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Boundary-layer instability and transition control have drawn extensive attention from the
hypersonic community. The acoustic metasurface has become a promising passive control
method, owing to its straightforward implementation and lack of requirement for external
energy input. Currently, the effects of the acoustic metasurface on the early and late
transitional stages remain evidently less understood than the linear instability stage. In this
study, the transitional stage of a flat-plate boundary layer at Mach 6 is investigated, with
a particular emphasis on the nonlinear mode—mode interaction. The acoustic metasurface
is modelled by the well-validated time-domain impedance boundary condition. First, the
resolvent analysis is performed to obtain the optimal disturbances, which reports two peaks
corresponding to the oblique first mode and the planar Mack second mode. These two
most amplified responses are regarded as the dominant primary instabilities that trigger
the transition. Subsequently, both optimal forcings are introduced upstream in the direct
numerical simulation, which leads to pronounced detuned modes before breakdown. The
takeaway is that the location of the acoustic metasurface is significant in minimising skin
friction and delaying transition onset simultaneously. The bispectral mode decomposition
results reveal the dominant energy-transfer routine along the streamwise direction — from
primary modes to low-frequency detuned modes. By employing the acoustic metasurface,
the nonlinear triadic interaction between high- and low-frequency primary modes is
effectively suppressed, ultimately delaying transition onset, whereas the late interaction
related to lower-frequency detuned modes is reinforced, promoting the late skin friction.
The placement of the metasurface in the linearly unstable region of the second mode delays
the transition, which is due to the suppressed streak in the oblique breakdown scenario.
However, in the late stage of the transition, the acoustic metasurface induces an undesirable
increment of skin friction overshoot due to the augmented shear-induced dissipation work,

© The Author(s), 2026. Published by Cambridge University Press. This is an Open Access article,

distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original

article is properly cited. 1026 A27-1

Check for
updates


https://orcid.org/0000-0002-6185-1058
https://orcid.org/0000-0001-6952-023X
https://orcid.org/0000-0002-1181-8786
mailto:peixu.guo@polyu.edu.hk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2025.11030&domain=pdf
https://doi.org/10.1017/jfm.2025.11030

https://doi.org/10.1017/jfm.2025.11030 Published online by Cambridge University Press

Y. Chen, P. Guo and C. Wen

which mainly arises from reinforced detuned modes related to the combination resonance.
Meanwhile, by restricting the location of the metasurface upstream of the overshoot
region, this undesirable augmentation of skin friction can be eliminated. As a result, the
reasonable placement of the metasurface is crucial to damping the early instability while
causing less negative impacts on the late transitional stage.

Key words: boundary layer control, boundary layer stability, turbulent transition

1. Introduction

One of the key obstacles to the development of hypersonic vehicles has been the prediction
and control of the laminar—turbulent boundary-layer transition. The performance of
hypersonic vehicles may be compromised by the transition, as it would escalate skin
friction and heat flux (Fedorov 2011). Therefore, accurate transition prediction and
effective control (or delay) technologies are crucial for the design of hypersonic vehicles,
particularly regarding the thermal protection system. Transition induced by free-stream
disturbances with low amplitudes usually follows four stages: receptivity (excitation
of initial disturbance inside the boundary layer), linear instability (including modal
and non-modal growth), nonlinear instability and parametric resonance and breakdown
to turbulence (Morkovin et al. 1994). Hypersonic boundary-layer transition over two-
dimensional or axisymmetric models at a zero angle of attack is typically triggered by
the growth of unstable modes, known as the first mode, associated with the vorticity
disturbance (Smith 1989), and the Mack second mode of acoustic nature (Mack 1975;
Fedorov 2003; Ma & Zhong 2003; Chen, Guo & Wen 2023a). In realistic flight or wind
tunnel conditions, these two types of instabilities tend to coexist and compete with one
another.

Regarding the breakdown or parametric resonance, several scenarios have been
confirmed by numerous direct numerical simulations (DNS) and experimental studies.
These include the first-mode-dominated subharmonic resonance (Kosinov et al. 1994), the
first-mode-dominated oblique breakdown (Mayer, Von Terzi & Fasel 2011), the second-
mode oblique breakdown (Hartman, Hader & Fasel 2021), the second-mode-dominated
fundamental resonance (Hader & Fasel 2019; Kennedy et al. 2022; Unnikrishnan &
Gaitonde 2020) and the second-mode subharmonic resonance (Bountin, Shiplyuk &
Maslov 2008; Franko & Lele 2013). These conventional transition scenarios are
characterised by tuned modes with frequencies that are integer times fi,2; here, fi,
refers to half of the frequency of the primary instability wave. The dominating transition
scenario depends on the specific numerical forcing with given flow and geometric
conditions. In a realistic disturbance environment, several primary instabilities can be
excited simultaneously and coexist. In this case, complex mode-mode interactions emerge,
and detuned modes may be pronounced (Fezer & Kloker 2000). As reported by Chen et al.
(2017) for the flared-cone model at Peking University, multiple primary instabilities give
rise to complex nonlinear interactions and significant energy transfer between low- and
high-frequency components. A possible combination resonance is also indicated, which
differs from that induced by a single primary instability (Franko & Lele 2013; Hader &
Fasel 2019). Nonetheless, direct evidence in the transitional stage was not provided.
Recently, Guo et al. (2023a) have demonstrated the significance of the non-conventional
combination resonance associated with modal detuning in the high-speed boundary-layer
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transition. The nonlinear interaction between low-frequency first mode and high-frequency
second mode can produce a new breakdown scenario. This multiple-primary-instabilities
scenario is believed to be noteworthy, since multiple instabilities are seeded in realistic
boundary layers. As an extension, the effect of flow control on the breakdown scenario is
of particular interest.

Boundary-layer transition control strategies are useful in delaying the occurrence of
transition. These strategies can be categorised into active methods, such as wall cooling
and heating (Zhao et al. 2018b; Zhou et al. 2022), and passive methods, such as the
acoustic metasurface implemented by a porous coating (Fedorov et al. 2001; Zhao
et al. 2022). The acoustic metasurface, including the absorptive acoustic metasurface,
the impedance-near-zero acoustic metasurface and the reflection-controlled acoustic
metasurface, was proposed mainly to suppress the second mode of acoustic nature (Zhao
et al. 2022). The passive approach is flexible for implementation and requires no additional
energy input, which has attracted growing interest from both academia and industry.
Experimental observations have shown that the porous coating can successfully postpone
the transition onset (Rasheed, Hornung & Fedorov 2002; Fedorov et al. 2003; Wagner
et al. 2013, 2014). However, a porous coating leads to an undesirable increment of
wall friction and flux during the late stage of transitional flow. This phenomenon has
been observed experimentally (Wartemann, Wagner & Kuhn 2015) but remains poorly
understood.

In the linear stability stage, the effect of the porous coating can be theoretically
described and satisfactorily predicted using linear stability theory (LST) with the deduced
acoustic impedance boundary condition (Fedorov et al. 2001). The physical mechanism
by which the porous coating influences the linear stage has been widely studied (Fedorov
et al. 2003; Tian & Wen 2021; Chen et al. 2023b; Ji, Dong & Zhao 2023). It is known
that viscous effects within the pores of the porous coating can dissipate the second-mode
instability. Acoustic wave reflection is also linked to regimes with phase cancellation or
reinforcement (Bres ef al. 2013). The porous coating effect in the nonlinear regime has
also been the subject of early research (Tullio et al. 2010; Hader et al. 2013, 2014). Tullio
et al. (2010) conducted the first DNS of nonlinear breakdown with directly resolved pore-
scale flow in an acoustic metasurface. Their study provided a detailed analysis of how
porous coatings affect secondary instabilities for both first and second instability modes
individually. Hader et al. (2013, 2014) discovered that the second-mode fundamental
breakdown caused a delayed transition onset. However, these investigations are restricted
to single-primary-mode perturbations and the resulting typical breakdown situations,
which may not accurately represent the transitional flow with broadband disturbances
in wind tunnels or flight tests. Recently, Sousa er al. (2024) investigated the hypersonic
transition delay over a broadband wall impedance using dynamic large-eddy simulation.
Good agreement was observed with experimental data in the literature. The corresponding
wind tunnel experiment features a high-enthalpy flow with a highly cooled wall condition,
where the first mode is significantly suppressed. Consequently, the nonlinear interaction
between the low-frequency first mode and the high-frequency second mode was not
considered in their simulation. The resulting breakdown is more likely to be a fundamental
breakdown induced by the second mode, which represents the only dominant instability
under such cold-wall conditions.

Triadic interactions serve as the fundamental mechanism governing energy transfer in
nonlinear flow fields, playing a well-documented role in laminar—turbulent transition.
The seminal work by Craik (1971) established that resonant Tollmien — Schlichting
wave triads can significantly accelerate transition in wall-bounded shear flows. Building
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on this, Rigas et al. (2021) employed resolvent analysis incorporating nonlinear triadic
interactions, demonstrating that the transition dynamics can be accurately captured
using only a limited number of harmonics and their triadic couplings. To quantify
such interactions, bispectral mode decomposition (BMD) proposed by Schmidt (2020)
has emerged as a powerful diagnostic tool, enabling identification of dominant triads
and their associated energy-transfer pathways in three-dimensional nonlinear flows. For
instance, Schmidt & Oberleithner (2023) applied bispectral analysis to two-phase swirling
flows, revealing that triadic resonance generates a broad spectrum of secondary modes.
Recent advances by Craig et al. (2019) further extended BMD to hypersonic boundary
layers, where bispectral analysis of experimental data identified multiple quadratic phase-
coupled sum and difference interactions. Their findings suggest that, under quiet wind
tunnel conditions, the nonlinear transition mechanism is predominantly governed by high-
frequency second-mode-induced fundamental breakdown. Nevertheless, this framework
may not fully explain transition scenarios involving mutual interactions between low-
frequency first modes and high-frequency second modes, revealing the need for further
investigations on multimodal triadic coupling effects.

