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This study investigates the effect of angle of attack (AOA) on the convective instability of a hypersonic flow over a
compression ramp at Mach 7.7, with particular emphasis on high-frequency two-dimensional Mack modes and low-
frequency three-dimensional shear-layer instabilities. Combining linear stability theory (LST) and resolvent analysis,
we examine how the change in AOA affects the convective instability mechanisms associated with separation bubbles.
Results show that as AOA decreases from zero to negative, the separation bubble elongates, leading to increased growth
rates and spatial extent of higher-order Mack modes. The negative AOA also promotes the emergence of additional
shear-layer instabilities within concave high-curvature regions near the aft portion of the bubble. In contrast, positive
AOAs compress the separation bubble, suppress higher-order modes, and reduce both the number and growth rates of
shear-layer instability modes. Notably, at large positive AOA, the separation bubble acts as a broadband perturbation
amplifier in the vicinity of the separation point for high-frequency Mack modes. For both large positive or negative
AOAs, the low-frequency shear layer modes are shown to be unsteady Gortler modes. A comparison between LST and
resolvent analysis demonstrated good agreement, confirming that the parallel-flow assumption underlying LST remains
largely valid across multiple AOAs. These results indicate that, despite the changing bubble morphology with AOA,
LST remains a valid tool for stability studies of the shock wave/boundary layer interaction (laminar flow).

NOMENCLATURE Subscripts

+ dimensional quantity
" fluctuating quantity

é = complex phase velocity, ¢ = @/

f = physical frequency

AK4 - ]S\;[r:féniﬁl;g;”ame I. INTRODUCTION

p = pressure

Re = Reynolds number The shock wave/boundary layer interaction (SWBLI) is a

T = temperature common phenomenon in supersonic and hypersonic flows.

(u,v,w) = velocity components in Cartesian coordinate The presence of a shock can cause flow separation and in-
system tense unsteadiness'. The turbulent SWBLI is more exten-

(x,7,z) = Cartesian coordinates in streamwise, wall- sively studied, while the transitional SWBLI and the insta-
normal and spanwise directions bility of laminar SWBLI receives growing attention recently.

o = complex streamwise wavenumber The instability of laminar SWBLI is responsible for the tran-

B = spanwise wavenumber sition to turbulence, and thus the instability is of great signifi-

(€,m,z) = orthogonal body-fitted coordinates cance.

1) = vector of primitive variables Previous experimental and numerical work has shown that

P = density a laminar separation bubble can support two distinct types of

c = local growth rate instabilities>®. In the convectively unstable case, upstream

1) = vector of primitive variables disturbances are amplified while being advected downstream.

P = vector of modal shape function for primitive Thus, the bubble acts as a noise amplifier, and the presence
variables of upstream disturbances is necessary. In the absolutely un-

® = angular frequency stable case, perturbations grow temporally without the need

for upstream disturbances, which trigger self-sustained global
Subscripts oscillations. In this scenario, the bubble acts as an intrinsic

oscillator. These instabilities and the resulting transition can
cause loss of aerodynamic efficiency, noise generation, and
unsteady loads that may endanger structural safety*>. Their
manifestation is highly sensitive to external conditions and ge-
ometric configurations. In practical engineering applications,
an aircraft operates over a range of angles of attack (AOA)
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rather than a fixed value due to varying flight conditions and
altitude. As a result, the angle of attack should be considered,
which may significantly affect the size, location and stability
characteristics of laminar separation bubbles. Therefore, it is
important to investigate how convective instability waves in-
teract with separation bubbles under different AOAs.

Regarding the convective instability, recent wind-tunnel
experiments®’ have demonstrated the significance of travel-
ing waves. Two fundamental mechanisms have been iden-
tified in hypersonic shock wave-boundary layer interactions
(SWBLI): Mack modes of acoustic nature and shear layer
modes associated with separation bubbles. Mack modes orig-
inate from high-speed boundary layers, typically manifest-
ing as high-frequency disturbances in the order of hundreds
of kilohertz. In contrast, shear layer modes are observed as
lower-frequency oscillations with tens of kilohertz®'0. Ex-
perimental investigations employing surface pressure sensors
and high-speed schlieren imaging have confirmed the coexis-
tence of these two instability mechanisms, highlighting their
distinct frequency signatures and spatial characteristics!'~!4.
In particular, the experiments of Butler & Laurence® re-
vealed that the laminar separation bubble tends to amplify the
low-frequency shear-layer modes and almost freeze the high-
frequency Mack modes. In other words, for the separation
bubble, there is a selection process for instability waves. The
recent stability analyses by Guo et al.'> have clarified the se-
lectivity by clearly identifying the unstable regions and show-
ing the instability nature.

Regarding the eigenmode, Mack modes are newly gen-
erated solutions in high-speed boundary layers, unlike the
Tollmien—Schlichting (T-S) waves in subsonic cases. As the
Mach number increases to around 4, multiple unstable Mack
modes emerge within the boundary layer. Among them, the
second mode generally exhibits the highest growth rate, which
is thus considered the dominant factor leading to the linear
instability of the boundary layer and thus its eventual tran-
sition. For SWBLI flows, linear stability theory (LST) sug-
gests that high frequency two-dimensional (2D) Mack modes
exhibit neutral oscillations within laminar separation bubbles
and display complex modal synchronization behavior'>. An
excellent agreement was reached between the local LST and
the global resolvent analysis in terms of both the growth rate
and the mode shape. Here, the global resolvent analysis is
based on the linearized Navier—Stokes (N-S) equation without
further simplification . Thus, the resolvent analysis provides
the “accurate” solution resembling a direct numerical simu-
lation in the linear instability stage. A good agreement with
the global resolvent analysis indicates that LST could provide
a good estimate of flow instability in weakly separated flows.
The rationale of the reliable locally parallel analysis in sepa-
rated flows was also provided by Diwan and Ramesh'®. Fur-
thermore, it should be remembered that the terms “local” and
“global” refer to the instability of a local flow profile and of
the entire flow field, respectively?.

As for shear layer modes, they were previously attributed
to the Kelvin—Helmholtz (K-H) instability mechanism, which
arises at fluid interfaces with significant velocity gradients.
However, in hypersonic compression ramp flows, flow com-

pressibility would suppress the K-H mode'”. Our recent
studies'® revealed that this instability is more likely to orig-
inate from Gortler instability, with multiple Gortler modes
distributed continuously along the streamwise direction. This
feature collectively forms the amplification region of three-
dimensional (3D) disturbances. Given the high sensitivity of
Gortler instability to streamline curvature, further questions
arise. As mentioned previously, since altering the angle of
attack could modify the shape of the separation bubble, how
does this result affect the streamline curvature? How might
it influence the shear layer modes? Furthermore, does the
change in separation bubble size affect the synchronization
process of Mack modes? What types of Mack modes might
emerge under different AOAs of the incoming flow?

To elucidate the amplification mechanisms of these instabil-
ity modes under varying AOAs, this study employs LST and
resolvent analysis. LST serves as a local method that relies on
the parallel flow assumption, analyzing boundary layer stabil-
ity at individual streamwise stations”. It provides a framework
to quantify the spatial growth rates of instability waves, offer-
ing valuable predictions of local mode frequencies and am-
plification characteristics under different external conditions.
In contrast, resolvent analysis constitutes a global approach
that treats the entire spatially developing flow field as a uni-
fied system, fully accounting for non-parallel effects. This
method identifies the most amplified convective modes or op-
timal forcing responses by solving an input—output problem,
capturing how disturbances evolve and interact throughout the
domain. As resolvent analysis provides a more complete rep-
resentation of the linear system, it yields results that align
more closely with actual physical behavior. This is particu-
larly evident in flows with separation bubbles, which are con-
sidered highly non-parallel. To compare LST and resolvent
analyses offers a valuable basis for evaluating the reliability of
LST and reveals its possible limitations under different AOAs.

