
Effect of angle of attack on the instability-wave selectivity in hypersonic compression ramp laminar flow

Effect of angle of attack on the instability-wave selectivity in hypersonic

compression ramp laminar flow
Qiushi Huang,1 Chang Sun,2 and Peixu Guo∗1

1)Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Road,

Hong Kong SAR, China
2)Department of International Cooperation, Beijing Microelectronics Technology Institute, No.2, North Siyingmen Road,

100076 Beijing, China

(*Electronic mail: peixu.guo@polyu.edu.hk)

(Dated: 4 December 2025)

This study investigates the effect of angle of attack (AOA) on the convective instability of a hypersonic flow over a

compression ramp at Mach 7.7, with particular emphasis on high-frequency two-dimensional Mack modes and low-

frequency three-dimensional shear-layer instabilities. Combining linear stability theory (LST) and resolvent analysis,

we examine how the change in AOA affects the convective instability mechanisms associated with separation bubbles.

Results show that as AOA decreases from zero to negative, the separation bubble elongates, leading to increased growth

rates and spatial extent of higher-order Mack modes. The negative AOA also promotes the emergence of additional

shear-layer instabilities within concave high-curvature regions near the aft portion of the bubble. In contrast, positive

AOAs compress the separation bubble, suppress higher-order modes, and reduce both the number and growth rates of

shear-layer instability modes. Notably, at large positive AOA, the separation bubble acts as a broadband perturbation

amplifier in the vicinity of the separation point for high-frequency Mack modes. For both large positive or negative

AOAs, the low-frequency shear layer modes are shown to be unsteady Görtler modes. A comparison between LST and

resolvent analysis demonstrated good agreement, confirming that the parallel-flow assumption underlying LST remains

largely valid across multiple AOAs. These results indicate that, despite the changing bubble morphology with AOA,

LST remains a valid tool for stability studies of the shock wave/boundary layer interaction (laminar flow).

NOMENCLATURE

c̃ = complex phase velocity, c̃ = ω/α
f = physical frequency

K = streamline curvature

M = Mach number

p = pressure

Re = Reynolds number

T = temperature

(u,v,w) = velocity components in Cartesian coordinate

system

(x,y,z) = Cartesian coordinates in streamwise, wall-

normal and spanwise directions

α = complex streamwise wavenumber

β = spanwise wavenumber

(ξ ,η ,z) = orthogonal body-fitted coordinates

φ = vector of primitive variables

ρ = density

σ = local growth rate

φ = vector of primitive variables

ψ = vector of modal shape function for primitive

variables

ω = angular frequency

Subscripts

∞ freestream quantity

w wall quantity

r real part of complex number, or reattachment position

i imaginary part of complex number

0 initial position

Subscripts

∗ dimensional quantity
′ fluctuating quantity

I. INTRODUCTION

The shock wave/boundary layer interaction (SWBLI) is a

common phenomenon in supersonic and hypersonic flows.

The presence of a shock can cause flow separation and in-

tense unsteadiness1. The turbulent SWBLI is more exten-

sively studied, while the transitional SWBLI and the insta-

bility of laminar SWBLI receives growing attention recently.

The instability of laminar SWBLI is responsible for the tran-

sition to turbulence, and thus the instability is of great signifi-

cance.

Previous experimental and numerical work has shown that

a laminar separation bubble can support two distinct types of

instabilities2,3. In the convectively unstable case, upstream

disturbances are amplified while being advected downstream.

Thus, the bubble acts as a noise amplifier, and the presence

of upstream disturbances is necessary. In the absolutely un-

stable case, perturbations grow temporally without the need

for upstream disturbances, which trigger self-sustained global

oscillations. In this scenario, the bubble acts as an intrinsic

oscillator. These instabilities and the resulting transition can

cause loss of aerodynamic efficiency, noise generation, and

unsteady loads that may endanger structural safety4,5. Their

manifestation is highly sensitive to external conditions and ge-

ometric configurations. In practical engineering applications,

an aircraft operates over a range of angles of attack (AOA)
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rather than a fixed value due to varying flight conditions and

altitude. As a result, the angle of attack should be considered,

which may significantly affect the size, location and stability

characteristics of laminar separation bubbles. Therefore, it is

important to investigate how convective instability waves in-

teract with separation bubbles under different AOAs.

Regarding the convective instability, recent wind-tunnel

experiments6,7 have demonstrated the significance of travel-

ing waves. Two fundamental mechanisms have been iden-

tified in hypersonic shock wave-boundary layer interactions

(SWBLI): Mack modes of acoustic nature and shear layer

modes associated with separation bubbles. Mack modes orig-

inate from high-speed boundary layers, typically manifest-

ing as high-frequency disturbances in the order of hundreds

of kilohertz. In contrast, shear layer modes are observed as

lower-frequency oscillations with tens of kilohertz8–10. Ex-

perimental investigations employing surface pressure sensors

and high-speed schlieren imaging have confirmed the coexis-

tence of these two instability mechanisms, highlighting their

distinct frequency signatures and spatial characteristics11–14.

In particular, the experiments of Butler & Laurence6 re-

vealed that the laminar separation bubble tends to amplify the

low-frequency shear-layer modes and almost freeze the high-

frequency Mack modes. In other words, for the separation

bubble, there is a selection process for instability waves. The

recent stability analyses by Guo et al.15 have clarified the se-

lectivity by clearly identifying the unstable regions and show-

ing the instability nature.

Regarding the eigenmode, Mack modes are newly gen-

erated solutions in high-speed boundary layers, unlike the

Tollmien–Schlichting (T–S) waves in subsonic cases. As the

Mach number increases to around 4, multiple unstable Mack

modes emerge within the boundary layer. Among them, the

second mode generally exhibits the highest growth rate, which

is thus considered the dominant factor leading to the linear

instability of the boundary layer and thus its eventual tran-

sition. For SWBLI flows, linear stability theory (LST) sug-

gests that high frequency two-dimensional (2D) Mack modes

exhibit neutral oscillations within laminar separation bubbles

and display complex modal synchronization behavior15. An

excellent agreement was reached between the local LST and

the global resolvent analysis in terms of both the growth rate

and the mode shape. Here, the global resolvent analysis is

based on the linearized Navier–Stokes (N–S) equation without

further simplification . Thus, the resolvent analysis provides

the “accurate” solution resembling a direct numerical simu-

lation in the linear instability stage. A good agreement with

the global resolvent analysis indicates that LST could provide

a good estimate of flow instability in weakly separated flows.

The rationale of the reliable locally parallel analysis in sepa-

rated flows was also provided by Diwan and Ramesh16. Fur-

thermore, it should be remembered that the terms “local” and

“global” refer to the instability of a local flow profile and of

the entire flow field, respectively2.

As for shear layer modes, they were previously attributed

to the Kelvin–Helmholtz (K–H) instability mechanism, which

arises at fluid interfaces with significant velocity gradients.

However, in hypersonic compression ramp flows, flow com-

pressibility would suppress the K–H mode17. Our recent

studies15 revealed that this instability is more likely to orig-

inate from Görtler instability, with multiple Görtler modes

distributed continuously along the streamwise direction. This

feature collectively forms the amplification region of three-

dimensional (3D) disturbances. Given the high sensitivity of

Görtler instability to streamline curvature, further questions

arise. As mentioned previously, since altering the angle of

attack could modify the shape of the separation bubble, how

does this result affect the streamline curvature? How might

it influence the shear layer modes? Furthermore, does the

change in separation bubble size affect the synchronization

process of Mack modes? What types of Mack modes might

emerge under different AOAs of the incoming flow?

To elucidate the amplification mechanisms of these instabil-

ity modes under varying AOAs, this study employs LST and

resolvent analysis. LST serves as a local method that relies on

the parallel flow assumption, analyzing boundary layer stabil-

ity at individual streamwise stations2. It provides a framework

to quantify the spatial growth rates of instability waves, offer-

ing valuable predictions of local mode frequencies and am-

plification characteristics under different external conditions.

