

1 Compressive and Transverse Shear Behaviour of Novel FRP-UHPC Hybrid 2 Bars

3
4 Jun-Jie Zeng^{a,b*}, Yu-Yi Ye^a, Wai-Meng Quach^b, Guan Lin^c, Yan Zhuge^d, Jie-Kai Zhou^a
5

6 ^a School of Civil and Transportation Engineering, Guangdong University of Technology,
7 Guangzhou 510006, China.

8 ^b Department of Civil and Environmental Engineering, University of Macau, Macau, China.

9 ^c Department of Civil and Environmental Engineering, The Hong Kong Polytechnic
10 University, Hong Kong, China.

11 ^d UniSA STEM, University of South Australia, South Australia 5095 Australia.

12 *Corresponding author. E-mail: jjzeng@gdut.edu.cn (Jun-Jie Zeng)

13
14 **Abstract:** Fibre-reinforced polymer (FRP) bars have become increasingly popular as internal
15 reinforcement in reinforced concrete (RC) structures due to their excellent corrosion
16 resistance. However, the compressive strength of FRP bars is generally much inferior to their
17 tensile strength due to fibre micro-buckling under compression, and their transverse shear
18 performance is much inferior to that of steel bars with the same diameter. To this end, a novel
19 form of steel-free hybrid bars, which consist of an outer FRP confining tube, a central FRP
20 bar and a layer of ultra-high performance concrete (UHPC) (without steel fibres) in the
21 annular space between them (referred to as FRP-UHPC hybrid bars), have been proposed. In
22 this study, compressive and transverse shear behaviour of FRP-UHPC hybrid bars have been
23 investigated via experimentation. The key test variables include fibre winding angles of the
24 FRP tube, fibre types of the FRP tube, the FRP tube thickness and the diameter of the central
25 FRP bar. The test results confirm the validation of the novel hybrid bars: i) the compressive
26 stress-strain curves of hybrid bars exhibit a ductile behaviour with a strain hardening segment,
27 and the compressive behaviour of the central FRP bar in hybrid bars is superior to that of FRP
28 bars in isolation; ii) the stress-strain response of hybrid bars can be designed to meet an
29 elastic-plastic response with a post-yielding strain-hardening response; and iii) the transverse
30 shear performance of hybrid bars is much better than that of FRP bars in isolation due to the
31 contribution of FRP-confined UHPC section.

32 **Keywords:** fibre-reinforced polymer (FRP) bar; ultra-high performance concrete (UHPC),
33 hybrid bar; confinement; axial compressive behaviour; transverse shear behaviour.

34 **1. Introduction**

35 Steel corrosion is the major cause for the deterioration of conventional steel reinforced
36 concrete (RC) structures, especially for those structures located in marine and other
37 aggressive environments. To eliminate steel corrosion, the use of fibre-reinforced polymer
38 (FRP) bars instead of steel bars as internal reinforcement in RC structures has been proposed
39 and studied by some researchers [1-5]. Existing studies have shown that FRP bars are
40 expected to become a cost-effective and environmentally-friendly alternative to steel bars in
41 RC structures due to their merits such as excellent corrosion resistance, high strength-weight
42 ratio and electromagnetic transparency [6-8]. However, FRP bars as longitudinal
43 reinforcement in concrete members are inevitable to resist compressive stresses. They are
44 easily damaged under compression due to fibre micro-buckling, unless they are well
45 supported by a proper confining device. As a result, their compressive strength is known to be
46 much lower than their tensile strength [9-11]. ACI 440.1R-15 [12] does not recommend the
47 use of FRP bars as longitudinal reinforcement in compressed members while CSA S806-12
48 (R2017) [13] neglects the compressive resistance and stiffness of FRP longitudinal
49 reinforcement in the compression zone in design. In such cases, FRP bars predominantly
50 serve as tensile reinforcement in RC structures. It should be mentioned that although the
51 compressive strength of FRP bars can be neglected in design, inevitable considerable
52 compressive stresses raised by special loadings (e.g., seismic loading) in FRP bars may lead
53 to degradation in their tensile strength. The degradation in the tensile strength of FRP bars is
54 unacceptable. This is because the tensile strength of concrete is generally negligible in the
55 design of RC structures and tensile stresses can only be resisted by FRP bars in FRP-RC
56 structures. Therefore, the way to improve the compressive strength of FRP bars becomes a
57 concern in the field of FRP-RC structures.

58

59 In order to enhance the material properties of FRP bars (e.g., low elastic modulus and brittle
60 failure manner) or protect the steel from corrosion in aggressive environments, steel-FRP
61 composite bars (SFCB) which comprise an outer FRP layer and a core steel rod (or steel
62 wires) [14-18], and hybrid FRP (HFRP) bars which consist of different types of fibres [19-21]
63 have been proposed. Wu et al. [15,16] studied the mechanical properties of SFCBs under
64 uniaxial and cyclic tensile loads. It was found that SFCBs can exhibit an elastic-plastic
65 stress-strain behaviour with a high elastic modulus and a good tensile ductility due to the
66 contribution from the core steel rod. You et al. [20] developed a novel form of HFRP rods by

67 using carbon and E-glass fibres and the results showed that the ultimate strains of the hybrid
68 rods can be increased by up to 33% compared to the non-hybrid carbon FRP rods.
69 Additionally, HFRP bars (carbon/basalt fibres) have better transverse shear strength than the
70 basalt FRP bars, as reported by Protchenko et al. [21]. It is obvious that these investigations
71 on SFCBs or HFRP bars mainly focus on improving the tensile and shear properties of FRP
72 bars. The failure of HFRP bars caused by fibre micro-buckling is still inevitable. SFCBs may
73 also have corrosion problems due to the presence of the steel bar. Particularly, RC structures
74 reinforced with SFCBs are not applicable to situations where the use of steel reinforcement
75 must be avoided, including hospital buildings with magnetic resonance imagining (MRI)
76 facilities.

77

78 Against the above background, Teng et al. [22] recently developed a novel form of steel-free
79 hybrid bars. The hybrid bar consists of a central FRP bar, an outer FRP confining tube and a
80 layer of ultra-high performance concrete (UHPC) (without steel fibres) in the annular space
81 between them (referred to as FRP-UHPC hybrid bars or simply hybrid bars herein), as shown
82 in Fig. 1. In such a hybrid bar, the central FRP bar is well confined by the FRP-confined
83 UHPC so that both fibre micro-buckling and overall buckling are prevented or delayed, and
84 the compressive capacity of the central FRP bar is expected to be fully exploited. UHPC is an
85 advanced cementitious material which has a dense micro-structure and unique merits such as
86 high-strength (a compressive strength of over 150 MPa [23-26]), high-ductility and superior
87 durability [27,28]. As the strength of UHPC is generally much higher than the
88 normal-strength concrete, UHPC generally fails in a brittle manner. Therefore, FRP
89 confinement has been introduced for UHPC, and the strength and deformation capacity of
90 UHPC can be substantially enhanced by FRP confinement [29-32]. In addition, UHPC has a
91 higher elastic modulus than that of the normal-strength concrete, and the elastic modulus of
92 UHPC is close to that of the FRP bar under compression (around 40 GPa). This leads to
93 excellent compatibility of the components in hybrid bars. As the central FRP bar in hybrid
94 bars can remain intact even after the UHPC has experienced crushing failure, the hybrid bars
95 exhibit a ductile stress-strain response with a linear first segment and a strain-hardening
96 second segment. Additionally, hybrid bars can resist both tensile and compressive stresses
97 effectively, with the tensile stresses being resisted mainly by the central FRP bar and the
98 compressive stresses being resisted by both the central FRP bar and the UHPC layer.

99

100 Teng et al. [22] have conducted preliminary axial compressive tests on hybrid bars. The

101 results indicated that hybrid bars had an excellent performance under compression, and both
102 FRP bar buckling and fibre micro-buckling were prevented. It was also found that the
103 stress-strain response of hybrid bars can be designed to meet performance needs (e.g., to
104 exhibit an elastic-plastic response like that of steel or a strong post-yielding strain-hardening
105 response). As mentioned earlier, the conventional FRP-concrete members (Fig. 2a) may fail
106 in a very brittle manner in compression because of the linear brittle behavior of FRP bars. By
107 using hybrid bars as the longitudinal reinforcement in RC columns (Fig. 2b), the
108 load-deformation response of hybrid bar RC columns is expected to be superior to that of the
109 FRP bar RC columns (Fig. 2c).

110
111 So far, there have been only limited studies on the fundamental mechanical properties of
112 FRP-UHPC hybrid bars (e.g., [22]). These existing studies on hybrid bars failed to clarify the
113 effects of some key parameters such as winding angle of fibres in the confining FRP tube. On
114 the other hand, the RC structural members are inevitably subjected to transverse shear forces,
115 and the design of shear capacity of RC members reinforced with hybrid bars is an essential
116 requirement. Although existing standards or guidelines (e.g., [33,34]) generally neglect the
117 shear capacity of longitudinal bars in the design shear resistance, it cannot be denied that the
118 dowel action of longitudinal bars is beneficial and the understanding on the transverse shear
119 response of longitudinal bars is important especially in members without shear reinforcement.
120 As the confining FRP tube and the UHPC layer may also enhance the transverse shear
121 performance of FRP bars, studies on the transverse shear performance of hybrid bars are
122 necessary to validate the contribution of confining FRP tubes and UHPC layers in resisting
123 the shear force. For hybrid bars to be subsequently utilized in construction, further
124 experimental investigations are needed to explore the effects of various parameters on the
125 compressive and transverse shear behaviour of hybrid bars. To this end, this paper presents a
126 first-ever experimental study on the transverse shear behaviour of novel FRP-UHPC hybrid
127 bars. The effect of various parameters on the axial compressive behaviour of hybrid bars has
128 also been carefully investigated. The key test variables include fibre winding angles of the
129 FRP tube (i.e., filament orientation angle with respect to the longitudinal axis of the FRP
130 tube), fibre types of the FRP tube, the FRP tube thickness and the diameter of the central FRP
131 bar. In addition to hybrid bars, UHPC-filled FRP tube specimens which have been studied to
132 some extent [29-32], were also prepared as control group and tested under axial compression
133 and transverse shear loading to investigate the effect of the central FRP bar on the mechanical
134 performance of hybrid bars. Therefore, a comprehensive study on mechanical properties of

135 hybrid bars, including compression and transverse shear tests of hybrid bars, are conducted in
136 this study to gain an in-depth understanding of hybrid bars.

137

138 **2. Material Properties**

139 **2.1 Ultra-high-performance concrete**

140 The UHPC was manufactured in the laboratory by utilizing the mixing methodology reported
141 in Teng et al. [28]. The raw materials used to produce UHPC, included: i) the P•II 52.5R
142 Portland cement; ii) the silica fume with a silica content of 93%; iii) the natural river sand
143 with the maximum particle size less than 2.36 mm; iv) the 20-40 mesh and 70-140 mesh
144 dried quartz powder (half each by weight, and mesh number is the number of holes in one
145 square inch of the sieve); v) the polycarboxylate-based super-plasticizer with a solid content
146 of 20%; and vi) the local tap water sourced from Guangzhou, China, as shown in Table 1.
147 Note that the composite specimens (including hybrid bars and UHPC-filled FRP tubes) were
148 cast in two different batches of UHPC materials, and for each batch of UHPC, the actual
149 compressive properties were determined from the average test results of three standard
150 cylinders (50 × 100 mm) tested right before the start of testing of the composite specimens, as
151 per ASTM standards [35,36]. The compressive properties of each batch of UHPC are given in
152 Table 2.

153

154 It should be mentioned that the two batches of UHPC were produced at different ambient
155 temperature (the ambient temperature when casting the Batch 2 UHPC ($12 \pm 4^\circ\text{C}$) was lower
156 than that when casting the Batch 1 UHPC ($31 \pm 4^\circ\text{C}$)), but their mix proportions (Table 1),
157 raw materials, mixing methodology and curing condition were identical. The workability of
158 the Batch 2 UHPC was inferior to that of the Batch 1 UHPC due to the sensitivity of the
159 super-plasticizer to the temperature. Based on free mini-slump spread tests were conducted as
160 per ASTM C1856/C1856M-17 [33], the average slump spread diameters for the Batch 1
161 UHPC (240 mm) were larger than that of the Batch 2 UHPC (200 mm). The low compressive
162 strength of the Batch 2 concrete is thus resulted from their poor workability.

163

164 **2.2 FRP tube**

165 Two types of FRP tubes, including carbon FRP (CFRP) and glass FRP (GFRP) tubes, were
166 used in the current study. All FRP tubes had an internal diameter of 50 mm. The CFRP tubes

167 were manufactured in the laboratory by manually winding a unidirectional high tensile
168 strength carbon fibre sheet impregnated with epoxy resin around a small-size polyvinyl
169 chloride (PVC) tube (i.e., the wet-layup process). An overlapping zone with a 50-mm length
170 was adopted in each FRP tube to avoid the premature FRP debonding failure. The fibres of
171 FRP tubes were oriented only in the hoop direction (i.e., fibre winding angle at $\pm 90^\circ$ with
172 respect to the tube longitudinal axis) so that they served predominantly as a confining device.
173 Material properties of the CFRP were obtained via standard coupon tensile tests in
174 accordance with ASTM D3039-15 [37]. The coupon test results showed that the average
175 elastic modulus of the CFRP was 227.3 GPa based on a nominal thickness of 0.167 mm/ply
176 of the carbon fibre sheet, while the average rupture strain was 1.60%.

177

178 The GFRP tubes used in this experiment were small-scale filament-wound FRP tubes
179 provided by Guangdong SUNNY FRP CO., Ltd. The fibre winding angle of GFRP tubes
180 included $\pm 45^\circ$, $\pm 60^\circ$ and $\pm 80^\circ$. Despite having the same number of layers, GFRP tubes with
181 different fibre winding angles had different actual average thickness. As a result, the material
182 properties of GFRP tubes were based on their actual average thickness (see the second
183 column of Table 3). A split disk test method was adopted based on the ASTM D2290-19 [38].
184 For each type of small GFRP tube, five rings with a width of 25 mm were prepared and tested.
185 A total of six hoop strain gauges were installed on the outer surface of each specimen at
186 opposite locations for strains in the tubes (see Fig. 3a). All FRP rings were loaded by a
187 100-kN-capacity universal test machine with a displacement-control rate of 2 mm/min. The
188 typical failure modes of FRP rings are shown in Fig. 3b, where FRP rings showed a combined
189 failure mode with both fibre ruptures and fibre delamination. The hoop stress-strain curves
190 are plotted in Fig. 3c, in which the hoop stresses were obtained by dividing the applied tensile
191 force by two times the cross-sectional area of the ring cross-section and the strains were
192 averaged from the four hoop strain gauges away from the gaps (Fig. 5a) to eliminate any
193 effects from the local bending at the gaps. The results illustrate that a lower fibre winding
194 angle leads to a lower stiffness and higher nonlinear behaviour (e.g., GFRP tubes with a fibre
195 winding angle at $\pm 45^\circ$ have a significant nonlinearity) (Fig. 3c). This is because the
196 deformation of small GFRP tubes was induced by both the stretching of the fibre and the
197 change of fibre winding angle during the test. The elastic modulus of the nonlinear FRP was
198 taken as the secant stiffness at the peak point. Results from the tensile tests of small GFRP
199 rings are summarized in Table 3.

200

201 Compression tests were also conducted on nine four-layer GFRP rings (including three
202 duplicate samples for each group GFRP tube) to obtain the compressive material properties of
203 FRP tubes according to GB/T 5350-2005 [39]. All the FRP rings, cut from the same batch of
204 FRP tubes used for hybrid bars and their reference specimens (i.e., UHPC-filled small FRP
205 tube), had a total height of 60 mm (including the test length of 30 mm). Four axial strain
206 gauges at 90 degree apart and two hoop strain gauges at 180 degree apart were arranged at
207 the mid-height of FRP rings. FRP rings were loaded axially at a rate of 0.5 mm/min. FRP
208 rings exhibited a typical local buckling failure mode, accompanied with the splitting of resin
209 (Fig. 4a). The compressive stress-strain curves are shown in Fig. 4b and key test results of
210 GFRP rings in compression are given in Table 4. The results show that GFRP rings with a
211 fibre winding angle of $\pm 60^\circ$ have the highest compressive strength (slightly larger than those
212 with a fibre winding angle of $\pm 45^\circ$), followed by those with a fibre winding angles of $\pm 45^\circ$ or
213 $\pm 80^\circ$. This is because the actual average thickness of the GFRP rings with a fibre winding
214 angle of $\pm 45^\circ$ was larger than that of the GFRP rings with a fibre winding angle of $\pm 60^\circ$ (see
215 Table 3).

216

217 **2.3 FRP bars**

218 Two types of GFRP bars were used in this study, including a ribbed bar with a nominal
219 diameter of 25 mm and a sand-coated bar with a nominal diameter of 16 mm. The tensile
220 properties of FRP bars were obtained via GB/T 30022-2013 [40] (see Fig. 5a). Figure 5c
221 shows the tensile stress-strain curves, and test results are summarized in Table 5. It was found
222 that both the tensile strength and the modulus of elasticity of the FRP bar with a nominal
223 diameter of 16 mm were higher than those of the FRP bar with a nominal diameter of 25 mm.

