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Transition reversal over a blunt plate at Mach 5.
Part 2. The role of free-stream-disturbance form
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Transition onset of high-speed boundary layers can move first downstream and then
upstream with increasing nose-tip bluntness, which is called transition reversal. For the
first time, our recent research reproduced the experimentally observed transition reversal
by direct numerical simulation (DNS, Guo et al., J. Fluid Mech. vol. 1005, 2025, A5). As
a continuation study, this work explores the effect of the form of free-stream disturbances,
as the transition in the large-bluntness regime still remains poorly understood. The free-
stream Mach number is 5 and the nose-tip radius 3 mm of the blunt plate exceeds
the experimental reversal value. Three-dimensional broadband perturbation is carefully
constructed through superimposition of planar fundamental waves in the free stream,
which initiates the transition in DNS. For each Fourier component, the same perturbation
strength is applied for slow/fast acoustic, vortical and entropic waves. All the cases present
a ‘streak-turbulent spot’ two-stage transition scenario due to non-modal instabilities. The
transition onset locations induced by entropic and slow/fast acoustic waves are close and
significantly ahead of that by vortical waves. More evident impact of the disturbance form
is manifested in the length of the transitional region, which is the shortest for entropic
waves and the longest for vortical waves. Regarding the effect of the angle of incidence
that mimics the tunnel environment, it alters the post-shock acoustic-wave structure and
reduces the length of the transitional region. In the streaky stage, the form of free-stream
disturbances changes the pronounced spanwise wavelengths on the blunt nose and the
plate, where the two regions also differ from each other. In the turbulent-spot region, the
shortest transitional region induced by the entropic wave is attributed to its largest mean
spanwise spreading rate of the turbulent spot. From the perspective of energy budget,
shear-induced dissipation dominates the heat transfer escalation in the transitional region.
Overall, with significant leading-edge bluntness, the flight environment may tend to result
in delayed transition onset compared with the tunnel counterpart.
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1. Introduction
The stability and laminar-to-turbulent transition of high-speed boundary layers have been
extensively investigated in recent decades. The skin friction and heat flux can be escalated
by several times after the transition is completed. As a result, the transition mechanism is
of great significance. Physically, multiple processes can emerge during the instability and
transition. From early to late stages, the physical processes may include the receptivity
to external disturbances, transient growth, eigenmodal growth, parametric resonance
and mode–mode interactions, breakdown to turbulence, etc. The specific transition path
and involved process are dependent on the environmental disturbance level (Morkovin,
Reshotko & Herbert 1994).

During the flight or in the quiet wind tunnel, the disturbance level tends to be
relatively low. In this case, the long-distance eigenmodal amplification of small-amplitude
disturbances is likely dominant in triggering the transition. Common boundary layer
eigenmodes include the Tollmien–Schlichting mode in subsonic, the first mode in low
supersonic, the Mack second mode in hypersonic boundary layers, etc. These modes
are solvable from a local eigenvalue analysis. The terms ‘local’ and ‘global’ refer to
the instability of the local profile and of the entire flow field, respectively (Huerre &
Monkewitz 1990). These local modes possess predominantly high growth rates of energy
under certain conditions, and can be exponentially amplified (Mack 1984; Fedorov 2011).
In contrast to the exponential growth, algebraic growth is also likely responsible for
the transition. For instance, the eigenmodal growth can be bypassed, provided that the
environment is sufficiently noisy. Another scenario is that the system is linearly stable by
local normal-mode analysis, whereas it undergoes an evident algebraic growth from global
analysis (Schmid 2007). The discrepancy is attributed to the fact that the global analysis
can be based on the linearised Navier–Stokes (N–S) equation, which includes the non-
normality nature of the operator. By contrast, a local analysis usually neglects this factor.
From the perspective of local analysis, the growth of the convective instability is called
‘non-modal’ if the local normal-mode analysis reports no unstable solutions.

In the high-speed transition community, one of the issues under debate is the nose-
tip bluntness effect, which may be linked with the non-modal growth discussed above.
This bluntness effect arises as the leading edge of the vehicle needs to be blunted to
mitigate aerodynamic heating. Historically, Stetson discovered the ‘transition reversal’
phenomenon due to the bluntness effect in different tunnel facilities (Stetson & Rushton
1967; Stetson 1983). Later, this phenomenon has been widely reported by transition
measurements over blunt flat plates (Lysenko 1990; Borovoy et al. 2022), blunt cones
(Softley, Graber & Zempel 1969; Ericsson 1988; Zanchetta 1996; Aleksandrova et al. 2014;
Marineau et al. 2014; Paredes et al. 2019) and ogive cylinders (Hill et al. 2022) for a wide
range of Mach numbers. To be specific, as the nose-tip bluntness (normally characterised
by the radius) is gradually increased, the transition onset or end locations can be firstly
delayed and then moved forward. These two distinct regimes, called the small-bluntness
regime and the large-bluntness regime, display a reversal trend. The trend is usually
observable in a ReR–Ret or ReR–ReT plot. Here, ReR, Ret and ReT refer to the Reynolds
numbers based on the nose-tip radius, the transition onset location and the transition end
location, respectively. More detailed introductions to the stabilisation effect of the entropy
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layer in the small-bluntness regime and to the poorly understood large-bluntness regime
can be found in Part 1 (Guo, Hao & Wen 2025). In addition to experimental research,
numerical efforts on the receptivity (Zhong & Ma 2002, 2006; Kara, Balakumar & Kandil
2011; Balakumar & Kegerise 2015; Balakumar & Chou 2018; He & Zhong 2021; Ba,
Niu & Su 2023) and the nonlinear instability stage (Paredes, Choudhari & Li 2020;
Hartman, Hader & Fasel 2021; Goparaju & Gaitonde 2022; Liu et al. 2022; Zhu et al.
2023) were also reviewed.

Some of the 3-D simulation work can capture the flow structures that qualitatively
resembled the experimental image (Hartman et al. 2021; Liu et al. 2022). Nonetheless,
no numerical simulation replicated the transition reversal phenomenon that agreed with
the experiment. Recently, Guo et al. (2025) simulated the complete transition to turbulence
over a blunt plate with varying nose-tip radii. The authors applied three-dimensional (3-D)
broadband slow acoustic perturbations in front of the bow shock to trigger the instability
and transition at Mach 5. A good agreement with the experimental ReR–Ret curve was
achieved for the first time, which manifested the transition reversal.

As a continuation question of Guo et al. (2025) where acoustic perturbations were
utilised, the response of the flow over a largely blunted body to various types of free-stream
disturbances merits an investigation. Basically, there are fundamental types of disturbances
in the uniform free stream, namely slow/fast acoustic waves, vortical waves and entropy
waves (Kovasznay 1953). They are independent solutions when the perturbation amplitude
is small to allow the linearisation of the governing equation. Over configurations such as
flat plates, wedges and cones, the instability waves in boundary layers are three to five
times more susceptible to slow acoustic waves than fast acoustic, vorticity and entropy
waves (Balakumar & Kegerise 2015; He & Zhong 2022). Numerical and experimental
studies have revealed that the slow acoustic wave dominates the environment of noisy
hypersonic tunnel facilities (Laufer 1961; Schneider 2001; Wagner et al. 2018). Recently,
Zhao & Dong (2025) examined the receptivity of non-modal instabilities to free-stream
perturbations over a blunt wedge. The work was based on the shock-fitting harmonic
linearised Navier–Stokes (HLNS) equation. They demonstrated that the linear response
is more susceptible to acoustic and entropic disturbances than the vortical counterpart.
Their focus is the receptivity and instability stages rather than the transitional one.

What remains to be explored is how the laminar–turbulent transition responds to various
free-stream disturbances in the large-bluntness regime based on the following reasons.
First, a sufficiently blunted leading edge is frequently encountered over a hypersonic
vehicle, whereas the corresponding transition mechanism in the large-bluntness regime
is scarcely recorded in literature. The sensitivity of the transition to the disturbance
form is of interest. The transition dominated by non-modal instabilities may be different
from conventional modal scenarios. Second, the transition onset Reynolds number during
the flight test (∼ O(107)) is usually larger than that in the conventional or quiet wind
tunnel (∼ O(106)) (Lee & Jiang 2019; Tu et al. 2021), regardless of the configuration.
An alternative cause is the varied pronounced form of environmental disturbances, which
may be the vortical disturbance in the atmospheric environment and the radiated acoustic
wave in the tunnel. The flight/ground discrepancy is closely related to the disturbance
type. In fact, during the revision of Part 1 (Guo et al. 2025), the author has continued the
consideration of the disturbance-form effect and the flight/ground discrepancy inspired by
the feedback of reviewers.

Following the above note, the efficiency in inducing the laminar–turbulent transition by
different fundamental disturbances will be evaluated by 3-D direct numerical simulation
(DNS). To this end, the strength of different free-stream fundamental disturbances will
be set to be identical based on the criterion of Zhong (2001), and then 3-D broadband
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Figure 1. (a) Comparison of experimental and DNS data trends in the ReR–Ret plot and (b) the simulation
strategy of the flow over a blunt plate (not to scale) (Guo et al. 2025).

disturbances will be constructed by superimposition. A systematic analysis will be made
to elucidate the physical cause of different transitional progress. The remainder of the
paper is organised as follows. Section 2 describes the physical problem and free-stream
condition. Section 3 gives the numerical method, the detailed construction of free-stream
disturbances and the case set-up. Section 4 displays the solution of fundamental free-
stream waves in a wide parameter space. Section 5 gives the LST results. Section 6
shows the DNS results and discussions. Section 7 provides a remark on a recent similar
study. Section 8 and the appendixes present the conclusion and other relevant information,
respectively.

2. Problem description
A flat-plate model with a cylindrically blunted leading edge is studied. The benchmark
experiment was performed in a Ludwig wind tunnel UT-1 M by Borovoy et al. (2022) at
Mach 5. Figure 1(a) depicts the free-stream condition as well as the comparison of the
data trend in the ReR–Ret plot between the experiment and the DNS of Guo et al. (2025).
The relevant symbols are: dimensionless nose-tip radius R, Reynolds number based on
the nose-tip radius ReR, Reynolds number based on the transition onset location Ret,
Mach number M∞, total temperature T ∗

0 , static temperature T ∗∞, wall temperature T ∗
w and

unit Reynolds number Re∗∞. The asterisk represents dimensional quantities. The subscript
‘∞’ refers to the free-stream quantity. The subscript ‘w’ represents the quantity at the
wall. The primitive variables are non-dimensionalised by the corresponding free-stream
quantities, except that the pressure p is by the free stream ρ∗∞u∗2∞. The symbols ρ and u
represent the density and the streamwise velocity, respectively. The reference length scale
for non-dimensionalisation is L∗

ref = 1 mm, which is in the same order of magnitude as the
thickness of the downstream laminar boundary layer .