In contrast, resolvent analysis constitutes a global approach

that treats the entire spatially developing flow field as a uni-

fied system, fully accounting for non-parallel effects. This

method identifies the most amplified convective modes or op-

timal forcing responses by solving an input–output problem,

capturing how disturbances evolve and interact throughout the

domain. As resolvent analysis provides a more complete rep-

resentation of the linear system, it yields results that align

more closely with actual physical behavior. This is particu-

larly evident in flows with separation bubbles, which are con-

sidered highly non-parallel. To compare LST and resolvent

analyses offers a valuable basis for evaluating the reliability of

LST and reveals its possible limitations under different AOAs.

In our previous work15, a comprehensive investigation into

the instability-wave selectivity of a hypersonic compression

ramp flow at AOA = 0◦ was conducted. The study employed

a 12◦ compression ramp model under Mach 7.7 freestream

conditions with a unit Reynolds number of 4.2 × 106 m−1,

combining resolvent analysis, LST, and parabolized stabil-

ity equations (PSE) to examine the interaction between in-

stability waves and the laminar separation bubble. The key

finding was that the laminar separation bubble acts as a se-

lective amplifier for convective instability waves. Specifi-

cally, for the 2D, high-frequency Mack modes, the separa-

tion bubble was found to support the emergence of multiple

higher-order modes (up to the fifth order). These modes un-

derwent a complex process of repeated modal synchroniza-

tions, creating alternating stable and unstable regions. These

intricate dynamics resulted in a characteristic neutral oscilla-

tion of the disturbance energy within the bubble, manifest-

ing as a streamwise “freezing” of its growth. In contrast, the

bubble persistently amplifies 3D, low-frequency disturbances.

These shear-layer modes were conclusively identified as un-

steady Görtler modes, whose growth is primarily governed by

the streamline curvature. Their continuous amplification re-

sults from the successive dominance of multiple local unstable
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eigenmodes along the streamwise direction. Excellent agree-

ment between LST and global resolvent analysis validated this

eigenmodal interpretation of the selective amplification mech-

anism at AOA = 0◦, establishing the baseline for the current

study.

This study will primarily investigate the following ques-

tions:

1) How does the AOA affect the shape of the separation bub-

ble and the curvature of nearby streamlines?

2) What characteristics do Mack modes exhibit under differ-

ent AOAs?

3) How are shear-layer modes affected by the AOA?

4) Can LST still achieve good agreement with the resolvent

analysis under different AOAs?

II. PROBLEM DESCRIPTIONS

To investigate the effects of the AOA on Mack and shear-

layer modes, a compression corner configuration shown in

Fig. 1 is adopted in this paper, which is consistent with our

previous work15. The model is assumed to possess a suffi-

ciently large width in the spanwise direction to neglect cross-

flow effects. This treatment was also adopted by the numer-

ical simulation of the laminar SWBLI with varying AOA by

Khraibut & Gai18. It will be later shown that without involv-

ing the cross-flow effect, the flow physics are already compli-

cated. The compression corner model consists of a flat plate

section with a length of L∗ = 100 mm, followed by an 80-

mm ramp set at an angle of 12◦. Here, the asterisk (∗) de-

notes dimensional quantities. The freestream condition, fol-

lowing an experimental one19, is set as follows: Mach num-

ber M∞ = 7.7, unit Reynolds number Re∗∞ = 4.2× 106 m−1,

and static temperature T ∗
∞ = 125 K. A total of nine AOAs are

considered, ranging from −8◦ to +8◦ with the 2◦ increments.

Here, the AOA is defined as the angle between the vector of

freestream velocity and the chord line of the flat plate sec-

tion of the model. A positive AOA corresponds to the leading

edge of the plate pitching upwards, which is equivalent to the

freestream direction turning counterclockwise relative to the

plate, while a negative AOA pitches the leading edge down-

wards.

In this paper, primitive variables are nondimensionalized

using freestream reference values, except for the pressure p,

which is nondimensionalized by ρ∗
∞u∗2

∞ , where ρ denotes den-

sity. The reference length for nondimensionalization is equal

to the plate length L∗. A Cartesian coordinate system (x,y)
is defined with its origin at the leading edge; the correspond-

ing velocity components are (u,v) in the x and y directions,

respectively. An orthogonal body-fitted coordinate system

(ξ ,η) is also introduced, aligned with the wall-tangent and

wall-normal directions. The wall temperature is maintained

at a room temperature, T ∗
w = 293 K, which is due to the short

duration of the hypersonic experiment.

Consistent with the previous work15, an in-house N–S

solver is employed to obtain the laminar base flow. Freestream

conditions are imposed on the left and upper boundaries of

the computational domain, as illustrated in Fig. 1. The

right boundary is treated with a simple extrapolation condi-

tion, while the model surface employs an isothermal no-slip

condition. The mesh convergence has been examined and

guaranteed for each simulated case in the present paper, as

done in our previous work15. The current mesh resolution

is 1200×350, which is deemed sufficient by comparing the

baseflow and resolvent-analysis results to those obtained on a

coarser mesh (1000×300).

It is noteworthy to address the stability regime of the base

flows considered herein. Following the work of Hao et al.20,

the present configuration at AOA = 0◦ is known to exhibit con-

vective instability without global (absolute) instability. How-

ever, the global stability analysis20 (results not shown for

brevity) confirms that as the AOA decreases to -6◦ and -8◦,

global instability emerges. While global instability signi-

fies a temporal mechanism where perturbations grow in place

over time, ultimately leading to self-sustained oscillations, the

present LST and resolvent analyses are notably conducted on

a strictly converged steady-state base flow. Consequently, this

approach characterizes the linear dynamics of the unperturbed

flow during the initial stages, prior to finite-amplitude oscil-

lations dominating the system. Nonetheless, even as an ap-

proximation, this linear analysis still offers valuable insights

into the underlying stability mechanisms for these extreme

negative-AOA cases.

III. STABILITY ANALYSIS TOOLS

A. Linear Stability Theory (LST)

Linear Stability Theory is a classical tool in the study of

convective instabilities. The derivation starts from superim-

posing small disturbances onto a known base flow and lin-

earizing the N–S equation. A core assumption of LST is

that the flow can be locally approximated as parallel. As

a result, the linearized N–S equation can be transformed

into an eigenvalue problem. Solving this problem yields

the growth rates and propagation characteristics of the dis-

turbances. Historically, the separation bubble was consid-

ered highly non-parallel. However, Diwan & Ramesh demon-

strated the applicability of LST to separation bubbles through

an investigation16. Sansica et al.21 and Jaroslawski et al.22

have also successfully applied LST to investigate separation

bubbles, achieving consistent and promising results.

To be specific, the disturbance is assumed to take the form

φ′ =ψ(ξ ,η)exp(iαξ + iβ z− iωt)+ c.c., (1)

where α and β are the wavenumbers in the streamwise and

spanwise directions, respectively. The symbols z, t, ω and

c.c. refer to the spanwise coordinate, the time, the circular fre-

quency and the complex conjugate, respectively. The symbol

ψ = (ρ̂, û, v̂, ŵ, T̂ )T is the shape function (eigenvector), where

w is the spanwise velocity. The governing equation is written

as

L0ψ = 0. (2)
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100 mm

y

x

Origin

Positive AOA, with an expansion 

wave at the leading edge

Negative AOA, with a compression 

wave at the leading edge

Hypersonic flow

FIG. 1. Schematic of the flow configuration, with the gray region representing the computational domain.

