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Abstract In hypersonic boundary layers, the optimal disturbance is notably caused by normal-

mode instabilities, such as Mack second mode. However, recent experimental and numerical efforts 

have demonstrated the dominance of nonmodal growth in hypersonic flows with the presence of 

moderate nose bluntness. In this study, resolvent analysis and parabolized stability equation anal-

ysis are performed to investigate the instabilities over a blunt-tip wedge. Main parameters include 

Mach number 5.9, unit Reynolds number 91.5 � 106 /m, half wedge angle 5�, and nose radii ranging 
from 2.54 mm to 15.24 mm. Two novel growth patterns of travelling waves are identified to com-

pete, whose nature is the intersection of the energy gain of optimal and sub-optimal disturbances. 

Pattern A with large spanwise wavelengths has the signature of slow energy amplification over a 

long distance which concentrates in the entropy layer. By contrast, pattern B with relatively small 

spanwise wavelengths presents rapid transient growth inside the boundary layer. A systematic study 

is performed on the growth/attenuation mechanism of disturbance patterns and the effects of wall 

temperature and nose radius. Wall cooling is found to be an alternative control strategy aimed at 

nonmodal instabilities. The receptivity to slow acoustic waves is considered when the effect of blunt-

ness is studied. An estimated amplitude response favorably reproduces the reversal-like phe-

nomenon. The lift-up/Orr mechanism analysis provides an explanation of energy growth for 

nonmodal responses.
� 2025 The Author(s). Published by Elsevier Ltd on behalf of Chinese Society of Aeronautics and 

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ 

licenses/by-nc-nd/4.0/). 
1. Introduction 

The prediction and control of laminar-turbulent transition of 
boundary layers are long-standing challenges for the design 
of hypersonic vehicles. The transition can result in an abrupt 

increase of skin friction and heat flux and thereby impair the 
performance of hypersonic vehicles.1 Therefore, accurate tran-
sition prediction and effective control of the transition onset 
are of great importance. In a realistic flight environment, the
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freestream disturbances are usually of low amplitude, under 
which the transition over configurations with a sharp leading 
edge tends to be due to the exponential growth of unstable 

normal modes inside the boundary layers. Common normal 
modes usually include the Tollmien–Schlichting mode, the first 
mode, and the second mode for low-speed, supersonic, and 

hypersonic boundary layers, respectively.2–4 Generally, the 
leading edge of high-speed vehicles can be artificially blunted 
to reduce the nose heat transfer. The bluntness would give rise 

to a detached bow shock and an entropy layer with a strong 
entropy gradient consequently. The entropy layer reduces the 
local Reynolds number at the boundary-layer edge and stabi-
lizes the boundary layer.5,6 The appearance of the entropy 

layer may also affect the transition mechanism of the bound-
ary layer. As reported by the hypersonic wind-tunnel experi-
ment,7 the transition onset would first move downstream 

with the increment of the nose radius, and then upstream when 
the nose radius exceeds a threshold value. This phenomenon is 
called the ‘transition reversal’. The downstream movement of 

the transition onset qualitatively agrees with the result of sta-
bility analysis,8,9 which shows that the second mode is highly 
stabilized as the nose radius increases.7,10 Moreover, the newly 

generated instability, i.e., the entropy layer mode with the 
appearance of bow shock has been reported to be insignificant 
in triggering the transition due to its low growth rate and nar-
row growth region near the leading edge.6,11–14 

Despite the fact that the ‘transition reversal’ phenomenon 
was first reported 40 years ago,7 the reason behind it remains 
a debate. Recently, the nonmodal growth has been considered 

potentially responsible for the transition reversal, where the 
modal disturbances are relatively weak to trigger the transition 
at the experimental onset location.15,16 According to the resol-

vent analysis and direct numerical simulation conducted by 
Paredes et al., 15,17–20 the nonmodal disturbance inside the 
entropy layer can further penetrate the boundary layer and 

eventually cause the transition. Hartman et al.21 investigated 
the nonlinear breakdown process on a blunt cone. It is indi-
cated that when the linear unstable oblique waves initiated in 
the entropy layer possessed an appropriate initial amplitude, 

they would lead to a rapid transition before the instability 
region of the second mode. Moreover, schlieren images of 
the inclined structure signature of nonmodal disturbances were 

reported by the experiment of Kennedy et al.,22,23 which high-
lighted the critical role of nonmodal instabilities. More recent 
research of instabilities over Ogive-Cylinder models24–26 

reported three disturbance patterns: rope-like, elongated, and 
wisp-like structure disturbances corresponding to the second 
mode, the first mode, and the disturbance inside the entropy 
layer, respectively, accompanying with the increase of nose 

bluntness. However, with the perturbation imposed down-
stream of the bow shock, direct numerical simulation pre-
sented a monotonous delay of the transition onset as 

bluntness was increased. In contrast, considering the free-
stream receptivity process by introducing forcings upstream 
of the bow shock, the importance of non-Mack-mode distur-

bances was also reported in hypersonic flow over blunt flat 
plates beyond the critical reversal nose radius.27 The unstable 
first or second mode is generated by a resonance process due 

to the synchronization of the phase speed of discrete modes.3 

In general, the first and second modes correspond to signals 
with physical frequencies of tens and hundreds of kilohertz, 
respectively. In hypersonic flows over increasingly blunted 
models, the most energetic disturbance presents a shift from 
high-frequency bands toward low-frequency ones,15,24 which 
might imply the significance of the first-mode or nonmodal 

instabilities.24 In the noisy wind-tunnel conditions, the distur-
bance in the incoming freestream is dominated by the slow 
acoustic wave,28 which has been identified in wind-tunnel 

experiments29–32 and widely recognized in numerical simula-
tions3,4,33 and applied in improved transition prediction meth-
ods.34,35 The acoustic wave originates mostly from the acoustic 

radiation of the nozzle-wall turbulent boundary layer. Thus 
the receptivity to the slow acoustic wave is considered when 
investigating the bluntness effect. 

Despite the above reviews regarding the significant role of 

nonmodal disturbances, the distribution patterns of different 
optimal disturbances (streaks, oblique waves, and planar 
waves) and their dependence on external factors, such as wall 

temperature and bluntness, remain scarcely discussed and 
poorly understood. The appearance of the most amplified dis-
turbances in either the entropy layer or the boundary layer 

eventually results in different physical mechanisms of transi-
tion to turbulence. The information about the wall-normal 
locations of optimal disturbances would benefit the proposal 

of possible control techniques as well. Therefore, it is funda-
mentally crucial to determine in which region the most ener-
getic disturbance undergoes energy amplification. In this 
paper, a resolvent analysis of a blunt wedge flow is performed 

to reveal the strongest response to external forcings. In the lin-
ear instability stage, the resolvent analysis has been proven by 
the authors to have an equal accuracy as the direct numerical 

simulation.36 Meanwhile, a modal Parabolized Stability Equa-
tion (PSE) analysis is employed to reveal the region of normal-
mode instabilities. The classical Orr and lift-up nonmodal 

growth mechanisms will be examined to interpret how the non-
modal instabilities are amplified in the entropy/boundary 
layer. 