224

225 To further understand the compressive properties of FRP bars, ten bare FRP bars (i.e., five
226 duplicated specimens for each group) with an unsupported length-to-diameter ratio of 4 were
227 also prepared and tested under axial compression. A set of hollow steel caps was specially
228 designed according to the method of Alajarmeh et al. [11], and was filled with high strength
229 gypsum to provide confinement to the ends of the FRP bar (see Fig. 5). It should be noted
230 that the height of steel caps was 30 mm; and thus the total length of the sample with a
231 nominal diameter of 25 mm was 160 mm, and that of the sample with a nominal diameter of
232 16 mm was 124 mm. All samples were subjected to axial compression tests with a
233 displacement-control rate of 1.5 mm/min (see Fig. 5a). As shown in Fig. 5b, GFRP bars with

234 a nominal diameter of 25 mm experienced a splitting failure, with many vertical cracks being
235 developed along the unsupported length; while those with a nominal diameter of 16 mm
236 experienced a shear failure near the end, accompanied with fibre delamination at the end.
237 Figure 5c shows the compressive stress-strain curves, and test results are summarized in
238 Table 5. The average compressive elastic modulus of GFRP bars with the nominal diameters
239 of 25 mm and 16 mm were 41.0 GPa and 47.6 GPa, respectively; which were equal to 99%
240 and 103% of the tensile elastic modulus of the corresponding GFRP straight bars,
241 respectively. Note that the tensile and compressive elastic modulus of FRP bars was
242 determined from two points on the stress-strain curve of the FRP bar before the peak axial
243 stress: Point 1 with an axial strain of 0.005% and Point 2 with an axial strain corresponding to
244 40% of peak axial stress. The higher compressive elastic modulus than tensile elastic
245 modulus for smaller diameter bars was probably due to the full engagement of all fibres
246 within the cross-section of the bar [11]. It was also found that the compressive strengths of
247 these two types of GFRP bars were much smaller than their tensile strengths, especially for
248 the GFRP bars with a nominal diameter of 25mm.

249

250 **3. Compression Tests and Results**

251 **3.1 Specimens design and test set-up**

252 A total of 51 small-size circular hybrid bar specimens and reference specimens (i.e.,
253 UHPC-filled small FRP tube specimens) were fabricated and tested. All the testing specimens
254 had a diameter of 50 mm (i.e., the internal diameter of the prefabricated FRP tube) and a
255 height of 150 mm. The effects of fibre winding orientation angles of the FRP tube (e.g., $\pm 45^\circ$,
256 $\pm 60^\circ$ and $\pm 80^\circ$), fibre types of the FRP tube (e.g., GFRP and CFRP), the FRP tube thickness
257 and the diameter of central FRP bar (e.g., FRP bar with a nominal diameter of 16 mm or 25
258 mm) were investigated. Three nominally identical specimens were tested for each group. As
259 shown in Table 6, for ease of reference, each specimen was labeled with five sets of symbols
260 separated from each other by a character “-”. The first symbol represents the number of
261 batches (“S1” for the first batch, “S2” for the second batch). The second symbol indicates the
262 FRP type (“G” for GFRP, “C” for CFRP) with the corresponding digit representing the
263 number of FRP layers. The third symbol indicates the fibre winding angle of FRP tubes. The
264 fourth symbol represents the diameter of the central FRP bar (where “0” indicates
265 UHPC-filled small FRP tube specimens). The last symbol (“1”, “2” or “3”) is used to
266 distinguish the three duplicate specimens in each group. For instance, “S1-G4-45-25-1” refers

267 to the first hybrid bar specimen confined with a four-layer GFRP tube with a fibre winding
268 angle at $\pm 45^\circ$ and reinforced with a central FRP bar with a nominal diameter of 25 mm in the
269 first batch.

270
271 The preparation of hybrid bars is shown in Fig. 6. Firstly, the central FRP bar and outer FRP
272 tube was fixed at the wooden laminate through adhesive. Fresh UHPC was then poured into
273 the annular space between the central FRP bar and the outer FRP tube, during which a small
274 vibrator was used to compact the UHPC. Prefabricated FRP tubes can be used as not only the
275 outer confining material but also a mold for UHPC cylinders. All specimens were first cured
276 at the room temperature in the water tank for 14 days, and they were then cured in the
277 structural laboratory of Guangdong University of Technology for more than 14 days. The
278 FRP tube had a length of 620 mm. The 620-mm-length specimen was cut into four
279 150-mm-length hybrid bar (or UHPC-filled FRP tube) specimens. Both ends of specimens
280 were strengthened with a 2-ply CFRP sheet with a width of 12 mm to avoid the premature
281 failure of FRP.

282
283 High strength gypsum was used to level the specimen ends to ensure uniform loading on the
284 column cross-section (Fig. 7). All specimens were axially loaded on a hydraulic testing
285 machine (with a maximum load of 4000 kN) with a displacement loading rate of 0.2 mm/min
286 (Fig. 8). Two measurement methods were used to measure the axial deformation of the
287 specimen: i) two linear variable displacement transducers (LVDTs) with an interval of 180°
288 were installed to measure the full-height deformation of the specimen; and ii) four strain
289 gauges with 20-mm gauge length were installed on the FRP tube to measure axial strains at
290 the mid-height section. Other four strain gauges were installed to measure hoop strains in the
291 FRP tubes. All the test results were logged simultaneously by an automatic data acquisition
292 system.

293
294 **3.2. Failure Modes**

295 A complete failure of both hybrid bar specimens and UHPC-filled FRP tube reference
296 specimens was caused by the rupture of the outer FRP tube at the mid-height region (see Fig.
297 9 for typical failure modes of specimens). Compared with the specimens produced from
298 GFRP tubes, the specimens produced from CFRP tubes failed with a larger explosion sound.
299 It was also found that the central FRP bar in hybrid bar specimens failed prior to the failure of
300 the outer FRP tube, leading to a sudden decrease in the axial load. In comparison with

301 specimens with a fibre winding angle at $\pm 60^\circ$ or $\pm 80^\circ$, specimens with a fibre winding angle
302 at $\pm 45^\circ$ had a greater deformation (see S1-G4-45-0-3 and S1-G4-45-25-1 in Figs. 9a and 9b).
303 After the outer FRP tube was removed, it was witnessed that the UHPC core of UHPC-filled
304 FRP tube was split into two parts and an obvious shear plane can be observed (see Fig. 9i). In
305 the hybrid bars, the integrity of concrete was preserved except for the place where the FRP
306 ruptured. As a result, the central FRP bar only had shear failure in a certain area (Fig. 9j).
307

308 **3.3. Axial Stress-Strain Responses**

309 The stress-strain curves (including axial stress-axial strain curves and axial stress-hoop strain
310 curves) of UHPC-filled small GFRP tube reference specimens and hybrid bar specimens are
311 shown in Figs. 10-12. The adopted axial stress was the average value of the axial load divided
312 by the internal cross-sectional area of the outer FRP tube, and the axial contribution of FRP
313 tubes was ignored in the current study due to their small axial stiffness [32]. The axial strains
314 presented in this section were based on the data from the full-height LVDTs, and the hoop
315 strains were obtained from the average readings of strain gauges located at the mid-height
316 and on the outer surface of the FRP tube (strain gauges outside the overlapping zone for
317 CFRP tubes). It should be noted that the termination point of each stress-strain curve
318 corresponds to the rupture of outer FRP tube. However, some hoop strain gauges had failed
319 before the FRP ruptured. In such a case, a straight line (i.e., dot dash line) with the same slope
320 as that at the failure point was used to smoothly extend the axial strain-hoop strain curves
321 until the measured FRP hoop rupture strain; and this will be discussed in the subsequent
322 section. The values of the failure point of hoop strain gauges were also marked in the
323 penultimate column of Table A1 in the Appendix. As the data recorded by full-height LVDTs
324 included the displacement between the specimen and the loading plates of the machine, the
325 average readings of axial strain gauges were used to correct the full-height LVDT data during
326 the early loading stages (within the axial strain of around 0.004). The curves in each group
327 are close to each other, as shown in Figs. 10-12, demonstrating a good test setup and a high
328 reliability of the test results. It should be noted that the test results of specimen S2-G6-80-0-3
329 was not obtained due to unexpected breakdown of the loading machine.

330
331 As seen from Fig. 13a, the stress-strain behaviour of hybrid bar specimens can be generally
332 characterized as a five-portion response: i) an elastic initial portion $[(0, 0) \rightarrow (\varepsilon_{c1}, f'_{c1})]$; ii)
333 stress fluctuation second portion $[(\varepsilon_{c1}, f'_{c1}) \rightarrow (\varepsilon_{c2}, f'_{c2})]$; iii) strain hardening third portion

334 $[(\varepsilon_{c2}, f'_{c2}) \rightarrow (\varepsilon_{c3}, f'_{c3})]$; iv) stress reduction fourth portion induced by failure of the central
335 FRP bar $[(\varepsilon_{c3}, f'_{c3}) \rightarrow (\varepsilon_{c4}, f'_{c4})]$; and v) residual stress fifth portion $[(\varepsilon_{c4}, f'_{c4}) \rightarrow (\varepsilon_{cu}, f'_{cu})]$. At
336 the elastic initial portion, the average axial stress increased approximately proportional to the
337 axial strain (a small part of non-linearity can be seen at the final part of this elastic portion).
338 After the axial strain approached the crushing strain of UHPC materials, the stress became
339 unstable and fluctuated. This was caused by the brittleness of UHPC material and the micro
340 gaps between the UHPC layer and the outer FRP tube [29-31], and the FRP confinement was
341 not fully activated in this stage [32]. Depending on the confinement level of the outer FRP
342 tube, the stresses in this portion (i.e., second portion) may have a descending or ascending
343 trend (see Figs. 10a, 12a-12c). It was also found that the stress fluctuation of hybrid bars was
344 less significant than that of UHPC-filled small FRP tube specimens due to the presence of
345 central FRP bar (see each sub-figure in Fig. 11). Subsequently, the UHPC dilated and the
346 passive confinement of the outer FRP tube was activated. The hybrid bars thus exhibited an
347 obvious strain-hardening behaviour in the third portion. This strain-hardening portion ends
348 when the failure of either the central FRP bar or the outer FRP tube happens, depending on
349 the strain capacity of the outer FRP tube and the ultimate compressive strain of the central
350 FRP bar. In general, the central GFRP bar failed earlier than the outer FRP tube at a specific
351 axial deformation, accompanied with a sudden stress reduction. This is because the ultimate
352 axial strain of FRP bars obtained from material tests is generally smaller than that of
353 FRP-confined UHPC. The stress reduction and the corresponding axial strain in the fourth
354 portion were associated with the level of confinement provided by the outer FRP tube (see
355 Figs. 12a-12c). The larger the confining stress was, the smaller the stress reduction and the
356 larger the value of ε_{c3} was. In the fifth portion, the hybrid bar specimens were subjected to
357 residual stresses due to the effective confinement from the outer FRP tube although the
358 central FRP bar had been damaged. The specimens finally failed by rupture of the outer FRP
359 tube, accompanied with a substantial decrease in the axial load.

360

361 Unlike hybrid bar specimens, UHPC-filled small FRP tube specimens exhibited an obvious
362 axial stress-strain relationship with three portions, as shown in Fig. 13b: i) an elastic initial
363 portion $[(0, 0) \rightarrow (\varepsilon_{c1}, f'_{c1})]$; ii) stress fluctuation second portion $[(\varepsilon_{c1}, f'_{c1}) \rightarrow (\varepsilon_{c2}, f'_{c2})]$; and iii)
364 strain hardening third portion $[(\varepsilon_{c2}, f'_{c2}) \rightarrow (\varepsilon_{cu}, f'_{cu})]$. Similarly, the so-called second stress
365 fluctuation portion was caused by the brittleness of UHPC materials and the confinement lag
366 effect, as explained by Zeng's research group [32].

367

368 It is noted that in the present study, the first peak point ($\varepsilon_{c1}, f'_{c1}$), the first post-peak ravine
369 point ($\varepsilon_{c2}, f'_{c2}$), the second peak point ($\varepsilon_{c3}, f'_{c3}$), the second post-peak ravine point ($\varepsilon_{c4}, f'_{c4}$)
370 and the ultimate point (at FRP rupture) ($\varepsilon_{cu}, f'_{cu}$) are referred to as characteristic points. Table
371 A1 summarizes the key data of these characteristic points for all specimens. FRP hoop
372 rupture strain ($\varepsilon_{h,rup}$) is also given in Table A1. Some of the specimens did not exhibit a
373 five-portion behavior and their characteristic points are not given (marked by 'N.A.') in Table
374 A1. It is clearly shown that the average FRP hoop rupture strain is generally smaller than the
375 FRP tensile strain, as reported by some other scholars [41,42]. This also indicates that the
376 effect of reduced scale of FRP tubes has a little influence on the average strain efficiency
377 factor of FRP.

378

379 **3.4. Dilation Behaviour**

380 The dilation behaviour of UHPC-filled small FRP tube and hybrid bar specimens was
381 characterized by their axial strain-hoop strain relationship presented in Figs. 14-16. Overall,
382 the axial strain-hoop strain curves of the three duplicated specimens are close to each other.
383 As the hoop strains are terminated due to the premature failure of some hoop strain gauges, a
384 straight line (i.e., dot dash line) with the same slope as that at the failure point was used to
385 smoothly extend the axial strain-hoop strain curves, as indicated in Figs. 14-16. As seen from
386 Figs. 14-16, the curves of UHPC-filled small FRP tube and hybrid bar specimens exhibited a
387 first parabolic portion, second linear portion and a transition zone between them. The
388 transition zone corresponds to the second stress reduction portion of the stress-strain curve of
389 the specimen. The curvature of the transition zone is obviously dependent on the fibre
390 winding angle, the FRP tube thickness and other variables, which will be discussed in detail
391 in the next section.

392

393 **3.5. Effect of various parameters**

394 **3.5.1 Fibre winding angle**

395 The fibre winding angle had little effect on the initial stiffness of hybrid bar and UHPC-filled
396 small FRP tube specimens, as shown in Fig. 10. However, the amount of stress reduction in
397 the second or fourth portion of stress-strain curves of hybrid bars decreased with an increase
398 in the fibre winding angle of the outer FRP tube. The amount of stress reduction in the second
399 portion of stress-strain curves of UHPC-filled small FRP tube specimens also followed the

similar trend. In addition, the slopes of the third strain hardening portion in the stress-strain curves of hybrid bar and UHPC-filled small FRP tube specimens as well as those of the fifth residual stress portion in the stress-strain curves of hybrid bar specimens increased with an increase in the fibre winding angle of the outer FRP tube. This is because FRP tubes with a larger fibre winding angle have a larger confinement stiffness. It was found that, for specimens with a fibre winding angle of $\pm 45^\circ$, the slope of the fifth portion of hybrid bar specimens and the slope of the third portion of UHPC-filled small FRP tube specimens were close to zero. The ultimate axial strain of those specimens with fibre winding angles of $\pm 45^\circ$ was also found to be the largest among the specimens with other values of fibre winding angles, demonstrating their excellent deformation capacity.

It can be seen from Fig. 14 that the fibre winding angle had a significant influence on the dilation behaviour of both hybrid bar and UHPC-filled small FRP tube specimens. A larger fibre winding angle can lead to a smaller dilation of UHPC at a given axial strain. It can also be found that the slopes of the first parabolic portion, the second linear portion and the transition zone between them increased with the increase of the fibre winding angle.

3.5.2 Diameter of the central FRP bar

As seen from Fig. 11, the presence of the central FRP bar had no effect on the initial stiffness of hybrid bars; because of the close elastic modulus of the UHPC and the central FRP bar, as well as the good bonding between them with the presence of the ribs or sand-coated layer on the central FRP bar. However, the presence of the central FRP bar significantly alleviated the stress reduction in the second portion of UHPC-filled small FRP tube specimens, and the specimens with a central FRP bar (i.e., hybrid bars) had a higher compressive strength and a post-yielding stiffness. As discussed earlier, upon the failure of the central FRP bar, the behaviour of the fifth portion of hybrid bars was mainly dominated by the confinement of the outer FRP tube. As a result, the slope in this portion of the hybrid bar is almost the same as that of the third strain hardening portion of the corresponding UHPC-filled small FRP tube specimen. It was also found that the ε_{cu} values of hybrid bar and UHPC-filled small FRP tube specimens were similar, which can indicate that the actual hoop rupture strain of the outer FRP tube ($\varepsilon_{h,rup}$) was independent of the presence of the central FRP bar and the diameter of the

432 central FRP bar.