Here, L0 is the linear operator for a parallel flow. In a body-

fitted coordinate system, the equation can be rewritten as

Hyy

∂ 2ψ

∂η2
+Hy

∂ψ

∂η
+H0ψ = 0, (3)

whereHyy,Hy, andH0 are matrices that depend on the base

flow, wavenumbers α and β , and the metric factor h1. De-

tailed expressions are found in the work of Ren & Fu23. The

factor h1 is defined as

h1 = 1+Kη , (4)

where K denotes the streamline curvature. The value of h1 is

obtained by computing the full-field curvature K(ξ ,η). The

boundary conditions are specified as follows:

{

û = v̂ = ŵ = T̂ = 0,η = 0

û = v̂ = ŵ = T̂ = 0,η → ∞.
(5)

So far, the linear system reduces to an eigenvalue prob-

lem for α , where the imaginary part of α corresponds to the

growth rate of a given mode, defined as σ = −αi. A mode

is considered stable if αi > 0, and unstable if αi < 0. In

this study, a hybrid numerical approach combining spectral

and finite-difference methods was employed for LST analysis.

The process began with the application of a Chebyshev spec-

tral collocation method to directly obtain the complete stabil-

ity spectrum. Subsequently, an iterative fourth-order compact

difference scheme was introduced to refine the computation of

eigenmodes, as this scheme exhibits significantly lower sen-

sitivity to grid distribution compared to the spectral method.

Specifically, the discrete eigenmodes obtained from the spec-

tral method served as initial guesses for the iterative computa-

tions performed using the compact difference scheme. With a

grid resolution of Ny = 220 collocation points, the Euclidean

norm of the difference in the eigenvalue α for the most un-

stable mode between the two methods remained below 0.5%

across all AOAs, indicating excellent agreement and numeri-

cal accuracy. To optimize computational efficiency, a down-

stream marching step size of ∆x < 0.004 was employed for

the 2D instability modes (to facilitate scanning the x–ω plane)

and a finer step of ∆x < 0.001 for the 3D shear layer modes.

The LST code has been well validated through comparisons

with theoretical, numerical and experimental results24–28.

B. Resolvent Analysis

Resolvent analysis can describe how the flow responds to

external forcings. This method reveals linear amplification

mechanisms of instabilities in the entire flow field, manifested

by the relationship between input (exerted forcing) and output

(flow response). The most amplified disturbance is found by

analyzing the “resolvent operator”. i.e., the transfer function

that quantifies this amplification effect29. The corresponding

linearized N–S equations are expressed as the matrix system

∂q′/∂ t =Aq′+Bf ′, (6)

where A is the Jacobian matrix obtained by linearizing the

system around the base flow, and B defines how the forc-

ing term f ′ is introduced into the state equations—typically

constraining it to act at localized positions. The disturbance

variable q′ takes the form

q′ (x,y,z, t) = q̂ (x,y)exp(iβ z− iωt)+ c.c., (7)

and the forcing term f ′ is expressed as

f ′ (x,y,z, t) = f̂ (x,y)exp(iβ z− iωt)+ c.c.. (8)

Substituting equations (7) and (8) into equation (6) yields

q̂ =RBf̂ , (9)

with the resolvent operator defined as

R= (−iωI−A)−1, (10)

where I is the identity matrix. Subsequently, resolvent anal-

ysis serves to identify the forcing f̂ and the corresponding

response mode q̂ that produce the maximum gain at a given

frequency ω , referred to as the optimal gain. This is achieved

through the singular value decomposition (SVD). The optimal

gain G is defined as

G2 (β ,ω) = max
f̂

{

∥q̂∥E

/∥

∥Bf̂
∥

∥

E

}

, (11)

where ∥·∥E denotes the energy norm based on Chu’s energy30.

This optimization can be reformulated as an eigenvalue

problem20:

B†M−1R†MRBf̂ = G2f̂ . (12)
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Here, M is the weight matrix used to compute Chu’s

energy30, and † denotes complex conjugate transpose. The

computational process commences by solving the eigenvalue

problem for given parameters β and ω using the ARPACK

library, where the resulting dominant eigenfunction defines

the spatial shape of the optimal forcing f̂ ; subsequently, the

corresponding optimal response is calculated directly via (9).

This numerical process relies on the discretization of the sys-

tem matrixA. A modified Ducros shock sensor identifies dis-

continuities in the flow field. Then, the inviscid fluxes near

these regions are computed using a modified StegerWarm-

ing scheme, while a second-order central scheme is applied

in smooth regions and for viscous fluxes. This code has also

been well validated20,27.

IV. RESULTS

A. Variations in separation bubble structure and
streamline curvature

In a 2D compression corner configuration, the inclined

ramp introduces an adverse pressure gradient into the incom-

ing flow. As the ramp angle increases, the flow within the

boundary layer progressively decelerates. Once the adverse

pressure gradient becomes sufficiently strong, a recirculation

region develops near the wall, forming a separation bubble

at the corner. Geometric parameters of the compression cor-

ner, such as the ramp angle, leading-edge bluntness and cor-

ner curvature, directly govern the strength and distribution of

the adverse pressure gradient, thereby affecting the separation

bubble.

Among these factors, the ramp angle most directly influ-

ences flow separation. In theory, it functions as a global pa-

rameter that can be systematically varied to affect the overall

flow field. Specifically, an increase in the ramp angle intensi-

fies the adverse pressure gradient, which promotes boundary

layer separation and results in a larger and more pronounced

separation bubble. Building on this understanding of the ramp

angle as a governing parameter, a pivotal question emerges:

can variations in the AOA serve as a similar, system-level in-

fluential parameter to produce analogous effects on the flow

field?

As mentioned in Sec. II, this study considers nine cases

with different AOAs. Fig. 2 and Fig. 3 present streamline and

pressure contour plots in the left column, and curvature dis-

tributions above the dividing streamline in the right column.

Using the AOA = 0◦ case as the baseline, the flow separation

and reattachment locations are determined based on the sur-

face skin-friction coefficient C f , with the corresponding C f

distribution shown in Fig. 4.

As the AOA decreases, the adverse pressure gradient in

Fig. 2 increases, causing the separation point to shift up-

stream (from xs = 0.805 to xs = 0.746), while the reattach-

ment point remains relatively unchanged near xr = 1.171. In

contrast, as the AOA increases, the adverse pressure gradient

in Fig. 3 is weakened, shifting the separation point down-

stream to xs = 0.915 and the reattachment point upstream to

TABLE I. Separation and reattachment points, and separation length

at different AOAs. xs represents the separation location, xr represents

the reattachment location, and Ls represents the separation length.

All values are non-dimensionalized by the plate length L∗.

AOA xs xr Ls

-8◦ 0.74609 1.16774 0.42165

-6◦ 0.75458 1.17147 0.41689

-4◦ 0.76731 1.17334 0.40603

-2◦ 0.78428 1.17334 0.38906

0◦ 0.80546 1.17160 0.36614

+2◦ 0.82809 1.16774 0.33965

+4◦ 0.85239 1.16213 0.30974

+6◦ 0.88156 1.15465 0.27309

+8◦ 0.91478 1.14528 0.23050

xr = 1.145. The specific separation and reattachment loca-

tions for all AOAs are summarized in Table I.

In compression corner flows, the separation bubble can be

regarded as a “virtual wall” that forces the external stream-

lines to bend. Inside the bubble, fluid recirculates, causing the

streamlines to form S-shaped curves or even closed loops31.

At the separation and reattachment shocks, streamlines un-

dergo abrupt deflections, resulting in regions of intense lo-

cal curvature32. This phenomenon is clearly observed in the

present cases, as shown on the right subfigures of Fig. 2 and

Fig. 3.

Using the compression ramp at AOA = 0◦, i.e. Fig. 2(a)

and Fig. 2(b) as the reference, the depression of the separation

bubble near the reattachment region and the three main high-

curvature regions along its upper surface can be clearly identi-

fied. As the AOA decreases, the reattachment region exhibits

increasingly pronounced concave curvature fields, while the

front portion of the bubble’s upper surface becomes notably

flatter (see the deformation of the grey region on the right sub-

figures of Fig. 2).