Figure 1(a) illustrates that our recent DNS favourably reproduced the transition reversal
trend of the experimental data. Given Re∗∞ = 6 × 107 m−1, the critical nose-tip radius
for transition reversal is around R∗

critical = 1.19 mm. In this paper the radius R∗ = 3 mm,
referred to as ‘R3’ in figure 1(a), is selected to conduct further investigations in the large-
bluntness regime. Figure 1(b) provides a schematic drawing of the simulated problem.
The Cartesian coordinate system (x , y, z), corresponding to streamwise, wall-normal
and spanwise velocities (u, v, w), and the orthogonal body-fitted system (ξ , η, z) are
constructed with the origin at the centre of the cylindrical nose.
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Figure 2. Mach number contour of the laminar flow with nose-tip radius R = 3. Solid and dashed lines in the
left panel represent the edges of the entropy layer and the boundary layer, respectively. The solid line in the
right panel represents the sonic line near the nose.

The Mach number contour of the two-dimensional (2-D) laminar flow is shown in
figure 2 for R3. The edge positions of boundary and entropy layers are marked by the
dashed and solid lines, respectively, which are defined by the criteria of Paredes et al.
(2019) and specified in Part 1 (Guo et al. 2025). As shown in figure 2, the boundary layer
is entirely covered by the thick entropy layer. In other words, entropy swallowing does
not appear in the blunt-plate flow, which is different from the blunt-cone flow. Hence, the
pronounced entropy-layer effect is persistent along the plate, enabling the stabilisation of
normal-mode instabilities.

3. Methodology, physical model and case description
The numerical set-up in Part 1 (Guo et al. 2025) is inherited, since a good agreement in the
ReR–Ret correlation has been reached with the experiment and mesh convergence of the
instability evolution has been achieved. It is believed that useful and reliable insights can
be provided via the same methodology as Guo et al. (2025). Note that the stability analysis
in Part 1 has shown that first and second modes are rendered stabilised by leading-edge
bluntness with R = 3. This work only provides further discussions on the entropy-layer
mode. What remains to be explored is the transitional characterisation subject to different
fundamental free-stream waves, which will be done via comparative studies.

3.1. Direct numerical simulation
The 3-D compressible N–S equations are written in a dimensionless conservation
form, i.e.

∂ Q
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= 1
Re

(
∂Fv
∂x

+ ∂Gv

∂y
+ ∂Hv

∂z

)
, (3.1)

where t denotes time, Q = (ρ, ρu, ρv, ρw, ρe)T refers to the vector of conservative
variables, F, G and H represent the vectors of inviscid fluxes, and Fv , Gv and Hv are
the vectors of viscous fluxes. The symbol e refers to the total energy per unit mass and
the superscript ‘T’ represents matrix transpose. A calorically perfect gas (air) model is
used with a constant specific heat ratio γ = 1.4. Sutherland’s law is utilised to compute
the dynamic viscosity μ and the thermal conductivity κ is calculated with a constant
Prandtl number Pr = 0.72. Direct simulations of the 2-D laminar base flow and the full
3-D transitional flow are conducted using a finite-volume-based solver (Hao, Wang & Lee
2016; Hao & Wen 2020), which has been well validated (Hao et al. 2022; Guo, Hao &
Wen 2023).
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Figure 3. Schematic drawing of the placed model and the radiated acoustic wave from the tunnel wall (not to
scale). Red arrows: the wavenumber vector of the slow acoustic wave.

With regard to the mesh and numerical method, the structured mesh is iteratively
designed to align with the shock of the steady laminar flow. A shock-capturing method is
applied to solve the 2-D and 3-D problems. The inviscid flux is calculated by the seventh-
order upwind scheme in the smooth region without the shock or away from the nose-tip
region (x � 0), while by a second-order MUSCL scheme in the remaining region. Time-
accurate marching is implemented by the third-order Runge–Kutta method. More details
about the numerical method and boundary condition can be found in Part 1 (Guo et al.
2025).

3.2. Fundamental incident waves
To mimic a real-life environment, broadband perturbations are to be added on the far-
field boundary in front of the shock. All the fundamental solutions in the free stream
will be considered, namely the slow/fast acoustic wave, the vortical wave and the entropic
wave. Multiple solutions will be superimposed to constitute the numerical perturbation in
DNS. Before discussing the summed numerical forcing, it is necessary to elaborate the
fundamental solutions of the free-stream waves.

As shown in figure 3, the eddy sources in the boundary layer over the two-sided tunnel
wall can radiate acoustic waves into the main stream. The wave front is assumed to be
planar, since the averaged wavelength of the field is far less than the distance from the wall
to the measured position (Laufer 1961). The inclination angle of the wave front depends on
the source velocity us , and the limit is the Mach wave angle (Schilden & Schröder 2019).
Planar acoustic, vortical and entropic waves in the free stream, propagating in arbitrary
directions, are in the form

Ψ̂ = q̂ exp (iαx + iκy + iβz − iωt) , (3.2)

where Ψ = (ρ, u, v, w, T, p)T is the vector of variables, α, κ, β ∈R are wavenumbers in
the x, y and z directions, respectively, ω is the angular frequency and q̂ is the amplitude.
In the present paper the hat ‘·̂’ and prime ‘′’ represent the spectral domain and the
time domain, respectively. For waves propagating in a far-field uniform medium, the
wavenumber vector k∞ = (α, κ, β)T must satisfy the dispersion relation arising from the
linearised Euler equation (Kinsler et al. 2000; Cook & Nichols 2024)

ω= ū∞ · k∞ ± |k∞|/M∞ for acoustic waves,
ω= ū∞ · k∞ for entropic/vortical waves, (3.3a,b)

where the plus/minus sign indicates the fast/acoustic wave and the overbar represents the
time-averaged value. Note that the free-stream velocity is in the streamwise direction,
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i.e. ū∞ = (1, 0, 0)T. For purely convected vortical/entropic waves, the dispersion relation
becomes

ω= αv,e. (3.4)

The subscripts ‘a, v, e’ refer to acoustic, vortical and entropic disturbances, respectively.
The oblique wave angle on the x–z plane and the angle of inclination on the x–y plane are
defined by

θ = arctan (β/α) , φ = arctan (κ/α) , (3.5a,b)

respectively. The angle φ is also the angle with counterclockwise rotation from the +x
direction to the wavenumber vector.

With regard to acoustic waves, (3.3) yields

ω

αa
= 1 ± sgn(αa)

M∞

√
1 +

(
κa

αa

)2

+
(
βa

αa

)2

, (3.6)

where sgn(·) denotes the sign function. Combining (3.5) and (3.6) in turn yields

ω

αa
= 1 ± sgn(αa)

M∞

√
1 + tan2θa + tan2φa. (3.7)

A special case is for a zero angle of incidence, where κa = φa = 0. Hereupon, (3.3) gives
rise to

|k∞,a| =ω/(cos θa ± 1/M∞). (3.8)

Similarly, with θa = 0, (3.3) yields what Egorov, Sudakov & Fedorov (2006) have
shown:

|k∞,a| =ω/(cos φa ± 1/M∞). (3.9)

To avoid ambiguity, a note is given on the range of φa, which is discussed in
[−180◦, 180◦]. In the terminology framework of Duan et al. (2019), the angle of inclination
of the radiated acoustic wave from the lower-side wall ranges from 0◦ to 180◦, where the
two limits represent the fast and slow acoustic waves, respectively. Moreover, the mean
angle of inclination is around 120◦ based on the DNS of turbulent boundary layers over the
nozzle wall. By contrast, Schilden & Schröder (2019) claimed that, for the same situation,
the inclination angle between the stream direction and the wavenumber vector should be no
more than 90◦ for slow acoustic waves, as shown in figure 3. To clarify this issue, first, it is
stipulated that ω> 0, since a negative value of ω would lead to ambiguity in the definitions
of fast and slow acoustic waves (Huang & Wang 2019). For slow acoustic waves where the
negative sign is taken in (3.9), |k∞,a|> 0 and ω> 0 indicate that |φa|< arccos(1/M∞)≈
78.46◦ < 90◦. This agreement with Schilden & Schröder (2019) starts from the wave ansatz
in (3.2), i.e. Ψ̂ a ∝ exp(k∞,a · X − iωt), where X is the coordinate vector. Alternatively,
the left-running wave can have the form Ψ̂ a ∝ exp(k∞,a · X + iωt), and accordingly
the dispersion relation is changed to satisfy the linearised Euler equation. Finally, (3.9)
becomes |k∞,a| =ω/(∓1/M∞ − cos φ̃a). In this case, φ̃a can exceed 90◦ for slow acoustic
waves. To keep consistent with Schilden & Schröder (2019), Ψ̂ a ∝ exp(k∞,a · X − iωt) is
assumed to hold throughout this paper. In this case, for slow acoustic waves, one has
|φa|< 90◦ if θa = 0 and, similarly from (3.8), |θa|< 90◦ if φa = 0.

For fast acoustic waves, it can be proven that the x component of the direction of
energy propagation, i.e. the x component of the group velocity ∂ω/∂k∞,a, is equal
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to (M∞|k∞,a| − |k∞,a|/M∞ +ω)/(M∞|k∞,a|). Apparently, the component is always
positive for supersonic flows. Hence, the streamwise direction of energy propagation is
always pointing to downstream for fast acoustic waves, regardless of the direction of
the phase velocity ω/k∞,a. Regarding the slow acoustic waves radiated from the lower
wall in figure 3, the y component of the group velocity equals −κa/(M∞|k∞,a|), which
needs to be positive to propagate energy away from the lower wall. As a result, for the
radiated slow acoustic waves, κa < 0 and, thus, φa < 0 for the lower wall, while κa > 0
and, thus, φa > 0 for the upper wall. This justifies the direction of the wavenumber vector
in figure 3. As shown in figure 3, a positive/negative φa signifies that the disturbance source
is above/below the test model. In the following DNS, the disturbance source is above the
blunt flat plate. In this case, φa ∈ [0, 78.46◦) for slow acoustic waves if θa = 0◦, and φa = 0
is a limit that neglects the effect of angle of incidence.

