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Abstract
Urinary tract infections (UTIs) pose a significant public health challenge, affecting approximately 407 million 
people worldwide and causing substantial morbidity and approximately 237,000 deaths. Bacteria and fungi 
represent the most frequent causative microbes, leading to symptoms such as low abdominal pain, fever, frequent 
urination, hematuria, sepsis, inflammation of the bladder and kidney, and even death. In recent years, extracellular 
vesicles (EVs) have emerged as critical mediators of UTI pathogenesis. EVs are lipid bilayer nanoscale particles 
that carry DNA, RNA, enzymes, and other biomolecules. They can facilitate microbial colonization, immune 
modulation and evasion, tissue invasion, and antimicrobial agent resistance. This review summarizes current 
knowledge on the role of bacterial and fungal-derived EVs in UTIs, their mechanisms of action, and their potential 
therapeutic implications.
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INTRODUCTION
Urinary tract infections (UTIs) remain a significant public health challenge worldwide. In 2019, 
approximately 407 million people were affected, resulting in approximately 237,000 deaths[1]. UTIs can be 
caused by highly diverse microbes, including fungi, bacteria, parasites, and viruses, and the symptoms can 
range from dysuria and low abdominal pain to fever, frequent urination, and hematuria[2]. Severe 
complications include sepsis, renal inflammation, and organ failure, as well as multi-organ dysfunction[3]. Of 
note, recurrent infection is widespread[4].

UTIs typically start when pathogens enter from the anus or a contaminated area and ascend the urethra to 
the urinary bladder[5]. Successful urethral colonization is a prerequisite for UTIs[6]. Pathogens utilize their 
flagella to migrate from the urethra to the urinary bladder[7]. Adhesins are secreted to counteract the urine 
flow and facilitate attachment to receptors on uroepithelial cells[8,9]. Urinary catheters provide an additional 
route for pathogen entry into the bladder[10]. Once inside the bladder, pathogens attach to the uroepithelial 
cells and begin to replicate[11,12]. In the meantime, uropathogens adopt various strategies to evade and 
modulate the host immune response[13-19]. Bacteria, such as uropathogenic Escherichia coli (UPEC), hide in 
and enter the uroepithelial cell cytosol to form intracellular bacterial communities (IBCs)[20]. Fungi, 
especially Candida albicans (C. albicans), form hyphae and secrete agglutinin-like sequence 3 protein (Als3) 
for the uroepithelial cell attachment, which is critical for biofilm formation and active penetration into the 
host’s deeper uroepithelial cells and further into the bloodstream[21,22]. Furthermore, uropathogens produce 
toxins and express proteins for survival in the bladder[14,23]. Upon successfully colonizing the urinary 
bladder, uropathogens can be dispersed from the biofilm and invade the kidneys through the ureters, 
ultimately causing bloodstream infection[12,24-26]. Figure 1 shows the pathogenesis of bacteria- and fungi-
induced UTIs.

Treatment of UTIs currently relies primarily on antibiotics (e.g., trimethoprim sulfamethoxazole, ampicillin, 
and ciprofloxacin), antifungal drugs (e.g., fluconazole and flucytosine for Candida UTI), anti-parasitic drugs 
(e.g., praziquantel for treating urinary schistosomiasis), and anti-viral drugs (e.g., cidofovir for treating 
cystitis)[34-36]. However, the non-judicious use of these medications has led to the emergence of drug-
resistant microorganisms, complicating the effective management of UTIs worldwide. This situation 
highlights the urgent need to study the drug-resistant mechanisms of uropathogens to identify new 
therapeutic targets, ultimately improving patient outcomes and addressing the challenge of drug-resistant 
UTIs[37,38].

Despite clear identification of causative agents in many UTIs, the mechanisms by which different microbes 
interact with the host and survive antimicrobial exposure still need further investigation. Recently, 
microbial-derived extracellular vesicles (EVs) have gained increasing attention. These lipid bilayer particles 
act as messengers between microbes and hosts by carrying metabolites, proteins, DNA, and RNA[39]. 
Compared to human-derived EVs, microbial-derived EVs differ substantially in biogenesis, composition, 
and function (except for fungi), which has attracted interest in their role during infections.

