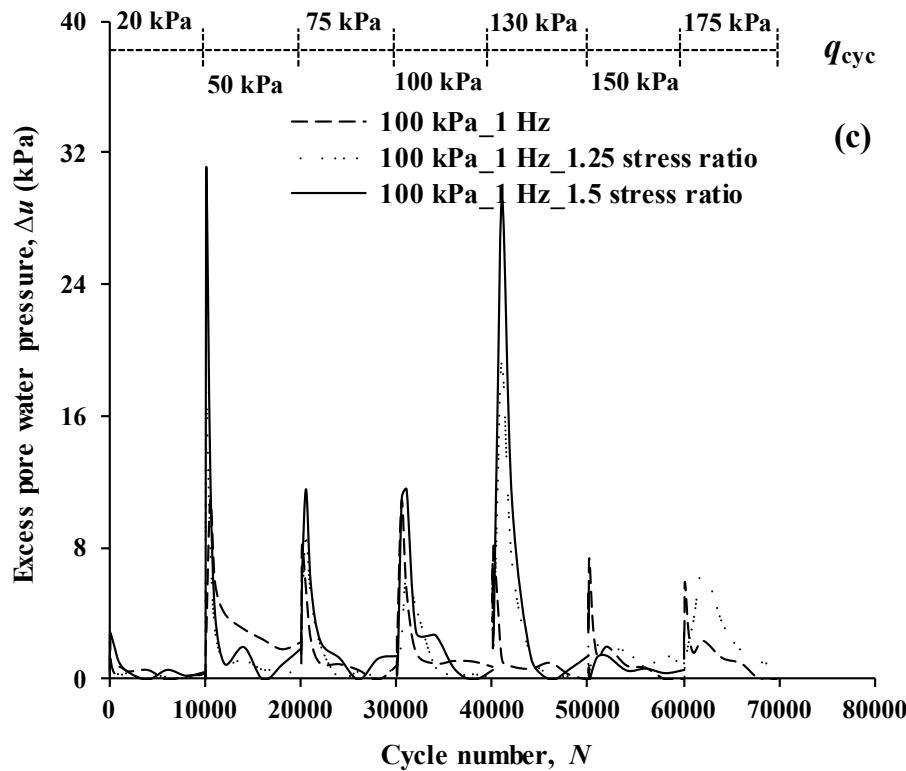
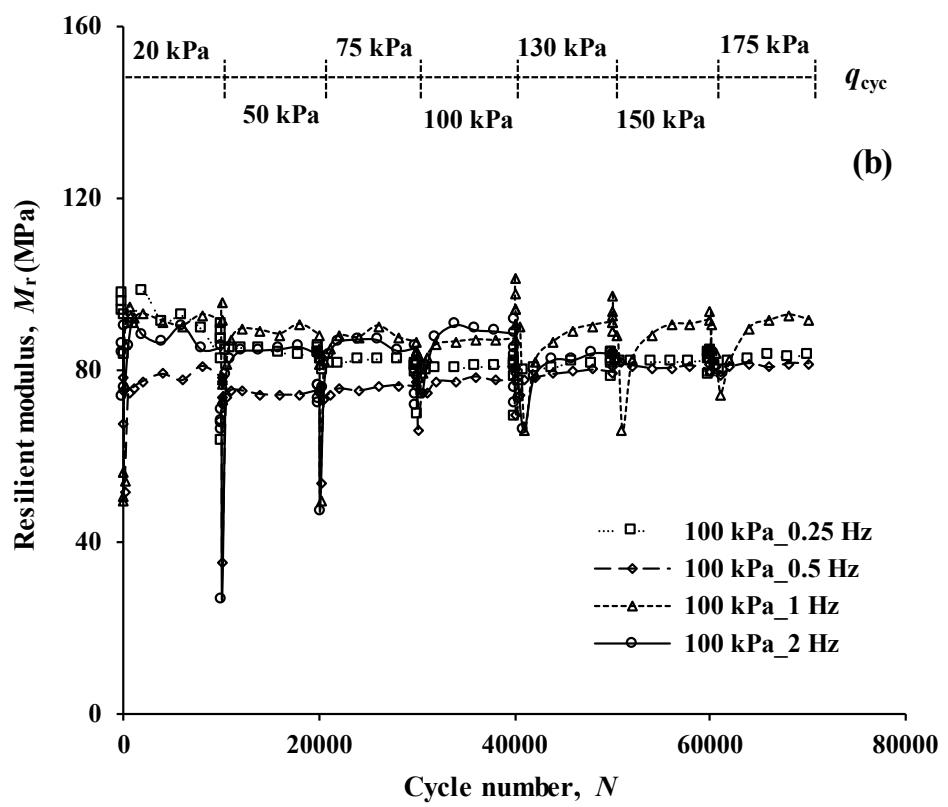
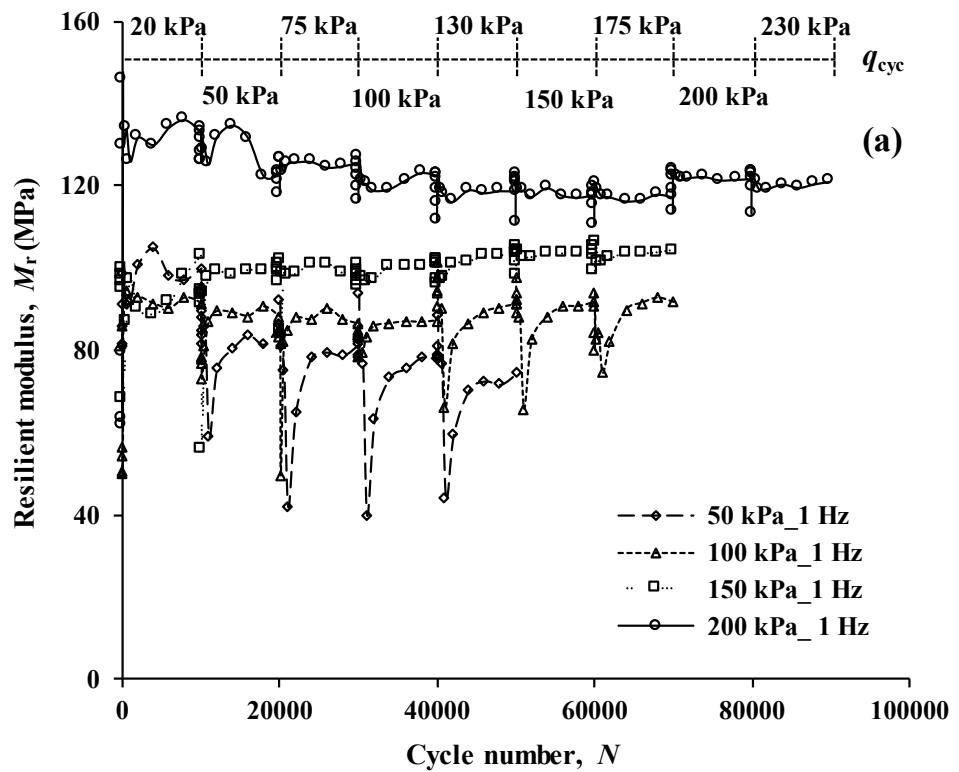