In this paper the angle of incidence φ is assumed to be a specific constant for each
type of fundamental waves. Next, the effect of a non-zero angle of incidence will be
examined for the acoustic wave. According to the linear regression of experimental noise
data in a supersonic wind tunnel (Laufer 1961; Schilden & Schröder 2019), the relation
holds, i.e.

cos(φa)= (0.8139 − 0.0784M∞)−1 M−1∞ , (3.10)

which yields |φa| = 61.0◦ at Mach 6 and |φa| = 61.7◦ at Mach 5. The angles are close to
the 60◦ value of the radiated wave angle (Duan et al. 2019), which is based on the DNS
of turbulent boundary layers over the nozzle wall. To be realistic, the examined non-zero
angle of incidence is taken as φa = 60◦ in the present work.

To satisfy the linearised Euler equation, the amplitudes in (3.2) of the corresponding
waves are

q̂a ∝
(

1,±αa/(M∞|k∞,a|),±κa/(M∞|k∞,a|),±βa/(M∞|k∞,a|), γ − 1, 1/M2∞
)T
,

q̂v ∝ (0,−(κv + βv)/αv, 1, 1, 0, 0)T,
q̂e ∝ (−1, 0, 0, 0, 1, 0)T,

(3.11a,b,c)

where the plus/minus sign indicates the fast/acoustic wave. For vortical waves, the listed
amplitude is one possible case to satisfy the dispersion relation αvûv + κvv̂v + βvŵv = 0.
With the same reference quantities for non-dimensionalisation, (3.11) has been confirmed
to reduce to the same form as Kamal, Lakebrink & Colonius (2023). Under the present
free-stream condition, precursor numerical tests of a uniform flow have also verified that
the respective planar wave is propagating with the correct angles θ and φ, as shown in
Appendix A.

Due to the homogeneity of the considered base flow in the z direction, the obliquely
propagating planar waves should be symmetrical on the x–z plane. As a result, the physical
fluctuation in the time domain should be the combination of a pair of obliquely propagating
waves with opposite wave angles, i.e. the sum of the wave (α, κ,±β)T. Mathematically,
the fluctuation takes the form

Ψ ′ = Ψ̂ β + Ψ̂ −β + c.c., (3.12)

where ‘c.c.’ means complex conjugate.
The present paper intends to investigate the transitional blunt-plate flow in response to

different forms of disturbances. A comparative numerical study will be conducted under
the same strength of different disturbances. Regarding the definition of ‘strength’, the
receptivity study of Zhong (2001) via DNS measured the strengths of free-stream acoustic,
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vortical and entropic waves by
∣∣p′

a
∣∣ M2∞,

∣∣v′
v
∣∣ M∞,

∣∣S′∞
∣∣, respectively. The strengths are

set equal to εM∞ for all the three waves by Zhong to examine the response of the boundary
layer. Here, S is entropy and ε is a small parameter. Note that substituting (3.11) into (3.12)
yields the amplitudes superimposed by a pair of oblique waves. To keep the same strength
for the three types of fundamental waves, the amplitudes in the time domain need to
satisfy

q ′
a = εM∞ ·

(
1,±αa/(M∞|k∞,a|),±κa/(M∞|k∞,a|), 0, γ − 1, 1/M2∞

)T
,

q ′
v = ε · (0, 0, 1, 1, 0, 0)T,

q ′
e = εM∞ · (−1, 0, 0, 0, 1, 0)T. (3.13a,b,c)

Here, w′
a and u′

v become zero owing to the superimposition of ±β waves and the zero
angle of inclination for vortical waves, respectively. One can easily prove that the Chu’s
energy density, extensively studied in stability analyses, is close to each other for the
fundamental waves in the free stream, provided that φ = 0◦. In detail, Chu’s energy
density is constituted by kinetic energy and a positive definite thermodynamic energy of
fluctuations, which is defined by (Chu 1965)

EChu = 1
2

[
ρ̄

(
u′2 + v′2 +w′2

)
+ T̄

γM2∞ρ̄
ρ′2 + ρ̄

γ (γ − 1) M2∞T̄
T ′2

]
. (3.14)

With the scaling in (3.13), (3.14) yields the relation

EChu,a = EChu,v = 0.8EChu,e = ε2. (3.15)

This equivalence somewhat justifies the strength measurement criterion for free-stream
disturbances by Zhong (2001).

3.3. Broadband disturbance model
On the far-field boundary of the simulation, a 3-D broadband model of the disturbance is
employed, resembling that of Cerminara & Sandham (2020). The merit of the broadband
model is that the flow is allowed to select preferential frequencies and wavenumbers
naturally. Part 1 of this work (Guo et al. 2025) replicated the experimental transition
reversal by using this model, which suggests that the model is a useful choice. The
harmonic perturbation for a Fourier mode (m, n) with respect to the frequency and the
spanwise wavenumber, respectively, is given by

Ψ ′
m,n = Bm

[
cos(βnz +ψm,n)+ cos(−βnz +ψm,n)

]
cos(αm,nx + κm,n y −ωmt + ϕm,n),

(3.16)
where m = 1, 2, . . . , M f , n = 0, 1, . . . , Nβ and Bm ∈R is the vector of frequency-
dependent dimensionless amplitudes. The subscripts ‘m’ and ‘n’ represent the mth
frequency component and the nth spanwise-wavenumber component, respectively. Here
M f and Nβ are the total numbers of frequencies and non-zero spanwise wavenumbers,
respectively. The symbols ψm,n (n �= 0) and ϕm,n represent random constant phase angles.
In other words, once all the phase angles are randomly generated at the beginning, the
angle values will not change with time. The phase angles are also unchanged for different
DNS cases, such that the effect of the initial phase difference is excluded. For n = 0, it is
enforced that β0 =ψm,0 = 0. Furthermore,ωm = 2π fm , where fm is the frequency. In fact,
(3.16) is obtained by combining (3.2) and (3.12), except that random phases are introduced
for different Fourier harmonics. For a fixed frequency, the components of the vector Bm ,
i.e. the primitive variables, are forced to obey (3.13).
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The amplitude Bm is set equal for each spanwise-wavenumber component. In other
words, no preferential spanwise wavenumber is assumed, and the flow will naturally select
appropriate spanwise scales to amplify. This ad hoc set-up is less perfect than adopting
a rigorously measured spatial spectrum of tunnel noise. However, we have not found
any available measurement database to fit such a wavenumber scaling, as the frequency
spectrum is of more concern in experiments. At least, the behaviour of the wavenumber
distribution does not affect the experimental transition reversal trend, as shown in Part 1
(Guo et al. 2025). The current same wavenumber set-up for all the cases would isolate the
effect of the free-stream-disturbance form, which is sufficient for the present objective. The
frequency-dependent dimensional amplitude of the pressure fluctuation p′∗

m is determined
by the relation

p′∗
m/p∗∞ =

⎧⎨
⎩

√
CL f ∗−1

m � f ∗/2, f ∗
m � 40 kHz,√

CU f ∗−3.5
m � f ∗/2, otherwise,

(3.17)

which is fitted from the measured frequency spectra of noise in the Arnold engineering
development complex hypervelocity wind tunnel 9 (Marineau et al. 2015; Balakumar &
Chou 2018). The law of f ∗−3.5

m at high frequencies has been validated by the measured
noise data in various tunnels with M∞ ranging from 6 to 14 (Duan et al. 2019). The law of
f ∗−1
m at lower frequencies was also verified by the DNS data of the tunnel noise at different

Mach numbers (Duan et al. 2019). The amplitude constants are CL = 3.953 × 10−4 and
CU = 126.5 × 106 in SI units. According to the preceding work (Guo et al. 2025), the
current amplitude leads to a linear response of the boundary layer in 2-D simulations.
Based on the dimensional p′∗

m from (3.17), the dimensionless pressure fluctuation p′
m =

p′∗
m/(ρ

∗∞u∗2∞) is determined to calculate the ε in (3.13) for each frequency component.
In this way, the reported law of the frequency spectrum is incorporated into the 3-D
broadband disturbance. In reality, note that vorticity or entropy waves should have their
own spectra. However, there are hardly available experimentally measured data or laws
in the literature for vorticity waves or entropy waves in atmospheric environments, which
the present work intends to mimic. Furthermore, it is likely difficult to reach a unified
scaling law for different heights (say 0–100 km) resembling (3.17) in various facilities.
Given the challenge, (3.17) is employed for all the disturbance forms to isolate the effect
of the dispersion relation. This strategy at least provides some useful conclusions in this
preliminary stage of investigating the flight/ground discrepancy.

In the present model, the dimensional frequency ranges from f ∗
1 = 10 kHz to f ∗

max =
1000 kHz with an interval� f ∗ = 5 kHz. The lowest frequency f ∗

1 is not decreased further,
because the experimental data for the fitting of (3.17) showed insufficient resolution in a
low-frequency range. Regarding the spanwise wavenumber, it ranges from β∗

1 = 2π/λ∗1 to
β∗

max = 40β∗
1 with an interval �β∗ = β∗

1 , which is expected to achieve a broadband state.
Here, the fundamental spanwise wavelength λ∗1 = L∗

z = 9 mm = 10λ∗streak, where λ∗streak is
the spacing of the most amplified streamwise streak in the work of Guo et al. (2025).
Therefore, the spanwise width of the computational domain contains 10 preferential
streaks, which is deemed sufficient. The corresponding spanwise wavelength considered
in the numerical forcing varies from 0.225 to 9 mm. The mode numbers are M f = 199 and
Nβ = 40 accordingly.

Eventually, the total perturbation of the variable Ψ ′ is given by

Ψ ′(x, z, t)= Arescaled

Nβ∑
n=0

M f∑
m=1

Ψ ′
m,n, (3.18)
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Case Free-stream disturbance φ Lx Lz nx ny nz �x+ �y+
w �z+

SAW Slow acoustic wave 0◦ 155 9 1681 251 201 19.2 0.58 8.6
SAW60DEG Slow acoustic wave 60◦ 155 9 1681 251 201 19.2 0.58 8.6
FAW Fast acoustic wave 0◦ 155 9 1681 251 201 19.2 0.58 8.6
EW Entropic wave 0◦ 155 9 1681 251 201 19.2 0.58 8.6
VW Vortical wave 0◦ 155 9 1681 251 201 19.2 0.58 8.6

Table 1. Case description for DNS.

where the amplitude rescaling parameter is set to Arescaled = 0.366. With this set-up, the
spanwise averaged p∗′∞,rms of the 3-D wave is numerically equal to the 2-D counterpart
determined by (3.17) for the baseline slow acoustic wave case. The subscript ‘rms’ denotes
root mean square. For this baseline case, the detailed intensity of the pressure fluctuation is
p∗′∞,rms/ p̄∗∞ = 2.85 %. This amplitude is larger than that in Guo et al. (2025), which would
probably lead to an earlier transition. Nonetheless, comparative studies are still valid under
the same amplitude rescaling for different fundamental free-stream waves. For each time
step during marching, the instantaneous variable on the far-field boundary is forced to be
the sum of the base flow and the perturbed ones.