Regarding EV biogenesis, humans and fungi both generate exosomes via inward budding through the 
ESCRT (Endosomal Sorting Complex Required for Transport) pathway and ectosomes via outward 
budding[40-46]. The ESCRT pathway involves several components, including ESCRT-0, I, II, and associated 
proteins such as Alix[45-47]. First, ESCRT-0’s HRS (hepatocyte growth factor-regulated tyrosine kinase 
substrate) binds phosphatidylinositol-3-phosphate (PI3P), recruiting ESCRT-0 to the endosomal 
membrane[45-47]. The HRS domain subsequently attracts ESCRT-I through the TSG101 domain[45-47]. ESCRT-
II, together with ESCRT-I, deforms the membrane to cause inward budding[45-47]. ESCRT-III will then 
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Figure 1. Pathogenesis of bacteria- and fungi-induced UTIs (Created in Biorender). UTIs can be divided into three stages. In the first
stage, uropathogens invade and colonize the urethra[5-7]. In the second stage, they invade the urinary bladder and form biofilms[11,12,20-22],
where uropathogen-derived extracellular vesicles (EVs) facilitate invasion, colonization, nutrient acquisition, and immune modulation
and evasion[13-19,27-33]. The third stage involves biofilm dispersion and propagation of uropathogens to the kidneys via the ureters and
eventually to the bloodstream, causing systemic infection[12,24-26].  Created in BioRender. Chau, C. (2025)  https://BioRender.com/
st81pck. UTIs: Urinary tract infections; EVs: extracellular vesicles; IBCs: intracellular bacterial communities.

undergo vesicle scission and promote the formation of intraluminal vesicles (ILVs) in the multivesicular 
bodies (MVB), which will then be released as exosomes[45-47]. However, for the outward budding, the 
ectosome is formed via the outward budding action of the cell membrane[45]. Of note, the possibility of the 
presence of other EVs biogenesis pathways of fungi that are different from that of humans may exist.

In contrast, gram-negative bacteria produce EVs (outer membrane vesicles and outer inner membrane 
vesicles) through outer membrane blebbing and explosive cell lysis[48,49]. In outer membrane blebbing, the 
EVs are formed through the blebbing of the bacterial outer membrane[48,50]. For explosive cell lysis, the 
membrane vesicles are formed from the lysis membrane fragments, as a result of stress-induced bacterial 
cell lysis[50,51]. Nonetheless, the EV production pathway of gram-positive bacteria is still uncertain, which 
leaves a research gap for scientists to study the components inside the bacterial cell that contribute to EV 
production[52].

Regarding the EVs’ composition and function, human-derived EVs deliver proteins, lipids, DNA, and RNA 
essential for maintaining homeostasis and involved in different pathological processes[48,53,54]. The main 
target of human-derived EVs is the human cell, for example, immune cells during the infection[55]. On the 
contrary, microbial-derived EVs carry proteins, lipids, DNA, and RNA that are important for facilitating 

https://app.biorender.com/citation/68d3c4eba3e9109618a0798f
https://app.biorender.com/citation/68d3c4eba3e9109618a0798f
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their survival in the environment and invasion into the host[56,57]. It is of particular interest how these tiny 
vesicles can open a gateway to help microbes colonize and cause serious illness in human hosts, such as 
UTIs. Below, the differences between human and microbial-derived EVs (Fungi and bacteria) are shown in 
Table 1.

Besides, microbial-derived EVs are critical in enhancing microbes’ adherence to host tissue, biofilm 
formation, host immune response modulation, immune evasion, and decreasing antimicrobial agent 
susceptibility in the course of infection[62-65]. Few studies discussed how UTI pathogens interact with the host 
via EVs[27,29,66]. There is no doubt that EVs play a significant role during UTIs and minimize the effects of 
antimicrobial agents. In this review, we summarize the role of EVs derived from UTI-causing bacterial and 
fungal pathogens, thereby giving insight for microbiologists and clinicians to further study the UTI 
pathogen and host interaction. Additionally, Table 2 presents a brief summary to give readers an overview 
of the proteins or molecules in uropathogen-derived EVs that contribute to infection.

THE ROLE OF BACTERIA-DERIVED EVs IN BACTERIAL UTIS

Gram-negative bacteria, such as Escherichia coli and Klebsiella spp, are UTIs’ most common causative
agents[67]. Although the human urinary tract has several intrinsic antimicrobial mechanisms, such as the
secretion of glycoproteins that block microbial adherence to the uroepithelium, bacteria have a “secret
strategy”, EVs, to overcome these defense mechanisms[68].