Another noteworthy issue is the control of nonmodal dis-
turbances over such blunted models. Wall manipulations, such 
as acoustic metasurfaces implemented by porous coatings, 
have been confirmed by the authors to effectively suppress 

the second-mode instability.36–39 As for the wall cooling effect, 
its suppression on the first mode and destabilizion on the sec-
ond mode have been illustrated both in early stability analy-

sis40–42 and recent energy source analysis.43 It is found that 
wall cooling stabilizes the first mode by weakening the Rey-
nolds thermal stress and dilatation fluctuations. Meanwhile, 

wall cooling destabilizes the second mode by producing a 
new, active zone of wall-normal internal energy transport 
beneath the second generalized inflection point. The effects 
of local heating and cooling on the nonlinear and breakdown 

stages are systematically reported by Zhou et al.44 For control 
strategies for crossflow mode induced by generalized inflection 
point of spanwise profiles, Nie et al.45 indicated that a flat pres-

sure distribution and a short leading-edge flow acceleration 
zone are beneficial for controlling cross-flow instabilities. 
However, to the best knowledge of the authors, rare attention 

has been paid to controlling the nonmodal instability over 
moderately or largely blunted models. Obviously, it is of engi-
neering significance to control the dominant nonmodal insta-

bilities over blunt bodies. A relevant and inspiring study by 
Tempelmann et al.46 on swept plate models suggested that wall 
cooling could stabilize crossflow modes while destabilizing dis-
turbances of nonmodal nature. Regarding transient growth in
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compressible boundary-layer flows, the wall temperature effect 
was studied on the optimal disturbances over a flat plate47 and 
a sphere.48 The literatures reported that wall cooling could 

destabilize the low-Mach-number boundary layer. Neverthe-
less, a detailed energy analysis from the transient growth 
mechanism is lacking and necessary. The eligibility of the wall 

cooling strategy merits further considerations for nonmodal 
instabilities over the blunt wedge, and the control mechanism 
needs to be comprehended. Currently, it is well-recognized that 

wall cooling would stabilize the first mode. The energy analysis 
of our previous work43 indicated that the stabilization mecha-
nism is highly related to the mean shear reduction. In terms of 
the concerned nonmodal disturbances, the dominant compo-

nent appears to be the temperature perturbation.16 Therefore, 
it will be of further interest in this paper to evaluate the effect 
of wall cooling or heating as a potential controlling technique 

for nonmodal instabilities over blunt bodies. 
This paper is intended to deepen the understanding of the 

characteristics of modal and nonmodal instabilities in hyper-

sonic flows over blunt bodies. It is expected to throw light 
on the effects of wall temperature, nose radius, and the under-
pinning transient growth mechanism. The resolvent analysis, 

parabolized stability equation, and direct numerical simulation 
are employed. The optimal responses inside the entropy layer 
or boundary layer are systematically examined. As for the 
effect of bluntness, only receptivity and linear growth stages 

are investigated and discussed, while nonlinear interaction 
and transitional stages will be studied in the future. This paper 
is organized as follows: Section 2 provides the investigated 

model, the parametric setup, and the numerical methods for 
base flow calculation and stability analysis. Section 3 shows 
the results and discussions, which are divided into 5 parts. 

The base flow over the blunt wedge is presented in Section 3.1. 
The distribution patterns of the optimal responses with differ-
ent frequencies and spanwise wavenumbers are depicted in 

Section 3.2. Subsequently, the effects of wall cooling and 
bluntness are examined in Sections 3.3 and 3.4, respectively. 
The Orr and lift-up mechanisms are explored from the perspec-
tive of energy and vorticity evolutions in Section 3.5. Finally, 

the main findings are summarized in Section 4. In particular, 
the appendix section provides an example for understanding 
the competition among different types of disturbances, which 

are manifested as the optimal response and a series of sub-
optimal disturbances. 
2. Model, flow condition and analysis tool 

2.1. Geometric configuration and flow conditions 

The freestream flow condition investigated here follows that by 
Paredes et al.16 at Mach number 5.9 and a unit Reynolds num-

ber of 91.5 � 106 /m. The freestream static and total tempera-
tures are 76.74 K and 611 K, respectively. The baseline wall 
temperature is 300 K with Tw/Tad = 0.57, where the subscripts 
w and ad refer to quantities at the wall and under the adiabatic 

wall condition, respectively. Here, Tad is the laminar recovery 
temperature. The studied model is a blunt wedge with a 5�
half-wedge angle. Three nose radii (Rn*) are studied, including 

2.54 mm, 5.08 mm, and 15.24 mm. The asterisk represents 
dimensional quantities. Based on the experimental data,16,49 

the reversal Reynolds number based on the nose radius is 
ð

around 1 � 106 for the cone. Thus, the radii 2.54 mm and 
15.24 mm can be regarded as moderate and large blunted 
cases, respectively. The grid independence is verified and 

shown in Appendix A, which demonstrates the results of both 
the base flow and resolvent analysis are converged under the 
considered grid resolution. 

2.2. Computational methods 

The computational and theoretical approaches are similar to 

the framework in our previous publication. 50 The same 
numerical codes are adopted. It seems unavoidable that 
numerics for baseflow calculation, resolvent analysis, normal-

mode stability analysis, the definition of energy norm, etc. look 
similar. The unchanged methodology has been found to be 
reliable in reaching the research objective. The governing equa-
tion for the calculation of base flow is the compressible Navier-

Stokes equation in a conservation form: 

@U 

@t 
þ 
@F 

@x 
þ @G 

@y 
þ 
@H 

@z 
¼ 0 ð 1Þ

where U  =  [q, qu, qv, qw, qe]T is the vector of conservative 
variables, the superscript ‘‘T” denotes the transpose, and F, 
G, and H are vectors of fluxes. Here, q represents density, 
and u, v, and w are the velocities in the x, y, and z directions, 
which denote streamwise, wall-normal, and spanwise direc-
tions, respectively. Meanwhile, a body-fitted orthogonal coor-

dinate system is constructed, which is represented by (n, g, z). 
Total energy per unit mass is denoted by e. The perfect gas 
model is employed with a constant specific heat ratio of 1.4. 
Besides, the dynamic viscosity is calculated using Sutherland’s 

law, and the thermal conductivity coefficient is calculated 
based on a constant Prandtl number 0.72. The freestream vari-
ables are utilized for non-dimentionalization except that the 

pressure is by q�
1u�1u

�
1 (the subscript 1 represents freestream 

quantities), and the reference length is set to 1 mm.

In general, the steady base flow is first calculated, and sub-
sequently the resolvent and Parabolized Stability Equation 
(PSE) analyses are performed based on the converged base 

flow. For a time-stationary flow, the vector of conservative 
variables can be decomposed into the base-flow and perturba-
tion parts: 

U x; y; z; tð Þ ¼ U
�

x; yð  Þ þU0 x; y; z; t ð Þ 2Þ
where the overbar�and prime 0 represent base-flow and per-
turbed variables, respectively.

2.2.1. Base flow and slow acoustic wave model 

The base flow is calculated using an in-house multi-block par-
allel finite-volume solver called PHAROS, which has been suc-

cessfully employed in various configurations, such as the 
compression corner, the double wedge, and the double cone 
models. 51–53 The inviscid flux is calculated by MUSCL scheme 
and a modified Steger-Warming scheme, and the second-order 

central difference scheme is utilized for viscous flux discretiza-
tion. Pseudo-time advancing is achieved by the implicit line 
relaxation method. More detailed information for the 

PHAROS can be found in the Ref. 53. In terms of the bound-
ary condition, the y = 0 boundary of the computational 
domain is set to be symmetric, the upper boundary is farfield, 

the right boundary is outflow via extrapolation, and the wall
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boundary is no-slip and isothermal or adiabatic, depending on 
the case. 

