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ARTICLE INFO ABSTRACT
Keywords: The simulation of transcritical flows remains challenging due to strong thermodynamic nonlinear-
Transcritical flow ities that induce spurious pressure oscillations in conventional schemes.While primitive-variable

Primitive-variable formulation
Hybrid scheme
Pressure oscillations

formulations offer improved robustness under such conditions, they are always limited by energy
conservation errors and the absence of systematic high-order treatments for numerical fluxes. In
this paper, we introduce the Central Differential flux with High-Order Dissipation (CDHD), a novel
numerical flux solver designed for primitive-variable discretization. This method combines a cen-
tral flux for advection with a minimal, upwind-biased dissipation term to stabilize the simulation
while maintaining formal accuracy. The dissipation term effectively suppresses oscillations and
improves stability in transcritical flows. Compared to traditional primitive-variable approaches,
CDHD reduces the energy conservation error in two order of magnitude. When incorporated into
a hybrid framework with a conservative shock-capturing scheme, the method robustly handles
both smooth transcritical phenomena and shock waves. Numerical tests validate the accuracy,
stability, and energy-preserving capabilities of CDHD, demonstrating its potential as a reliable
tool for complex real-gas flow simulations.

1. Introduction

The accurate simulation of fluids in the transcritical regime is essential for the design and analysis of advanced engineering
systems[1], such as liquid rocket engines [2-5], supercritical power cycles [6-8], and next-generation chip cooling systems [9,10].
As shown in Fig. 1, the regime located near the pseudo-boiling or Widom line[11,12], is characterized by drastic, liquid-like to gas-like
variations in thermodynamic and transport properties. These strong thermodynamic nonlinearities introduce new fluid phenomena
[13-16] but present significant challenges for numerical simulations [17]. The application of widely used conservative schemes
often generates severe unphysical pressure oscillations [18] that can render the simulation unstable. Even in ideal gas flows, similar
oscillations can be observed in regions with rapid property change, such as material interfaces[19] or in multicomponent flows
[20-22]. Thus, accurately capturing these transcritical phenomena requires not only a precise real-gas Equation of State (EoS), such
as the Peng-Robinson [23,24] model utilized in this paper, but also a numerical scheme that is both accurate and robust.

To address these numerical challenges, numerous attempts have been made to suppress these unphysical oscillations. For low-
velocity transcritical flows, researchers have widely adopted the low-Mach-number approximation [25-27] of the governing equa-
tions. For instance, Pasquale [28] use a low-Mach approximation in the direct numerical simulation to fully resolve the interaction
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$P_c$


$3.3958 \mathrm {MPa}$


$T_c$


$126.192 \mathrm {K}$


$0.1$


$L^{2}$


\begin {equation}\frac {\partial \mathbf {W}}{\partial t} + \frac {\partial \mathbf {F}(\mathbf {W})}{\partial x} = 0, \label {Xeqn1-1}\end {equation}


$\mathbf {W} = [\rho , \rho u, E]^T$


$\rho $


$u$


$E$


$\mathbf {F}(\mathbf {W}) = [\rho u, \rho u^2 + p, u(E + p)]^T$


$p$


$\mathbf {V} = [\rho , u, p]^T$


\begin {equation}\frac {\partial \mathbf {V}}{\partial t} + B(\mathbf {V}) \frac {\partial \mathbf {V}}{\partial x} = 0, \label {Xeqn2-2}\end {equation}


\begin {equation}B(\mathbf {V}) = \begin {bmatrix} u & \rho & 0 \\ 0 & u & 1/\rho \\ 0 & \rho c^2 & u \end {bmatrix}, \label {Xeqn3-3}\end {equation}


$c$


\begin {equation}\label {eq:pr_eos} P=\frac {\rho R_{u} T}{M_{w}-b \rho }+\frac {a \alpha (T) \rho ^{2}}{M_{w}^{2}+2 M_{w} b \rho -b^{2} \rho ^{2}},\end {equation}


$R_{u}$


$M_{w}$


$T$


$\alpha (T)$


\begin {equation}\alpha (T)=\left [1+\kappa \left (1-\sqrt {T / T_{c}}\right )\right ]^{2}, \label {Xeqn5-5}\end {equation}


$T_{c}$


$\kappa $


$\omega $


\begin {equation}\kappa =0.37464+1.54226 \omega -0.26992 \omega ^{2} . \label {Xeqn6-6}\end {equation}


$\omega = 0.040$


$\kappa \approx 0.436$


$P_{c}=3.3958 \mathrm {MPa}$


$T_{c}=126.192K$


$\alpha (T)$


$a$


$b$


$P_{c}$


$T_{c}$


$a$


\begin {equation}\label {eq:pr_param} a=0.45724\left (\frac {R_{u}^{2} T_{c}^{2}}{P_{c}}\right ), \quad b=0.07780\left (\frac {R_{u} T_{c}}{P_{c}}\right ).\end {equation}


$e$


$c$


$e$


$c^{2}$


\begin {equation}\label {eq:ener_eos} \begin {aligned} e(T, \rho ) & =e_{0}(T)+\int _{\rho _{0}}^{\rho }\left [\frac {P}{\rho ^{2}}-\frac {T}{\rho ^{2}}\left (\frac {\partial P}{\partial T}\right )_{\rho }\right ]_{T} d \rho , \\ c^{2} & =\left (\frac {\partial P}{\partial \rho }\right )_{s}=\frac {c_{p}}{c_{v}}\left (\frac {\partial P}{\partial \rho }\right )_{T}. \end {aligned}\end {equation}


$e_{0}(T)$


$0$


$c_{p}$


$c_{v}$


$s$


$T$


$c_{p}(T,\rho )$


$c_{v}(T,\rho )$


$(p, e, E)$


$i$


$x_{i \pm 1/2}$


$V^{-}_{i+1/2}$


$i+1/2$


$\mathbf {W}$


$\mathbf {V}$


$B(\mathbf {V}) = \partial \mathbf {F}(\mathbf {V}) / \partial \mathbf {V}$


$[x_{i-1/2}, x_{i+1/2}]$


\begin {equation}\begin {aligned} \frac {d}{d t} & \int _{x_{i-1 / 2}}^{x_{i+1 / 2}} \mathbf {W}(x, t) d x \\ &+\mathbf {F}\left (\mathbf {W}\left (x_{i+1 / 2}, t\right )\right )-\mathbf {F}\left (\mathbf {W}\left (x_{i-1 / 2}, t\right )\right )=0, \end {aligned} \label {Xeqn9-9}\end {equation}


$\mathbf {W}$


$\mathbf {F}$


$\Delta x$


$\mathbf {W}_{i}(t)=\frac {1}{\Delta x} \int _{x_{i-1 / 2}}^{x_{i+1 / 2}} \mathbf {W}(x, t) d x$


\begin {equation}\frac {d \mathbf {W}_{i}}{d t}=-\frac {1}{\Delta x}\left (\mathbf {F}_{i+1 / 2}-\mathbf {F}_{i-1 / 2}\right ), \label {Xeqn10-10}\end {equation}


$\mathbf {F}_{i\pm 1 / 2}$


\begin {equation}\mathbf {W}_{i}^{n+1}=\mathbf {W}_{i}^{n}-\frac {\Delta t}{\Delta x} \left [\mathbf {F}_{i+\frac {1}{2}}-\mathbf {F}_{i-\frac {1}{2}}\right ]. \label {Xeqn11-11}\end {equation}


$\Delta t$


\begin {equation}\Delta t = C_{\mathrm {cfl}} \frac {\Delta x}{S_{\max }^{(n)}}, \label {Xeqn12-12}\end {equation}


$S_{\max }^{(n)}=\max _{i}\left \{\left |u_{i}^{n}\right |+c_{i}^{n}\right \}$


$n$


$C_{\mathrm {cfl}}$


$x_{i+1/2}$


$v^{+}_{i+1/2}$


$v^{-}_{i+1/2}$


$v$


$v^{-}_{i+1/2}$


$\left \{v_{i-2}, v_{i-1}, v_{i}, v_{i+1}, v_{i+2}\right \}$


\begin {equation}\begin {array}{l} S_{0}=\left \{v_{i-2}, v_{i-1}, v_{i}\right \} , \\ S_{1}=\left \{v_{i-1}, v_{i}, v_{i+1}\right \} , \\ S_{2}=\left \{v_{i}, v_{i+1}, v_{i+2}\right \} . \end {array} \label {Xeqn13-13}\end {equation}


$\beta _0, \beta _1,\beta _2$


\begin {equation*}\begin {aligned} \beta _{0}&=\frac {13}{12}\left (v_{i-2}-2 v_{i-1}+v_{i}\right )^{2}+\frac {1}{4}\left (v_{i-2}-4 v_{i-1}+3 v_{i}\right )^{2}, \\ \beta _{1}&=\frac {13}{12}\left (v_{i-1}-2 v_{i}+v_{i+1}\right )^{2}+\frac {1}{4}\left (v_{i-1}-v_{i+1}\right )^{2}, \\ \beta _{2}&=\frac {13}{12}\left (v_{i}-2 v_{i+1}+v_{i+2}\right )^{2}+\frac {1}{4}\left (3 v_{i}-4 v_{i+1}+v_{i+2}\right )^{2}. \end {aligned}\end {equation*}


$\alpha _k$


\begin {equation*}\alpha _{0}=\frac {d^{-}_{0}}{\left (\epsilon +\beta _{0}\right )^{2}}, \quad \alpha _{1}=\frac {d^{-}_{1}}{\left (\epsilon +\beta _{1}\right )^{2}}, \quad \alpha _{2}=\frac {d^{-}_{2}}{\left (\epsilon +\beta _{2}\right )^{2}},\end {equation*}


$\epsilon = 1 \times 10^{-6}$


$d^{-}_{k}$


$v^{-}_{i+1/2}$


$\left \{d_{0}^{-}, d_{1}^{-}, d_{2}^{-}\right \}=\{0.1,0.6,0.3\}$


$\omega _k$


\begin {equation}\omega _{k}=\frac {\alpha _{k}}{\sum _{j=0}^{2} \alpha _{j}}. \label {Xeqn14-14}\end {equation}