In our previous work'®, a comprehensive investigation into
the instability-wave selectivity of a hypersonic compression
ramp flow at AOA = 0° was conducted. The study employed
a 12° compression ramp model under Mach 7.7 freestream
conditions with a unit Reynolds number of 4.2 x 10 m~!,
combining resolvent analysis, LST, and parabolized stabil-
ity equations (PSE) to examine the interaction between in-
stability waves and the laminar separation bubble. The key
finding was that the laminar separation bubble acts as a se-
lective amplifier for convective instability waves. Specifi-
cally, for the 2D, high-frequency Mack modes, the separa-
tion bubble was found to support the emergence of multiple
higher-order modes (up to the fifth order). These modes un-
derwent a complex process of repeated modal synchroniza-
tions, creating alternating stable and unstable regions. These
intricate dynamics resulted in a characteristic neutral oscilla-
tion of the disturbance energy within the bubble, manifest-
ing as a streamwise “freezing” of its growth. In contrast, the
bubble persistently amplifies 3D, low-frequency disturbances.
These shear-layer modes were conclusively identified as un-
steady Gortler modes, whose growth is primarily governed by
the streamline curvature. Their continuous amplification re-
sults from the successive dominance of multiple local unstable
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eigenmodes along the streamwise direction. Excellent agree-
ment between LST and global resolvent analysis validated this
eigenmodal interpretation of the selective amplification mech-
anism at AOA = (°, establishing the baseline for the current
study.

This study will primarily investigate the following ques-
tions:
1) How does the AOA affect the shape of the separation bub-
ble and the curvature of nearby streamlines?
2) What characteristics do Mack modes exhibit under differ-
ent AOAs?
3) How are shear-layer modes affected by the AOA?
4) Can LST still achieve good agreement with the resolvent
analysis under different AOAs?

Il. PROBLEM DESCRIPTIONS

To investigate the effects of the AOA on Mack and shear-
layer modes, a compression corner configuration shown in
Fig. 1 is adopted in this paper, which is consistent with our
previous work!>. The model is assumed to possess a suffi-
ciently large width in the spanwise direction to neglect cross-
flow effects. This treatment was also adopted by the numer-
ical simulation of the laminar SWBLI with varying AOA by
Khraibut & Gai'®. It will be later shown that without involv-
ing the cross-flow effect, the flow physics are already compli-
cated. The compression corner model consists of a flat plate
section with a length of L* = 100 mm, followed by an 80-
mm ramp set at an angle of 12°. Here, the asterisk (*) de-
notes dimensional quantities. The freestream condition, fol-
lowing an experimental one'®, is set as follows: Mach num-
ber M., = 7.7, unit Reynolds number Re), = 4.2 x 10 m!,
and static temperature 7; = 125 K. A total of nine AOAs are
considered, ranging from —8° to +8° with the 2° increments.
Here, the AOA is defined as the angle between the vector of
freestream velocity and the chord line of the flat plate sec-
tion of the model. A positive AOA corresponds to the leading
edge of the plate pitching upwards, which is equivalent to the
freestream direction turning counterclockwise relative to the
plate, while a negative AOA pitches the leading edge down-
wards.

In this paper, primitive variables are nondimensionalized
using freestream reference values, except for the pressure p,
which is nondimensionalized by pZu:2, where p denotes den-
sity. The reference length for nondimensionalization is equal
to the plate length L*. A Cartesian coordinate system (x,y)
is defined with its origin at the leading edge; the correspond-
ing velocity components are (u,v) in the x and y directions,
respectively. An orthogonal body-fitted coordinate system
(&€,m) is also introduced, aligned with the wall-tangent and
wall-normal directions. The wall temperature is maintained
at a room temperature, 7,7 = 293 K, which is due to the short
duration of the hypersonic experiment.

Consistent with the previous work!>, an in-house N-S
solver is employed to obtain the laminar base flow. Freestream
conditions are imposed on the left and upper boundaries of
the computational domain, as illustrated in Fig. 1. The

right boundary is treated with a simple extrapolation condi-
tion, while the model surface employs an isothermal no-slip
condition. The mesh convergence has been examined and
guaranteed for each simulated case in the present paper, as
done in our previous work'>. The current mesh resolution
is 1200%350, which is deemed sufficient by comparing the
baseflow and resolvent-analysis results to those obtained on a
coarser mesh (1000x300).

It is noteworthy to address the stability regime of the base
flows considered herein. Following the work of Hao et al.2*,
the present configuration at AOA = 0° is known to exhibit con-
vective instability without global (absolute) instability. How-
ever, the global stability analysis®” (results not shown for
brevity) confirms that as the AOA decreases to -6° and -8°,
global instability emerges. While global instability signi-
fies a temporal mechanism where perturbations grow in place
over time, ultimately leading to self-sustained oscillations, the
present LST and resolvent analyses are notably conducted on
a strictly converged steady-state base flow. Consequently, this
approach characterizes the linear dynamics of the unperturbed
flow during the initial stages, prior to finite-amplitude oscil-
lations dominating the system. Nonetheless, even as an ap-
proximation, this linear analysis still offers valuable insights
into the underlying stability mechanisms for these extreme
negative-AOA cases.

Il. STABILITY ANALYSIS TOOLS
A. Linear Stability Theory (LST)

Linear Stability Theory is a classical tool in the study of
convective instabilities. The derivation starts from superim-
posing small disturbances onto a known base flow and lin-
earizing the N-S equation. A core assumption of LST is
that the flow can be locally approximated as parallel. As
a result, the linearized N-S equation can be transformed
into an eigenvalue problem. Solving this problem yields
the growth rates and propagation characteristics of the dis-
turbances. Historically, the separation bubble was consid-
ered highly non-parallel. However, Diwan & Ramesh demon-
strated the applicability of LST to separation bubbles through
an investigation'®. Sansica et al.>! and Jaroslawski et al.”2
have also successfully applied LST to investigate separation
bubbles, achieving consistent and promising results.

To be specific, the disturbance is assumed to take the form

¢ = (&,n)exp(iaé +ifz—iwt) +c.c., )

where o and 3 are the wavenumbers in the streamwise and
spanwise directions, respectively. The symbols z, ¢, @ and
c.c. refer to the spanwise coordinate, the time, the circular fre-
quency and the complex conjugate, respectively. The symbol
W = (p,a,9,w,T)T is the shape function (eigenvector), where
w is the spanwise velocity. The governing equation is written
as

Zop=0. @
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FIG. 1. Schematic of the flow configuration, with the gray region representing the computational domain.