Even though the linear-stage stabilisation or destabilisation mechanisms are well
established, how metasurfaces modulate nonlinear interactions between coexisting first
and second modes — a scenario routinely encountered in practice — remains unknown.
Moreover, the undesired increase of late-stage skin friction observed experimentally has
yet to be explained through first-principles simulations. The current work is to examine
the impact of porous coatings on the nonlinear mode—mode interaction and the resulting
breakdown process. Two research objectives are included: (i) to reveal the transition delay
mechanism by the acoustic metasurface subject to multiple primary instabilities; (ii) to
explain why the skin friction is augmented in the late transitional stage. To this end, the
effect of the metasurface is evaluated using a modelled impedance boundary condition
(IBC) to avoid meshing the cavity, which can save computational costs. The time-domain
impedance boundary condition (TDIBC) (Fung & Ju 2004; Douasbin, Scalo & Selle 2018;
Fiévet et al. 2021; Guo, Hao & Wen 2023b) can be efficiently incorporated into a Navier—
Stokes solver and handle broadband disturbances. The accuracy and efficiency of TDIBC
have been shown in the simulation of late transitional and turbulent boundary layers
(Scalo, Bodart & Lele 2015; Chen & Scalo 2021b; Sousa et al. 2024). It is anticipated
that the mode—mode interaction and the resulting breakdown scenario with the acoustic
metasurface will be revealed to understand why the transition onset is delayed. Moreover,
regarding the enhanced skin friction in the late transition stage, which has also been
observed in the experiments by Wagner et al. (2013, 2014), an energy budget analysis
and bi-Fourier analysis are performed to explore the underlying physics.

The remainder of this paper is organised as follows. Section 2 provides an overview of
the investigated model and flow parameters, the formulation of TDIBC, stability analysis
tools and numerical methods for DNS. Section 3 presents the fitting results of TDIBC
using a theoretical model, the results of the stability analysis and the effect of TDIBC
on the linear stage. Comparative transition simulations induced by multiple disturbances
with and without the acoustic metasurface are shown in §8§ 4 and 5. The instantaneous and
time-averaged flow fields, bi-Fourier analysis, results of BMD and energy budget analysis
are included. Section 4 characterises the three-dimensional flow structure and provides
statistical analysis of mean-flow properties, while § 5 investigates the nonlinear mode —
mode interactions and subsequent breakdown dynamics. The principal findings and their
physical implications are systematically summarised in § 6.
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2. Flow condition and methodology

The free-stream flow condition investigated is based on a wind tunnel experiment by
Bountin ef al. (2013) at Mach 6 and unit Reynolds number 1.05 x 10’ m~!. The free-
stream temperature T, is 43.18 K and the isothermal wall temperature (room temperature,
which approaches the adiabatic wall condition) 7, = 293 K are employed. In this study,
the subscripts ‘co’ and ‘w’ refer to the values at free stream and on the wall, respectively.
The free-stream variables are utilised for non-dimensionalisation, except that psouZ, is
utilised for pressure, u is the streamwise velocity and p is the density. Unless otherwise
stated, the reference length L, is taken as 1 mm. Without unit markings, the following
physical quantities are presented in their dimensionless form.

2.1. Direct numerical simulation

The governing equation for the computation of flow fields is the compressible Navier—
Stokes equation in the conservation form

U 0F oG 0H ,
8t+3x+8y+ 3z =Bf’, 2.1)
where U = (p, pu, pv, pw, ,oe)T is the vector of conservative variables, and F, G and
H are the vectors of inviscid and viscous fluxes. Detailed expressions can be found in
Anderson (1995). Here, p is density, and u, v and w are velocities in the Cartesian x,
y and z directions, respectively. Total energy per unit mass is denoted by e. The matrix
B constrains the forcing vector (f’) to be added at a certain region, which is set to be
x = 0.04 m in this study. In the DNS, the optimal forcings obtained by resolvent analysis
are employed to initiate the unsteady flow.

The perfect gas model is employed with a constant specific heat ratio of 1.4.
Furthermore, the dynamic viscosity is calculated using Sutherland’s law with a constant
T; = 110.4 K, and the thermal conductivity coefficient is calculated based on a constant
Prandtl number 0.72. The simulation constitutes two steps. In the first step, the base flow is
calculated, and the right-hand side term of (2.1) is set to zero. Subsequently, the resolvent
analysis or DNS is performed on the converged base flow. It is assumed that the vector of
conservation variable can be decomposed into its base-flow and perturbation parts

Ux,y,z,t)=U(x, y) +U'(x, y, z, 1). (2.2)

Hereafter, the overbar and prime represent mean variables and perturbation variables,
respectively.

The DNS is performed using a multi-block parallel finite difference solver called
OpenCFD, which has been successfully employed in high-speed transitional and turbulent
simulations (Li et al. 2002, Li et al. 2009). The inviscid flux splitting is implemented
by the Steger — Warming scheme, and a seven-order weight essential non-oscillation
scheme is employed for the reconstruction of the split flux. The sixth-order central
difference scheme is utilised for viscous flux discretisation, and a third-order Runge —
Kutta method is employed for temporal integration. With regard to the boundary condition,
the left boundary of the computational domain is free stream, and the wall is set to be
isothermal, no slip and no penetration or with TDIBC in a certain region. Furthermore,
the computational domain extends upstream to x = —0.05 m with a slip-wall (inviscid
symmetry) boundary condition to ensure proper inflow development and mitigate potential
numerical instabilities. The upper and outer boundaries are addressed by extrapolation.
The spanwise boundary is set to be periodic.
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2.2. Time-domain impedance boundary condition

Direct numerical simulation with realistic metasurface microstructures can be conducted
to investigate the transition control mechanism. However, it is computationally expensive
to mesh numerous micro-cavities. To efficiently and simultaneously simulate the
interactions between acoustic metasurfaces and multi-modal waves, the application of an
IBC is recommended. The early acoustic impedance models of a metasurface were all built
in the frequency domain and applied with a single disturbance frequency in hypersonic
boundary-layer transition studies (Fedorov et al. 2001; Moser & Michael 2009), which
means that they are not suitable for transition considering broadband disturbances. In
this study, a multi-pole broadband impedance model with a piecewise linear recursive
convolution technique proposed by Fung & Ju (2004) will be revised and incorporated into
the current DNS code afterwards. This embedded boundary condition enables efficient
simulations of broadband-disturbance propagation by transforming the acoustic IBC from
the frequency domain into the time domain.
The reflective coefficient R in the frequency domain is defined as

Rw) = A% () / A (o), (2.3)

where w is the angular frequency, A” and A°“ are the amplitudes of ingoing and outgoing
waves, respectively. The ingoing and outgoing waves are related to the physical variables
of the flow field (pressure and velocity) at the wall (Fung & Ju 2004). Their amplitudes
are defined as

A1) =0 (t) — p/(1)Maovoy/ Ty, A1) =0 (1) + p' ()Maso/ Ty - 24
where Ma is the Mach number and p is the pressure. The wall softness S is given by
S@) =1+ R(w). 2.5)

Physically S = 2 and § = 1 when the wall is totally reflective (rigid wall) and absorptive
(soft wall), respectively. Combining (2.3) and (2.5) gives rise to

A% (w) = —A™ (@) + S(w) A™ (). (2.6)

The softness can be approximated by a multi-oscillator model proposed by Fung & Ju
(2004)

S, - Mk /’LZ :
(s) = Z + - |+ Co. s =iw, 2.7

=1 § — Pk S — Dy

where p; and pZ are poles of pole base function, and ug =i - Residue[S‘(s), pr]- The
superscript 1 refers to complex conjugate, and ng is the total number of pole pairs. In
addition, Cy is a constant real number. The utilisation of this constant number to improve
the accuracy of the model was also reported by Fiévet ez al. (2021). Due to the requirement
of the reality of the signal (Rienstra 2006), the softness in the time domain must be real
and S* (s) = S (—s). The values of poles and residue are obtained from a nonlinear fitting
process (Douasbin et al. 2018) to approximate the softness calculated from a well-validated
impedance model, which considers the effect of high-order diffraction (Zhao et al. 2018a).
The authors have fully validated the impedance model by comparing it with the DNS result
over meshed metasurface (Zhao, Wen & Long 2019; Guo et al. 2023b). Then, the softness
in the time domain can be obtained using the inverse Fourier transform
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- 1 o .
S(t)=— / S(w)e™ dw. (2.8)
27 J_ o
Using the Residue theorem, one may obtain
no no "
S()= (Z e+ u}‘;e”k’) H (1) + Cod (1). (2.9)
k=1 k=1

Here, the Heaviside function H(¢) indicates that the causality condition is satisfied, and §
is the Dirac delta function. Taking the inverse Fourier transform of (2.6), one may obtain

A% (1) = (Co — DA™ (1) +/ S(T)A"(t — 7)dr. (2.10)
0

where 7 is the dummy integration variable representing time. Substituting (2.9) into (2.10)
yields

. oo 110 T .
A%U(t) = (Co — DA™ (1) +/ > (uke”” + u,tef’kf) A™(t — 7)dr. (2.11)
0 k=1
For the next time at step ¢ 4+ Az, (2.11) can be written as

oo 0
, + .
A%t + At) = (Co — DA™ (t + A1) +/ > (Mke"k’ + u,id’ﬂ) A™(t + At — T)dr.
0

k=1
(2.12)
Here, the convolution in (2.12) can be written as G;'(”, that is
o
G{'(t+ Ar) = /0 wieP T A" (t + At — 1)dr. (2.13)
According to Fung & Ju (2004), (2.13) can be calculated by a recursive scheme
Gt + At) = G (1) + p At[weo A (t + At) + wi A™ (1)) (2.14)
Here, z; = eP2! | and
% —1 1
W0 = 575 ~ A’
At?  prAt
Pi 2.15)
Zk — 1 2k
Wkl = —

PIAL2  prAt

With a first-order approximation (Scalo et al. 2015), the ingoing wave at t + At can be
expressed by

A™ (1 + At~ A" () + /Ty /MaooAtaa—y (V'(t) — Mass /Ty p' (1)). (2.16)

Then, combining (2.12) and (2.16) gives rise to the fluctuating wall-normal velocity at
4+ At

V' (t+ A = (A" (t + At) + A (1 + A1) /2

no
=Re (Z Gt + At)) + CoA™(t + At). (2.17)
k=1
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Finally, the pressure fluctuation at t 4 At is

P+ A0 =[v@+ A0 = A" + An] [ (May/T,). (2.18)

In the simulation where the metasurface exists locally, the pressure and normal velocity
on the wall are updated based on (2.17) and (2.18) at each time step, and the incoming
wave amplitude A" (¢) is initialised using (2.4). The density is calculated by the updated
pressure from the equation of state for perfect gases. Although the TDIBC was derived
from linear approximations, it remains valid for the nonlinear disturbance dynamics in our
system due to the strongly viscous-dominated regime inside the porous medium (Chen &
Scalo 2021a; Sousa et al. 2024).