$v^{+}_{i+1/2}$


$\left \{v_{i-1}, v_{i}, v_{i+1}, v_{i+2}, v_{i+3}\right \}$


$\left \{d_{0}^{+}, d_{1}^{+}, d_{2}^{+}\right \}=\{0.3,0.6,0.1\}$


\begin {align}P^{*} &= \frac {1}{2}\left (P_{L}+P_{R}\right )+\frac {1}{2}\left (u_{L}-u_{R}\right ) \bar {\rho } \bar {c}, \\ u^{*} & = \frac {1}{2}\left (u_{L}+u_{R}\right )+\frac {1}{2}\left (P_{L}-P_{R}\right ) / (\bar {\rho } \bar {c}),\\ \rho _{i+\frac {1}{2}}^{L}&=\rho _{i}+\left (u_{i}-u_{i+\frac {1}{2}}\right )(\bar {\rho } / \bar {c}), \\ \rho _{i+\frac {1}{2}}^{R}&=\rho _{i+1}+\left (u_{i+\frac {1}{2}}-u_{i+1}\right )(\bar {\rho } / \bar {c}),\end {align}


$\bar {\rho }=\frac {1}{2}\left (\rho _{L}+\rho _{R}\right )$


$\bar {a}=\frac {1}{2}\left (a_{L}+a_{R}\right )$


\begin {equation}\begin {aligned} s_{i+\frac {1}{2}}^{L}&=\frac {\left (\rho _{i} u_{i}-\rho _{i+\frac {1}{2}}^{L} u_{i+\frac {1}{2}}\right )}{\rho _{i}-\rho _{i+\frac {1}{2}}^{L}}, \\ s_{i+\frac {1}{2}}^{R}&=\frac {\left (\rho _{i+1} u_{i+1}-\rho _{i+\frac {1}{2}}^{R} u_{i+\frac {1}{2}}\right )}{\rho _{i+1}-\rho _{i+\frac {1}{2}}^{R}}. \end {aligned} \label {Xeqn15-19}\end {equation}


$i$


\begin {equation}\label {eq:shock_sensor} \begin {aligned} & \frac {P_{i+\frac {1}{2}}}{P_{i}}>1+\varepsilon \quad \text { and } \quad s_{i+\frac {1}{2}}^{L}<0, \\ \text { or } & \frac {P_{i-\frac {1}{2}}}{P_{i}}>1+\varepsilon \quad \text { and } \quad s_{i-\frac {1}{2}}^{R}<0, \end {aligned}\end {equation}


$\varepsilon $


$(0, 0.1)$


$\varepsilon = 0.05$


$\mathbf {V}$


$\mathbf {V}_L = \mathbf {V}^+$


$\mathbf {V}_R = \mathbf {V}^-$


$\mathbf {W}_L$


$\mathbf {W}_R$


\begin {equation}\frac {\partial \mathbf {V}}{\partial t}+\mathbf {B}(\mathbf {V}) \frac {\partial \mathbf {V}}{\partial x}=0, \label {Xeqn17-21}\end {equation}


$\mathbf {V}=[\rho , u, P]^{T}$


$\mathbf {B}(\mathbf {V})$


$\mathcal {L}_{v}=-\mathbf {B}(\mathbf {V}) \partial _{x} \mathbf {V}$


\begin {equation}\mathcal {L}_{v}=\underbrace {\mathcal {L}_{v}^{\text {central }}}_{\text {accuracy }}+\underbrace {\mathcal {L}_{v}^{\text {diss }}}_{\text {stability }} . \label {Xeqn18-22}\end {equation}


\begin {equation}\label {eq:central-derivative} \begin {aligned} \left .\partial _{x} \mathbf {V}\right |_{i} &\approx \frac {\mathbf {V}_{i+1 / 2}^{-}-\mathbf {V}_{i-1 / 2}^{+}}{\Delta x},\\ \mathcal {L}_{v}^{\text {central }}(i)&=-B\left (\mathbf {V}_{i}\right ) \frac {\mathbf {V}_{i+1 / 2}^{-}-\mathbf {V}_{i-1 / 2}^{+}}{\Delta x}. \end {aligned}\end {equation}


$\mathbf {V}^-_{i+1/2}$


$x_{i+1/2}$


$\mathbf {V}^+_{i-1/2}$


$x_{i-1/2}$


$\{i-2,i-1,i,i+1,i+2\}$


$i$


$\mathbf {V}^{\pm }_{i\pm 1/2} = \mathbf {V}(x_{i\pm 1/2}) + \mathcal {O}(\Delta x^5)$


$O(\Delta x ^2)$


$\mathbf {B}(\mathbf {V}) \partial _{x} \mathbf {V}$


$x_{i+1/2}$


\begin {equation}\mathbf {V}_L = \mathbf {V}_{i+1/2}^-, \quad \mathbf {V}_R = \mathbf {V}_{i+1/2}^+, \label {Xeqn20-24}\end {equation}


$\boldsymbol {\Psi }(s) = \mathbf {V}_L + s\,(\mathbf {V}_R - \mathbf {V}_L), \ s \in [0,1]$


$\mathbf {B}^{ \pm }=\frac {1}{2}(\mathbf {B} \pm |\mathbf {B}|)$


$|\mathbf {B}|=\mathbf {R}|\Lambda | \mathbf {R}^{-1}$


\begin {equation}\begin {aligned} \mathbf {H}^{\pm }_{i+1/2} &= \int _0^1 \mathbf {B}^{\pm }(\boldsymbol {\Psi }(s)) \,\frac {\partial \boldsymbol {\Psi }}{\partial s}(s)\, \mathrm {d}s \\ &= \left (\int _0^1 \mathbf {B}^{\pm }(\boldsymbol {\Psi }(s))\,\mathrm {d}s\right ) (\mathbf {V}_R - \mathbf {V}_L), \label {eq:H-path} \end {aligned}\end {equation}


$3$


\begin {equation}\label {eq:dissipation-divergence} \mathcal {L}_{v}^{\text {diss }}(i)=-\frac {1}{\Delta x}\left (\mathbf {H}_{i+1 / 2}^{-}+\mathbf {H}_{i-1 / 2}^{+}\right ).\end {equation}


$\mathcal {L}_{v}^{\mathrm {central}}$


$(\rho , u, p)$


$\mathcal {L}_{v}^{\mathrm {diss}}$


$\mathcal {O}(\Delta x ^{4})$


$\mathbf {V}_{R}-\mathbf {V}_{L}=O\left (\Delta x^{5}\right )$


$\mathcal {L}_{v}^{\mathrm {diss}}=O\left (\Delta x^{4}\right )$


$|u|+a$


$\mathcal {L}_v^\text {central}$


$d\mathbf {V} = \mathbf {V}_R - \mathbf {V}_L$


$\mathbf {H}^\pm = O(\Delta x^5)$


$\mathcal {L}_v^\text {diss} = O(\Delta x^4)$


$\mathbf {V}_i$


$v(x)$


$i$


$x_i$


$\Delta x$


\begin {equation}\bar {v}_i = \frac {1}{\Delta x} \int _{x_{i-1/2}}^{x_{i+1/2}} v(\xi ) \, d\xi = v(x_i) + O(\Delta x^2), \label {Xeqn23-27}\end {equation}


$x_i$


$O(\Delta x^2)$


$v^{-}_{i+1/2}$


$v^{+}_{i+1/2}$


$x_{i+1/2}$


\begin {equation}v^\pm _{i+1/2} = v(x_{i+1/2}) + O(\Delta x^5). \label {Xeqn24-28}\end {equation}


$i+1/2$


$V_L = V^+_i$


$i$


$V(x_{i+1/2}) + O(\Delta x^5)$


$V_R = V^-_{i+1}$


$i+1$


$V(x_{i+1/2}) + O(\Delta x^5)$


\begin {align}V_{L}&=V\left (x_{i+1 / 2}\right )+c_{L} \Delta x^{5}+O\left (\Delta x^{6}\right ), \label {eq:Vla} \\ V_{R}&=V\left (x_{i+1 / 2}\right )+c_{R} \Delta x^{5}+O\left (\Delta x^{6}\right ), \label {eq:Vlb}\end {align}


$c_{L}$


$c_{R}$


$dV = (c_{R} - c_{L}) \Delta x^5 + O\left (\Delta x^{6}\right ) = O\left (\Delta x^{5}\right )$


\begin {equation}d V:=V_{R}-V_{L}=O\left (\Delta x^{5}\right ). \label {Xeqn25-30}\end {equation}


$dV$


$O(1)$


$O\left (\Delta x^{5}\right )$


\begin {equation}\label {eq:lvcentral} \mathcal {L}_{v}^{\text {central }}(i)=-B\left (\mathbf {V}_{i}\right ) \frac {\mathbf {V}_{i+1 / 2}^{-}-\mathbf {V}_{i-1 / 2}^{+}}{\Delta x}\end {equation}


$O(\Delta x^2)$


$B\left (\mathbf {V}_{i}\right )$


$B\left (\mathbf {V}(x_{i})\right )$


$V$


\begin {equation}\begin {aligned} &\frac {V\left (x_{i+1 / 2}\right )-V\left (x_{i-1 / 2}\right )}{\Delta x} \\ &=V^{\prime }\left (x_{i}\right )+\frac {\Delta x^{2}}{24} V^{(3)}\left (x_{i}\right )+O\left (\Delta x^{4}\right ). \end {aligned} \label {Xeqn27-32}\end {equation}


\begin {equation}V_{i \pm 1 / 2}^{ \pm }=V\left (x_{i \pm 1 / 2}\right )+O\left (\Delta x^{5}\right ), \label {Xeqn28-33}\end {equation}


\begin {equation}\frac {\left [O\left (\Delta x^{5}\right )\right ]-\left [O\left (\Delta x^{5}\right )\right ]}{\Delta x}=O\left (\Delta x^{4}\right ), \label {Xeqn29-34}\end {equation}


$O(\Delta x^2)$


$B\left (\mathbf {V}_{i}\right )$


$B\left (\mathbf {V}(x_{i})\right )$


$O(\Delta x^2)$


$\mathbf {V}_{i}$


$\mathbf {V}_{i}=\mathbf {V}\left (x_{i}\right )+O\left (\Delta x^{2}\right )$


$B$


\begin {align}&B\left (\mathbf {V}_{i}\right )=B\left (\mathbf {V}\left (x_{i}\right )\right )+O\left (\Delta x^{2}\right ). \label {Xeqn30-35}\end {align}


\begin {align}\mathcal {L}_{v}^{\text {central }}(i)&= -\underbrace {B\left (\mathbf {V}\left (x_{i}\right )\right )}_{\text {exact coeff. }} \underbrace {\frac {V\left (x_{i+1 / 2}\right )-V\left (x_{i-1 / 2}\right )}{\Delta x}}_{2 \text {-pt central diff }} \nonumber \\ &\quad -\left (B\left (\mathbf {V}_{i}\right )-B\left (\mathbf {V}\left (x_{i}\right )\right )\right ) \frac {\mathbf {V}_{i+1 / 2}^{-}-\mathbf {V}_{i-1 / 2}^{+}}{\Delta x}\nonumber \\ &\quad -B\left (\mathbf {V}\left (x_{i}\right )\right )\left (\frac {\left .\mathbf {V}_{i+1 / 2}^{-}-\mathbf {V}_{i-1 / 2}^{+}-\frac {V\left (x_{i+1 / 2}\right )-V\left (x_{i-1 / 2}\right )}{\Delta x}\right )}{\Delta x}\right ). \label {eq:central}\end {align}


