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Moment-based distributionally robust optimization (DRO) provides an optimization framework to integrate

statistical information with traditional optimization approaches. Under this framework, one assumes that

the underlying joint distribution of random parameters runs in a distributional ambiguity set constructed

by moment information and makes decisions against the worst-case distribution within the set. Although

most moment-based DRO problems can be reformulated as semidefinite programming (SDP) problems that

can be solved in polynomial time, solving high-dimensional SDPs is still time-consuming. Unlike existing

approximation approaches that first reduce the dimensionality of random parameters and then solve the

approximated SDPs, we propose an optimized dimensionality reduction (ODR) approach by integrating the

dimensionality reduction of random parameters with the subsequent optimization problems. Such integration

enables two outer and one inner approximations of the original problem, all of which are low-dimensional

SDPs that can be solved efficiently, providing two lower bounds and one upper bound correspondingly. More

importantly, these approximations can theoretically achieve the optimal value of the original high-dimensional

SDPs. As these approximations are nonconvex SDPs, we develop modified Alternating Direction Method of

Multipliers (ADMM) algorithms to solve them efficiently. We demonstrate the effectiveness of our proposed

ODR approach and algorithm in solving multiproduct newsvendor and production-transportation problems.

Numerical results show significant advantages of our approach regarding computational time and solution

quality over the three best possible benchmark approaches. Our approach can obtain an optimal or near-

optimal (mostly within 0.1%) solution and reduce the computational time by up to three orders of magnitude.

Key words : distributionally robust optimization, dimensionality reduction, principal component analysis,

semidefinite programming, data-driven optimization

1. Introduction

Distributionally robust optimization (DRO) is a modeling framework that integrates statistical

information with traditional optimization methods (Scarf 1958, Delage and Ye 2010). Under this

framework, one assumes that the underlying joint distribution of random parameters runs in

a distributional ambiguity set inferred from given data or prior belief and then optimizes their

decisions against the worst-case distribution within the set (see Rahimian and Mehrotra 2019 and

Lin et al. 2022 for detailed review).
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To solve different applications, researchers study the DRO under various ambiguity sets. The

ambiguity set plays a crucial role in connecting statistical information and optimization model-

ing, providing a flexible framework to model uncertainties and incorporate partial information

of random parameters (e.g., from historical data and prior belief) into the model. Moreover, the

performance of DRO depends significantly on the distributional ambiguity set (Mohajerin Esfa-

hani and Kuhn 2018, Chen et al. 2023). This paper focuses on moment-based ambiguity sets,

which include all distributions satisfying certain moment constraints. Examples of such con-

straints include restricting the exact mean and covariance matrix (Scarf 1958) and bounding the

first and second moments (Ghaoui et al. 2003, Delage and Ye 2010). Moment-based DRO has been

extensively studied and has a wide range of applications in industry, including but not limited to

newsvendor problems (Gallego and Moon 1993, Yue et al. 2006, Natarajan et al. 2018), portfolio

optimization (Ghaoui et al. 2003, Goldfarb and Iyengar 2003, Zymler et al. 2013, Rujeerapaiboon

et al. 2016, Li 2018, Lotfi and Zenios 2018), knapsack problems (Cheng et al. 2014), transportation

problems (Zhang et al. 2017, Ghosal and Wiesemann 2020), reward-risk ratio optimization (Liu

et al. 2017), scheduling problems (Shehadeh et al. 2020), and machine learning (Lanckriet et al.

2002, Farnia and Tse 2016).

As a moment-based DRO model can be reformulated as a semi-infinite program (Xu et al. 2018),

three approaches are mainly used to solve such a reformulation: (i) the cutting plane/surface

method (Gotoh and Konno 2002, Mehrotra and Papp 2014), by which a solution is first obtained

by considering a subset of the ambiguity set and cuts are then added iteratively until converging

to an optimal solution; (ii) the dual method (Delage and Ye 2010, Bertsimas et al. 2019), by which

the inner optimization problem (e.g., a minimization problem) is dualized and integrated with the

outer optimization problem (e.g., a maximization problem); (iii) the analytical method (Scarf 1958,

Popescu 2007), by which the worst-case distribution is obtained and its properties are analyzed.

Among these methods, the dual method is the most popular. Most literature focuses on convex

reformulations of different moment-based DRO problems, mainly including second-order cone

programming (SOCP) (Ghaoui et al. 2003, Lotfi and Zenios 2018, Goldfarb and Iyengar 2003) and

semidefinite programming (SDP) (Ghaoui et al. 2003, Delage and Ye 2010, Cheng et al. 2014).