Here, .% is the linear operator for a parallel flow. In a body-
fitted coordinate system, the equation can be rewritten as

9’y 9P _
H\j’TT]z+H\'W+HO¢ *0: (3)

where Hyy, Hy, and Hy are matrices that depend on the base
flow, wavenumbers o and 3, and the metric factor ;. De-
tailed expressions are found in the work of Ren & Fu?. The
factor hy is defined as

h=1+Kn, 4)

where K denotes the streamline curvature. The value of A4 is
obtained by computing the full-field curvature K(&,n). The
boundary conditions are specified as follows:

0
0 . ©

So far, the linear system reduces to an eigenvalue prob-
lem for o, where the imaginary part of & corresponds to the
growth rate of a given mode, defined as ¢ = —¢;. A mode
is considered stable if ¢; > 0, and unstable if o < 0. In
this study, a hybrid numerical approach combining spectral
and finite-difference methods was employed for LST analysis.
The process began with the application of a Chebyshev spec-
tral collocation method to directly obtain the complete stabil-
ity spectrum. Subsequently, an iterative fourth-order compact
difference scheme was introduced to refine the computation of
eigenmodes, as this scheme exhibits significantly lower sen-
sitivity to grid distribution compared to the spectral method.
Specifically, the discrete eigenmodes obtained from the spec-
tral method served as initial guesses for the iterative computa-
tions performed using the compact difference scheme. With a
grid resolution of N, = 220 collocation points, the Euclidean
norm of the difference in the eigenvalue o for the most un-
stable mode between the two methods remained below 0.5%
across all AOAs, indicating excellent agreement and numeri-
cal accuracy. To optimize computational efficiency, a down-
stream marching step size of Ax < 0.004 was employed for
the 2D instability modes (to facilitate scanning the x—® plane)
and a finer step of Ax < 0.001 for the 3D shear layer modes.
The LST code has been well validated through comparisons
with theoretical, numerical and experimental results?*28,

B. Resolvent Analysis

Resolvent analysis can describe how the flow responds to
external forcings. This method reveals linear amplification
mechanisms of instabilities in the entire flow field, manifested
by the relationship between input (exerted forcing) and output
(flow response). The most amplified disturbance is found by
analyzing the “resolvent operator”. i.e., the transfer function
that quantifies this amplification effect®. The corresponding
linearized N-S equations are expressed as the matrix system

dq' /ot = Aq' + Bf', (6)

where A is the Jacobian matrix obtained by linearizing the
system around the base flow, and B defines how the forc-
ing term f’ is introduced into the state equations—typically
constraining it to act at localized positions. The disturbance
variable ¢’ takes the form

q (x,y,z,t) = 4 (x,y)exp (ifz —iwt) +c.c., (7)
and the forcing term f’ is expressed as
F (x,y,2,1) = f (x,y) exp (ifz —iwt) +c.c.. 8)
Substituting equations (7) and (8) into equation (6) yields
q=RBf, ©)
with the resolvent operator defined as
R=(—iol-A)™, (10)

where I is the identity matrix. Subsequently, resolvent anal-
ysis serves to identify the forcing £ and the corresponding
response mode ¢ that produce the maximum gain at a given
frequency o, referred to as the optimal gain. This is achieved
through the singular value decomposition (SVD). The optimal
gain G is defined as

Gz(ﬁyw):m}lx{”éHE/”BfHE}’ (1n

where |||z denotes the energy norm based on Chu’s energy*C.
This optimization can be reformulated as an eigenvalue
problem?:

B'M 'RTMRBf =G*f. (12)
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Here, M is the weight matrix used to compute Chu’s
energy’’, and 1 denotes complex conjugate transpose. The
computational process commences by solving the eigenvalue
problem for given parameters § and ® using the ARPACK
library, where the resulting dominant eigenfunction defines
the spatial shape of the optimal forcing f subsequently, the
corresponding optimal response is calculated directly via (9).
This numerical process relies on the discretization of the sys-
tem matrix A. A modified Ducros shock sensor identifies dis-
continuities in the flow field. Then, the inviscid fluxes near
these regions are computed using a modified StegerWarm-
ing scheme, while a second-order central scheme is applied
in smooth regions and for viscous fluxes. This code has also
been well validated?*?7.

IV. RESULTS

A. \Variations in separation bubble structure and
streamline curvature

In a 2D compression corner configuration, the inclined
ramp introduces an adverse pressure gradient into the incom-
ing flow. As the ramp angle increases, the flow within the
boundary layer progressively decelerates. Once the adverse
pressure gradient becomes sufficiently strong, a recirculation
region develops near the wall, forming a separation bubble
at the corner. Geometric parameters of the compression cor-
ner, such as the ramp angle, leading-edge bluntness and cor-
ner curvature, directly govern the strength and distribution of
the adverse pressure gradient, thereby affecting the separation
bubble.

Among these factors, the ramp angle most directly influ-
ences flow separation. In theory, it functions as a global pa-
rameter that can be systematically varied to affect the overall
flow field. Specifically, an increase in the ramp angle intensi-
fies the adverse pressure gradient, which promotes boundary
layer separation and results in a larger and more pronounced
separation bubble. Building on this understanding of the ramp
angle as a governing parameter, a pivotal question emerges:
can variations in the AOA serve as a similar, system-level in-
fluential parameter to produce analogous effects on the flow
field?

As mentioned in Sec. II, this study considers nine cases
with different AOAs. Fig. 2 and Fig. 3 present streamline and
pressure contour plots in the left column, and curvature dis-
tributions above the dividing streamline in the right column.
Using the AOA = 0° case as the baseline, the flow separation
and reattachment locations are determined based on the sur-
face skin-friction coefficient Cr, with the corresponding Cy
distribution shown in Fig. 4.

As the AOA decreases, the adverse pressure gradient in
Fig. 2 increases, causing the separation point to shift up-
stream (from x; = 0.805 to x; = 0.746), while the reattach-
ment point remains relatively unchanged near x, = 1.171. In
contrast, as the AOA increases, the adverse pressure gradient
in Fig. 3 is weakened, shifting the separation point down-
stream to x; = 0.915 and the reattachment point upstream to

TABLE I. Separation and reattachment points, and separation length
at different AOAs. x; represents the separation location, x, represents
the reattachment location, and L represents the separation length.
All values are non-dimensionalized by the plate length L*.

AOA X X Ly

-8° 0.74609 1.16774 0.42165
-6° 0.75458 1.17147 0.41689
-4° 0.76731 1.17334 0.40603
-2° 0.78428 1.17334 0.38906
0° 0.80546 1.17160 0.36614
+2° 0.82809 1.16774 0.33965
+4° 0.85239 1.16213 0.30974
+6° 0.88156 1.15465 0.27309
+8° 0.91478 1.14528 0.23050

x, = 1.145. The specific separation and reattachment loca-
tions for all AOAs are summarized in Table I.

In compression corner flows, the separation bubble can be
regarded as a “virtual wall” that forces the external stream-
lines to bend. Inside the bubble, fluid recirculates, causing the
streamlines to form S-shaped curves or even closed loops?!.
At the separation and reattachment shocks, streamlines un-
dergo abrupt deflections, resulting in regions of intense lo-
cal curvature®?. This phenomenon is clearly observed in the
present cases, as shown on the right subfigures of Fig. 2 and
Fig. 3.

Using the compression ramp at AOA = 0°, i.e. Fig. 2(a)
and Fig. 2(b) as the reference, the depression of the separation
bubble near the reattachment region and the three main high-
curvature regions along its upper surface can be clearly identi-
fied. As the AOA decreases, the reattachment region exhibits
increasingly pronounced concave curvature fields, while the
front portion of the bubble’s upper surface becomes notably
flatter (see the deformation of the grey region on the right sub-
figures of Fig. 2).