$O(\Delta x^2)$


$B\left (\mathbf {V}_{i}\right )-B\left (\mathbf {V}\left (x_{i}\right )\right )=O\left (\Delta x^{2}\right )$


$O(1)$


$O(\Delta x^2)$


$O\left (\Delta x^{4}\right )$


\begin {equation}\mathcal {L}_{v}^{\text {central }}(i)=-B\left (\mathbf {V}\left (x_{i}\right )\right ) \partial _{x} \mathbf {V}\left (x_{i}\right )+O\left (\Delta x^{2}\right ), \label {Xeqn32-37}\end {equation}


$O\left (\Delta x^{2}\right )$


$B(\mathbf {V}_{i})$


$d \mathbf {V}=\mathbf {V}_{R}-\mathbf {V}_{L}$


$\Psi (s)=\mathbf {V}_{L}+s d \mathbf {V}, s \in [0,1]$


\begin {align}\label {eq:DOTRS} \mathbf {H}^{ \pm }&=\int _{0}^{1} B^{ \pm }(\Psi (s)) d s d \mathbf {V}, \\ B^{ \pm }(\mathbf {V})&=\frac {1}{2}(B(\mathbf {V}) \pm |B(\mathbf {V})|),\\ \quad |B|&=R|\Lambda | R^{-1},\end {align}


$\Lambda =\operatorname {diag}(u-c, u, u+c)$


$\Psi (s)=\mathbf {V}_{L}+s d \mathbf {V}, s\in [0, 1]$


$B$


$C^2$


$B(\mathbf V)$


$\Psi (s)$


$|B|$


$B^\pm =1/2(B\pm |B|)$


$D$


\begin {equation}D B^{ \pm }(\mathbf {V})[\delta \mathbf {V}]=\lim _{\tau \rightarrow 0} \frac {B^{ \pm }(\mathbf {V}+\tau \delta \mathbf {V})-B^{ \pm }(\mathbf {V})}{\tau }. \label {Xeqn34-39}\end {equation}


$f(s)=B^{ \pm }(\Psi (s))$


$s$


\begin {equation}\begin {aligned} f(s)=& B^{ \pm }\left (\mathbf {V}_{L}\right )+s D B^{ \pm }\left (\mathbf {V}_{L}\right )[d \mathbf {V}] \\ &+\frac {1}{2} s^{2} D^{2} B^{ \pm }\left (\mathbf {V}_{L}\right )[d \mathbf {V}, d \mathbf {V}]+O\left (\|d \mathbf {V}\|^{3}\right ). \end {aligned} \label {Xeqn35-40}\end {equation}


\begin {equation}\label {eq:integrating} \begin {aligned} \int _{0}^{1} f(s) d s &= B^{ \pm }\left (\mathbf {V}_{L}\right ) +\frac {1}{2} D B^{ \pm }\left (\mathbf {V}_{L}\right )[d \mathbf {V}] \\ &\quad +\frac {1}{6} D^{2} B^{ \pm }\left (\mathbf {V}_{L}\right )[d \mathbf {V}, d \mathbf {V}]+O\left (\|d \mathbf {V}\|^{3}\right ). \end {aligned}\end {equation}


$d\mathbf {V}$


\begin {equation}\label {eq:h_pm} \mathbf {H}^{ \pm }=B^{ \pm }\left (\mathbf {V}_{L}\right ) d \mathbf {V}+\frac {1}{2} D B^{ \pm }\left (\mathbf {V}_{L}\right )[d \mathbf {V}] d \mathbf {V}+O\left (\|d \mathbf {V}\|^{3}\right ).\end {equation}


$\left \|\mathbf {H}^{ \pm }\right \| \leq C_{1}\|d \mathbf {V}\|+C_{2}\|d \mathbf {V}\|^{2}$


$d\mathbf {V}$


\begin {equation}\begin {aligned} \mathbf {V}_{L} & =\mathbf {V}\left (x_{i+1 / 2}\right )+O\left (\Delta x^{5}\right ), \\ \mathbf {V}_{R} & =\mathbf {V}\left (x_{i+1 / 2}\right )+O\left (\Delta x^{5}\right ). \end {aligned} \label {Xeqn38-43}\end {equation}


$d \mathbf {V}=O\left (\Delta x^{5}\right )$


$\| \mathbf {B}\left (\mathbf {V}_\text {avg }\right ) \| \lesssim C(|u|+c)$


\begin {equation}\begin {aligned} \mathbf {H}^{ \pm }&=O\left (\Delta x^{5}\right ) \quad \text { and } \\ \mathcal {L}_{v}^{\text {diss }}(i)&=-\frac {1}{\Delta x}\left (\mathbf {H}_{i+1 / 2}^{-}+\mathbf {H}_{i-1 / 2}^{+}\right )=O\left (\Delta x^{4}\right ) . \end {aligned} \label {Xeqn39-44}\end {equation}


$\mathcal {L}_v = \mathcal {L}_v^\text {central} + \mathcal {L}_v^\text {diss}$


$O(\Delta x^2)$


$\mathbf {V}_{L} = \mathbf {V}_{i}$


$\mathbf {V}_{R} = \mathbf {V}_{i+1}$


$d \mathbf {V}=O(1)$


$L_v(i) = -\frac {1}{\Delta x} (H^-_{i+1/2} + H^+_{i-1/2})$


$d\mathbf {V}$


$O(\Delta x^5)$


$\mathbf {H}^{\pm }$


$d\mathbf {V}$


$\mathcal {L}_{v}^{\text {diss}}$


$O(\Delta x^4)$


$\mathcal {L}^{\mathrm {central}}_v$


$d\mathbf {V} = \mathbf {V}_R - \mathbf {V}_L$


$d\mathbf {V} = O(\Delta x^{5})$


$\mathcal {L}^{\mathrm {diss}}_v = O(\Delta x^{4})$


$p$


$r \ge p+1$


$\mathcal {L}^{\mathrm {diss}}_v = O(\Delta x^{r-1})$


$p$


$r=5$


$r$


$\mathbf {V}_L, \mathbf {V}_R = \mathbf {V}(x_{i+1/2}) + O(\Delta x^{r})$


$d\mathbf {V} = O(\Delta x^{r})$


$\mathbf {H}^\pm = O(\Delta x^{r})$


$\mathcal {L}^{\mathrm {diss}}_v = O(\Delta x^{r-1})$


$p$


$r \ge p+1$


$\mathcal {O}(\Delta x^{2})$


$\mathcal {O}(\Delta x^{4})$


$1\text {D}$


$2\text {D}$


$1\text {-D}$


$\Omega \in [0, 1]$


\begin {equation}\begin {aligned} T(x)&=T_{l} \\ &\quad +\frac {T_{r}-T_{l}}{2}\left [\tanh \left (\frac {x-0.25}{\eta }\right )+\tanh \left (\frac {-(x-0.75)}{\eta }\right )\right ], \\ &u(x)=100 \quad (\mathrm {~m} / \mathrm {s}), \qquad p(x)=4.0 \times 10^{6} \quad (\mathrm {~Pa}), \end {aligned} \label {Xeqn40-45}\end {equation}
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Fig. 1. Density and constant pressure specific heat capacity of transcritical nitrogen at different pressures. The critical pressure P, of nitrogen is
3.3958MPa and the critical temperature 7, is 126.192K.

between turbulent and transcritical layers in a nitrogen jet. While effective and robust for low-velocity flows, this approximation can
introduce non-negligible errors when the flow Mach number exceeds 0.1. Thus, many new numerical methods have been developed
based on non-conservative formulations. The double flux method [29] that is originally designed to reduce the pressure oscillation
in multicomponent flows is used for the simulation of transcritical flows [18,30-32]. Instead of using the total energy equation, the
pressure evolution equation [33-36] is extensively employed for transcritical flow simulation. Kawai et al. successfully employ a
high-order compact differencing scheme to solve the pressure evolution equation for a robust and accurate simulation of transcrit-
ical flows [36]. However, these non-conservative methods, including the double-flux and pressure evolution formulations, come at
the cost of energy conservation error, which can lead to an incorrect prediction of shock wave locations and strengths. To reduce
this conservation error, hybrid methods [22,37-39] are also developed by researchers. Bradley Boyd and Dorrin Jarrahbashi [39]
propose a hybrid scheme that switches between a double-flux in transcritical region and a traditional fully conservative method for
other simulation domains. An emerging research topic in recent years is the development of fully conservative schemes to effectively
suppress pressure oscillations during real-fluid simulations [40]. Eric Ching et at. develop a fully conservative discontinuous Galerkin
method for supercritical, real-fluid flows [41] that uses an L? projection of primitive variables [42-44] to reduce pressure oscillations.
While this approach maintains stability, it can still result in small deviations from pressure equilibrium. More recently, Fujiwara et al.
derive a pressure-equilibrium condition [45] from the governing equations and constructed numerical fluxes to implicitly maintain
this condition. Terashima et al. extend this method to real fluids [46], proposing an approximately pressure-equilibrium-preserving
scheme with full energy conservation. However, these methods [45-47] are not easily extended to general transcritical flows.
Despite these advances, the pressure evolution equation remains a promising approach for the robust simulation of transcritical
flows. An open source code called CUBENS [48] is recently developed based on the pressure evolution equation for the simulation of
real fluid including transcritical flows. However, several key challenges persist. Firstly, discretizing the pressure evolution equation
can lead to an incorrect prediction of shock wave locations and strength. Secondly, the energy conservation error should be minimized

2
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for industrial applications where heat transfer is critical. Finally, a robust, high-order, and easily extendable numerical flux solver for
the primitive variable form of the equation has yet to be developed.

This paper presents a hybrid numerical method designed to address these challenges. We utilize a hybrid framework that switches
between a non-conservative, primitive-variable update in smooth regions and a fully conservative update in shock regions. The
Primitive Variable Riemann Solver (PVRS) [49] is utilized as a sensor to dynamically switch to a fully conservative scheme (fifth-
order WENO [50] with Roe flux [51]) to ensure accurate and robust shock capturing. For the primitive-variable update, we propose
a new interface flux solver called Central Differential flux with High-order Dissipation (CDHD) for the pressure evolution equation.
This method uses a high-order central flux to provide accuracy for the convection term and augments it with a small, high-order,
upwind-biased dissipation term to provide the necessary stabilization for transcritical gradients without degrading the formal order
of accuracy. A rigorous error analysis shows that the overall order of accuracy is determined by the central flux, provided that
the dissipation term is computed using high-order reconstructed values. Due to its low numerical diffusion, the proposed scheme
demonstrates superior energy conservation in smooth regions compared to conventional primitive-variable methods. The hybrid
framework ensures robustness for a wide range of flows containing both smooth transcritical phenomena and shocks.

