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Abstract In hypersonic boundary layers, the optimal disturbance is notably caused by normal-
mode instabilities, such as Mack second mode. However, recent experimental and numerical efforts
have demonstrated the dominance of nonmodal growth in hypersonic flows with the presence of
moderate nose bluntness. In this study, resolvent analysis and parabolized stability equation anal-
ysis are performed to investigate the instabilities over a blunt-tip wedge. Main parameters include
Mach number 5.9, unit Reynolds number 91.5 x 10%/m, half wedge angle 5°, and nose radii ranging

from 2.54 mm to 15.24 mm. Two novel growth patterns of travelling waves are identified to com-
pete, whose nature is the intersection of the energy gain of optimal and sub-optimal disturbances.
Pattern A with large spanwise wavelengths has the signature of slow energy amplification over a
long distance which concentrates in the entropy layer. By contrast, pattern B with relatively small
spanwise wavelengths presents rapid transient growth inside the boundary layer. A systematic study
is performed on the growth/attenuation mechanism of disturbance patterns and the effects of wall
temperature and nose radius. Wall cooling is found to be an alternative control strategy aimed at
nonmodal instabilities. The receptivity to slow acoustic waves is considered when the effect of blunt-
ness is studied. An estimated amplitude response favorably reproduces the reversal-like phe-
nomenon. The lift-up/Orr mechanism analysis provides an explanation of energy growth for

nonmodal responses.
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1. Introduction

The prediction and control of laminar-turbulent transition of
boundary layers are long-standing challenges for the design
of hypersonic vehicles. The transition can result in an abrupt
increase of skin friction and heat flux and thereby impair the
performance of hypersonic vehicles.' Therefore, accurate tran-
sition prediction and effective control of the transition onset
are of great importance. In a realistic flight environment, the
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freestream disturbances are usually of low amplitude, under
which the transition over configurations with a sharp leading
edge tends to be due to the exponential growth of unstable
normal modes inside the boundary layers. Common normal
modes usually include the Tollmien—Schlichting mode, the first
mode, and the second mode for low-speed, supersonic, and
hypersonic boundary layers, respectively.” * Generally, the
leading edge of high-speed vehicles can be artificially blunted
to reduce the nose heat transfer. The bluntness would give rise
to a detached bow shock and an entropy layer with a strong
entropy gradient consequently. The entropy layer reduces the
local Reynolds number at the boundary-layer edge and stabi-
lizes the boundary layer.”® The appearance of the entropy
layer may also affect the transition mechanism of the bound-
ary layer. As reported by the hypersonic wind-tunnel experi-
ment,’” the transition onset would first move downstream
with the increment of the nose radius, and then upstream when
the nose radius exceeds a threshold value. This phenomenon is
called the ‘transition reversal’. The downstream movement of
the transition onset qualitatively agrees with the result of sta-
bility analysis,*’ which shows that the second mode is highly
stabilized as the nose radius increases.”'® Moreover, the newly
generated instability, i.e., the entropy layer mode with the
appearance of bow shock has been reported to be insignificant
in triggering the transition due to its low growth rate and nar-
row growth region near the leading edge.®'" '

Despite the fact that the ‘transition reversal’ phenomenon
was first reported 40 years ago,’ the reason behind it remains
a debate. Recently, the nonmodal growth has been considered
potentially responsible for the transition reversal, where the
modal disturbances are relatively weak to trigger the transition
at the experimental onset location.'>'® According to the resol-
vent analysis and direct numerical simulation conducted by
Paredes et al., ">'7?° the nonmodal disturbance inside the
entropy layer can further penetrate the boundary layer and
eventually cause the transition. Hartman et al.”! investigated
the nonlinear breakdown process on a blunt cone. It is indi-
cated that when the linear unstable oblique waves initiated in
the entropy layer possessed an appropriate initial amplitude,
they would lead to a rapid transition before the instability
region of the second mode. Moreover, schlieren images of
the inclined structure signature of nonmodal disturbances were
reported by the experiment of Kennedy et al.,>*>* which high-
lighted the critical role of nonmodal instabilities. More recent
research of instabilities over Ogive-Cylinder models®* *°
reported three disturbance patterns: rope-like, elongated, and
wisp-like structure disturbances corresponding to the second
mode, the first mode, and the disturbance inside the entropy
layer, respectively, accompanying with the increase of nose
bluntness. However, with the perturbation imposed down-
stream of the bow shock, direct numerical simulation pre-
sented a monotonous delay of the transition onset as
bluntness was increased. In contrast, considering the free-
stream receptivity process by introducing forcings upstream
of the bow shock, the importance of non-Mack-mode distur-
bances was also reported in hypersonic flow over blunt flat
plates beyond the critical reversal nose radius.”” The unstable
first or second mode is generated by a resonance process due
to the synchronization of the phase speed of discrete modes.’
In general, the first and second modes correspond to signals
with physical frequencies of tens and hundreds of kilohertz,
respectively. In hypersonic flows over increasingly blunted

models, the most energetic disturbance presents a shift from
high-frequency bands toward low-frequency ones,'>>* which
might imply the significance of the first-mode or nonmodal
instabilities.”* In the noisy wind-tunnel conditions, the distur-
bance in the incoming freestream is dominated by the slow
acoustic wave,”® which has been identified in wind-tunnel
experiments™ > and widely recognized in numerical simula-
tions™** and applied in improved transition prediction meth-
ods.**?7 The acoustic wave originates mostly from the acoustic
radiation of the nozzle-wall turbulent boundary layer. Thus
the receptivity to the slow acoustic wave is considered when
investigating the bluntness effect.

Despite the above reviews regarding the significant role of
nonmodal disturbances, the distribution patterns of different
optimal disturbances (streaks, oblique waves, and planar
waves) and their dependence on external factors, such as wall
temperature and bluntness, remain scarcely discussed and
poorly understood. The appearance of the most amplified dis-
turbances in either the entropy layer or the boundary layer
eventually results in different physical mechanisms of transi-
tion to turbulence. The information about the wall-normal
locations of optimal disturbances would benefit the proposal
of possible control techniques as well. Therefore, it is funda-
mentally crucial to determine in which region the most ener-
getic disturbance undergoes energy amplification. In this
paper, a resolvent analysis of a blunt wedge flow is performed
to reveal the strongest response to external forcings. In the lin-
ear instability stage, the resolvent analysis has been proven by
the authors to have an equal accuracy as the direct numerical
simulation.*® Meanwhile, a modal Parabolized Stability Equa-
tion (PSE) analysis is employed to reveal the region of normal-
mode instabilities. The classical Orr and lift-up nonmodal
growth mechanisms will be examined to interpret how the non-
modal instabilities are amplified in the entropy/boundary
layer.