To quantitatively assess the shock strength variations un-
derlying these curvature changes, Fig. 5 presents numerical
schlieren images visualizing the magnitude of the density gra-
dient (|Vp]) for all AOAs. All images employ an identical
and consistent grayscale mapping, where brighter intensities
correspond to higher values of |Vp|, highlighting regions of
strong density variations such as shock waves and shear lay-
ers. At AOA = 0°, the schlieren image reveals a well-defined
separation shock emanating from the separation point, fol-
lowed by a relatively uniform shear layer extending toward
the reattachment region. As the AOA decreases to negative
values, the separation shock intensifies significantly, evident
from the increased brightness and sharper definition of the
shock front. This stronger shock causes the streamline cur-
vature in the corresponding region in the right subfigures of
Fig. 2 to become more localized. Concurrently, the overall
magnitude of |K| in the reattachment region increases, with
more frequent and widely spaced intervals of high curvature
emerging gradually. This enhanced curvature in the reattach-
ment region is primarily linked to the progressively deepening
concavity observed on the aft upper surface of the separation
bubble. Within this concave zone, subtle but persistent flow
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FIG. 2. All the cases at non-positive AOAs, the left column displays streamlines and pressure contours, while the right column shows
the corresponding streamline curvature distributions |K|. The small arrows in the left column indicate the locations of flow separation and

reattachment.

deflections generate a series of shock waves. These shocks,
visually evident in the AOA = -6° and AOA = -8° images of
Fig. 5, act to localize the streamline curvature within their
immediate vicinity, thereby contributing to the discrete high-
curvature intervals in Fig. 2(%) and Fig. 2(j).

Furthermore, at AOA = 0°, high-curvature regions are
mainly concentrated near the separation point in Fig. 2(b). A
subsequent slightly convex segment at around x = 0.84 in Fig.
2(a) also contributes to elevated local curvature. However, as
the front portion of the separation bubble flattens, the high-
curvature region around the separation point contracts. Con-
currently, the high-curvature zone along the separation shock
elongates from Fig. 2(b) to Fig. 2(j), while both the inten-
sity and spatial extent of the curvature at the originally convex
location at around x = 0.84 in Fig. 2() gradually diminish.

In Fig. 3, as the AOA increases, the front portion of the
bubble’s upper surface becomes more convex, leading to an
augmentation in both the intensity and spatial extent of the

high-curvature region between the separation and reattach-
ment points. Owing to the blunter front of the separation
bubble, the high-curvature zone near the separation point pro-
gressively widens. Meanwhile, as shown in Fig. 5, the separa-
tion shock weakens and becomes more diffuse with increasing
AOA, resulting in reduced shock-induced curvature effects.
Furthermore, from AOA = 0° to +8°, the reduced shear layer
length causes the three originally distinct high-curvature re-
gions visible at x = 0.8, x = 0.84, and x = 1.05 in Fig. 3() to
move closer together. This process progressively compresses
the dark blue low-curvature interval on the bubble’s upper sur-
face.

In summary, as the AOA decreases, the separation bubble
s “stretched”, leading to an enlarged recirculation zone and
increased shear layer length. The high-curvature regions be-
come concentrated primarily near the separation and reattach-
ment points. Conversely, as the AOA increases, the separa-
tion bubble is “compressed”, the recirculation zone shrinks,
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FIG. 3. All the cases at non-negative AOAs, the left column displays streamlines and pressure contours, while the right column shows
the corresponding streamline curvature distributions |K|. The small arrows in the left column indicate the locations of flow separation and

reattachment.
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FIG. 4. Surface skin friction coefficient under all AOAs. x is non-
dimensionalized by the plate length L*.

and the front of the separation bubble exhibits a more convex
morphology. This results in an extension of high-curvature
regions across the streamline and progressive compression of
the dark blue low-curvature interval on the upper surface of
the separation bubble.

B. Effect of angle of attack on Mack modes

Unless otherwise stated, the results of planar waves (f = 0)
are depicted, as they represent the most unstable scenario for
Mack modes and are easier to investigate. Three-dimensional
effects will be addressed later for shear-layer instabilities.
Mack modes usually possess relatively high frequencies, typi-
cally with hundreds of kilohertz. In this study, the dimension-
less angular frequency @ = 100 corresponds to a dimensional
frequency f* = 274.7 kHz. To visually illustrate the Mack
modes, the growth rate ¢ obtained from LST is plotted as a
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FIG. 5. Numerical schlieren images at all AOAs, showing the magnitude of the density gradient (|Vp|). A consistent grayscale is used for all

images to facilitate comparison.

contour map against the streamwise position x and frequency
. Contour maps for different AOAs are summarized in Fig.
6 and Fig. 7, where dashed lines indicate the locations of
separation and reattachment points. Non-blue colored regions
represent unstable local states. The color bar is set to a limited
range of [1, 5] to optimally visualize the key features of the in-
stability, as this specific range most clearly distinguishes the
growth rates and spatial extents of various Mack modes. It can
be observed that at zero and negative AOAs, the contours ex-
hibit multiple inverted cone-like patterns, a configuration also
reported in previous numerical simulation’3. To highlight the
influence of streamline curvature, the right columns of Fig. 6
and Fig. 7 show the corresponding results computed without
curvature effects. This is done by taking the curvature K = 0
in LST.

Taking the case of AOA = 0° as a reference, when flow
separation occurs, Mack modes of orders 2 to 5 are observed.
The previous work'> has shown that the unstable Mack’s first
mode is not present due to the high Mach number and cold
wall condition. Thus, the lowest frequency of the unstable
region corresponds to Mack’s second mode. Notably, multi-
ple modes of different orders can coexist at the same location,
while a perturbation at a fixed frequency may undergo several
distinct instability modes as it propagates streamwise. For in-
stance, at a fixed frequency @ = 80, the disturbance first ex-
periences a second-mode instability, followed by alternating
regions of stability and third-mode instabilities, before finally
encountering another branch of the second-mode instability.
This alternating sequence of unstable and stable regions re-
sults in a neutrally oscillating amplification of disturbances
within the separation bubble. In our previous work ', the neu-
tral behavior of high-frequency Mack modes inside the sepa-
ration bubble has been attributed to a complicated mode syn-

chronization process triggered by flow separation. This pro-
cess leads to streamwise-alternating zones of stability and in-
stability, causing repeated growth and decay of disturbance
energy. The separation bubble can thus be viewed as a com-
plex “resonator” that facilitates the emergence of higher-order
Mack modes. Given this mechanism, and since changes in
AOA alter the size and shape of the separation bubble, a ques-
tion arises: how exactly does AOA affect the Mack modes?

In Fig. 6, as the AOA decreases, the growth rate and spatial
extent of higher-order modes gradually increase. This is likely
associated with the increasingly elongated separation bubble.
A larger and longer separation bubble provides a more ex-
tended development path for unstable waves, allowing them
to accumulate more energy and reach higher amplitudes®*.
This observation aligns with the findings in low-speed flows
regarding laminar separation bubbles, where longer bubbles
exert a more significant global impact and support stronger in-
stabilities compared to shorter ones>. In Fig. 7, as the AOA
increases from zero, higher-order Mack modes are noticeably
suppressed. This effect is more pronounced when streamline
curvature is neglected. In the case of AOA = +8° (Fig. 7())),
only two unstable modes remain. This suggests that the size
of the separation bubble acts as a spatial filter, influencing the
number of mode orders that can be sustained. Higher-order
modes typically have shorter wavelengths and more complex
spatial structures. A smaller separation bubble may be un-
able to accommodate the full waveform of these modes due
to spatial constraints, or it may lack sufficient energy to ex-
cite them>. From the perspective of mode synchronization, a
smaller separation bubble might not provide enough physical
space to support repeated mode synchronization events. As
a result, higher-order modes, which require longer evolution
paths, disappear first.
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FIG. 6. Growth rate contours of the most unstable modes on the x—@ plane for all cases at non-positive AOAs, with the effects of streamline
curvature involved in the left column but not in the right. The black dashed lines represent flow separation and reattachment. The AOA = 0°
case is reproduced from the work by Guo et al.! as the baseline.
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FIG. 7. Growth rate contours of the most unstable modes on the x—@ plane for all cases at non-negative AOAs, with the effects of streamline
curvature involved in the left column but not in the right. The black dashed lines represent flow separation and reattachment. The AOA = 0°

case is reproduced from the work by Guo et al.'’

as the baseline.
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FIG. 8. Ny-factor curves of optimal disturbances using xy = 0.2 for (a) @ = 100 under all non-positive AOAs, (b) @ = 100 under all non-
negative AOAs, (¢) @ = 20 under all non-positive AOAs, and (d) @ = 20 under all non-negative AOAs. The separation and reattachment points
are marked by solid circles and solid squares, respectively, with their colors matching the corresponding curve.