2.3. Resolvent analysis

The resolvent analysis provides the most energetic response of the flow field due to per
unit energy of external forcing. Substituting (2.2) into (2.1), and subtracting the base-flow
equation yield the following form:

ou’ + oF' n G’ 4 oH' _ B/ (2.19)
ar  dax  dy  dz '
Considering a small-amplitude forcing term to study the instability, one may obtain

U’
=AU+ Bf". (2.20)

where matrix A is the Jacobian matrix constituted by the base-flow variables. The
harmonic assumption is utilised for the small-amplitude perturbation vector

U'(x,y,z,1)=U(x, y)exp(ifz — iwt) + c.c., (2.21)

where U is the complex eigenfunction, 8 is the spanwise wavenumber, w is the angular
frequency and c.c. denotes complex conjugate. Similarly, the harmonic forcing can be
written as

flx,y,z,t)= f(x, y) exp(ifz — iwt) + c.c., (2.22)
Substituting (2.21) and (2.22) into (2.20) gives
U=RBf, R=(—ivl-A"", (2.23)

where R represents the response matrix, indicating the relationship between the external
forcing and the linear response of the system. Here, the identity operator is represented by
I. In resolvent analysis, the maximal amplification of the energy, i.e. the optimal gain ¢'2,
is sought in the parameter space of (w, ). The optimal gain is defined by the energy ratio
of the output (response) to the input (forcing) of the system

U
02(,3, ) = max w
7 1BF
In this study, Chu’s energy (Chu & Kovasznay 1958) is employed to calculate the energy
norm

(2.24)

= / f UL MU dxdy, (2.25)
2
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where 2 represents the computational domain for resolvent analysis, the superscript L
refers to the conjugate transpose and M is the weight operator given by Bugeat ef al.
(2019). A local energy integral in a dimensionless form is defined by

L [T, 2 2 2 T 2 p 2
Ecy (x):—/ [p W v+ w) + —p' "+ =T | dy.
! 2 Jo ( ) yMad> p y(y — DOMa% T 226

The optimisation problem in (2.24) can be transformed into an eigenvalue problem
with respect to o2, as demonstrated by Sipp & Marquet (2013). The resulting discrete
eigenvalue problem is solved using ARPACK software for given values of f and w
associated with the regular mode (Sorensen et al. 1996). Additional details regarding the
resolvent analysis solver and the associated validation cases can be found in Hao et al.
(2023) and Guo et al. (2023b).

2.4. Linear stability theory and parabolised stability equation

To identify transient growth and modal growth captured by resolvent analysis, LST
and parabolised stability equation (PSE) are employed. The PSE further considers the
non-parallel effect compared with LST. Specifically, the LST provides the initial inlet
profiles (eigenfunctions) for the PSE, and the PSE can obtain the non-local evolution of
eigenmodes, including the first and second modes of interest here. In PSE, the disturbance
¥’ is expressed by

¥v(x,y,z,1)= &(x, y) exp (i /x adx +i8z — ia)t) +c.c., (2.27)

0

where the vector ¥ = (p, u, v, w, T)T, t} and « are the shape function and the complex
streamwise wavenumber, respectively, and xg is the initialisation location of PSE
marching. Substituting (2.27) into (2.19) and dropping the forcing terms give rise to the
PSE governing equation

R v 9 A
Lo+ Li+ LY %5~ (2.28)
0x 0x

The effects of the locally parallel flow, the non-parallel base flow, the non-local shape
function and the streamwise-varying wavenumber are absorbed in the base-flow-related
operators Ly, Ly, L, and Lj, respectively. Detailed expressions of these operators can
be found in Paredes (2014). An eigenvalue problem is solved in LST when keeping
only the local operator Ly in (2.28). The calculation is performed by an in-house
code CHASES, which integrates the LST, linear parabolised stability equation (LPSE),
nonlinear parabolised stability equation and sensitivity analyses. The code has been
validated by a series of cases for LST and LPSE compared with both theoretical
(Guo et al. 2020, Guo et al. 2021, Guo et al. 2022b) and DNS (Cao, Hao & Guo 2023; Hao
et al. 2023; Guo et al. 2023a) results. The detailed formulation and the numerical method
can be found in the references (Paredes 2014; Guo et al. 2023a).

2.5. Case initialisation for direct numerical simulation

To explore the effect of the acoustic metasurface in hypersonic transitional flows, three
cases subject to the same forcing yet different wall boundary conditions are considered
here. In the present Mach 6 state, Guo et al. (2023a) reported two dominant optimal
disturbances: a low-frequency oblique wave and a high-frequency planar wave. These two
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Case Solid wall TDIBC

1 0-0.6 m —
0-0.115 m 0.115-0.6m

3 0-0.115 m, 0.34-0.6 m 0.115-0.34 m

Table 1. Streamwise range of different wall boundary conditions for transitional DNS cases.

types of forcing are considered in the transition simulation. The mathematical form of the
forcing in DNS is given by

S (o, v, 2,0 = f(x0, ¥, 2, ) + f',(x0, ¥, 2, 1), (2.29)

where xg = 0.04 m is the specified forcing location, and subscripts ‘p’ and ‘o’ represent
the optimal planar wave and oblique wave obtained by resolvent analysis, respectively.
According to our previous study (Guo et al. 2023a), the additional background noise term
produces a neglectable effect on the flow field, which is thus not considered here. The
planar-wave forcing is detailed as

[0y, 2,0 =¢, f,(x0, ) exp(ifpz — iwpt) + c.c., (2.30)

where ¢ is the amplitude coefficient, and B, = 0 for the planar wave employed . A pair of
oblique waves with an opposite spanwise wavenumber is employed, which is expressed by

flo(xo, y, 2, 0) = 8o[fo(x()v ¥) exp(ioz — iwot) + f_,(x0, ¥) exp(—ifoz — iwo1)] + c.c,
(2.31)

In all transition simulation cases, the initial amplitude (pu)),,, = 0.002 remains the
same for planar wave (wp, Bp) and a pair of oblique waves (w,, +8,) at x = 0.045 m. This
set-up excites the first mode and second mode of equal importance near the forcing. In this
case, strong mutual interactions can occur with the presence of two primary instabilities.
As reported by Guo et al. (2023a), the resulting nonlinear mechanism (combination
resonance) is independent of both the initial amplitude ratio and the absolute amplitude
of the oblique and planar waves. Therefore, this study focuses on one specified set-up of
wave amplitudes without loss of generality.

The wall boundary conditions for DNS cases are presented in table 1. The boundary
condition is of primary interest in this study. In case 1, only the solid-wall boundary
condition is employed. For case 2 with the acoustic metasurface, TDIBC is employed
starting from x = 0.115 m to the end of the computational domain, i.e. x = 0.6 m. It is
important to note that x = 0.115 m corresponds to the neutral point of the optimal plane
wave (10, 0), downstream of which the modal growth begins. In case 3, during the late
stage of the transitional flow (x >0.34m), the TDIBC is replaced by solid walls to mitigate
undesirable higher wall friction and flux in the late transitional stage. The selection of
x = 0.34 m in case 3 also considers the modal growth region of the second mode. As
illustrated in figure 2 (b), the modal growth of the optimal plane wave (10, 0) terminates at
approximately x = 0.34 m. A detailed discussion and explanation will be provided in the
subsequent sections.

In the DNS, the computational domain ranges from x = 0 to x = 0.6 m. The number
of the grid points is 3060 x 260 x 60, denoting the grid numbers in the streamwise,
wall-normal and spanwise directions, respectively. The corresponding dimensionless grid
spacings are Axt a 3.13, AzT ~ 5.9 and Ay'. =~ 0.30, which are evaluated based on

min

the procedure described by Guo et al. (2022a, 2023a). Grid convergence of the amplitude
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evolution of the optimal disturbances has been confirmed (Guo et al. 2023a). A good
agreement is also reached between the DNS and the stability analysis.

2.6. Bispectral mode decomposition

Based on the DNS data, bi-Fourier analysis and bispectral analysis are performed.
Bi-Fourier analysis demonstrates the significant amplitude evolution for multiple
disturbances, while bi-spectral decomposition reveals the energy-transfer mechanism.
The BMD method developed by Schmidt (2020) is employed to elucidate the triadic
interactions arising from quadratic nonlinearities in the Navier—Stokes equations, which
govern energy transfer between scales in the flow. As shown in Schmidt (2020), BMD
examines triadic interactions originating from the quadratic nonlinearity inherent in the
Navier—Stokes equations. The perturbation dynamics about a base flow is governed by

aq/ / / /

5= Ly’ +Q(q'.q), (2.32)
where ¢’(x, r) represents the flow perturbation (typically velocity components or pressure
fluctuations), L is the linear operator and Q(-, -) denotes the quadratic nonlinearity arising
from terms like (#’ - V)u' in the convective term.

The expectation operator E[-], central to BMD’s statistical formulation, performs
ensemble averaging over independent flow realisations. Specifically, BMD identifies
phase-coupled frequency triads {fx, fi, fm} satisfying f, = fix £ fi through the
bispectrum. The bispectrum is defined as the double Fourier transform of the third-order

moment E[q(t)g(t — t)g(t — 11)]

1

Sqaq(fies J1) = llm 7—_E[ q"(f0a (i + M), (2.33)
where ¢ (x, f) is the Fourier transform of ¢(x, f) and T indicates complex conjugate.
The classical bispectrum S,,, serves as a conceptual foundation for detecting quadratic
phase coupling. Its spatial generalisation, the mode bispectrum ¢, is achieved by
replacing the temporal expectation E[.] with a spatially weighted ensemble average over
Fourier realisations, thereby extending pointwise statistics to coherent structures. For
multidimensional datasets, BMD constructs the bispectral density tensor

1 ~H .~
D = N_ Qkol WQ]H_[, (234)

with W contalnlng spatial quadrature weights, Npj the number of data blocks and

Qkoz = Qk o Ql being the Hadamard product of Fourier realisations. Here, superscript
H denotes the Hermitian transpose (conjugate transpose). The matrix Q organises the
Fourier coefficients of ¢’(x, ¢) in a block form, where each column contains a realisation
of q(x, f) for spectral estimation. The dominant triadic interactions are identified by
maximising the numerical radius of D, which involves solving the eigenvalue problem
for the Hermitian matrix H(6) =1/2(¢! D+ ¢~ D). The complex mode bispectrum
¢ (fr, f1), which is defined as the maximum numerical radius of D, quantifies the triad
interaction strength through its magnitude |¢|. The magnitude of the mode bispectrum
scales with the product of the absolute amplitudes of the triad components. This preserves
the energy-transfer scaling inherent to quadratic nonlinearities.