While SOCPs can be solved efficiently, theoretically efficient algorithms (e.g., the interior-

point methods) to solve SDPs impose substantial demands on computational time and memory

resources (Vandenberghe and Boyd 1996, Helmberg 2002), particularly when addressing high-

dimensional SDPs. Widely adopted commercial solvers (e.g., Mosek) exhibit prohibitively long

computational times when solving high-dimensional SDPs, and the computational burden esca-

lates considerably even as the problem dimension increases gradually (see our numerical results

in Section 7). Thus, it is of great interest to study efficient algorithms for solving SDPs in the
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context of moment-based DRO. Besides the generic methods (e.g., the interior point methods),

two types of algorithms can speed up solving SDP reformulations of moment-based DRO: low-

rank SDP algorithms and dimensionality reduction methods. First, some studies develop efficient

algorithms by exploiting the low-rank properties of SDP constraints (Burer and Monteiro 2003,

Yurtsever et al. 2021). These algorithms rarely have theoretical guarantees but are practically effi-

cient. Specifically, the existing studies may reformulate convex SDPs as non-convex problems

and subsequently develop efficient algorithms to deliver high-quality solutions within reduced

time frames (Lemon et al. 2016). Second, dimensionality reduction techniques represent data

with important statistical information while omitting the trivial one. In the context of moment-

based DRO, such techniques can be extended to reduce the dimension of random parameters and

approximate the high-dimensional SDP reformulations using low-dimensional SDPs (Cheng et al.

2018, Cheramin et al. 2022), thereby reducing computational time significantly.

However, both the general SDP algorithms and existing dimensionality reduction methods may

not perform well for moment-based DRO. The general SDP algorithm aims to solve general SDPs

and may fail to consider the specific structure of the moment-based DRO models. The existing

dimensionality reduction methods fail to consider the subsequent optimization problems when

reducing the dimensionality space. For example, Cheng et al. (2018) and Cheramin et al. (2022)

first use the PCA to choose the random parameters corresponding to the largest eigenvalues and

then solve the low-dimensional SDP problem with the chosen random parameters. Such a sequen-

tial process may not provide an optimal solution of the original problem because the aim of lever-

aging data is to reduce the dimensionality space by focusing on only the statistical information,

rather than optimizing the subsequent SDP problems. Therefore, in this paper, we integrate the

dimensionality reduction with subsequent SDP problems, leading to an optimized dimensionality

reduction (ODR) approach for moment-based DRO. We summarize our contributions as follows:

1. Unlike the PCA approximation approaches (Cheng et al. 2018, Cheramin et al. 2022) that first

reduce dimensionality and then solve approximation problems, we integrate the dimension-

ality reduction with the subsequent optimization problems and provide an ODR approach.

With the ODR approach, we develop two outer and one inner approximations for the original

problem, leading to three low-dimensional SDP problems that can be solved efficiently.

2. We prove the low-rank property of the original high-dimensional SDP reformulations of

moment-based DRO problems. Specifically, we show that there exists an optimal solution

such that the ranks of matrices in SDP reformulations are less than the number of SDP con-

straints plus one. Such a property helps our low-dimensional approximations achieve the

original optimal value, closing the approximation gap.
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3. The low-dimensional SDP problems are nonconvex with bilinear terms and we develop mod-

ified Alternating Direction Method of Multipliers (ADMM) algorithms to solve them effi-

ciently. We prove that any accumulation point of the sequence produced by the ADMM algo-

rithm satisfies the first-order stationary conditions of the low-dimensional bilinear SDP prob-

lem. We apply the ODR approach and ADMM algorithms to solve multiproduct newsvendor

and production-transportation problems. We compare our ODR approach with three bench-

mark approaches: the Mosek solver, low-rank algorithm (Burer and Monteiro 2003), and

PCA approximations (Cheramin et al. 2022). The results demonstrate that our ODR approach

significantly outperforms them in terms of computational time and solution quality. Our

approach can obtain an optimal or near-optimal (mostly within 0.1%) solution and reduce

the computational time by up to three orders of magnitude. More importantly, our approach

is not sensitive to the dimension m of random parameters, while the benchmark approaches

perform much worse when m is larger.

Note that the ODR approach echoes the recently emerging framework that integrates machine

learning (e.g., parameter estimation) with decision-making (Bertsimas and Kallus 2020, Bertsimas

and Koduri 2022, Elmachtoub and Grigas 2022). More relevant applications of such a framework

are recently studied. For instance, Ban and Rudin (2019) and Zhang et al. (2023) integrate fea-

ture data within the newsvendor problem; Liu et al. (2021) integrate travel-time predictors with

order-assignment optimization to provide last-mile delivery services; Kallus and Mao (2023) pro-

pose a new random forest algorithm that considers the downstream optimization problem; Zhu

et al. (2022) develop a joint estimation and robustness optimization framework; Qi et al. (2023)

and Ho-Nguyen and Kılınç-Karzan (2022) provide an end-to-end framework to integrate pre-

diction and optimization. Unlike the above applications, we integrate dimensionality reduction

with optimization in this paper (Jiang et al. 2023), which is recently followed by He and Mak

(2023). He and Mak (2023) integrate the PCA with a subsequent stochastic program and provide

a distributionally robust bound for the error between the objective values of the original and inte-

grated problems. The integrated approach in He and Mak (2023) involves solving nonconvex and

high-dimensional SDPs and may not reduce the error to zero, while our approach solves low-

dimensional SDPs and can achieve the optimal value of the original moment-based DRO problem,

thereby offering guidance on selecting the reduced dimension for practical applicability.