433

434 As shown in Table 5, the compressive elastic modulus of GFRP bars with a nominal diameter
435 of 25 mm was smaller than that of GFRP bars with a nominal diameter of 16 mm. In order to
436 eliminate the influence of different compressive elastic modulus of the central FRP bar; the
437 axial loads of hybrid bar specimens (P_{HB}) were normalized by the summation of axial loads
438 of the corresponding UHPC (P_{UHPC}) and the central FRP bar (P_B) (i.e., $P_{HB}/(P_{UHPC} + P_B)$),
439 and the axial strains (ε_c) were normalized by the axial strain at peak axial stress of UHPC
440 ($\varepsilon_{co,UHPC}$) (i.e., $\varepsilon_c/\varepsilon_{co,UHPC}$), as shown in Fig. 17. The value of P_{UHPC} was taken as the
441 product of the compressive strength of plain UHPC cylinders and the cross-sectional area of
442 UHPC layer (i.e., $P_{UHPC} = f'_{co,UHPC} A_{UHPC}$). Similarly, the value of P_B was taken as the
443 product of the axial stress of the central FRP bar at an axial strain of $\varepsilon_{co,UHPC}$ and its
444 corresponding cross-sectional area (i.e., $P_B = E_B \varepsilon_{co,UHPC} A_B$, where E_B is the compressive
445 elastic modulus of GFRP bars). Results from Fig. 17 can show that hybrid bars with a
446 25-mm-diameter central FRP bar were superior to those with a 16-mm-diameter central FRP
447 bar before the central FRP bar failed. It was also found that the compressive strength of some
448 hybrid bars with a 25-mm-diameter central FRP bar was slightly smaller than that of hybrid
449 bars with a 16-mm-diameter central FRP bar (e.g., S2-C2-90-25-1/2/3 and
450 S2-C2-90-16-1/2/3), which was due to the much smaller ultimate compressive strain of GFRP
451 bars with a nominal diameter of 25 mm (see Table 5).

452

453 It can be seen from Fig. 15 that the axial strain-hoop strain curves of hybrid bar and
454 UHPC-filled small FRP tube specimens were close. However, the presence of the central
455 FRP bar had a slight effect on the dilation behaviour of hybrid bars. In comparison with
456 UHPC-filled small FRP tube specimens, hybrid bar specimens had a shorter transition
457 portion in the axial strain-hoop strain curves, corresponding to smaller stress drop in the
458 second portion of their stress-strain curves. It was also found that there was a little
459 difference in the dilation behaviour of hybrid bars with different central FRP bars.

460

461 **3.5.3 Thickness of FRP tube**

462 The stiffness, compressive strength and ultimate axial strain of both hybrid bar and
463 UHPC-filled small FRP tube specimens increased with the increase of the outer FRP tube

464 thickness (i.e., the increase of ultimate confining pressure provided by FRP), as seen from Fig.
465 12. The increase in the outer FRP tube thickness provided a contribution to eliminate the
466 stress reduction or fluctuation in the second portion. Results from Fig. 16 can also show that
467 specimens with a thicker FRP tube had smaller hoop strains at a certain axial strain,
468 indicating that the increase of the FRP tube thickness can effectively inhibit the concrete
469 expansion, which is consistent with the findings of other studies [31].
470

471 **3.6. Behaviour of the central FRP bar in hybrid bars**

472 For a given axial strain, the difference in axial loads between the hybrid bar and the
473 UHPC-filled FRP tube with the same cross-sectional area as the UHPC layer of hybrid bars,
474 is expected to represent the contribution of the axial load of the central FRP bar in a hybrid
475 bar. In this study, the axial stress of the central FRP bar in a hybrid bar at a given axial strain
476 is obtained from the following equation:

$$477 \sigma_B = (P_{HB} - f_{c,FU}A_{UHPC})/A_B \quad (1)$$

478 where P_{HB} is the total load of the hybrid bar; $f_{c,FU}$ is the axial stress of the corresponding
479 UHPC-filled FRP tube specimen at a given axial strain based on the tests in this study;
480 A_{UHPC} is the cross-sectional area of the UHPC layer in the hybrid bar; A_B is the
481 cross-sectional area of the central FRP bar in the hybrid bar. When calculating the axial stress
482 of the central FRP bar in a hybrid bar at a given axial strain, the contribution of the FRP tube
483 is not accounted for although the axial load contribution of GFRP tube with a fibre winding
484 angle of $\pm 45^\circ$ may be significant. This is because the contribution of FRP tube is existed in
485 estimating the axial stresses of FRP-confined UHPC based on compression tests of the latter,
486 and the axial load contribution of the FRP-confined UHPC is subtracted from that of the
487 hybrid bar when calculating the axial stresses of the central FRP bar in a hybrid bar.
488

489 Figure 18 shows the comparison between the axial stress-axial strain behaviour of the central
490 FRP bar in hybrid bars and the test results of the bare FRP bar (i.e., test results shown in Fig.
491 5c). It can be seen from Fig. 18 that the axial stress-axial strain behaviour of the central FRP
492 bar in hybrid bars was superior to that of the corresponding bare FRP bar. One exception is
493 Specimen S2-C1-90-16, which has a relatively small confinement stiffness. The initial
494 stiffness of the central FRP bar, which was very close to that of the corresponding bare FRP
495 bar, was independent of the level of FRP confinement, the FRP tube thickness and the fibre

496 winding angle. However, the behaviour of the central FRP bar became non-linear and was
497 greatly affected by the confinement of the outer FRP tube after the outer FRP tube was
498 activated by the expansion of UHPC. A larger FRP confinement can lead to an enhanced
499 compressive strength and an enhanced ultimate axial strain of the central FRP bar. Overall,
500 the compressive strength of the central FRP bar in hybrid bars tested in the current study were
501 much larger than that of the corresponding FRP bar in isolation, implying that the
502 confinement provided by the outer FRP tube has a favorable effect on the effective
503 exploitation of the compressive strength of the FRP bar. Although the central FRP bar in
504 hybrid bars generally failed earlier than the outer FRP tube owing to the inherent properties
505 of the material itself, the enhanced strength and strain of the central FRP bar in hybrid bars
506 were still substantially beneficial to the axial performance of hybrid bars. It is demonstrated
507 that the compressive strength of FRP bars can be well exploited in such a form of hybrid bars.
508 The subsequent studies conducted by the authors have demonstrated the superiority of RC
509 columns reinforced hybrid bars than the corresponding RC columns reinforced with FRP bars
510 [43].

511

512 **4. Transverse Shear Test and Results**

513 **4.1 Specimens preparation and test set-up**

514 A total of 29 specimens, including 12 hybrid bars and 12 UHPC-filled small FRP tubes and 5
515 bare GFRP bars, were prepared and tested under transverse shear loading. All the hybrid bar
516 specimens and UHPC-filled small FRP tube specimens adopted the same materials as the first
517 batch of specimens (see Section 3), and thus the labeling system of the specimens presented
518 in Section 3.1 was also adopted in this section. In addition, “FRP bar” was used to refer to a
519 bare FRP bar specimen and a following number was used to distinguish the duplicate
520 specimens. The main parameters concerned in this section include the fibre winding angle of
521 the outer FRP tube, and the presence of the central FRP bar. The transverse shear strength
522 tests of all the specimens were carried out in accordance with the methodology described in
523 ACI 440.3 R-12 [44]. Figure 19 shows a steel double shear test device, which consists of a
524 holder, one upper blade, and two lower blades. The detailed dimensions, as given in Fig. 19,
525 are slightly different from the suggested dimensions in ACI 440.3 R-12 [44] to cater for the
526 large diameter of the hybrid bars. The thickness of two lower blades was 12 mm and the

527 thickness of upper blade was 36 mm. During the test, the holder was fixed to the framework
528 of the testing machine and the upper blade ran perpendicularly to the specimen axis to ensure
529 that the bar was under two-plane shear loading. All test specimens had a total length of 300
530 mm and they were loaded at a displacement-control rate of 1.5 mm/min (see Fig. 19).

531

532 **4.2 Transverse shear results**

533 Figure 20 presents the failure modes of all specimens. The test specimens were cut into three
534 pieces, indicating that shear planes failed at the same time [21,45]. It was also found that
535 some GFRP bar specimens experienced fibre delamination (Fig. 20h), which is consistent
536 with the findings of other study [45]. In order to clearly identify the formation of failure
537 surfaces in a hybrid bar during the test, Fig. 21 illustrates the axial load-displacement curves
538 of hybrid bars and the reference specimens (i.e., UHPC-filled small FRP tube and GFRP bar)
539 under transverse shear loading. The results show that hybrid bars have a two-stage formation
540 of failure surfaces, corresponding to two peak loads, respectively: i) the first one was mainly
541 caused by the shear failure of the outer FRP tube and the corresponding first peak load
542 decreased with an increase in the fibre winding angle of the outer FRP tube; and ii) the
543 second one was induced by the shear failure of the central FRP bar. However, the two peak
544 loads of the hybrid bar were much larger than those of the reference specimens due to the
545 optimal combination of each component and good interaction between them, which can
546 demonstrate an excellent shear resistance of the hybrid bar. To further interpret the
547 interaction between each component in a hybrid bar, Fig. 21 illustrates the summation of the
548 loads of the corresponding UHPC-filled small FRP tube and the bare GFRP bar at a given
549 displacement (represented by a purple line marked by circles). It is clearly shown that the
550 shear resistance of the hybrid bar was significantly larger than the summation of shear
551 resistance of UHPC-filled small FRP tube and that of the bare GFRP bar due to the small
552 deformation capacity of UHPC-filled small FRP tube under transverse shear loading. The
553 summation of these loads was slightly larger than that of the hybrid bar at the initial stage. This
554 was because the former included an additional load of UHPC with the same cross-sectional
555 area as the central FRP bar. Although the contribution of the UHPC-filled small FRP tube
556 part in the total shear load capacity was substantial, the deformation capacity of the
557 UHPC-filled small FRP tube in isolation under shear was much smaller than that of the FPR
558 bar (the ultimate deformation of the central FRP bar corresponded to the deformation at the
559 second peak). It can be seen from Fig. 21 that the load decrease upon the first peak of the

560 hybrid bar was caused by the failure of the UHPC-filled FRP tube section, while the load
561 reduction of this stage was much smaller than the shear load capacity of the UHPC-filled
562 FRP tube in isolation (see Fig. 21). Thus, it can be demonstrated that the UHPC-filled FRP
563 tube and the central FRP bar in hybrid bars are in an optimum combination: the presence of
564 the central FRP bar caused a delay in the failure of the UHPC-filled FRP tube section; and
565 the shear loading after the first peak was jointly resisted by both the central FRP bar and the
566 aggregate interlock action in UHPC, leading to an excellent shear load capacity
567 (corresponding to the second peak) of hybrid bars.

568

569 The transverse shear strength (τ_u) can be obtained as follows:

$$570 \quad \tau_u = \frac{P_s}{2A} \quad (2)$$

571 where P_s is the maximum failure force and A is the cross-sectional area of the specimen.
572 Table 7 gives the transverse shear strength of all specimens. The thickness of the FRP tube
573 was considered in the calculation of the cross-sectional areas of hybrid bars and UHPC-filled
574 small FRP tube specimens. As hybrid bar have two different peak loads, both first and second
575 transverse shear strengths were indicated in the present study. It can be seen from Table 7
576 that the fibre winding angle has a small effect on the second transverse shear strength of
577 hybrid bars. However, the first transverse shear strength of both hybrid bar and UHPC-filled
578 small FRP tube specimens decreased with an increase in the fibre winding angle of the outer
579 FRP tube. In summary, the transverse shear resistance (e.g., shear load and deformation
580 capacities) of hybrid bars is superior to that of the bare FRP bars.

581

582 5. Conclusions

583 This paper has presented experimental studies on the compressive and transverse shear
584 behaviour of FRP-UHPC hybrid bars. The key parameters examined in the present study
585 include the fibre winding angle of the FRP tube, fibre types of the FRP tube, the FRP tube
586 thickness and the diameter of the central FRP bar. Based on the test results and discussions
587 presented in this paper, the following conclusions can be drawn:

588 (1) Hybrid bars exhibit a five-portion average stress-strain response (i.e., an initial elastic
589 portion, second stress fluctuation portion, third strain hardening portion, fourth stress
590 reduction portion, and fifth residual stress portion). The third strain hardening portion is
591 dependent on the confining stiffness; the stress-strain response of hybrid bars can be

592 designed to meet an elastic-plastic response like that of steel or a strong post-yielding
593 strain-hardening response by using external FRP tubes with different stiffness.

594 (2) With an increase in the fibre winding angle of the outer FRP tube; the amount of the
595 stress reduction in the second or fourth portion of stress-strain curves of hybrid bars and
596 the amount of stress reduction in the second portion of stress-strain curves of
597 UHPC-filled small FRP tube specimens decrease, and the slopes of both the third strain
598 hardening portion and the fifth residual stress portion in the stress-strain curves of hybrid
599 bars increase.

600 (3) The presence of the central FRP bar leads to little difference between the initial
601 stiffnesses of the hybrid bar and the UHPC-filled small FRP tube due to the close elastic
602 modulus of the two components (the UHPC and the FRP bar), while the presence of the
603 central FRP bar leads to a smaller stress drop in the second portion of their stress-strain
604 curves of hybrid bars. Hybrid bars with a 25-mm-diameter central FRP bar are superior to
605 those with a 16-mm-diameter central FRP bar before the failure of the central FRP bar.

606 (4) The compressive strength and the ultimate axial strain of both hybrid bar and
607 UHPC-filled small FRP tube specimens increase with the increase of the confinement
608 stiffness from the outer FRP tube.

609 (5) The initial elastic modulus of the central FRP bar is independent of the level of FRP
610 confinement, the FRP tube thickness and the fibre winding angle. The behavior of the
611 central FRP bar is much superior to the bare FRP bar, because the ultimate axial strain (as
612 well as the compressive strength) of the central FRP bar is substantially enhanced; which
613 demonstrates that the confinement of the outer FRP tube are favorable in enhancing the
614 compressive performance of the FRP bar in hybrid bars.

615 (6) Hybrid bars have a two-stage formation of failure surfaces under transverse shear loading,
616 corresponding to two peaks of the shear load-deformation curves, respectively. The
617 contribution of the UHPC-filled small FRP tube in the shear load capacity of hybrid bars
618 is substantial, while the deformation capacity of the UHPC-filled small FRP tube in
619 isolation under shear is much smaller than that of the FPR bar (the ultimate deformation
620 of the central FRP bar corresponds to the deformation at the second peak). The

621 UHPC-filled small FRP tube and the central FRP bar in a hybrid bar are in an optimum
622 combination, leading to an excellent shear load capacity.

623
624 To further examine the rationality and reliability of hybrid bars, tests on hybrid bar-reinforced
625 concrete columns under different loadings (e.g. cyclic axial compression, eccentric
626 compression and seismic loading) need to be carried out. Moreover, a design-oriented model
627 proposed for hybrid bars should be established in the near future to enable the design of
628 hybrid bars in various structural members.

629
630 **Acknowledgements**

631 The authors acknowledge the financial support received from the Natural Science Foundation
632 of China (No. 52008116), the Guangzhou Science and Technology Department (No.
633 201904010163), the Natural Science Foundation of Guangdong Province (Nos.
634 2019A1515011637 and 2021B1515020029), the University of Macau (File no.
635 UMMTP2020-MYSP-003), as well as the Association for Promotion of Science and
636 Technology of Macau and the Office of China National Postdoctoral Council (File no.
637 AM2020002).

638
639 **References**

640 [1] Zadeh, H. J. and Nanni, A. “Design of RC columns using glass FRP reinforcement.” *J.*
641 *Compos. Constr.*, 17 (3) (2012) 294-304,
642 [2] De Luca, A., Matta, F. and Nanni, A. “Behavior of full-scale glass fiber-reinforced
643 polymer reinforced concrete columns under axial load.” *ACI Struct. J.*, 107 (5) (2010)
644 589-596.
645 [3] Tobbi, H., Farghaly, A. S. and Benmokrane, B. “Concrete columns reinforced
646 longitudinally and transversally with glass fiber-reinforced polymer bars.” *ACI Struct. J.*,
647 109 (4) (2012) 551-558.
648 [4] Ali, M. A. and EI-Salakawy, E. “Seismic performance of GFRP-reinforced concrete
649 rectangular columns.” *J. Compos. Constr.*, 20 (3) (2016) 04015074.
650 [5] Pantelides, C. P., Gibbons, M. E. and Reaveley, L. “Axial load behavior of concrete
651 columns confined with GFRP spirals”, *J. Compos. Constr.*, 17(3) (2013) 305-313.

652 [6] Benmokrane, B., Mohamed, H. M. and Robert, M. "Case studies design, construction,
653 and performance of continuously reinforced concrete pavement reinforced with GFRP
654 bars: case study", *J. Compos. Constr.*, ASCE 21 (4) (2017) 04017040.

655 [7] Hadi, M. N. S., Karim, H. and Sheikh, M. N. "Experimental investigations on circular
656 concrete columns reinforced with GFRP Bars and helices under different loading
657 conditions." *J. Compos. Constr.*, 20 (4) (2016) 04016009.

658 [8] Teng, J.G., Zhang S. S. and Chen, J. F. "Strength model for end cover separation failure
659 in RC beams strengthened with near-surface mounted (NSM) FRP strips", *Engineering
660 Structures*, 110 (2016) 222-232.