To explore the effect of nose bluntness (Section 3.4), the 

receptivity process to free stream slow acoustic waves is con-
sidered. The slow acoustic wave is added to the freestream 
boundary of the computational domain. The dimensionless 

fluctuation of the plane slow acoustic wave is13 

q0 

u0 

v0 

p0 

26664 

37775 ¼ 

A1Ma2 1
�A1Ma2 1 

0 

A1 

26664 

37775ei ax�xt ð Þ þ c:c: ð3Þ

where A1 is the small amplitude of the freestream disturbance, 
x is the angular frequency, a is the streamwise wavenumber, 

and c.c. denotes complex conjugate. In this study, the incident 
angle of the slow acoustic wave is set to zero and the dispersion 
relation of is a ¼ x= 1� 1=Ma1ð Þ. In the simulation of the 

receptivity process, the three-stage third-order Runge-Kutta 
method is employed for time advancement.

2.2.2. Resolvent analysis for optimal disturbance 

Substituting Eq. (2) into Eq. (1) and neglecting non-linear high 
order terms yield the linearized Navier-Stokes equation: 

@U0 

@t 
þ @F

0 

@x 
þ @G

0 

@y 
þ @H

0 

@ z
¼ 0 ð4Þ

To examine the response to external forcings, consider a 

small amplitude forcing term f 0 added to the right-hand side 
of Eq. (4). Reformulating the governing equation, we obtain 

@U0 

@t 
¼ AU0 þ Bf0 ð5Þ

where A is the Jacobian matrix related to the base-flow vari-
ables, and matrix B constrains the forcing to be added at a cer-

tain location x = x0. The value of x0 is 20, except in 
Section 3.4 (where x0 = 40) to avoid the effect of the bow 
shock. In this study, the localized forcing is imposed to excite 
response from upstream regions, and thus it is of interest to 

observe how the disturbances of convective-instability nature 
are propagated downstream and amplified or attenuated. 
Thus, a constrained optimization problem will be solved with-

out modifying the Jacobian matrix A, which has been applied 
in our previous works.50,51,54 The harmonic assumption is 

made for a small-amplitude perturbation vector U0 

U0 x; y; z; tð Þ ¼  Û x; yð  Þ exp ibz� ixtð Þ þ  c: c: ð6Þ
where Û is the complex eigenfunction, b is the spanwise 
wavenumber. Similarly, the harmonic forcing can be written as 

f0 x; y; z; tð Þ ¼ f̂ x; yð  Þ exp ibz� ixtð Þ þ c:c: ð7Þ
Substituting Eqs. (6) and (7) into Eq. (5) gives 

Û ¼ RBf̂ 
R ¼ �ixI� Að Þ�1 

(
ð8 Þ

which indicates the relationship between the external forcing 
and the linear response of the system. Here, the identity oper-
ator is represented by I. 

In the resolvent analysis, the maximal amplification of the 
energy, i.e. the optimal gain r2 , is targeted. The optimal gain 
#

�

is defined in the parametric space (b, x) by the energy ratio 
between the output responses and the input forcings: 

r2 b;xð  Þ ¼ max 
f̂ 

k Û kE 
k Bf̂ k E

ð9Þ

Here, Chu’s energy55 is utilized for the calculation of the 

energy norm as 

k Û kE ¼X U
yMÛdxdy ð10 Þ

where X represents the computational domain for resolvent 
analysis, the superscript y refers to the conjugate transpose, 
and M is the weight operator given by Bugeat et al.56 The 

dimensionless expression of Chu’s energy at a local station is 
given by 

EChu xð  Þ ¼ 1 

2 

Z 1 

0 

q
�
u02 þ v02 þ w02� �þ T

�

cMa2 1 q
� q

02 þ q
�

c  c� 1ð  ÞMa21 T 
� T02

"
dy

ð11Þ
The three terms on the right-hand side of Eq. (10) denote 

fluctuations of kinetic energy, potential energy, and internal 

energy, respectively. The computer code utilized for resolvent 
analysis here has been well validated by our previous works 
and detailed in Refs. 50,51. 

2.2.3. Stability analysis 

To examine the normal-modal instability feature of the opti-
mal response, Linear Stability Theory (LST) and PSE analyses 

are performed. Specifically, LST provides the initial eigenfunc-
tion profiles to PSE for spatial marching, which gives the evo-

lution of the modal instability. In PSE, the disturbance w0 is 
expressed by

w0 x; y; z; tð Þ ¼  ŵ x; yð  Þ exp i

Z x 

x0 

a0dex þ ibz� ix t

�
ð12Þ

where the vector w ¼ q; u; v;w;T½ �T , ŵ and a0 are the shape 
function and the complex streamwise wavenumber, respec-
tively, and x0 is the initialization location of PSE marching.

Substituting Eq. (12) into Eq. (4) gives rise to the PSE as 50 

C0 þ C1ð Þŵ þ C2 

@ŵ 

@x 
þ @a 
@x 

C3 ŵ ¼ 0 ð13 Þ

The effects of the locally parallel flow, the non-parallel base 

flow, the non-local shape function, and the streamwise-varying 
wavenumber are absorbed in the base-flow-related operators 
C0, C1, C2, and C3, respectively. An eigenvalue problem is 

solved in LST when keeping only the local operator C0 in 
Eq. (12). In this study, PSE is initialized by mode S, which 
may evolve into the unstable first mode downstream, 
depending on the flow parameters such as the input fre-

quency.4 The calculation is performed by our in-house code 
CHASES, which has been validated compared with both 
theoretical 57–59 and DNS 50,51,54 results. The details of 

numerical methods can be found in these references. 

3. Presentation of results 

In this section, the results of the numerical simulation and sta-
bility analysis will be presented and discussed. The base flows 
for the considered three nose radii are shown in Section 3.1. 

The characteristics of different optimal disturbances will be



Optimal disturbances and growth patterns in hypersonic blunt-wedge flow 5
focused on in Section 3.2 for a moderate bluntness Rn*=2.54-
mm with Tw/Tad = 0.57. Following that, the effects of wall 
temperature and bluntness will be examined in Sections 3.3 

and 3.4, respectively. Finally, the transient growth mechanism 
will be analyzed in Section 3.5. 

3.1. Base flow 

The solid and dashed black lines mark the locations of the 
boundary layer edge and the entropy layer edge, respectively. 

The contours of the Mach number for cases with different 
nose radii are shown in Fig. 1 with Tw/Tad = 0.57. The crite-
rion to determine the boundary layer edge is set to the location 

where ht/ht,1=0.995, where ht is the total enthalpy. The 
entropy-layer edge is defined as the wall-normal location where 
the entropy increment equals 0.25 times the entropy increment 
at the local wall. The entropy increment is defined as 

DS� ¼ c�pln T
��=T

��
1

� �
� R�ln p

��=p
��
1

� �
ð14Þ 
Fig. 1 Contours of Mach number for blunt wedges. The solid 

and dashed black lines mark the locations of the boundary layer 

edge and the entropy layer edge, respectively. 
where cp* is the specific heat at constant pressure, and R* is the 

specific gas constant. The entropy-layer effect over a wedge60 is 
stronger than that over a cone13 under the same freestream 
conditions, as the streamline keeps nearly parallel to the wall 

downstream.61 As shown in Fig. 1, as the nose radius is 
increased, the entropy layer region is enlarged. According to 
the stability analysis,8 the first/second mode usually appears 
downstream, and the entropy-layer mode emerges upstream. 