The remainder of this paper is organized as follows: In Section 2, the mathematical model, including the governing equations and
thermodynamic closure, is described. In Section 3, we detail the components of the hybrid numerical method. Section 4 provides a
formal error analysis justifying the accuracy of the proposed scheme. In Section 5, we present validation results from several one-
dimensional (1D) and two-dimensional (2D) test cases to demonstrate the accuracy, stability, and robustness of the proposed scheme.
Finally, Section 6 summarizes of the findings.

2. Mathematical model
2.1. Governing equations

The governing equations for inviscid transcritical fluid flows are the Euler equations. For clarity, the numerical method is de-
rived and presented for the 1D case. The extension of the proposed method to multiple dimensions is straightforward, as will be

demonstrated later with a two-dimensional test case.
The one-dimensional Euler equations can be expressed in a standard conservative form:

W | IFW) _

ot ox
where W = [p, pu, E]” represents the vector of conservative variables (p for density, u for velocity, E for total energy), and F(W) =
[pu, pu® + p,u(E + p)]” is the flux. The pressure p is obtained from a real-gas EoS. Alternatively, in quasi-linear primitive form using
V = [p.u, p]”, the equations become

0, (€))

oV A%
o + B(V)E =0, 2
where
u p 0
BV)=[0  u 1/p| 3)
0 pc? u

and c is the speed of sound, computed via the corresponding EoS of the working fluid.
2.2. Thermodynamic closure and equation of state

An accurate description of the thermodynamic nonlinearity for fluids in the transcritical regime is of primary significance. The
extreme variations in fluid properties, particularly near the pseudo-boiling or Widom line, require that a thermodynamic model can
accurately capture these strong nonlinearities. While the numerical method in this work is developed to be general and compatible
with any sufficiently complex EoS, all computations herein will utilize the Peng-Robinson (PR) EoS [23,24]. The PR-EoS is a cubic
EoS that has been shown to reliably predict the thermodynamic properties [52] for hydrocarbons and other fluids in transcritical and
supercritical regions. Thus, the PR-EoS should be a suitable choice for the simulation of transcritical fluids.

To be specific, the PR EoS is expressed as

pR,T aa(T)p?

p= ,
My, —bp M2 +2M,bp—b2p?

4

where R, is the universal gas constant, M, is the molar mass, and T is the absolute temperature.
In this work we use the original Peng-Robinson form for a(T),

(T) = [1+K(1—\/ﬁ)]2, (5)

where T, is the critical temperature of the fluid, and « is related to the acentric factor « via:

Kk = 0.37464 + 1.542260 — 0.269920°. (6)
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The nitrogen is chosen as the working fluid in this paper. We use the acentric factor w = 0.040, which gives k =~ 0.436. Combined with
the critical properties P, = 3.3958MPa and T, = 126.192K, these definitions uniquely determine the temperature factor «(T') used in
all simulations. The model parameters a and b are determined by the critical pressure P, and critical temperature 7, of fluids':

R2T? R,T,
a=045724 === ), b=0.07780 === ). )
P P

c c

The system of Euler equations is closed by defining the thermodynamic properties, such as the specific internal energy e and the
speed of sound c. These are derived from the chosen EoS using fundamental thermodynamic relations. For detailed derivations for
real fluids, refer to the work of Kim et al [52].

The final expression for internal energy e and the speed of sound squared c? are given by[52]

TP T /0P
T,p) = eo(T — (= dp,
e(T', p) = ey( )+/p0 [pz p2<BT)p]T p ®

=(%). (%)
0p), ¢, \0p )y

Here, ¢ (T) refers to the internal energy of the reference ideal gas state, and the subscript 0 denotes a reference ideal gas state, whose
properties can be determined using standard equations, such as the NASA polynomials [18]. The terms c, and c, represent the specific
heat capacities at constant pressure and constant volume, while the subscripts s and 7' denote isentropic and isothermal processes
respectively. The more detailed expression of the thermodynamic derivatives, the evaluation of (T, p), ¢,(T, p), and the numerical
procedures used to convert between (p, e, E) are summarized in Appendix A.

3. Numerical method

This work targets the robust simulation of real-fluid or transcritical compressible flows in which thermodynamic properties vary
sharply across a small temperature range near the pseudo-boiling or Wisdom line. During the design of the algorithm for transcritical
flows, there are two requirements: (i) strict conservation across shocks and contact discontinuities, and (ii) low spurious pressure-
equilibrium (PE) errors when large thermodynamic gradients exist without true discontinuities. To meet both, we employ a hybrid
scheme. Cells near the shock waves are updated in a conservative finite volume form using WENO-5 reconstruction [50] and a Roe-
type flux solver adapted to the real-gas EoS [51]. Cells in the smooth region, transcritical region are updated in a primitive-variable
form with a centered differential flux augmented by a small, upwind-biased dissipation. The primitive variables are reconstructed
by WENO-5 to avoid characteristic projections through potentially ill-conditioned real-gas eigenstructures near the critical point. A
conservative numerical scheme, such as the finite-volume method, is essential to ensure that the Rankine-Hugoniot jump conditions
are satisfied [53]. This guarantees the correct prediction of the shock speed and strength, which is critical for physical accuracy.

Notation: Cell averages are denoted with the subscript . Interface locations are at x;, /,. Superscripts + and - always mean right-
biased and left-biased one-sided limits at an interface (e.g., Vi P is the value reconstructed in the left side of cell i + 1/2). Bold capital
W is the vector of conservative variables, V is vector of primitive variables, and B(V) = dF(V)/dV is the Jacobian of the inviscid flux
written in primitive variables.

3.1. Finite volume method

The governing Euler equations in the integral conservative form for a one-dimensional control volume [x;_, , x;, ,] are given by
[53]
d Xit+1/2
— Wi(x,t)dx
dt Xi-1/2 9
+F(W(xi1/0.1)) —F(W(x,_1/2.1)) =0,

where W is the vector of conserved variables and F is the corresponding flux vector. On a uniform grid of width Ax and defining the

cell-averaged value as W,(r) = ﬁ X):‘fll/f W(x, t)dx, the equation becomes:
dW; 1
d_tl = _E(FHI/Z -Fi_ip), 1o

where F,_., , represents the numerical flux at the cell interfaces.
For clarity, we first write the explicit forward-Euler update of the semi-discrete system as
At

+1 _
Wit = Wi- S IF —FF%]. an

! This a is the parameter computed by the critical temperature and critical pressure of corresponding fluids for the cubic EoS, rather than speed
of sound.
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In all computations reported in this work (including the convergence study), time advancement is performed using the third-order
strong-stability-preserving Runge-Kutta method (SSP-RK3). The time step At is generally controlled by the Courant-Friedrichs-Lewy
(CFL) condition for stability:

A
At = cc“(—"’j, (12)

max

where S = max, { u!| + ¢ ¢ is the maximum characteristic wave speed in the domain at time level n. The CFL number C,, depends

on the specific spatial and temporal schemes used.

3.2. WENO reconstruction

In this work, we employ the WENO-5 [50] scheme to reconstruct the primitive variables directly. At each interface x;,,/,, we
compute right-biased (vitrl /2) and left-biased (Ui_+1 /2) one side limits. In this subsection, superscripts + and - always mean right-biased
and left-biased reconstruction at an interface.

To reconstruct a scalar component v for the left biased value v

7112 @ 5-point stencil {0129, 0;_1,0;, V141, V42 } s used in WENO-5.

This can be split into three 3-point sub-stencils:

So = {Ui—Z’Ui—l’vi}’
S = {Ui—l’vi’UHl}’ (13)
N {Ui’UiJrl’UiJrZ}'

Each stencil is associated with a smoothness indicator (4. #;. ,), which quantifies the variation of variables within each stencil. These
indicators are computed as follows:

13 1

bo = E(Ui—Z - 20+ U[)z + Z(Ui—Z —4dv_ + 3”1‘)2,
13 1

b= E(Ui—l -2 + Ui+1)2 + Z(Ui—l - Ui+1)2»
13 1

b= E(Ui - 204 + Ui+2)2 + 1(31’1' —4vy + Ui+2)2'

The raw weights «, are determined by the smoothness indicators:
dy 4 dy

aO: _— al = s a2: N
(e+5)° (e+5)° (e+5)°

where ¢ = 1 x 107¢ is a small value added to avoid division by zero. The constants d; are the ideal weights that yield fifth-order
accuracy in smooth regions. For the left-biased reconstruction v these are {do_ .dy.dy } ={0.1,0.6,0.3}. The final normalized

i+1/2°
weights , are then computed:

A
5 .
z j=0 %j

The reconstructed value is a weighted sum of polynomial approximations from each sub-stencil.
A similar procedure is followed for the right-biased value at interface v yet using a stencil shifted to the right

i+1/2°
{01, V5> Vi1, Uig, Uiy } and different ideal weights {d},d},d}} = {0.3,0.6,0.1}.

14)

[

3.3. Shock detection

In this study, shock waves are detected using the PVRS [49]. In PVRS, the Riemann problem is approximately solved by:

1 1 __
P =E(PL+PR)+§(ML_MR)/’C, 1s)
1 1 __
u =§(”L+“R)+§(PL_PR)/(PC), 16)
Lo_ o
Pi+% =pt (ui_ui_'_%)(P/C), 17)
PR =+ <”,-+1 _”i+1>(ﬁ/c_), (18)
i+3 2
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where j = % (p +pg)anda = % (ay + ag) are the arithmetically averaged density and speed of sound at the interface, respectively.The

propagation speeds of left and right waves are:

e
1= )
3 pi—r-
i+5
(19)
<l’i+1”i+1 -*, "‘,—+l>
i+3 2
SR = 2 .
i*+3 Piy1 — ,05 1
i+5
2
Similar to previous research, the conservative methods are applied at cell i when:
P
i+3 L
>14+4¢ and s-, <0,
i "2 (20)
P
i-3 R
or >14+4¢ and s°, <0,

i1
i 2

where the parameter ¢ can be selected within the range (0, 0.1). In this paper, £ = 0.05 is used.

3.4. Conservative update

For the cells near shock waves, a standard finite-volume WENO-5 scheme with Roe-type real-gas flux is used to update the
conservative variable. Primitive variables V are reconstructed to obtain left (V, = V*) and right (V; = V™) states at interfaces,
which are then converted to conservative variables W; and Wy. The Roe approximate Riemann solver designed for the real gas
is used for the Roe flux. For more details, readers can refer to previous work [51]. It is proved in previous research[37-39] that,
compared with primitive form, the conservative form can maintain an accurate prediction of the speed and strength of shock waves.