The BMD method and open-source code proposed by Schmidt (2020) were employed
in this study, and a detailed introduction for the formulation and definition can be found in
Schmidt (2020).

1026 A27-11


https://doi.org/10.1017/jfm.2025.11030

https://doi.org/10.1017/jfm.2025.11030 Published online by Cambridge University Press

Y. Chen, P. Guo and C. Wen

2.7. A summary of analytical techniques

The present analysis framework systematically combines existing techniques to elucidate
the effects of the metasurface across different transition stages. The investigation progress-
es from linear mechanisms, in which the resolvent analysis identifies optimal disturbances
and LST/PSE quantifies modal growth rates, to the nonlinear transition dynamics captured
via DNS visualisations of vortex formation and bi-Fourier quantifications of mode evolu-
tions with or without the metasurface. The complete energy pathway is resolved through
BMD of triadic interactions and energy budget diagnosis of dissipation mechanisms.
Crucially, DNS visualisations provide physical grounding for spectral analyses, with
instantaneous flow structures associated with BMD-detected triadic interactions and streak
spacing matching bi-Fourier analysis. This represents the first coupled application of BMD
and hypersonic DNS to resolve metasurface-modified triads while maintaining a direct
correlation between flow structures and spectral-space dynamics.

3. Linear instability stage

In this section, the linear stage of the dominant primary instabilities and the effect of the
acoustic metasurface are of interest. The multi-pole fitting result is used in the TDIBC
to model the acoustic metasurface. The correctness of the embedded TDIBC code is
examined in comparison with the result obtained by directly meshing the cavities. The
resolvent analysis is employed to capture the optimal response of the boundary layer. The
effect of the metasurface on single-frequency disturbances in the low- and high-frequency
ranges is demonstrated. The preferred starting location of TDIBC is further discussed.

3.1. Fitting result of softness and validation of TDIBC

In this study, the acoustic metasurface consists of uniformly distributed spanwise
rectangular cavities. The geometric parameters of these cavities were optimised (Zhao
et al. 2018a) to maximise acoustic absorption performance. Regarding the parameters
employed, the dimensionless half-width b/L,.r = 0.196, the unit-cell periods are s /L. =
0.52 and depth H/L,,s=1.642 are all consistent with those in Zhao er al. (2019). The
geometric setting corresponds to a porosity of ¢ =2b / s = 0.75. These parameters were
designed to control the second mode and have demonstrated their evident effectiveness in
both LST and two-dimensional DNS (Zhao et al. 2019). Figure 1 compares the softness
derived from a fitting procedure based on the theoretical model, which considers high-
order diffraction (Zhao et al. 2018a). The fitting result was based on the method proposed
by Douasbin et al. (2018) using (2.7), which employs Cy = —0.05 and the poles and
residues shown in Appendix A. It is indicated that the fitting result agrees well with
the theoretical model within a broadband frequency domain. This agreement enables
the accurate simulation subject to both high- and low-frequency disturbances using the
acoustic metasurface. The comparison among the cases with TDIBC, with meshed cavities
and with a constant wall impedance model (v' = Ap’, and A is a constant acoustic
admittance), can be found in Appendix B. A good agreement is reached, validating the
reliability of the TDIBC code in this study.

3.2. Result of stability analysis

In resolvent analysis, the interval 0-0.5 m is utilised for the optimisation problem,
and the forcing is introduced at xo = 0.04 m. The N-factor is defined by N =
0.5 log(EChu/EChu,o), where Ecp,,0 1s measured at x = xp and N is 0 at xo.
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Figure 1. Comparison of wall softness between the reference impedance model (Zhao et al. 2018a) and the
multi-pole fitting results (present).

(a) (b)
B - 8
20 0_2 10000 60000 110000 Non-modal Second-mode
6r growth region  growth region Joos P P o
§ 15
5 N 41 eqe
10 &
* (10, 0)-Resolvent
2L ° (10, 0)-PSE
5 ——————— = (3, 1)-Resolvent
S (3, 1)-PSE
I I I
0 0.5 1.0 1.5 20 25 3.0 0 0.1 0.2 0.3 0.4 0.5
B/Bo x (m)

Figure 2. (a) Contours of optimal gain in the parameter space of the spanwise wavenumber and the angular
frequency, where wgLyef/tco = 0.1 and By L er = 0.8. (b) Comparison of N-factors between PSE and resolvent
analysis. Here, N-factor curves of PSE are shifted to be compared with resolvent analysis.

The gain contour for a wide range of spanwise wavenumbers and angular frequencies
is shown in figure 2(a). Clearly, the low-frequency oblique wave related to the first mode
(w/wo, B/Bo) = (3, 1) and the high-frequency planar wave related to the second mode
(w/wo, B/Bo) = (10, 0) are prominent in the gain contour. In this study, w/wg = 10
corresponds to a dimensional frequency of 125.8 kHz, which has also been shown to be
the peak frequency in the energy spectrum under the considered experiment condition
(Bountin, Chimitov & Maslov 2013). For brevity, the optimal response for a Fourier mode
with w/wop = 10 and B/8p = 0 is referred to as mode (10, 0), and the same applies to other
optimal disturbances. In the following DNS, the three-dimensional transition to turbulence
will be initiated using the optimal forcings determined by resolvent analysis. As shown
in figure 2(b), the optimal response captured by resolvent analysis undergoes a transient
growth downstream of the forcing location, which cannot be captured in PSE when a
purely modal profile is introduced at the inlet. The transient-growth region is between
the forcing location and the position where the growth rate dN / dx from the resolvent
analysis converges with that from the PSE. For instance, the interval x € [0.04 m, 0.115 m]
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Figure 3. (a) The N-factor evolution and (b) dimensionless wall pressure fluctuation for different wall
boundary conditions subject to the optimal forcing of mode (10, 0).

corresponds to the transient-growth region of Fourier mode (10, 0). The PSE results
indicate that modal growth begins at approximately x = 0.115 m and ends at approximately
x = 0.34 m for (10, 0), as shown in figure 2(b). As for the optimal oblique wave (3, 1),
its N-factor exceeds that of the planar wave (10, 0) downstream. This is due to a longer
growth region of (3, 1), despite a lower maximum growth rate.

In the numerical simulation, both modal and non-modal growths are included. Given
the broadband nature of free-stream disturbances in wind tunnels and at realistic flight
conditions, both the first and second modes should be considered in the investigation of
hypersonic boundary-layer instability and transition. In this study, optimal disturbances
(wp, Bp) = (10, 0) and (w,, By) = (3, 1) were utilised to initiate the unsteady flow
for cases listed in table 1. These disturbances enable complicated nonlinear mode—
mode interactions and spectral broadening rapidly (Guo et al. 2023a). The two are
also representative building blocks of the various primary instabilities with different
frequencies and wavenumbers. The selection of only two of them enables the fundamental
observation of the excited secondary instabilities downstream.

3.3. The TDIBC for single-frequency disturbance

In this section, a single-frequency disturbance with small amplitude is introduced in
a precursor simulation to study its linear evolution individually. The verification of
initialisation for the optimal forcing in the DNS is depicted in Appendix C.

Figure 3 compares the evolution of the Fourier modes (10, 0) with a solid wall and
TDIBC, starting from x = 0.04 or x = 0.115 m. The acoustic metasurface is observed
to suppress the modal growth of the second mode while enhancing the transient growth,
based on the definitions of transient-growth regions in § 3.2. Note that x = 0.115 m is the
starting point of the modal growth of Fourier mode (10, 0), according to the PSE result
in figure 2(b). When TDIBC is employed in the range of 0.04—0.2 m, the total Chu’s
energy is augmented at around x = 0.1m, while the wall pressure fluctuation is suppressed
there in figure 3(b). This indicates that the wall pressure fluctuation may not reflect the
overall impact of the metasurface. The result agrees with the numerical simulation of
Wang & Zhong (2012) and the wind tunnel experiment of Lukashevich et al. (2016), which
reported that the acoustic metasurface is effective only within the unstable region of the
second mode. The detailed effect of the acoustic metasurface on each primitive variable
downstream and upstream of the synchronisation point of the second mode is compared in
figure 4.
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Figure 4. Comparison of dimensionless r.m.s. magnitude between linear-stage cases using solid wall (solid
line) and TDIBC (dash dot-dot line) at (a) x = 0.08 m and (b) x = 0.16 m initialised by optimal mode (10, 0).
The TDIBC is applied within the range of 0.04-0.2 m.
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Figure 5. Comparison of dimensionless pressure fluctuation at the wall for the optimal wave (3, 1) between
solid-wall condition and TDIBC in the linear stage.

Figure 4 compares the root-mean-square (r.m.s.) values of primitive variables between
the results with a solid wall and the acoustic metasurface (realised by TDIBC). It illustrates
that the r.m.s. of the wall pressure fluctuation is lower with TDIBC at x = 0.08 m, which
agrees with figure 3(b). However, the density and temperature are significantly enhanced
near the boundary-layer edge (around y/L,; = 2). This leads to a higher total energy
of the planar wave (10, 0) in this region, namely a larger N-factor shown in figure 3(a).
Downstream of the neutral point of the second mode, the disturbances are completely
suppressed regarding both the total energy and the wall pressure fluctuation, as shown in
figure 4(b).

On the contrary, the acoustic metasurface slightly destabilises the oblique optimal
disturbance (3, 1), as shown in figure 5.

Based on the above finding, the starting location of TDIBC for both case 2 and case 3
was selected as x = 0.115 m to avoid unnecessary amplification of unstable waves. Besides,
TDIBC ends at x = 0.34 m in case 3 because the second mode is stable downstream of
x = 0.34 m (see figure 2b). It should be noted that no prior reports have examined the
impact of the metasurface in the transient-growth stage. More research is necessary to
determine how the metasurface affects the Orr/lift-up processes that underpin the transient
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growth. More importantly, it is not yet understood how the transition initiated by the first
and second modes responds to the acoustic metasurface. In the next section, the effect
of the acoustic metasurface in combination resonance (Guo et al. 2023a) is focused on,
which requires the involvement of both first and second modes.