3.4. Case description
As shown in table 1, five cases are simulated with the same computational domain, mesh
resolution and strength of the forcing prescribed by (3.13). The only difference is the
type of free-stream disturbances and the angle of incidence φ. The chosen grid spacings
can achieve mesh convergence regarding the streamwise evolution of statistical quantities
(Guo et al. 2025). To save computational cost, the present streamwise length and spanwise
width of the computational domain are reduced to Lx = 155 and Lz = 9, respectively. The
reduction in the streamwise domain length is acceptable because of the earlier transition
onset subject to an increased forcing amplitude. The decrease in the spanwise width is also
safe to maintain the same transitional characterisation according to precursor tests in Guo
et al. (2025).

With regard to the mesh, the wall-normal distribution of the node is clustered near the
wall and the shock using a hyperbolic tangent function. In the wall-normal direction,
at least 140 points are placed in the fully developed turbulent boundary layers. The
grid spacing is uniform in the spanwise direction. The spacing is almost uniform in the
streamwise direction, except clustered in the vicinity of the leading edge. As in the former
work, 22 points are used in the spanwise direction for each spacing of the most amplified
streamwise streak. In the remainder of the paper, the mean and root-mean-square (r.m.s.)
quantities are obtained after statistical stationarity is reached. The statistical convergence
is also verified by comparing the results from different temporal windows.

3.5. Linear stability analysis
The linear stability theory (LST) is utilised to identify the normal-mode instability. The
primitive variable vector Q= (u, v, p, w, T )T can be decomposed into Q(ξ, η, z, t)=
Q̄(ξ, η)+Q′(ξ, η, z, t). With the normal-mode ansatz, the small-amplitude disturbance
can be expressed by Q′ = Q̂(η) exp [i(α̃ξ + βz −ωt)] + c.c., where Q̂ denotes the
eigenfunction and α̃ is the complex streamwise wavenumber. Under the quasi-parallel
flow assumption, the linear stability equation can then be derived from the linearised N–S
equation and transformed to a complex eigenvalue problem. Dirichlet boundary conditions
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Figure 4. Contour of the oblique wave angle θ in the considered parameter space in § 3.3 for the incident
angle φ = 0◦ (contour) and φ = 60◦ (dashed line): (a) slow acoustic wave and (b) fast acoustic wave.

are enforced for û, v̂, ŵ and T̂ . The local spatial growth rate σ = −α̃i is positive if the
eigenmode is unstable. The linear stability analysis is performed by our in-house code,
which has been well validated by benchmark cases. A spectral collocation method is
employed for discretisation to obtain the eigenspectrum. More details can be found in
Guo et al. (2025).

4. Solution of fundamental waves in the parameter space
As remarked in § 3.3, a maximum total number of M f × (Nβ + 1)= 199 × 41 = 8159
Fourier components will be added in the 3-D broadband disturbance model. As
shown by (3.4), ω= αv,e and, thus, βv,e =ωv,e tan θv,e. Hence, for purely convected
vortical/entropic waves, the streamwise wavenumber α is decoupled from the spanwise
wavenumber β and there is no explicit limit on the wave angle θv,e. As a result, there
always exist solutions for planar vortical/entropic waves with given ω and β.

For acoustic waves, by combining (3.7) and βa = αa tan θa, one can obtain

βa =ω tan θa

(
1 ± sgn(αa)

M∞

√
1 + tan2θa + tan2φa

)−1

, (4.1)

where the plus/minus sign is taken for the fast/acoustic wave. Provided that βa, ω and the
assumed constant angle of incidence φa are given, (4.1) yields a quadratic equation with
respect to tan θa, of which the solution is

tan θa =
(
−B ±

√
B2 − 4AC

)
/ (2A) , (4.2)

where A = M2∞ω2/β2
a − 1, B = −2M2∞ω/βa and C = M2∞ − tan2φa − 1. The two roots

of (4.2), with a positive or negative sign, will be substituted back into (4.1). The purpose
is to verify that the final solution of θa satisfies (4.1) and the associated relation βa =
αa tan θa. In addition, the wave angle limit should also be satisfied. For slow acoustic
waves, θa ∈ (−78.46◦, 78.46◦) for φa = 0, while the upper and lower limits are slightly
changed for φa = 60◦. For fast acoustic waves with φa = 0, (3.8) implies that cos θa +
1/M∞ > 0, which means that |θa|< arccos(−1/M∞)≈ 101.53◦. Similar to slow acoustic
waves, the effect of a non-zero φa does not change the critical θa evidently for fast acoustic
waves. It finally turns out that there exist solutions for the fast or slow acoustic wave if and
only if the positive or negative sign is taken in (4.2), respectively.

Figure 4 depicts the resulting oblique wave angle θa in the considered (discretised)
parameter space of (ω, β). The contours and dashed lines mark the isolines of the oblique
wave angle θa for φ = 0◦ (contour) and φ = 60◦ (dashed line), respectively. Obviously, the
non-zero angle of incidence φ revises the oblique wave angle θ to a certain degree, while
the general distribution of θ stays similar. As shown in figure 4 for the whole parameter
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Figure 5. Contours of the growth rate σ of the least stable mode versus x–ω with β = 0 for (a) the sharp-
leading-edge flat plate and (b) the blunt flat plate with R = 3. The growth rate below 0.001 is cut off for the
blunt-plate case since it is minor.

space, there always exists a solution of θa within the respective limit values for slow and
fast acoustic waves. For fast acoustic waves, figure 4(b) shows that θa can exceed 90◦.
Above and below the boundary θa = 90◦, one finds that sgn(αa)= −1 and sgn(αa)= 1,
respectively. This suggests that the streamwise component of the phase velocity, i.e. ω/αa,
can be negative for fast acoustic waves. However, as discussed in § 3.2, the streamwise
component of the group velocity is always positive for fast acoustic waves in supersonic
flows, regardless of the direction of the phase velocity. Hence, the streamwise direction of
energy propagation is still along the +x direction in this situation.

Taking one parametric point in figure 4(a) as an example, we verify by numerical
simulation in Appendix A that the perturbation can propagate as a planar wave, and that the
inclination angle on the x–z plane is aligned with the theoretical value in this section. Once
the wave angle θ is determined, all the wavenumber information is known for each Fourier
component with fixed ω and β. Superimposed by a large number of Fourier components,
planar waves with different spatial scales are combined. The broadband forcing will be
used to initiate the laminar–turbulent transition.

5. Results of LST
Part 1 of this work (Guo et al. 2025) has provided the primary LST result, which showed
that the nose radius R = 3 already renders the first and second modes stable throughout
the parametric and computational domains, i.e. σ < 0. The present work further discusses
the entropy-layer mode, which was recognised marginal in literature and neglected in
Part 1. This entropy-layer mode is known to be generated due to the generalised inflection
point located in the entropy-layer profile (Fedorov 1990). Figure 5 shows the growth rate
contours for the sharp-leading-edge case (left) and the current R = 3 case (right). In
the R = 3 case, the unstable first and second modes disappear while they are present in
the sharp-leading-edge case. This strong stabilisation effect is achieved by the persistent
entropy layer over the flat plate. Furthermore, multiple weakly unstable entropy-layer
modes are observed (similar to Dietz & Hein 1999), and the most unstable one is depicted
in figure 5. The entropy-layer mode is found to be concentrated near the leading edge,
of low frequency, with low growth rate (�1/25 for the second-mode value), which is
totally consistent with previous LST results (Dietz & Hein 1999; Wan et al. 2018, 2020).
The β = 0 state has almost the largest growth rate for the entropy-layer mode, which
is shown as an example. Figure 6 displays the N -factor curves to reveal the degree of
amplification for broadband disturbances. The N factor is defined by N = ∫ x

xnt
σdx , where

xnt denotes the neutral point. The envelope of the N factor reaches 5.3 and 0.065 for the
sharp-leading-edge case and the R = 3 case, respectively, and the corresponding amplitude
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Figure 6. The N -factor curves for (a) the sharp-leading-edge flat plate and (b) the blunt flat plate with R = 3.
The bold line is the envelope, while grey lines are for single-frequency disturbances with ranges shown in
figure 5. In (a) the curves with small N factors near the x axis correspond to the marginal first mode.

amplification eN is 200 and 1.067, respectively. Therefore, the calculation indicates for the
current blunt-plate flow that the disturbance amplitude can only be augmented by only
6.7 %, provided that merely normal-mode instability participates. Combined with later
DNS results (figure 11), the disturbance amplitude in the laminar-flow region should be at
least amplified by several times (hundreds of percent) to trigger the transition. As a result,
the normal-mode instability cannot induce the transition to turbulence and the non-modal
growth mechanism has to be dominant.

Another situation of interest is where the base flow is three dimensional, e.g. with
an angle of attack. In that case, the presence of cross-flow modes in the large-bluntness
regime should be further examined by stability analysis, as done by Cerminara & Sandham
(2020).

6. Results of DNS

6.1. Transition onset and end
As a first step of the discussion, the transition progress is shown. Figure 7(a) shows the
spanwise- and time-averaged Stanton number versus the streamwise coordinate. Except
for case VW, the St curves after the transition collapse very well onto the turbulent
empirical formula. This observation indicates that the transition to a fully developed
turbulent state has been achieved. In the turbulent region the law of the wall for turbulent
mean profiles was verified in Guo et al. (2025). The viscous sublayer and the log layer
were found to be well resolved. In Appendix B we further examine the mean temperature–
velocity relation by comparing the DNS statistical profile with the literature formulae
(Walz 1969; Duan & Martin 2011), which again confirms the fully developed turbulent
state.