To quantitatively assess the shock strength variations un-

derlying these curvature changes, Fig. 5 presents numerical

schlieren images visualizing the magnitude of the density gra-

dient (|∇ρ|) for all AOAs. All images employ an identical

and consistent grayscale mapping, where brighter intensities

correspond to higher values of |∇ρ|, highlighting regions of

strong density variations such as shock waves and shear lay-

ers. At AOA = 0◦, the schlieren image reveals a well-defined

separation shock emanating from the separation point, fol-

lowed by a relatively uniform shear layer extending toward

the reattachment region. As the AOA decreases to negative

values, the separation shock intensifies significantly, evident

from the increased brightness and sharper definition of the

shock front. This stronger shock causes the streamline cur-

vature in the corresponding region in the right subfigures of

Fig. 2 to become more localized. Concurrently, the overall

magnitude of |K| in the reattachment region increases, with

more frequent and widely spaced intervals of high curvature

emerging gradually. This enhanced curvature in the reattach-

ment region is primarily linked to the progressively deepening

concavity observed on the aft upper surface of the separation

bubble. Within this concave zone, subtle but persistent flow
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Effect of angle of attack on the instability-wave selectivity in hypersonic compression ramp laminar flow 6

FIG. 2. All the cases at non-positive AOAs, the left column displays streamlines and pressure contours, while the right column shows

the corresponding streamline curvature distributions |K|. The small arrows in the left column indicate the locations of flow separation and

reattachment.

deflections generate a series of shock waves. These shocks,

visually evident in the AOA = -6◦ and AOA = -8◦ images of

Fig. 5, act to localize the streamline curvature within their

immediate vicinity, thereby contributing to the discrete high-

curvature intervals in Fig. 2(h) and Fig. 2(j).

Furthermore, at AOA = 0◦, high-curvature regions are

mainly concentrated near the separation point in Fig. 2(b). A

subsequent slightly convex segment at around x = 0.84 in Fig.

2(a) also contributes to elevated local curvature. However, as

the front portion of the separation bubble flattens, the high-

curvature region around the separation point contracts. Con-

currently, the high-curvature zone along the separation shock

elongates from Fig. 2(b) to Fig. 2(j), while both the inten-

sity and spatial extent of the curvature at the originally convex

location at around x = 0.84 in Fig. 2(b) gradually diminish.

In Fig. 3, as the AOA increases, the front portion of the

bubble’s upper surface becomes more convex, leading to an

augmentation in both the intensity and spatial extent of the

high-curvature region between the separation and reattach-

ment points. Owing to the blunter front of the separation

bubble, the high-curvature zone near the separation point pro-

gressively widens. Meanwhile, as shown in Fig. 5, the separa-

tion shock weakens and becomes more diffuse with increasing

AOA, resulting in reduced shock-induced curvature effects.

Furthermore, from AOA = 0◦ to +8◦, the reduced shear layer

length causes the three originally distinct high-curvature re-

gions visible at x = 0.8, x = 0.84, and x = 1.05 in Fig. 3(b) to

move closer together. This process progressively compresses

the dark blue low-curvature interval on the bubble’s upper sur-

face.

In summary, as the AOA decreases, the separation bubble

is “stretched”, leading to an enlarged recirculation zone and

increased shear layer length. The high-curvature regions be-

come concentrated primarily near the separation and reattach-

ment points. Conversely, as the AOA increases, the separa-

tion bubble is “compressed”, the recirculation zone shrinks,

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
3
0
3
4
5
4



Effect of angle of attack on the instability-wave selectivity in hypersonic compression ramp laminar flow 7

FIG. 3. All the cases at non-negative AOAs, the left column displays streamlines and pressure contours, while the right column shows

the corresponding streamline curvature distributions |K|. The small arrows in the left column indicate the locations of flow separation and

reattachment.

0.7 0.8 0.9 1 1.1 1.2
-2

-1

0

1

2 -8 -6 -4 -2 0 2 4 6 8
AOA

FIG. 4. Surface skin friction coefficient under all AOAs. x is non-

dimensionalized by the plate length L∗.

and the front of the separation bubble exhibits a more convex

morphology. This results in an extension of high-curvature

regions across the streamline and progressive compression of

the dark blue low-curvature interval on the upper surface of

the separation bubble.

B. Effect of angle of attack on Mack modes

Unless otherwise stated, the results of planar waves (β = 0)

are depicted, as they represent the most unstable scenario for

Mack modes and are easier to investigate. Three-dimensional

effects will be addressed later for shear-layer instabilities.

Mack modes usually possess relatively high frequencies, typi-

cally with hundreds of kilohertz. In this study, the dimension-

less angular frequency ω = 100 corresponds to a dimensional

frequency f ∗ ≈ 274.7 kHz. To visually illustrate the Mack

modes, the growth rate σ obtained from LST is plotted as a
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Effect of angle of attack on the instability-wave selectivity in hypersonic compression ramp laminar flow 8

FIG. 5. Numerical schlieren images at all AOAs, showing the magnitude of the density gradient (|∇ρ |). A consistent grayscale is used for all

images to facilitate comparison.

contour map against the streamwise position x and frequency

ω . Contour maps for different AOAs are summarized in Fig.

6 and Fig. 7, where dashed lines indicate the locations of

separation and reattachment points. Non-blue colored regions

represent unstable local states. The color bar is set to a limited

range of [1, 5] to optimally visualize the key features of the in-

stability, as this specific range most clearly distinguishes the

growth rates and spatial extents of various Mack modes. It can

be observed that at zero and negative AOAs, the contours ex-

hibit multiple inverted cone-like patterns, a configuration also

reported in previous numerical simulation33. To highlight the

influence of streamline curvature, the right columns of Fig. 6

and Fig. 7 show the corresponding results computed without

curvature effects. This is done by taking the curvature K = 0

in LST.

Taking the case of AOA = 0◦ as a reference, when flow

separation occurs, Mack modes of orders 2 to 5 are observed.

The previous work15 has shown that the unstable Mack’s first

mode is not present due to the high Mach number and cold

wall condition. Thus, the lowest frequency of the unstable

region corresponds to Mack’s second mode. Notably, multi-

ple modes of different orders can coexist at the same location,

while a perturbation at a fixed frequency may undergo several

distinct instability modes as it propagates streamwise. For in-

stance, at a fixed frequency ω = 80, the disturbance first ex-

periences a second-mode instability, followed by alternating

regions of stability and third-mode instabilities, before finally

encountering another branch of the second-mode instability.

This alternating sequence of unstable and stable regions re-

sults in a neutrally oscillating amplification of disturbances

within the separation bubble. In our previous work15, the neu-

tral behavior of high-frequency Mack modes inside the sepa-

ration bubble has been attributed to a complicated mode syn-

chronization process triggered by flow separation. This pro-

cess leads to streamwise-alternating zones of stability and in-

stability, causing repeated growth and decay of disturbance

energy. The separation bubble can thus be viewed as a com-

plex “resonator” that facilitates the emergence of higher-order

Mack modes. Given this mechanism, and since changes in

AOA alter the size and shape of the separation bubble, a ques-

tion arises: how exactly does AOA affect the Mack modes?

In Fig. 6, as the AOA decreases, the growth rate and spatial

extent of higher-order modes gradually increase. This is likely

associated with the increasingly elongated separation bubble.

A larger and longer separation bubble provides a more ex-

tended development path for unstable waves, allowing them

to accumulate more energy and reach higher amplitudes34.