Another noteworthy issue is the control of nonmodal dis-
turbances over such blunted models. Wall manipulations, such
as acoustic metasurfaces implemented by porous coatings,
have been confirmed by the authors to effectively suppress
the second-mode instability.** ** As for the wall cooling effect,
its suppression on the first mode and destabilizion on the sec-
ond mode have been illustrated both in early stability analy-
sis* *? and recent energy source analysis.*’ It is found that
wall cooling stabilizes the first mode by weakening the Rey-
nolds thermal stress and dilatation fluctuations. Meanwhile,
wall cooling destabilizes the second mode by producing a
new, active zone of wall-normal internal energy transport
beneath the second generalized inflection point. The effects
of local heating and cooling on the nonlinear and breakdown
stages are systematically reported by Zhou et al.** For control
strategies for crossflow mode induced by generalized inflection
point of spanwise profiles, Nie et al.*’ indicated that a flat pres-
sure distribution and a short leading-edge flow acceleration
zone are beneficial for controlling cross-flow instabilities.
However, to the best knowledge of the authors, rare attention
has been paid to controlling the nonmodal instability over
moderately or largely blunted models. Obviously, it is of engi-
neering significance to control the dominant nonmodal insta-
bilities over blunt bodies. A relevant and inspiring study by
Tempelmann et al.* on swept plate models suggested that wall
cooling could stabilize crossflow modes while destabilizing dis-
turbances of nonmodal nature. Regarding transient growth in
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compressible boundary-layer flows, the wall temperature effect
was studied on the optimal disturbances over a flat plate*” and
a sphere.*® The literatures reported that wall cooling could
destabilize the low-Mach-number boundary layer. Neverthe-
less, a detailed energy analysis from the transient growth
mechanism is lacking and necessary. The eligibility of the wall
cooling strategy merits further considerations for nonmodal
instabilities over the blunt wedge, and the control mechanism
needs to be comprehended. Currently, it is well-recognized that
wall cooling would stabilize the first mode. The energy analysis
of our previous work® indicated that the stabilization mecha-
nism is highly related to the mean shear reduction. In terms of
the concerned nonmodal disturbances, the dominant compo-
nent appears to be the temperature perturbation.'® Therefore,
it will be of further interest in this paper to evaluate the effect
of wall cooling or heating as a potential controlling technique
for nonmodal instabilities over blunt bodies.

This paper is intended to deepen the understanding of the
characteristics of modal and nonmodal instabilities in hyper-
sonic flows over blunt bodies. It is expected to throw light
on the effects of wall temperature, nose radius, and the under-
pinning transient growth mechanism. The resolvent analysis,
parabolized stability equation, and direct numerical simulation
are employed. The optimal responses inside the entropy layer
or boundary layer are systematically examined. As for the
effect of bluntness, only receptivity and linear growth stages
are investigated and discussed, while nonlinear interaction
and transitional stages will be studied in the future. This paper
is organized as follows: Section 2 provides the investigated
model, the parametric setup, and the numerical methods for
base flow calculation and stability analysis. Section 3 shows
the results and discussions, which are divided into 5 parts.
The base flow over the blunt wedge is presented in Section 3.1.
The distribution patterns of the optimal responses with differ-
ent frequencies and spanwise wavenumbers are depicted in
Section 3.2. Subsequently, the effects of wall cooling and
bluntness are examined in Sections 3.3 and 3.4, respectively.
The Orr and lift-up mechanisms are explored from the perspec-
tive of energy and vorticity evolutions in Section 3.5. Finally,
the main findings are summarized in Section 4. In particular,
the appendix section provides an example for understanding
the competition among different types of disturbances, which
are manifested as the optimal response and a series of sub-
optimal disturbances.

2. Model, flow condition and analysis tool

2.1. Geometric configuration and flow conditions

The freestream flow condition investigated here follows that by
Paredes et al.'® at Mach number 5.9 and a unit Reynolds num-
ber of 91.5 x 10/m. The freestream static and total tempera-
tures are 76.74 K and 611 K, respectively. The baseline wall
temperature is 300 K with 7,,/T,,; = 0.57, where the subscripts
w and ad refer to quantities at the wall and under the adiabatic
wall condition, respectively. Here, T, is the laminar recovery
temperature. The studied model is a blunt wedge with a 5°
half-wedge angle. Three nose radii (R,*) are studied, including
2.54 mm, 5.08 mm, and 15.24 mm. The asterisk represents
dimensional quantities. Based on the experimental data,'®*
the reversal Reynolds number based on the nose radius is

around 1 x 10° for the cone. Thus, the radii 2.54 mm and
15.24 mm can be regarded as moderate and large blunted
cases, respectively. The grid independence is verified and
shown in Appendix A, which demonstrates the results of both
the base flow and resolvent analysis are converged under the
considered grid resolution.

2.2. Computational methods

The computational and theoretical approaches are similar to
the framework in our previous publication. *’ The same
numerical codes are adopted. It seems unavoidable that
numerics for baseflow calculation, resolvent analysis, normal-
mode stability analysis, the definition of energy norm, etc. look
similar. The unchanged methodology has been found to be
reliable in reaching the research objective. The governing equa-
tion for the calculation of base flow is the compressible Navier-
Stokes equation in a conservation form:

oU OF G OH

o Tax Tyt 0 (1)
where U = [p, pu, pv, pw, pe]" is the vector of conservative
variables, the superscript “T” denotes the transpose, and F,
G, and H are vectors of fluxes. Here, p represents density,
and u, v, and w are the velocities in the x, y, and z directions,
which denote streamwise, wall-normal, and spanwise direc-
tions, respectively. Meanwhile, a body-fitted orthogonal coor-
dinate system is constructed, which is represented by (&, 5, z).
Total energy per unit mass is denoted by e. The perfect gas
model is employed with a constant specific heat ratio of 1.4.
Besides, the dynamic viscosity is calculated using Sutherland’s
law, and the thermal conductivity coefficient is calculated
based on a constant Prandtl number 0.72. The freestream vari-
ables are utilized for non-dimentionalization except that the
pressure is by p? u’ ' (the subscript co represents freestream
quantities), and the reference length is set to 1 mm.