Bacteria-derived EVs facilitate movement and biofilm formation
Biofilm formation and motility are critical factors for bacterial colonization in urinary tissue and urinary
catheters during UTIs[69,70]. Studies have shown that EVs derived from UPEC clinical isolate PMH can
enhance motility and biofilm formation, potentially affecting the motility-to-biofilm transition pathway[29].
A key regulator molecule of this pathway, bis-(3’-5’)-cyclic dimeric guanosine monophosphate (c-di-GMP),
is upregulated during biofilm formation; then, it interacts with the protein YcgR (commonly known as
flagellar brake)[71,72]. The interaction between these molecules further leads to the direct contact of YcgR to
the flagellar motor proteins FliG and MotA, thereby inhibiting the motility of the bacteria for biofilm
formation[72]. Additionally, to facilitate the dispersion of bacteria’s biofilm in the urinary tract, a carbon
storage regulator, CsrA, is gradually released during biofilm formation, whose primary function is to
disaggregate the biofilm and facilitate the propagation of bacteria in the urinary tract[73,74]. However, further
investigation is needed to confirm the role of EVs in the motility-to-biofilm transition pathway and to
identify which components are affected by the bacterial-derived EVs. Previous research has demonstrated a
strong relationship between the c-di-GMP level and bacterial EV synthesis, which in turn affects biofilm
formation[75]. It would be interesting to determine whether EVs function as downstream effectors 
or regulators within this pathway. Alternatively, aromatic amino acid (AAA) synthesis proteins [3-
dehydroquinate synthases (AroB), Phospho-2-dehydro-3-deoxyheptonate aldolase, Phe-sensitive (AroG), 
Phospho-2-dehydro-3-deoxyheptonate aldolase, Trp-sensitive (AroH), and shikimate kinase I (AroK)]
have been identified in the EVs of E. coli[29]. A recent study reported a significant reduction of 
motility in E. coli mutants lacking AroB, AroG, and AroK, while the addition of EVs derived from the 
wild type successfully restored the motility of the AroB mutant. This finding implies that E. coli-derived 
EVs can transfer to other bacterial cells and facilitate their migration along the urinary tract[29,76]. In
addition, EVs from another uropathogen, Proteus mirabilis, contain MR/P fimbriae structural component
(MrpA), which is involved in the attachment of uroepithelial tissue[27,77-79]. Altogether, these findings indicate
that bacterial EVs play an extensive role in promoting bacterial motility and tissue colonization during
UTIs.
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Table 1. Similarities and differences of EVs derived from humans, fungi, and bacteria

Humans Fungi Bacteria References

Reported EV 
size (nm)

30-400 50-400 50-500 [58-60]

Production 
route

Inward budding through ESCRT 
pathway and outward budding

Inward budding through ESCRT 
pathway and outward budding

Outer membrane blebbing and 
explosive cell lysis

[40-51]

Common EV 
markers

CD9, CD63, CD81, flottilin-1 Not yet defined Not yet defined [61]

EV content DNA, RNA, protein, lipid DNA, RNA, protein, lipid DNA, RNA, protein, lipid, 
peptidoglycan

[48,56,57]

Main function Homeostasis maintenance and 
immune defense

Survival in environment, facilitation 
of host infection and invasion

Survival in environment, facilitation of 
host infection and invasion

[54-57]

EV: Extracellular vesicle; ESCRT: endosomal sorting complex required for transport.

Table 2. Summary of the role of identified proteins/molecules in uropathogenic bacterial and fungal-derived EVs

Characteristics of UTI’s 
pathogen/roles during UTIs

Involved protein in bacterial-derived EVs Involved protein/molecules in fungal-
derived EVs

References

Colonization AroB, AroG, AroK, MrpA PHR1, XOG1, BGL2, CSH1, MP65, AMS1, 
Met6, TOS1, MNT1, CHT3, TRX2, SAP5, 
PET9

[27,29-32,76-79,
105,107,108]

Invasion to the host’s 
bloodstream

Hemolysin, EfeO, FepA Sap2, RAS1 [14,27,33,80,82,
84-89,111,115-117]

Immune modulation/evasion FimH, CNF1, LPS, Flagellin Glucuronoxylomannan, Sap6 [13-19,27,95-98,
122,127-129]

Antimicrobial agent resistance A-band liposaccharide, KCP protein, Aac6’-le-
Aph2”-la, Aph3’-III, VanR-A, VanS-A, VanH-A,
VanA, VanX-A, VanY-A, VanZ-A, VanS-B, ErmB

[30,31,87,99,101]