3.5. Primitive update

For cells in the smooth region, we discretize the non-conservative, quasi-linear form of the Euler equations:

oV A%

— +B(V)— =0, 21
o +B(V) o 2n
where V = [p,u, P]T is the vector of primitive variables, and B(V) is the Jacobian matrix of primitive equations. The spatial term
L, =-B(V)a,V is handled by our proposed CDHD approach. This method split the flux into a central differential term and an upwind

dissipative term:

Euzﬁﬁentral + ﬁSiSS . (22)
—— ——

accuracy  stability

The central term is approximated using the WENO-5 reconstructed interface state:

- +
N Vi+l/2 - Vi—1/2
\'n vt @3
tral ;o\ _ i+1/2 " Vi-1)2
ceentral () = —B(V,) " .
Here V_, P denotes the left-biased reconstruction at x,,,, and V} P the right-biased reconstruction at x;_, ;. With this choice,

both interface values are obtained from the same symmetric five-point stencil {i —2,i — 1,i,i + 1,i + 2} around cell i, so Eq. (23) is
a two-point centered difference on staggered location with a compact stencil rather than an upwind operator. In smooth regions

WENO-5 yields Vi]/z =V(xip10) + O(Ax?), as analysed in Section 4.2.

Given that this is a two-point centered difference on staggered locations, its truncation error is O(Ax?) even though the individual
interface states are fifth-order accurate. If desired, a higher order central derivative can be utilized without changing the rest of the
formulation.

To stabilize this centered operator with a physically consistent upwind bias, we add Osher-type (DOTRS) [54,55] interface fluc-
tuations built from a path-conservative treatment of the non-conservative product B(V)o, V.

At an interface x;,,,, we denote the WENO reconstructed left and right states by:

vV, =V Vp=V (24)

— +
i+1/2° i+1/2°
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and connect them by the straight path W(s) = V; + s(Vg — V), s € [0, 1]. The characteristic splitting B* = %(B + |B|) (with |B| =
R|A|R™!) then yields the DOTRS fluctuations as:

+ ! + o
Hi_+1/2 =/0 B_(‘I'(S))g(s)ds

1
= (/ BE(¥(s)) ds>(VR -V,
0

which we evaluate with a 3 -point Gauss-Legendre rule. Summing the contributions from the two adjacent interfaces gives the
dissipation in divergence form:

(25)

diss ;i _ 1 -
LS 0) = “Ax (Hi+1/2 + H:r—l/z)' (26)

We note that, in the primitive update, total energy is not evolved from a conservative flux, so exact discrete conservation is not
enforced. However, the particular CDHD construction strongly limits the resulting conservation error. The central contribution £entra!
in Eq. (23) corresponds to a centered discretization of the quasi-linear Euler system and advects the primitive variables with very low
numerical diffusion. When the density and momentum are transported in this way, the implied total energy obtained from (p, u, p)
and the EoS satisfy the conservative energy balance up to the truncation error of the central derivative. The DOTRS-based dissipation
£385s in Eq. (26) only adds an O(Ax*) correction in smooth regions, so its contribution to the global energy budget is much smaller
than that of a first-order upwind formulation in which the full flux is replaced by a dissipative Riemann solver.

In smooth regions, the jump V; — V; = O(Ax’) for WENO-5, so that £8 = 0(Ax*).2 Thus the dissipation is subdominant com-
pared to the central term. In fact, the dissipation acts as a gentle upwind stabilization proportional to the spectral radius |u| + a,
without degrading the formal order of the chosen central derivative.

In transcritical regions, however, the central term alone is not sufficient to stabilize the primitive update: the strong nonlinearity of
the real-gas EoS makes the system highly sensitive to small inconsistencies between the discretized equations and the thermodynamic
closure. The DOTRS-based dissipative term provides the missing upwind bias in characteristic space, so that any residual mismatch
between the transported primitive variables and the EoS is damped rather than amplified. Together with the PVRS-based shock
sensor in Section 3.3, which switches to the fully conservative WENO-Roe scheme in cells containing genuine discontinuities, this
characteristic-based dissipation is the key mechanism that suppresses the spurious pressure oscillations usually observed near the
pseudo-boiling line when thermal properties change dramatically.

In the present work we distinguish between two closely related formulations. The first is a primitive-only CDHD scheme, which
applies the Osher-type dissipation directly to the primitive variables on the entire domain. This formulation is low-dissipative and
relatively inexpensive, and is intended as the default solver for transcritical flows without strong shocks. The second is the hybrid
CDHD + Roe scheme described above, in which a PVRS-based sensor activates a conservative WENO-Roe update only in cells
affected by strong compressive waves, while the primitive-only CDHD update is used elsewhere. In this setting the hybrid scheme is
only meant to account for shock waves and other localized non-smooth features, whereas smooth regions are handled by the cheaper
primitive-only formulation.

4. Error analysis

In this section, we provide a detailed mathematical justification for the behavior of the primitive update in smooth regions. We
analyze the truncation error in the central term Ef}e“tral, which reveals a second-order accuracy, and the scaling of the state jump
dV = Vg — V,, which leads to DOTRS fluctuations H* = O(Ax>) and a dissipative term Egiss = O(Ax*). The dissipation magnitude is
small enough not to influence the overall order of accuracy, namely the error from the central term dominates. We start by revisiting
the key elements of WENO reconstruction and DOTRS, and then proceed with Taylor expansions and error analysis to reveal the
behavior. By providing a detail error analysis, one can derive a higher order central flux easily.

4.1. WENO-5 Reconstruction and state jump scaling

The WENO-5 scheme, introduced by Jiang and Shu [50], reconstructs interface values from cell-averaged primitives V; to achieve
fifth-order accuracy in smooth regions. For a smooth scalar field v(x), the cell average in cell i (centered at x;, with width Ax) is:
_ 1 Xit+1/2 5
b= (&) dE = v(x;) + O(AX?), @27
X Xi-1/2
where the Taylor expansion around x; shows that the approximation error is O(Ax?).
WENOS computes left- (v | /2) and right-biased (u;’+ | /2) approximations at interface x;,, , using a nonlinear weighted average of
three candidate polynomials over stencils such that, in smooth regions, the combined reconstruction satisfies
Vi1 jn = Vi) + o(AX). (28)

At interface i + 1/2 we set:

2 For more details of the derivative process about the order of accuracy, please refer to the next section.
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oV, = Vi+: Right-biased reconstruction from the left cell i, approximating V' (x;, )+ O(AXY).
* Vg =V}, Left-biased from the right cell i + 1, also approximating V (x; ;) + O(AXY).

In smooth regions, writing
Ve =V (xip12) + L AX° + O(AxS), (29a)
Ve =V (Xip1)2) + cgAX° + O(AxS), (29b)

with (generally different) constants ¢; and cg, the subtraction of Eq. (29a) and Eq. (29b) yields dV = (cg — ¢, )Ax® + O(AxS) =
O(Ax3). Lower-order terms are canceled because the scheme is provably fifth-order accurate at the interface. Thus, the jump is

dV :=Vg -V, =0(AxX). (30)
Near discontinuities the WENO nonlinearity lowers the order and dV can be O(1). Our hybrid method switches computations in
such cells to conservative update, and thus the primitive update is used only where the O(Ax’) scaling holds.

4.2. Central flux truncation error

We analyze the truncation error of the central part of the primitive update
— +
Vi+1/2 B Vi—1/2
Ax

in smooth regions. Two independent O(Ax?) mechanisms govern the accuracy: (1) the derivative approximation from two midpoint
values, and (2) the use of B(V,) (a cell averaged value) in place of B(V(x;)) (an accurate point value).

ceentral () = —B(V,) (31)

4.2.1. Central difference from midpoints is second order
Let V be a smooth scalar component. By using exact interface values, one can arrive:

V(xip12) =V (xiz12)
Ax 42

2
+ A—ZVG)(X,-) +0(axt).

=V'(x)

Thus, the central-difference operator built from the two adjacent midpoints is inherently second order, regardless of how accurately
those midpoint values are obtained.
When employing WENO-5 reconstruction in the smooth region, one observes

Vi V(xiz12) +0(Ax%), (33)

i+1/2
so the reconstruction error contributes only
[o(ax*)] - [0(ax)]
Ax
which is subdominant to the O(Ax?) from the central difference itself.

=0(ax?), (34)

4.2.2. Coefficient mismatch of B(V,) and B(V(x,)) is also O(Ax?)
V, is a cell average V; = V(x;) + O(Ax?) by smoothing B:
B(V;) = B(V(x;)) + 0(ax?). (35)
By adding and subtracting the exact midpoint values in Eq. (31), one can obtain

V(xie12) =V (xiz1)2)

central /-y _ _ )
e ) =~ B(V(x) -

——

exact coeff.

2-pt central diff

\'N -V
i+1/2 7 Vi-1/2
~ (B(V,) - B(V(x)) 22
_ V (xie172) =V (xi-172)
i+1/2 = V;r—1/2 - %)
- B(V(x)) i (36)

In the first line of the above Eq. (36), the second-order central difference produces an O(Ax?) error. In the second line, B(V,-) -
B(V(x;)) = O(Ax?) times an O(1) gradient also generates an O(Ax?) error. In the third line, reconstruction defects contribute only
O(Ax*) error.Therefore,

[:lc)entral (i) = —B(V(X,'))axv(xi) + O(sz), (37)
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so the overall truncation error of the central term is O(Ax?). Importantly, this second-order behavior is not due to WENO reconstruc-

tion (which is 5th order at the interfaces), but to (a) the two-midpoint central differencing and (b) the use of B(V,) evaluated at a
cell average.

4.3. Dissipative term scaling

Let dV = Vz — V; and the straight-line path ¥(s) = V; + sdV, s € [0, 1]. The DOTRS[54,55] fluctuations are:

1
H* = / B*(¥(s))dsdV, (38)

0
BE(V) = %(B(V) * [BV)]), (39)
|B] = RIAIR™", (40)

with eigenvalues A = diag(u — ¢, u,u + ¢) and ¥(s) = V; + sdV,s € [0, 1].

Throughout this section we assume B is C? (twice continuously differentiable) and that the eigen structure of B(V) is smooth
along the path ¥(s) (no eigenvalue sign change), so that | B| and B* = 1/2(B + | B|) are differentiable.