Figure 10. The plots of excess pore water pressure responses of the specimens subjected to cyclic loading *versus* cycle number under (a) different initial effective confining pressures, (b) different frequencies, and (c) different consolidation stress ratios

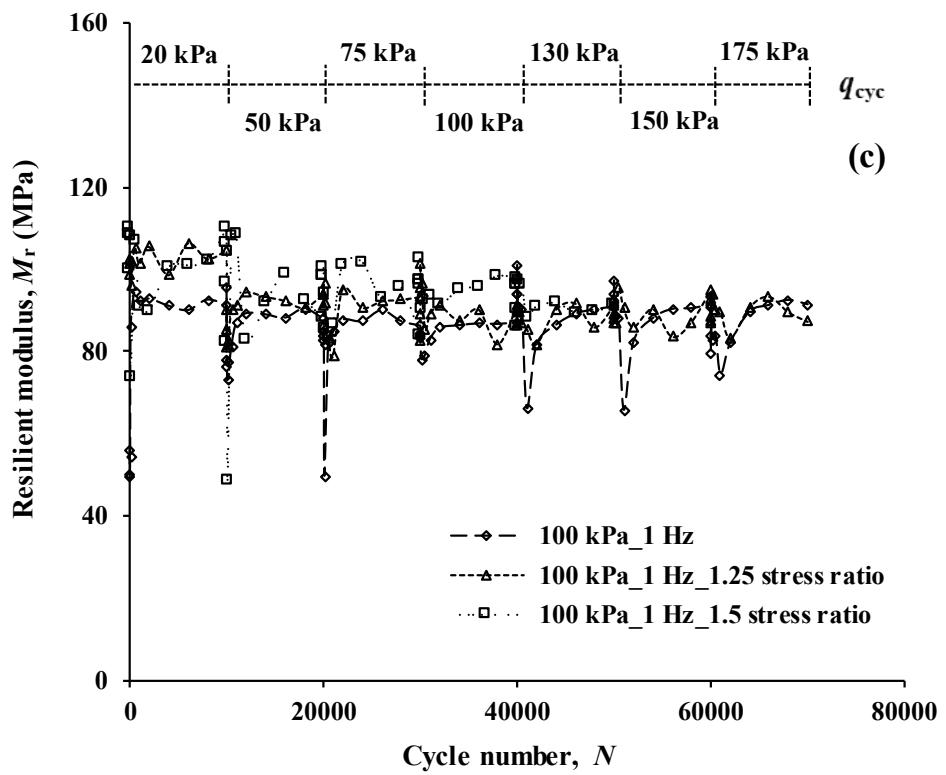


Figure 11. The plots of resilient modulus the specimens subjected to cyclic loading *versus* cycle number under (a) different initial effective confining pressures, (b) different frequencies, and (c) different consolidation stress ratios