In general, the steady base flow is first calculated, and sub-
sequently the resolvent and Parabolized Stability Equation
(PSE) analyses are performed based on the converged base
flow. For a time-stationary flow, the vector of conservative
variables can be decomposed into the base-flow and perturba-
tion parts:

Ux,y,z,t) = Ulx,y) + U(x,p,z,1) (2)

where the overbar ~and prime ’ represent base-flow and per-
turbed variables, respectively.

2.2.1. Base flow and slow acoustic wave model

The base flow is calculated using an in-house multi-block par-
allel finite-volume solver called PHAROS, which has been suc-
cessfully employed in various configurations, such as the
compression corner, the double wedge, and the double cone
models. °' °* The inviscid flux is calculated by MUSCL scheme
and a modified Steger-Warming scheme, and the second-order
central difference scheme is utilized for viscous flux discretiza-
tion. Pseudo-time advancing is achieved by the implicit line
relaxation method. More detailed information for the
PHAROS can be found in the Ref. 53. In terms of the bound-
ary condition, the y = 0 boundary of the computational
domain is set to be symmetric, the upper boundary is farfield,
the right boundary is outflow via extrapolation, and the wall
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boundary is no-slip and isothermal or adiabatic, depending on
the case.

To explore the effect of nose bluntness (Section 3.4), the
receptivity process to free stream slow acoustic waves is con-
sidered. The slow acoustic wave is added to the freestream
boundary of the computational domain. The dimensionless
fluctuation of the plane slow acoustic wave is'’

I A Md?,

u —A Md> | .

vl = 0 o | gl 4 ¢ ¢ (3)
r As

where A is the small amplitude of the freestream disturbance,
w is the angular frequency, « is the streamwise wavenumber,
and c.c. denotes complex conjugate. In this study, the incident
angle of the slow acoustic wave is set to zero and the dispersion
relation of is « = w/(1 — 1/Ma,,). In the simulation of the
receptivity process, the three-stage third-order Runge-Kutta
method is employed for time advancement.

2.2.2. Resolvent analysis for optimal disturbance

Substituting Eq. (2) into Eq. (1) and neglecting non-linear high
order terms yield the linearized Navier-Stokes equation:

ou OF 0G  OH 0 4
ottt T “)
To examine the response to external forcings, consider a
small amplitude forcing term f’ added to the right-hand side
of Eq. (4). Reformulating the governing equation, we obtain
W _ a8 5)
ot
where A is the Jacobian matrix related to the base-flow vari-
ables, and matrix B constrains the forcing to be added at a cer-
tain location x = xo. The value of xo is 20, except in
Section 3.4 (where xo = 40) to avoid the effect of the bow
shock. In this study, the localized forcing is imposed to excite
response from upstream regions, and thus it is of interest to
observe how the disturbances of convective-instability nature
are propagated downstream and amplified or attenuated.
Thus, a constrained optimization problem will be solved with-
out modifying the Jacobian matrix 4, which has been applied
in our previous works.”’"** The harmonic assumption is
made for a small-amplitude perturbation vector U’

U(x,y,z 1) = Ulx,y) exp(ifz — iwr) + c.c. (6)

where U is the complex eigenfunction, f is the spanwise
wavenumber. Similarly, the harmonic forcing can be written as

£06,3.7,0) = JTx, ) exp(ifz — ioor) + c.c. (7)
Substituting Egs. (6) and (7) into Eq. (5) gives
U = RBf
{ P ®
= (—iwl — A)

which indicates the relationship between the external forcing
and the linear response of the system. Here, the identity oper-
ator is represented by 1.

In the resolvent analysis, the maximal amplification of the
energy, i.e. the optimal gain ¢, is targeted. The optimal gain

is defined in the parametric space (f, w) by the energy ratio
between the output responses and the input forcings:
U
7§, ) = max L2 e )
7o Bf g
Here, Chu’s energy”” is utilized for the calculation of the
energy norm as

| Ul =a UMUdxdy (10)

where Q represents the computational domain for resolvent
analysis, the superscript { refers to the conjugate transpose,
and M is the weight operator given by Bugeat et al.’® The
dimensionless expression of Chu’s energy at a local station is
given by

EChu(x) :%/0%
()

The three terms on the right-hand side of Eq. (10) denote
fluctuations of kinetic energy, potential energy, and internal
energy, respectively. The computer code utilized for resolvent
analysis here has been well validated by our previous works
and detailed in Refs. 50,51.

T
p(z¢’2+t”2+vv’2)+ . 7,’7/24’
yMaz p y(y — 1)Ma

2.2.3. Stability analysis

To examine the normal-modal instability feature of the opti-
mal response, Linear Stability Theory (LST) and PSE analyses
are performed. Specifically, LST provides the initial eigenfunc-
tion profiles to PSE for spatial marching, which gives the evo-
lution of the modal instability. In PSE, the disturbance ¥’ is
expressed by

W (x,9,2,1) = ¥(x,p) exp (1/ o/dX +ipz — iwt) (12)
J xo
where the vector ¥ = [p,u, v,w, T]", Y and o/ are the shape
function and the complex streamwise wavenumber, respec-
tively, and x, is the initialization location of PSE marching.
Substituting Eq. (12) into Eq. (4) gives rise to the PSE as *°
(r0+rl)¢+r2%+%r3d/:0 (13)
The effects of the locally parallel flow, the non-parallel base
flow, the non-local shape function, and the streamwise-varying
wavenumber are absorbed in the base-flow-related operators
Ty, Ty, T, and T, respectively. An eigenvalue problem is
solved in LST when keeping only the local operator I’y in
Eq. (12). In this study, PSE is initialized by mode S, which
may evolve into the unstable first mode downstream,
depending on the flow parameters such as the input fre-
quency.® The calculation is performed by our in-house code
CHASES, which has been validated compared with both
theoretical °" >’ and DNS %' results. The details of
numerical methods can be found in these references.

3. Presentation of results

In this section, the results of the numerical simulation and sta-
bility analysis will be presented and discussed. The base flows
for the considered three nose radii are shown in Section 3.1.
The characteristics of different optimal disturbances will be
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focused on in Section 3.2 for a moderate bluntness R,* =2.54-
mm with 7,/T,;, = 0.57. Following that, the effects of wall
temperature and bluntness will be examined in Sections 3.3
and 3.4, respectively. Finally, the transient growth mechanism
will be analyzed in Section 3.5.

3.1. Base flow

The solid and dashed black lines mark the locations of the
boundary layer edge and the entropy layer edge, respectively.