661 [9] Khan, Q. S., Sheikh, M. N. and Hadi, M. N. 2015. "Tension and compression testing of
662 fibre reinforced polymer (FRP) bars." *The 12th International Symposium on Fiber
663 Reinforced Polymers for Reinforced Concrete Structures (FRPRCS-12) & The 5th
664 Asia-Pacific Conference on Fiber Reinforced Polymers in Structures (APFIS-2015) Joint
665 Conference*, Nanjing, China.

666 [10] Khorramian, K. and Sadeghian, P. New testing method of GFRP bars in compression,
667 *CSCE Annual Conference 2018*, Fredericton, NB, Canada, Canadian Society for Civil
668 Engineering, 2018.

669 [11] AlAjarmeh, O. S., Manalo, A. C., Benmokrane, B., Vijay, P. V., Ferdous, W. and Mendis,
670 P. "Novel testing and characterization of GFRP bars in compression." *Constr. Build.
671 Mater.*, 225 (2019) 1112-1126.

672 [12] ACI 440.1R-15 (2015). *Guide for The Design and Construction of Concrete Reinforced
673 with FRP Bars*. Farmington Hills, MI: ACI.

674 [13] CSA S806-12 (R2017). *Design and Construction of Building Components with
675 Fiber-Reinforced Polymers*. Rexdale, ON, Canada.

676 [14] Nanni, A., Henneke, M. J. and Okamoto, T. "Tensile properties of hybrid rods for
677 concrete reinforcement." *Constr. Build. Mater.*, 8(1) (1994) 27-34.

678 [15] Wu, G., Wu, Z. S., Luo, Y. B., Sun, Z. Y. and Hu, X. Q. "Mechanical properties of
679 steel-FRP composite bar under uniaxial and cyclic tensile loads." *J. Mater. Civ. Eng.*,
680 22(10) (2010) 1056-1066.

681 [16] Wu, G., Sun, Z. Y., Wu, Z. S. and Luo, Y. B. "Mechanical properties of steel-FRP
682 composite bars (SFCBs) and performance of SFCB reinforced concrete structures." *Adv.
683 Struct. Eng.*, 15(4) (2012) 625-635.

684 [17] Seo D. W., Park K. T., You Y. J. and Lee S. Y. "Experimental investigation for tensile
685 performance of GFRP-steel hybridized rebar." *Adv. Mater. Sci. Eng.* 1 (2016) 1-12.

686 [18]Zhao, D., Pan, J., Zhou, Y., Sui, L. and Ye, Z. “New types of steel-FRP composite bar
687 with round steel bar inner core: Mechanical properties and bonding performances in
688 concrete.” Constr. Build. Mater. 242 (2020) 118062.

689 [19]Liang, Y., Sun, C. and Ansari, F. “Acoustic emission characterization of damage in
690 hybrid fiber-reinforced polymer rods.” J. Compos. Constr. 8(1) (2004)70-18.

691 [20]You, Y. J., Park, Y. H., Kim, H. Y. and Park, J. S. “Hybrid effect on tensile properties of
692 FRP rods with various material compositions.” Compos. Struct., 80 (1) (2007) 117-122.

693 [21]Protchenko, K., Zayoud, F., Urbański, M. and Szmigiera, E. “Tensile and shear testing of
694 basalt fiber reinforced polymer (BFRP) and hybrid basalt/carbon fiber reinforced polymer
695 (HFRP) bars.” Mater., 13 (24) (2020) 5839.

696 [22]Teng, J. G., Zhang, B., Zhang, S. S. and Fu, B. “Steel-free hybrid reinforcing bars for
697 concrete structures”, Adv. Struct. Eng., 21(11) (2018) 2617-2622.

698 [23]Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z. and Fang Z. “A review on ultra high
699 performance concrete: part I. Raw materials and mixture design”, Constr. Build. Mater.,
700 101 (2015) 741-751.

701 [24]Wille, K., El-Tawil, S. and Naaman, A. E. “Properties of strain hardening ultra high
702 performance fiber reinforced concrete (UHP-FRC) under direct tensile loading.” Cem.
703 and Concr. Compos., 48 (2014) 53-66.

704 [25]Wille, K., Naaman, A. E. and Parra-Montesinos, G. J. “Ultra-high-performance concrete
705 with compressive strength exceeding 150 MPa (22 ksi): a simpler way.” ACI Mater. J.,
706 108 (1) (2011) 46-54.

707 [26]Wille, K. and Boisvert-Cotulio, C. “Material efficiency in the design of
708 ultra-high-performance concrete.” Constr. Build. Mater., 86 (2015) 33-43.

709 [27]Li, J. Q., Wu, Z. M., Shi, C. J., Yuan, Q. and Zhang, Z. H. “Durability of ultra-high
710 performance concrete – A review.” Constr. Build. Mater., 255 (2020) 119296.

711 [28]Teng, J. G., Xiang, Y., Yu, T. and Fang, Z. “Development and mechanical behaviour of
712 ultra-high-performance seawater sea-sand concrete.” Adv. Struct. Eng., 22 (14) (2019)
713 3100-3120.

714 [29]Tian, H. Zhou, Z., Wei, Y., Wang, Y., Lu, J. “Experimental investigation on axial
715 compressive behavior of ultra-high performance concrete (UHPC) filled glass FRP tubes”,
716 Constr. Build. Mater., 225 (2019) 678-691.

717 [30]Zohrevand, P., Mirmiran, A. “Behavior of ultrahigh-performance concrete confined by
718 fiber-reinforced polymers”, J. Mater. Civ. Eng., 23 (12) (2011) 1727-1734.

719 [31]Wang, W., Wu, C., Liu, Z. “Compressive behavior of ultra-high performance
720 fiber-reinforced concrete (UHPFRC) confined with FRP”, Compos. Struct., 204 (2018)
721 419-437.

722 [32]Zeng, J. J., Ye, Y. Y., Gao, W. Y., Smith, S. T. and Guo, Y. C. “Stress-strain behavior of
723 polyethylene terephthalate fiber-reinforced polymer-confined normal-, high- and ultra
724 high-strength concrete.” J. Build. Eng., 30 (2020) 101243.

725 [33]GB 50010-2019. Code for Design of Concrete Structures. Beijing, China. (in Chinese)

726 [34]ACI 318-19 (2019). Building Code Requirements for Structural Concrete and
727 Commentary. Farmington Hills, MI: ACI.

728 [35]ASTM C1856/C1856M (2017). Standard Practice for Fabricating and Testing Specimens
729 of Ultra-High Performance Concrete, West Conshohocken, PA, USA.

730 [36]ASTM C469/C469M (2014). Standard Test Method for Static Modulus of Elasticity and
731 Poisson Ratio of Concrete in Compression, West Conshohocken, PA: American Society
732 for Testing and Materials (ASTM), USA.

733 [37]ASTM D3039-15 (2015). Standard Test Method for Tensile Properties of Polymer
734 Matrix Composite Materials, West Conshohocken, PA: American Society for Testing and
735 Materials (ASTM), USA.

736 [38]ASTM D2290-19 (2019). Standard Test Method for Apparent Hoop Tensile Strength of
737 Plastic or Reinforced Plastic Pipe, West Conshohocken, PA: American Society for
738 Testing and Materials (ASTM), USA.

739 [39]GB/T 5350 (2005). Fiber-Reinforced Thermosetting Plastics Composites-Determination
740 for Longitudinal Compressive Properties. Beijing, China. (in Chinese)

741 [40]GB/T 30022-2013. Test Method for Basic Mechanical Properties of Fiber Reinforced
742 Polymer Bar. Beijing, China. (in Chinese)

743 [41]Lam, L. and Teng, J.G. “Design-oriented stress-strain model for FRP-confned concrete.”
744 Constr. Build. Mater., 17 (6-7) (2003) 471-489.

745 [42]Zeng, J. J., Duan, Z. J., Guo, Y. C. Xie, Z. H. and Li, L. J. “Novel fiber-reinforced
746 polymer cross wrapping strengthening technique: a comparative study.” Adv. Struct. Eng.,
747 23 (5) (2020) 979-996.

748 [43]Zeng, J. J., Ye, Y. Y., Yu, T. and Teng, J.G. “Axial compression tests on steel-free
749 concrete columns reinforced longitudinally with hybrid bars.” in preparation.

750 [44]ACI 440.3R-12 (2012). Guide Test Methods for Fiber-Reinforced Polymers (FRPs) for
751 Reinforcing or Strengthening Concrete Structures. Farmington Hills, MI: ACI.

752 [45]Genikomsou, A. S., Balomenos, G. P., Arczewska, P. and Polak, M. A. "Transverse
753 shear testing of GFRP bars with reduced cross sections." *J. Compos. Constr.*, 22 (5) (2018)
754 4018041.

1 **TABLES AND FIGURES**

2 **TABLE CAPTIONS**

4 **Table 1.** UHPC mix proportions (in weight)

5 **Table 2.** Properties of UHPC

6 **Table 3.** Tensile properties of small GFRP tubes

7 **Table 4.** Compressive properties of small GFRP tubes

8 **Table 5.** Tensile and compressive properties of GFRP bars

9 **Table 6.** Details of specimens

10 **Table 7.** Key results of specimens under transverse shear tests

11

Table 1. UHPC mix proportions (in weight)

Cement (P·II 52.5R)	Quartz powder	Silica fume	Sand	Water	Super-plasticizer
1.00	0.37	0.25	1.10	0.19	0.04

Table 2. Properties of UHPC

Batch	Compressive strength $f'_{co,UHPC}$ (MPa)	Ultimate axial strain $\varepsilon_{co,UHPC}$	Compressive elastic modulus $E_{c,UHPC}$ (GPa)	Poison's ratio μ
1	163.3	0.0033	50.3	0.20
2	142.3	0.0032	47.7	0.19

Table 3. Tensile properties of small GFRP tubes

Fibre winding angle (°)	Thickness (mm)	Number of FRP layers	Secant elastic modulus (GPa)
±45	2.90	4	3.71
±60	2.25	4	18.31
±80	1.81	4	38.72
±80	2.57	6	43.33

Table 4. Compressive properties of small GFRP tubes

Fibre winding angle (°)	Compressive strength (MPa)	Peak strain	Secant elastic modulus (GPa)	Poison's ratio
±45	93.69	0.0189	4.98	0.85
±60	98.86	0.0199	4.98	0.34
±80	86.35	0.0130	6.74	0.14

Table 5. Tensile and compressive properties of GFRP bars

Nominal diameter (mm)	Tensile elastic modulus (GPa)	Tensile strength (MPa)	Ultimate tensile strain	Compressive elastic modulus (GPa)	Compressive strength (MPa)	Ultimate compressive strain
25	41.0	711.6	0.0172	40.6	274.5	0.0077
16	47.6	892.2	0.0187	49.1	650.3	0.0121

Table 6. Details of specimens

Specimen	Batch	FRP type	Number of FRP layers	FRP thickness (mm)	Fibre winding angle (°)	Diameter of the central FRP bar (mm)
S1-G4-45-0-1/2/3	1	GFRP	4	2.90	45	N.A.
S1-G4-45-25-1/2/3	1	GFRP	4	2.90	45	25
S1-G4-60-0-1/2/3	1	GFRP	4	2.25	60	N.A.
S1-G4-60-25-1/2/3	1	GFRP	4	2.25	60	25
S1-G4-80-0-1/2/3	1	GFRP	4	1.81	80	N.A.
S1-G4-80-25-1/2/3	1	GFRP	4	1.81	80	25
S2-C1-90-0-1/2/3	2	CFRP	1	0.167	90	N.A.
S2-C1-90-25-1/2/3	2	CFRP	1	0.167	90	25
S2-C1-90-16-1/2/3	2	CFRP	1	0.167	90	16
S2-C2-90-0-1/2/3	2	CFRP	2	0.334	90	N.A.

S2-C2-90-25-1/2/3	2	CFRP	2	0.334	90	25
S2-C2-90-26-1/2/3	2	CFRP	2	0.334	90	16
S2-G4-80-0-1/2/3	2	GFRP	4	1.81	80	N.A.
S2-G4-80-25-1/2/3	2	GFRP	4	1.81	80	25
S2-G4-80-16-1/2/3	2	GFRP	4	1.81	80	16
S2-G6-80-0-1/2/3	2	GFRP	6	2.57	80	N.A.
S2-G6-80-25-1/2/3	2	GFRP	6	2.57	80	25

23 Note: N.A. —— Not applicable.

24

25 **Table 7.** Key results of specimens under transverse shear tests

Specimen	First transverse shear strength τ_{u1}	Mean	Standard deviation	Second transverse shear strength τ_{u2}	Mean	Standard deviation
Hybrid bar	S1-G4-45-25-1	70.1		66.7		
	S1-G4-45-25-2	69.0	68.3	60.1	64.5	3.09
	S1-G4-45-25-3	64.9		66.6		
	S1-G4-45-25-4	69.2		64.4		
	S1-G4-60-25-1	58.3		67.5		
	S1-G4-60-25-2	56.1	60.1	65.0	65.6	1.29
	S1-G4-60-25-3	60.9		64.6		
	S1-G4-60-25-4	65.2		65.4		
	S1-G4-80-25-1	51.2		67.6		
	S1-G4-80-25-2	51.3	50.1	66.1	66.3	1.38
UHPC-filled small FRP tube	S1-G4-80-25-3	47.9		64.4		
	S1-G4-80-25-4	50.0		66.9		
	S1-G4-45-0-1	42.6		N.A.		
	S1-G4-45-0-2	41.6	44.1	2.60	N.A.	N.A.
	S1-G4-45-0-3	47.5		N.A.		
	S1-G4-45-0-4	44.6		N.A.		
	S1-G4-60-0-1	27.9		N.A.		
	S1-G4-60-0-2	30.9	30.1	1.52	N.A.	N.A.
	S1-G4-60-0-3	30.8		N.A.		
	S1-G4-60-0-4	31.0		N.A.		
GFRP bar	S1-G4-80-0-1	17.3		N.A.		
	S1-G4-80-0-2	22.7	19.1	2.69	N.A.	N.A.
	S1-G4-80-0-3	19.7		N.A.		
	S1-G4-80-0-4	16.8		N.A.		
	FRP bar-1	165.7		N.A.		
GFRP bar	FRP bar-2	155.8		N.A.		
	FRP bar-3	161.9	160.7	6.97	N.A.	N.A.
	FRP bar-4	168.5		N.A.		
	FRP bar-5	151.6		N.A.		

26 **FIGURE CAPTIONS**

27 **Fig. 1.** FRP-UHPC hybrid bar

28 **Fig. 2.** FRP bar-reinforced concrete columns (FBRCCs) and hybrid bar-reinforced concrete
29 columns (HBRCCs)

30 **Fig. 3.** Split disk tests on small GFRP tubes

31 **Fig. 4.** Compression tests on small GFRP tubes

32 **Fig. 5.** Tensile and compression tests on GFRP bars

33 **Fig. 6.** Preparation of hybrid bar specimens

34 **Fig. 7.** Levelling at two ends

35 **Fig. 8.** Compression test set-up

36 **Fig. 9.** Typical failure modes of specimens under axial compression tests

37 **Fig. 10.** Effect of fiber winding angles on the axial compressive behaviour of specimens

38 **Fig. 11.** Effect of the presence of the central FRP bar on the axial compressive behaviour of
39 specimens

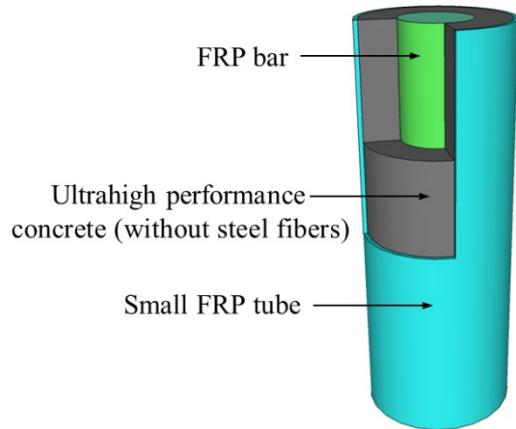
40 **Fig. 12.** Effect of the thickness of the outer FRP tube on the axial compressive behaviour of
41 specimens

42 **Fig. 13.** Typical axial stress-axial strain diagrams of hybrid bar and UHPC-filled FRP tube
43 specimens

44 **Fig. 14.** Effect of fiber winding angles on the dilation behaviour of specimens

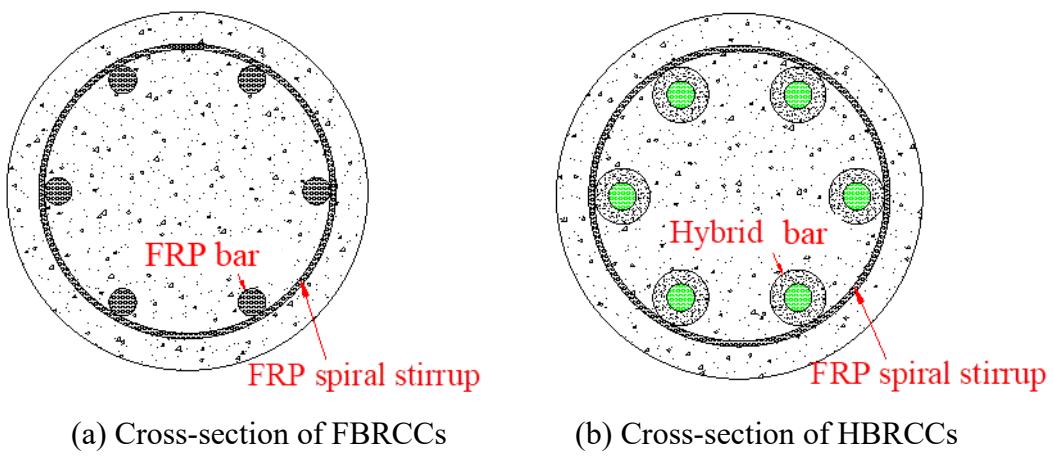
45 **Fig. 15.** Effect of the diameter of the central FRP bar on the dilation behaviour of specimens