The remainder of this paper is organized as follows. Section 2 provides the SDP reformulation

of moment-based DRO problems and illustrates the disadvantages of the PCA approximation

approaches (Cheng et al. 2018, Cheramin et al. 2022). In Section 3, we propose the first outer

approximation under the ODR approach, leading to a lower bound for the original problem, and
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are then motivated to develop the low-rank property of the original high-dimensional SDP refor-

mulation, aiming to find a small reduced dimension to close the approximation gap. In Sections

4 and 5, motivated by the results in Section 3, we provide an inner approximation and a second

outer approximation for the original problem, respectively, and both of them can achieve the orig-

inal optimal value. Section 6 develops efficient algorithms to solve the above three approxima-

tions, all of which are low-dimensional bilinear SDP problems. In Section 7, we conduct extensive

numerical experiments on multiproduct newsvendor and production-transportation problems.

Section 8 concludes the paper. All proofs are presented in the Appendix if not specified.

Notation We use non-bold symbols to denote scalar values, e.g., s and γ1, and bold symbols

to denote vectors, e.g., x = (x1, . . . , xn)
⊤ and q. Similarly, matrices are represented by bold capital

symbols, e.g., A and Σ, and the size of a matrix is indicated by r × c, where r and c indicate the

numbers of rows and columns, respectively. Italic subscripts indicate indices, e.g., Sk, while non-

italic ones represent simplified specifications, e.g., Qr. We use EP[·] to represent the expectation

over distribution P and use ” • ” to denote the inner product defined by A • B = ∑i,j AijBij, where

A and B are two conformal matrices. For any matrix M, we use M ⪰ 0 (resp. M ≻ 0) to indicate

that it is positive semi-definite (PSD) (resp. positive definite). Symbols ∥ · ∥1 and ∥ · ∥2 denote

L1-Norm and L2-Norm, respectively. For any integer number n ≥ 1, we use [n] to denote the set

{1, 2, . . . , n}. The identity matrix of size m is denoted by Im. Symbols 0m and 0r×c represent a zero

vector of size m and a zero matrix of size r × c, respectively. Symbols 1m and 1r×c represent a one

vector of size m and a one matrix of size r × c, respectively. We use 1(·) to denote the indicator

function, which takes 1 if all the conditions encompassed in (·) are satisfied and takes 0 otherwise.

2. SDP Reformulation

Given the distribution P of a random vector ξ ∈ Rm, the following stochastic programming (SP)

formulation seeks an x ∈ X ⊆ Rn to minimize the expectation of an objective function f (x, ξ):

min
x∈X

EP [ f (x, ξ)] . (1)

As the distribution P is often unknown, we assume that P belongs to a distributional ambiguity

set DM0 constructed by statistical information estimated from historical data, and then minimize

f (x, ξ) against the worst-case distribution instead. It leads to the following DRO formulation:

min
x∈X

max
P∈DM0

EP [ f (x, ξ)] . (2)

We consider moment-based information (Delage and Ye 2010) is included in DM0 as follows:

DM0 (S , µ, Σ, γ1, γ2) =

{
P

∣∣∣∣∣ P (ξ ∈ S) = 1, (EP [ξ]− µ)
⊤

Σ−1 (EP [ξ]− µ)≤ γ1

EP

[
(ξ − µ) (ξ − µ)

⊤
]
⪯ γ2Σ

}
,
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which describes that (i) the support of ξ is S , (ii) the mean of ξ lies in an ellipsoid of size γ1

centered at µ, and (iii) the covariance of ξ is bounded from above by γ2Σ, with γ1 ≥ 0, γ2 ≥ 1, and

Σ ≻ 0. We perform eigenvalue decomposition on the covariance matrix Σ as follows:

Σ = UΛU⊤ = UΛ
1
2

(
UΛ

1
2

)⊤
,

where U ∈ Rm×m is an orthogonal matrix and Λ ∈ Rm×m is a diagonal matrix. Without loss of

generality, we assume that the diagonal elements of Λ are arranged in a nonincreasing order. By

letting ξ = UΛ
1
2 ξI + µ, we can reformulate Problem (2) as:

ΘM(m) := min
x∈X

max
PI∈DM

EPI

[
f
(

x, UΛ
1
2 ξI + µ

)]
, (3)

where

DM (SI, γ1, γ2) =

PI

∣∣∣∣∣∣ PI (ξI ∈ SI) = 1, EPI

[
ξ⊤

I

]
EPI

[
ξI

]
≤ γ1

EPI

[
ξIξ

⊤
I

]
⪯ γ2Im

 ,

with SI := {ξI ∈ Rm | UΛ
1
2 ξI + µ ∈ S}. Similar to Cheng et al. (2018) and Cheramin et al. (2022),

we make the following assumption throughout the paper.

ASSUMPTION 1. Function f (x, ξ) is piecewise linear convex in ξ, i.e., f (x, ξ) = maxK
k=1{y0

k(x) +

yk(x)⊤ξ} with yk(x) = (y1
k(x), . . . , ym

k (x))
⊤ and y0

k(x) affine in x for any k ∈ [K], and S is polyhedral, i.e.,

S = {ξ | Aξ ≤ b} with A ∈ Rl×m and b ∈ Rl, with at least one interior point.