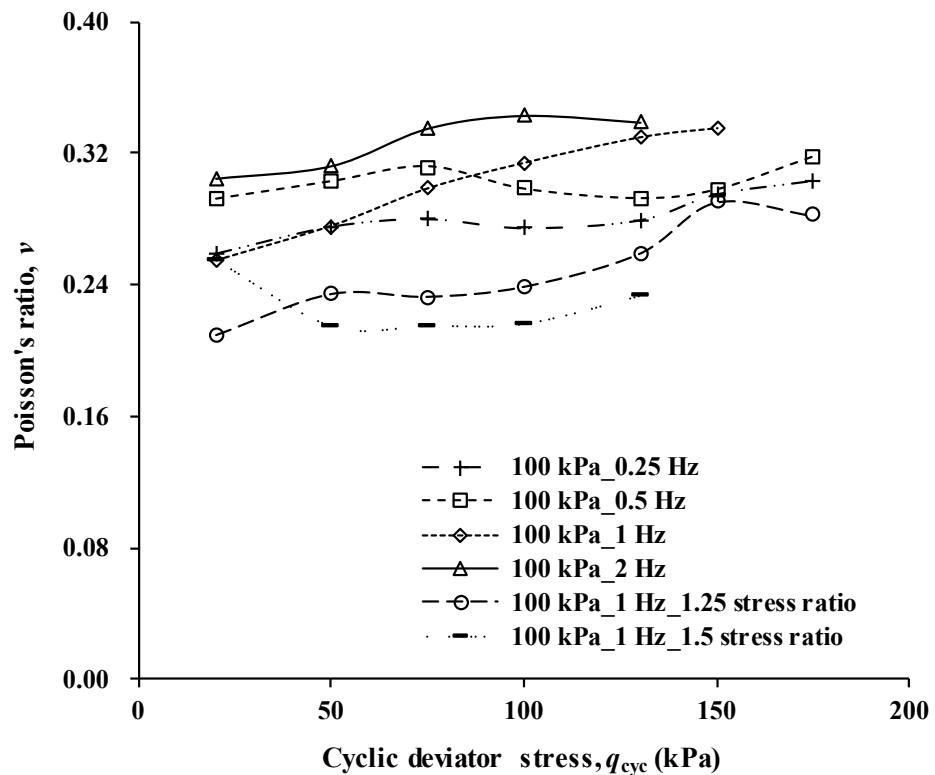
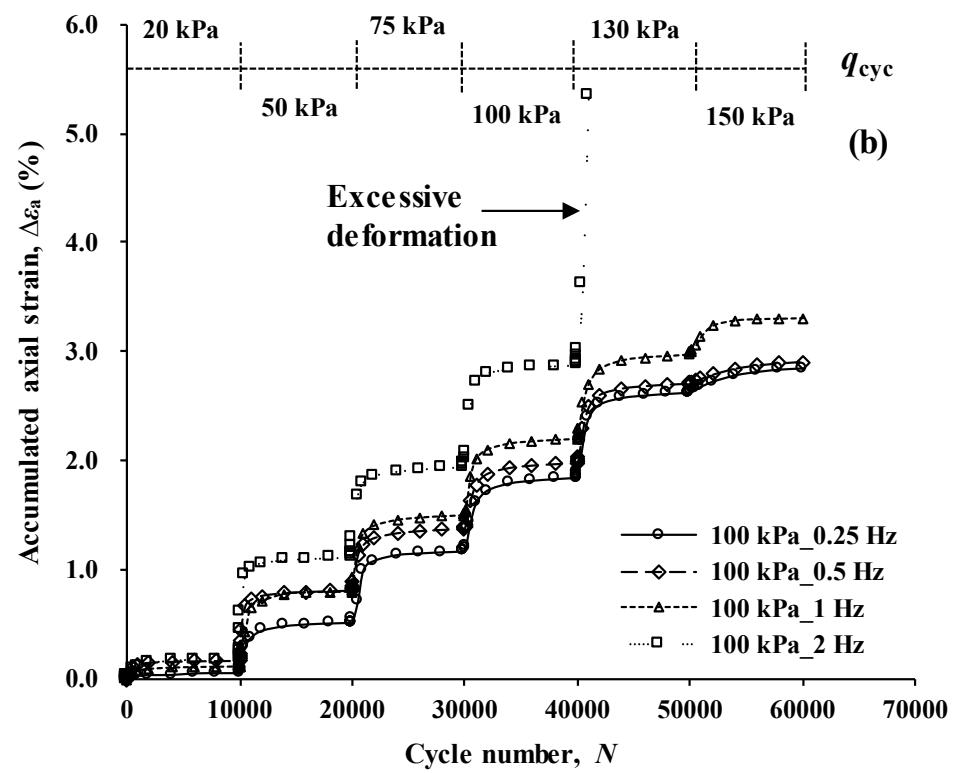