46 **Fig. 16.** Effect of the thickness of the outer FRP tube on the dilation behaviour of specimens


47 **Fig. 17.** Normalized axial stress-axial strain curves of hybrid bars with different central FRP
48 bars

49 **Fig. 18.** Axial stress-axial strain behaviour of the central FRP bar in hybrid bars

50 **Fig. 19.** Transverse shear test set-up

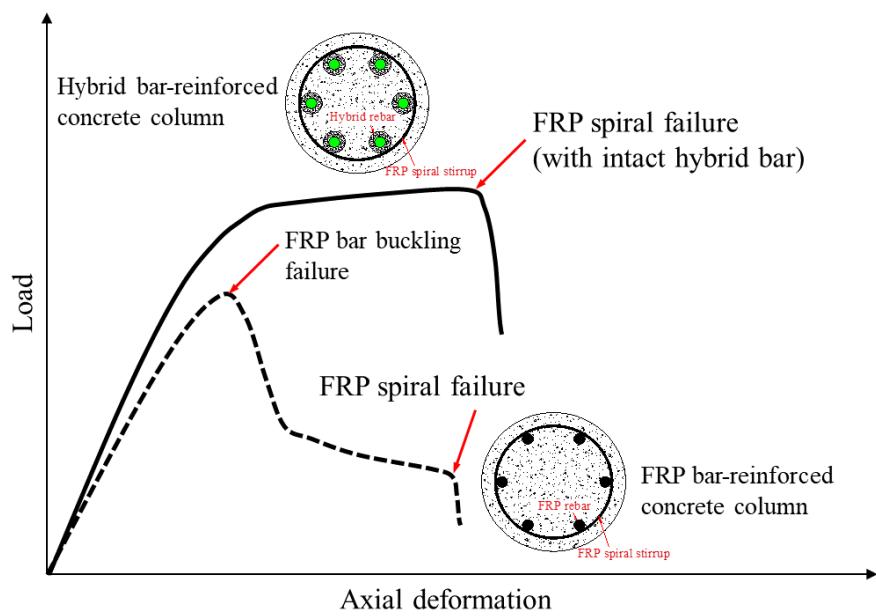

51 **Fig. 20.** Typical failure modes of specimens under transverse shear tests

52 **Fig. 21.** Load-displacement curves of specimens under transverse shear tests

53

54

Fig. 1. FRP-UHPC hybrid bar


55

56

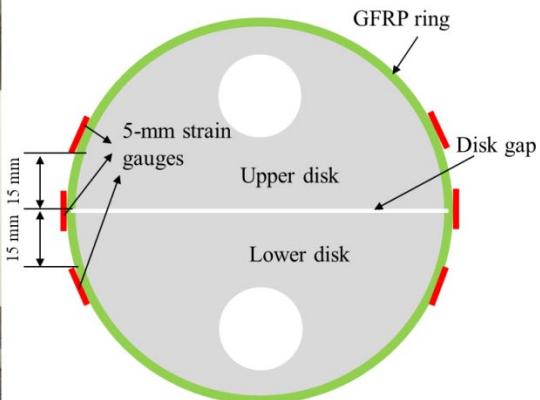
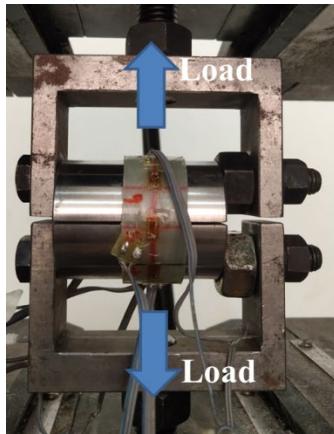
(a) Cross-section of FBRCCs

(b) Cross-section of HBRCCs

57

58

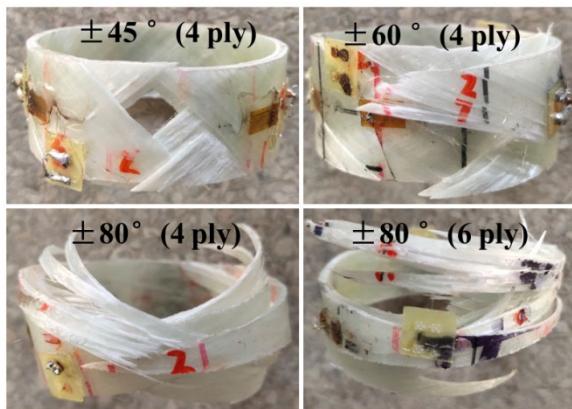
59



(c) Diagrammatic sketch of load-deformation responses of FBRCCs and HBRCCs

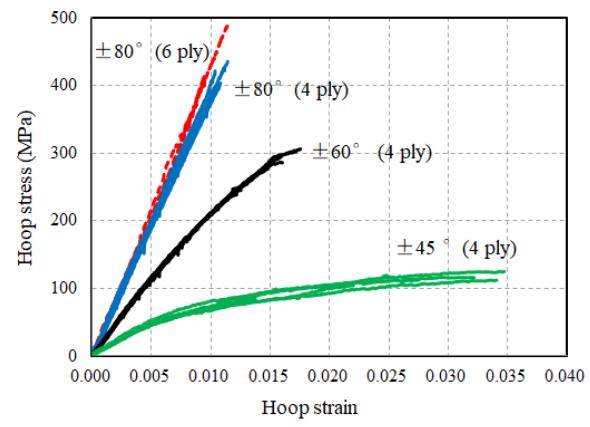
60

61

Fig. 2. FRP bar-reinforced concrete columns (FBRCCs) and hybrid bar-reinforced concrete columns (HBRCCs)


62

63


64

(a) Test set-up and layouts of strain gauges

65

(b) Typical failure modes

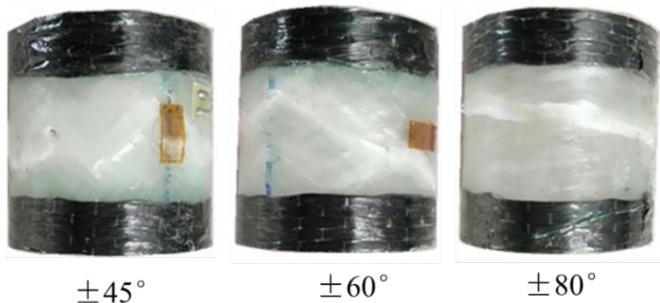
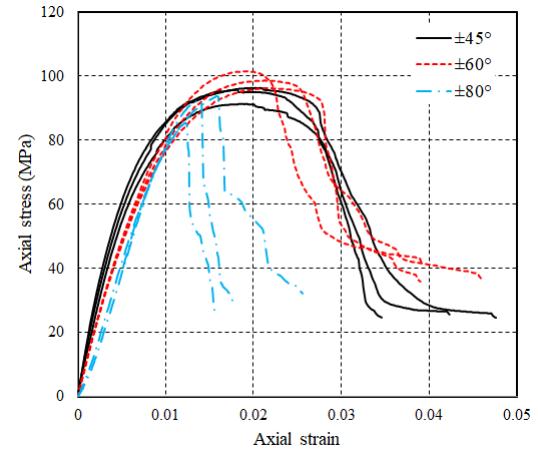