The contours of the Mach number for cases with different
nose radii are shown in Fig. 1 with T,,/T,, = 0.57. The crite-
rion to determine the boundary layer edge is set to the location
where 7h,/h; .. =0.995, where h, is the total enthalpy. The
entropy-layer edge is defined as the wall-normal location where
the entropy increment equals 0.25 times the entropy increment
at the local wall. The entropy increment is defined as

AS" = c;ln(%*/%;) - Rin(p'/p.) (14)

100

751

25F
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x

(a)R,’=2.54 mm

120 F

90 |
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(b)R,’=5.08 mm

180

150 1
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x

(c)R,=15.24 mm

Fig. 1 Contours of Mach number for blunt wedges. The solid
and dashed black lines mark the locations of the boundary layer
edge and the entropy layer edge, respectively.

where ¢,* is the specific heat at constant pressure, and R* is the
specific gas constant. The entropy-layer effect over a wedge® is
stronger than that over a cone'’ under the same freestream
conditions, as the streamline keeps nearly parallel to the wall
downstream.®’ As shown in Fig. 1, as the nose radius is
increased, the entropy layer region is enlarged. According to
the stability analysis,® the first/second mode usually appears
downstream, and the entropy-layer mode emerges upstream.
The latter has a relatively low growth rate, which is not likely
to dominate the transition process.(’o On the other hand, the
enhanced entropy layer may have an effect on the nonmodal
disturbance generated herein. The effect of bluntness on the
optimal disturbance will be discussed in Section 3.4.

3.2. Features of optimal disturbances

After the converged base flow is obtained, the resolvent anal-
ysis is performed. The characteristics of the optimal responses,
including streaks, plane, and oblique traveling disturbance,
will be discussed in this section.

Fig. 2 shows the plots of the optimal gain for different fre-
quencies and spanwise wavenumbers and the N-factor distri-
butions along the x direction for typical optimal oblique
disturbances and plane waves. The N-factor is defined by
N = 0.5In(Ecpy/Echuo), where Ecpyp is measured at x = xg
and N is set to be 0 at xo For brevity, (0.3, 0) represents the
optimal response for a Fourier mode with @ = 0.3 and
p = 0, and similarly for other optimal disturbances. Generally,
in Fig. 2(a), the maximum energy gain exhibits a monotonous
decreasing trend as the frequency is increased. An interesting
finding is that as f§ increases, the optimal response switches
from pattern A (open symbols) to pattern B (solid symbols).
The former pattern is mainly distributed inside the entropy
layer between the entropy-layer edge and boundary-layer edge,
while the latter shows its signature inside the boundary layer.
As shown in Fig. 2(b), the N-factor of the pattern-A response
(including plane waves and oblique waves when f is relatively
small) grows at a moderate rate till the end of the computa-
tional domain. In contrast, pattern-B responses with large f8
undergo a rapid transient growth immediately downstream
of the forcing location, followed by a decay process. Note that
the pattern-B waves were not identified in some similar studies
on the optimal disturbances such as by Paredes et al. '° This is
probably due to the different definitions of the energy gain.
Paredes et al. '° used the ratio of energy at two different
streamwise locations as the optimization object function,
whereas the present work considers the energy integrated over
the whole domain (see Eqs. (9), (10)). The former definition
may miss the possible energy overshoot, which was also real-
ized by Paredes et al.'” The energy overshoot may occur over
configurations such as hypersonic blunt forebodies, '* which
are manifested as pattern-B waves in this paper. In this study,
the optimal response pattern A and pattern B, are the products
obtained from a selection process. In detail, the maximum
energy gain is sought for different f at a fixed frequency.
Two different patterns exactly appear in the respective entropy
and boundary layers, corresponding to small- and large-
wavenumber responses, respectively. The natural external dis-
turbance is a combination of broadband frequencies and var-
ious wavenumbers in wind tunnels.®> In realistic conditions,
these patterns usually coexist subject to broadband incoming
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(a) Optimal gains for different frequencies and spanwise wavenumbers (open symbols represent pattern A and solid symbols

represent pattern B), and (b) N-factor distributions for typical optimal disturbances along x direction.

disturbances. They can be distributed in different regions
(boundary layer and entropy layer).

The turning of the gain curve in Fig. 2(a) as the state tran-
sitions from pattern A to pattern B may indicate a competition
of different growth patterns. To confirm this deduction, the
Arnoldi iteration method is further employed in the resolvent
analysis to find a series of sub-optimal disturbances. An illus-
tration of the competitive physical image between different
growth patterns is shown in the Appendix B. The turning point
of the optimal gain curve in Fig. 2(a) is actually the intersec-
tion of the gain between optimal and the first sub-optimal
responses. For brevity, only the optimal response is discussed
in the main body.

When the nose bluntness exceeds a threshold, modal insta-
bilities tend to be too weak to trigger the transition, and tran-
sient growth of low-frequency disturbances is of particular
significance.'® Therefore, for blunt wedges with moderate or
large nose radius, high-frequency disturbances are less consid-
ered. In fact, no pronounced second-mode instabilities are
observed in the case considered here. In the following analysis,
three kinds of representative forcings and associated optimal
responses of the system, i.e., streaks, planar waves, and oblique
waves, will be presented and discussed. The contributions of
different parts of energy are quantified based on Chu’s energy.
For example, the contribution of the streamwise velocity fluc-
tuation is evaluated by the indicator 7,

10 = [ (0 v/t (1)

Similar indicators can be obtained for the fluctuations of
the wall-normal velocity, the spanwise velocity and thermody-
namic quantities.

Fig. 3 provides contours of streamwise temperature and
velocity fluctuations of streaks (0, 2), which are mainly dis-
tributed inside the boundary layer. The input eigenfunction
profiles and 7 indicators of Chu energy for streak (0, 2) are
shown in Fig. 4. It is found that the main component of the
forcing is constituted by the spanwise forcing. In terms of
the downstream response, the streamwise velocity fluctuation
(1) grows rapidly as it evolves downstream. A marginal contri-

bution comes from the temperature and density fluctuations.
The transfer of the dominant component indicates a classical
lift-up mechanism, which will be discussed in detail in
Section 3.5.