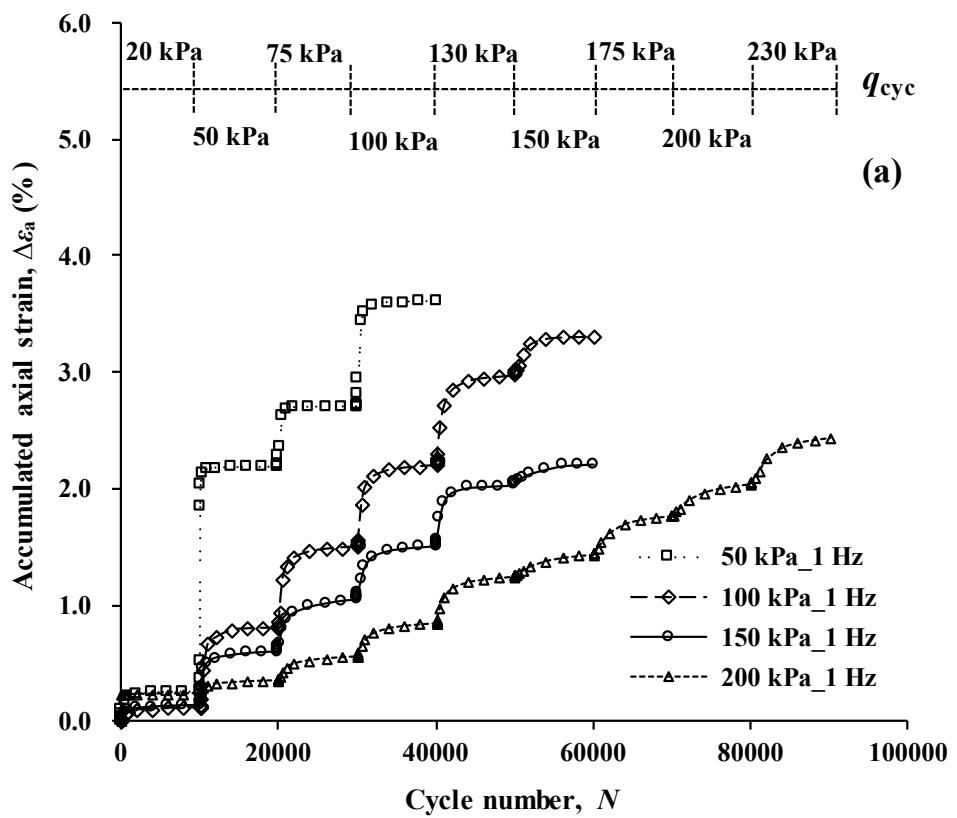