(c) Hoop stress-hoop strain curves

Fig. 3. Split disk tests on small GFRP tubes

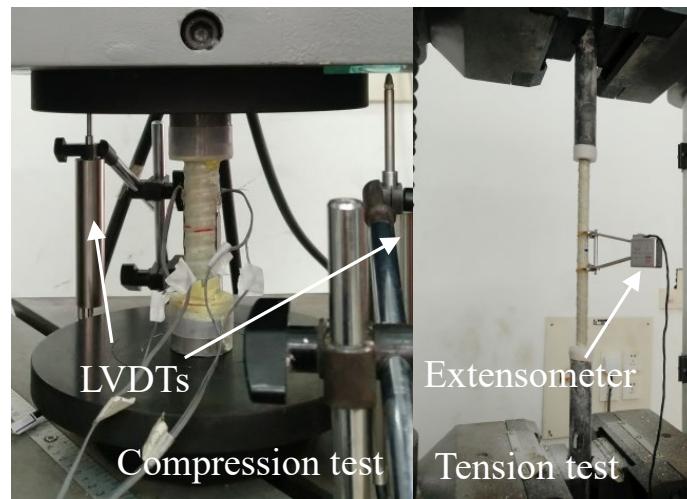
66


67

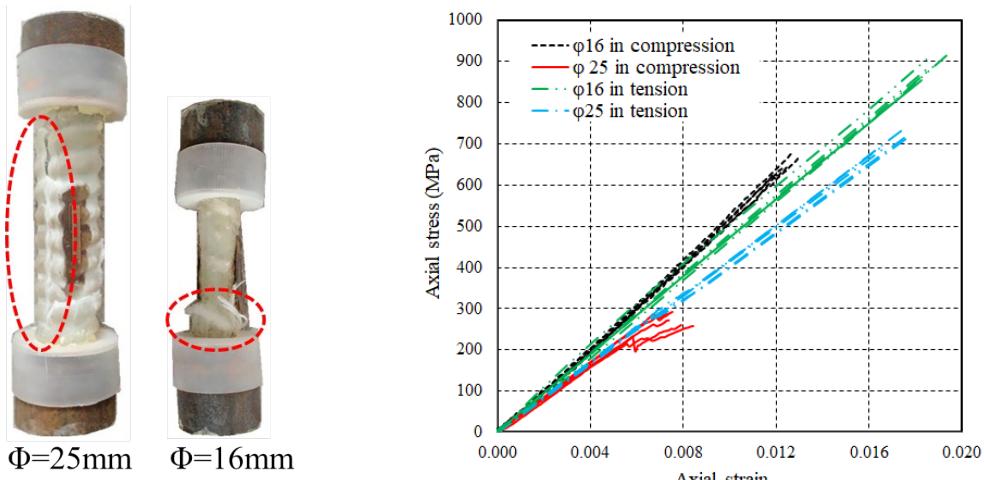
68

69

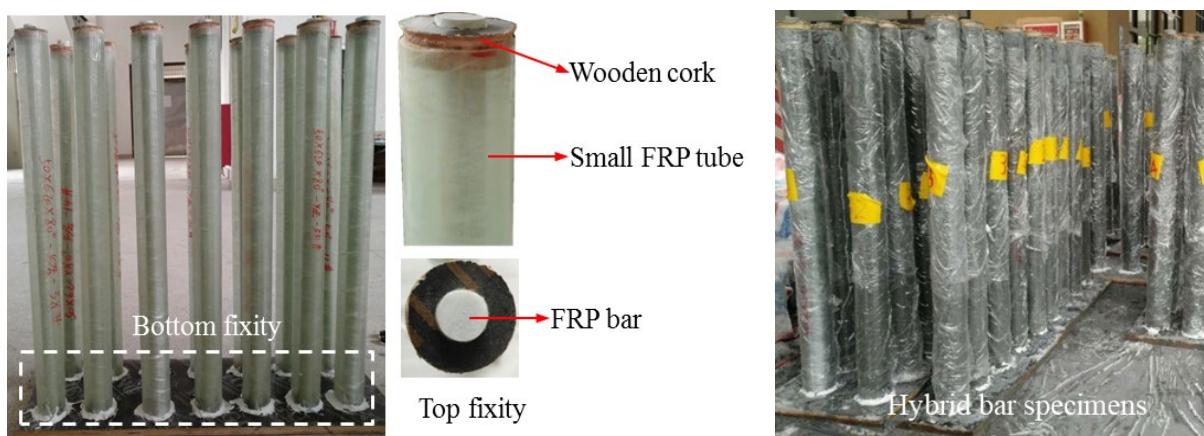
(a) Typical failure modes


(b) Stress-strain curves

70

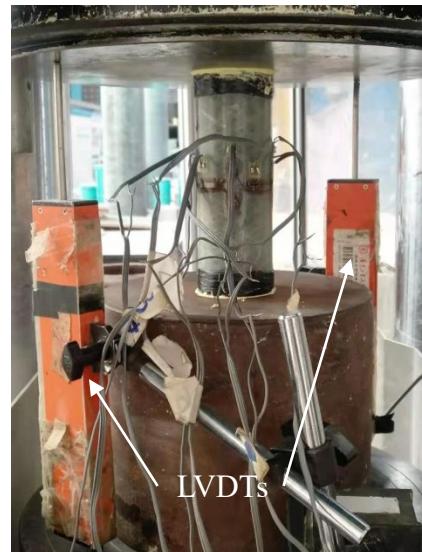

71

72


Fig. 4. Compression tests on small GFRP tubes

(a) Test set-up

Fig. 5. Tensile and compression tests on GFRP bars


Fig. 6. Preparation of hybrid bar specimens

82

83
84

Fig. 7. Levelling at two ends

Fig. 8. Compression test set-up

85

86

(a) S1-G4-45-0-3

(b) S1-G4-45-25-1

(c) S1-G4-60-25-1

(d) S1-G4-80-25-3

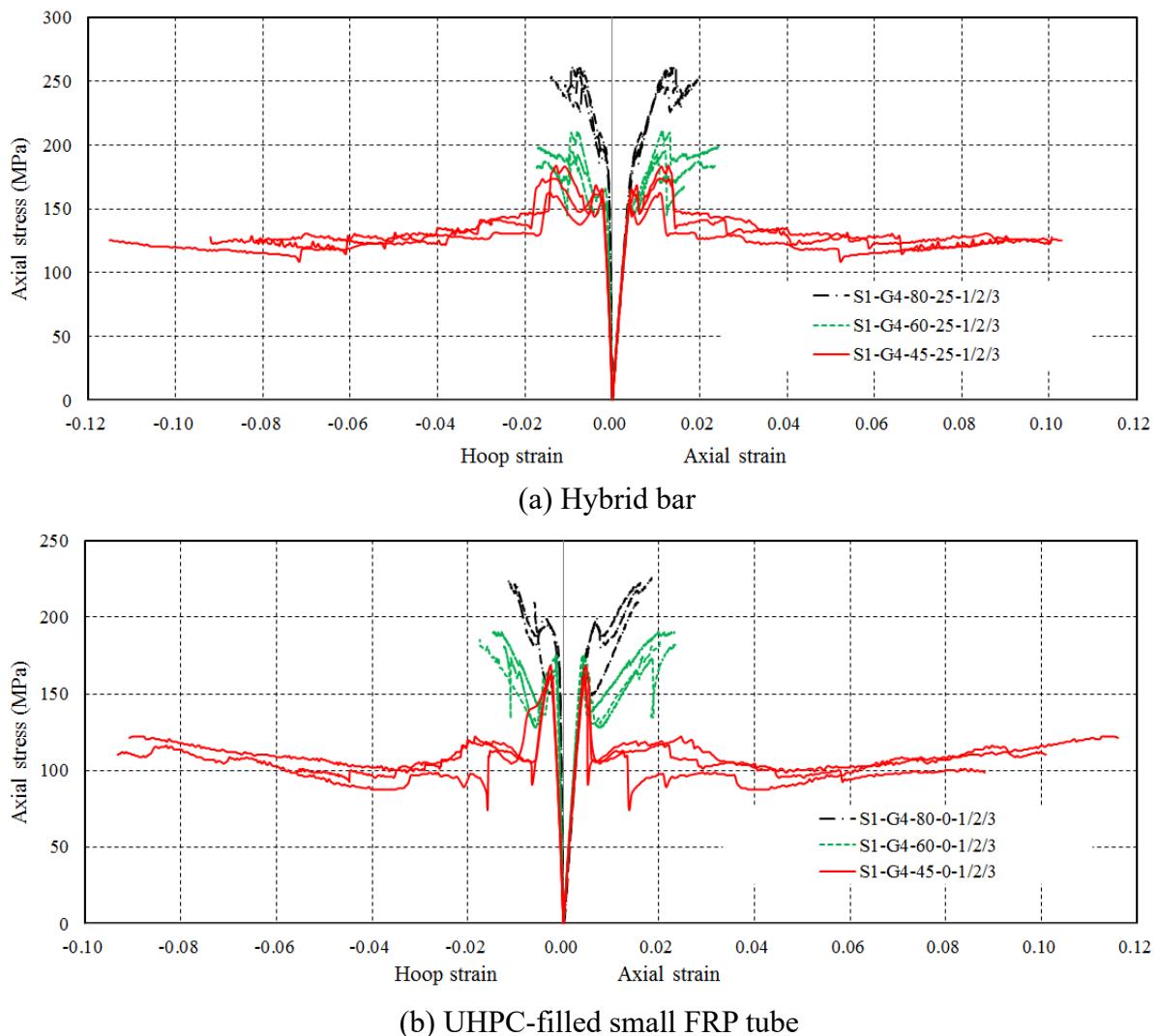
87

88

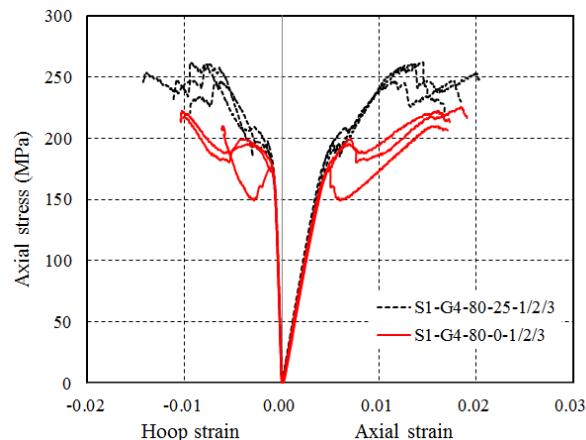
(e) S2-G4-80-0-2

(f) S2-C1-90-25-2

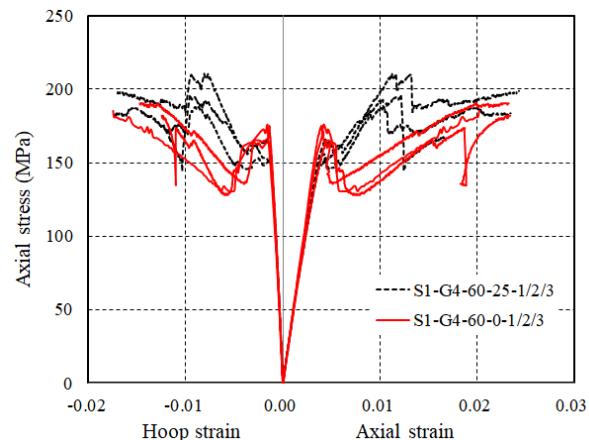
(g) S2-C2-90-16-2

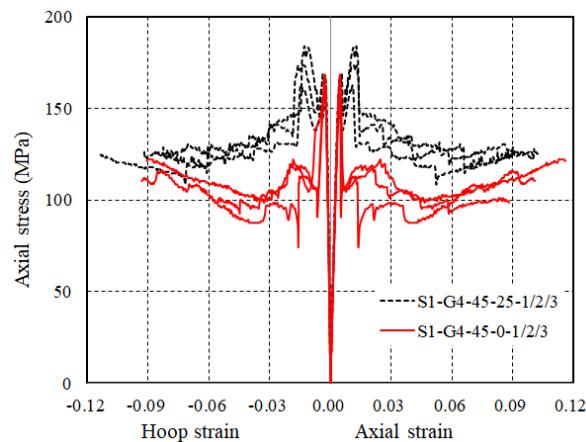


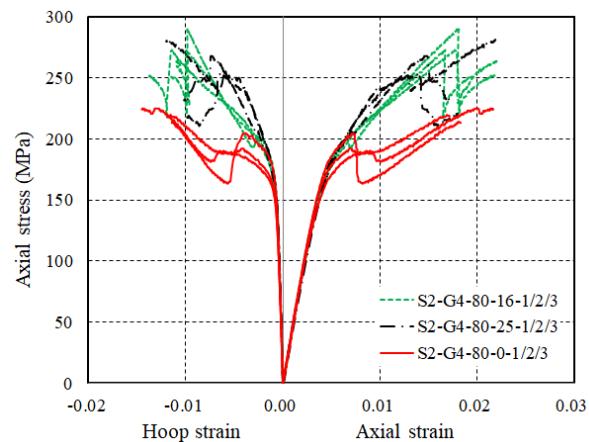
(h) S2-C2-90-0-1

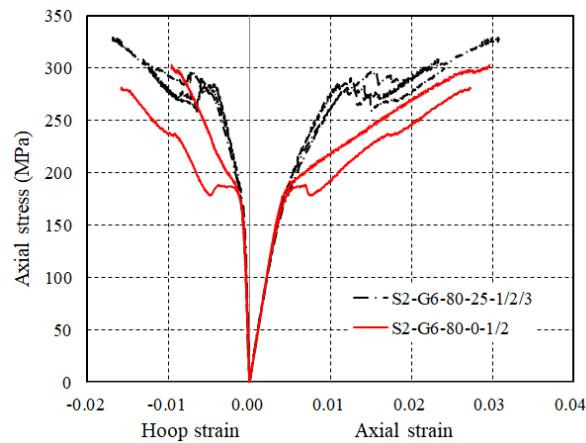


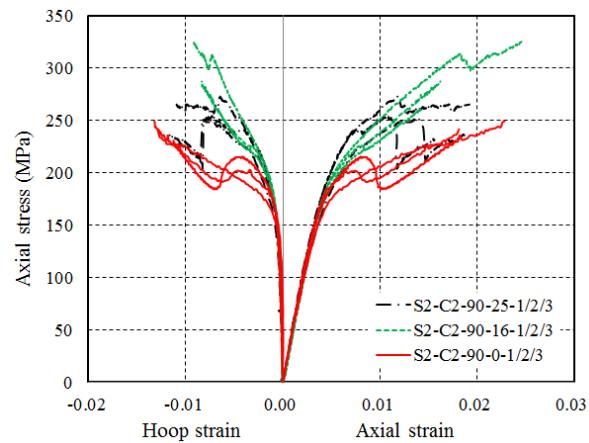
89 (i) UHPC core (j) UHPC layer and central FRP bar
 90
 91
 92

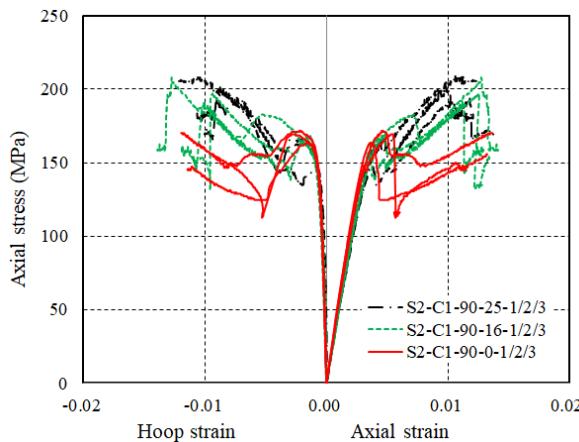

93 **Fig. 9.** Typical failure modes of specimens under axial compression tests
 94


95 **Fig. 10.** Effect of fiber winding angles on the axial compressive behaviour of specimens
 96
 97
 98

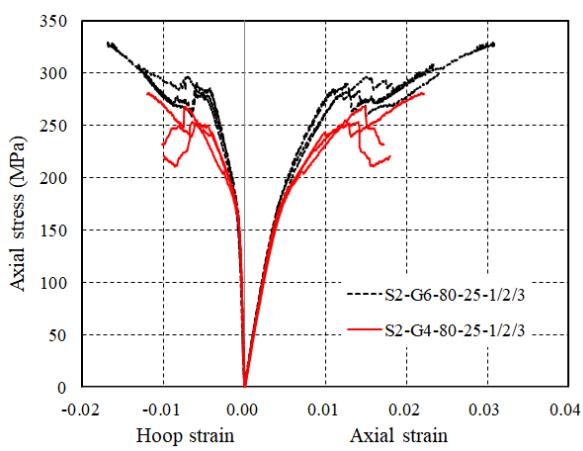

99 (a) GFRP = 4ply, 80°


100 (b) GFRP = 4ply, 60°

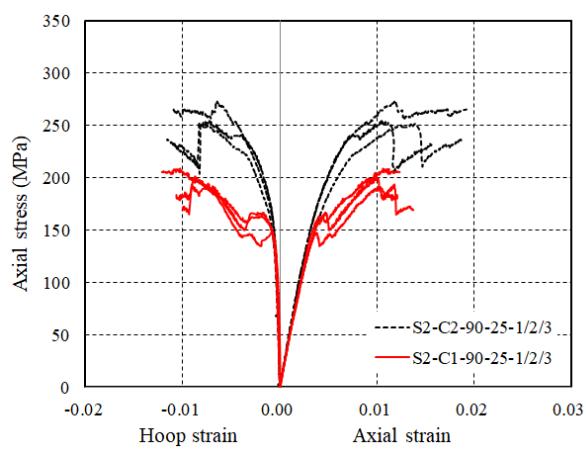

101 (c) GFRP = 4ply, 45°


102 (d) GFRP = 4ply, 80° (S2)

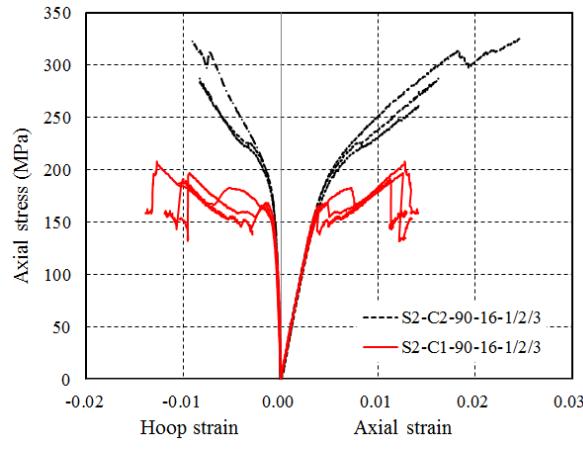
103 (e) GFRP = 6ply, 80°

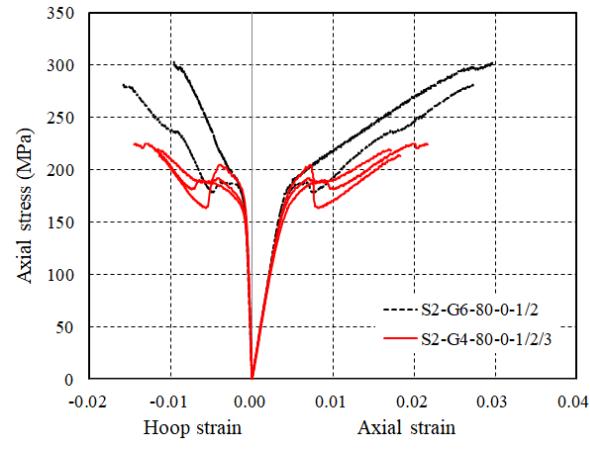


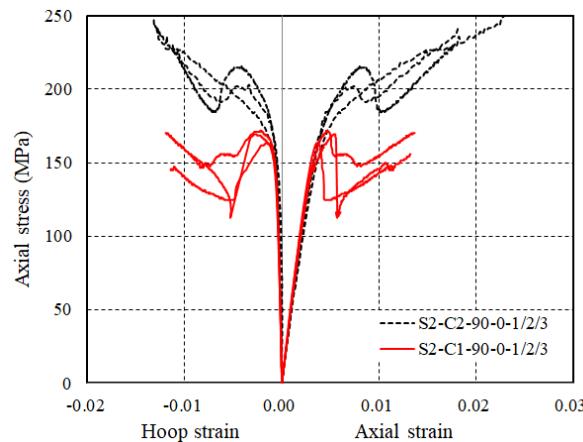
104 (f) CFRP = 2ply, 90°



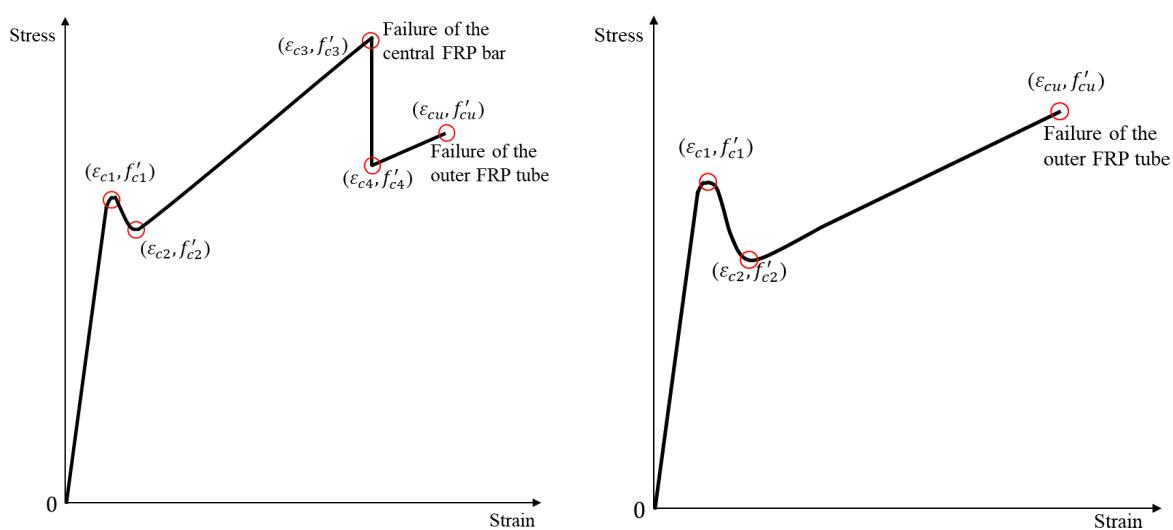
105
106 (g) CFRP = 1ply, 90°
107
108


109
Fig. 11. Effect of the presence of the central FRP bar on the axial compressive behaviour
110 of specimens
111

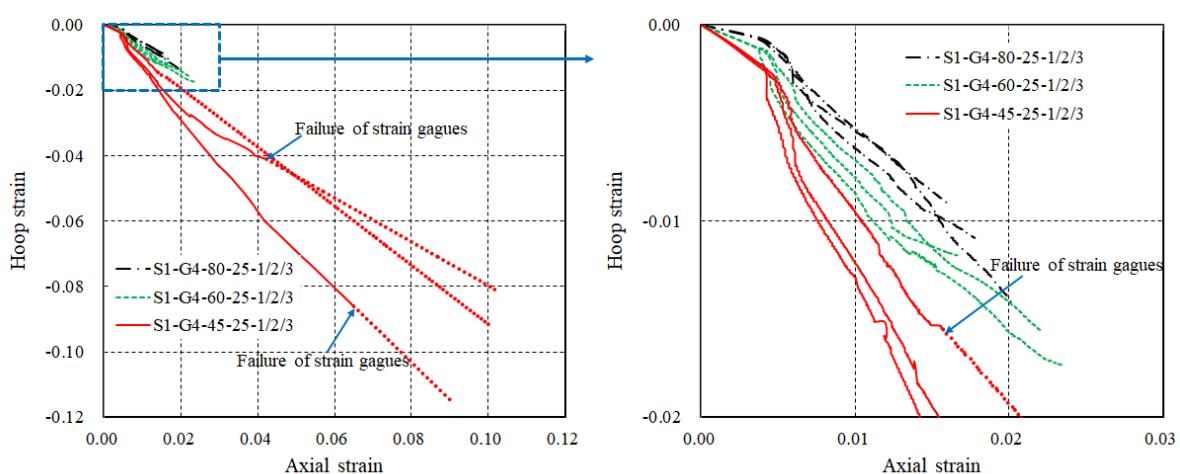

112 (a) GFRP (80°), 25-mm-diameter FRP bar
113


(b) CFRP (90°), 25-mm-diameter FRP bar

(c) CFRP (90°), 16-mm-diameter FRP bar

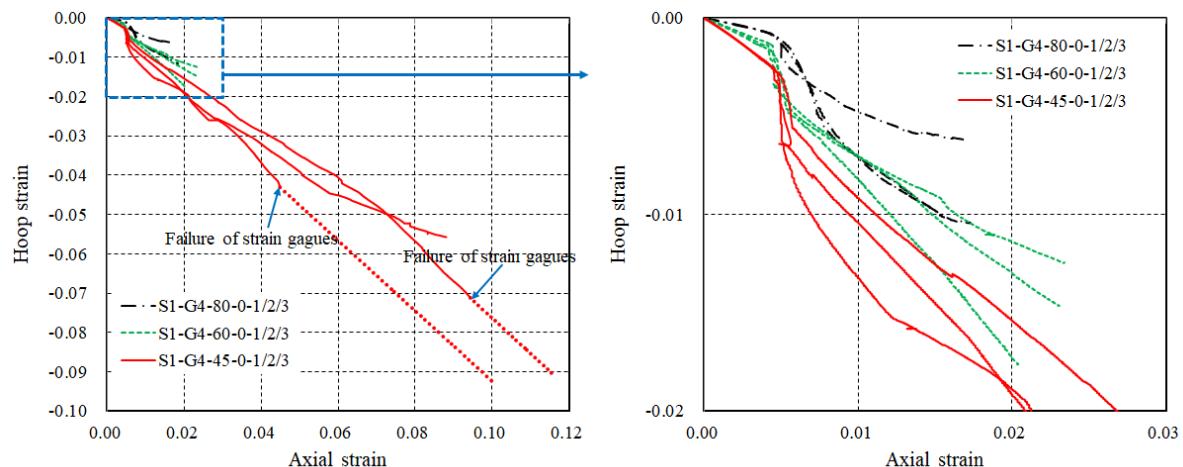


(d) GFRP (80°)