4. Three-dimensional flow field and mean statistics

Following the verification of the initialisation of optimal responses and the embedded
TDIBC code, the nonlinear interaction between the low-frequency and high-frequency
components and the resulting transition process with the acoustic metasurface are of
concern. In this section, optimal disturbances with two prominent frequencies and the
same amplitude are applied to initiate the transition. Three cases with different wall
boundary conditions listed in table 1 are simulated and compared. The effect of the
acoustic metasurface on the combination resonance will be evaluated in detail for
statistical average and instantaneous flow fields, especially for mode—-mode interaction
mechanisms using bi-Fourier analysis and energy budget analysis.

The comparison of vortex structures between case 1 and case 2 is depicted in figure 6.
The spanwise-aligned structure observed in case 1 (figure 6a), representing the planar-
wave mode (10, 0), vanishes in case 2 (figure 6b) due to the presence of the acoustic
metasurface. This indicates that mode (10, 0) is highly suppressed by the acoustic
metasurface. Further downstream, the staggered structure appears later in case 2 than in
case 1, which is caused by the oblique wave (3, £1). Additionally, the hairpin vortex,
indicating the late stage of transition, is also delayed regarding its appearance in case 2
compared with case 1. By the end of the computational domain, the vortex structure in
case 1 has broken down into small-scale structures, indicating fully developed turbulence.
This is consistent with the result of the skin friction coefficient illustrated in figure 7, in
which the curve of case 1 collapses into the van Driest correlation near the end of the
computational domain.

Figure 7 shows the spanwise- and time-averaged skin friction coefficient for three cases,
accompanied by the van Driest II correlation. The increment of the skin friction coefficient
is delayed for case 2 and case 3 compared with case 1. By estimating the transition onset
location based on the minimum skin friction coefficient, the transition onset occurs at
approximately x,,5; = 0.22 m in case 1, while it shifts downstream to around X,,5; =
0.24 m in case 2 and case 3. The transition ends at around x = 0.57 for case 1 and case 3,
as the skin friction coefficient collapses to van Driest II correlation. The transition delay
efficiency is evaluated by 5, which is defined by

__ Xonset,Case 2 or 3 — Xonset,Case 1 (4 1)

Xonset,Case 1

The transition delay efficiency is approximately 9.1 % based on the onset location for cases
2 and 3 with the acoustic metasurface. This value is not prominent compared with the
wind tunnel experiment of Wagner et al. (2013), where the second mode is dominant under
a cooling wall condition at Mach 7.5 with the first mode highly suppressed. Nevertheless,
this finding confirms the effectiveness of the acoustic metasurface in delaying the
transition induced jointly by the low-frequency first mode and the high-frequency second
mode. However, in case 2, the skin friction coefficient is higher than its counterpart in case
1 in the late transitional region, which starts at around x = 0.34 m. This phenomenon was
also reported in the wind tunnel experiment in the German Aerospace Center conducted by
Wagner et al. (2013, 2014, 2015). The reason for higher skin friction in the late transitional
region is of general interest and will be explored using bi-Fourier analysis and energy
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Figure 6. The Q-criterion iso-surface (L,ef/uoo)zon.OOS coloured by the dimensionless streamwise
velocity in the range of 0.2 <x <0.4 m for (a) case 1 and (b) case 2, and of 0.4 <x <0.6 m for (c¢) case 1
and (d) case 2.

budget equation later. In case 3, the undesirable increase in wall friction is eliminated
when the wall boundary condition reverts to a solid wall downstream of x = 0.34 m.
The comparative study demonstrates that positioning the acoustic metasurface within the
unstable region of the second mode is more effective in controlling flow transition.
Figure 8 provides the contour of the time-averaged skin friction coefficient. The streak
spacing corresponds to the spanwise wavenumber of the steady streamwise mode (0, 2),
which can be nonlinearly produced by the interaction of the forced oblique waves (3, £1).
It is evident that, compared with the solid-wall case, the appearance of streaks is delayed
in the cases with TDIBC. Meanwhile, the maximum skin friction induced by streaks is
more pronounced for case 2, which is consistent with the spanwise-averaged result shown
in figure 7. Compared with the results of case 1, case 3 exhibits a purely delayed effect in
the contour of time-averaged skin friction. Meanwhile, these two cases converge to fully
developed turbulence nearly at the same location, as shown in figure 7. Interestingly, the
skin friction drops slightly where the acoustic metasurface is replaced by the solid-wall
condition at x = 0.34 m. Further downstream, it gradually develops into a result consistent
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Figure 7. Quantitative results of spanwise- and time-averaged skin friction coefficient and the van Driest 1I
formula for C¢. The van Driest II formula is applied following the procedure of Guo et al. (2022a).
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Figure 8. Contour of time-averaged skin friction coefficient for (a) case 1, (b) case 2 and (c) case 3.

with case 1. This indicates that the acoustic metasurface only produces a local effect. The
undesirable increment of wall friction in case 2 downstream of x = 0.34 m is thus caused
by the acoustic metasurface. The underlying physics may relate to the strengthened mean
shear near the wall, as reported in the permeable wall over the supersonic boundary layer
(Chen & Scalo 2021a, 2021b). This issue will be discussed later.

In the late transitional and turbulent regions, skin friction and heat transfer are
usually closely related (Franko & Lele 2013; Guo et al. 2022a). The wall heat transfer
is directly determined by the transport of internal energy. To better understand the
effect of the acoustic metasurface, the transport of internal energy is of interest
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(Zhu, Zhang & Chen 2016). The influence of the acoustic metasurface on the energy
budget terms is analysed. The viscous dissipation (which is decomposed into the
contributions induced by shear @, and by dilatation @) and pressure dilatation work
(Tp) near the wall are analysed herein. The expressions of @, and @y are

4 9

u v w2
by = (uwrwy), Py =(zu(—+—+-—) ) 4.2)
3 X 0z

ax 9 y
In this subsection, (+) and (-) denote time and spanwise averaging, respectively. For a
Cartesian coordinate system, the vorticity component @y is expressed as

Jw  dv du Jw v Jdu

m= = my = T = — 4.3)

dy 0z dz  Ox dx  dy
Subsequently, the shear-induced dissipation is decomposed into four parts @ = P40 +
D1+ Puo + D3, representing the effects of the time-and spanwise-averaged field, the
second-order moment of the cross-correlation between the fluctuations in dynamic viscos-
ity and vorticity, the second-order moment of the vorticity self-correlation and the third-
order moment, respectively. The specific expressions of these four terms are given by

Do = (D) (@) (%), Pt =2 (@) (W),

D2 = () (@' 0'k), Pz =W @ o'k

4.4)

The dimensionless time- and spanwise-averaged pressure dilatation term (7)) is written

as / / \
ou; ou’;
T, =~ (p) <%>—<p a”;_ > (4.5)

The instantaneous quantity is expressed as ¢ = (¢) + ¢’, where (}) represents the base
flow superimposed by mean-flow distortion (MFD), and ¢’ denotes the disturbance
excluding MFD. By incorporating MFD into the base flow, the formulation reflects the
overall effect of the time- and spanwise-averaged field in the transitional stage.

Figure 9 provides the comparison of the streamwise development of the aforementioned
terms among cases 1, 2 and 3. The magnitude of the shear-induced dissipation @
of case 2 is evidently higher than the other cases downstream of x = 0.34 m. The
most prominent contribution originates from ®,> (shown in figure 9b), which refers
to the second-order moment of the vorticity self-correlation (i)(@ ;@ 'y). Moreover,
the reinforcement of time- and spanwise-averaged dissipation @40 = (it) (k) (@x) is
significant downstream of x = 0.4 m, as shown in figure 9(a). The other two terms are
not displayed due to their negligible contributions. Furthermore, the dissipation induced
by dilatation (@) is suppressed by the acoustic metasurface upstream of x = 0.34 m,
as illustrated by figure 9(c). However, the magnitude of @, is significantly lower than
that of the shear-induced dissipation (@ ). These results suggest that the shear-induced
dissipation plays a dominant role in the internal energy transport, and that the first-mode
oblique breakdown may be crucial in the late-stage transitional flow. As reported in § 5,
the oblique breakdown is strengthened by the acoustic metasurface in case 2. This finding
aligns with the transition simulation by Tullio ef al. (2010), who directly resolved the flow
within the pores of the acoustic metasurface and demonstrated that the first mode was
promoted. As for case 3, the magnitude of energy budget terms gradually agrees with that
in case 1 downstream of x = 0.34 m, as the boundary shifts from the acoustic metasurface
to a solid-wall condition.
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Figure 9. Comparison of energy budget terms of (a) @0, (b) P2, (¢) Py and (d) T, in the internal energy
transport equation on the wall among case 1, case 2 and case 3. Here, @1 and @43 are not shown due to their
negligible amplitude in comparison with those of @0 and @42.

The terms associated with dilatational work, including dilatation-induced dissipation in
figure 9(c) and pressure dilatation work shown in figure 9(d), are suppressed significantly
by the acoustic metasurface at around x = 0.2 m. The underlying physics probably relates
to the second mode of acoustic nature (Zhu et al. 2018; Chen et al. 2023a), whose main
energy source near the wall is dilatational work and can be suppressed by the acoustic
metasurface.

In summary, dilatation-related budget terms are suppressed while the shear-related
terms are strengthened in cases with the acoustic metasurface. The results of the statistical
energy budget analysis agree with the energy source analysis using the relative phase
analysis (Chen et al. 2023b). In our previous works (Tian & Wen 2021; Chen et al.
2023b), we have concluded that the acoustic metasurface stabilises the second mode by
suppressing the dilatation near the wall while destabilising the first mode by strengthening
the mean shear.

While the energy budget here focuses on spatially averaged terms to highlight global
trends, future work could decompose these budgets by wavenumber pairs to explicitly
resolve triad interactions. Nevertheless, the current analysis suffices to demonstrate that
the metasurface’s trade-off — between suppressing dilatational work (stabilising the
second mode) and amplifying shear dissipation (probably related to destabilising detuned
modes, see following analysis) — is the key driver of higher skin friction in the late
transitional stage.
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Figure 10. Instantaneous skin friction coefficient C s for (a) case 1, (b) case 2 and (c) case 3, where Xopger
refers to the evaluated starting location of the transition.