Figure 12. The plots of Poisson's ratio of the specimens under 100 kPa of initial effective confining pressure *versus* cyclic deviator stress

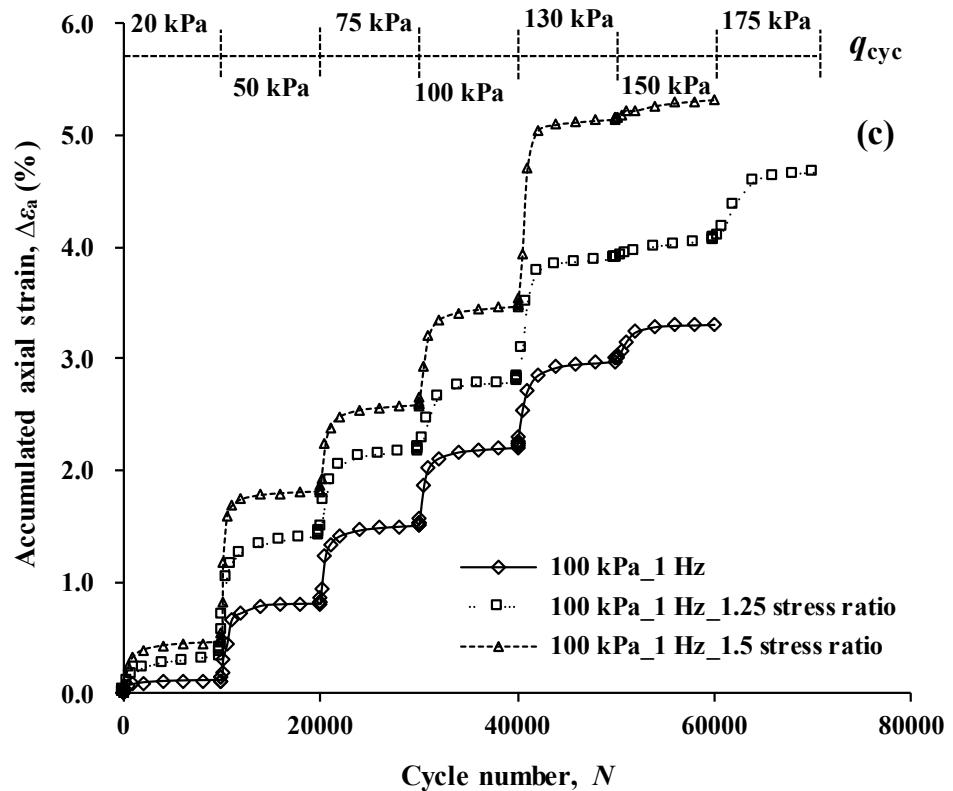


Figure 13. The plots of accumulated axial strains of the specimens subjected to cyclic loading *versus* cycle number under (a) different initial effective confining pressures, (b) different frequencies, and (c) different consolidation stress ratios