The latter has a relatively low growth rate, which is not likely 
to dominate the transition process.60 On the other hand, the 
enhanced entropy layer may have an effect on the nonmodal 

disturbance generated herein. The effect of bluntness on the 
optimal disturbance will be discussed in Section 3.4. 
3.2. Features of optimal disturbances 

After the converged base flow is obtained, the resolvent anal-
ysis is performed. The characteristics of the optimal responses, 
including streaks, plane, and oblique traveling disturbance, 

will be discussed in this section. 
Fig. 2 shows the plots of the optimal gain for different fre-

quencies and spanwise wavenumbers and the N-factor distri-

butions along the x direction for typical optimal oblique 
disturbances and plane waves. The N-factor is defined by 
N ¼ 0:5 ln  EChu=EChu;0ð Þ, where EChu;0 is measured at x = x0 
and N is set to be 0 at x0. For brevity, (0.3, 0) represents the 
optimal response for a Fourier mode with x = 0.3 and 

b = 0, and similarly for other optimal disturbances. Generally, 
in Fig. 2(a), the maximum energy gain exhibits a monotonous 
decreasing trend as the frequency is increased. An interesting 

finding is that as b increases, the optimal response switches 
from pattern A (open symbols) to pattern B (solid symbols). 
The former pattern is mainly distributed inside the entropy 

layer between the entropy-layer edge and boundary-layer edge, 
while the latter shows its signature inside the boundary layer. 
As shown in Fig. 2(b), the N-factor of the pattern-A response 
(including plane waves and oblique waves when b is relatively 
small) grows at a moderate rate till the end of the computa-
tional domain. In contrast, pattern-B responses with large b 
undergo a rapid transient growth immediately downstream 

of the forcing location, followed by a decay process. Note that 
the pattern-B waves were not identified in some similar studies 
on the optimal disturbances such as by Paredes et al. 16 This is 

probably due to the different definitions of the energy gain. 
Paredes et al. 16 used the ratio of energy at two different 
streamwise locations as the optimization object function, 
whereas the present work considers the energy integrated over 

the whole domain (see Eqs. (9), (10)). The former definition 
may miss the possible energy overshoot, which was also real-
ized by Paredes et al.15 The energy overshoot may occur over 

configurations such as hypersonic blunt forebodies, 19 which 
are manifested as pattern-B waves in this paper. In this study, 
the optimal response pattern A and pattern B, are the products 

obtained from a selection process. In detail, the maximum 
energy gain is sought for different b at a fixed frequency. 
Two different patterns exactly appear in the respective entropy 

and boundary layers, corresponding to small- and large-
wavenumber responses, respectively. The natural external dis-
turbance is a combination of broadband frequencies and var-
ious wavenumbers in wind tunnels.62 In realistic conditions, 

these patterns usually coexist subject to broadband incoming
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Fig. 2 (a) Optimal gains for different frequencies and spanwise wavenumbers (open symbols represent pattern A and solid symbols 

represent pattern B), and (b) N-factor distributions for typical optimal disturbances along x direction. 
disturbances. They can be distributed in different regions 
(boundary layer and entropy layer). 

The turning of the gain curve in Fig. 2(a) as the state tran-

sitions from pattern A to pattern B may indicate a competition 
of different growth patterns. To confirm this deduction, the 
Arnoldi iteration method is further employed in the resolvent 

analysis to find a series of sub-optimal disturbances. An illus-
tration of the competitive physical image between different 
growth patterns is shown in the Appendix B. The turning point 

of the optimal gain curve in Fig. 2(a) is actually the intersec-
tion of the gain between optimal and the first sub-optimal 
responses. For brevity, only the optimal response is discussed 

in the main body. 
When the nose bluntness exceeds a threshold, modal insta-

bilities tend to be too weak to trigger the transition, and tran-
sient growth of low-frequency disturbances is of particular 

significance.15 Therefore, for blunt wedges with moderate or 
large nose radius, high-frequency disturbances are less consid-
ered. In fact, no pronounced second-mode instabilities are 

observed in the case considered here. In the following analysis, 
three kinds of representative forcings and associated optimal 
responses of the system, i.e., streaks, planar waves, and oblique 

waves, will be presented and discussed. The contributions of 
different parts of energy are quantified based on Chu’s energy. 
For example, the contribution of the streamwise velocity fluc-

tuation is evaluated by the indicator Iu 

Iu xð  Þ ¼
Z 1 

0 

q
�
u02
�� �

dy=2EChu ð15Þ

Similar indicators can be obtained for the fluctuations of 

the wall-normal velocity, the spanwise velocity and thermody-
namic quantities. 

Fig. 3 provides contours of streamwise temperature and 

velocity fluctuations of streaks (0, 2), which are mainly dis-
tributed inside the boundary layer. The input eigenfunction 
profiles and I indicators of Chu energy for streak (0, 2) are 

shown in Fig. 4. It is found that the main component of the 
forcing is constituted by the spanwise forcing. In terms of 
the downstream response, the streamwise velocity fluctuation 
(Iu) grows rapidly as it evolves downstream. A marginal contri-
bution comes from the temperature and density fluctuations. 
The transfer of the dominant component indicates a classical 
lift-up mechanism, which will be discussed in detail in 

Section 3.5. 
As shown in Fig. 5, the evolution of the plane wave (0.45, 0) 

shows a different signature from that of the streaks, which is a 

representative pattern-A response and is mainly distributed 
inside the entropy layer. Similar growth patterns can be 
obtained for the optimal response when b is small, such as 

(0.6, 1) and (0.6, 2), as indicated by the N-factor in Fig. 2(b). 
The prominent role of disturbance inside the entropy layer 
for moderately blunt models was also reported in the experi-

ments for ogive-cylinder25 and blunt cones.22 However, as 
mentioned above, the blunt wedge configuration encounters 
a stronger entropy layer, and the entropy swallowing phe-
nomenon present in the cone model moves downstream in 

the wedge model.61 This difference may delay the disturbance 
evolution inside the entropy layer to penetrate the boundary 
and, in turn, affect the transition process. Fig. 6 plots the input 

eigenfunction profiles and I indicators of Chu energy for the 
plane wave (0.45, 0). The forcing component in the streamwise 
velocity equation constitutes the main component of the input 

forcings. The streamwise velocity response experiences a grad-
ual decay downstream, while the internal energy components 
(temperature and density fluctuation) continue to grow and 

become dominant. Meanwhile, the tilting structure may indi-
cate the presence of the Orr mechanism, which will be dis-
cussed in detail in Section 3.5. 