5. Nonlinear mode-mode interaction and breakdown

This section serves to facilitate our understanding of the dominant nonlinear interaction
mechanism and to explore the reason why transition onset is delayed by acoustic
metasurface, as well as why wall friction is higher in the late transitional stage with an
acoustic metasurface (see case 2 in figure 7).

5.1. Evolution and contribution of the Fourier mode

The instantaneous skin friction coefficient Cy is plotted in figure 10. The streamwise
wavelengths of the planar wave A, ), the oblique wave A , and large-scale A- vortices
related to the detuned mode A, (22) can be clearly identified in case 1, as shown in
figure 10(a). Notably, the aligned structure of the second mode (at around x = 0.2 m) loses
its signature in case 2 and case 3 due to the suppression effect of the acoustic metasurface.
The detuned mode (2, 2) is generated through

G, D+G, =) — (6, 0),

(10, )= @, =D — (7, D),

(7, hH =6, 00— (1, D,

(I, H+d, hH— (2, 2).
The generation of detuned mode (2, 2) is confirmed by wave vectors (o, B) of the
considered triads (Fezer & Kloker 2000), and details can be seen in Appendix D.
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The detuned mode, manifested as large-scale A- vortices (Guo et al. 2023a), can also
be observed in case 3. This observation indicates that the flow field can be recovered as
the wall boundary reverts to the solid-wall condition and that the acoustic metasurface
only produces a local effect. In contrast, the detuned-mode-related A- structures disappear
in case 2, where the metasurface persists in the whole domain. In case 2, the distinct
spanwise-aligned structure near x = 0.45 m indicates the importance of planar wave (2, 0),
as later demonstrated by figure 12(b). Furthermore, the spanwise scale approaches 0.54;_,,
which is identical to the spanwise wavelength of the detuned mode (2, 2). The enhanced
pattern related to detuned modes may be responsible for the increment of skin friction
in the late transitional stage with the acoustic metasurface (see case 2 in figure 7). A
further decomposition of skin friction is needed to identify the dominant contributor. In
the subsequent investigation, temporal and spanwise bi-Fourier analysis and energy budget
analysis will be applied to highlight the key contribution to wall friction.

The Chu energy integral in the wall-normal direction includes kinetic and internal
energy. Its streamwise evolution of multiple Fourier modes can comprehensively reflect the
dominant modes in the transitional stage, which already include the effect of the nonlinear
interaction. As depicted in figure 11, the growth of Chu’s energy of the second-mode-
related mode (10, 0) is suppressed by the acoustic metasurface downstream of x = 0.115
m. Meanwhile, the first mode is slightly promoted near x = 0.2 m, which is consistent with
previous theoretical and simulation research (Fedorov et al. 2003; Wang & Zhong 2012).
In case 1, the planar wave (10, 0) saturates at around x = 0.18 m, and its amplitude begins
to decrease due to energy transfer via nonlinear interaction with modes (5, 1), (10, 2) and
(2, 2) or (2, 0) through the subharmonic resonance, the fundamental resonance and the
combination resonance, respectively. The oblique breakdown associated with mode (3, 1),
the fundamental resonance associated with mode (10, 0) and the subharmonic resonance
associated with mode (10, 0) are attributable to the nonlinear interactions

3, )—-(@3, -1)— (0, 2),
(10, 0) + (0, 2) — (10, 2), (5.2)
(10, 0) =5, 1) = (5, -1,

respectively. The aforementioned modes other than modes (3, £1) and (10, 0), known as
secondary instabilities, undergo a rapid growth process and make the flow develop into
the late stage of transition and breakdown. The specific nonlinear mode—mode interaction
mechanism was systematically studied and reported by Guo et al. (2023a). In this study,
the effect of the acoustic metasurface is focused on. In figure 11(a), one can see that the
second-mode-related mode (10, 0) in case 2 (dashed line) grows gradually to nearly the
same amplitude as that in case 1 (solid line), but saturates further downstream. Meanwhile,
the secondary growth of the primary oblique wave (3, 1) shows a lower growth rate (i.e.
slope) in case 2 at around x = 0.28 m than in case 1. This result is somewhat consistent
with the study of Chen et al. (2017), where the amplitude of the second mode saturates
and then the ‘phase lock’ sets in. This phase lock supports a secondary growth stage
of the primary low-frequency mode. Meanwhile, the second mode decays due to energy
transfer to the rapidly growth secondary modes. Regarding the metasurface effect in this
paper, it suppresses the first-mode-related (3, 1) when the nonlinearity is considered. This
finding differs from the linear case in figure 5, which is probably due to less energy being
transferred from the attenuated mode (10, 0) with the metasurface. Another interesting
finding is that, the dominant detuned modes (2, 0) are apparently more energetic in case 2
and case 3, compared with the solid-wall case. In addition, the low-frequency modes
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Figure 11. Comparison of streamwise development of Chu’s energy: (a) and () for case 1 and case 2, and (c)
and (d) for case 1 and case 3. The modes in case 1 are represented by solid lines with filled symbols, and modes
in case 2 and case 3 are represented by dotted lines with open symbols.
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generated in the later transitional stage, such as (1, 0), are also more evident than their
counterparts in the solid-wall case.

We intend to identify the dominant Fourier mode contributing to the increment of higher
skin friction in case 2. To this end, the maximum absolute contribution from mode (m, n)
to the instantaneous skin friction is defined by

ACf, (m,n) (x) = % %7)( ’Cf,(m,n),unsteady - Cf,laminar , (5.3)
zZ,

where C 7, (n,n),unsteady and C f,jaminar are the instantaneous skin friction induced by the
laminar flow plus mode (m, +n) and by the laminar flow alone, respectively. This indicator
is defined to highlight the Fourier modes which are the source contributors to the skin
friction in figure 10. Figure 12 compares the maximum absolute modal contribution to
the instantaneous skin friction coefficient C; between cases with (case 2 and case 3)
and without (case 1) the acoustic metasurface. Apparently, the second mode (10, 0) is
suppressed in both case 2 and case 3 with the acoustic metasurface, which agrees with
the disappearence of the aligned structure in the vortex visualisation (shown in figure 6)
and the instantaneous wall friction (shown in figure 10). As displayed in figure 12(b), the
detuned modes (2, 2) and (2, 0) demonstrate a considerably higher contribution, indicating
a significantly strengthened combination resonance. In addition, the subharmonic-related
mode (5, 1) and oblique mode (3, 1) in case 2 also show a more pronounced contribution
than those in case 1. This result indicates the promotion of these two nonlinear interaction
mechanisms (combination and subharmonic resonance) using the acoustic metasurface.
Note that there are some differences between the wall friction contributions and the
integrated Chu energy, which resembles the linear case in § 3.3. For example, the Chu
energies of modes (2, 2) and (2, 0) are decreased and increased by the metasurface
in figure 11, respectively. However, the contributions to Cy of both modes are notably
augmented by the metasurface. This implies that the wall quantity and the integrated
energy across the boundary layer may have different performances. To quantitatively
evaluate the effect of the metasurface, the difference of ACy is calculated between case
1 and case 2. The result serves to identify the main contributor to the strengthened skin
friction in the late transitional region in case 2. The overall integral effect is calculated by

x2
S(m, n) — f (ACf (m,n), Case 2 — Acf, (m,n), Case I) dx’ (54)
x

1

where x; = 0.34 m and x, = 0.6 m. The comparison of 8, ), normalised by &, o),
among different Fourier modes is presented in figure 13. The results indicate that the
dominant contributor is the detuned planar mode (2, 0), which aligns with the predominant
planar structure observed at approximately x = 0.45 m in figure 10(b). The above analysis
answers the question raised by the second research objective in the Introduction.
Regarding the question of why transition onset is delayed, the increasing contribution of
the MFD (0, 0) should be discussed. In the range x € [0.25, 0.32] m where the transition
begins in figure 7, the presence of the metasurface leads to the postponed growing
contribution of (0, 0) in figure 12(a). In this range, only the streak mode (0, 2) is notable
in terms of the magnitude. As a result, the delayed transition onset can be attributed to
the postponed growth of mode (0, 2). This finding is interesting because the manifested
control effect by the metasurface does not lie in the second mode directly. Given the
nonlinearity, the Fourier mode (0, 2) is the direct contributor to the delayed transition
onset instead. Upstream of x = 0.3 m, the contributions of other secondary modes are not
evident in figure 12(a). As a result, the delayed (0, 2) is mainly caused by the suppressed
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Figure 12. Comparison of maximum absolute modal contribution to the instantaneous skin friction coefficient
Cy: (a) and (b) for case 1 and case 2, and (c) and (d) for case 1 and case 3. The modes in case 1 are represented
by solid lines with filled symbols, and modes in case 2 and case 3 are represented by dotted lines with open
symbols.
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Figure 13. Comparison of 8(,,, ,) among different Fourier modes. The value §(g, o) is utilised for normalisation.

oblique-wave resonance (see the first interaction equation in (5.2)) via the relatively large-
amplitude primary instability wave (3, 1). As interpreted in the discussion of figure 11,
mode (3, 1) is stabilised by the metasurface in the nonlinear stage, which is probably
achieved by the less energy received from the suppressed Mack second mode. Therefore,
the second mode plays an indirect role in the transition delay mechanism of the acoustic
metasurface.