Figure 7(b) depicts how the transition onset Reynolds number Ret and the transition end
Reynolds number ReT are determined in the logarithmic plot. The displayed approach is
consistent with that used by the benchmark experiment (Borovoy et al. 2022). Following
that, the transition onset location xt and the transition end location xT are calculated and
listed in table 2. The length of the transitional region, xT − xt, and the transition Reynolds
number are also provided. Note that for case VW, the intersection point between the lines
in the transitional region and the turbulent correlation line is approximately determined,
albeit the transition to turbulence is not completed. Notably, with the same strength of free-
stream disturbances, the transition onset location xt induced by the vortical disturbance is
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Figure 7. (a) Spanwise- and time-averaged Stanton number and (b) determination of the transition onset
Reynolds number Ret and the transition end Reynolds number ReT. In (a) the turbulent Stanton number is
calculated based on the Reynolds analogy and van Driest II correlation (Franko & Lele 2013; Guo et al. 2022).
In (b) the transition Reynolds numbers are marked as an example for cases EW and VW.

Case Ret (×106) ReT (×106) xt xT xT − xt

SAW 2.78 6.09 46.3 101.5 55.2
SAW60DEG 2.61 5.15 43.6 85.8 42.2
FAW 2.59 5.29 43.1 88.1 45.0
EW 2.63 4.56 43.8 76.0 32.2
VW 6.12 10.46 102.0 174.3 72.3

Table 2. Reynolds numbers (Ret, ReT) and streamwise locations (xt, xT) for the transition onset and end, and
the length of the transitional region (xT − xt). The information is determined from the approach shown in
figure 7(b).

significantly postponed compared with the other cases. This finding is likely to partly
interpret why the transition Reynolds number during the flight test is generally larger than
the wind-tunnel counterpart. The tendency also resembles that of the linear receptivity
study by Zhao & Dong (2025). Moreover, compared with the baseline case SAW, the angle
of incidence has no significant impact on the transition onset (� 6 %). However, this effect
shortens the length of the transitional region xT − xt by about 24 %, which is also obvious
from figure 7(a).

Regarding the overall effect of the free-stream-disturbance form, the form has
no evident impact on the transition onset, except the slowly transitional case VW.
Nonetheless, the form affects the length of the transitional region. Among the
cases except VW, the EW disturbance and the SAW disturbance without angle
of incidence lead to the shortest and the longest lengths of transitional regions,
respectively.

6.2. ‘Streak-turbulent spot’ features
In brief, all the simulated cases in table 1 report a visibly similar transition process
after the data are inspected. In response to free-stream broadband disturbances, a ‘streak-
turbulent spot’ two-stage process is unifiedly observed, which resembles the work of Guo
et al. (2025). Figure 8 presents the instantaneous and mean Stanton number contours
for case SAW60DEG. All the cases present an additional spanwise swing motion of
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Figure 8. Contours of (a,b) instantaneous and (c,d) time-averaged Stanton number for case SAW60DEG.
Panels (a,c) and (b,d) depict the complete and the nose regions, respectively. The solid line in (c) represents
the isoline St = 6 × 10−4.
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Figure 9. Wall-normal profiles of spanwise-averaged (a,d) u′
rms, (b,e) v′

rms, (c,f ) w′
rms. Locations: (a,b,c) are

at x = 5, and (d,e,f ) are at x = 20.

the instantaneous streamwise streak. For case SAW60DEG, the motion is recorded in
figure 8(a) in the vicinity of the junction x = 0. This new feature is possibly due to
a stronger far-field forcing than the previous study. Furthermore, a first glance seems
to signify that the spanwise spacings of the streaks on the blunt nose (x < 0) and the
flat plate (x > 0) differ from each other. Regarding the transitional region, the isoline
St = 6 × 10−4, which roughly visualises the transition front in x ∈ (50, 100), is highly
spanwise inhomogeneous seemingly due to the shape of the turbulent spots.

The streaky feature and the effect of the free-stream-disturbance form are further
investigated by examining the statistical fluctuation field. Figure 9 displays the distribution
of spanwise-averaged fluctuating velocities, which are at the laminar-flow locations x = 5
in subfigures (a,b,c) and at x = 20 in (d,e,f ). The statistical performance |u′| 
 |v′|,
|u′| 
 |w′| is a clear signature of streamwise streaks, which has been interpreted in
Part 1 (Guo et al. 2025). As x is increased from 5 to 20, the maximum of u′

rms is
visibly amplified, while those of v′

rms and w′
rms are not. In other words, the streamwise

growth of kinetic energy in this stage is achieved mainly by the increased streamwise
velocity. At a fixed location, the magnitude of the peak values u′

rms,max at both x = 5
and x = 20 is consistent with the ability to trigger the transition in figure 7(a), i.e.
|u′|EW > |u′|SAW, |u′|SAW60DEG, |u′|FAW > |u′|VW. Therefore, the strength of the streaky
response may play an important role in the instability and transition.
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Figure 10. Contour of the spanwise-averaged u′
rms and the location of its local maximum (dash-dotted line)

for case SAW60DEG.
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Figure 11. Streamwise evolution of (a) the local maximum of the spanwise-averaged u′
rms and (b) the

corresponding wall-normal height.

6.3. Early growth of instabilities
For case SAW60DEG, figure 10 displays the spanwise-averaged r.m.s. value of the
streamwise velocity fluctuation. Along with the contour, the local maximum location is
also marked by the dashed line. The corresponding maximum and the wall-normal height
are plotted against the streamwise coordinate in figure 11. In the vicinity of the stagnation
point (x, y)= (−3, 0), the boundary layer thickness is negligible. The post-shock peak of
u′

rms is located in a wall-normal height ηmax = 0.2 ∼ 0.3 (figure 11b), which is an order of
magnitude smaller than the nose-tip radius, yet non-zero. This observation suggests that
the initial response in the stagnation-point flow is detached from rather than attached to
the wall. As the boundary layer is growing, this peak u′

rms off the wall attenuates, while
the local maximum in the boundary layer increases. Eventually, the original outer peak
is replaced by that in the boundary layer. At this location of replacement x � −2.2, the
peak height ηmax suddenly decreases. Figure 11(b) shows that the outer peak location, the
location of replacement and the following development of the inner peak location are all
insensitive to the form of the disturbance. The qualitative distribution of u′

rms in figure 10
is also unaffected by the forcing type. In this early laminar region, the peak location of
the response to broadband disturbances is probably simply determined by the laminar base
flow.

To reveal the roles of receptivity and non-modal growth, the overall receptivity to the
far-field disturbance is evaluated. By referring to ‘receptivity’, the process is examined
during which the free-stream disturbances penetrate the boundary layer in the vicinity of
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Figure 12. Normalised indicators as a function of the reference location xLE: (a) Irecp to evaluate the impact on
receptivity and (b) Irecp to evaluate the impact on non-modal transient growth. If the indicator is higher/lower
than 1, the corresponding case exerts a positive/negative impact compared with case SAW.

the leading edge. By mentioning ‘non-modal growth’, the early transient evolution of the
streaky strength is considered. In this paper, Zhong’s receptivity parameter is adopted to
evaluate the level of receptivity, which reads I = u′

rms,max;x=xLE
/(εM∞) (Zhong 2001).

Herein, xLE refers to a leading-edge reference location and εM∞ is related to the strength
measure criterion for free-stream disturbances in § 3.2. Since the strength for different
disturbance forms is identical, Zhong’s receptivity parameter can be unifiedly employed
in the present cases. Subsequently, case SAW is used as a baseline to define a normalised
receptivity parameter Irecp = I/ISAW. If Irecp > 1, it signifies that the examined case is
locally more susceptible to the corresponding disturbance form than the slow acoustic
wave without angle of incidence. Otherwise, the receptivity to the examined form is
no more significant than the baseline case SAW. In the meantime, the importance of
non-modal transient growth, as shown in figure 11(a) for x ∈ [0, 20], is measured by
another function. This function, defined by J = u′

rms,max;x=20/u
′
rms,max;x=xLE

, evaluates
the streaky amplification from the reference x = xLE to the approximate end of the
transient growth x = 20. Similarly, a normalised indicator is defined as Inonmd =J /JSAW.
If Inonmd > 1, the examined disturbance form increases the significance of non-modal
growth compared with case SAW.

Figures 12(a) and 12(b) characterise the effects of the free-stream-disturbance form on
receptivity and non-modal growth, respectively. Compared with the slow acoustic wave
without angle of incidence, the boundary layer is considerably less receptive to the vortical
wave because Irecp is evidently less than 1. By contrast, the effects of the fast acoustic wave,
the entropy wave and the realistic angle of incidence consistently enhance the receptivity,
indicated by Irecp > 1 mostly. Again, the qualitative conclusion is in accord with Zhao
& Dong (2025). Regarding the non-modal growth, the entropy wave is the only one
that promotes non-modal growth, i.e. Inonmd > 1 if the reference location is on the nose
(xLE < 0). If the reference location is on the plate (xLE > 0), the vortical wave may have a
positive impact on the non-modal growth. Nonetheless, the disadvantage that accumulates
in the receptivity process renders the vortical wave unable to overtake the other disturbance
forms downstream, as shown in figure 11(a). For example, at x = 20 in figure 11(a), the
peak r.m.s. values of the streamwise velocity fluctuation are 8.9 %, 9.1 %, 9.3 % and 10.0 %
of the free-stream mean velocity for cases SAW, SAW60DEG, FAW and EW, respectively,
whereas the percentage is only 5.4 % for case VW. The weak receptivity gives rise to the
insufficient linear response for case VW after the transient growth stage, thus triggering
the transition uneasily.
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Figure 13. Spanwise Fourier transforms of the time-averaged Stanton number versus x and the spanwise
wavelength λz for cases (a) SAW, (b) SAW60DEG, (c) FAW, (d) EW and (e) VW. The right panel displays
the streamwise range on the nose.

6.4. Quantitative evolution and contribution of streaks
On the aspect of aerodynamic performance, the laminar streamwise streak augments the
heat transfer, as shown by the discrepancy between 3-D transitional and 2-D laminar cases
in figure 7(a). Thus, the contribution of streamwise streaks to heat transfer is of interest.
Note that the streaky signature is visible from the contour of the time-averaged Stanton
number St in figure 8(c,d). Figure 13 shows the contour of the spanwise Fourier transform
of St , as a function of the streamwise coordinate x and the spanwise wavelength λz . The
contour levels of all the cases are the same for a convenient comparison. The marked
wavelengths exactly correspond to those wavenumbers after the Fourier transform, i.e. the
wavelength is equal to Lz/n, where n is an integer.