Additionally, Figs. 6 and 7 highlight the role of stream-
line curvature. At AOA = 0°, the centrifugal effect induced
by high curvature near the separation and reattachment points
enhances local instability. As the AOA decreases, the redis-
tribution of high-curvature zones, as discussed earlier, weak-
ens this enhancing effect. When the AOA decreases to -8°,
the difference in the contour maps with and without curva-
ture effects becomes less pronounced. In contrast, a growing
AOA significantly amplifies the instability near the separation
and reattachment points. As the AOA increases, the region of
maximum curvature becomes growingly concentrated around
the separation point, leading to gradual augmentation in both
the magnitude and spatial extent of positive growth rates. By
AOA = +8° (Fig. 7(i)), the unstable region near the separation
point spans nearly all frequencies from low to high, forming a
vertical band that acts as a broadband perturbation amplifier.
This is an interesting finding that has not been reported before.

Previous studies have indicated that separation bubbles tend
to selectively amplify 3D low-frequency disturbances, while
“freezing” 2D high-frequency Mack-mode perturbations'>.
To further investigate how the variation in AOA and the asso-
ciated alteration in separation bubble morphology affect this
selection mechanism, resolvent analysis is employed to ex-
amine the evolution of perturbations. The input forcing is in-
troduced at xo = 0.2, located far upstream of the separation
point. To quantify the development of unstable disturbances,

an N-factor is defined as
No = 0.5In(Echu/Echup) (13)

where Ecp, denotes Chu’s energy density integrated from the
wall to infinity in the n-direction, and Ecyy o is its value at the
reference position xo = 0.2.

As demonstrated in the work of Guo et al.!>, at AOA = 0°
the separation bubble exhibits a “freezing” effect on 2D dis-
turbances at a frequency of @ = 100. Specifically, the pertur-
bation growth rate oscillates repeatedly within the separation
bubble, resulting in an overall neutral behavior, i.e., neither
significant growth nor decay. This trend is consistent with the
streamwise evolution of the growth rate for fixed-frequency
perturbations shown in Fig. 6(a). Further investigation with
the 2D disturbance at @ = 100 reveals that as the AOA grad-
ually decreases from 0°, all negative AOAs exhibit similar os-
cillatory behavior within the separation bubble, as shown in
Fig. 8(a). However, in Fig. 8(b), as the AOA increases from
0°, the amplitude of the oscillations gradually diminishes. By
AOA = +8°, the Ny factor exhibits a nearly monotonic in-
creasing trend. Fig. 9 presents the 2D pressure fluctuations
at @ = 100. The black solid lines represent the isoline of
the base pressure, drawn to visualize the separation shock,
while the green curves indicate the dividing streamline. At
AOA = 0°, the classical double-cell structure of Mack second
mode is observed. The number of cells increases as AOA de-
creases. Conversely, as AOA increases, the number of cells
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FIG. 9. Pressure fluctuations of the optimal disturbance with @ = 100 for all AOAs as obtained by resolvent analysis. Black solid lines
represent isolines of the base pressure, drawn to illustrate the separation shock. The isovalue of the black line is chosen such that it intersects
with the wall at the separation point. Green curves indicate dividing streamlines.
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FIG. 10. Ny-factor curves based on xo = 0.2 of optimal disturbances for (a¢) AOA = 0° under different higher frequencies and (b) AOA=+8°
under different higher frequencies. The black dashed lines represent flow separation and reattachment.

decreases significantly, indicating an attenuation of the sepa-
ration bubble on pressure disturbances.

C. Selectivity of separation bubbles to high- and
low-frequency 2D disturbances

A 2D disturbance with a frequency of @ = 20 is employed
to investigate the development of low-frequency perturbations
within the separation bubble. Fig. 8(c) shows the energy de-
velopment for all non-positive AOAs, which differs signifi-
cantly from the high-frequency disturbance case in Fig. 8(a).
Instead of exhibiting pronounced oscillations of curves, the
disturbance energy tends to be constantly amplified by the

separation bubble. Similarly, for all non-negative AOAs in
Fig. 8(d), the energy also demonstrates a consistently grow-
ing trend. However, as the AOA increases from 0°, the dif-
ference in energy development behavior between the low-
frequency case in Fig. 8(d) and the high-frequency case in
Fig. 8(b) gradually diminishes. For instance, at AOA = +2°,
the low-frequency disturbance in Fig. 8(d) exhibits nearly sus-
tained growth within the separation bubble, whereas the high-
frequency disturbance in Fig. 8(b) still shows clear oscillatory
behavior. When the AOA increases to +8°, the curves for both
the high and low frequencies in Fig. 8(b) and Fig. 8(d) exhibit
a nearly monotonic increasing trend. Therefore, it can be con-
cluded that at AOA = 0°, within a certain frequency range, the
separation bubble exhibits distinct frequency-selective behav-
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FIG. 11. Optimal gain under different AOAs by resolvent analysis.

ior. Specifically, it causes high-frequency perturbation ampli-
tudes to oscillate while allowing low-frequency perturbations
to undergo nearly sustained growth. This selection charac-
teristic persists as the AOA decreases from 0°. In contrast, as
the AOA increases from 0°, this frequency selection gradually
diminishes.

T T T
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FIG. 12. Optimal gain under different AOAs with @ = 20.

It is noteworthy that at a fixed AOA = +8°, as shown
in Fig. 10(b), the energy growth of all high-frequency dis-
turbances within the separation bubble exhibits a “increase-
freezing-increase” three-stage feature. This pattern markedly
differs from the AOA = 0° baseline case in Fig. 10(a), where

the curves show repeated oscillations and lack a broad con-
sistency in their evolutionary trends across all studied high-
frequency perturbations in the separation bubble. This con-
sistent energy evolution trend in Fig. 10(b) can be explained
by the growth-rate variation in Mack modes under growing
positive AOAs, as depicted in Fig. 7. Taking the curvature-
included case at AOA = +8° in Fig. 7(i) as an example, high-
frequency disturbances (@ > 100) propagating in the stream-
wise direction generally experience three distinct intervals: an
initial unstable region, a stable region, and then another unsta-
ble region—closely matching the three-stage evolution of the
Np-factor inside the separation bubble shown in Fig. 10(b).

Furthermore, in the previous study'®, the eigenfunctions
and disturbance profiles obtained using the local method
(LST) and the global method (resolvent analysis) at AOA =
0° were compared and showed good agreement. For brevity, a
comparison of Mack mode disturbance shapes at other AOAs
is not presented here, as this study focuses more on the 3D
shear layer mode.

D. Effect of AOA on shear layer modes

Similar to 2D high-frequency disturbances, 3D low-
frequency disturbances with tens of kilohertz also exhibit mul-
timodal characteristics. The “multimodal” is manifested as
multiple unstable modes appearing at the same streamwise
location. These successively emerging unstable modes each
become the dominant (most unstable) mode at different posi-
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FIG. 13. Growth rates of unstable modes for non-positive AOA cases, from 0° to -8°. The black dashed lines represent flow separation and

reattachment.

tions. The behavior collectively forms a continuous amplifi-
cation region for low-frequency disturbances.