5.2. Mode—mode interaction

Through complementary spectral analyses, the bi-Fourier decomposition quantifies
disturbance amplitude development, while the bispectral analysis elucidates the underlying
energy-transfer pathways governing these evolutionary patterns. To clarify the energy-
transfer mechanism, BMD was performed on the mid-xy plane of the computational
domain, where the dominant triadic interactions are clearly discernible through the
bispectrum value distribution. As illustrated in figure 14, the bispectrum maps at various
streamwise sections reveal distinct nonlinear interaction patterns, with the magnitude
of bispectrum values ¢ directly correlating with the strength of triadic coupling. The
upper half- and lower half-planes of each map correspond to sum and difference triadic
interactions, respectively. The coordinates (k, /) and (m, -I) represent the sum interaction
(wr + w; — wy,) and the difference interaction (w,, — w; — wy). Here, the subscripts k,
[, m denote non-dimensional angular frequencies (e.g. wjg represents Fourier modes of
w = 10, equivalent to the physical frequency f = 125.8 kHz) and satisfy the triad resonant
condition k +/=m. Diagonal dashed lines demarcate triadic interactions generating
constant frequencies, as annotated by their respective angular frequencies w. These
dashed lines in the figures cover all the triad interactions that generate the mode with
the corresponding angular frequency w. The initial stage exhibits prominent interactions
between the high-frequency component (w10) and low-frequency mode (w3), generating
w7 and w13 modes through difference (w19 — w3 — w7) and sum (w19 + w3 = w13)
triadic interactions, respectively, as displayed in figure 14(a—b). Concurrently, sum-
self-interaction of w3 produces its harmonic wg, while subsequent difference interaction
between w7 and w3 yields w4. Downstream evolution demonstrates progressive attenuation
of high-frequency components accompanied by amplification of low-frequency modes,
particularly the detuned w; and w; modes generated through ws; —w; — wy and

1026 A27-26


https://doi.org/10.1017/jfm.2025.11030

https://doi.org/10.1017/jfm.2025.11030 Published online by Cambridge University Press

Journal of Fluid Mechanics

(a) x10% x107° (b) x10% x10°¢ (C) x10* x107 (d) x10* %107
2.0 5 X 8
5 7
15 4 6
N 0 N 3 N N 5
Z s L s £ sz 4+ 3
RN AN 2 AN g 3
0.5 2
-10 1
1
0 510
(e) x10% %1073 (f) x10% 10°5 (g) (h)
9 9
8 8
5 7 7
6 6 .
] 0 s N s N N
£ ‘s £ 's E =
DN - - < AN
3 3
10 2 2
1 1
0 5 10 0 5 10 0 510 0 510
Si(Hz) x10* Si(Hz) x10% Si(Hz) x10* Si(Hz) x10%

Figure 14. Magnitude of mode bispectrum of case 1 for various streamwise regions (a) 0.2-0.225, (b) 0.25-
0.275, (c) 0.3-0.325, (d) 0.35-0.375, (e) 0.4-0.425, (f) 0.45-0.475, (g) 0.5-0.525 and (k) 0.55-0.575 m at z
= z0/2, where z is the spanwise width of the computational domain.

w3 —wy — w1 interactions (see figure 14f). The late transitional region (x €
[0.55, 0.575]) exhibits emergent near-zero-frequency components with the absence of
dominant spectral peaks, indicative of fully developed turbulent flows. This energy-transfer
pathway, where triadic interactions mediate progressive energy transfer from high- to low-
frequency modes culminating in near-zero-frequency components, contrasts with previous
hypersonic boundary-layer studies employing bicoherence analysis. While Craig et al.
(2019) and Zhang & Shi (2022) reported dominant self-sum interactions of the second
mode (w1p) and its harmonic in quiet wind tunnel conditions, the present results highlight
stronger detuned mechanisms involving first-mode interactions. This discrepancy likely
stems from the relative suppression of second-mode self-sum interactions under the
current configuration and flow condition, combined with enhanced first-mode activity that
is typically attenuated in the quiet wind tunnel experimental environments.

To confirm the spanwise wavenumber for the dominant triadic interactions, the spatial
structure of bispectral modes was revealed using BMD. Figure 15 presents the xz-plane
bispectral modes characterised by density at three characteristic wall-normal positions:
the wall surface (y = 0 mm), an intermediate layer (y = 1.6 mm) and the boundary-layer
edge vicinity (y = 3.2 mm). The results reveal that the triadic interaction associated with
detuned modes (corresponding to w; and wy) exhibits high energy density near the wall,
whereas the first mode (w3) and its harmonic (wg) are more energetic in the off-wall region
(based on the bispectrum map at three characteristic wall-normal positions, not shown
here). This spatial distribution is consistent with both the vortical structure characteristics
of the first instability mode near the boundary-layer edge and the dominant influence of
detuned modes on skin friction generation during late transitional stages, as documented
in Guo et al. (2023a). Notably, the spanwise bispectral mode distribution serves as an
effective indicator of the dominant spanwise wavenumber for specific frequencies. For
instance, modes (1, 1), (3, 1), (6, 0) and (7, 1) are identified as primary contributors to wy,
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Figure 15. Bispectral mode (real part of density component) marked with the associated sum and difference
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Figure 16. Magnitude) of mode bispectrum of case 2 for various streamwise regions (a) 0.2-0.225, (b) 0.25-
0.275, (c) 0.3-0.325, (d) 0.35-0.375, (e) 0.4-0.425, (f) 0.45-0.475, (g) 0.5-0.525 and (h) 0.55-0.575 m at z
= z0/2, where z is the spanwise width of the computational domain.

w3, we and w7, respectively. Modes (2, 2) and (2, 0) jointly govern w, formation, with (2, 0)
exhibiting greater dominance due to the weak spanwise periodicity (see figure 15 j). These
detuned modes are further responsible for the large-scale Lambda structures observed
near x = 0.4 m in figure 15. In summary, the BMD successfully resolves the dominant
spanwise features of the transitional flow dynamics, involving both primary (first and
second) instability modes as well as secondary modes. The triadic interaction mechanisms
are quantitatively elucidated during the transition process.

Figure 16 presents the bispectrum distribution at different streamwise locations for
case 2. To highlight the influence of the acoustic metasurface on nonlinear mode—-mode
interactions, the colour bar levels are maintained consistent with the solid-wall case in
figure 14 for a direct comparison. The introduction of the acoustic metasurface (case 2)
leads to a pronounced suppression of second-mode-dominated triadic interactions in the
region x € [0.25 m, 0.275 m] (see figure 16b, compared with figure 14b). This suppression
subsequently weakens the triadic interaction between weg and w3 in x € [0.3 m, 0.325 m]
(see figure 16¢, compared with figure 14¢), owing to reduced energy transfer from wig.
This observation also echoes with the deduction in § 5.1. As the generation triad for w3
is suppressed, the resulting stationary streak mode is less energetic and the MFD growth
and transition onset in figure 12 are thus delayed by the metasurface. Further downstream,
the amplified presence of w; and w;, (see figure 16e—g, compared with figure 14e—g)
indicates stronger nonlinear interactions involving detuned modes with the presence of
the metasurface. In other words, the metasurface effect on the low-frequency dynamics
is evidently different, where the low-frequency mode interactions are enhanced in the
controlled case. This finding is consistent with the elevated skin friction observed for case
2 beyond x = 0.34 m (figure 7). The enhanced triadic interactions generating the detuned
modes result in an increased contribution to the skin friction coefficient, as shown in
figure 12. This effect may originate from the shear-induced dissipation observed in figure 9
from the perspective of mean-flow statistics. Notably, the underlying triadic interaction

1026 A27-29


https://doi.org/10.1017/jfm.2025.11030

https://doi.org/10.1017/jfm.2025.11030 Published online by Cambridge University Press

Y. Chen, P. Guo and C. Wen

mechanism remains unaltered, as low-frequency detuned modes (w; and w;) continue to
emerge in later transitional stages. Interestingly, residual light points persist in the triadic
maps for case 2 (figure 164), suggesting that the flow in the controlled case may not yet be
fully developed by the end of the computational domain. Further analysis of the flow state
will be provided in subsequent sections.

5.3. Paths to turbulent flow

In this section, the spanwise- and time-averaged flow field is focused on and analysed. To
evaluate the flow state and its progression, the van-Driest-transformed velocity (Van 1951)
U ‘J,rD profiles for three cases at various streamwise stations are plotted in figure 17. The
influence of mean density variations due to the effect of compressibility can be removed
by van Driest transformation for the mean velocity

IZ+ -
Uyp 2/ N L ait (), (5.5)
0 Pw

where the friction velocity i, is utilised for normalisation

at=2 g.= |2 (5.6)
Ug Pw

The viscous sublayer law (u* = y™) and the log-layer law (u™ =58+ 1/xIny*,
= 0.4) are given as references, as black dashed lines. The intercept 5.8 is larger than
the incompressible counterpart 5.0, which has been reported by Guo et al. (2022a). At
x = 0.2 m, the result of the three cases agrees well with the reference, showing a consistent
and well-resolved viscous sublayer. Downstream x = 0.3 m, case 1 shows its initial
establishment of the log layer, while in case 2 and case 3, velocity profiles just begin to
deviate from sublayer reference at around y* = 10. Starting from x = 0.55 m, the velocity
profile gradually approaches the reference log-layer law, and the transformed velocity
profile is nearly the same for case 1 and case 3 at x = 0.6 m. The observations indicate that
fully developed turbulence is established, even if the slope shows a little difference due to
the high Mach number. A similar difference was also reported in supersonic/hypersonic
simulation by Zhou et al. (2023) and Guo et al. (2022a). As for case 2, the near-wall slope
(dUﬁ,’D / dy™) remains lower due to the acoustic metasurface utilised, compared with the
solid-wall case downstream x = 0.3 m (see figure 17c— f). This is qualitatively consistent
with the permeable-wall effect on the supersonic boundary layer studied by Chen & Scalo
(2021a, 2021b).

Owing to the augmented near-wall shear-induced dissipation in the late transitional
region for case 2, the van-Driest-transformed velocity profiles deviate from the viscous
law near the wall. To evaluate the flow state, the PSD of wall pressure fluctuations at the
downstream location is analysed. As illustrated in figure 18, a good agreement is reached
with the reference-scale law for case 1 at x = 0.6 m, indicating the establishment of a fully
developed turbulent state. In contrast, the comparison with the w=>/3 law in the inertial
subrange for case 2 shows less consistency compared with case 1. Moreover, the peak
frequency (f = 25.2 kHz) corresponding to detuned modes (2, 0) and (2, 2) is observed at
x = 0.6 m for case 2. This indicates that spectral broadening is incomplete at this location,
and fully developed turbulence has not yet been established.