As for the other pattern-B response (oblique waves when b 
is large enough), the streamwise velocity and temperature fluc-
tuations are mainly distributed inside the boundary layer, as 
shown in Fig. 7. The input forcing profiles and I indicators 

of Chu energy for Fourier mode (0.3, 7) are shown in Fig. 8. 
It appears that the distribution resembles that of the streak 
(0, 2), indicating a possible unsteady-streak signature for 

(0.3, 7). This kind of optimal response undergoes rapid growth 
and attenuation near the input forcing location, which has 
rarely been reported in previous optimal disturbance analyses 
on the blunt cone models.16,20 One possibly similar observa-

tion is the disturbance reported by Hartman et al.21 using
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Fig. 3 Contours of normalized (a) temperature and (b) streamwise velocity perturbations of the optimal response for streaks (0, 2). The 

solid and dashed black lines mark the locations of the boundary layer edge and the entropy layer edge, respectively. 

Fig. 4 (a) Input forcing profiles and (b) I indicators of Chu energy of optimal response for streaks (0, 2). 

Fig. 5 Contours of normalized (a) temperature and (b) streamwise velocity perturbations of optimal response for plane wave (0.45, 0). 

The solid and dashed black lines mark the locations of the boundary layer edge and the entropy layer edge, respectively. 
direct numerical simulation, which shows growth near the 
leading edge before the appearance of the second mode. The 

elongated structure (see Fig. 7) inside the boundary layer 
may indicate the occurrence of a modal instability. To clarify 
this point, the integrated N-factor is obtained by PSE that is 

initialized by the upstream stable mode S (normal-mode
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Fig. 6 (a) Input forcing profiles and (b) I indicators of Chu energy of optimal response for plane wave (0.45, 0). 

Fig. 7 Contours of normalized (a) temperature and (b) streamwise velocity perturbations of optimal response for oblique wave (0.3, 7) 

(pattern B). The solid and dashed black lines mark the locations of the boundary layer edge and the entropy layer edge, respectively. 

Fig. 8 (a) Input forcing profiles and (b) I indicators of Chu energy of optimal response for oblique wave (0.3, 7). 
solution). The modal PSE result manifests a purely modal 

instability evolution. Given that the linear PSE only offers a 
relative growth in spatial analysis without amplitude 
information, the N-factor curve of PSE is shifted to match 

that of resolvent analysis. This operation enables a comparison 
of the modal evolution with respect to the curve slope,
i.e., the energy growth rate. As shown in Fig. 9, a good agree-

ment is reached for both N-factor and fluctuation profiles 
between resolvent analysis and PSE after an initial transient 
growth region when b is not large. Thus, the energy attenua-
tion of pattern-B waves is associated with the stable normal 
mode.
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Fig. 9 Comparison of (a) integrated N factor and (b) fluctuation temperature profile for (0.3, 5) at x = 50 (normalized by its maximal 

value inside the boundary layer) obtained by PSE and resolvent analysis. 

Fig. 10 Optimal gains for different frequencies and spanwise 

wavenumbers for Ma = 5.9 flow over the blunt wedge with 

Rn = 2.54 mm (solid symbols represent pattern A and hollow ones 

represent pattern B). Solid lines represent cases for adiabatic wall 

and dashed lines represent cases for Tw/Tad = 0.57. 
In summary, the evolution patterns of optimal streaks, 
plane waves, and oblique waves are studied using resolvent 
analysis for a moderate bluntness Rn*=2.54 mm with Tw/ 
Tad = 0.57. The energetic region of the resolvent response 

and the associated N-factor and optimal gain indicate the exis-
tence of different growth patterns. These patterns are compet-
itive to be the most energetic one under a certain combination 

of x and b, which may contribute to a competitive routine in 
triggering the transition. However, which routes (patterns) will 
finally stand out and play a dominant role in triggering the 

transition further depends on the receptivity process63,64 of 
the disturbance in the Fourier space, as well as the nonlinear 
instability stage. 

3.3. Effect of wall temperature 

In this subsection, the adiabatic-wall case is further considered. 
The stabilization and destabilization effects of wall cooling on 

the first and second modes, respectively, have been recently 
explained from the perspective of energy analysis.43 However, 
the effect of wall cooling on hypersonic flows where nonmodal 

instability is pronounced remains less understood fundamen-
tally. As for a disturbance of nonmodal nature, wall cooling 
was reported to destabilize the disturbance in compressible 

boundary layers over swept flat plates,46 spheres,48 and flat 
plates.47 For the present hypersonic flow over a blunt wedge, 
Fig. 10 shows the optimal gain for different frequencies and 
spanwise wavenumbers for the adiabatic wall (solid line) and 

baseline cold wall (dashed line) cases. Compared with the 
cold-wall cases, the optimal gain is generally larger under the 
adiabatic condition. In particular, a peak (0.15, 1) arises with 

a low frequency and low spanwise wavenumber, whose opti-
mal gain exceeds those of the stationary streak, plane wave 
and other pattern-B oblique waves with the same frequency. 

Fig. 11 shows the contours of the normalized temperature 
and streamwise velocity perturbations for the optimal response 
(0.15, 1). The fluctuation is mainly distributed near the outer 

boundary layer, which resembles the contours of the first 
mode. The input forcing of the Fourier mode (0.15, 1) is shown 
in Fig. 12(a). The temperature fluctuation is dominant inside 
the boundary layer, which is different from the dominant w’ 
for the Fourier mode (0.3, 7) shown in Fig. 8. The evolution 

of the I indicator of (0.15, 1) indicates the importance of 
streamwise velocity and temperature perturbations, which 
reach around 0.6 and 0.2 downstream, respectively. 

To evaluate the role of the modal instability around the 

peak gain in Fig. 10, the PSE analysis is employed. As shown 
in Fig. 13, the initial transient growth stage is not captured by 
PSE initialized by mode S. However, in the second-stage 

growth, a good agreement is reached for both N-factors and 
fluctuation profiles between resolvent analysis and PSE, which 
indicates the presence of the unstable oblique first mode evolv-

ing from mode S. This comparison confirms the appearance of 
the first mode with a low frequency and low spanwise 
wavenumber under the adiabatic wall condition. 

Fig. 14 provides the N-factor of the streak, the plane and 
the oblique optimal disturbances considering three different
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Fig. 11 Contours of normalized (a) temperature and (b) streamwise velocity perturbation components of optimal response for Fourier 

mode (0.15, 1) under adiabatic wall. The solid and dashed black lines mark the locations of the boundary layer edge and the entropy layer 

edge, respectively. 

Fig. 12 (a) Input forcing profiles and (b) I indicators of Chu energy of optimal response for Fourier mode (0.15, 1) under adiabatic wall. 

Fig. 13 Comparison of (a) integrated N-factors, and (b) fluctuation temperature profiles for (0.15, 1) at x = 100 (normalized by its 

maximal value inside the boundary layer) obtained by PSE and resolvent analysis.



Optimal disturbances and growth patterns in hypersonic blunt-wedge flow 11

Fig. 14 N-factor evolution of (a) streaks, (b) planar and oblique optimal waves with small b, and (c) oblique optimal waves with larger b 
along x. 
wall temperature conditions. Here, cases with a fixed frequency 
x = 0.3 (corresponding to 50 kHz) are selected, which 

correspond to a representative low frequency. It is indicated 
that wall cooling has nearly no effect on the plane wave while 
suppressing the transient growth of streaks and oblique waves, 
especially for lower b. When b increases and exceeds a critical 
value, the effect of wall temperature becomes minor for both 
optimal streaks and oblique waves.