Before further discussing the characteristics of unstable
modes at various AOAs, Fig. 11 presents the optimal gain ob-
tained through resolvent analysis as a function of frequency
® and spanwise wavenumber 3. It is important to note that
this optimal gain quantifies the global energy amplification of
the output response subject to the input forcing, and the out-
put is not evaluated at a specific outflow location. The input
forcing is spatially localized at the inflow position xp = 0.2,
while the output is measured by the Chu’s energy integrated
over the entire computational domain. This approach cap-
tures the maximum energy growth from the localized forcing
to the global flow response, ensuring that the gain reflects the
system’s overall amplification characteristics without depen-

dence on a single downstream station. As shown in Fig. 11,
the most amplified disturbances are concentrated in the low-
frequency range and exhibit clear dependence on the span-
wise wavenumber. The observation indicates that the separa-
tion bubble preferentially amplifies 3D low-frequency distur-
bances for nearly all AOAs. Taking AOA = 0° as the refer-
ence case, as AOA gradually decreases, the region with high
gain values is extended toward both lower and higher span-
wise wavenumbers. In other words, wider spanwise scales are
involved and amplified by the separation bubble. In compar-
ison, as AOA increases, this region contracts and shifts over-
all toward lower wavenumbers, suggesting smaller spanwise
scales selected. For example, in Fig. 12, at a fixed disturbance
frequency of @ = 20, the wavenumber corresponding to the
maximum gain is reduced with an increasing AOA. Mean-
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FIG. 14. Growth rates of unstable modes for non-negative AOA cases, from 0° to +8°. The black dashed lines represent flow separation and

reattachment.

while, the range of wavenumbers spanning the same gain is
gradually narrowed.

This study focuses on the 3D low-frequency mode charac-
terized by a frequency @ = 20 and a spanwise wavenumber
B =260. This selected pair corresponds to the peak gain at
this low frequency under zero AOA. To clearly distinguish be-
tween individual modes, the following naming convention is
adopted: the mode closest to the separation point is denoted
as SP, the mode within the separation bubble as IB, and the
mode near the reattachment point as RP.

Fig. 13 and Fig. 14 depict all unstable modes tracked across
various AOAs. The more prominent unstable modes are high-
lighted with colored curves and labels, while others are dis-
played using gray curves. The complex velocity ¢ = @/
is introduced, and ¢, and ¢; represent the real and imaginary

parts of the modes, respectively. Each mode is tracked along
the streamwise direction using a grid spacing Ax < 0.001. The
tracking criterion relies on the minimal change in the complex
velocity ¢ for the same mode between adjacent streamwise po-
sitions. Specifically, among all candidate modes at x;; with
mode index j, the successfully traced mode minimizes the Eu-
clidean norm ||¢(x;) — &j(xit1)|| -

We first analyze Fig. 13(a), which displays the variation of
growth rate along the streamwise direction at AOA = (0°. As
flow separation initiates, the mode SP-1 emerges near the sep-
aration point. The mode SP-2 also arises within the unstable
region associated with mode SP-1, albeit with a notably lower
growth rate. Mode IB develops inside the separation bubble,
reaching its peak growth rate at around x = 0.9. At this loca-
tion, mode IB coexists with mode SP-1. Subsequently, mode
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RP forms in the vicinity of the reattachment point, accompa-
nied by three other less prominent modes. In the correspond-
ing complex-plane trajectory shown in Fig. 20(a), modes SP-
1, IB, and RP independently evolve from very stable discrete
modes, which appear successively on the stable half-plane of
the complex phase velocity. The modes SP-1, IB, and RP each
dominate distinct streamwise regions, constituting a continu-
ous amplification zone for disturbances. It is noteworthy that
these three modes are observed across all AOAs, indicating
that they represent inherent characteristics generated by flow
separation and reattachment in the present configuration.

mode SP-1

K/K,

0

FIG. 15. The local growth rate versus the curvature ratio K /Ky for
modes SP-1 and SP-2 (@ = 20, 8 = 260). The solid and dashed
lines correspond to AOA = —8° (x = 0.7461) and AOA = +8° (x =
0.9596), respectively. Here, K| represents the actual local curvature,
and the prefix “SP” indicates that these modes are located near the
separation point.

As the AOA decreases from zero, the most significant
changes occur in the original modes SP-1 and IB. In Fig. 13(b)
at AOA = —2°, the growth rate of mode SP-1 reaches its max-
imum at around x = 0.8 and then decays rapidly. Following
that, a brief resurgence occurs near x = 0.84, after which it de-
cays again toward zero. It is important to note that this resur-
gence of SP-1 is not an isolated event but occurs in the con-
text of its synchronization with the emerging IB-1 mode. With
their real phase velocities closely matched (SP-1: &, =0.9103,
IB-1: ¢ = 0.9515 at x = 0.84, see Fig. 20(b)), the condi-
tion for modal orthogonality breaks down, leading to a no-
table inter-modal interaction. This interaction may facilitate
a temporary energy exchange, manifesting as the observed
recovery in SP-1’s growth rate. Correspondingly, the trajec-
tory of SP-1 forms a distinct loop in the complex plane where
its imaginary part ¢; ceases descending and rises again near
¢ = 0.91, coinciding with this temporary increase in growth
rate. Around x = 0.84, a new unstable mode IB-1 is observed,
which originates from the entropy/vorticity continuous spec-
trum (a reservoir of neutral background disturbances inherent
to the base flow) and exhibits a rapid increase in growth rate
after x = 0.83. Furthermore, the growth rate of mode IB-2
increases sharply within a high curvature interval near x = 1
in Fig. 2(d). Next, as shown in Fig. 13(b), mode IB-2 de-
cays, before rising slowly again after x = 1.08. Its trajectory

in the complex plane shown in Fig. 20(b) exhibits a distinct
V-shaped pattern.

As AOA is further decreased to —6° in Fig. 13(d), three
unstable modes denoted IB-1, IB-2, and IB-3 are observed in
the vicinity of x=1 in the bubble. Their unstable regions align
closely with the three short spike-like high-curvature intervals
near x = | in Fig. 2(h). The increasing amplitude of modes
at decreased AOAs (enhanced curvature) supports the hypoth-
esis that these disturbances in the tens of kilohertz range are
most likely amplified by a Gortler-mode instability, which is
highly sensitive to curvature'®. This behavior becomes even
more evident in Fig. 13(e). Not only do the locations of IB-1,
IB-2, and IB-3 correspond to the three high curvature regions
in Fig. 2(j), but their growth rates are also enhanced due to the
stronger centrifugal effect. This stronger centrifugal effect re-
sults from the more concave aft portion of the separation bub-
ble. In contrast, within the interval from x = 0.8 to x = 0.98
in both Fig. 13(d) and Fig. 13(e), the surface of the separation
bubble remains relatively flat and the streamline curvature is
uniform. As a result, no new unstable modes emerge in this
region.