PROPOSITION 1 (Cheramin et al. 2022). Under Assumption 1, Problem (3) has the same optimal value

as the following SDP formulation:

ΘM(m) = min
x,s,λ̂,q,Q

ϕ(m, s, q, Q) (4a)

s.t.

 χ(k, x, s, λk)
1
2

(
q +

(
UΛ

1
2

)⊤
ψ(k, x, λk)

)⊤

1
2

(
q +

(
UΛ

1
2

)⊤
ψ(k, x, λk)

)
Q

⪰ 0,

∀k ∈ [K], (4b)

λk ∈ Rl
+, ∀k ∈ [K], x ∈ X , (4c)

where λ̂ = {λ1, . . . , λK}, q ∈ Rm, Q ∈ Rm×m, ϕ(m, s, q, Q) := s + γ2Im • Q +
√

γ1∥q∥2, χ(k, x, s, λ) :=

s − y0
k(x)− λ⊤b − yk(x)⊤µ + λ⊤Aµ, and ψ(k, x, λ) := A⊤λ − yk(x).

Note that the functions ϕ(m, s, q, Q), χ(k, x, s, λ), and ψ(k, x, λ) will also be used in the remain-

der of this paper to simplify other SDP formulations. Although Problem (4) is a convex program

when x is given, it can be difficult to solve because a large m leads to high-dimensional SDP

constraints at size m + 1. As such SDP constraints originate from the covariance matrix Σ, early
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attempts in Cheng et al. (2018) and Cheramin et al. (2022) exploit the statistical information Σ to

address the computational challenge while maintaining solution quality. Specifically, they adopt

the PCA, a dimensionality reduction method commonly used in statistical learning, to capture the

dominant variability of UΛ
1
2 ξI by maintaining the first m1(≤ m) components of ξI and fixing its

other components at 0; that is,

ξ ≈ UΛ
1
2 [ξr; 0m−m1 ] + µ = Um×m1 Λ

1
2
m1 ξr + µ, (5)

where ξr ∈ Rm1 , and Um×m1 ∈ Rm×m1 and Λ
1
2
m1 ∈ Rm1×m1 are upper-left submatrices of U and Λ,

respectively. That is, the m1 components of ξI corresponding to the largest eigenvalues are main-

tained as uncertain and the other components are fixed at their means. With a lower-dimensional

random vector ξr, we can have a relaxation of Problem (3):

ΘM(m1) := min
x∈X

max
Pr∈DL

EPr

[
f
(

x, Um×m1 Λ
1
2
m1 ξr + µ

)]
, (6a)

where

DL (Sr, γ1, γ2) =

Pr

∣∣∣∣∣∣ Pr (ξr ∈ Sr) = 1, EPr

[
ξ⊤

r

]
EPr

[
ξr

]
≤ γ1

EPr

[
ξrξ

⊤
r

]
⪯ γ2Im1

 (6b)

with

Sr :=
{

ξr ∈ Rm1

∣∣∣ Um×m1 Λ
1
2
m1 ξr + µ ∈ S

}
. (6c)

Meanwhile, the corresponding SDP formulation of Problem (6) has SDP constraints with smaller

size at m1 + 1 and can be solved more efficiently than Problem (4), leading to an efficient “PCA

approximation.” Specifically, Cheramin et al. (2022) show that the following PCA approximation

ΘM(m1) = min
x,s,λ̂,
qr,Qr

ϕ(m1, s, qr, Qr) (7a)

s.t.

 χ(k, x, s, λk)
1
2

(
qr +

(
Um×m1 Λ

1
2
m1

)⊤
ψ(k, x, λk)

)⊤

1
2

(
qr +

(
Um×m1 Λ

1
2
m1

)⊤
ψ(k, x, λk)

)
Qr

⪰ 0,

∀k ∈ [K], (7b)

λk ∈ Rl
+, ∀k ∈ [K], x ∈ X , (7c)

where λ̂ = {λ1, . . . , λK}, qr ∈ Rm1 , and Qr ∈ Rm1×m1 , provides a lower bound for the optimal value of

Problem (3) (i.e., Problem (4)). The PCA approximation that leads to an upper bound for the optimal

value of Problem (3) can be similarly derived. Hereafter, we call the problem whose optimal value

is a lower bound of the original Problem (3) as an outer approximation. In contrast, the problem

generating an upper bound is called an inner approximation of Problem (3).
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However, relying on only the statistical information (i.e., dominant variability) to choose the

components and reducing the high-dimensional uncertainty space may not lead to the best

approximation performance. Although Cheramin et al. (2022) provide a performance guarantee

to bound the gap between the original and approximated objective values, it is difficult to close

the gap when reducing the dimensionality of ξI. Such a difficulty is not surprising because main-

taining only the largest statistical variability in the PCA approximations does not capture the

optimality conditions of the original problems (e.g., Problem (3)). We provide an example as fol-

lows to illustrate that choosing the components of ξI corresponding to the largest eigenvalues can

be even worse than choosing the components corresponding to the least eigenvalues.