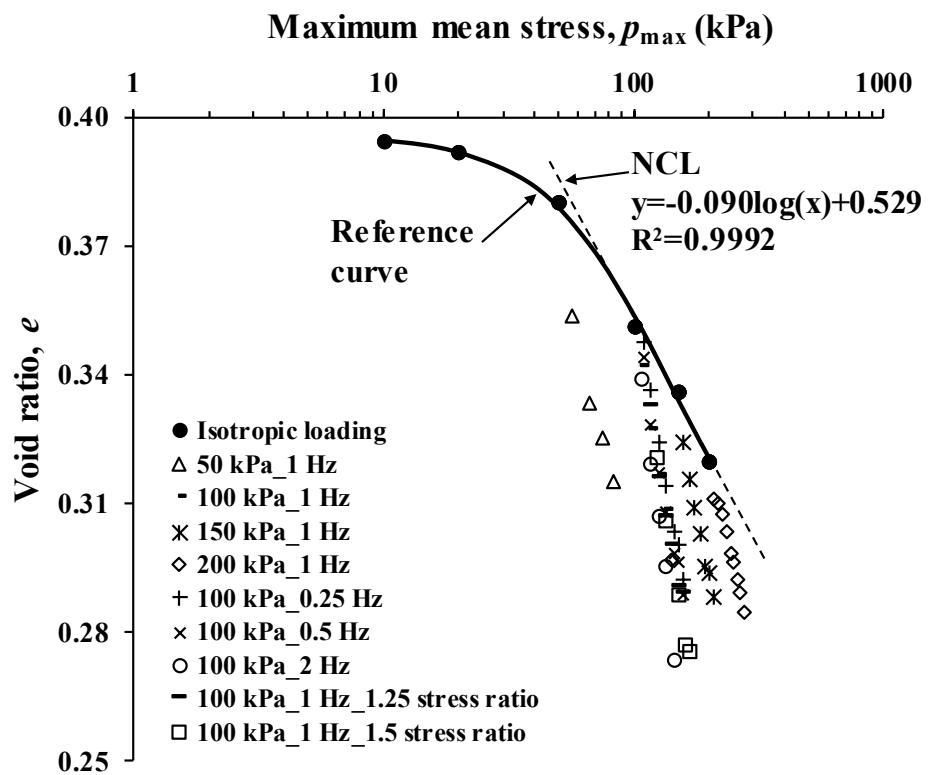


Figure 14. The relationship between the maximum mean stresses and the corresponding void ratios

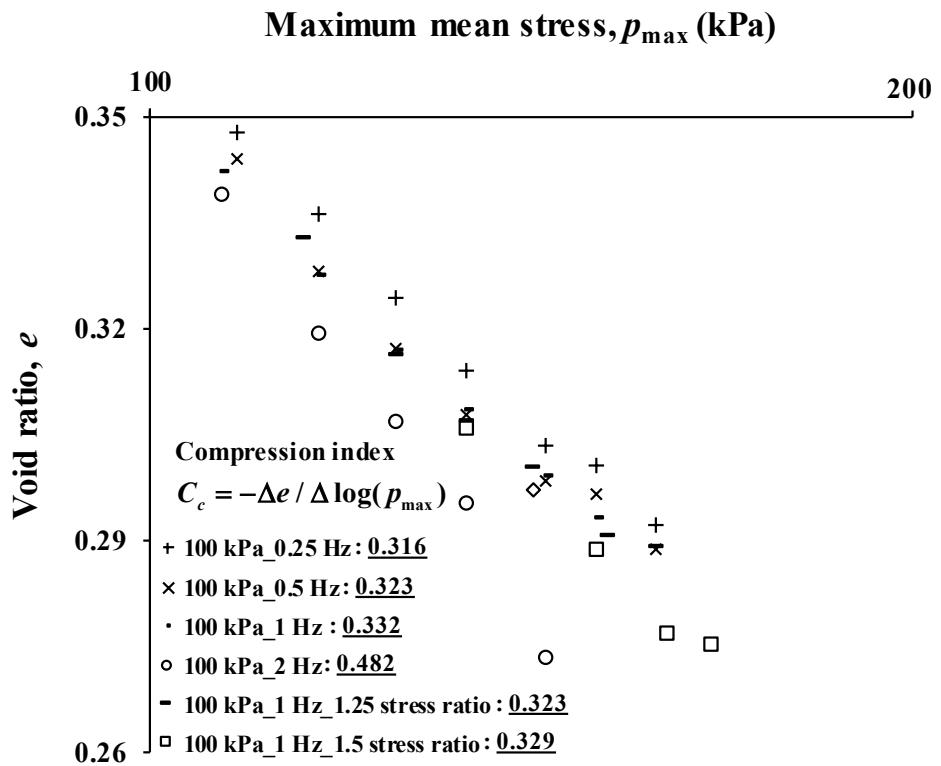


Figure 15. The relationship between the maximum mean stresses of the specimens consolidated by 100 kPa initial effective confining pressure and the corresponding void ratios