As the angle of attack increases from zero in Fig. 14, the
maximum growth rates of all unstable modes gradually de-
crease. This finding is consistent with the variation in the gain
by resolvent analysis, as shown in Fig. 12. As the separation
bubble becomes more compressed, its upper surface slightly
bulges, resulting in three relatively extensive high-curvature
regions. Near the front of the separation bubble, the stream-
wise extent dominated by modes SP-1 and SP-2 widens with
an increasing AOA. Close to the reattachment point, mode RP
remains dominant throughout. However, between the separa-
tion and reattachment points, both the maximum growth rate
and the dominant region of mode IB diminish. For exam-
ple, in Fig. 14(a), mode IB dominates the unstable region
from x = 0.87 to x = 1.01, whereas in Fig. 14(c), this inter-
val narrows to between x = 0.96 to x = 1.03. In Fig. 14(d)
and Fig. 14(e), the maximum growth rate of mode IB is even
lower than that of mode SP-1 across the entire separation bub-
ble. Moreover, in Fig. 14(e), mode IB emerges at x = 1 and
reaches a minor local peak in growth rate at x = 1.03. It then
decays briefly, rises again at x = 1.06, and attains its maxi-
mum growth rate at x = 1.14 before gradually decaying fur-
ther. Thus, this in-bubble mode is becoming less and less
significant as the bubble shrinks with an increasing AOA.

Another observation inside the bubble is that, from AOA
= 0° to AOA = +8° no new IB modes are observed. This
is likely due to the combination of two factors: 1) the rel-
atively broad and smoothly varying high-curvature region in
the middle of the separation bubble, where no abrupt curvature
change occurs, and 2) the further reduced size of the bubble,
which may limit the spatial development of additional modes.

Furthermore, previous studies have confirmed that at a
freestream Mach number 7.7 and AOA = 0°, the origin
of these unstable shear layer modes is related to unsteady
Gortler-mode instabilities. These Gortler modes are particu-
larly sensitive to streamline curvature'>. Across the nine cases
considered in this study, the unstable shear layer modes con-
tinue to exhibit a strong dependence on curvature as the AOA
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FIG. 16. Comparison of the disturbance shape for @ = 20 and 8 = 260 between the resolvent response and the LST eigenfunction with AOA
= —8°. The horizontal dashed line represents the location of the separation shock. All results are normalised by the maximum |T”|.

varies, confirming that they possess signature of Gortler insta-
bilities. For instance, at AOA = —8° and AOA = +8°, Fig. 15
shows the variation in the growth rates of modes SP-1 and SP-
2 with curvature, respectively. The result is obtained by grad-
ually changing the local curvature K from its actual value Ky
to zero in the LST operator. It can be observed that the growth
rates are highly sensitive to the streamline curvature. When
the curvature is artificially set to zero, all unstable modes dis-
appear. These observations are consistent with the baseline
AOA = 0° in our previous study'?, thereby demonstrating that
the shear-layer modes at large positive or negative AOAs are
still unsteady Gortler modes.

In summary, an enlarged separation bubble and abrupt
change in streamline curvature may facilitate the emergence
of new unstable modes. As the AOA decreases from AOA
=0° to AOA = —8°, the number of observed unstable modes
increases from 8 to 13. These additional modes are closely as-
sociated with the discontinuous high-curvature regions shown
in Fig. 2. In contrast, only 6 unstable modes are observed
at AOA = +8°. Moreover, the maximum growth rates of the
modes exhibit a clear dependence on the AOA: they gradually
increase as the AOA decreases to negative, and decrease as
AOA increases to positive.

E. Comparison of shear layer modes between LST and
Resolvent Analysis

It has been shown that the parallel-flow stability analy-
sis remains applicable for shear-layer modes at AOA = 0°13,
Currently, the applicability needs an examination at higher
AOAs. For instance, the case AOA = +8° awaits an inves-
tigation, where widespread continuous high-curvature regions
are present. It remains uncertain whether LST can accurately
capture shear modes under such conditions. Therefore, we
select two extreme cases, AOA = —8° and AOA = +8°, and
compare the perturbation shapes obtained via LST eigenfunc-
tions with responses derived from resolvent analysis.

For AOA = —8°, Fig. 16 and Fig. 17 show the temperature
and velocity perturbation profiles at three selected locations,
with positions indicated in Fig. 18. In Fig. 16(a) (|T’|) and
Fig. 16(d) (|/]), the disturbance profiles are influenced by a
combination of coexisting mode SP-1 and mode SP-2. Since
SP-1 is dominant, the resolvent response of 7’| and |u'| more
closely resembles that of SP-1. In Fig. 16(b) and Fig. 16(e),
the disturbances are primarily governed by modes IB-2 and
IB-3, with the resolvent response aligning more closely with
the dominant mode IB-3. Furthermore, due to the influence



AlIP
Publishing

Y

Effect of angle of attack on the instability-wave selectivity in hypersonic compression ramp laminar flow 18

—=— [T"], LST mode SP-1
T’|, LST mode SP-2

T'|. Resolvent

x=0.959 x=1.0334

)

— = [T|, LST mode SP-1
——— [T|, LST mode IB
T, Resolvent —=— |T"|, LST mode SP-1

—o— |T’], LST mode RP
———— |T"], LST mode IB

7], Resolvent

x=1.1227

2

E E
X X
= =
1 1 1 1 1 1 1 1 1 1 1 1
0.2 0.4 0.6 0.8 0.2 04 0.6 0.8 0.2 0.4 0.6 0.8
(a) W (b) Wi (©) W
—=a— |u/|, LST mode SP-1 —=a— [u/|, LST mode SP-1 —o— [v/|, LST mode RP
—+—— ||, LST mode SP-2 —— /|, LST mode 1B — 42— |u/|, LST mode IB
/|, Resolvent [t Resolvent —=— |u/|, LST mode SP-1
x=0.9596 X=1.0334 o], Resolvent
x=1.1227
ot o

2
2

nx10°
7107

2

7 x107

@  wm T (e

FIG. 17. Comparison of the disturbance shape for @ = 20 and 8 = 260 between the resolvent response and the LST eigenfunction with AOA
= +8°. The horizontal dashed line represents the location of the separation shock. All results are normalised by the maximum |7”|.

of the separation shock, a peak associated with mode SP-2 is
observed at the corresponding location. In Fig. 16(c) and Fig.
16(f), the peak of mode SP-2 consistently appears at the sep-
aration shock location. Since the growth rate of mode RP is
significantly higher than those of IB-3 and SP-2 in this region,
the influence of IB-3 and SP-2 on the disturbance structure is
minimal, and the results from resolvent analysis show excel-
lent agreement with mode RP obtained from LST. Combining
the informative Fig. 13(a), it is suggested that if a dominant
local mode exists, the global optimal response can be well ap-
proximated by its profile.

When the AOA increases to +8°, as shown in Fig. 17(a)
and Fig. 17(d), both the |T'| and |u/| profiles of SP-1 and
SP-2 exhibit significant structural differences: SP-1 displays
a single peak, while SP-2 exhibits two. Since at x = 0.9596
in Fig. 14(e), the growth rate of SP-1 is significantly higher
than that of SP-2, the temperature and velocity perturbation
profiles of the resolvent response align more closely with SP-
1. In Fig. 17(b) and Fig. 17(e) at x = 1.03, the disturbance
profiles are jointly influenced by mode SP-1 and mode IB.
For |T’|, the eigenfunctions of SP-1 and IB are very similar.
The overall resolvent response more closely matches mode
IB. For |i/|, the perturbation profile aligns more closely with

the eigenfunction of the dominant mode SP-1. Fig. 17(c) and
Fig. 17(f) show several coexisting unstable modes of notable
amplitude. For |T|, both SP-1 and IB exhibit multiple peaks.
The resolvent response agrees well with the eigenfunction of
the dominant mode RP, though several smaller peaks also ap-
pear near the separation shock, suggesting influence from the
less prominent mode SP-1. For [i/|, the resolvent response
shows excellent agreement with mode RP, with a subtle peak
at the separation shock corresponding to the peak location of
SP-1.