This observation aligns with the findings in low-speed flows

regarding laminar separation bubbles, where longer bubbles

exert a more significant global impact and support stronger in-

stabilities compared to shorter ones35. In Fig. 7, as the AOA

increases from zero, higher-order Mack modes are noticeably

suppressed. This effect is more pronounced when streamline

curvature is neglected. In the case of AOA = +8◦ (Fig. 7(j)),

only two unstable modes remain. This suggests that the size

of the separation bubble acts as a spatial filter, influencing the

number of mode orders that can be sustained. Higher-order

modes typically have shorter wavelengths and more complex

spatial structures. A smaller separation bubble may be un-

able to accommodate the full waveform of these modes due

to spatial constraints, or it may lack sufficient energy to ex-

cite them36. From the perspective of mode synchronization, a

smaller separation bubble might not provide enough physical

space to support repeated mode synchronization events. As

a result, higher-order modes, which require longer evolution

paths, disappear first.
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Effect of angle of attack on the instability-wave selectivity in hypersonic compression ramp laminar flow 9

AOA = 0◦

AOA = -2◦

AOA = -4◦

AOA = -6◦

AOA = -8◦

FIG. 6. Growth rate contours of the most unstable modes on the x–ω plane for all cases at non-positive AOAs, with the effects of streamline

curvature involved in the left column but not in the right. The black dashed lines represent flow separation and reattachment. The AOA = 0◦

case is reproduced from the work by Guo et al.15 as the baseline.
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Effect of angle of attack on the instability-wave selectivity in hypersonic compression ramp laminar flow 10

AOA = 0◦

AOA = +2◦

AOA = +4◦

AOA = +6◦

AOA = +8◦

FIG. 7. Growth rate contours of the most unstable modes on the x–ω plane for all cases at non-negative AOAs, with the effects of streamline

curvature involved in the left column but not in the right. The black dashed lines represent flow separation and reattachment. The AOA = 0◦

case is reproduced from the work by Guo et al.15 as the baseline.
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Effect of angle of attack on the instability-wave selectivity in hypersonic compression ramp laminar flow 11

0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

-8 -6 -4 -2 0
AOA

(a) 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

0 2 4 6 8
AOA

(b)

0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

-8 -6 -4 -2 0
AOA

(c) 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

0 2 4 6 8
AOA

(d)

FIG. 8. N0-factor curves of optimal disturbances using x0 = 0.2 for (a) ω = 100 under all non-positive AOAs, (b) ω = 100 under all non-

negative AOAs, (c) ω = 20 under all non-positive AOAs, and (d) ω = 20 under all non-negative AOAs. The separation and reattachment points

are marked by solid circles and solid squares, respectively, with their colors matching the corresponding curve.

Additionally, Figs. 6 and 7 highlight the role of stream-

line curvature. At AOA = 0◦, the centrifugal effect induced

by high curvature near the separation and reattachment points

enhances local instability. As the AOA decreases, the redis-

tribution of high-curvature zones, as discussed earlier, weak-

ens this enhancing effect. When the AOA decreases to -8◦,

the difference in the contour maps with and without curva-

ture effects becomes less pronounced. In contrast, a growing

AOA significantly amplifies the instability near the separation

and reattachment points. As the AOA increases, the region of

maximum curvature becomes growingly concentrated around

the separation point, leading to gradual augmentation in both

the magnitude and spatial extent of positive growth rates. By

AOA = +8◦ (Fig. 7(i)), the unstable region near the separation

point spans nearly all frequencies from low to high, forming a

vertical band that acts as a broadband perturbation amplifier.

This is an interesting finding that has not been reported before.

Previous studies have indicated that separation bubbles tend

to selectively amplify 3D low-frequency disturbances, while

“freezing” 2D high-frequency Mack-mode perturbations15.

To further investigate how the variation in AOA and the asso-

ciated alteration in separation bubble morphology affect this

selection mechanism, resolvent analysis is employed to ex-

amine the evolution of perturbations. The input forcing is in-

troduced at x0 = 0.2, located far upstream of the separation

point. To quantify the development of unstable disturbances,

an N-factor is defined as

N0 = 0.5ln(EChu/EChu,0) , (13)

where EChu denotes Chu’s energy density integrated from the

wall to infinity in the η-direction, and EChu,0 is its value at the

reference position x0 = 0.2.

As demonstrated in the work of Guo et al.15, at AOA = 0◦

the separation bubble exhibits a “freezing” effect on 2D dis-

turbances at a frequency of ω = 100. Specifically, the pertur-

bation growth rate oscillates repeatedly within the separation

bubble, resulting in an overall neutral behavior, i.e., neither

significant growth nor decay. This trend is consistent with the

streamwise evolution of the growth rate for fixed-frequency

perturbations shown in Fig. 6(a). Further investigation with

the 2D disturbance at ω = 100 reveals that as the AOA grad-

ually decreases from 0◦, all negative AOAs exhibit similar os-

cillatory behavior within the separation bubble, as shown in

Fig. 8(a). However, in Fig. 8(b), as the AOA increases from

0◦, the amplitude of the oscillations gradually diminishes. By

AOA = +8◦, the N0 factor exhibits a nearly monotonic in-

creasing trend. Fig. 9 presents the 2D pressure fluctuations

at ω = 100. The black solid lines represent the isoline of

the base pressure, drawn to visualize the separation shock,

while the green curves indicate the dividing streamline. At

AOA = 0◦, the classical double-cell structure of Mack second

mode is observed. The number of cells increases as AOA de-

creases. Conversely, as AOA increases, the number of cells
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Effect of angle of attack on the instability-wave selectivity in hypersonic compression ramp laminar flow 12

FIG. 9. Pressure fluctuations of the optimal disturbance with ω = 100 for all AOAs as obtained by resolvent analysis. Black solid lines

represent isolines of the base pressure, drawn to illustrate the separation shock. The isovalue of the black line is chosen such that it intersects

with the wall at the separation point. Green curves indicate dividing streamlines.

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω
ω

ω
ω

FIG. 10. N0-factor curves based on x0 = 0.2 of optimal disturbances for (a) AOA = 0◦ under different higher frequencies and (b) AOA=+8◦

under different higher frequencies. The black dashed lines represent flow separation and reattachment.

decreases significantly, indicating an attenuation of the sepa-

ration bubble on pressure disturbances.

C. Selectivity of separation bubbles to high- and
low-frequency 2D disturbances

A 2D disturbance with a frequency of ω = 20 is employed

to investigate the development of low-frequency perturbations

within the separation bubble. Fig. 8(c) shows the energy de-

velopment for all non-positive AOAs, which differs signifi-

cantly from the high-frequency disturbance case in Fig. 8(a).

Instead of exhibiting pronounced oscillations of curves, the

disturbance energy tends to be constantly amplified by the

separation bubble. Similarly, for all non-negative AOAs in

Fig. 8(d), the energy also demonstrates a consistently grow-

ing trend. However, as the AOA increases from 0◦, the dif-

ference in energy development behavior between the low-

frequency case in Fig. 8(d) and the high-frequency case in

Fig. 8(b) gradually diminishes. For instance, at AOA = +2◦,

the low-frequency disturbance in Fig. 8(d) exhibits nearly sus-

tained growth within the separation bubble, whereas the high-

frequency disturbance in Fig. 8(b) still shows clear oscillatory

behavior. When the AOA increases to +8◦, the curves for both

the high and low frequencies in Fig. 8(b) and Fig. 8(d) exhibit

a nearly monotonic increasing trend. Therefore, it can be con-

cluded that at AOA = 0◦, within a certain frequency range, the

separation bubble exhibits distinct frequency-selective behav-
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Effect of angle of attack on the instability-wave selectivity in hypersonic compression ramp laminar flow 13

FIG. 11. Optimal gain under different AOAs by resolvent analysis.

ior. Specifically, it causes high-frequency perturbation ampli-

tudes to oscillate while allowing low-frequency perturbations

to undergo nearly sustained growth. This selection charac-

teristic persists as the AOA decreases from 0◦. In contrast, as

the AOA increases from 0◦, this frequency selection gradually

diminishes.