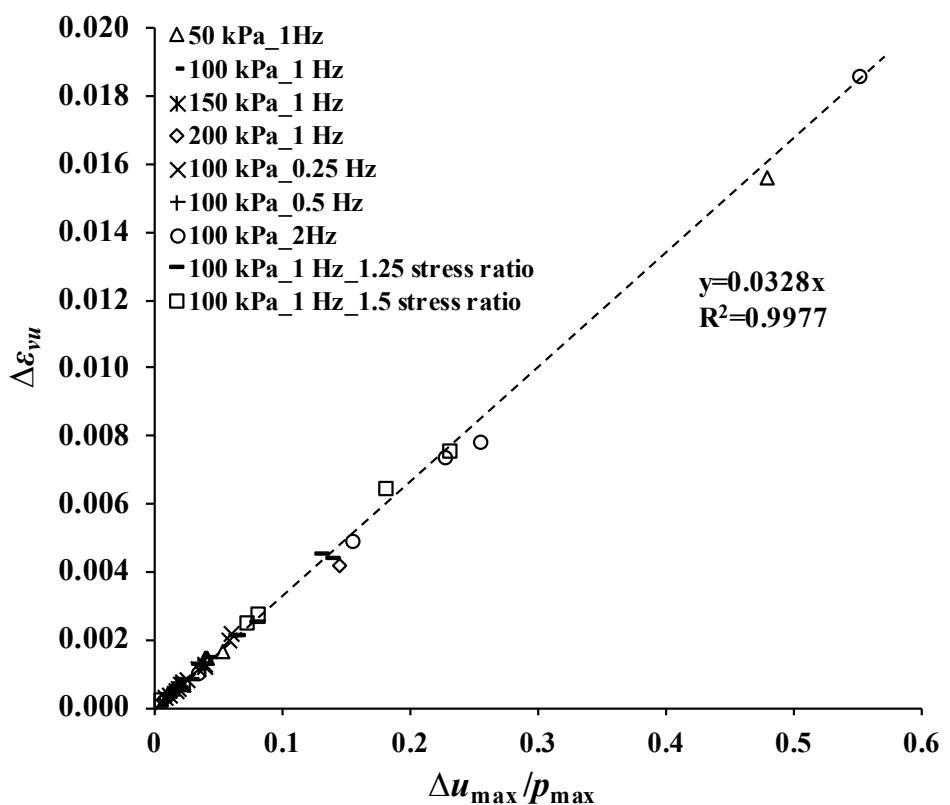


Figure 16. The relationship between volumetric strain due to dissipation of excess pore water pressure ($\Delta\epsilon_{vu}$) and $\Delta u_{\max} / p_{\max}$