As illustrated in figure 13(a), the wavelength λz = 0.9, dominant in Part 1 (Guo et al.
2025), becomes one of the pronounced spanwise wavelengths on the plate possibly due to
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a stronger far-field forcing in this paper. Notably, there are a few remarkable wavelengths
on the nose (x < 0) and different values of pronounced wavelengths on the plate (x > 0).
The results indicate that the time-averaged field is manifested as a superimposition of
several components with different pronounced wavelengths, rather than dominated by a
single spanwise scale. Moreover, the spanwise spacings on the nose differ from those on
the plate. These observations indicate that the streamwise streak on the plate is not simply
inherited from the nose upstream. There might be different local selection processes of the
streaky spanwise scale between the stagnation-line flow and the flat-plate flow.

Comparing figures 13(a) and 13(b) one finds that the angle of incidence affects the
wavelength to a limited extent. By inspecting the contour level of figure 13(d) and other
subfigures, one observes that the EW disturbance induces a strong response and wide
spectral band in the laminar plate flow. In general, the form of the free-stream disturbance
has a non-negligible effect on the early streamwise streak.

Figure 13 does not quantify the direct contribution to heat transfer from each spectral
component, albeit the wavelength information is clear. Note that the numerous Fourier
modes in the broadband far-field forcing generate the response in the blunt-plate flow,
constituted by different Fourier components. These components interact with each other
in a complicated manner. Quantitative evolutions of Fourier modes are to be discussed
to identify the significant Fourier mode. A bi-Fourier transform of the 3-D flow field with
respect to time and the spanwise coordinate is performed with a Hann windowing function.
For each Fourier mode (m, n), figure 14 displays the streamwise evolution of the wall-
normal integrated Chu’s energy EChu in the left column and the contribution to the Stanton
number in the right column. Here, EChu = ∫ ∞

0 EChudη is defined to squeeze the dimension
of the wall-normal coordinate. It is useful to remember that a higher energy density does
not necessarily indicate a larger contribution to heat transfer. The quantitative contribution
of each Fourier mode to the Stanton number can be compared. To this end, the maximum
absolute contribution from mode (m, n) to the instantaneous Stanton number is sought in
the (z, t) space (Guo et al. 2023):

�St(m, n)(x)= max
(z,t)

∣∣St(m, n), disturbed − Stlaminar
∣∣ . (6.1)

Here, St(m, n), disturbed and Stlaminar are the instantaneous Stanton numbers induced by
the laminar flow plus mode (m,±n) alone and the laminar flow alone, respectively.
Please note that the maximum absolute contribution �St of each component cannot be
accumulated to be the total Stanton number. This is because the actual contribution to St
from each Fourier mode can be positive or negative, and the phase difference of each mode
also renders the direct accumulation invalid.

In this section we are concerned with the stationary modes with m = 0, because the
stationary streak is directly associated with the mean heat flux. As shown in figure 14, once
the transition starts, mode (0, 0), i.e. the mean flow distortion (MFD), grows the fastest
in energy and contributes the most to the heat flux. This observation is not surprising
because MFD is directly related to the spatiotemporal averaged flow field. In terms of the
remaining steady modes, the contribution to the Stanton number from the moderate range
of wavelength (0.5-3 mm) is relatively high on the plate. The range is called ‘moderate’
because it is neither close to the spanwise width of the domain nor far less than the
laminar boundary layer thickness (of order 1 mm). Multiple wavelengths are active in this
range, depending on the form of the disturbances. What is consistent between figures
13 and 14 (right panel) is that the pronounced wavelengths in the time-averaged field
also contribute considerably to the heat flux. For instance, for case SAW60DEG, the
wavelengths λz = 1.125, λz = 0.9 and λz = 0.64 are leading in both figure 13(b) and the
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Figure 14. Streamwise evolution of the integrated Chu’s energy and contributions to the Stanton number by
Fourier mode (m, n) at m = 0 ( f ∗ = 0 kHz) for cases (a) SAW, (b) SAW60DEG, (c) FAW, (d) EW and (e)
VW. Grey lines represent other unmarked modes with different spanwise wavelengths. Arrows represent the
transition onset locations.

right panel of figure 14(b). The instantaneous heat flux like that in figure 8(a,b) is a
consequence of the multiple modes with different wavelengths.

Furthermore, the dominant steady modes on the plate differ from those on the blunt
nose. For example, the right panel of figure 14(a) shows that the contribution to St is
dominated by the steady mode n = 8 (λz = 1.125) and n = 16 (λz = 0.56) on the plate
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region x ∈ (10, 30), except the MFD. By contrast, the most pronounced wavelengths on
the blunt nose (x < 0) are shown by grey lines, where the leading two are n = 4 (λz =
2.25) and n = 12 (λz = 0.75). These two leading spanwise wavelengths also coincide with
figure 13(a). On the nose, the overall contribution to St is substantially higher than the
plate. Unsteady streaks also make contributions to the instantaneous heat flux, whereas
they are less linked with the mean heat transfer than steady streaks. Furthermore, high-
frequency components are found to be not significant in heat transfer, which will be later
shown to be associated with lesser secondary instabilities by spectral proper orthogonal
decomposition (SPOD).

Apart from the contribution to the heat flux, the energy evolution can also be obtained.
At a probed location, say x = 20, the numbers of the stationary mode with the integrated
Chu’s energy falling in O(10−5) is 7, 8, 9, 10 and 6 for cases SAW, SAW60DEG, FAW, EW
and VW, respectively. None of the stationary modes possess the Chu’s energy in O(10−4).
In general, the Fourier modes arising from the free-stream vortical-wave disturbance are
not as energetic as the others.

6.5. The SPOD analysis
The response on the x–y plane is also of interest. Spectral proper orthogonal
decomposition analysis is further conducted, which is a data-driven method to extract
orthogonal modes or coherent structures from flow fields. The SPOD method reveals the
dominant modes that are coherent in space and time (Towne, Schmidt & Colonius 2018).
Mathematically, SPOD modes are the eigenvectors of the cross-spectral density tensor for
each frequency. An introduction to the formulation and code has been provided by Guo
et al. (2025). Details of the parametric set-up are provided in Appendix C.

For f ∗ = 60 kHz, figure 15 shows the SPOD modes of all the five DNS cases with
respect to the streamwise velocity and the pressure. The leading-edge enlarged view of
the SPOD mode for u shows the inclined structure of the energetic streamwise streak,
which is concentrated in the boundary layer. In figure 15(a,c,d,e) the radiated inclined
structure of the pressure fluctuation inside the entropy layer and outside the boundary
layer is probably due to acoustic radiation from the turbulent patch of the boundary layer.
The inclination angle is close to 60◦, which agrees with (3.10). Notably, figure 15(b) shows
that the realistic angle of incidence generates a distinct response in the post-shock region.
With the presence of a non-zero angle of incidence, the wave components with higher
streamwise wavenumbers can be transmitted across the shock and the entropy layer more
effectively. To reveal the discrepancy quantitatively, the pressure of the SPOD mode is
extracted along the entropy-layer edge, i.e. along the pink line in figure 15. Subsequently,
Fourier transform is performed with respect to the streamwise coordinate downstream of
x = 50. Figure 16 depicts the modulus of the transformed pressure as a function of the
streamwise wavelength λx . Obviously, case SAW60DEG exhibits a pronounced SPOD
response with two small-wavelength peaks in the spectrum: 9.3 mm (main) and 4.5 mm
(lesser). By contrast, the other cases present larger-wavelength maxima, such as 20 mm
for the FAW case. Overall, the realistic angle of incidence of the broadband acoustic
disturbance can alter the post-shock pressure structure and the spatial scale considerably.

For a high frequency f ∗ = 450 kHz, the response near the leading edge and outside the
boundary layer is minor, as shown in figure 17. Emergence of high-frequency structures is
visible mainly after the transition onset, i.e. downstream of about x = 50. A similar result
in Guo et al. (2025) was ascribed to arise from secondary instabilities inside the low-
frequency distorted flow. Figure 18 displays the energy spectra of the 20 leading SPOD
modes in the x–y plane for case SAW60DEG. Other cases are similar but not shown.
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Figure 15. Streamwise velocity (left column) and pressure (right column) for the first leading SPOD modes on
the x–y plane with f ∗ = 60 kHz for cases (a) SAW, (b) SAW60DEG, (c) FAW, (d) EW and (e) VW. The solid
line represents the edge of the laminar-flow entropy layer.

In accordance with Part 1 (Guo et al. 2025), the mode energy is descending with an
increasing frequency. No pronounced mid-frequency or high-frequency peak is formed
in the energy spectrum.

6.6. Behaviour of turbulent spots
The transition progress is manifested in the development of the spanwise- and time-
averaged Stanton number in figure 7. In the transitional region the progress is almost
dominated by the gradual spanwise spread of the turbulent spot. In this subsection we
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Figure 16. Streamwise Fourier transform of pressure for the first leading SPOD modes on the x–y plane with
f ∗ = 60 kHz along the edge of the laminar-flow entropy layer.
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Figure 17. Streamwise velocity (left column) and pressure (right column) for the first leading SPOD modes on
the x–y plane with f ∗ = 450 kHz for cases (a) SAW and (b) SAW60DEG. The solid line represents the edge
of the laminar-flow entropy layer.

intend to interpret how the form of free-stream disturbances alters the transition progress.
To this end, the behaviour of the turbulent spot is focused on. For case SAW60DEG,
figure 19 displays the x–t diagram of the Stanton number along z = Lz/2. The flow
events that travel across each streamwise point on the wall along z = Lz/2 are visualised.
It is found that most of the events with high heat transfer rates are propagating in a
proximate propagation velocity. This is implied by the approximately parallel slopes of
these events, as shown by dashed lines in figure 19. If the streamwise propagation speed
is around a constant, the streamwise evolution of the events is frozen in a moving frame
x ′ = x − Vpropt . Based on the slopes of different ensembles, Vprop � 0.55 ± 0.05, which
is not sensitive to the form of free-stream disturbances (not shown here).
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Figure 18. Energy spectra of the 20 leading SPOD x–y modes for case SAW60DEG.
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Figure 19. Spatiotemporal x–t diagram of the Stanton number at z = Lz/2 for case SAW60DEG. Dashed
lines serve to approximate parts of the high-Stanton-number events.