Proposed protein that may
contribute to antifungal agent
resistance

xog-1-like, mp65-like and alcohol 
dehydrogenase 1

Aac6’-Ie-Aph2’’-Ia: Aminoglycoside N-acetyltransferase 6’-Ie/aminoglycoside O-phosphotransferase 2’’-Ia; Aph3’-III: aminoglycoside O-
phosphotransferase type III; AroB: 3-dehydroquinate synthase; AroG: phospho-2-dehydro-3-deoxyheptonate aldolase; AroK: shikimate kinase; 
CHT3: chitinase 3; CNF1: cytotoxic necrotizing factor 1; CSH1: cell surface hydrophobicity protein 1; EfeO: iron transporter component EfeO; ErmB: 
erythromycin ribosomal methylase B; FepA: ferrienterobactin receptor; FimH: type 1 fimbrial adhesin; Flagellin: flagellar filament structural protein; 
LPS: lipopolysaccharide; Met6: homocysteine methyltransferase; MNT1: glycolipid 2-alpha-mannosyltransferase; MrpA: Mrp antiporter subunit A; 
MP65: 65 kilodalton mannoprotein; PET9: ADP/ATP carrier protein 2; PHR1: glycosylphosphatidylinositol-anchored beta(1,3)-
glucanosyltransferase; RAS1: RAS-like protein 1; SAP2: secreted aspartyl proteinase 2; SAP5: secreted aspartyl proteinase 5; Sap6: secreted 
aspartyl proteinase 6; TOS1: probable circularly permuted 1,3-beta-glucanase; TRX2: thioredoxin 2; VanA: vancomycin resistance protein A; 
VanH-A: vancomycin resistance protein H-A; VanR-A: vancomycin resistance regulator A; VanS-A: vancomycin resistance sensor A; VanS-B: 
vancomycin resistance sensor B; VanX-A: vancomycin resistance D,D-dipeptidase; VanY-A: vancomycin resistance D,D-carboxypeptidase; VanZ-
A: vancomycin resistance protein Z-A; XOG1: glucan 1,3-beta-glucosidase; BGL2: β-1,3-glucanosyltransferase; AMS1: α-mannosidase; A-band 
liposaccharide: major O-antigen polysaccharide; KCP protein: K. pneumoniae carbapenemase (KPC) protein; Glucuronoxylomannan: 
polysaccharide capsule component of Cryptococcus.

enzyme cofactor in bacterial survival during colonization[80,81]. In humans, most iron is complexed with 
heme groups and found in the hemoglobin of erythrocytes[82]. Meanwhile, iron released into plasma is 
bound to transferrin, limiting bacterial access to free iron[82,83]. Despite this, bacteria can acquire iron from 
the host during infection. One strategy is to secrete hemolysin, which is believed to lyse host cells and 
release nutrients and minerals, such as iron, during UTIs[82,84-86]. A recent study has illustrated that the iron 
content in the urine of healthy individuals is lower than that of UTI patients[85]. This suggests a sign of iron 
extraction in the urinary system. In this process, EVs derived from uropathogens, such as Proteus mirabilis, 
UPEC, and Pseudomonas aeruginosa, are responsible for delivering hemolysin to the host cell and causing 

EVs facilitate persistent bacterial infection and invasion
Another well-studied human urinary tract defense mechanism is iron depletion. Iron serves as an essential

[65,130-134]
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urinary tissue damage, including uroepithelium shedding and bladder hemorrhage[27,33,87,88]. Furthermore, the 
iron acquisition system components, such as ferrienterobactin receptors FepA and EfeO (an iron-binding 
protein), were found in the EVs derived from E. coli[27,33,89]. FepA is an outer membrane receptor that 
facilitates the transport of iron-siderophore complexes into bacterial cells[80]. Inside the bacterial cytoplasm, 
iron-enterobactin esterase releases iron from the siderophore complex by cleaving the enterobactin 
backbone[80]. It is possible that FepA in bacterial EVs can fuse the membranes of other bacterial cells and 
increase iron uptake. This concept is supported by a study that discovered the translocation of receptors 
from EVs to the cell membranes of other cells[90]. Additionally, EfeO is a membrane protein responsible for 
transporting ferric ions into bacterial cells[91]. It has also been found to play a role in maintaining iron 
homeostasis in the cells by facilitating the oxidation of excess ferrous ions to ferric ions[92]. Altogether, this 
highlights that EVs facilitate the invasion and survival of uropathogens in the nutrient-resource-limited 
urinary system after or during colonization.