EXAMPLE 1. Given x ∈ X , we consider the CVaR1−α of a cost function g(x, ξ) formulated as the

following optimization problem (Rockafellar and Uryasev 2000):

min
t∈R

t +
1
α

EP [g(x, ξ)− t]+ , (8)

where α ∈ (0, 1) is a risk tolerance level and function [·]+ := max{0, ·}. For brevity, we let g(x, ξ) =

x⊤ξ, X = {x ∈ Rm
+ | ∑m

i=1 xi = 1}, D = {P | P(ξ ∈ S) = 1, EP[ξ] = µ, EP[(ξ − µ)(ξ − µ)⊤]⪯ Σ}, S
is compact, and µ is in the interior of S . We reformulate the distributionally robust counterpart

of Problem (8) in Appendix B.1 and obtain Problem (46). Let α = 0.05, S = {ξ ∈ R3 | 0 ≤ ξ1 ≤

8, 1 ≤ ξ2 ≤ 12, 2 ≤ ξ3 ≤ 16}, µ = [1, 2, 3], Σ =

[
1 0.2 0.1

0.2 3 0.15
0.1 0.15 2

]
with eigenvalues 3.044, 1.983, and 0.973.

Solving Problem (46) gives the optimal value 5.021 with x1 = 0.719, x2 = 0.135, x3 = 0.145, and

t = 3.129. Following Cheng et al. (2018) and Cheramin et al. (2022) to perform PCA approximation

over Problem (46) by capturing only one of the three components in ξ, we observe the following:

• Choosing the component corresponding to the largest eigenvalue 3.044, the PCA approxima-

tion gives the optimal value at 1.788 with x1 = 1, x2 = 0, x3 = 0, and t = 1.373.

• Choosing the component corresponding to the second largest eigenvalue 1.983, the PCA

approximation gives the optimal value at 1.3 with x1 = 0.7, x2 = 0.3, x3 = 0, and t = 1.3.

• Choosing the component corresponding to the smallest eigenvalue 0.973, the PCA approxi-

mation gives the optimal value at 1.915 with x1 = 0.085, x2 = 0.915, x3 = 0, and t = 1.915.

Example 1 shows that performing dimensionality reduction (i.e., from ξ to ξr) using the compo-

nents with the largest variability may not produce a good optimal value from the subsequent PCA

approximation (i.e., an SDP) and it can be even worse than using the component with the small-

est variability. To solve this issue, we integrate the dimensionality reduction with the subsequent

approximation in the following sections, leading to an optimized dimensionality reduction (ODR)

approach. Correspondingly, we obtain efficient lower and upper bounds in the following Sections

3–5 and more importantly, the bounds can achieve the optimal value of the original Problem (3).
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3. Lower Bound

We extend the dimensionality reduction method (i.e., PCA) in (5) by introducing a decision vari-

able B ∈ Bm1 := {B ∈ Rm×m1 | B⊤B = Im1} ⊆ Rm×m1 such that

ξ = UΛ
1
2 ξI + µ ≈ UΛ

1
2 Bξr + µ, (9)

where B will be optimized in the subsequent PCA approximation, i.e., optimized dimensional-

ity reduction. By (9), we project ξI onto a subspace of Rm×m spanned by the columns of B ∈ Bm1

and approximate ξI by the projection Bξr, instead of considering only the random variables corre-

sponding to the largest eigenvalues. When B =
[

Im1
0(m−m1)×m1

]
, (9) reduces to (5). Therefore, we would

like to choose a good (even an optimal) B to obtain a better lower bound for Problem (3) than

Problem (7). Unlike the existing PCA approach that first reduces the dimension of the uncertainty

space and then provides approximations, our ODR method innovatively integrates dimensional-

ity reduction with the subsequent optimization problems. Such an integrated framework deviates

from the traditional dimensionality reduction method like PCA because we do not predetermine

a low-dimensional space to consider in the subsequent optimization problem. Instead, we linearly

map the high-dimensional uncertainty space to a low-dimensional space while such a mapping

relationship (represented by the decision B) is carefully optimized together with the subsequent

optimization problems.

Given any m1 ∈ [m] and B ∈ Bm1 , we obtain a relaxation of Problem (3) by extending Problem

(6). If the relaxation provides a lower bound for the optimal value of Problem (3), then we may

choose the best B ∈ Bm1 such that we obtain the largest possible lower bound. Thus, we build the

following integrated dimensionality reduction and optimization problem:

ΘL(m1) = max
B∈Bm1

min
x∈X

max
Pr∈DL

EPr

[
f
(

x, UΛ
1
2 Bξr + µ

)]
, (10)

where DL is defined in (6b) with

Sr :=
{

ξr ∈ Rm1

∣∣∣ UΛ
1
2 Bξr + µ ∈ S

}
. (11)

We will show that Problem (10) provides a lower bound for Problem (3) (see Theorem 1). Before

presenting this theorem, we prepare the following two lemmas.

LEMMA 1. When B ∈ Rm×m1 , the following three constraints are equivalent: (i)
[

Im B
B⊤ Im1

]
⪰ 0, (ii) BB⊤ ⪯

Im, and (iii) B⊤B ⪯ Im1 .