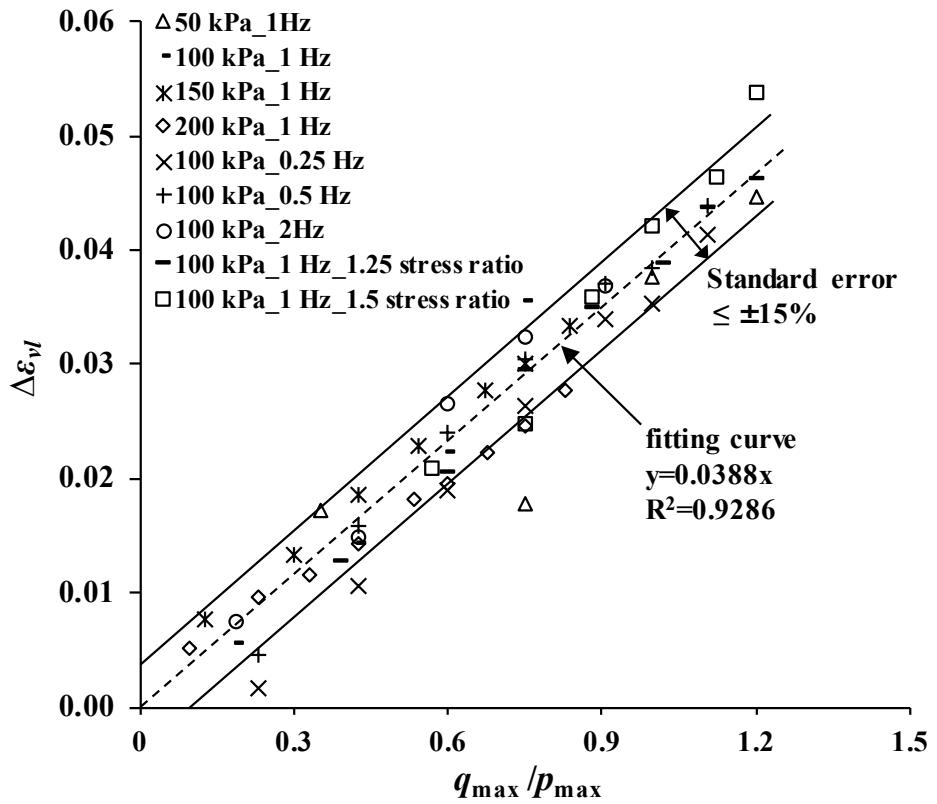


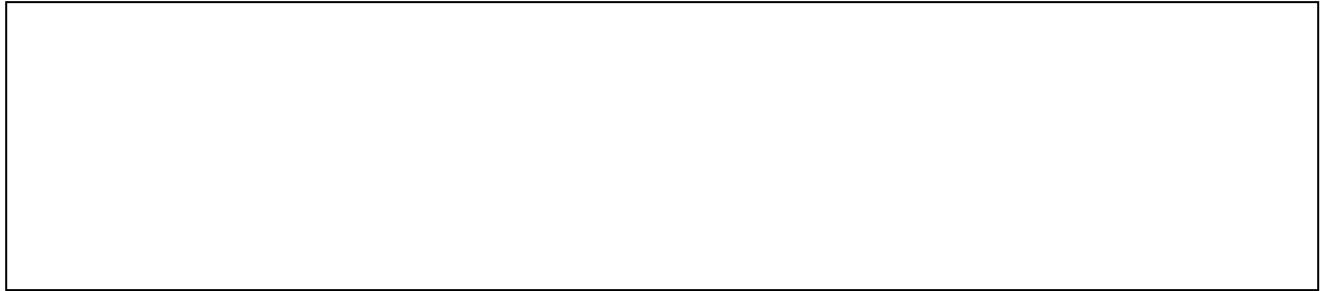
Figure 17. The relationship between the volumetric strain due to cyclic loading ($\Delta\epsilon_{vl}$) and q_{\max}/p_{\max}

Table 1. Basic index values of tested granular fill material

Basic characteristics	Value
Coefficient of uniformity (C_u)	35.47
Coefficient of curvature (C_c)	0.138
Specific gravity (G_s)	2.73
Maximum dry density (MDD) ($\rho_{max,dry}$, kg/m ³)	2120.0
Optimum moisture content (OMC) (w_{opt} , %))	5.70

Table 2. XRF results of oxide content of tested granular fill material

Component	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	K ₂ O	CaO
Content (%)	62.3	19.3	5.25	4.58	2.54	2.45


Table 3. Test scheme of tested granular fill material

Test No.	Initial effective confining pressure, σ'_3 (kPa)	Frequency, f (Hz)	Consolidation stress ratio, σ'_1/σ'_3	Cyclic deviator stress, q_{cyc} (kPa)	Remarks
50 kPa_static	50	-	-	-	Static compression
100 kPa_static	100	-	-	-	Static compression
200 kPa_static	200	-	-	-	Static compression
50 kPa_1 Hz	50	1	1	20, 50, 75, 100	With post-cyclic compression
100 kPa_0.25 Hz	100	0.25	1	20, 50, 75, 100, 130, 150, 175	-
100 kPa_0.5 Hz	100	0.5	1	20, 50, 75, 100, 130, 150, 175	-
100 kPa_1 Hz	100	1	1	20, 50, 75, 100, 130, 150, 175	With post-cyclic compression
100 kPa_2 Hz	100	2	1	20, 50, 75, 100, 130	-
100 kPa_1 Hz_1.25 stress ratio	100	1	1.25	20, 50, 75, 100, 130, 150, 175	-
100 kPa_1 Hz_1.5 stress ratio	100	1	1.5	20, 50, 75, 100, 130	-
150 kPa_1 Hz	150	1	1	20, 50, 75, 100, 130, 150, 175	-
200 kPa_1 Hz	200	1	1	20, 50, 75, 100, 130, 150, 175, 200, 230	With post-cyclic compression; permeability tests were conducted after each stage of isotropic loading and cyclic loading

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

A large, empty rectangular box with a thin black border, occupying the lower half of the page. It is intended for authors to provide any necessary declarations of interests or conflicts of interest.