In summary, the transition onset is delayed by the acoustic metasurface, and fully
developed turbulence, as observed in the solid-wall case, does not appear to have been
established within the computational domain using the acoustic metasurface in case 2.
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6. Concluding remarks and discussions

Hypersonic boundary-layer transition control using a promising passive technique, i.e.
the acoustic metasurface, is investigated. The purpose of this work is to elucidate the
mechanism of transition delay by the acoustic metasurface subject to multiple primary
instabilities and to explain the enhancement of skin friction during the late transitional
stage. The TDIBC, which models the effect of the acoustic metasurface in the time domain,
is successfully incorporated into the Navier—Stokes solver OpenCFD. The resolvent
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analysis is performed to obtain the optimal disturbances of the boundary layer, and
both the low-frequency first mode and the high-frequency second mode are involved in
the primary instabilities. Several analytical tools are employed in this study, including
resolvent analysis, DNS visualisation, BMD, bi-Fourier analysis and energy budget
analysis. The diverse physical questions addressed by these methods are synthesised
in table 2, demonstrating how their combined use advances our understanding of the
transition mechanism affected by the metasurface.

For the transition induced jointly by the first and second modes, the effectiveness of the
metasurface in delaying the onset of transition has been demonstrated through our DNS.
The vortex visualisation indicates that the spanwise-aligned structure associated with the
second mode disappears when the acoustic metasurface is employed. The staggered and
hairpin structures, as well as the streamwise streak, are postponed with the presence of
the metasurface. The fully developed turbulence observed in the solid-wall case seems
to be not yet established when the acoustic metasurface is utilised. Notably, the acoustic
metasurface induces higher wall friction during the late transitional stage, which can be
mitigated by replacing the acoustic impedance boundary with a solid-wall condition in
this region. A bi-Fourier analysis of wall friction is conducted to elucidate the role of the
acoustic metasurface in delaying the transition onset and increasing the late-stage skin
friction. It turns out that the saturation of the second mode is delayed in cases involving
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Tool Primary objective Key outcome
Resolvent analysis To identify optimal disturbances Revealing linear competing mode
growth: first and second modes
DNS visualisations To track spatio-temporal transition Documenting vortex dynamics and
physics main flow structures
BMD To quantify triadic interactions Measuring possible energy-transfer

direction: from primary waves to
detuned modes

Bi-Fourier analysis To resolve modal evolution Correlating modal growth with
MEFD: an indirect oblique breakdown
delay mechanism

Energy budgets To diagnose mean-flow dissipation Linking shear-induced dissipation to
mechanisms the oblique breakdown

Table 2. A combined framework where each tool targets specific physical questions.

Linear stage Nonlinear and breakdown stage
B o 1 ! T e
: Significantly | : nghef skin :
| stabilised : ' friction !

S Sy S S J

: Slightly
E destabilised

R
: Delayed
E transition

Triadic
interactions

Figure 19. A schematic diagram revealing the effect of the acoustic metasurface (marked in dashed
rectangular box) in the linear and nonlinear mode—mode interaction and breakdown of hypersonic boundary
layers.

the acoustic metasurface, which consequently attenuates the secondary growth of the first
mode and the growth of the resulting streamwise streak. Eventually, the transition onset
is delayed due to the postponed contribution of MFD. Figure 19 briefly summarises the
effect of the acoustic metasurface (marked in dashed rectangular box) in the linear and
nonlinear mode-mode interaction and breakdown processes.

Next, we briefly summarise the main contributions of this study:

(1) Regarding the reinforced skin friction in the late stage, different secondary modes
participate in the physical process. Among them, the detuned modes primarily
contribute to the increased wall friction with the metasurface. The mean internal
energy transport suggests that the dilatational work is weaker prior to the transition,
whereas the dissipation induced by shear is stronger in the cases with the acoustic
metasurface. The latter is responsible for the higher wall friction from the perspective
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of the energy budget. The comparative study implies that the strategic placement of
the acoustic metasurface is significant in minimising the skin friction and probably
also the heat flux.

(i1) Bispectral mode decomposition quantifies the energy-transfer process: from primary
disturbances to low-frequency detuned modes during the transition to turbulence,
through intermediate modes generated directly by sum and difference triadic
interactions of primary modes. The comparative analysis indicates that the acoustic
metasurface significantly suppresses second-mode-related triadic interactions, while
enhancing triadic interactions related to the detuned mode generation process.
The affected second mode is in the early stage, which is related to the transition
onset delay. The affected detuned mode leads to elevated mean skin friction in
late transitional stages. This dual mechanism explains the experimentally observed
trade-off between transition delay and late-stage friction penalties.

(iii) Unlike previous works that typically focused on single-mode scenarios, we
demonstrate how metasurfaces modify the complete transition process through
nonlinear triadic interactions between these competing instabilities (evidenced via
bispectral analysis), revealing a previously unreported mechanism where second-
mode suppression indirectly weakens first-mode growth. Notably, the DNS result
reveals that the metasurface’s stabilisation effect in multi-mode transition is indirect:
by attenuating the second mode, it reduces energy transfer to the first mode, thereby
delaying streak formation — a fundamentally different mechanism from single-mode
control reported by Tullio et al. (2010) and Hader et al. (2013, 2014). Moreover, the
coupled DNS-TDIBC framework provides the first first-principles explanation for
experimentally observed higher skin friction (Wagner, Kuhn & Martinez Schramm
2013, 2014) on the metasurface by linking it to enhanced combination resonance
or shear-induced dissipation, while the derived design guidelines offer solutions for
achieving transition delay without late-stage penalties.

While natural transition typically involves broadband wave packets with random spatio-
temporal distributions, our study employs controlled monochromatic wave excitation to
isolate and elucidate the combination resonance control mechanism. As the identified
resonance mechanism — being independent of absolute initial amplitude or their ratios
— suggests robustness against disturbance variations (Guo et al. 2023a), the conclusions
derived in this study should have broader implications for natural transition control using
the acoustic metasurface. The present nonlinear interaction scenario may constitute a
building block in a natural transition with a wide and continuous frequency range, i.e.
with significantly increased Fourier components. However, the presence of intermittent
turbulent spots or wave packets may further complicate or add to the interaction
mechanisms.
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Pair number (k) Poles (px) Residues (ug)

1 (—1504294.553, 4810.197) (677409.898, —158275.251)
2 (—466.785, 52.763) (1161.854, 4177.756)
3 (—419.365, 1007.668) (596.328, 365.519)
4 (—517.687, 1882.378) (1153.962, —317.971)
5 (—513.669, 2834.064) (—119.973, —572.596)
6 (—1032.603, 2120.59) (—2407.724, 3249.423)
7 (—445.944, 3554.34) (64.41, —212.655)

8 (=75, 14.263) (—489.092, —992.871)
9 (—1443.028, 5837.405) (=78.771, 5.575)

10 (=75.01, 34.641) (387.44, 191.596)
11 (—173.145, 4272.261) (—19.664, 22.645)
12 (—107.785, 4217.54) (9.436, 28.795)

13 (—102.821, 4091.752) (—90.437, —39.358)
14 (=75, 4102.434) (—69.528, —19.905)
15 (—78.478, 4165.123) (19.763, 22.55)

16 (—138.227, 4111.577) (3.371, —12.674)

17 (=75, 4122.214) (26.314, 2.057)

18 (—75.867, 4118.516) (36.017, 4.191)

19 (—85.535, 4099.064) (49.002, 2.039)

20 (—81.259, 4095.32) (61.568, 1.498)

Table 3. Conjugate pairs of dimensionless poles and residues.

(b)
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0 [T .
0.14 0.15 0.16 0.17 0.14 0.15 0.16 0.17
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Figure 20. Comparison of () dimensionless pressure fluctuations and (b) wall-normal velocity fluctuations
between the results using the meshed cavity (contour) and modelled TDIBC (solid line) subject to broadband
disturbances.

Appendix A. Poles and residues for pole base functions
Table 3 lists the 20 pairs of dimensionless poles and residues employed to calculate

softness using (2.9) with Cop = —0.05. The reference length is 1 m here. The resulting
softness, dependent on the frequency, is illustrated in figure 1.

Appendix B. Verification of TDIBC code

The contours of pressure and wall-normal velocity fluctuations are compared between the
results of the meshed metasurface simulation and the TDIBC for broadband disturbances
in figure 20. The parametric set-up for broadband disturbances is the same as that in
Guo et al. (2023b). It is indicated that the TDIBC-embedded solver can reproduce nearly
the same flow structure and amplitude (see figure 21a). Therefore, TDIBC can serve as
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Figure 21. Comparison of dimensionless wall pressure fluctuation between results (a) using meshed cavity and
modelled TDIBC subject to broadband disturbances, and (b) between results of using v = Ap’ and TDIBC for
Fourier mode (3.8, 1.25).
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Figure 22. Comparison of (a) dimensionless density fluctuation and (b) N-factor between the results of
resolvent analysis (contour) and OpenCFD (solid line) for optimal mode (10, 0). No acoustic metasurface
is applied.

an efficient tool in studying the effect of metasurface on broadband disturbances. This
is because TDIBC avoids directly meshing the cavity, thus reducing the computational
cost. For three-dimensional simulations with oblique waves, the result between a constant
admittance model (v'= Ap’) and TDIBC for oblique wave (3.8, 1.25) is plotted in
figure 21(b), where the admittance A = (—17.041809, —2.57 x 10~%) at this frequency.
Mode (3.8, 1.25) is representative as it approaches the peak of the oblique wave in the
gain contour of figure 2(a). Note that the constant admittance model has been verified in
previous research and utilised for simulations with single-frequency disturbances (Egorov
et al. 2007; Zhao et al. 2019). The good agreement indicates the accuracy of TDIBC in
modelling the effect of the acoustic metasurface on oblique waves in three-dimensional
simulations.

Appendix C. Verification of initialisation of OpenCFD

The evolutions of optimal responses between the result of resolvent analysis and the
Navier—Stokes solver agree well with each other in the density fluctuation and the
integrated N -factor of the Chu energy density, as shown in figure 22.
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Figure 23. Wave vectors («,, B) of the modes in (5.1) at x = 0.27 m for (a) case 1 and () case 2.

Appendix D. The resonant state

The resonant state can be examined by plots of wave vectors of the Fourier modes. The
resonance condition is satisfied when three wave vectors (¢, 8) of the considered triad
constitute a closed form (Craik 1971)

X1+X2:X3’ X=Olr9 ﬂy w. (Dl)

The streamwise wavenumber is obtained via & (n,n) = 90un n) / dx, where 0, ;) is the
phase angle of Fourier transform of the wall pressure for mode (m, n) using DNS data.
Figure 23 depicts the wave vectors of the four interactions in (5.1) at x = 0.27 m for case 1
and case 2. The resonance condition for the generation of detuned mode (2, 2) is generally
fulfilled at x = 0.27 m for both case 1 and case 2.
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