114
115 (e) CFRP (90°)
116
117
118

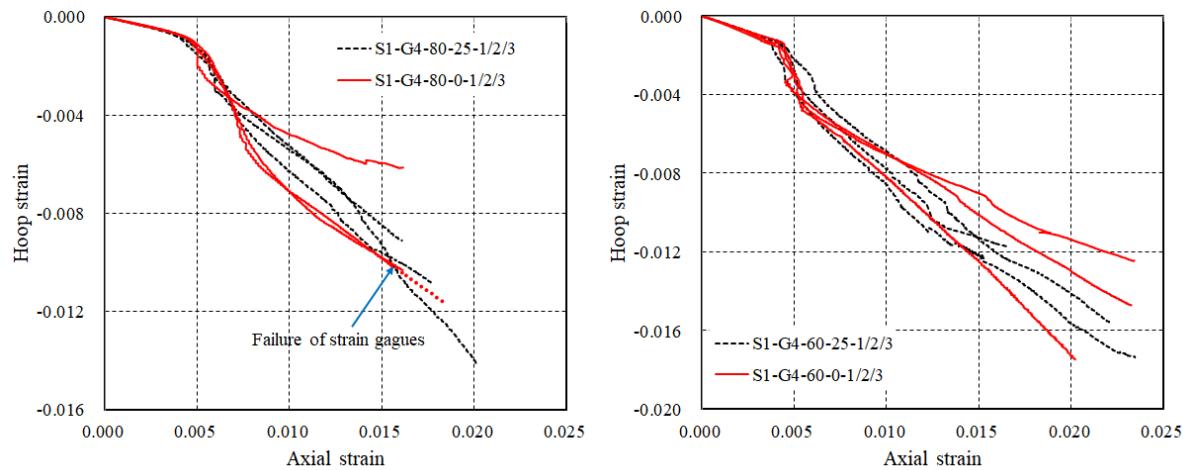
Fig. 12. Effect of the thickness of the outer FRP tube on the axial compressive behaviour of specimens


119
120 (a) Hybrid bar
121 (b) UHPC-filled FRP tube
122
123

124

125

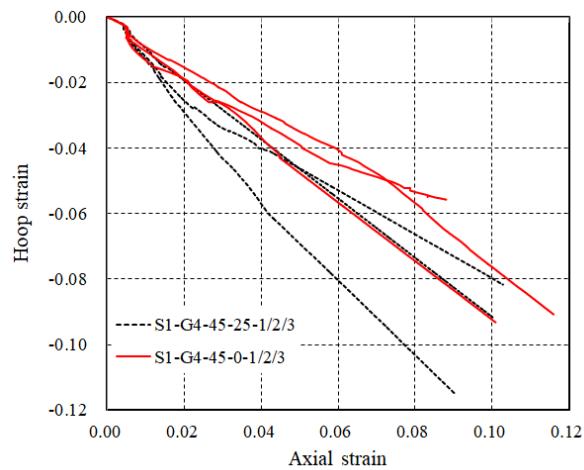
(a) Hybrid bar

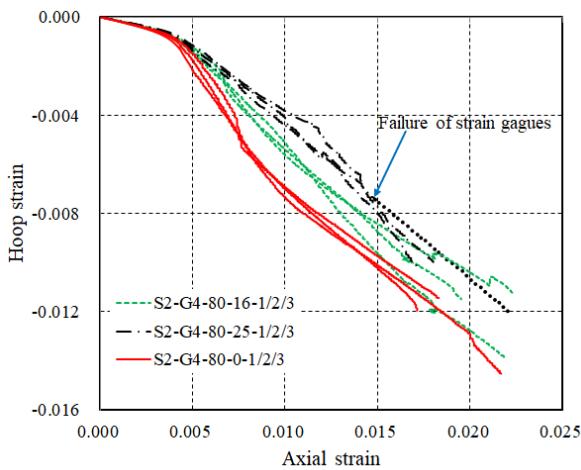

126

127

(b) UHPC-filled small FRP tube

128 Fig. 14. Effect of fiber winding angles on the dilation behaviour of specimens

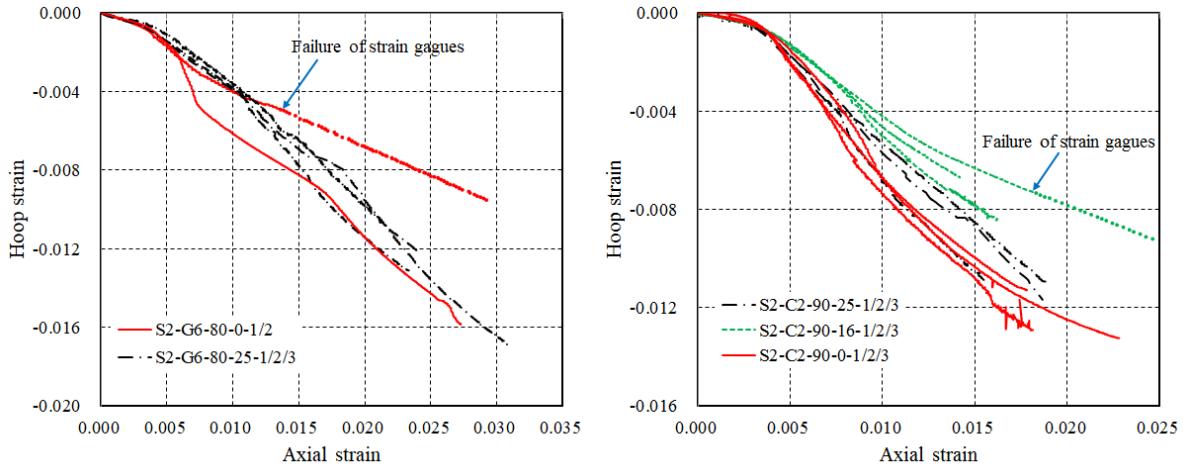

129


130

131

(a) GFRP = 4ply, 80°

(b) GFRP = 4ply, 60°

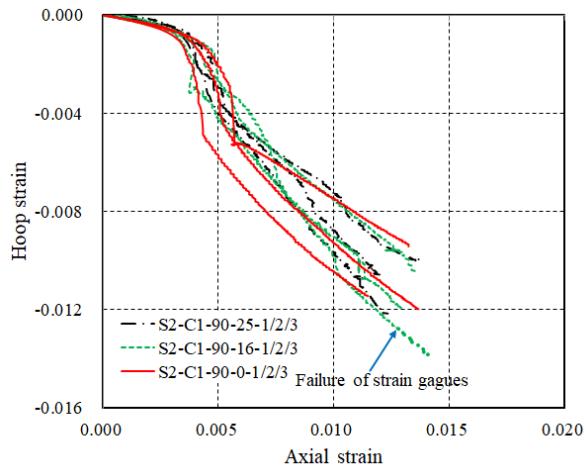


132

133

(c) GFRP = 4ply, 45°

(d) GFRP = 4ply, 80° (S2)

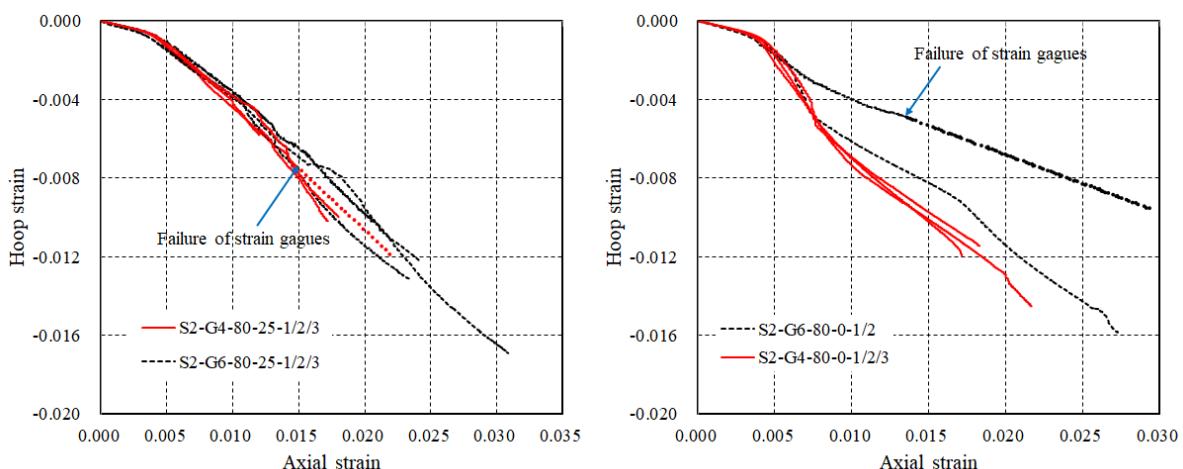

134

135

(e) GFRP = 6ply, 80°

134

(f) CFRP = 2ply, 90°

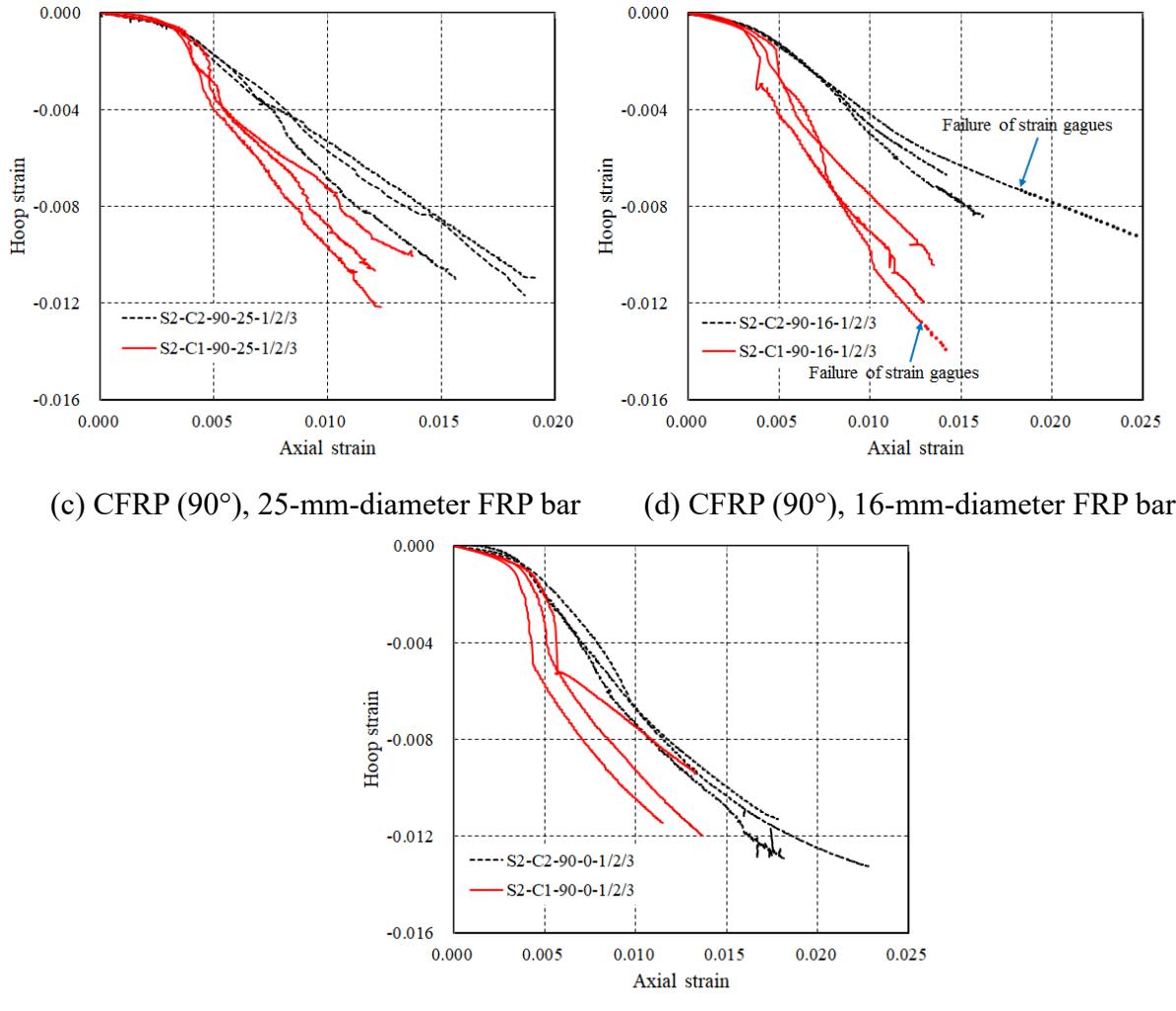

136

137

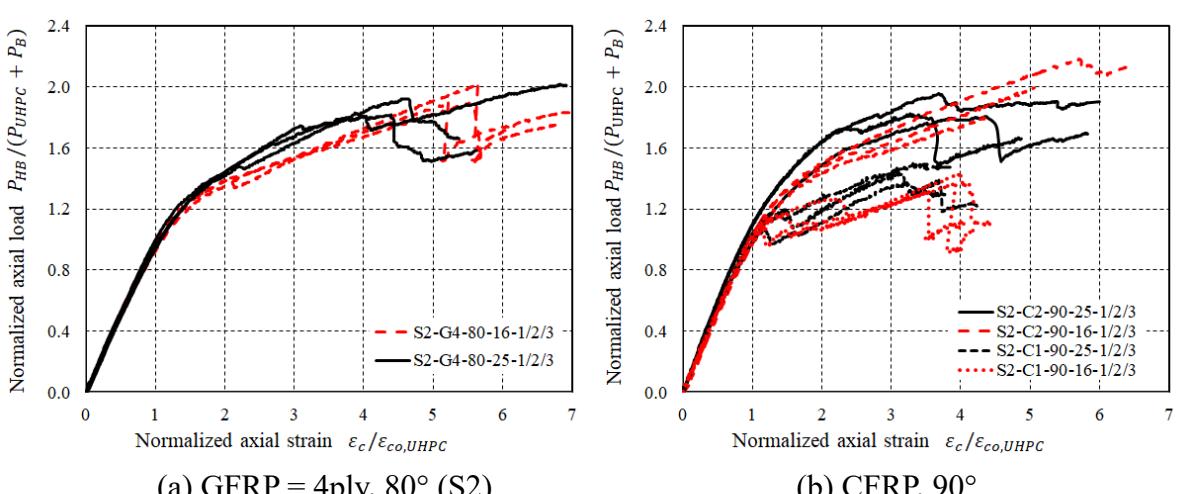
(g) CFRP = 1ply, 90°

138 **Fig. 15.** Effect of the diameter of the central FRP bar on the dilation behaviour of
 139 specimens

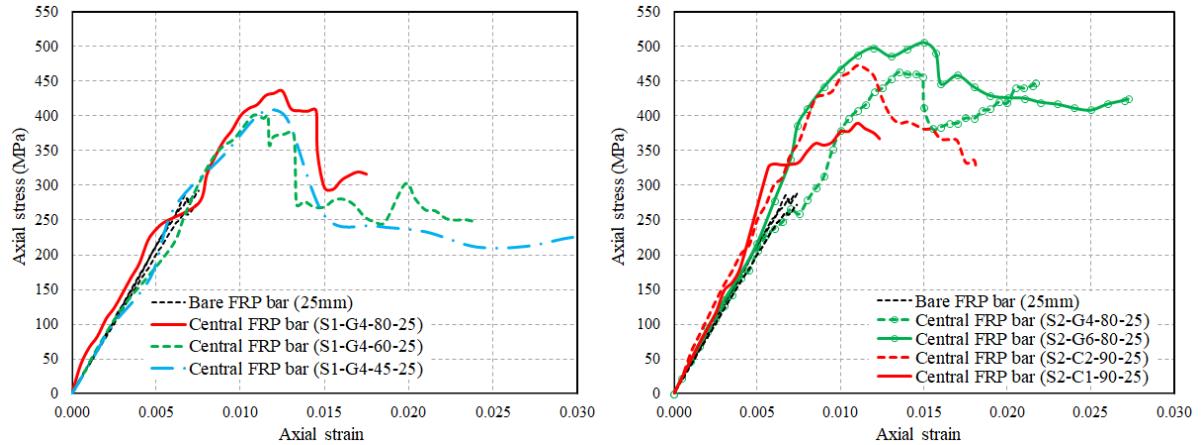
140



141


142

(a) GFRP (80°), 25-mm-diameter FRP bar


(b) GFRP (80°)