Define D as the Fréchet derivative (directional derivative of a matrix-valued function):

B=(V + 16V) — B(V)

DB*(V)[6V] = lim
=0 T

(41)

The small-jump expansion can be derived as follows. Define f(s) = B*(¥(s)). By Taylor expansion in s and the chain rule, one can
arrive:

f(s)=B*(V,) +sDB*(V,)[dV]

1 22 pt 3 42)
+3s D*B=(V)[dV,dV]+ O(||ldV|]).
By integrating the above equation, we obtain
1
/ f(s)ds=B*(V,) + %DBi(VL)[dV]
0 (43)
+ éDzBi(VL)[dV, dV1+O0(|ldVI|P).
Multiplying Eq. (43) by dV gives
H* = B*(V,)dV + %DB*(VL)[dV]dV+O(||dV||3). 44
Hence, ||[H*|| < C,||dV]|| + G,||dV|? , i.e. linear in dV to the leading order.
By using WENO-5 reconstruction, the reconstructed interface states in smooth region satisfy:
Vi =V(x412) +0(AX%), 4s)
Vi = V(xl-+1/2) + O(Axs).
Thus, dV = O(Ax’). With the operator norm being controlled by ||B(V,yg )[| S C(Ju| + ¢), one can arrive
*=0(Ax’) and
(46)

diss ;i _ 1 - _ 4
Ly = _A_X<Hi+l/2 +Hi+—l/2> = 0(Ax%).

Thus the dissipation is high-order small and does not limit accuracy when combined with the central term. The total £, = Egemral +
£‘3i55 thus has an overall truncation error O(Ax?) in smooth regions, remaining spatial accuracy to the second order.

4.4. The role of DOTRS in first-order vs. high-order schemes

The function of the DOTRS dissipation changes dramatically with the order of the underlying scheme.

4.4.1. Role in first-Order schemes
In a first-order Godunov-type scheme, states are assumed to be piecewise constant, so V; =V, and Vz =V, ;. Jumps across
interfaces are large (dV = O(1)). Here, the DOTRS integral acts as the primary Riemann solver, providing the full upwind flux necessary

for stability and physical resolution. The resulting spatial discretization L (i) = —t(H;l nt Hl.tl /2) is first-order accurate.

9
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4.4.2. Role in this high-Order scheme

In our high-order method, the primary advection is handled by the accurate central flux term. The role of DOTRS is reduced to
that of a targeted stabilizer. Given that high-order reconstruction ensures the interface jump dV is very small (O(Ax>)) in smooth
regions, the DOTRS fluctuation H* also becomes minor. For a small dV, the dissipation behaves similarly to a local Lax-Friedrichs
scheme, whereas with a crucial difference that its magnitude is scaled by the high-order jump. The resulting dissipative term in the
final update ESiSS is O(Ax*). This dissipation is numerically small enough such that it vanishes faster than the error of the second-order
central term as the grid is refined. Therefore, it successfully provides stabilization against oscillations without affecting the formal
second-order accuracy of the overall scheme.

In the present work we therefore obtain a second-order accurate central term £, More generally, the DOTRS path-integral
dissipation introduced in Section 4.3 depends on the size of the reconstructed jump dV = V, — V,;. With WENO-5 we have dV =
O(AxY) in smooth region, which yields a dissipative contribution E‘giss = O(Ax*) and thus does not limit the overall accuracy. If one
wish to employ a high-order centered derivative of order p, it suffices to choose an interface reconstruction of order r > p + 1, so
that Eﬂiss = O(Ax""!) remains of order at least p. Our current choice of WENO-5 (r = 5) would therefore also be compatible with a
fourth-order operator in Eq. (23).

The above argument extends directly to other reconstruction orders. If the interface reconstruction is of order r rather than
five, then in smooth regions V;, Vg = V(x;;/;) + O(Ax") and hence dV = O(Ax"). The expansion in Egs. (38)-(44) then implies

* = O(Ax") and £gi“ = O(Ax""1). If the central derivative is of order p, choosing r > p+ 1 ensures that the DOTRS dissipation
remains subdominant and does not reduce the formal spatial order.

Because the conservative and primitive formulations are mathematically equivalent at the continuous level, any conservation
error arises purely from the spatial discretization. The analysis above shows that in smooth regions the non-conservative part of the
CDHD operator is of order @(Ax?) from the central term with only an ©@(Ax*) contribution from the DOTRS dissipation. Therefore,
the discrepancy between the discrete primitive update and the conservative energy equation is of the same order as the truncation
error of a standard second-order finite-volume scheme.

5. Result and discussion

In this section, a series of 1D and 2D numerical tests are undertaken to illustrate the accuracy and stability of the proposed
scheme. The transcritical nitrogen is adopted as the working fluid in all of the test cases with the thermodynamic properties of fluids
obtained by PR EoS. The numerical results are compared with available standard solutions. For a low magnitude dissipation, the
WENO-5 reconstruction is used in all cases. The following cases show that the numerical scheme proposed in this paper can achieve
an accurate, oscillation free simulation in transcritical regions.

5.1. 1-D transcritical advection cases

5.1.1. Result of CDHD scheme

A one-dimensional transcritical advection case is considered in a periodic domain Q € [0, 1] m. The initial conditions consist of a
sharp but continuous temperature gradient centered within the domain, while the velocity and pressure fields are spatially uniform.
The setup mimics a droplet in a transcritical environment, which is defined as

T(x)=T,

+ L0 [tanh (—x - 025) + tanh <—_(x —0.75) )] 47)
2 n n

u(x) =100 (m/s), p(x) =4.0x 10° ( Pa),

where, T; =200 K and Tk = 100 K are the left and right reference temperatures, respectively; # = 0.1 is a smoothing parameter
controlling the width of the temperature transition. The density field p(x) is computed using the PR EoS.

Because the velocity and pressure are spatially uniform and periodic boundary conditions are imposed, the exact solution is
obtained by advecting the initial profiles at constant speed. At the reporting time ¢ = 0.1 s (ten traversals of the periodic domain), this
analytical solution coincides with the initial condition, which is therefore used as the reference solution in Fig. 2.

The proposed CDHD method with a WENO-5 reconstruction is validated against a transcritical convection problem with a known
analytical solution. The numerical results at the simulation time ¢ = 0.1 s, corresponding to 10 periods of convection, are presented
in Fig. 2. All results are simulated with 512 grid points.

For the velocity and pressure fields, both the CDHD WENO-5 and the first-order DOTRS schemes demonstrate an excellent agree-
ment with the analytical solution. Both methods achieve a robust simulation, accurately maintaining the constant velocity of 100 m/s
and pressure of 4.0 MPa across the entire spatial domain. However, significant differences emerge in the temperature and density
profiles. The density field exhibits more rapid variations due to the nonlinear thermodynamic effect near the critical point. The CDHD
WENO-5 method accurately reproduces both the density and temperature profiles, preserving the sharpness of transitions without
introducing spurious oscillations. In contrast, the first-order DOTRS scheme results in noticeable smearing of the interface, limiting
its usage in resolving sharp gradients.

Overall, the CDHD method with WENO-5 reconstruction demonstrates superior accuracy and robustness in simulating transcritical
flows, particularly in capturing the nonlinearities arising from thermodynamic properties. The method delivers robust performance

10
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Fig. 2. Comparison of numerical results from the CDHD WENO-5 and the first-order DOTRS schemes with the analytical solution for the 1-D
transcritical advection case at t = 0.1 s (ten domain traversals) using 512 grid points. Profiles of (a) density, (b) velocity, (c) pressure, and (d)
temperature are shown. The CDHD WENO-5 scheme shows an excellent agreement with the analytical solution, while the DOTRS scheme exhibits
significant numerical smearing in the density and temperature profile.
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Fig. 3. Temporal evolution of the relative energy conservation error for the CDHD WENO-5 and the first-order DOTRS schemes, plotted on a semi-
logarithmic scale. The error for the proposed CDHD WENO-5 scheme remains below 0.04% at the final time of r = 0.1 s, while the error for the
DOTRS scheme grows to approximately 10% at the same instant.

across all evaluated fields including density, velocity, pressure, and temperature. Our work provides a new strategy for the further
development of the high-order scheme for transcritical flows.

5.1.2. Energy conservation error

The primitive method has long been criticized for violating the law of energy conservation. However, the results from the proposed
CDHD WENO-5 scheme demonstrate substantial improvements in energy conservation. We further examine the temporal evolution
of the relative energy conservation error, defined as ¢ = )% ‘, where E(¢) is the integrated total energy at time r. Fig. 3 presents
this error metric over the simulation duration from # = 0 to r = 0.1s (equivalent to 10 convection periods) on a semi-logarithmic scale.

The results clearly demonstrate the superior performance of the proposed method in conserving energy. The CDHD WENO-5
scheme maintains a low energy error throughout the simulation, reaching a final error value of approximately 3.95 x 10~ at ¢ = 0.1 s.
This corresponds to an error of less than 0.04 %, indicating a high degree of energy conservation suitable for long-duration simulations.
In contrast, the first-order DOTRS scheme exhibits a significantly larger error that grows to about 10 % by the final time point. This
direct comparison reveals that the energy conservation error of the CDHD WENO-5 scheme is over two orders of magnitude lower
than that of the DOTRS scheme at the end of the simulation.
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Table 1

Grid-convergence results for the true relative L, errors 5'51 defined in Eq. (48). Errors are evaluated
att= L/|u| = 0.01 s (one domain traversal). For this convergence study, we use a fixed time step Ar
chosen from the finest grid based on the initial CFL condition (CFL= 0.8) and apply the same At for
all coarser grids.

N, dx e'f" ») Order e'Lcll (pu) Order e'f]' (E) Order
32 3.1250 x 1072 5.0565 x 1072 N/A 5.0565 x 1072 N/A 5.8736 x 1072 N/A
64 1.5625 x 1072 2.3979 x 102 1.0764 2.3979 x 1072 1.0764 2.6611 %1072 1.1422

128 7.8125 x 1073 7.7455 x 1073 1.6304 7.7455 x 1073 1.6304 8.4986 x 103 1.6467
256 3.9062 x 1073 2.7443 x 1073 1.4969 2.7443 x 1073 1.4969 2.9446 x 1073 1.5291
512 1.9531 x 1073 7.5258 x 1074 1.8665 7.5258 x 107* 1.8665 7.8900 x 10~ 1.9000
1024 9.7656 x 10—+ 1.6704 x 1074 21717 1.6704 x 10~ 21717 1.7106 x 107+ 2.2055

'y ‘
o ©— »
\ —— pu
K- E
S — — —2nd Order Ref.
_ ~
107 F b

Relative L1 Error
=
&
:
7/
7/
7/
, 9
/
/
"

107 107
Grid Spacing (dx)

Fig. 4. Grid convergence of the true relative L, errors E'Lel for p, pu, and E (Eq. (48)), evaluated at 7 = 0.01 s (one domain traversal). For the
convergence study, a fixed time step At (computed from the finest grid using CFL= 0.8 at t = 0) is used for all grids so that the reported rates reflect
spatial accuracy. The dashed line indicates a second-order reference slope.