In addition to comparing the eigenfunction shapes obtained
from LST with the optimal response from resolvent analysis,
it is also valuable to examine the differences in the growth
rate between the two methods. The relationship between the
Np-factor from resolvent analysis and the growth rate is given
by ¢ = dNy/dx, from which the streamwise distribution of
resolvent-derived growth rate is obtained and presented in
Fig. 19. For AOA = —8° in Fig. 19(a), the LST-derived
growth rate agrees well with the resolvent analysis result at
x = 1.1170. However, a moderate discrepancy is observed
at x = 0.7461, where the growth rate of mode SP-1 shows a
relatively larger deviation from the resolvent result. A more
pronounced discrepancy appears at x = 1.0341. This implies
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FIG. 18. Modulus of the optimal response with respect to temper-
ature and velocity disturbances for @ = 20 and 8 = 260, resulting
from the unit-energy input in resolvent analysis. (a) and (b) corre-
spond to AOA = —8°; (¢) and (d) correspond to AOA = +8°. The
arrows indicate positions at x = 0.7461, 1.0341 and 1.1170 (refer to
Fig. 16) for AOA = —8°; and x = 0.9596, 1.0334 and 1.1227 (refer
to Fig. 17) for AOA = +8°.

that the short unstable region of mode IB-3 affects the global
optimal response more in the mode shape (see Fig. 16(b) and
Fig. 16(e)) than the local growth rate. For AOA = +8°, as
shown in Fig. 19(b), the differences in the growth rate between
the locally dominant LST modes and the resolvent analysis
are relatively small. Considering the inherent non-parallel ef-
fects in high-curvature regions, these limited discrepancies re-
main within acceptable bounds, confirming that the dominant
modes at AOA = +8° maintain reasonable consistency with
the resolvent analysis.

In summary, LST remains effective in predicting the growth
of 3D low-frequency shear layers across various AOAs. At
AOA = —8°, the LST-derived eigenfunctions generally show
good agreement with the global optimal response, though
localized discrepancies in growth rates are observed, with
a notable deviation at x = 0.7461 and a more pronounced
one at x = 1.0314. At AOA = +8°, the eigenfunctions
maintain good agreement with the resolvent responses, while
the growth rates exhibit reasonable consistency with the
resolvent-derived values, despite the extensive high-curvature
regions present on the upper surface of the separation bubble
in Fig. 3(h).

V. CONCLUSION

In this paper, we investigate the effects of AOA on the flow
stability of SWBLI, particularly focusing on high frequency
2D Mack modes and low frequency 3D shear layer insta-

AOA = -8°
20
L LST growth rate LST growth rate
16 @ atx=0.7461 ate=11170
mode SP-1 mode RP.

LST growth rate
atx=1.0341
mode IB-3 @

16
1k LST growth rate
atx= 09596
mode SP-1 @
o3
® LST growth rate
atx=1.1227
4t mode RP
LST growth rate
atx=10334
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4 ! ! ! ! !
(b)0.7 0.8 0.9 1 1.1 1.2 1.3
X

FIG. 19. Comparison of growth rates obtained from LST and resol-
vent analysis for @ = 20 with 8 = 260 at (a) AOA = —8° and (b)
AOA = +8°. The black solid circles represent the dominant LST
modes at the corresponding positions, while the red curves denote
the growth rates derived from resolvent analysis.

bilities. Altering the AOA significantly influences the mor-
phology of the separation bubble. As the AOA is gradually
reduced from zero, the separation bubble elongates and the
shear layer extends. A more pronounced concave curvature
emerges near the reattachment point at the rear portion of the
bubble, and the upper surface near the leading edge becomes
flatter. This results in a narrower high-curvature region on
the top of the separation bubble, concentrating it mainly near
the separation point and the rear concave portion of the bub-
ble. Furthermore, as the AOA decreases, multiple individual
narrow curvature zones gradually emerge within the concave
region at the aft of the separation bubble. Conversely, an in-
crease in AOA “compresses” the separation bubble, and its
upper surface exhibits significant convex curvature. Conse-
quently, the high-curvature region around the separation point
and the central part of the bubble expands. The most abrupt
streamline turning occurs near the separation point, where the
curvature reaches its maximum.

LST and resolvent analysis were used to examine the in-
fluence of the separation bubble on the convective instability.
For Mack modes, as AOA decreases, the separation zone is en-
larged and LST results show that both the extent and growth
rates of higher-order Mack modes are augmented. Conversely,
as AOA increases, the separation zone shrinks and higher-
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order unstable modes gradually vanish in the bubble. More-
over, the effect of streamline curvature in amplifying unstable
modes is most pronounced at high positive AOAs. In partic-
ular, at AOA = +8°, an almost continuous band of instabil-
ity forms across both high- and low-frequency ranges, sim-
ilar to a broadband amplifier. The separation bubble gener-
ally exhibits selective amplification of low-frequency distur-
bances while appearing to “freeze” high-frequency perturba-
tions. This behavior is especially evident when the separation
bubble is elongated. However, at positive AOAs, the reduced
extent of the separation zone may not provide sufficient phys-
ical space for full modal development, thereby weakening the
freezing effect on high-frequency disturbances. As also ob-
servable in Fig. 9, the overall influence of the separation bub-
ble on the flow field diminishes at high positive AOA.

Resolvent analysis reveals that as the AOA decreases from
zero, the optimal gain region progressively expands toward
higher spanwise wavenumbers. Conversely, under positive
AOAs, the optimal gain overall narrows and shifts toward
lower wavenumbers. As for the 3D low-frequency shear layer
modes, these exhibit a clear dependence on streamline curva-
ture, which is itself strongly influenced by the shape of the
separation bubble. As depicted by Fig. 15, these shear layer
modes are still unsteady Gortler modes at large positive or
negative AOAs. Consistent with prior studies, multiple dom-
inant unstable modes are observed at different streamwise lo-
cations. When AOA decreases, the growth rates of all modes
increase, and new unstable modes emerge within the concave
aft region of the separation bubble. In contrast, as AOA in-
creases, the maximum growth rate decreases and fewer unsta-
ble modes are observed overall.

‘We also compare the shape of eigenfunctions obtained from
LST with the resolvent responses at AOA = —8° and AOA =
+8°. In both of these extreme cases, the LST eigenfunctions
and the resolvent responses show good agreement, indicating
that the disturbance shape is primarily governed by the locally
dominant unstable mode. However, marked discrepancies be-
tween LST and resolvent analysis in the local growth rate are
observed for AOA = —8°, including a notable deviation for
mode SP-1 near the separation point and a more pronounced
discrepancy for mode IB-3 at x = 1.0341. Nevertheless, good
agreement is found at x = 1.1170, and for AOA = +8°, the
growth rates maintain reasonable consistency across all exam-
ined positions. These results collectively support the conclu-
sion that LST remains applicable for the majority of SWBLI
convective-instability studies.

The presented findings offer practical insights into the de-
sign and operation of hypersonic vehicles. Understanding
how the AOA modulates instability amplification can inform
transition prediction and control strategies on critical surfaces
like scramjet intakes and control fins, where managing the
boundary layer state is essential for aerodynamic performance
and thermal protection. Future efforts may target the experi-
mental validation of these instability mechanisms in ground-
test facilities, as well as the extension of the analysis to more
realistic three-dimensional components, such as swept wings
or cone-flare configurations, in order to assess the robustness
of the revealed physical mechanisms.

APPENDIX

The mode trajectory diagrams mentioned in the main text
are provided below.
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FIG. 20. Trajectories of modes in the complex plane: (a) corresponds
to Fig. 13(a) and (b) corresponds to Fig. 13(b).
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