0 200 400 600 800 1000
0

2

4

6

8
-8 -6 -4 -2 0 2 4 6 8

AOA

FIG. 12. Optimal gain under different AOAs with ω = 20.

It is noteworthy that at a fixed AOA = +8◦, as shown

in Fig. 10(b), the energy growth of all high-frequency dis-

turbances within the separation bubble exhibits a “increase-

freezing-increase” three-stage feature. This pattern markedly

differs from the AOA = 0◦ baseline case in Fig. 10(a), where

the curves show repeated oscillations and lack a broad con-

sistency in their evolutionary trends across all studied high-

frequency perturbations in the separation bubble. This con-

sistent energy evolution trend in Fig. 10(b) can be explained

by the growth-rate variation in Mack modes under growing

positive AOAs, as depicted in Fig. 7. Taking the curvature-

included case at AOA = +8◦ in Fig. 7(i) as an example, high-

frequency disturbances (ω > 100) propagating in the stream-

wise direction generally experience three distinct intervals: an

initial unstable region, a stable region, and then another unsta-

ble region—closely matching the three-stage evolution of the

N0-factor inside the separation bubble shown in Fig. 10(b).

Furthermore, in the previous study15, the eigenfunctions

and disturbance profiles obtained using the local method

(LST) and the global method (resolvent analysis) at AOA =

0◦ were compared and showed good agreement. For brevity, a

comparison of Mack mode disturbance shapes at other AOAs

is not presented here, as this study focuses more on the 3D

shear layer mode.

D. Effect of AOA on shear layer modes

Similar to 2D high-frequency disturbances, 3D low-

frequency disturbances with tens of kilohertz also exhibit mul-

timodal characteristics. The “multimodal” is manifested as

multiple unstable modes appearing at the same streamwise

location. These successively emerging unstable modes each

become the dominant (most unstable) mode at different posi-
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σ

σ σ

σ σ

FIG. 13. Growth rates of unstable modes for non-positive AOA cases, from 0◦ to -8◦. The black dashed lines represent flow separation and

reattachment.

tions. The behavior collectively forms a continuous amplifi-

cation region for low-frequency disturbances.

Before further discussing the characteristics of unstable

modes at various AOAs, Fig. 11 presents the optimal gain ob-

tained through resolvent analysis as a function of frequency

ω and spanwise wavenumber β . It is important to note that

this optimal gain quantifies the global energy amplification of

the output response subject to the input forcing, and the out-

put is not evaluated at a specific outflow location. The input

forcing is spatially localized at the inflow position x0 = 0.2,

while the output is measured by the Chu’s energy integrated

over the entire computational domain. This approach cap-

tures the maximum energy growth from the localized forcing

to the global flow response, ensuring that the gain reflects the

system’s overall amplification characteristics without depen-

dence on a single downstream station. As shown in Fig. 11,

the most amplified disturbances are concentrated in the low-

frequency range and exhibit clear dependence on the span-

wise wavenumber. The observation indicates that the separa-

tion bubble preferentially amplifies 3D low-frequency distur-

bances for nearly all AOAs. Taking AOA = 0◦ as the refer-

ence case, as AOA gradually decreases, the region with high

gain values is extended toward both lower and higher span-

wise wavenumbers. In other words, wider spanwise scales are

involved and amplified by the separation bubble. In compar-

ison, as AOA increases, this region contracts and shifts over-

all toward lower wavenumbers, suggesting smaller spanwise

scales selected. For example, in Fig. 12, at a fixed disturbance

frequency of ω = 20, the wavenumber corresponding to the

maximum gain is reduced with an increasing AOA. Mean-
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σ

σ σ

σ

FIG. 14. Growth rates of unstable modes for non-negative AOA cases, from 0◦ to +8◦. The black dashed lines represent flow separation and

reattachment.

while, the range of wavenumbers spanning the same gain is

gradually narrowed.

This study focuses on the 3D low-frequency mode charac-

terized by a frequency ω = 20 and a spanwise wavenumber

β = 260. This selected pair corresponds to the peak gain at

this low frequency under zero AOA. To clearly distinguish be-

tween individual modes, the following naming convention is

adopted: the mode closest to the separation point is denoted

as SP, the mode within the separation bubble as IB, and the

mode near the reattachment point as RP.

Fig. 13 and Fig. 14 depict all unstable modes tracked across

various AOAs. The more prominent unstable modes are high-

lighted with colored curves and labels, while others are dis-

played using gray curves. The complex velocity c̃ = ω/α
is introduced, and c̃r and c̃i represent the real and imaginary

parts of the modes, respectively. Each mode is tracked along

the streamwise direction using a grid spacing ∆x< 0.001. The

tracking criterion relies on the minimal change in the complex

velocity c̃ for the same mode between adjacent streamwise po-

sitions. Specifically, among all candidate modes at xi+1 with

mode index j, the successfully traced mode minimizes the Eu-

clidean norm ||c̃(xi)− c̃ j(xi+1)|| .

We first analyze Fig. 13(a), which displays the variation of

growth rate along the streamwise direction at AOA = 0◦. As

flow separation initiates, the mode SP-1 emerges near the sep-

aration point. The mode SP-2 also arises within the unstable

region associated with mode SP-1, albeit with a notably lower

growth rate. Mode IB develops inside the separation bubble,

reaching its peak growth rate at around x = 0.9. At this loca-

tion, mode IB coexists with mode SP-1. Subsequently, mode
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Effect of angle of attack on the instability-wave selectivity in hypersonic compression ramp laminar flow 16

RP forms in the vicinity of the reattachment point, accompa-

nied by three other less prominent modes. In the correspond-

ing complex-plane trajectory shown in Fig. 20(a), modes SP-

1, IB, and RP independently evolve from very stable discrete

modes, which appear successively on the stable half-plane of

the complex phase velocity. The modes SP-1, IB, and RP each

dominate distinct streamwise regions, constituting a continu-

ous amplification zone for disturbances. It is noteworthy that

these three modes are observed across all AOAs, indicating

that they represent inherent characteristics generated by flow

separation and reattachment in the present configuration.

σ

FIG. 15. The local growth rate versus the curvature ratio K/K0 for

modes SP-1 and SP-2 (ω = 20, β = 260). The solid and dashed

lines correspond to AOA = −8◦ (x = 0.7461) and AOA = +8◦ (x =
0.9596), respectively. Here, K0 represents the actual local curvature,

and the prefix “SP” indicates that these modes are located near the

separation point.

As the AOA decreases from zero, the most significant

changes occur in the original modes SP-1 and IB. In Fig. 13(b)

at AOA =−2◦, the growth rate of mode SP-1 reaches its max-

imum at around x = 0.8 and then decays rapidly. Following

that, a brief resurgence occurs near x = 0.84, after which it de-

cays again toward zero. It is important to note that this resur-

gence of SP-1 is not an isolated event but occurs in the con-

text of its synchronization with the emerging IB-1 mode. With

their real phase velocities closely matched (SP-1: c̃r = 0.9103,

IB-1: c̃r = 0.9515 at x = 0.84, see Fig. 20(b)), the condi-

tion for modal orthogonality breaks down, leading to a no-

table inter-modal interaction. This interaction may facilitate

a temporary energy exchange, manifesting as the observed

recovery in SP-1’s growth rate. Correspondingly, the trajec-

tory of SP-1 forms a distinct loop in the complex plane where

its imaginary part c̃i ceases descending and rises again near

c̃r = 0.91, coinciding with this temporary increase in growth

rate. Around x = 0.84, a new unstable mode IB-1 is observed,

which originates from the entropy/vorticity continuous spec-

trum (a reservoir of neutral background disturbances inherent

to the base flow) and exhibits a rapid increase in growth rate

after x = 0.83. Furthermore, the growth rate of mode IB-2

increases sharply within a high curvature interval near x = 1

in Fig. 2(d). Next, as shown in Fig. 13(b), mode IB-2 de-

cays, before rising slowly again after x = 1.08. Its trajectory

in the complex plane shown in Fig. 20(b) exhibits a distinct

V-shaped pattern.