Bacteria-derived EVs promote immune modulation and evasion
Immune evasion is also significant in maintaining the persistent colonization and invasion of uropathogenic 
bacteria. Although few studies have described the relationship between bacteria-derived EVs and immune 
evasion during UTIs, some general mechanisms that explain the interaction between bacteria-derived EVs 
and the host immune system are relevant. For example, Tomasek et al. have discovered that the FimH 
protein, a component of type 1 pili in UPEC, can bind with CD14 expressed on dendritic cells and inhibit 
the dendritic cell migration to lymph nodes[13]. This is achieved by overactivation of the integrins and 
nuclear factor of activated T-cells pathway, thus suppressing the immune response[13]. In addition, 
Dadi et al. have reported that the FimH gene was highly expressed in the UPEC isolated from the patient’s 
urine[93]. Furthermore, EVs derived from the UPEC cultured in a Luria broth (LB) medium contain FimH, 
illustrating the role of adhesin delivery in bacterial EVs[27]. Nevertheless, the presence of FimH in the EVs of 
uropathogenic bacteria during UTIs requires further investigation and confirmation. Moreover, it is of great 
interest to know if the FimH protein in E. coli-derived EVs can bind directly to CD14 on dendritic cells and 
prevent its migration. Of note, cytotoxic necrotizing factor type 1 (CNF1) is another virulence factor that is 
proven to be delivered by the EVs of UPEC[18]. CNF1 is found to downregulate CD36 transcription by 
decreasing the CD36 transcription factors [liver X receptor β (LXRβ) and cytosine-cytosine-adenosine-
adenosine-thymidine/enhancer binding protein α (C/EBPα)], thereby inhibiting macrophage phagocytosis 
and reducing uropathogen clearance in the urinary system[19]. Furthermore, UPEC-derived EVs were shown 
to induce mitochondrial dysfunction in macrophages, which inhibited the production of anti-apoptotic 
protein, myeloid cell leukemia-1 (MCL-1), and triggered cell death of macrophages, leading to the further 
spread of the pathogens in the urinary system[94]. Overall, bacterial EVs increase their chances of survival by 
promoting immune evasion during UTIs. In addition to immune evasion, bacteria-derived EVs carry 
pathogen-associated molecular patterns (PAMPs), which have been demonstrated to initiate inflammatory 
immune responses in some non-UTIs studies[95,96]. They are present both on the surface of and within EVs, 
including lipopolysaccharide (LPS) and flagellin[95-98]. Flagellin was shown to induce caspase recruitment 
domain (CARD) domain-containing 4 (NLRC4) canonical inflammation and upregulate interleukin (IL)-1β 
production[97]. Moreover, a study has shown that EVs are essential components for delivering LPS to the 
cytosol of bone-marrow-derived macrophages (BMDM), which in turn triggers caspase-11 activation and 
inflammasome production[98]. This shows that EVs themselves can activate immune responses, apart from 
promoting immune evasion.

Bacteria-derived EVs promote antibiotic resistance
Bacteria-derived EVs play a critical role in inducing antibiotic resistance. For instance, EVs from a 
uropathogen, Pseudomonas aeruginosa, increased the minimum inhibitory concentration (MIC) of 
gentamicin 4-fold, and A-band LPS was present only in gentamicin-induced EVs but not in natural EVs[87]. 
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This may be the critical component contributing to drug resistance. Another uropathogen, carbapenem-
resistant Klebsiella pneumoniae, has been shown to secrete EVs to hydrolyze meropenem, and the authors
speculate that the K. pneumoniae carbapenemase (KPC) protein in EVs contributes to the hydrolysis effect
in meropenem[99]. Furthermore, carbapenem-resistant hypervirulent K. pneumoniae was shown to secrete
EVs to deliver the drug-resistant and virulence plasmid to the less virulent K. pneumoniae, showcasing that
EVs can facilitate horizontal gene transfer between the same species and protect bacterial plasmids from
degradation[100]. In addition, EVs derived from Enterococcus faceium were shown to consist of proteins that
are associated with resistance to aminoglycoside (Aac6’-le-Aph2”-la, Aph3’-III), glycopeptide (VanR-A,
VanS-A, VanH-A, VanA, VanX-A, VanY-A, VanZ-A, VanS-B), and macrolide (ErmB), suggesting the
significant role of uropathogenic bacteria-derived EVs in promoting antibiotic resistance[101].

ROLE OF FUNGAL-DERIVED EVS IN FUNGAL UTIS
Fungi utilize EVs to strive for persistent survival and propagation in the urinary system. A notable species is
C. albicans[102]. There are two major infection pathways: entry of uropathogenic fungi from the bloodstream
into the urinary system, or ascension from the urethra or a site near the urethra into the upper urinary
tract[103]. Adhesion is the first stage in these pathways.