As shown in Fig. 5, the evolution of the plane wave (0.45, 0)
shows a different signature from that of the streaks, which is a
representative pattern-A response and is mainly distributed
inside the entropy layer. Similar growth patterns can be
obtained for the optimal response when f§ is small, such as
(0.6, 1) and (0.6, 2), as indicated by the N-factor in Fig. 2(b).
The prominent role of disturbance inside the entropy layer
for moderately blunt models was also reported in the experi-
ments for ogive-cylinder” and blunt cones.”> However, as
mentioned above, the blunt wedge configuration encounters
a stronger entropy layer, and the entropy swallowing phe-
nomenon present in the cone model moves downstream in
the wedge model.®' This difference may delay the disturbance
evolution inside the entropy layer to penetrate the boundary
and, in turn, affect the transition process. Fig. 6 plots the input
eigenfunction profiles and 7 indicators of Chu energy for the
plane wave (0.45, 0). The forcing component in the streamwise
velocity equation constitutes the main component of the input
forcings. The streamwise velocity response experiences a grad-
ual decay downstream, while the internal energy components
(temperature and density fluctuation) continue to grow and
become dominant. Meanwhile, the tilting structure may indi-
cate the presence of the Orr mechanism, which will be dis-
cussed in detail in Section 3.5.

As for the other pattern-B response (oblique waves when /3
is large enough), the streamwise velocity and temperature fluc-
tuations are mainly distributed inside the boundary layer, as
shown in Fig. 7. The input forcing profiles and [ indicators
of Chu energy for Fourier mode (0.3, 7) are shown in Fig. 8.
It appears that the distribution resembles that of the streak
(0, 2), indicating a possible unsteady-streak signature for
(0.3, 7). This kind of optimal response undergoes rapid growth
and attenuation near the input forcing location, which has
rarely been reported in previous optimal disturbance analyses
on the blunt cone models.'®*° One possibly similar observa-
tion is the disturbance reported by Hartman et al.”' using
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Fig. 5 Contours of normalized (a) temperature and (b) streamwise velocity perturbations of optimal response for plane wave (0.45, 0).
The solid and dashed black lines mark the locations of the boundary layer edge and the entropy layer edge, respectively.

direct numerical simulation, which shows growth near the
leading edge before the appearance of the second mode. The
elongated structure (see Fig. 7) inside the boundary layer

may indicate the occurrence of a modal instability. To clarify
this point, the integrated N-factor is obtained by PSE that is
initialized by the upstream stable mode S (normal-mode
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solution). The modal PSE result manifests a purely modal
instability evolution. Given that the linear PSE only offers a
relative growth in spatial analysis without amplitude
information, the N-factor curve of PSE is shifted to match
that of resolvent analysis. This operation enables a comparison
of the modal evolution with respect to the curve slope,
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06}
"
04l
02t
07550 100 150 200 250
¢
SR T sogen, ks
— I),

(a) Input forcing profiles and (b) 7 indicators of Chu energy of optimal response for oblique wave (0.3, 7).

i.e., the energy growth rate. As shown in Fig. 9, a good agree-
ment is reached for both N-factor and fluctuation profiles
between resolvent analysis and PSE after an initial transient
growth region when f is not large. Thus, the energy attenua-
tion of pattern-B waves is associated with the stable normal
mode.
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Fig. 9 Comparison of (a) integrated N factor and (b) fluctuation temperature profile for (0.3, 5) at x = 50 (normalized by its maximal
value inside the boundary layer) obtained by PSE and resolvent analysis.

In summary, the evolution patterns of optimal streaks,
plane waves, and oblique waves are studied using resolvent
analysis for a moderate bluntness R,*=2.54 mm with T,/
T.. = 0.57. The energetic region of the resolvent response
and the associated N-factor and optimal gain indicate the exis-
tence of different growth patterns. These patterns are compet-
itive to be the most energetic one under a certain combination
of w and f5, which may contribute to a competitive routine in
triggering the transition. However, which routes (patterns) will
finally stand out and play a dominant role in triggering the
transition further depends on the receptivity process®** of
the disturbance in the Fourier space, as well as the nonlinear
instability stage.

3.3. Effect of wall temperature

In this subsection, the adiabatic-wall case is further considered.
The stabilization and destabilization effects of wall cooling on
the first and second modes, respectively, have been recently
explained from the perspective of energy analysis.*> However,
the effect of wall cooling on hypersonic flows where nonmodal
instability is pronounced remains less understood fundamen-
tally. As for a disturbance of nonmodal nature, wall cooling
was reported to destabilize the disturbance in compressible
boundary layers over swept flat plates,*® spheres,*® and flat
plates.*” For the present hypersonic flow over a blunt wedge,
Fig. 10 shows the optimal gain for different frequencies and
spanwise wavenumbers for the adiabatic wall (solid line) and
baseline cold wall (dashed line) cases. Compared with the
cold-wall cases, the optimal gain is generally larger under the
adiabatic condition. In particular, a peak (0.15, 1) arises with
a low frequency and low spanwise wavenumber, whose opti-
mal gain exceeds those of the stationary streak, plane wave
and other pattern-B oblique waves with the same frequency.
Fig. 11 shows the contours of the normalized temperature
and streamwise velocity perturbations for the optimal response
(0.15, 1). The fluctuation is mainly distributed near the outer
boundary layer, which resembles the contours of the first
mode. The input forcing of the Fourier mode (0.15, 1) is shown

106

10°

T 10* |

10,

—e— =0 ®=0.15 —+— ©=03
—— 0045 —— ©=0.6 —— ©=09
—_—— =12 ----- 0=03 -==-- ®=0.6
————— ®=0.9 =12

Fig. 10 Optimal gains for different frequencies and spanwise
wavenumbers for Ma = 5.9 flow over the blunt wedge with
R, = 2.54 mm (solid symbols represent pattern A and hollow ones
represent pattern B). Solid lines represent cases for adiabatic wall
and dashed lines represent cases for 7,,/T,; = 0.57.

in Fig. 12(a). The temperature fluctuation is dominant inside
the boundary layer, which is different from the dominant w’
for the Fourier mode (0.3, 7) shown in Fig. 8. The evolution
of the I indicator of (0.15, 1) indicates the importance of
streamwise velocity and temperature perturbations, which
reach around 0.6 and 0.2 downstream, respectively.

To evaluate the role of the modal instability around the
peak gain in Fig. 10, the PSE analysis is employed. As shown
in Fig. 13, the initial transient growth stage is not captured by
PSE initialized by mode S. However, in the second-stage
growth, a good agreement is reached for both N-factors and
fluctuation profiles between resolvent analysis and PSE, which
indicates the presence of the unstable oblique first mode evolv-
ing from mode S. This comparison confirms the appearance of
the first mode with a low frequency and low spanwise
wavenumber under the adiabatic wall condition.