The different effects of the wall temperature on the optimal 

disturbance can be attributed to their different growth pat-
terns, as shown in Section 2. Specifically, the optimal plane 
wave is mainly distributed in the entropy layer, while the wall 

cooling effect only changes the mean variables inside the 
boundary layer, as indicated in Fig. 15. Therefore, wall cooling 
only affects the optimal oblique waves, which mainly lie inside 

the boundary layer and contain a pronounced temperature 
fluctuation. One special case is that the pattern-A response 
(0.3, 1) is located inside the entropy layer for the baseline cold 
wall, whereas the response switches to the growth pattern B 
Fig. 15 Mean (a) streamwise velocity and (b) temperature profile di

layer at n = 20. The solid and dashed black lines mark the locations o
(oblique wave inside the boundary layer) as the wall tempera-
ture increases, as shown in Fig. 14(b). This indicates that the 

optimal response pattern not only depends on b for a fixed fre-
quency but also may change with other parameters, such as the 
wall temperature. Consequently, wall cooling may serve as a 
potential control strategy for pronounced nonmodal distur-

bances over blunt bodies, which has rarely been mentioned 
before. 

3.4. Effect of bluntness 

The transition reversal for high-speed flows over blunt bodies 
was first reported in 1983.7 However, the physical mechanism 

behind it remains a debate currently. When the nose radius is 
approaching the reversal value, the modal instability has been 
confirmed to be of insufficient significance by linear stability 

analysis to trigger the transition, including the newly generated 
inflection instability arising from the entropy layer (entropy 
layer mode).11–13,60 However, the nonmodal disturbance inside
stributions near the wall, and (c) mean profiles outside boundary 

f the boundary layer edge and the entropy layer edge, respectively. 
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Fig. 16 N-factor distributions of optimal disturbance with different bluntness for (a) Tw/Tad = 0.57 and (b) Tw = Tad. 

Fig. 17 Contours of instantaneous dimensional pressure fluctu-

ations for (a) Rn* = 2.54 mm, (b) Rn* = 5.08 mm, and (c) 

Rn* = 15.24 mm.
the entropy layer has been recognized to be possible to pene-

trate the boundary layer and excite a strong instability.9,14,60 

Recently, the nonmodal disturbance in the entropy layer has 
shown an alternative oblique transition route when there is 
no considerable second modal growth.21,65 The nonmodal 

instability, when the nose radius exceeds a certain value, may 
provide a potential explanation for the transition reversal from 
the perspective of receptivity and linear instability. 

Fig. 16 provides a comparison of the N-factor of low-
frequency (e.g., x = 0.15) optimal oblique waves and station-
ary streaks with the same x and b yet different nose radii. The 
forcing location is fixed at x = 40 for all cases. Here, only 
pattern-B responses are displayed, because pattern-A 
responses lose their dominance as the increment of bluntness. 
These pattern-A responses correspond to no positive N-

factor in Fig. 16 for Rn*= 5.08 mm and Rn*= 15.24 mm. 
The unstable first mode (0.15, 1) gets suppressed as the incre-
ment of bluntness for both modal instability and transient 

growth, as shown in Fig. 16(b). For other oblique waves, the 
suppression effect of bluntness becomes weaker as b increases. 
Finally, the N factor of oblique waves can be increased with 

growing bluntness when b exceeds a critical value. However, 
in the meantime, the N factor is also smaller for a large b. 
To conclude, increasing bluntness can suppress or strengthen 

the optimal response, depending on the spanwise wavenumber. 
Moreover, optimal disturbances obtained by resolvent analysis 
here exhibit no visible reversal-related phenomenon for a cer-
tain combination of x and b with the increment of bluntness. 

An expected reversal-related result is that the N-factor 
increases as the nose radius varies from 2.54 mm to 5.08 mm 
then decreases as it further rises to 15.24 mm. This observation 

agrees with the observation by Aswathy Nair and Unnikrish-
nan,24 which reported no transition reversal phenomenon 
when the white noise is initialized downstream of the shock. 

The receptivity process provides the initial frequency and 
amplitude of the optimal responses at the forcing location. 
Considering this physical process, the effect of nose radii is 

revisited. The slow acoustic wave is added to the free stream 
to produce the response of the boundary layer. Note that only 
a representative single low-frequency (x = 0.15) forcing is 
adopted here with the same amplitude for blunt-wedge flows
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Fig. 18 Instantaneous pressure at (a) free stream and x = 40 along the wall for (b) Rn* = 2.54 mm, (c) Rn* = 5.08 mm, and (d) 

Rn* = 15.24 mm. 
with different nose radii. The corresponding physical fre-

quency is 25 kHz, which has shown its significance in the above 
resolvent analysis. This frequency magnitude also falls within 
the dominant frequency range of wind-tunnel experiments 

for blunt cones15 and Ogive-cylinders.25 For brevity, only adi-
abatic wall condition cases are displayed.

As indicated by Fig. 17, the free-stream slow acoustic wave 

first interacts with the bow shock, and then the resulting dis-
turbance penetrates the entropy layer and excites responses 
inside the boundary layer. The pressure history in the free 

stream and on the wall for three blunt wedges is displayed in 
Fig. 18. Here, t0* is the time when the statistical stationary 
process begins. In terms of the response at the forcing location, 
the amplitude of the pressure fluctuation at x = 40 becomes 

larger as the increment of nose bluntness. The Root Mean 
Square (RMS) of pressure at x = 40, normalized by its free-
stream value, is 0.554, 1.159, and 1.811 for Rn*=2.54 mm, 

Rn*=5.08 mm, and Rn*=15.24 mm, respectively. This indi-
cates a stronger receptivity process with an increase of nose 
radius, which may result from a stronger bow shock and 

thereby intensified shock-disturbance interaction. 
With the amplitude of disturbance obtained by the receptiv-

ity process, the initial forcing amplitude of optimal distur-

bances at x = 40 is replaced. Fig. 19(a) illustrates the 
normalized RMS of pressure fluctuations along the wall for 
different optimal disturbances. Here, the amplitude at 
x = 40 is obtained by the receptivity study, and the further 

amplitude evolution downstream is obtained from resolvent 
analysis (see Fig. 17(b)). Subsequently, the two amplitude ratio 
is multiplied to figure out the final normalized RMS with 

respect to the freestream value. Physically, Fig. 19(a) suggests 
the response magnitude under the same level of wind-tunnel 
noise in real-life situations. Compared with Fig. 17(b), as the 

increment of bluntness, the strength of the oblique wave 
(0.15, 7) upstream becomes comparable to the first mode 

(0.15, 1) downstream. Fig. 19(b) depicts the maximum RMS 
of pressure fluctuations in the computational domain among 
all the calculated Fourier modes for different nose radii, which 

can be seen in Fig. 19(a). The blue line is obtained from a non-
linear fitting procedure to show the data trend. It indicates that 
as increment of nose radius, the maximized root mean square 

of pressure decreases and then increases after bluntness 
exceeds its critical value. The experimental reversal Reynolds 
number based on the nose radius is around 1 � 106 .16 The 

resulting critical nose radius is about 10 mm. As a result, a 
qualitative agreement is reached in the data trend. The above 
observation may demonstrate the significance of nonmodal 
disturbances upstream when the modal components are sup-

pressed as the nose radius increases. Specifically, the oblique 
waves with relatively large spanwise wavenumber show their 
potential in triggering the transition rather than the suppressed 

first mode downstream for large bluntness cases. The strength-
ening of receptivity and transient growth of oblique waves 
upstream might provide some insights into the transition rever-

sal phenomenon observed in wind-tunnel experiments, which 
merits further research considering nonlinear-instability and 
breakdown stages. 