The marked difference between the CDHD and DOTRS results can be understood from the structure of the numerical fluxes. In the
first-order DOTRS scheme the entire advection operator is replaced by a path-integral Riemann solver, so the numerical dissipation
is O(Ax) and directly perturbs the total-energy balance. In CDHD, only a small high-order correction is computed from DOTRS, while
the main transport of (p, u, p) is performed by the low-dissipation central term. In smooth regions the dissipative term is proportional
to an O(Ax®) jump in the reconstructed state, so it contributes an O(Ax*) perturbation to the total energy. Consequently, the primitive-
variable update in the proposed scheme introduce a smaller energy error than that of the fully upwind DOTRS discretization at the
same solution.

5.1.3. Convergence test
For each conserved variable g € {p, pu, E} we report the relative L, error,
num exact

Z 4~
erlg) = 4 (48)

z qexacl

J
J

where q;"" and qf.’“‘c‘ denote the numerical and analytical solutions at grid point x;. All errors reported in Table 1 and Fig. 4 use this
relative metric.

This test is time-dependent, so both spatial and temporal discretization errors may be present. In order to assess spatial accuracy
without contamination from changing temporal errors across grids, we adopt a fixed-At strategy: we compute At from the CFL
condition (CFL= 0.8) on the finest grid using the initial maximum wave speed, and then use this same A for all coarser grids. Time
integration is performed using the third-order strong-stability-preserving Runge-Kutta method (SSP-RK3). The final time corresponds
to one domain traversal, t = L/|u| = 0.01 s.

As shown in Table 1 and Fig. 4, the scheme exhibits near second-order convergence on sufficiently fine meshes. The slightly
reduced rates on the coarsest grids are attributed to pre-asymptotic behavior due to under-resolution of the steep transition region in
the initial profile. For practical reference, the relative L, error is below 0.3% at N, = 256 and decreases to O(10~*) at N,, = 1024.

5.1.4. Role of high-order dissipation
To isolate the effect of the dissipative term, we repeat the transcritical advection test case using only the central differential flux
for 0, V, omitting the high-order dissipative stabilization. The results in Figs. 5 after 600 time steps with CFL = 0.8 clearly demonstrate
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Fig. 5. Profiles of density, velocity, pressure and temperature for 1-D transcritical advection case when only using the central differential interface
flux. Oscillation will be accumulated in time and blow up the simulation quickly.

the necessity of dissipation in the transcritical regime. The small magnitude dissipation proposed in this paper can greatly stabilize
the simulation process.

As shown in Fig. 5, the central difference scheme without stabilization develops severe numerical instabilities. The density field
exhibits spurious oscillations and overshoots near the steep gradient region, with spurious wiggles corrupting the solution throughout
the domain. Similarly, the temperature field displays significant nonphysical oscillations that grow rapidly in time. In contrast, the
velocity and pressure fields remain relatively stable, staying close to their initial uniform states with only minor perturbations.This
selective instability pattern is characteristic of transcritical flow physics, where small perturbations in thermodynamic properties can
trigger rapid growth of numerical modes.

These results demonstrate that a small amount of high-order, characteristic-based dissipation is essential for stabilizing the primi-
tive variable update in transcritical flows. The dissipative term proposed in this work provides this stabilization without compromising
the leading-order accuracy of the scheme, as evidenced by the convergence analysis presented earlier.

5.2. 1-D shock tube problems

This section demonstrates the capability of the hybrid scheme in this work for accurately capturing the strength and propagation
speed of shock waves through a 1-D shock tube test case. We consider a computational domain of x € [0, 1] m with transmissive
boundary conditions applied at both ends. All simulations employ a CFL number 0.8 and are run until = 5x 10~ s. The initial
conditions for the transcritical shock tube problem are specified as a Riemann problem with left and right states:

[ p, T [ 800kg/m?
u | = 0m/s ,
|l » | | 60e6Pa
(49
[ o ] [ 80kg/m?
u, 0m/s
| 7 | 6e6 Pa

This configuration creates a strong pressure and density ratio of the left and right sides in the simulation domain, establishing condi-
tions that span the transcritical regime and challenge numerical methods with steep gradients and rapid thermodynamic variations.
Fig. 6 presents the computed density, velocity, pressure, and temperature profiles without using any limiter or filter. The solutions
demonstrate the adaptive scheme has the ability to resolve the complex wave structure typical of transcritical shock tubes, including
shock waves, contact discontinuities, and expansion regions, while maintaining sharp interfaces without spurious oscillations.

In this test, the PVRS-based sensor defined in Section 3.3 is used at every time step to classify each cell as either “shock” (conser-
vative update) or “smooth” (primitive update). Cells satisfying condition Eq. (20) are advanced using the conservative WENO-Roe
scheme of Section 3.4, whereas all remaining cells are updated with the primitive CDHD scheme of Section 3.5. Fig. 7 displays the
resulting switching indicator at the final time: the conservative branch is activated only in a narrow region surrounding the shock,
while the rarefaction, contact discontinuity, and far-field regions are updated using the primitive formulation.
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Fig. 6. Profiles of density, velocity, pressure and temperature for 1-D shock tube problems.
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Fig. 7. PVRS-based switching indicator at the final time for the 1D shock-tube test. Red cells are updated with the conservative WENO-Roe scheme,
gray cells with the primitive CDHD scheme.

5.3. 1-D shock-temperature-ramp interaction

The previous shock tube example isolate either a single, nearly discontinuous shock or a smooth transcritical advection problem.
To demonstrate how hybrid scheme behaves when these features coexist and evolve in time, we now consider a one-dimensional
configuration where a shock wave interacts with a transcritical temperature ramp at constant pressure. In this problem both the
conservative and primitive branches of the method are active simultaneously, and the region flagged for conservative updating
moves as the shock traverses the ramp.

The computation domain is x € [0, 1] m, discretized with N, = 500 uniform cells and transmissive boundary conditions, as in the
previous one-dimensional tests. At # = 0 a stationary Riemann problem is initialized at x = x,, separating a uniform high-pressure left
state and an inhomogeneous right state:

(pr-ur.ppr)s x < X,
(p,u, p)(x,0) = s 50)
(pr(x),up,pr), x> X,

where p; > pjp is chosen so that the resulting right-running shock has an upstream Mach number of order M ~ 1.5 when measured
in the nearly uniform region immediately to the right of the discontinuity. The right state represents a transcritical pseudo-boiling
layer at constant pressure pp, with prescribed temperature ramp

T. —T . —
O [1 - tanh(x Xo )] 1)
n
where T,;, < T, < T, bracket the critical temperature of nitrogen and 5 controls the thickness of the ramp. The density field p(x)

is obtained from the real-gas EoS by solving p(T, p) = py at each grid point, and the right state is initially at rest uz = 0. This setup
produces a right-moving shock that interacts with a spatially extended pseudo-boiling zone under nearly constant pressure.

Fig. 8 shows the numerical solution at t = 1.8 x 1073 s for density, velocity, pressure, and temperature. The dashed curves in this
figure corresponding to the initial condition and are plotted only as a reference, since no closed-form analytical solution is available
for this real-gas, spatially inhomogeneous Riemann problem. The DOHD-WENO solution captures the leading right-running shock
within a few grid cells. Downstream of the shock, the pressure remains nearly uniform across the pseudo-boiling region, despite
the large variations in density and temperature imposed by the isobaric ramp. The temperature jump is resolved without spurious
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Fig. 8. Numerical solution of the one-dimensional shock-temperature-ramp interaction in transcritical nitrogen at = 1.8 x 1073 5. Profiles of (a)
density, (b) velocity, (c) pressure, and (d) temperature are shown. The dashed curves indicate the initial condition used as a reference, while
the CDHD-WENO solution captures the leading right-running shock within a few grid cells and maintains a nearly uniform pressure across the
pseudo-boiling region despite large variations in density and temperature.
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Fig. 9. PVRS-based switching indicator for the shock-temperature-ramp interaction at the same time as Fig. 8.Red cells are updated with the
conservative WENO-Roe scheme, gray cells with the primitive CDHD scheme. The sensor is active only in narrow bands surrounding the propagating
shock and its reflected/secondary waves.

oscillations in either pressure or velocity, illustrating that the primitive update remains well behaved in smooth transcritical regions
even when a shock is present elsewhere in the domain.

The behavior of the switching mechanism is illustrated in Fig. 9, which plots the PVRS sensor at the same time instant. Cells
flagged for conservative updating are shown with value 1, while cells updated in primitive form have value 0. The sensor is active
only in narrow bands surrounding the propagating shock and its reflected/second waves. It remains essentially zero throughout the
smooth pseudo-boiling layer. As the shock moves through the temperature ramp, the flagged region translates with the compression
front and briefly enlarges when weak reflected waves are generated, but the bulk of the transcritical ramp is always advanced in
primitive scheme. This example therefore provides a clean demonstration of the hybrid strategy: the conservative branch is activated
automatically where sharp compressive features are present, while the primitive formulation is used elsewhere to preserve pressure
equilibrium properties in the transcritical flow.

The structure of the resulting wave system can be understood in terms of the spatially varying thermodynamic properties along the
ramp. As the shock enters the colder, denser portion of the pseudo-boiling layer, the local speed of sound increase with decreasing
temperature at fixed pressure. The ramp therefore acts as a smoothly varying impedance transition. The incident compression is
partly transmitted into the high impedance region and partly reflected upstream, producing small secondary waves that are visible
in the velocity and pressure profiles. Because the sound speed is higher in the colder part of the ramp, trailing compression waves
travel faster than the leading ones, gradually catching up and accumulating near the front. This wave accumulation leads to a local
pressure overshoot relative to the nominal Rankine-Hugoniot jump, a characteristic feature of shock interactions with transcritical
ramp. The PVRS mask aligns precisely with these localized compressive structures, activating the conservative update only where the
wave steepening and reflection are strongest.

5.4. 2-D transcritical advection cases

To demonstrate the capability of the proposed scheme in multi-dimensional transcritical flows, we consider a 2D droplet convection
problem that extends the 1D analysis to more realistic geometries. This test case examines the transport of a subcritical droplet through
a supercritical environment under uniform advection.
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Fig. 10. Results for the 2D transcritical droplet advection case at the final time of r = 0.01 s (one period). The figure displays the initial and final
density fields, along with the final pressure and speed. The droplet maintains its circular shape with minimal numerical diffusion, while the pressure
and speed fields remain uniform, demonstrating the accuracy of the proposed scheme.