Lemma 1 shows that both BB⊤ ⪯ Im and B⊤B ⪯ Im1 can be reformulated as an SDP constraint[
Im B
B⊤ Im1

]
⪰ 0. Although this SDP constraint has a high dimension at m + m1, it is very sparse and

usually does not create additional computational challenges.
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LEMMA 2. For any matrix V ∈ Rm×n and symmetric matrices X ∈ Rm×m and Y ∈ Rm×m, we have: (i) If

X ⪰ Y, then V⊤XV ⪰ V⊤YV; (ii) If n = m and V is invertible, then X ⪰ Y is equivalent to V⊤XV ⪰
V⊤YV.

Lemma 2 shows that a PSD matrix (e.g., X − Y) remains PSD if it is pre-multiplied by an arbi-

trary matrix with appropriate dimensions (e.g., V⊤) and post-multiplied by this arbitrary matrix’s

transpose (e.g., V). Furthermore, if this arbitrary matrix is invertible, then the original PSD matrix

is equivalent to the matrix after the pre-multiplication and post-multiplication. With Lemmas 1

and 2, we are now ready to present the following theorem.

THEOREM 1. The following three conclusions hold: (i) Problem (10) provides a lower bound for the optimal

value of Problem (3), i.e., ΘL(m1) ≤ ΘM(m) for any m1 ≤ m; (ii) the optimal value of Problem (10) is

nondecreasing in m1, i.e., ΘL(m1) ≤ ΘL(m2) for any m1 < m2 ≤ m; and (iii) when m1 = m, Problem (3)

and Problem (10) have the same optimal value, i.e., ΘL(m) = ΘM(m).

Theorem 1 shows that we obtain a lower bound for the optimal value of Problem (3) when

reducing the dimensionality space of ξI while optimizing the choice of B ∈ Bm1 in Problem (10).

When the reduced dimensionality (i.e., m1) is higher, we obtain a better lower bound. We maintain

the optimal value of Problem (3) if the dimensionality space is not reduced (i.e., m1 = m). Note

that the conclusions in Theorem 1 are similar to those in Theorem 2 in Cheramin et al. (2022),

both demonstrating the validity of dimensionality reduction in solving the moment-based DRO

problems. However, here by optimizing the choice of B ∈ Bm1 , Problem (10) provides a better

lower bound than Problem (6) (i.e., the PCA approximation in Cheramin et al. 2022) does because

the latter problem is a special case of the former problem. More importantly, we may expect to

close the gap between ΘL(m1) and ΘM(m) when we choose a small m1. To that end, we follow the

PCA approximation (7) to reformulate Problem (10) as the following SDP formulation:

ΘL(m1) = max
B∈Bm1

Θ(m1, B), (12)

where

Θ(m1, B) := min
x,s,λ̂,
qr,Qr

ϕ(m1, s, qr, Qr) (13a)

s.t.

 χ(k, x, s, λk)
1
2

(
qr +

(
UΛ

1
2 B
)⊤

ψ(k, x, λk)

)⊤

1
2

(
qr +

(
UΛ

1
2 B
)⊤

ψ(k, x, λk)

)
Qr

⪰ 0,

∀k ∈ [K], (13b)

x ∈ X ; λ̂ = {λ1, . . . , λK} , λk ∈ Rl
+, ∀k ∈ [K]; qr ∈ Rm1 ; Qr ∈ Rm1×m1 . (13c)
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Now we would like to find an m1 < m such that ΘL(m1) in Problem (12) is close (even equal) to

ΘM(m) in Problem (4). Note that if ΘL(m1) = ΘM(m), then comparing the SDP constraints between

(4) and (12) shows that the rank of Q in the optimal solution of Problem (4) can be smaller than

m. Specifically, we are motivated to explore the low-rank property of Problem (4) and obtain the

following significant conclusion.

THEOREM 2. Consider K < m and any optimal solution (x∗, s∗, λ̂
∗
, q∗, Q∗) of Problem (4) with Sk =

s∗ − y0
k(x

∗) − λ∗⊤
k b − yk(x∗)⊤µ + λ∗⊤

k Aµ for any k ∈ [K]. We can always construct another opti-

mal solution (x∗, s∗, λ̂
∗
, q′, Q′) of Problem (4) such that rank(Q′) ≤ K, q′ = Vδ, Q′ = VY11V⊤, and

(UΛ
1
2 )⊤(A⊤λ∗

k − yk(x∗)) = Vνk for any k ∈ [K], where Y11 ∈ RK×K, Y11 ⪰ 0, V = [vk, ∀k ∈ [K]] ∈ Rm×K

with orthonormal vectors vk ∈ Rm, δ ∈ RK, and νk ∈ RK for any k ∈ [K] depend on the optimal solution

(x∗, s∗, λ̂
∗
, q∗, Q∗).

Proof. Note that the optimal solution (x∗, s∗, λ̂
∗
, q∗, Q∗) of Problem (4) leads to the optimal

value s∗ + γ2Im • Q∗ +
√

γ1 ∥q∗∥2. Based on this optimal solution, we construct a feasible solution

of Problem (4), denoted by (x′, s′, λ̂
′
, q′, Q′) such that x′ = x∗, s′ = s∗, and λ̂

′
= λ̂

∗
.