Fig. 14 provides the N-factor of the streak, the plane and
the oblique optimal disturbances considering three different
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Fig. 11  Contours of normalized (a) temperature and (b) streamwise velocity perturbation components of optimal response for Fourier
mode (0.15, 1) under adiabatic wall. The solid and dashed black lines mark the locations of the boundary layer edge and the entropy layer
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Fig. 12 (a) Input forcing profiles and (b) / indicators of Chu energy of optimal response for Fourier mode (0.15, 1) under adiabatic wall.
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wall temperature conditions. Here, cases with a fixed frequency
w 0.3 (corresponding to 50 kHz) are selected, which
correspond to a representative low frequency. It is indicated
that wall cooling has nearly no effect on the plane wave while
suppressing the transient growth of streaks and oblique waves,
especially for lower . When f increases and exceeds a critical
value, the effect of wall temperature becomes minor for both
optimal streaks and oblique waves.

The different effects of the wall temperature on the optimal
disturbance can be attributed to their different growth pat-
terns, as shown in Section 2. Specifically, the optimal plane
wave is mainly distributed in the entropy layer, while the wall
cooling effect only changes the mean variables inside the
boundary layer, as indicated in Fig. 15. Therefore, wall cooling
only affects the optimal oblique waves, which mainly lie inside
the boundary layer and contain a pronounced temperature
fluctuation. One special case is that the pattern-A response
(0.3, 1) is located inside the entropy layer for the baseline cold
wall, whereas the response switches to the growth pattern B

(03.1)Tua
e (03,1) 1/ Tu=0.75
(0.3,1)7/12=0.57

— (0320)Tu —— (03,12)Tu
o (0320 Ta0.75 = = = (0.3,12) 1/ Te=0.75
(0.3.20)15/Tai=0.57 ——— (0.3,12)T5/Tor=0.57

N-factor evolution of (a) streaks, (b) planar and oblique optimal waves with small f5, and (c) oblique optimal waves with larger

(oblique wave inside the boundary layer) as the wall tempera-
ture increases, as shown in Fig. 14(b). This indicates that the
optimal response pattern not only depends on f for a fixed fre-
quency but also may change with other parameters, such as the
wall temperature. Consequently, wall cooling may serve as a
potential control strategy for pronounced nonmodal distur-
bances over blunt bodies, which has rarely been mentioned
before.

3.4. Effect of bluntness

The transition reversal for high-speed flows over blunt bodies
was first reported in 1983.” However, the physical mechanism
behind it remains a debate currently. When the nose radius is
approaching the reversal value, the modal instability has been
confirmed to be of insufficient significance by linear stability
analysis to trigger the transition, including the newly generated
inflection instability arising from the entropy layer (entropy
layer mode).'''*%° However, the nonmodal disturbance inside

04 04
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Mean (a) streamwise velocity and (b) temperature profile distributions near the wall, and (c) mean profiles outside boundary

layer at ¢ = 20. The solid and dashed black lines mark the locations of the boundary layer edge and the entropy layer edge, respectively.
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Fig. 16  N-factor distributions of optimal disturbance with different bluntness for (a) 7,,/T,; = 0.57 and (b) T,, = T4

the entropy layer has been recognized to be possible to pene-
trate the boundary layer and excite a strong instability.”'*%
Recently, the nonmodal disturbance in the entropy layer has
shown an alternative oblique transition route when there is
no considerable second modal growth.”*> The nonmodal
instability, when the nose radius exceeds a certain value, may
provide a potential explanation for the transition reversal from
the perspective of receptivity and linear instability.

Fig. 16 provides a comparison of the N-factor of low-
frequency (e.g., @ = 0.15) optimal oblique waves and station-
ary streaks with the same w and f§ yet different nose radii. The
forcing location is fixed at x = 40 for all cases. Here, only
pattern-B  responses are displayed, because pattern-A
responses lose their dominance as the increment of bluntness.
These pattern-A responses correspond to no positive N-
factor in Fig. 16 for R,*= 5.08 mm and R,*= 15.24 mm.
The unstable first mode (0.15, 1) gets suppressed as the incre-
ment of bluntness for both modal instability and transient
growth, as shown in Fig. 16(b). For other oblique waves, the
suppression effect of bluntness becomes weaker as f§ increases.
Finally, the N factor of oblique waves can be increased with
growing bluntness when f exceeds a critical value. However,
in the meantime, the N factor is also smaller for a large f.
To conclude, increasing bluntness can suppress or strengthen
the optimal response, depending on the spanwise wavenumber.
Moreover, optimal disturbances obtained by resolvent analysis
here exhibit no visible reversal-related phenomenon for a cer-
tain combination of w and f with the increment of bluntness.
An expected reversal-related result is that the N-factor
increases as the nose radius varies from 2.54 mm to 5.08 mm
then decreases as it further rises to 15.24 mm. This observation
agrees with the observation by Aswathy Nair and Unnikrish-
nan,” which reported no transition reversal phenomenon
when the white noise is initialized downstream of the shock.

The receptivity process provides the initial frequency and
amplitude of the optimal responses at the forcing location.
Considering this physical process, the effect of nose radii is
revisited. The slow acoustic wave is added to the free stream
to produce the response of the boundary layer. Note that only
a representative single low-frequency (o = 0.15) forcing is
adopted here with the same amplitude for blunt-wedge flows
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Fig. 17 Contours of instantaneous dimensional pressure fluctu-
ations for (a) R,* = 2.54 mm, (b) R,* = 5.08 mm, and (c)
R,* = 15.24 mm.
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with different nose radii. The corresponding physical fre-
quency is 25 kHz, which has shown its significance in the above
resolvent analysis. This frequency magnitude also falls within
the dominant frequency range of wind-tunnel experiments
for blunt cones'> and Ogive-cylinders.”® For brevity, only adi-
abatic wall condition cases are displayed.

As indicated by Fig. 17, the free-stream slow acoustic wave
first interacts with the bow shock, and then the resulting dis-
turbance penetrates the entropy layer and excites responses
inside the boundary layer. The pressure history in the free
stream and on the wall for three blunt wedges is displayed in
Fig. 18. Here, ty* is the time when the statistical stationary
process begins. In terms of the response at the forcing location,
the amplitude of the pressure fluctuation at x = 40 becomes
larger as the increment of nose bluntness. The Root Mean
Square (RMS) of pressure at x = 40, normalized by its free-
stream value, is 0.554, 1.159, and 1.811 for R,*=2.54 mm,
R,*=5.08 mm, and R,*=15.24 mm, respectively. This indi-
cates a stronger receptivity process with an increase of nose
radius, which may result from a stronger bow shock and
thereby intensified shock-disturbance interaction.