Note that the visualisation of a few snapshots is unable to capture all the events
during the whole intermittent window. Alternatively, a t–z spatiotemporal diagram helps
to record the encompassed events in history that have moved across the probe. Given
that the propagation speed Vprop is almost a constant, the current t axis approximates
the streamwise coordinate. Figure 20 shows the diagram in the t–z space. At x = 20,
the mean Stanton number is behaving as a laminar state. In this early stage, streamwise
oscillation emerges in a packet called ‘spot A’, as shown in figure 20(a). This spot
has no other substantial difference from the surrounding streaks. Spot A is found to
have a nearly mirrored image with respect to the symmetrical plane z = Lz/2 = 4.5,
since the far-field forcing (3.16) is spanwise symmetrical. At the next monitored location
x = 30, the spot is convected with emergence at a later time instant. As shown in
figures 20(a) and 20(b), the spot periodically appears twice during t ∈ (0, 350) with an
approximate interval�tspot = 175. This dimensionless time scale corresponds to a physical
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Figure 20. Spatiotemporal t–z diagram of the Stanton number at the locations (a) x = 20, (b) x = 30, (c)
x = 40, (d) x = 50, (e) x = 60 and (f ) x = 70 for case SAW60DEG.

frequency u∗∞/(L∗
ref�tspot)= 5 kHz. The frequency of spot emergence is exactly the

minimum frequency, which arises from the nonlinear interaction between f ∗
1 = 10 kHz

and f ∗
1 +� f ∗ = 15 kHz in the far-field forcing. This difference interaction can be

represented by

( f ∗
1 +� f ∗)− f ∗

1 →� f ∗. (6.2)

The 5 kHz component was also reported by the SPOD spectrum in Part 1 (Guo et al.
2025). It is thus inferred that the time scale of spot emergence is linked with the very-low-
frequency component in the far-field forcing. Due to the high computational cost, further
lower frequency components are no longer added and examined in the forcing.

Note that the minimum location of the spanwise- and time-averaged Stanton number
is about x = 38 for case SAW60DEG. As depicted in figure 20(c) soon at x = 40, four
evident spots (A–D) are visualised that contribute to the increase of the spanwise- and
time-averaged Stanton number. These turbulent spots are growing, spreading and merging
in the spanwise direction during their streamwise convection. The merging of mirrored
spots C and of spots A and B are observed roughly at x = 60 and x = 70, respectively.
Eventually, the merged turbulent spot spans the spanwise domain, and a constantly
escalated rate of surface heat transfer is maintained in the fully developed turbulent region.

To identify the spot based on evidence, a laminar–turbulent discrimination approach is
employed similarly to Nolan & Zaki (2013). As shown in figure 9, the streamwise velocity
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Figure 21. Two snapshots of St normalised by its maximum (contour) and the turbulent/non-turbulent
boundary indicated by Γ (solid line) for case SAW60DEG.

fluctuation is predominant in the streamwise streak. As a result, the detector function
|v′| + |w′| is a good candidate to identify the turbulent/non-turbulent boundary, which
avoids an obvious interference from the streamwise streak. The detector is calculated
for each snapshot at the first off-wall grid point. Subsequently, this detector function is
lowpass filtered in the x–z space by a 2-D standard deviation filter. The filter employs a
surrounding stencil, including three points in each coordinate direction. The resulting field
is thresholded to generate a binary indicator Γ , which is unity in the turbulent region and
zero in the non-turbulent zone. This step is accomplished using Otsu’s method (Otsu 1979)
for image processing. The method generates a global optimum threshold for a snapshot,
which maximises the variance between the turbulent and non-turbulent regions, or the
inter-class variance.

Note that the identification is performed at the first off-wall grid node, which is close to
the wall. Thus, the detector function can be used to identify the turbulent spot characterised
by the wall Stanton number. Figure 21 displays two selected snapshots of the Stanton
number and the turbulent/non-turbulent boundaries described by the binary indicator Γ .
Apparently, the turbulent spots with small scales can be identified favourably. Since u′
is not involved in the detector function, the early streaky signature at x � 20 does not
interfere with the spot identification.

After thresholding, the averaged intermittency is calculable by the spanwise and
temporal average of the binary indicator (Nolan & Zaki 2013)

Iim(x)= 1
tmaxLz

∫ Lz

0

∫ t0+tmax

t0
Γ (x, z, t)dtdz, (6.3)

where tmax denotes the maximum time interval since statistical stationarity at t0. The
maximum spanwise width Dmax and the mean spanwise width Dmean of the spot,
normalised by the domain width Lz , are computed by

Dmax(x)= max
t

{
1
Lz

∫ Lz

0
Γ (x, z, t)dz

}
(6.4)

and

Dmean(x)= 1
tmaxLz

∫ Lz

0

∫ t0+tmax

t0
Γ (x, z, t)dtdz, (6.5)

respectively. The function Dmax(x) measures the normalised maximum width of the
ensemble turbulent spot that passes through the probed location in history. In comparison,
Dmean represents the normalised mean width of the spot. It is found that the averaged
intermittency is exactly the normalised mean spanwise width of the spot, i.e. Iim = Dmean,
albeit the two have different physical meanings.
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Case max{dDmax/dx} max{dDmean/dx}
SAW 0.049 0.019
SAW60DEG 0.056 0.024
FAW 0.058 0.021
EW 0.04 0.032
VW 0.03 0.018

Table 3. Maximum growth rate in the streamwise direction of the maximum spanwise width Dmax and the
mean spanwise width Dmean of the turbulent spot.
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Figure 22. Streamwise growth of the maximum spanwise width Dmax (dash-dotted lines) and the mean
spanwise width Dmean (solid lines) of the turbulent spot, normalised by the domain width.

Figure 22 shows the streamwise growth of the spot width Dmax (dash-dotted lines) and
Dmean (solid lines). The state where D = 1, i.e. the spot occupies the spanwise domain,
is always earlier for Dmax than Dmean. This is conceivable because the largest spot cannot
continuously span the width due to intermittency, namely Iim < 1. In terms of the growth
of Dmax, the EW disturbance is not the most efficient form to reach Dmax = 1, while
it is to reach Dmean = 1. This finding indicates that the EW disturbance induces the
most intensive appearance of turbulent spots in time history, albeit the growth rate of a
single spot is not the highest. In other words, the progress of intermittency for the EW
disturbance is the fastest, which accounts for its shortest length of the transitional region.
The maximum growth rates, max{dDmax/dx} and max{dDmean/dx}, are also computed
and listed in table 3. Apparently, case EW and case VW have the highest and lowest growth
rates in the mean spot width, respectively, which is also the averaged intermittency. The
relative magnitude in dDmean/dx among different cases, characterising how fast transition
is completed, is consistent with the tendency with respect to the length of the transitional
region in table 2. To be specific, the relation VW < SAW < FAW < SAW60DEG <

EW with respect to max{dDmean/dx} coincides with the relation VW > SAW > FAW >

SAW60DEG > EW regarding the length of the transitional region. Therefore, the length
of the transitional region is closely related to the mean spanwise spreading rate of the
turbulent spot, rather than the maximum spreading rate of a single spot.
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6.7. Contribution to heat transfer in transitional regions
From the perspective of energy budget, the contribution to wall heat transfer in the
transitional region can be examined. The dimensional transport equation of internal energy
per unit volume e can be expressed by

ρ∗
(
∂e∗

∂t∗
+ V∗ · ∇e∗

)
= −∇ · q∗ − p∗∇ · V∗ +Φ∗, (6.6)

where q is the heat flux vector. The terms on the right-hand side of (6.6) signify
thermal conduction, pressure dilatation and viscous dissipation, respectively. After a time-
averaging operation, the unsteady time-dependent term in (6.6) is minor compared with
the other terms. Meanwhile, the left-hand side advection term vanishes on the wall.
Therefore, the non-negligible terms are all located on the right-hand side. The production
terms, including pressure dilatation −p∗∇ · V∗ and viscous dissipation Φ∗, will directly
determine the wall thermal conduction.

Given the unsteadiness of the transitional flow, the significant source terms are further
decomposed into the contributions from the mean flow field and the higher-order moments
arising from the effect of fluctuations. We denote the non-dimensional spanwise- and time-
averaged viscous dissipation term simply by Φ. This total dissipation is decomposed into
the contributions induced by shear and dilatation, referred to by Φω and Φϑ , respectively
(Zhu et al. 2016; Guo et al. 2022):

Φ =Φω +Φϑ. (6.7)

Here

Φω = 〈μωkωk〉, Φϑ = 〈μdϑ2〉, (6.8a,b)

where 〈·〉 denotes spanwise averaging and μd = 4μ/3. In a Cartesian coordinate system,
the vorticity components ωk and the dilatation ϑ are expressed as

ω1 = ∂w

∂y
− ∂v

∂z
, ω2 = ∂u

∂z
− ∂w

∂x
, ω3 = ∂v

∂x
− ∂u

∂y
, (6.9a–c)

and

ϑ = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
. (6.10)

Apart from the fluctuation effect, the spanwise distortion induced by the streak is also
noticeable. In this subsection the instantaneous quantity is split into φ = 〈

φ
〉 + φ′′, such

that both the fluctuation and spanwise-distortion effects are absorbed into φ′′. Physically,〈
φ
〉

denotes the 2-D base flow plus MFD and φ′′ is the total perturbation excluding MFD.
In this way, the MFD is incorporated into the laminar base flow to reflect the overall
spanwise- and time-averaged field, in accord with figure 7. The shear-induced dissipation
is decomposed into four parts as Φω =Φω0 +Φω1 +Φω2 +Φω3, where

Φω0 = 〈μ̄〉 〈ω̄k〉 〈ω̄k〉 , Φω1 = 2 〈ω̄k〉
〈
μ′′ω′′

k

〉
,

Φω2 = 〈μ̄〉 〈
ω′′

kω
′′
k

〉
, Φω3 = 〈

μ′′ω′
kω

′′
k

〉
.

(6.11a–d)

Here, Φω0, Φω1, Φω2 and Φω3 manifest the effects of the spanwise- and time-averaged
field, the second-order moment of the cross-correlation between the fluctuations in
dynamic viscosity and vorticity, the second-order moment of the vorticity self-correlation
and the third-order moment, respectively. Both the streak mode and the oblique wave mode
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Figure 23. Streamwise variation in dimensionless energy budget terms for cases (a) SAW (solid line) and
SAW60DEG (dashed line) and (b) EW (solid line) and VW (dashed line). Grey lines represent the remaining
minor terms.

make contributions to the second- and third-order moment terms, while only the base flow
and MFD determine the first term Φω0.