EVs facilitate adhesion and colonization in the urinary system via biofilm formation and dispersion
Fungi-induced UTIs, particularly C. albicans, can commonly be found in chronically catheterized patients
in hospitals due to the ability of the fungus to form hyphae and biofilm in the urinary tract and urinary
catheter[9,104]. EVs derived from fungi play a vital role in this process. Recently, a study showed that the
composition of EVs derived from C. albicans is highly similar to the matrix material for biofilm
formation[30,105]. Later, three enzymes, Glucan 1,3-beta-glucosidase (XOG1), cell wall 1,3-beta-
glucosyltransferase (BGL2), and glycosylphosphatidylinsitol-anchored beta(1,3)-glucanosyltransferase
(PHR1), in the EVs from C. albicans were identified to be essential for delivering the beta-1,3 glucan (key
components of biofilm) to the biofilm matrix and contributing to the mature biofilm mass[30,31]. Notably,
EVs derived from C. albicans contain several proteins [e.g., PHR1, cell surface hydrophobicity protein 1
(CSH1), 65-kilodalton mannoprotein (MP65), XOG1, α-mannosidase (AMS1), homocysteine
methyltransferase (MET6), circularly permuted 1,3-beta-glucanase (TOS1), glycolipid 2-alpha-
mannosyltransferase (MNT1), chitinase 3 (CHT3), thioredoxin 2 (TRX2), candidapepsin-5 (SAP5), ADP/
ATP carrier protein 2 (PET9)] involved in the endosomal sorting complexes required for transport
(ESCRT) pathway. These cargo proteins, which can either promote the biofilm adhesion or biofilm
dispersion, are selectively packaged into EVs of C. albicans[32]. This facilitates the adaptation of the
uropathogenic fungus in the dynamic urinary system and the propagation of the fungus in the host, since it
can adjust and control its behavior based on different environmental condition changes, for example,
nutrient availability, the presence of immune cells and flow conditions, in the urinary system[106]. Apart from
C. albicans, EVs of the other uropathogenic fungi, Candida parapsilosis (C. parapsilosis), and Candida
tropicalis (C. tropicalis) comprise the cell wall mannoprotein MP65[107,108]. This protein is responsible for
adhesion on the plastic surface and is essential for germ tube development during hyphae formation[107,108].
This phenomenon increases the risk of catheter-associated UTIs, particularly because some urinary
are made of plastic[109].

EVs derived from uropathogenic fungi promote invasion into the bloodstream in the urinary system
In addition to the characteristics of biofilm dispersion discussed previously, EVs derived from the fungus
promote the yeast-to-hyphae transition in a study[28]. The transition process (or the dimorphism) mainly
depends on the presence of nutrients and chemicals during the infection, such as glucose and trichloroacetic
acid in the serum, the quorum-sensing molecules (e.g., farnesol), and the activation of the gene RAS-like
protein 1 (RAS1)[110-112]. Research has shown that C. albicans uptake with EVs derived from the C. albicans
hyphae state can promote more hyphae and pseudohyphae formation when compared with the EVs derived

catheters
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from the yeast form of C. albicans during their growth, and there is a depression of the CHT2 gene
(endochitinase)[28]. The CHT2 gene was abundant in the yeast form of the fungus but not in its hyphae
state[113]. Notably, hyphae are a significant virulence factor of fungi during UTIs, as they can penetrate the
urinary endothelial cells and further into the bloodstream[102]. However, it remains unclear whether the EVs
of C. albicans can promote both pseudohyphae and hyphae formation. Another study shows a contradictory
result, in which they found that EVs from the yeast state of C. albicans favor the formation of pseudohyphae
only, not hyphae[114]. The conflicting results may stem from different growing conditions or the state of the
fungus when the EVs are obtained[28]. This assumption can be further supported by a study of Martínez-
López et al. in which they discovered the presence of RAS1 protein inside the EVs extracted from the 
hyphae state of C. albicans, but not in the EVs of the yeast state[14]. RAS1 is a signal protein that drives the 
yeast to hyphae transition in C. albicans[111,115]. Deleting the RAS1 gene or inhibiting the RAS1 protein in C. 
albicans showed the failure of germ tube and hyphae formation, but this was not the case in 
pseudohyphae[111,115]. It is possible that EVs derived from the hyphae state of C. albicans deliver active RAS1 
protein to the yeast state of C. albicans, which promotes the germ tube and true hyphae formation in the 
presence of D-glucose[116]. It has been discovered that D-glucose can act as a single stimulus that activates 
the RAS1, and the active RAS1 protein can further activate adenylyl cyclase (Cdc35), followed by 
enhanced filamentous growth 1 (Egf1) protein, to promote hyphae formation[116]. Altogether, this 
highlights that EVs derived from the hyphae state of C. albicans can promote invasion through the 
formation of true hyphae. Moreover, another strategy in the EVs derived from the fungi that can disrupt 
the endothelial layer is the enzyme aspartic protease 2 (Sap 2)[117]. This enzyme is responsible for the 
rupture of the vascular endothelial cell and lets the uropathogenic fungus gain access to the bloodstream, 
which ultimately causes disseminated candidiasis[118,119].