As AOA is further decreased to −6◦ in Fig. 13(d), three

unstable modes denoted IB-1, IB-2, and IB-3 are observed in

the vicinity of x=1 in the bubble. Their unstable regions align

closely with the three short spike-like high-curvature intervals

near x = 1 in Fig. 2(h). The increasing amplitude of modes

at decreased AOAs (enhanced curvature) supports the hypoth-

esis that these disturbances in the tens of kilohertz range are

most likely amplified by a Görtler-mode instability, which is

highly sensitive to curvature19. This behavior becomes even

more evident in Fig. 13(e). Not only do the locations of IB-1,

IB-2, and IB-3 correspond to the three high curvature regions

in Fig. 2(j), but their growth rates are also enhanced due to the

stronger centrifugal effect. This stronger centrifugal effect re-

sults from the more concave aft portion of the separation bub-

ble. In contrast, within the interval from x = 0.8 to x = 0.98

in both Fig. 13(d) and Fig. 13(e), the surface of the separation

bubble remains relatively flat and the streamline curvature is

uniform. As a result, no new unstable modes emerge in this

region.

As the angle of attack increases from zero in Fig. 14, the

maximum growth rates of all unstable modes gradually de-

crease. This finding is consistent with the variation in the gain

by resolvent analysis, as shown in Fig. 12. As the separation

bubble becomes more compressed, its upper surface slightly

bulges, resulting in three relatively extensive high-curvature

regions. Near the front of the separation bubble, the stream-

wise extent dominated by modes SP-1 and SP-2 widens with

an increasing AOA. Close to the reattachment point, mode RP

remains dominant throughout. However, between the separa-

tion and reattachment points, both the maximum growth rate

and the dominant region of mode IB diminish. For exam-

ple, in Fig. 14(a), mode IB dominates the unstable region

from x = 0.87 to x = 1.01, whereas in Fig. 14(c), this inter-

val narrows to between x = 0.96 to x = 1.03. In Fig. 14(d)

and Fig. 14(e), the maximum growth rate of mode IB is even

lower than that of mode SP-1 across the entire separation bub-

ble. Moreover, in Fig. 14(e), mode IB emerges at x = 1 and

reaches a minor local peak in growth rate at x = 1.03. It then

decays briefly, rises again at x = 1.06, and attains its maxi-

mum growth rate at x = 1.14 before gradually decaying fur-

ther. Thus, this in-bubble mode is becoming less and less

significant as the bubble shrinks with an increasing AOA.

Another observation inside the bubble is that, from AOA

= 0◦ to AOA = +8◦, no new IB modes are observed. This

is likely due to the combination of two factors: 1) the rel-

atively broad and smoothly varying high-curvature region in

the middle of the separation bubble, where no abrupt curvature

change occurs, and 2) the further reduced size of the bubble,

which may limit the spatial development of additional modes.

Furthermore, previous studies have confirmed that at a

freestream Mach number 7.7 and AOA = 0◦, the origin

of these unstable shear layer modes is related to unsteady

Görtler-mode instabilities. These Görtler modes are particu-

larly sensitive to streamline curvature15. Across the nine cases

considered in this study, the unstable shear layer modes con-

tinue to exhibit a strong dependence on curvature as the AOA
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Effect of angle of attack on the instability-wave selectivity in hypersonic compression ramp laminar flow 17

FIG. 16. Comparison of the disturbance shape for ω = 20 and β = 260 between the resolvent response and the LST eigenfunction with AOA

= −8◦. The horizontal dashed line represents the location of the separation shock. All results are normalised by the maximum |T ′|.

varies, confirming that they possess signature of Görtler insta-

bilities. For instance, at AOA = −8◦ and AOA = +8◦, Fig. 15

shows the variation in the growth rates of modes SP-1 and SP-

2 with curvature, respectively. The result is obtained by grad-

ually changing the local curvature K from its actual value K0

to zero in the LST operator. It can be observed that the growth

rates are highly sensitive to the streamline curvature. When

the curvature is artificially set to zero, all unstable modes dis-

appear. These observations are consistent with the baseline

AOA = 0◦ in our previous study15, thereby demonstrating that

the shear-layer modes at large positive or negative AOAs are

still unsteady Görtler modes.

In summary, an enlarged separation bubble and abrupt

change in streamline curvature may facilitate the emergence

of new unstable modes. As the AOA decreases from AOA

= 0◦ to AOA = −8◦, the number of observed unstable modes

increases from 8 to 13. These additional modes are closely as-

sociated with the discontinuous high-curvature regions shown

in Fig. 2. In contrast, only 6 unstable modes are observed

at AOA = +8◦. Moreover, the maximum growth rates of the

modes exhibit a clear dependence on the AOA: they gradually

increase as the AOA decreases to negative, and decrease as

AOA increases to positive.

E. Comparison of shear layer modes between LST and
Resolvent Analysis

It has been shown that the parallel-flow stability analy-

sis remains applicable for shear-layer modes at AOA = 0◦15.

Currently, the applicability needs an examination at higher

AOAs. For instance, the case AOA = +8◦ awaits an inves-

tigation, where widespread continuous high-curvature regions

are present. It remains uncertain whether LST can accurately

capture shear modes under such conditions. Therefore, we

select two extreme cases, AOA = −8◦ and AOA = +8◦, and

compare the perturbation shapes obtained via LST eigenfunc-

tions with responses derived from resolvent analysis.

For AOA = −8◦, Fig. 16 and Fig. 17 show the temperature

and velocity perturbation profiles at three selected locations,

with positions indicated in Fig. 18. In Fig. 16(a) (|T ′|) and

Fig. 16(d) (|u′|), the disturbance profiles are influenced by a

combination of coexisting mode SP-1 and mode SP-2. Since

SP-1 is dominant, the resolvent response of |T ′| and |u′| more

closely resembles that of SP-1. In Fig. 16(b) and Fig. 16(e),

the disturbances are primarily governed by modes IB-2 and

IB-3, with the resolvent response aligning more closely with

the dominant mode IB-3. Furthermore, due to the influence
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Effect of angle of attack on the instability-wave selectivity in hypersonic compression ramp laminar flow 18

FIG. 17. Comparison of the disturbance shape for ω = 20 and β = 260 between the resolvent response and the LST eigenfunction with AOA

= +8◦. The horizontal dashed line represents the location of the separation shock. All results are normalised by the maximum |T ′|.

of the separation shock, a peak associated with mode SP-2 is

observed at the corresponding location. In Fig. 16(c) and Fig.

16(f ), the peak of mode SP-2 consistently appears at the sep-

aration shock location. Since the growth rate of mode RP is

significantly higher than those of IB-3 and SP-2 in this region,

the influence of IB-3 and SP-2 on the disturbance structure is

minimal, and the results from resolvent analysis show excel-

lent agreement with mode RP obtained from LST. Combining

the informative Fig. 13(a), it is suggested that if a dominant

local mode exists, the global optimal response can be well ap-

proximated by its profile.

When the AOA increases to +8◦, as shown in Fig. 17(a)

and Fig. 17(d), both the |T ′| and |u′| profiles of SP-1 and

SP-2 exhibit significant structural differences: SP-1 displays

a single peak, while SP-2 exhibits two. Since at x = 0.9596

in Fig. 14(e), the growth rate of SP-1 is significantly higher

than that of SP-2, the temperature and velocity perturbation

profiles of the resolvent response align more closely with SP-

1. In Fig. 17(b) and Fig. 17(e) at x = 1.03, the disturbance

profiles are jointly influenced by mode SP-1 and mode IB.

For |T ′|, the eigenfunctions of SP-1 and IB are very similar.