Similarly, the dissipation induced by dilatation is decomposed into Φϑ =Φϑ0 +Φϑ1 +
Φϑ2 +Φϑ3, where

Φϑ0 = 〈μ̄〉 〈
ϑ̄

〉2
, Φϑ1 = 2

〈
ϑ̄

〉 〈
μ′′ϑ ′′

〉
,

Φϑ2 = 〈μ̄〉 〈
ϑ ′′2〉, Φϑ3 = 〈

μ′′ϑ ′′2〉. (6.12a–d)

These subterms have similar physical meanings to those of the shear-induced dissipation.
The dimensionless spanwise- and time-averaged pressure dilatation term, denoted by P =
〈−p∇ · V〉, is decomposed as P =P0 +P1, where

P0 = − 〈 p̄〉
〈
∂ui

∂xi

〉
, P1 = −

〈
p′′ ∂u′′

i

∂xi

〉
. (6.13)

The term P0 manifests the spanwise- and time-averaged field, while P1 is the second-order
moment of the cross-correlation between the fluctuations in pressure and dilatation.

Figure 23 shows the streamwise development of all the subterms of the production
terms. Due to the absence of Mack modes, the effects of both pressure dilatation and
dilatation-induced dissipation are ignorable. These minor dilatation-related terms are
marked by part of the grey lines. It turns out that only the total shear-induced dissipation
Φω and its subterms Φω0 (due to spatiotemporal averaging) and Φω2 (due to vorticity
self-correlation) are significant. The third-order and the cross-correlation second-order
moments are negligible, falling into the grey lines near zero. Furthermore, the tendency
of the dissipative source-term growth shown by different cases is consistent with the
averaged Stanton number in figure 7. Therefore, the heat transfer escalation is dominated
by the shear-induced dissipation in such a transition scenario dominated by the non-modal
instability.

7. Remarks on recent similar work
Notably, the recent work by Zhao & Dong (2025) investigated the response to various
disturbance forms of a blunt-wedge flow through a shock-fitting HLNS framework, which
seems to be similar to the present work. This section summarises the shared and different
findings as well as the pros and cons of the two studies.

As shown in table 4, Zhao & Dong (2025) and the present work are focusing on the
linear receptivity/instability and the fully 3-D complete transition, respectively. The HLNS
framework has the obvious merit in exploring the wide parameter space, while addressing
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Zhao & Dong (2025) Present work

Methodology Shock-fitting HLNS Shock-capturing DNS + LST

Property of equation Linearised equation Complete 3-D N–S + further
simplied linearised equations

Advantages Capable of exploring the wide
parameter space and addressing
the shock as an ideal
discontinuity.

Fully resolving the complete
transition to turbulence,
considering all processes relevant
to nonlinearity.

Shortcomings Applied only in the linear
problem. Not resolvable for
nonlinear phenomena (e.g.
turbulent spots), nonlinearly
generated transition onsets and
the associated transition reversal.

DNS: expensive in parametric
studies in a wide space; not
analytically addressing the
stability problem.
LST: containing simplification of
the linearised N–S equation.

Shared main findings The blunt-plate/wedge flow is the least susceptible to vortical disturbances.
This conclusion from the linear approach is confirmed in the current
nonlinear one.

New findings in the
present work

1) The length of the transitional region is affected by free-stream-disturbance
forms, which is explainable by the behaviour of turbulent spots.
2) The transition onset, closely related to nonlinearity, is now investigated.
3) Tunnel-like broadband forcings and the effect of incident angle are
involved.

Table 4. Comparative summary of the latest two studies.

the stability rather than transition directly. It should be particularly noted that the stability
and the transition are two different research objects, albeit they are closely related to each
other. For instance, the transition onset and its associated reversal observation physically
arise from the MFD, which is induced by nonlinearity and unable to be directly revealed
by the linear eN approach. Furthermore, the complicated phenomenon, e.g. the turbulent
spot that determines the length of the transitional region and appears in experiments,
has not even been reported by nonlinear stability analysis. Note that the turbulent spot
actually appears early near the transition onset rather than only in the late stage, as shown
in figure 20. Therefore, the current DNS study, which also partly verifies the conclusion
of stability-based research by Zhao & Dong, cannot be replaced by pure stability analysis.

Table 4 also highlights the new findings of this work, including the relationship
between the length of the transitional region and the turbulent spot, the directly resolved
transition onset location and additional realistic effects that are likely encountered in
tunnel environments. Other aspects merit further investigations to enhance the current
methodology, e.g. a realistic wavenumber spectrum of incoming disturbances, which
is almost missing in current experimental measurements in literature. This may be
implemented by direct simulation of the nozzle turbulent boundary layer and the radiated
noise in the future.

8. Conclusions
This paper follows the recent DNS framework of Guo et al. (2025) that reproduced the
experimental phenomenon of transition reversal. The effect of the form of free-stream
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broadband disturbances is revealed by comparative studies, subject to the same strength of
perturbations. Particular emphasis is placed on the blunt-plate transitional flow, which has
a nose-tip radius larger than the reversal value.

All the four forms of fundamental disturbances generate the ‘streamwise streak-turbulent
spot’ two-stage transition scenario. The transition to turbulence is entirely due to the
non-modal instability. With regard to the transition onset, the entropic, slow acoustic and
fast acoustic waves lead to remarkably earlier transition onset than the vortical one. This
observation arises from the weakest receptivity of the blunt-plate flow to the vortical wave,
which agrees with the work of Zhao & Dong (2025). The finding also implies that the
flight test may be intrinsically more difficult to trigger the transition than the wind tunnel.
The form of the free-stream disturbances also alters the length of the transitional region,
which is physically caused by different mean spanwise spreading rates of turbulent spots.
The entropy wave and the vortical wave result in the shortest and longest transitional
regions, respectively. Furthermore, the form of the free-stream disturbance modifies the
selected (multiple) spanwise wavelengths of the streamwise streak on the nose and the
plate. A realistic angle of incidence that mimics the wind-tunnel environment shortens
the transitional region and changes the post-shock structure of the acoustic field. From
the perspective of energy budget, shear-induced dissipation is responsible for the heat
transfer increase during the transition over a largely blunted body. This is distinct from the
pronounced dilatation-induced dissipation by the Mack second mode occasionally over a
slightly blunted configuration (Zhu et al. 2016).
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Appendix A. Verification of wave angle via simulation
To verify the formulation of planar waves and their wave angles, a numerical test is
conducted. According to (3.2) and (3.11), an obliquely propagating Fourier mode (not a
pair of it), i.e. the perturbation Ψ̂ + c.c., is added on the far-field boundary. The base flow is
uniform without the influence of any solid wall. The frequency and spanwise-wavenumber
values correspond to Fourier mode (79, 5). The theoretically predicted angle is calculated
based on the description in § 4. With a fixed φa = 60◦, the theoretical oblique wave angle
turns out to be θa = 35.3◦. In figures 24(a) and 24(b) we mark the expected angles φa and
θa with arrows, respectively. It is illustrated that the wavenumber vector with either φa on
the x–y plane or the theoretically predicted angle θa on the x–z plane is perpendicular to
the actual wave front of the numerical simulation. As a result, the numerical simulation
verifies the planar-wave property as well as the angle calculated from the present theory.

Appendix B. Mean temperature–velocity relation for turbulent profiles
Note that the law of the wall has been verified in the same case (nose-tip radius R3) by
Guo et al. (2025). This section examines the mean temperature–velocity relation for
turbulent profiles, which is depicted in figure 25 at x = 150 for case SAW60DEG. The
classical mean temperature–velocity relation, Walz’s equation, reads (Walz 1969)

T

T e
= Tw

T e
+ T aw − Tw

T e

u

ue
+ T e − T aw

T e

(
u

ue

)2

. (B1)
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Figure 24. Contour of the pressure fluctuation of the slow acoustic planar wave, Fourier mode (79, 5) with an
incident angle φ = 60◦: (a) x–y plane and (b) x–z plane.
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Figure 25. Spanwise- and time-averaged temperature–velocity relation at x = 150 for case SAW60DEG.

The subscript ‘e’ in this appendix represents the quantity on the edge of the spanwise- and
time-averaged boundary layer profile. As depicted in figure 25, the Walz’s equation does
not agree with the present DNS data since the equation did not involve the wall cooling
effect. By incorporating this non-adiabatic effect into the DNS study, Duan & Martin
(2011) revised the relation to

T

T e
= Tw

T e
+ T aw − Tw

T e
f

(
u

ue

)
+ T e − T aw

T e

(
u

ue

)2

, (B2)

where

f

(
u

ue

)
= 0.1741

(
u

ue

)2

+ 0.8259
(

u

ue

)
. (B3)

An excellent agreement is reported between the present DNS data and the improved
temperature–velocity relation, which manifests the fully turbulent state of the boundary
layer.
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Appendix C. Set-up of SPOD analysis
Note that the needs to converge the SPOD mode and to save the computational cost should
be compromised. To achieve statistical convergence in the spectral density, the number of
overlapping blocks Nblk � 20 was considered to be a sufficient condition for a transitional
boundary layer (Lin & Schmidt 2024). In this work a reasonable number for the flow
realisation Nblk = 20 and the resolution NFFT = 256 with 75 % overlapping are employed.
With the identity

Nblk =
⌊

Nt − Novlp

NFFT − Novlp

⌋
, (C1)

where �·� is the floor operator, the total snapshot number should be at least Nt =
1472. These snapshots are collected after statistical stationarity is achieved. Guo et al.
(2025) showed that the components with tens of kilohertz tend to contribute to the
primary instability, while components with hundreds of kilohertz tend to contribute to
the secondary instability. For a fixed frequency of tens of kilohertz, say 60 kHz, the
corresponding period t∗1 ≈ 1.67 × 10−5 s. To obtain a good temporal resolution, 4 periods
are fitted into one block, which yields NFFT/4 = 64 snapshots for each period of interest.
As a result, the physical snapshot sampling time �t∗snap = t∗1 /64 and sampling frequency
f ∗
s = 1/�t∗snap = 3840 kHz. The Nyquist frequency is thus 1920 kHz, and the minimum

resolved frequency for the SPOD mode is f ∗
min = 1/(NFFT�t∗snap)= 15 kHz.
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