EVs derived from uropathogenic fungi cause immune modulation and evasion
The interaction between the immune systems of the hosts and fungi during UTIs has not been investigated
extensively. Limited and non-UTI-related studies have suggested that EVs can act as double-edged swords
in this case[57]. A recent non-UTIs study illustrated that EVs derived from the hyphae state of C. albicans
caused cytotoxic effects on THP-1 macrophages[40]. However, other studies reported that EVs from
C. albicans enhanced the killing effect in bone marrow-derived macrophages (BMDMs) but not in Candida
auris (C. auris) MMC2 isolate, in which its EVs increased the survival rate within the macrophages[120]. The
reason behind this is that EVs from C. albicans that are taken by the BMDMs upregulate the level of nitric
oxide, IL-12p40, tumor necrosis factor-alpha, as well as the co-stimulatory molecules of macrophages and
dendritic cells[120,121]. It is of particular interest to study further the effects of EVs from C. albicans in different
types of macrophages, such as human urinary system macrophages. Moreover, another significant
component in C. albicans’ EVs is aspartyl protease 6 (Sap6)[14]. It was shown that Sap6 could reduce the
reactive oxygen species (ROS) production efficiency via the nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase degradation, once it was internalized in the neutrophils[122]. The degradation of NADPH
oxidase inhibited the production of the neutrophil extracellular traps[122]. This further activated the
proapoptotic caspases 3/7, thus promoting the neutrophil apoptosis[122]. Additionally, a recent study has
found that DNA inside the EVs of C. albicans and C. auris triggered type 1 interferon signaling through
cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) - stimulator
of interferon (IFN) genes (STING) pathway, thus increasing the fungal clearance activity in
macrophages[123,124]. In brief, EVs from C. albicans and C. auris activate the cytosolic sensor, cGAS[123]. The
activation of cGAS further leads to the synthesis of cyclic guanosine monophosphate-adenosine
monophosphate (cGAMP)[123,125,126]. Then, the STING protein binds to cGAMP and undergoes
polymerization[125,126]. The polymerized STING protein is translocated to the nucleus and activates Tumor
Necrosis Factor Receptor-associated Factor family member-associated nuclear factor kappa B activator
(TANK)-binding kinase 1 and interferon regulatory factor 3 (IRF3)[125,126]. Activated IRF3 triggers the gene
expression of type 1 interferon to fight against the pathogen or pathogen-derived molecules[125,126]. Apart
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from C. albicans, EVs from a uropathogenic fungus, Cryptococcus neoformans, contain the polysaccharide 
glucuronoxylomannan, which exhibits the immunosuppressive effect via inhibition of T-cell response and 
impairs the fungicidal activity of neutrophils[16,17,127-129]. Furthermore, it has been demonstrated to induce 
apoptosis in macrophage RAW264.7 cells by upregulating the level of signal transducers and activators of 
transcription 1 (STAT1) and inducible nitric oxide synthase (iNOS)[15]. The elevation of iNOS subsequently 
led to apoptosis in RAW264.7 macrophages[15]. Overall, these display that EVs derived from different species 
or strains of fungi may have various immune modulation effects during UTIs.

EVs from uropathogenic fungi promote antifungal drug resistance
Antifungal drug resistance is an urgent public health problem, and EVs derived from fungi are believed to 
contribute to this issue[32,65]. A study shows that back-addition of nano to microgram of EVs secreted from a 
uropathogenic fungus, C. auris, increased the MIC to amphotericin B (AMB) 16-fold, which the authors 
propose that the presence of high quantities of alcohol dehydrogenase 1 (Adh1), XOG1, and MP65-like 
(mannoprotein-65) protein in EVs may contribute to this resistant effect[65]. Adh1, an enzyme that 
manipulates alcohol production, is associated with biofilm formation and fluconazole resistance[130]. The 
efflux pump is the major mechanism of fluconazole resistance[131]. Researchers propose that Adh1 
overexpression activates the glycolytic pathway, which increases adenosine triphosphate (ATP) production 
to support the efflux pump activity[131]. However, the relationship between AMB resistance and Adh1 is 
waiting to be established. Apart from that, the xog-1 protein is heavily involved in forming biofilm[30,31]. It 
has been previously shown that its expression in C. albicans was upregulated with the AMB treatment[132]. 
Moreover, MP65 is a beta-glucanase and its deletion mutant lost the ability to form biofilm[133,134]. Thus, it is 
important to determine whether this protein contributes to AMB and other antifungal drug resistance. 
Furthermore, another study has demonstrated that adding EVs to the C. tropicalis culture increased the 
thickness of the biofilm and its metabolic activity under the treatment of fluconazole and caspofungin[135]. 
Still, the fungal viability was only increased in the caspofungin group[135]. Additionally, an antifungal drug, 
turbinmicin, which inhibits the vesicle trafficking pathway in fungi, impaired C. albicans’ EVs delivery to 
the biofilm matrix and increased the fluconazole susceptibility in the [(sodium 3 ′-[1- 
(phenylaminocarbonyl)- 3,4- tetrazolium]-bis (4-methoxy6-nitro) benzene sulfonic acid hydrate)] (XTT) 
assay[136,137]. The vesicle trafficking pathway inhibition by turbinmicin is due to the binding of a protein, 
Sec14 (yeast phosphatidylinositol transfer protein), and the hindrance of the accumulation of Snc1 
(Synaptobrevin homolog 1) in the buds of the plasma membrane[137]. However, the addition of C. albicans-
derived EVs restored the resistant effect[136]. This implies that the addition of EVs may supplement the 
required protein that contributes to antifungal drug resistance or vesicle trafficking in fungi. However, 
further investigation of the EVs’ content is needed. Altogether, these experimental results can indicate the 
compelling role of fungal-derived EVs in promoting antifungal drug resistance, especially via biofilm 
formation.