Now we construct the values of q′ and Q′. By constraints (4b), we have Sk
1
2

(
q∗ +

(
UΛ

1
2

)⊤
(A⊤λ∗

k − yk (x∗))

)⊤

1
2

(
q∗ +

(
UΛ

1
2

)⊤
(A⊤λ∗

k − yk (x∗))

)
Q∗

⪰ 0, ∀k ∈ [K].

(14)

We can equivalently rewrite (14) as

4SkQ∗ ⪰
(

q∗ +
(

UΛ
1
2

)⊤ (
A⊤λ∗

k − yk(x
∗)
))(

q∗ +
(

UΛ
1
2

)⊤ (
A⊤λ∗

k − yk(x
∗)
))⊤

, ∀k ∈ [K]; Q∗ ⪰ 0.

(15)

Note that, if Sk > 0 for any k ∈ [K], then (14) is equivalent to (15) by Schur complement; other-

wise, when Sk = 0 for some k ∈ [K], we have (1/2)(q∗ + (UΛ1/2)⊤(A⊤λ∗
k − yk(x∗))) = 0m by the

definition of a PSD matrix. Thus, (14) is equivalent to Q∗ ⪰ 0, i.e., (15).

Note that K < m. Thus, through the Gram–Schmidt process, we can always construct K

orthonormal vectors vk ∈ Rm, ∀k ∈ [K], and K real vectors κk ∈ RK, ∀k ∈ [K], such that(
UΛ

1
2

)⊤ (
A⊤λ∗

k − yk(x∗)
)
= Vκk, ∀k ∈ [K], (16)

V = [vk, ∀k ∈ [K]] ∈ Rm×K. We further extend V to [V, V̄] ∈ Rm×m with V̄ ∈ Rm×(m−K) such that

all the column vectors of [V, V̄] can span the space of Rm. As q∗ ∈ Rm, we can find κ0 ∈ RK and

κ̄0 ∈ Rm−K such that

q∗ = Vκ0 + V̄κ̄0. (17)
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As Q∗ ∈ Rm×m, we can then decompose Q∗ as

Q∗ = [V V̄]

[
Y11 Y12

Y21 Y22

] [
V⊤

V̄⊤

]
= VY11V⊤ + V̄Y21V⊤ + VY12V̄⊤ + V̄Y22V̄⊤, (18)

where Y11 ∈ RK×K, Y12 ∈ RK×(m−K), Y21 ∈ R(m−K)×K, and Y22 ∈ R(m−K)×(m−K). As Q∗ ⪰ 0, we have[
Y11 Y12
Y21 Y22

]
= [V V̄]

−1 Q∗
[

V⊤

V̄⊤

]−1
⪰ 0 by Lemma 2. By (15), (16), and (17), we have

4SkQ∗ ⪰ (Vκ0 + V̄κ̄0 + Vκk) (Vκ0 + V̄κ̄0 + Vκk)
⊤ , ∀k ∈ [K]. (19)

By (18) and (19), we have

4Sk
(
VY11V⊤ + V̄Y21V⊤ + VY12V̄⊤ + V̄Y22V̄⊤)⪰ (Vκ0 + V̄κ̄0 + Vκk) (Vκ0 + V̄κ̄0 + Vκk)

⊤ ,∀k ∈ [K].

By Lemma 2, we further have

4SkV⊤(VY11V⊤ + V̄Y21V⊤ + VY12V̄⊤ + V̄Y22V̄⊤)V

⪰ V⊤(Vκ0 + V̄κ̄0 + Vκk)(Vκ0 + V̄κ̄0 + Vκk)
⊤V, ∀k ∈ [K]. (20)

Because V⊤V̄ = 0, V̄⊤V = 0, and V⊤V = IK, constraints (20) become

4SkY11 ⪰ (κ0 + κk)(κ0 + κk)
⊤, ∀k ∈ [K]. (21)

Now we let q′ = Vκ0 and Q′ = VY11V⊤. By (21) and Lemma 2, we have

4SkQ′ =4SkVY11V⊤ ⪰ (Vκ0 + Vκk)(Vκ0 + Vκk)
⊤

=

(
q′ +

(
UΛ

1
2

)⊤ (
A⊤λ∗

k − yk(x∗)
))(

q′ +
(

UΛ
1
2

)⊤ (
A⊤λ∗

k − yk(x∗)
))⊤

, ∀k ∈ [K]. (22)

Comparing (4b) and (22), we have (x′, s′, λ̂
′
, q′, Q′) is a feasible solution of Problem (4) and the

corresponding objective value is

s′ + γ2Im • Q′ +
√

γ1 ∥q′∥2 ≥ s∗ + γ2Im • Q∗ +
√

γ1 ∥q∗∥2 , (23)

where the inequality holds because (x′, s′, λ̂
′
, q′, Q′) is a feasible solution of Problem (4) and Prob-

lem (4) is a minimization problem. Note that

Im • Q∗ = tr(Q∗) = tr
(
[V V̄]

[
Y11 Y12

Y21 Y22

] [
V⊤

V̄⊤

])
= tr

([
Y11 Y12

Y21 Y22

] [
V⊤

V̄⊤

]
[V V̄]