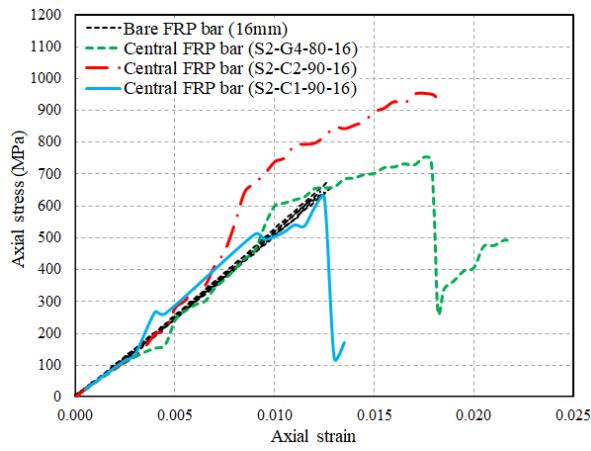
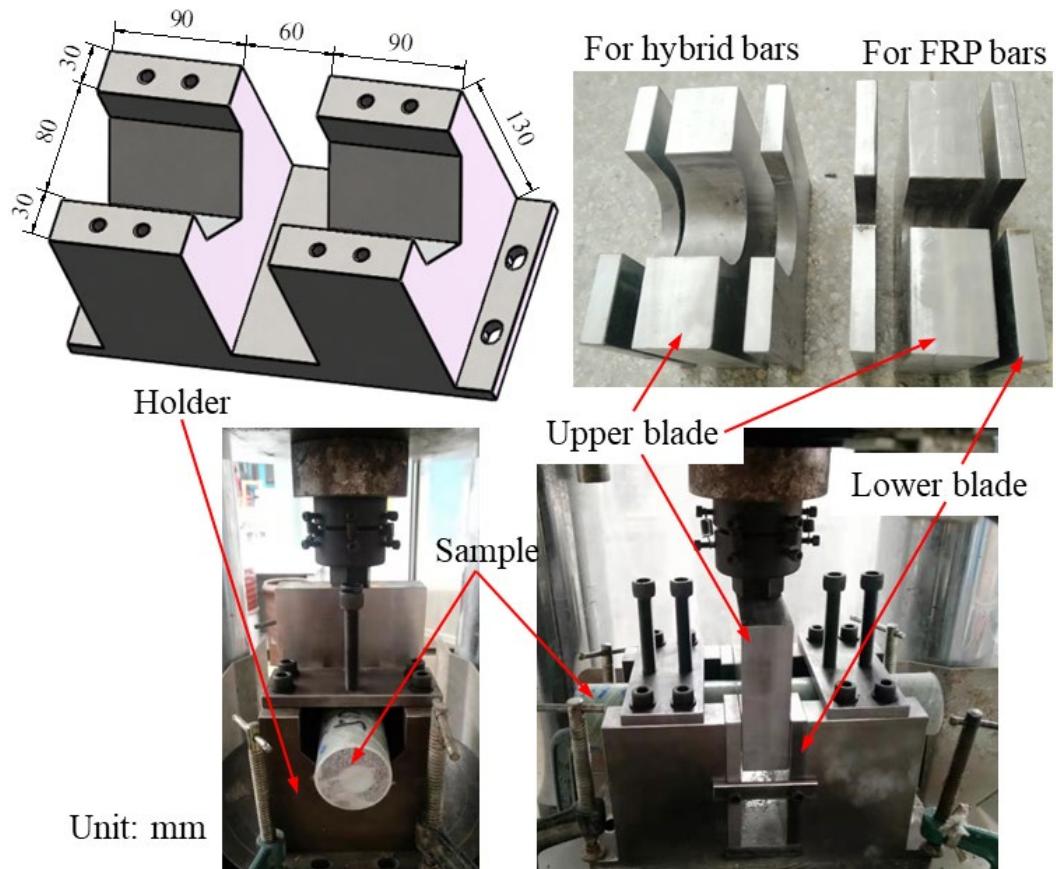

Fig. 16. Effect of the thickness of the outer FRP tube on the dilation behaviour of specimens

Fig. 17. Normalized axial stress-axial strain curves of hybrid bars with different central FRP bars

155 (a) Effect of fiber winding angle (25mm) (b) Effect of FRP tube thickness (25mm)


156 (c) Effect of FRP tube thickness (16mm)

157 **Fig. 18.** Axial stress-axial strain behaviour of the central FRP bar in hybrid bars

158

159

160

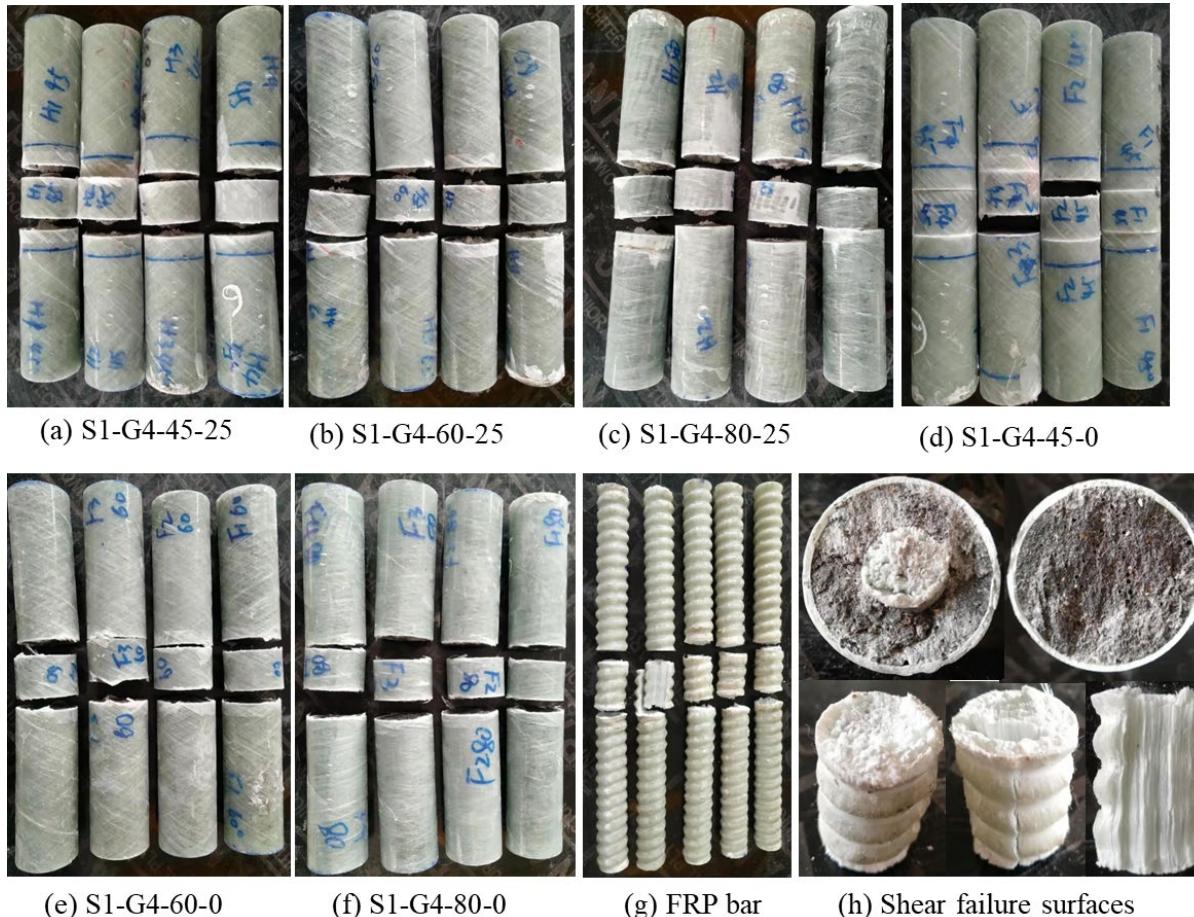
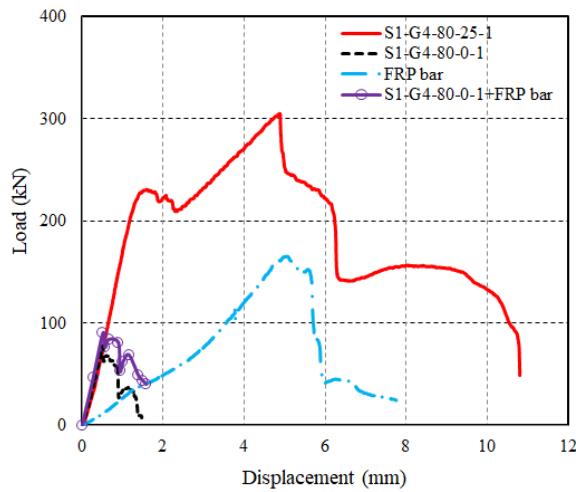


Fig. 19. Transverse shear test set-up


161


162

163

Fig. 20. Typical failure modes of specimens under transverse shear tests

169

170

171

(c) Fibre winding angle = $\pm 80^\circ$

Fig. 21. Load-displacement curves of specimens under transverse shear tests

Table A1. Key results of specimens under axial compression tests

Specimen	f_{c1}	f_{c2}	f_{c3}	f_{c4}	f_{cu}	ε_{c1}	ε_{c2}	ε_{c3}	ε_{c4}	ε_{cu}	$\varepsilon_{h,rup}$
S1-G4-80-25-1	209.73	205.52	261.95	236.69	246.79	0.0066	0.0068	0.0146	0.0156	0.0178	-0.0109
S1-G4-80-25-2	193.73	189.52	246.79	240.90	231.63	0.0056	0.0058	0.0117	0.0121	0.0161	-0.0091
S1-G4-80-25-3	196.26	185.31	260.27	240.90	252.69	0.0060	0.0059	0.0138	0.0140	0.0201	-0.0141
S1-G4-60-25-1	164.25	156.67	195.41	144.88	166.77	0.0048	0.0054	0.0122	0.0124	0.0166	-0.0117
S1-G4-60-25-2	153.30	145.72	187.83	169.30	183.62	0.0044	0.0050	0.0104	0.0109	0.0234	-0.0174
S1-G4-60-25-3	155.83	150.77	210.57	184.46	198.78	0.0043	0.0044	0.0116	0.0134	0.0243	-0.0171
S1-G4-45-25-1	160.88	136.45	162.56	128.87	125.50	0.0042	0.0057	0.0112	0.0120	0.0905	-0.1151 (-0.0860)
S1-G4-45-25-2	168.19	145.41	183.08	146.29	127.89	0.0057	0.0063	0.0125	0.0141	0.1006	-0.0920 (-0.0155)
S1-G4-45-25-3	172.57	148.92	175.20	131.40	125.27	0.0047	0.0066	0.0118	0.0141	0.1028	-0.0817 (-0.0410)
S2-C1-90-16-1	168.46	154.98	197.10	133.08	153.30	0.0048	0.0050	0.0126	0.0126	0.0135	-0.0104
S2-C1-90-16-2	181.09	166.77	208.05	158.35	158.35	0.0065	0.0078	0.0127	0.0135	0.0141	-0.0139 (-0.0128)
S2-C1-90-16-3	165.93	138.14	191.20	143.19	158.35	0.0039	0.0040	0.0112	0.0114	0.0129	-0.0120
S2-C1-90-25-1	166.77	149.93	201.31	179.41	183.62	0.0047	0.0051	0.0099	0.0107	0.0121	-0.0106
S2-C1-90-25-2	163.41	157.51	208.89	203.84	205.52	0.0041	0.0047	0.0106	0.0113	0.0123	-0.0121
S2-C1-90-25-3	147.40	134.77	193.73	165.93	169.30	0.0038	0.0041	0.0118	0.0121	0.0137	-0.0100
S2-C2-90-16-1	N.A.	N.A.	N.A.	N.A.	261.11	N.A.	N.A.	N.A.	N.A.	0.0142	-0.0067
S2-C2-90-16-2	N.A.	N.A.	N.A.	N.A.	287.22	N.A.	N.A.	N.A.	N.A.	0.0162	-0.0083
S2-C2-90-16-3	N.A.	N.A.	314.18	297.33	325.13	N.A.	N.A.	0.0183	0.0193	0.0247	-0.0092 (-0.0073)
S2-C2-90-25-1	240.05	236.69	254.37	203.84	231.63	0.0074	0.0083	0.0105	0.0117	0.0156	-0.0110
S2-C2-90-25-2	N.A.	N.A.	251.85	210.57	235.84	N.A.	N.A.	0.0140	0.0147	0.0187	-0.0117
S2-C2-90-25-3	N.A.	N.A.	272.06	256.90	265.32	N.A.	N.A.	0.0117	0.0129	0.0192	-0.0109
S2-G4-80-16-1	201.31	192.89	272.06	217.31	251.00	0.0067	0.0068	0.0167	0.0165	0.0195	-0.0115
S2-G4-80-16-2	N.A.	N.A.	272.06	217.31	252.69	N.A.	N.A.	0.0179	0.0179	0.0219	-0.0139
S2-G4-80-16-3	N.A.	N.A.	289.75	227.42	263.64	N.A.	N.A.	0.0181	0.0181	0.0223	-0.0112
S2-G4-80-25-1	N.A.	N.A.	253.53	210.57	220.68	N.A.	N.A.	0.0141	0.0159	0.0180	-0.0100
S2-G4-80-25-2	N.A.	N.A.	251.00	239.21	231.63	N.A.	N.A.	0.0120	0.0132	0.0172	-0.0102
S2-G4-80-25-3	N.A.	N.A.	267.85	247.64	279.64	N.A.	N.A.	0.0149	0.0152	0.0221	-0.0120 (-0.0074)
S2-G6-80-25-1	N.A.	N.A.	293.12	285.54	329.34	N.A.	N.A.	0.0175	0.0177	0.0309	-0.0169
S2-G6-80-25-2	N.A.	N.A.	289.75	263.64	308.28	N.A.	N.A.	0.0127	0.0133	0.0233	-0.0131
S2-G6-80-25-3	N.A.	N.A.	283.01	259.43	299.86	N.A.	N.A.	0.0142	0.0151	0.0241	-0.0122
S1-G4-80-0-1	195.41	187.83	N.A.	N.A.	222.37	0.0070	0.0086	N.A.	N.A.	0.0161	-0.0103
S1-G4-80-0-2	176.04	149.93	N.A.	N.A.	209.73	0.0049	0.0064	N.A.	N.A.	0.0161	-0.0061
S1-G4-80-0-3	198.78	180.25	N.A.	N.A.	225.74	0.0072	0.0078	N.A.	N.A.	0.0184	-0.0117 (-0.0101)
S1-G4-60-0-1	176.88	130.56	N.A.	N.A.	185.31	0.0043	0.0058	N.A.	N.A.	0.0202	-0.0175
S1-G4-60-0-2	175.20	135.61	N.A.	N.A.	190.36	0.0040	0.0052	N.A.	N.A.	0.0232	-0.0147
S1-G4-60-0-3	163.41	128.87	N.A.	N.A.	181.94	0.0045	0.0070	N.A.	N.A.	0.0234	-0.0124
S1-G4-45-0-1	169.30	90.97	N.A.	N.A.	98.55	0.0044	0.0052	N.A.	N.A.	0.0881	-0.0557
S1-G4-45-0-2	165.09	70.75	N.A.	N.A.	110.34	0.0048	0.0132	N.A.	N.A.	0.1009	-0.0932 (-0.0430)
S1-G4-45-0-3	171.83	105.29	N.A.	N.A.	121.29	0.0050	0.0065	N.A.	N.A.	0.1160	-0.0907 (-0.0711)
S2-C1-90-0-1	163.41	124.66	N.A.	N.A.	145.72	0.0037	0.0051	N.A.	N.A.	0.0115	-0.0114
S2-C1-90-0-2	171.83	154.98	N.A.	N.A.	170.14	0.0045	0.0060	N.A.	N.A.	0.0137	-0.0120
S2-C1-90-0-3	169.30	112.87	N.A.	N.A.	155.83	0.0055	0.0057	N.A.	N.A.	0.0132	-0.0094
S2-C2-90-0-1	215.63	184.46	N.A.	N.A.	230.79	0.0080	0.0103	N.A.	N.A.	0.0178	-0.0113
S2-C2-90-0-2	205.52	191.20	N.A.	N.A.	241.74	0.0077	0.0085	N.A.	N.A.	0.0181	-0.0129
S2-C2-90-0-3	N.A.	N.A.	N.A.	N.A.	249.32	N.A.	N.A.	N.A.	N.A.	0.0228	-0.0132

S2-G4-80-0-1	190.36	181.94	N.A.	N.A.	224.05	0.0086	0.0103	N.A.	N.A.	0.0217	-0.0145
S2-G4-80-0-2	204.68	187.83	N.A.	N.A.	218.16	0.0073	0.0083	N.A.	N.A.	0.0171	-0.0119
S2-G4-80-0-3	192.04	163.41	N.A.	N.A.	213.10	0.0071	0.0082	N.A.	N.A.	0.0183	-0.0114
S2-G6-80-0-1	188.67	178.57	N.A.	N.A.	281.33	0.0069	0.0077	N.A.	N.A.	0.0273	-0.0158
S2-G6-80-0-2	N.A.	N.A.	N.A.	N.A.	303.12	N.A.	N.A.	N.A.	N.A.	0.0296	-0.0096 (-0.0049)

174 Note: f'_{c1} , ε_{c1} , f'_{c2} , ε_{c2} , f'_{c3} , ε_{c3} , f'_{c4} , ε_{c4} , f'_{cu} , ε_{cu} — Refer to Fig. 13 for definitions; $\varepsilon_{h,rup}$ — Hoop
 175 rupture strain of the outer FRP tube; The value in bracket — Hoop strain of the outer FRP tube at the time of
 176 failure of strain gauges; N.A. — Not applicable.

177