FUTURE DIRECTION AND CHALLENGES OF EV RESEARCH IN THE FIELD OF UTIS

It is still crucial to explore the role of EVs and the content derived from uropathogens during UTIs. Many
research gaps or directions remain to be discovered. Until this stage, almost all studies focused on the
protein content inside EVs derived from uropathogens instead of lipids, RNA, and DNA. In the future,
researchers can study DNA and RNA content in EVs, and discover if there are any urinary EV biomarkers
specific to certain types of uropathogens during UTIs. Moreover, they can investigate the potential
molecules or chemicals that can act as EV inhibitors. One method is to focus more on the EVs’ biogenesis in
microbes, especially gram-positive bacteria. Recent studies have proposed that the disruption of the
peptidoglycan layer caused by the action of prophage promotes EV formation in gram-positive
bacteria[138,139]. Thus, it can be a direction for the scientists to find which key components control the above
pathway and inhibit the EV formation. In addition, testing for any synergistic antimicrobial effects when
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using the antimicrobial drug in conjunction with the EV inhibitors is also an important research direction. 
However, the EV inhibitor candidates should mainly target the microbes rather than the human cells. If no 
such inhibitor is found, a more feasible method is to develop a small interfering RNA drug that targets the 
pathogenic genes’ expression corresponding to their protein production. Finding a common and consensus 
target in EVs of bacteria and fungi is better for overcoming multi-species UTIs.

Nevertheless, some challenges exist when scientists and clinicians explore the above research direction. The 
challenge primarily lies in identifying specific biomarkers, as there is no standardized method to isolate and 
purify the EVs. At this stage, there are lots of EV isolation and purification methods available, for example, 
size-exclusion chromatography (qEV columns, a product from Izon Science Limited for performing Size 
exclusion chromatography), precipitation (ExoQuick and ExoQuick Ultra), iodixanol gradient 
ultracentrifugation (Optiprep), and affinity-based capture method[140,141]. However, different EV isolation 
and purification methods will co-isolate the impurities, for example, Tamm Horsfall protein (THP) in urine, 
which entraps EVs and interferes with RNA extraction and miRNA quantification[142-144]. Also, studies have 
shown that THP is a highly glycosylated protein, which can mask the signal of other glycosylated proteins 
during mass spectrometry proteomic analysis[145]. Furthermore, different centrifugation methods and 
parameters will affect the RNA concentration[146]. This may cause bias when examining the abundance of 
RNA biomarkers in urine during UTIs. Notably, unlike EVs derived from human cells, the distinct 
biomarker of EVs from many pathogens has not yet been discovered and confirmed, although some studies 
propose biomarkers for specific pathogens, for example, Sur7 in EVs of C. albicans and the Hsp70 domain 
in nine fungal species[147,148]. This further complicates the identification procedure for EV sources. 
Collectively, more research efforts should be made to tackle the above challenges.

CONCLUSION
In summary, EVs derived from bacteria and fungi play a significant role in almost every aspect of the 
pathogenesis of UTIs, including colonization, invasion, immune modulation, immune evasion, and host 
environmental modulation. They carry different biomolecules that facilitate their persistence, survival, and 
infection in the urinary system. In addition, given the increasing recognition of the defensive roles of host-
derived EVs during infection, scientists should deeply investigate whether there are any potential 
biomarkers or therapeutic targets for UTIs, rather than focusing solely on pathogen-derived EVs. With a 
greater understanding of the roles and mechanisms of EVs derived from uropathogens and their hosts, 
microbiologists and clinicians may identify new therapeutic directions, thereby mitigating the global 
problem of drug-resistant UTIs.
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