With the amplitude of disturbance obtained by the receptiv-
ity process, the initial forcing amplitude of optimal distur-
bances at x = 40 is replaced. Fig. 19(a) illustrates the
normalized RMS of pressure fluctuations along the wall for
different optimal disturbances. Here, the amplitude at
¢ = 40 is obtained by the receptivity study, and the further
amplitude evolution downstream is obtained from resolvent
analysis (see Fig. 17(b)). Subsequently, the two amplitude ratio
is multiplied to figure out the final normalized RMS with
respect to the freestream value. Physically, Fig. 19(a) suggests
the response magnitude under the same level of wind-tunnel
noise in real-life situations. Compared with Fig. 17(b), as the
increment of bluntness, the strength of the oblique wave

Instantaneous pressure at (a) free stream and x = 40 along the wall for (b) R,*

28200
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= 2.54 mm, (c¢) R,* = 5.08 mm, and (d)

(0.15, 7) upstream becomes comparable to the first mode
(0.15, 1) downstream. Fig. 19(b) depicts the maximum RMS
of pressure fluctuations in the computational domain among
all the calculated Fourier modes for different nose radii, which
can be seen in Fig. 19(a). The blue line is obtained from a non-
linear fitting procedure to show the data trend. It indicates that
as increment of nose radius, the maximized root mean square
of pressure decreases and then increases after bluntness
exceeds its critical value. The experimental reversal Reynolds
number based on the nose radius is around 1 x 10%.'® The
resulting critical nose radius is about 10 mm. As a result, a
qualitative agreement is reached in the data trend. The above
observation may demonstrate the significance of nonmodal
disturbances upstream when the modal components are sup-
pressed as the nose radius increases. Specifically, the oblique
waves with relatively large spanwise wavenumber show their
potential in triggering the transition rather than the suppressed
first mode downstream for large bluntness cases. The strength-
ening of receptivity and transient growth of oblique waves
upstream might provide some insights into the transition rever-
sal phenomenon observed in wind-tunnel experiments, which
merits further research considering nonlinear-instability and
breakdown stages.

This section only provides the evolution of energy magni-
tude of optimal disturbances over the blunt wedge from a
small to large nose radius. The parametric study may benefit
a further investigation to fully understand the reason for the
transition reversal phenomenon using a three-dimensional sim-
ulation of the complete stage.

3.5. Orr/lift up mechanism analysis

In this Section, two classical mechanisms of transient growth,
i.e., Orr and lift-up mechanisms, are analyzed. Disturbances
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fluctuations in the computational domain among all the calculated
Fourier modes for different blunt wedges. Line in (b) represents
the data trend from fitting. The experimental reversal nose-tip
radius is about 10 mm.

are amplified by Orr mechanism when they have streamlines
tilted against the mean shear and become stronger when the
base flow reorients them.®® The lift-up effect arises when
streamwise vortices form streaky structures by displacing fluid
particles in the wall-normal direction, which maintains their
horizontal momentum.®” To quantify the intensity of the vor-
ticity transfer, the streamwise evolution of the integrated
enstrophy ratios®®® is analyzed, which is characterized by

ri(x) = Q/32 8
Qi(x) = [y @idy (16)
i=x,y,z;1=1,2,3

where @,,w,, and @. represent the streamwise, wall-normal,
and spanwise vorticity, respectively. Fig. 20 gives the inte-

Fig. 20  Evolution of enstrophy ratios for Fourier modes (0, 2),
(0.3, 3), and (0.3, 7).

grated enstrophy ratio for some representative combinations
of w and f. Overall, these combinations show the same trend:
the decrease of streamwise vorticity components and the
increase of spanwise vorticity. Note that the transfer of vortic-
ity from the streamwise direction to the spanwise direction is
associated with the lift-up mechanism. Among them, pattern-
B disturbances (0.3, 7) and (0, 2) nearly collapse onto the same
curve, which probably indicates that (0.3, 7) shares the
characteristics of unsteady streaks. Interestingly, the vorticity
transfer of the pattern-A wave (0.45, 1) is weaker than the
other optimal disturbances, which is characterized by a tardy
vorticity transfer near the forcing location. This indicates
that pattern-B responses possess a more efficient lift-up
mechanism than pattern-A responses, which can also be seen
in Appendix B.

Fig. 21 depicts the streamwise, wall-normal, and spanwise
vorticity components of the optimal pattern-A wave (0.45,
1). The gradual change of the vorticity orientation indicates
the existence of the Orr mechanism, where tilted vortices
extract energy from the mean flow while being erected.*®”’
For incompressible flows, nonmodal growth due to the Orr
mechanism is ascribed to the extraction of energy from the
mean shear by conveying momentum along the mean momen-
tum gradient via the Reynolds shear stress.”'’> However, the
energy amplification observed in this hypersonic scenario is
primarily due to the temperature gradient within the entropy
layer. As illustrated in Fig. 15(c), the characteristic of the
hypersonic blunt wedge flow is that the mean temperature gra-
dient is substantially more prominent than the streamwise
velocity gradient. Thus, the interaction between the distur-
bance and the mean flow via the Reynolds thermal stress in
the entropy layer appears to be significant for the Orr
mechanism.

Individual energy contribution analysis is then performed
to characterize the effect of wall temperature on the optimal
disturbance. As shown in Fig. 22, reducing wall temperature
would lead to a more substantial streamwise velocity distur-
bance component and weaker temperature and density compo-
nents. This suggests that when wall cooling is applied, the
thermodynamic part of energy becomes less significant com-
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Contours of (a) streamwise, (b) wall-normal, and (c) spanwise vorticity of the pattern-A response (0.45, 1). The solids and

dashed black lines mark the locations of the boundary layer edge and the entropy layer edge, respectively.
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pared to the kinetic part. These may be associated with the
modified mean flow gradient inside the boundary layer. The
adiabatic wall condition results in a steeper temperature gradi-
ent, which in turn strengthens thermodynamic fluctuations
components and eventually leads to a stronger Pattern-B wave.
As for the enstrophy ratios, wall cooling almost does not affect
the evolution of their values. This indicates that the vorticity
transfer process is weakly affected by the wall temperature.
The same curve and conclusion can be obtained for streaks,
not shown here for brevity.
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(a) I indicators of Chu energy and (b) enstrophy ratios of pattern-B response (0.3, 3).