The computational domain is defined as Q € [0, 1] X [0, 1] m with a uniform Cartesian grid of 151 x 151 cells. The initial state
is a circular droplet centered at (x,, y.) = (0.5,0.5) m with radius r, = 0.15 m. The temperature field is initialized using a smooth
hyperbolic tangent profile to represent the droplet interface:

T(x,y) = Tambient (52)

1 r—rg
+ (Taroptet — Tambient) - 3 1 — tanh " > (53)

where r = y/(x — x,.)? + (¥ — y.)? is the radial distance from the droplet center, Tgroplet = 100 K represents the subcritical liquid phase,
Tambient = 200 K corresponds to the supercritical gas phase, and # = 0.05 controls the interface thickness. The velocity and pressure
fields are initialized as spatially uniform:

u(x, y) = (100, 100)" m/s, p(x,y) = 4.0 x 10° Pa. (54)

The density field p(x, y) is computed from the temperature and pressure using the PR EoS. The simulation runs until ¢ = 0.01s with
CFL = 0.5, corresponding to one complete convection time. This set up allows the initial state to serve as a analytical solution.

Fig. 10 presents the evolution of the transcritical droplet convection, showing the initial and final density distributions along
with the final pressure and velocity magnitude fields. The density field evolution reveals that the droplet maintains its circular
shape and sharp interface throughout the convection process. The initial density contrast between the subcritical droplet core and the
supercritical ambient medium is preserved without significant numerical diffusion. The absence of spurious oscillations near the steep
density gradients confirms the efficacy of the WENO-5 reconstruction in handling transcritical interfaces. The pressure and velocity
fields exhibit uniformity across the entire domain. The proposed scheme successfully maintains pressure equilibrium while resolving
the dramatic thermodynamic variations at the droplet interface. These results confirm that the high-order primitive update with small
characteristic-based dissipation transports sharp real-gas gradients cleanly while preserving the constant velocity and pressure fields.

5.5. 2D shock-droplet advection

A weak oblique shock crosses a translating, transcritical droplet (the 2-D advection case in §5.3 is extended). Again, the mask
shows switching near the shock and primitive updates elsewhere.

To assess the hybrid scheme in a genuinely two-dimensional setting we extend the transcritical droplet advection problem by
adding a weak oblique shock. The computational domain is [0, 1] X [0, 1] discretized on uniform 151 x 151 grid, with the same real-gas
EoS as in the previous testes.

A circular droplet of radius r;, = 0.15 is initially centered at (x,, y,) = (0.25,0.5) and smoothed with a hyperbolic tangent profile of
thickness # = 0.05. The temperature field is prescribed as isobaric ramp:

T(x,y) = Too(x, ) + (Ty — T (x, y)) [1—tanh< n"’)], (55)

where r = /(x — x.)2 + (y — y.)?, T; = 100K is the droplet temperature and T, = 200K is the ambient temperature. The pressure is
initially uniform upstream at p, = 4 MPa and the local ambient velocity is a uniform vector aligned with the normal to the shock, so
that the droplet is in both pressure and velocity equilibrium with its surroundings.
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Fig. 11. Results for the two-dimensional shock-droplet advection case at t = 0.37.,.. The panels show the initial density field and the density,
pressure, and speed magnitude at 1 = 0.3 7., for a weak oblique shock interacting with a translating transcritical droplet. The strongest gradients
are confined to a thin region enveloping the shock and the droplet interface, while the bulk of the domain remains smooth and close to pressure
equilibrium, illustrating the robustness of the hybrid CDOHD-WENO scheme.

Table 2

Wall-clock CPU time for the 1D advection test (N, =512,
Trinat = 0.018). Tepyp, Thyps and Ty, denote the primitive-
only, hybrid, and fully conservative schemes, respectively.

Scheme N T [s] Steps T /Tepup

x

Primitive-only CDHD 512 31.34 3529 1.00
Hybrid CDHD + Roe 512 117.63 3529 3.75
Conservative Roe 512 78.63 3519 2.51

A weak planar shock with normal Mach number M = 1.2 is imposed by prescribing upstream and downstream states. The shock
normal is oriented at § = 30° with respect to the x -axis, so that the planar front intersects the domain diagonally. The shock plane
is given by n - x = s,, where n = (cos 8, sin6) is the unit normal. For n - x < s, the flow is in the upstream state (p, T}, p;,u;), and
for n-x > s, we prescribe the downstream state (p,, 75, p,,u,) obtained from weak-shock jump relations using an effective ratio of
specific heats y ¢ = 1.3. The velocity is everywhere aligned with n, so that the droplet is exactly advected by the local ambient flow.
The solution is advanced to t = 0.3 7., Where 7., is the time for the droplet center to reach the undisturbed shock plane.

Fig. 11 summarizes the evolution. The initial density field shows the isobaric droplet embedded in the piecewise constant ambient
separated by the oblique shock. At 7 = 0.3 7., the shock has intersected the droplet and generated a curved transmitted wave and
a weak reflected disturbance. The final pressure and speed panels reveal that the strongest gradients are confined to a thin region
enveloping the shock and the droplet interface, while the bulk of the domain remains smooth and close to pressure equilibrium.

5.6. Computational cost

The hybrid CDHD strategy couples a primitive-variable update with a conservative WENO-Roe scheme. Given the dual nature of
the algorithm, it is necessary to assess the computational cost relative to standard single-branch solvers.

We utilize the one-dimensional advection case described in Section 5.1 with N, = 512. To allow for a direct comparison, we employ
a relaxed initial condition (y = 0.2, p, = 8 MPa) that ensures stability for the standard conservative Roe solver, which otherwise fails
on stiffer transcritical cases. Time integration is performed via a third-order TVD Runge-Kutta method (CFL= 0.8) until #;,,, = 0.01s.
Three solver configurations are evaluated:

1. Primitive-only CDHD: Uses the proposed primitive-variable flux globally.
2. Hybrid CDHD + Roe: Uses the PVRS sensor to switch between CDHD and conservative WENO-Roe fluxes.
3. Conservative Roe: Uses the real-gas Roe flux globally with WENO-5 reconstruction.

Simulations were conducted using a serial MATLAB implementation on an AMD Ryzen 9 7945HX processor. Table 2 summarizes
the wall-clock time T and the relative cost T /Tpup-

The results demonstrate that the primitive-only CDHD method is the most efficient, as it avoids the computationally expensive
eigen-decomposition required by the Roe solver. The fully conservative scheme is approximately 2.5x more expensive than the primi-
tive formulation. The current hybrid implementation exhibits the highest cost (3.75%); however, this is an artifact of the unoptimized
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prototype code, which computes both the primitive and conservative fluxes for every cell at every sub-step before applying the
switching mask.

Despite the higher computational cost, the hybrid scheme offers essential robustness. In the sharper transcritical configuration
(py = 4 MPa, 5 = 0.1), the standard fully conservative Roe solver fails to complete the simulation, whereas the hybrid method remains
stable. In a production environment (e.g., using conditional branching in C+ + or Fortran), the hybrid cost would be significantly
reduced by evaluating the Roe flux only in flagged cells. Consequently, the reported cost ratio of 3.75 should be interpreted as a
pessimistic upper bound.

6. Conclusion

We proposed the Central Differential flux with High-Order Dissipation (CDHD) to address spurious oscillations and energy conser-
vation errors in transcritical flow simulations. The method combines a central flux with minimal upwind-biased dissipation, achieving
second-order accuracy in smooth regions while substantially improving energy conservation. Embedded in a hybrid framework with
a conservative shock-capturing scheme, CDHD demonstrates robust performance across both smooth and shock-containing flows.
These results establish CDHD as a reliable and efficient approach for real-gas simulations in engineering and scientific applications.
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Appendix A.

Following previous work on the Peng-Robinson (PR) equation of state (EoS), this appendix gives more details about the conversions
we use when alternating between the conservative total energy update(Section 3.4 ) and the primitive/pressure update (Section 3.5),
and it lists the thermodynamic closures needed to reproduce our results. The PR EoS used in this work is given in Eq. 4 with parameter
a, b from Eq. 7. The internal energy relation and speed of sound in Eq. 8.

A.1. The derivatives of PR EoS for closure

The PR EoS in mass specific variables can be written as:

pR,T aa(T)p?

P = .
My, —bp M2 +2M,bp—b>p?

(A1)
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Then the first and second derivatives used blow are:

( p > _RTIM,
T

dp D?
(2aaPRp)D2 — aapg p* (2Mwb - 2b2p)
_ X ,
Dy
2 1 (A.2)
<6p> __ PR, N ap~ap (T)
ar ), D, D,
< Pp ) ap®agy (T)
orr), Dy
The temperature derivatives of a(T') for Peng-Robinson EoS are:
T 1
&(T) = — m(T) . o"(T) = m(1 +m) . (A.3)
T.VT/T, ZTZ(\/TTE)

with ¢(T) = 1 +m(1 - \/W)

A.2. Heat capacities and speed of sound

From Eq. 4 and the above derivatives, the constant volume heat capacity ¢, (T, p) is:

(%) _ P (0PN 4
(T, p) = (ﬁ)p —Cv,o(T)—T/pO ﬁ(ﬁ p,d/), (A.4)
c,o(T) = Cp,()(T) - R,.

Here the ¢, and c,, represent the constant volume and constant pressure heat capacities of ideal gas.
The constant pressure heat capacity is then obtained from the standard identity:

[(ﬂ> r
T 1\ /0
p(T,p)=c,(T,p)+ —

7 (%)
)T

Finally, the speed of sound used by the primitive update and by the PVRS sensor is evaluated as

), (5)

2

A=(Z) =2(2) (A.6)
(0ﬂ s w\0p/)r

with ¢,/c, and (dp/dp)r from the above formulas.

(A.5)

A.3. Conversion relations between pressure and internal energy

The method developed in this paper alternates between solving the total-energy and pressure equations. This section will provide
the detail conversion relations between pressure and internal energy.
In the conservative step, given the updated (p,u, E) we compute

2
e=E_W (A7)
p 2

We then solve for T at fixed p from g(T') = e(T, p) — e = 0 using Newton iterations:
e(T(k>, p) —e

T+ — ) _
cU(T(k), p)

(A.8)

with initial guess T(? from the previous time step and stopping when |AT|/T < 10!, Pressure is then p = p(p, T) from Eq. 4.
Given (p,u, p) updated in the primitive step, we can recover 7T at fixed p from f(T) = p(p,T) — p = 0 by Newton iterations:
p(p. T®) - p
9 0
( % )ﬂ (T)

Wen then evaluate e = (T, p) and update:

U+ — o _ (A.9)

E = pe+ %puz. (A.10)
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Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.jcp.2026.114653.
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