The overall resolvent response more closely matches mode

IB. For |u′|, the perturbation profile aligns more closely with

the eigenfunction of the dominant mode SP-1. Fig. 17(c) and

Fig. 17(f ) show several coexisting unstable modes of notable

amplitude. For |T ′|, both SP-1 and IB exhibit multiple peaks.

The resolvent response agrees well with the eigenfunction of

the dominant mode RP, though several smaller peaks also ap-

pear near the separation shock, suggesting influence from the

less prominent mode SP-1. For |u′|, the resolvent response

shows excellent agreement with mode RP, with a subtle peak

at the separation shock corresponding to the peak location of

SP-1.

In addition to comparing the eigenfunction shapes obtained

from LST with the optimal response from resolvent analysis,

it is also valuable to examine the differences in the growth

rate between the two methods. The relationship between the

N0-factor from resolvent analysis and the growth rate is given

by σ = dN0/dx, from which the streamwise distribution of

resolvent-derived growth rate is obtained and presented in

Fig. 19. For AOA = −8◦ in Fig. 19(a), the LST-derived

growth rate agrees well with the resolvent analysis result at

x = 1.1170. However, a moderate discrepancy is observed

at x = 0.7461, where the growth rate of mode SP-1 shows a

relatively larger deviation from the resolvent result. A more

pronounced discrepancy appears at x = 1.0341. This implies
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Effect of angle of attack on the instability-wave selectivity in hypersonic compression ramp laminar flow 19

FIG. 18. Modulus of the optimal response with respect to temper-

ature and velocity disturbances for ω = 20 and β = 260, resulting

from the unit-energy input in resolvent analysis. (a) and (b) corre-

spond to AOA = −8◦; (c) and (d) correspond to AOA = +8◦. The

arrows indicate positions at x = 0.7461, 1.0341 and 1.1170 (refer to

Fig. 16) for AOA = −8◦; and x = 0.9596, 1.0334 and 1.1227 (refer

to Fig. 17) for AOA = +8◦.

that the short unstable region of mode IB-3 affects the global

optimal response more in the mode shape (see Fig. 16(b) and

Fig. 16(e)) than the local growth rate. For AOA = +8◦, as

shown in Fig. 19(b), the differences in the growth rate between

the locally dominant LST modes and the resolvent analysis

are relatively small. Considering the inherent non-parallel ef-

fects in high-curvature regions, these limited discrepancies re-

main within acceptable bounds, confirming that the dominant

modes at AOA = +8◦ maintain reasonable consistency with

the resolvent analysis.

In summary, LST remains effective in predicting the growth

of 3D low-frequency shear layers across various AOAs. At

AOA = −8◦, the LST-derived eigenfunctions generally show

good agreement with the global optimal response, though

localized discrepancies in growth rates are observed, with

a notable deviation at x = 0.7461 and a more pronounced

one at x = 1.0314. At AOA = +8◦, the eigenfunctions

maintain good agreement with the resolvent responses, while

the growth rates exhibit reasonable consistency with the

resolvent-derived values, despite the extensive high-curvature

regions present on the upper surface of the separation bubble

in Fig. 3(h).

V. CONCLUSION

In this paper, we investigate the effects of AOA on the flow

stability of SWBLI, particularly focusing on high frequency

2D Mack modes and low frequency 3D shear layer insta-

σ
σ

FIG. 19. Comparison of growth rates obtained from LST and resol-

vent analysis for ω = 20 with β = 260 at (a) AOA = −8◦ and (b)

AOA = +8◦. The black solid circles represent the dominant LST

modes at the corresponding positions, while the red curves denote

the growth rates derived from resolvent analysis.

bilities. Altering the AOA significantly influences the mor-

phology of the separation bubble. As the AOA is gradually

reduced from zero, the separation bubble elongates and the

shear layer extends. A more pronounced concave curvature

emerges near the reattachment point at the rear portion of the

bubble, and the upper surface near the leading edge becomes

flatter. This results in a narrower high-curvature region on

the top of the separation bubble, concentrating it mainly near

the separation point and the rear concave portion of the bub-

ble. Furthermore, as the AOA decreases, multiple individual

narrow curvature zones gradually emerge within the concave

region at the aft of the separation bubble. Conversely, an in-

crease in AOA “compresses” the separation bubble, and its

upper surface exhibits significant convex curvature. Conse-

quently, the high-curvature region around the separation point

and the central part of the bubble expands. The most abrupt

streamline turning occurs near the separation point, where the

curvature reaches its maximum.

LST and resolvent analysis were used to examine the in-

fluence of the separation bubble on the convective instability.

For Mack modes, as AOA decreases, the separation zone is en-

larged and LST results show that both the extent and growth

rates of higher-order Mack modes are augmented. Conversely,

as AOA increases, the separation zone shrinks and higher-
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order unstable modes gradually vanish in the bubble. More-

over, the effect of streamline curvature in amplifying unstable

modes is most pronounced at high positive AOAs. In partic-

ular, at AOA = +8◦, an almost continuous band of instabil-

ity forms across both high- and low-frequency ranges, sim-

ilar to a broadband amplifier. The separation bubble gener-

ally exhibits selective amplification of low-frequency distur-

bances while appearing to “freeze” high-frequency perturba-

tions. This behavior is especially evident when the separation

bubble is elongated. However, at positive AOAs, the reduced

extent of the separation zone may not provide sufficient phys-

ical space for full modal development, thereby weakening the

freezing effect on high-frequency disturbances. As also ob-

servable in Fig. 9, the overall influence of the separation bub-

ble on the flow field diminishes at high positive AOA.

Resolvent analysis reveals that as the AOA decreases from

zero, the optimal gain region progressively expands toward

higher spanwise wavenumbers. Conversely, under positive

AOAs, the optimal gain overall narrows and shifts toward

lower wavenumbers. As for the 3D low-frequency shear layer

modes, these exhibit a clear dependence on streamline curva-

ture, which is itself strongly influenced by the shape of the

separation bubble. As depicted by Fig. 15, these shear layer

modes are still unsteady Görtler modes at large positive or

negative AOAs. Consistent with prior studies, multiple dom-

inant unstable modes are observed at different streamwise lo-

cations. When AOA decreases, the growth rates of all modes

increase, and new unstable modes emerge within the concave

aft region of the separation bubble. In contrast, as AOA in-

creases, the maximum growth rate decreases and fewer unsta-

ble modes are observed overall.

We also compare the shape of eigenfunctions obtained from

LST with the resolvent responses at AOA = −8◦ and AOA =

+8◦. In both of these extreme cases, the LST eigenfunctions

and the resolvent responses show good agreement, indicating

that the disturbance shape is primarily governed by the locally

dominant unstable mode. However, marked discrepancies be-

tween LST and resolvent analysis in the local growth rate are

observed for AOA = −8◦, including a notable deviation for

mode SP-1 near the separation point and a more pronounced

discrepancy for mode IB-3 at x = 1.0341. Nevertheless, good

agreement is found at x = 1.1170, and for AOA = +8◦, the

growth rates maintain reasonable consistency across all exam-

ined positions. These results collectively support the conclu-

sion that LST remains applicable for the majority of SWBLI

convective-instability studies.

The presented findings offer practical insights into the de-

sign and operation of hypersonic vehicles. Understanding

how the AOA modulates instability amplification can inform

transition prediction and control strategies on critical surfaces

like scramjet intakes and control fins, where managing the

boundary layer state is essential for aerodynamic performance

and thermal protection. Future efforts may target the experi-

mental validation of these instability mechanisms in ground-

test facilities, as well as the extension of the analysis to more

realistic three-dimensional components, such as swept wings

or cone-flare configurations, in order to assess the robustness

of the revealed physical mechanisms.

APPENDIX

The mode trajectory diagrams mentioned in the main text

are provided below.

FIG. 20. Trajectories of modes in the complex plane: (a) corresponds

to Fig. 13(a) and (b) corresponds to Fig. 13(b).
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