4. Conclusions

In this work, resolvent analysis is utilized to study the optimal
disturbance of the hypersonic flow over a blunt wedge at Mach
number 5.9 and a unit Reynolds number of 91.5 x 10%/m. With
the absence of the second-mode disturbance, the low-
frequency (within 50 kHz) associated modal and nonmodal
disturbances are identified and examined with the parabolic
stability equation analysis. The growth pattern of optimal dis-
turbances is investigated with consideration of the effects of
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wall temperature (7,,/T,;, = 0.57, T,,/T,; = 0.75, and adia-
batic wall) and nose radius (R,*=2.54, 5.08, and 15.24 mm).
The lift-up/Orr transient growth mechanisms sustaining the
nonmodal amplification of the optimal response are also stud-
ied. The main conclusion is summarized as follows:

(1) For a fixed frequency, with the increment of the span-
wise wavenumber, competitive patterns of optimal dis-
turbances are identified. This competition is due to the
appearance of nearly equally significant optimal and
sub-optimal solutions. Specifically, the optimal response
of the system is firstly shown as disturbances propagat-
ing inside the entropy layer (pattern A), and then
switches to the pattern inside the boundary layer (pat-
tern B). The former pattern A experiences a long-
distance energy growth, while the latter pattern B under-
goes a rapid transient growth followed by a significant
decay. The significant decay can be interpreted as the
steady oblique mode S when the spanwise wave number
is not larger than 5 in the studied cases.

(2) Compared to the baseline cold wall condition
(T,,/T.s = 0.57), the adiabatic wall condition supports
the appearance of the unstable oblique first mode.
The optimal oblique wave first experiences a rapid
transient growth and then a modal growth, resulting in
a higher N-factor than other kinds of disturbances,
including streaks. Moreover, the cold wall condition
tends to weaken the transient growth of oblique
waves inside the boundary layers (pattern B), especially
for low-spanwise-wavenumber cases. For optimal
patterns travelling inside the entropy layer (pattern A),
the effect exerts no influence since the base flow inside
the entropy layer is hardly affected by the wall
temperature.

(3) Regarding the influence of the nose radius, the resolvent
analysis shows no discernible improvement in an under-
standing of either modal or nonmodal growth. Nonethe-
less, considering the receptivity to the slow acoustic
wave, the amplitude of nonmodal oblique waves within
the boundary layer increases with the nose bluntness.
The enhanced nonmodal oblique wave in the upstream
region approaches that of the first mode downstream.
The strengthened receptivity of oblique waves with rela-
tively large spanwise wavenumber (say, f = 7 for
R,*=15.24 mm) may potentially cause the transition
to move upstream. An estimated amplitude response
favorably reproduces the reversal-like phenomenon. A
three-dimensional simulation of the complete stage
(from receptivity to transition) is expected in the
future.

(4) Both Orr and lift-up mechanisms play a significant role
in the transient growth of optimal disturbances. This
deduction particularly holds true for pattern-A optimal
responses, which are manifested as tilted waves inside
the entropy layer. The Orr mechanism is more likely
to be accomplished by energy transfer via the mean tem-
perature gradient rather than the mean shear. This is
because the base velocity gradient in the entropy layer
is ignorable compared to the temperature gradient. Fur-

thermore, pattern-B responses possess a more efficient
lift-up mechanism than pattern-A responses according
to an enstrophy ratio criterion.

The base flow is limited to two-dimensional cases in this
study, and the linear assumption is applied to disturbance
equations. Furthermore, the resolvent analysis only yields
the optimal disturbances that experience the largest energy
gain in the studied computational domains, which serve as
the upper boundary or the most dangerous scenario subject
to external forcings. It may not be realisable by wind-tunnel
experiments under specific environments. In the future, the
role of these disturbances of various patterns should be ade-
quately considered in the Fourier space for a transitional
hypersonic flow over blunt bodies. The corresponding transi-
tion to turbulence under the realistic wind tunnel condition
with broadband noise may be a combinational consequence
of various kinds of disturbance which are selected to be consid-
erably amplified.
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Appendix A. Verification of grid independence

Computational grids are constructed with two different grid
resolutions, including 750 x 300 (coarse) and 1000 x 400
(fine) in the streamwise and wall-normal directions, respec-
tively. Note that the grid near the wall and the bow shock
are clustered. Here, only is the case for R,* = 2.54 mm
and T,,/T,; = 0.57 shown for brevity. The same conclusion
can be obtained for other cases. Fig. A1 compares the mean
temperature contour between the coarse and fine grids, and
Fig. A2 compares the N-factor distribution of representative
optimal responses for two sets of grids. It is indicated that the
coarse grid is sufficient for both the base-flow simulation and
the resolvent analysis for the frequency of interest in this
study.
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Appendix B. Competitive patterns of optimal and sub-optimal
disturbances

The optimal disturbance can be viewed as an upper bound of
the response of the system, while realistic external disruptions
typically lead to a suboptimal transient growth. As shown in
Fig. BI, the optimal response switches from pattern A to pat-
tern B as f§ increases, the competition between these two pat-
terns can be revealed by extracting both the optimal and
sub-optimal responses. The sub-optimal disturbance can be
captured using an Arnoldi iteration to search for more eigen-
values. Here, we display the optimal (pattern-B family) and
sub-optimal (pattern-A family) disturbances for the Fourier

lines.

As shown in Fig. B2(a), the optimal response demonstrates
a rapid growth near the forcing location, while the other non-
optimal disturbances experience a gradual growth down-
stream. Note that the optimal gain decreases monotonically
from the optimal response to the first, second, third, and
fourth sub-optimal responses. According to Fig. B2(b), the
vorticity transfer from the streamwise direction to the spanwise
direction is more efficient for optimal disturbances, followed
by the first, second, third, and fourth sub-optimal responses.
This is because the optimal response achieves a rapid ri-
dominated state downstream of the forcing location. There-
fore, the lift-up mechanism may play a significant role in the
competition between optimal and relevant sub-optimal
disturbances.
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The temperature fluctuation contours for optimal and four sub-optimal disturbances for (0.3, 2) are shown in Fig. B3. The opti-
mal disturbance is distributed inside the boundary layer, while the sub-optimal disturbances show their signature inside the
entropy layer. The non-optimal disturbances present a tilting structure that seems to be associated with the Orr mechanism.
The disturbances inside the entropy layer may be related to the wisp-like structures observed in the wind-tunnel experiment when
the first and second modes are not dominant.”**> The nonlinear evolution and potential transition process induced by these dis-

turbances merits further investigation.
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