This section only provides the evolution of energy magni-
tude of optimal disturbances over the blunt wedge from a 
small to large nose radius. The parametric study may benefit 
a further investigation to fully understand the reason for the 

transition reversal phenomenon using a three-dimensional sim-
ulation of the complete stage. 

3.5. Orr/lift up mechanism analysis 

In this Section, two classical mechanisms of transient growth, 
i.e., Orr and lift-up mechanisms, are analyzed. Disturbances
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Fig. 19 (a) The normalized root mean square of pressure along 

the wall, and (b) the maximize root mean square of pressure 

fluctuations in the computational domain among all the calculated 

Fourier modes for different blunt wedges. Line in (b) represents 

the data trend from fitting. The experimental reversal nose-tip 

radius is about 10 mm. 

Fig. 20 Evolution of enstrophy ratios for Fourier modes (0, 2), 

(0.3, 3), and (0.3, 7). 
are amplified by Orr mechanism when they have streamlines 
tilted against the mean shear and become stronger when the 
base flow reorients them.66 The lift-up effect arises when 

streamwise vortices form streaky structures by displacing fluid 
particles in the wall-normal direction, which maintains their 
horizontal momentum.67 To quantify the intensity of the vor-

ticity transfer, the streamwise evolution of the integrated 
enstrophy ratios68,69 is analyzed, which is characterized by 

rl xð  Þ ¼  Xl=
P

iXi 

Xi xð  Þ ¼ R1 
0
-2 

i dy 

i ¼ x; y; z; l ¼ 1; 2; 3 

8><>: ð16Þ

where -x;-y, and -z represent the streamwise, wall-normal, 

and spanwise vorticity, respectively. Fig. 20 gives the inte-
grated enstrophy ratio for some representative combinations 
of x and b. Overall, these combinations show the same trend: 

the decrease of streamwise vorticity components and the 
increase of spanwise vorticity. Note that the transfer of vortic-
ity from the streamwise direction to the spanwise direction is 

associated with the lift-up mechanism. Among them, pattern-
B disturbances (0.3, 7) and (0, 2) nearly collapse onto the same 
curve, which probably indicates that (0.3, 7) shares the 

characteristics of unsteady streaks. Interestingly, the vorticity 
transfer of the pattern-A wave (0.45, 1) is weaker than the 
other optimal disturbances, which is characterized by a tardy 
vorticity transfer near the forcing location. This indicates 

that pattern-B responses possess a more efficient lift-up 
mechanism than pattern-A responses, which can also be seen 
in Appendix B. 

Fig. 21 depicts the streamwise, wall-normal, and spanwise 
vorticity components of the optimal pattern-A wave (0.45, 
1). The gradual change of the vorticity orientation indicates 

the existence of the Orr mechanism, where tilted vortices 
extract energy from the mean flow while being erected.46,70 

For incompressible flows, nonmodal growth due to the Orr 
mechanism is ascribed to the extraction of energy from the 

mean shear by conveying momentum along the mean momen-
tum gradient via the Reynolds shear stress.71,72 However, the 
energy amplification observed in this hypersonic scenario is 

primarily due to the temperature gradient within the entropy 
layer. As illustrated in Fig. 15(c), the characteristic of the 
hypersonic blunt wedge flow is that the mean temperature gra-

dient is substantially more prominent than the streamwise 
velocity gradient. Thus, the interaction between the distur-
bance and the mean flow via the Reynolds thermal stress in 

the entropy layer appears to be significant for the Orr 
mechanism. 

Individual energy contribution analysis is then performed 
to characterize the effect of wall temperature on the optimal 

disturbance. As shown in Fig. 22, reducing wall temperature 
would lead to a more substantial streamwise velocity distur-
bance component and weaker temperature and density compo-

nents. This suggests that when wall cooling is applied, the 
thermodynamic part of energy becomes less significant com-
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Fig. 21 Contours of (a) streamwise, (b) wall-normal, and (c) spanwise vorticity of the pattern-A response (0.45, 1). The solids and 

dashed black lines mark the locations of the boundary layer edge and the entropy layer edge, respectively. 

Fig. 22 (a) I indicators of Chu energy and (b) enstrophy ratios of pattern-B response (0.3, 3). 
pared to the kinetic part. These may be associated with the 
modified mean flow gradient inside the boundary layer. The 
adiabatic wall condition results in a steeper temperature gradi-

ent, which in turn strengthens thermodynamic fluctuations 
components and eventually leads to a stronger Pattern-B wave. 
As for the enstrophy ratios, wall cooling almost does not affect 
the evolution of their values. This indicates that the vorticity 

transfer process is weakly affected by the wall temperature. 
The same curve and conclusion can be obtained for streaks, 
not shown here for brevity. 
4. Conclusions 

In this work, resolvent analysis is utilized to study the optimal 
disturbance of the hypersonic flow over a blunt wedge at Mach 
number 5.9 and a unit Reynolds number of 91.5 � 106 /m. With 

the absence of the second-mode disturbance, the low-
frequency (within 50 kHz) associated modal and nonmodal 
disturbances are identified and examined with the parabolic 

stability equation analysis. The growth pattern of optimal dis-
turbances is investigated with consideration of the effects of
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wall temperature (Tw/Tad = 0.57, Tw/Tad = 0.75, and adia-
batic wall) and nose radius (Rn*=2.54, 5.08, and 15.24 mm). 
The lift-up/Orr transient growth mechanisms sustaining the 

nonmodal amplification of the optimal response are also stud-
ied. The main conclusion is summarized as follows: 

(1) For a fixed frequency, with the increment of the span-
wise wavenumber, competitive patterns of optimal dis-
turbances are identified. This competition is due to the 

appearance of nearly equally significant optimal and 
sub-optimal solutions. Specifically, the optimal response 
of the system is firstly shown as disturbances propagat-
ing inside the entropy layer (pattern A), and then 

switches to the pattern inside the boundary layer (pat-
tern B). The former pattern A experiences a long-
distance energy growth, while the latter pattern B under-

goes a rapid transient growth followed by a significant 
decay. The significant decay can be interpreted as the 
steady oblique mode S when the spanwise wave number 

is not larger than 5 in the studied cases. 
(2) Compared to the baseline cold wall condition 

(Tw/Tad = 0.57), the adiabatic wall condition supports 

the appearance of the unstable oblique first mode. 
The optimal oblique wave first experiences a rapid 
transient growth and then a modal growth, resulting in 
a higher N-factor than other kinds of disturbances, 

including streaks. Moreover, the cold wall condition 
tends to weaken the transient growth of oblique 
waves inside the boundary layers (pattern B), especially 

for low-spanwise-wavenumber cases. For optimal 
patterns travelling inside the entropy layer (pattern A), 
the effect exerts no influence since the base flow inside 

the entropy layer is hardly affected by the wall 
temperature. 

(3) Regarding the influence of the nose radius, the resolvent 

analysis shows no discernible improvement in an under-
standing of either modal or nonmodal growth. Nonethe-
less, considering the receptivity to the slow acoustic 
wave, the amplitude of nonmodal oblique waves within 

the boundary layer increases with the nose bluntness. 
The enhanced nonmodal oblique wave in the upstream 
region approaches that of the first mode downstream. 

The strengthened receptivity of oblique waves with rela-
tively large spanwise wavenumber (say, b = 7 for 
Rn*=15.24 mm) may potentially cause the transition 

to move upstream. An estimated amplitude response 
favorably reproduces the reversal-like phenomenon. A 
three-dimensional simulation of the complete stage 
(from receptivity to transition) is expected in the 

future. 
(4) Both Orr and lift-up mechanisms play a significant role 

in the transient growth of optimal disturbances. This 

deduction particularly holds true for pattern-A optimal 
responses, which are manifested as tilted waves inside 
the entropy layer. The Orr mechanism is more likely 

to be accomplished by energy transfer via the mean tem-
perature gradient rather than the mean shear. This is 
because the base velocity gradient in the entropy layer 

is ignorable compared to the temperature gradient. Fur-
thermore, pattern-B responses possess a more efficient 

lift-up mechanism than pattern-A responses according 
to an enstrophy ratio criterion. 

The base flow is limited to two-dimensional cases in this 
study, and the linear assumption is applied to disturbance 
equations. Furthermore, the resolvent analysis only yields 

the optimal disturbances that experience the largest energy 
gain in the studied computational domains, which serve as 
the upper boundary or the most dangerous scenario subject 

to external forcings. It may not be realisable by wind-tunnel 
experiments under specific environments. In the future, the 
role of these disturbances of various patterns should be ade-

quately considered in the Fourier space for a transitional 
hypersonic flow over blunt bodies. The corresponding transi-
tion to turbulence under the realistic wind tunnel condition 

with broadband noise may be a combinational consequence 
of various kinds of disturbance which are selected to be consid-
erably amplified. 
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Appendix A. Verification of grid independence 

Computational grids are constructed with two different grid 
resolutions, including 750 � 300 (coarse) and 1000 � 400 

(fine) in the streamwise and wall-normal directions, respec-
tively. Note that the grid near the wall and the bow shock 
are clustered. Here, only is the case for Rn* =  2.54  mm

and Tw/Tad = 0.57 shown for brevity. The same conclusion 
can be obtained for other cases. Fig. A1 compares the mean 
temperature contour between the coarse and fine grids, and 

Fig. A2 compares the N-factor distribution of representative 
optimal responses for two sets of grids. It is indicated that the 
coarse grid is sufficient for both the base-flow simulation and 
the resolvent analysis for the frequency of interest in this 

study.
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Fig. A1 Contour of mean temperature of fine grid (contour) and coarse grid (dashed line) for Rn* =  2.54  mm  and  Tw/ 

Tad =  0.  57.
Fig. A2 Evolution of N-factor of representative optimal 

responses for Rn*= 2.54 mm and Tw/Tad = 0.57. 
Appendix B. Competitive patterns of optimal and sub-optimal 

disturbances 

The optimal disturbance can be viewed as an upper bound of 
the response of the system, while realistic external disruptions 

typically lead to a suboptimal transient growth. As shown in 
Fig. B1, the optimal response switches from pattern A to pat-
tern B as b increases, the competition between these two pat-
terns can be revealed by extracting both the optimal and 

sub-optimal responses. The sub-optimal disturbance can be 
captured using an Arnoldi iteration to search for more eigen-
values. Here, we display the optimal (pattern-B family) and 

sub-optimal (pattern-A family) disturbances for the Fourier 
mode (0.3, 2). This mode is typical to facilitate an understand-
ing of the competition between different patterns. 

Fig. B1 Optimal gain (solid line) along spanwise wavenum-

ber b for x = 0.3. Dashed lines indicate the extension of solid 
lines. 

As shown in Fig. B2(a), the optimal response demonstrates 
a rapid growth near the forcing location, while the other non-
optimal disturbances experience a gradual growth down-

stream. Note that the optimal gain decreases monotonically 
from the optimal response to the first, second, third, and 
fourth sub-optimal responses. According to Fig. B2(b), the 

vorticity transfer from the streamwise direction to the spanwise 
direction is more efficient for optimal disturbances, followed 
by the first, second, third, and fourth sub-optimal responses. 

This is because the optimal response achieves a rapid r1-
dominated state downstream of the forcing location. There-
fore, the lift-up mechanism may play a significant role in the 
competition between optimal and relevant sub-optimal 

disturbances.
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Fig. B2 Evolution of (a) N-factor and (b) enstrophy ratios of optimal and the first, second, third and fourth sub-optimal 

responses for Fourier mode (0.3, 2). 

The temperature fluctuation contours for optimal and four sub-optimal disturbances for (0.3, 2) are shown in Fig. B3. The opti-

mal disturbance is distributed inside the boundary layer, while the sub-optimal disturbances show their signature inside the 
entropy layer. The non-optimal disturbances present a tilting structure that seems to be associated with the Orr mechanism. 
The disturbances inside the entropy layer may be related to the wisp-like structures observed in the wind-tunnel experiment when 

the first and second modes are not dominant.23,25 The nonlinear evolution and potential transition process induced by these dis-
turbances merits further investigation.
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Fig. B3 Contours of normalized temperature fluctuations for (a) optimal response and the (b) first, (c) second, (d) third and (e) 
fourth sub-optimal responses for (0.3, 2). The solid and dashed black lines mark the locations of the boundary layer edge and the 

entropy layer edge, respectively.
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69. Gué gan A, Huerre P, Schmid PJ. Optimal disturbances in swept 

Hiemenz flow. J Fluid Mech 2007;578:223. 

70. Orr WMF. The stability or instability of the steady motions of a 

perfect liquid and of a viscous liquid. Part II: A viscous liquid. 

Proc r Irish Acad Sect A: Math Phys Sci 1907;27:69–138. 

71. Butler KM, Farrell BF. Three-dimensional optimal 

perturbations in viscous shear flow. Phys Fluids 1992;4 

(8):1637–50. 

72. Schmid PJ. Nonmodal stability theory. Annu Rev Fluid Mech 

2007;39:129–62.

http://refhub.elsevier.com/S1000-9361(25)00067-6/h0235
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0235
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0250
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0250
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0250
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0255
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0255
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0255
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0260
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0260
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0260
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0265
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0265
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0270
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0270
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0275
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0275
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0280
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0280
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0280
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0285
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0285
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0285
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0290
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0290
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0290
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0295
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0295
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0295
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0295
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0300
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0300
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0300
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0310
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0310
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0310
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0315
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0315
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0315
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0320
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0320
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0320
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0325
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0325
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0325
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0330
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0330
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0335
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0335
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0340
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0340
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0340
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0345
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0345
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0350
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0350
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0350
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0355
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0355
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0355
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0360
http://refhub.elsevier.com/S1000-9361(25)00067-6/h0360

	Optimal disturbances and growth patterns in hypersonic blunt-wedge flow
	1 Introduction
	2 Model, flow condition and analysis tool
	2.1 Geometric configuration and flow conditions
	2.2 Computational methods
	2.2.1 Base flow and slow acoustic wave model
	2.2.2 Resolvent analysis for optimal disturbance
	2.2.3 Stability analysis


	3 Presentation of results
	3.1 Base flow
	3.2 Features of optimal disturbances
	3.3 Effect of wall temperature
	3.4 Effect of bluntness
	3.5 Orr/lift up mechanism analysis

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Verification of grid independence
	Appendix B Competitive patterns of optimal and sub-optimal disturbances
	References