)
= tr

([
Y11 Y12

Y21 Y22

])
= IK • Y11 + Im−K • Y22 ≥ IK • Y11 = tr(Y11) = tr(Y11V⊤V) = tr(VY11V⊤) = tr(Q′),

where the first equality holds by the definition of a matrix’s trace, the second equality holds by

(18), the third equality holds by the cyclic property of a matrix’s trace, the fourth equality holds
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because
[

V⊤

V̄⊤

]
[V V̄] = Im, and the first inequality holds because

[
Y11 Y12
Y21 Y22

]
⪰ 0 and accordingly Im−K •

Y22 ≥ 0. Meanwhile,

∥q∗∥2
2 =(q∗)

⊤ q∗ = (Vκ0 + V̄κ̄0)
⊤
(Vκ0 + V̄κ̄0) =

(
κ⊤

0 κ0 + κ̄⊤
0 κ̄0
)

≥ κ⊤
0 κ0 = (Vκ0)

⊤
(Vκ0) = (q′)

⊤ q′ = ∥q′∥2
2 ,

where the second equality holds by (17), the third equality holds because V⊤V̄ = 0, V̄⊤V =

0, V⊤V = IK, V̄⊤V̄ = Im−K, and the first inequality holds because κ̄⊤
0 κ̄0 ≥ 0. Thus, we have

s′ + γ2Im • Q′ +
√

γ1 ∥q′∥2 ≤ s∗ + γ2Im • Q∗ +
√

γ1 ∥q∗∥2 . (24)

Combining (23) and (24) leads to

s′ + γ2Im • Q′ +
√

γ1 ∥q′∥2 = s∗ + γ2Im • Q∗ +
√

γ1 ∥q∗∥2 ,

which indicates that (x′, s′, λ̂
′
, q′, Q′) is also an optimal solution of Problem (4). Meanwhile, note

that rank(Q′) = rank(VY11V⊤) ≤ min{rank(V), rank(Y11)} ≤ K, δ = κ0, and νk = κk for any k ∈
[K]. Thus, the proof is complete. □

When K ≥ m, we have rank(Q′) ≤ m ≤ K, thereby no need to consider this case in Theorem

2. Note that K is the number of pieces formulating the piecewise linear function f (x, ξ) and it is

usually small for practical problems. For instance, in the CVaR and newsvendor problems, we

have K = 2 (see Example 1 and Section 7.1.1, respectively). Thus, Theorem 2 shows that the rank

of Q′ that optimizes Problem (4), i.e., K, is usually small. We then expect that for any m1 ∈ [m] and

B ∈ Bm1 , the rank of the optimal Qr in Problem (13) might also be no greater than K and hence

small for practical problems. With Problem (12), we then would like to choose a small m1 ≥ K and

find a B ∈ Bm1 such that ΘL(m1) can be close to ΘM(m).

We used to conjecture that the optimal value of Problem (12) equals that of Problem (4) when

m1 ≥ K. Most numerical experiments (see Section 7) show this conjecture may be correct, while

we also find a feasible solution of Problems (12) and (13) such that the corresponding objective

value is equal to the optimal value of the original Problem (4) (see Theorem 7 in Appendix C.4).

Nevertheless, we find an example to illustrate that the optimal value of Problem (12) with m1 = K

can be strictly less than the optimal value of Problem (4) (see Example 2 in Appendix C.5). Thus,

while the optimized dimensionality reduction maintains very high-quality solutions (mostly the

optimal solutions as shown in our later numerical experiments in Section 7), we may still poten-

tially lose some useful information that achieves the optimal solution of the original problem. To

resolve this issue, we will also derive an upper bound and a new lower bound for the optimal

value of the original problem in the later sections.
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Note that Problem (12) is a nonconvex optimization problem due to the max-min operator.

That is, we develop a low-dimensional nonconvex optimization technique to solve the original

high-dimensional SDP problem, which can be significantly difficult to solve because of the large

sizes of SDP matrices. To further efficiently solve Problem (12), we first reformulate it into a bilin-

ear SDP problem (see Proposition 2) under the following assumption and then propose efficient

algorithms (see Section 6) to solve it.

ASSUMPTION 2. The set X is convex with at least one interior point. More specifically, we consider the

convex set X in a generic SDP form: X = {x ∈ Rn | ∑n
i=1(∆ixi) + ∆0 ⪰ 0}, where ∆i ∈ Rτ×τ is symmetric

for any i ∈ {0, 1, . . . , n} and some τ ≥ 1.

We use aijx + a0
ij (∀i ∈ [τ], j ∈ [τ]) to denote the elements of the matrix ∑n

i=1(∆ixi) + ∆0, where

a⊤
ij ∈ Rn. We let y0

k(x) = w0
kx + d0

k and yk(x) = (w1
kx + d1

k, . . . , wm
k x + dm

k )
⊤ = Wkx + dk for any k ∈

[K], where (wi
k)

⊤ ∈ Rn for any i ∈ {0, 1, . . . , m} and k ∈ [K], Wk ∈ Rm×n for any k ∈ [K], and dk ∈ Rm

for any k ∈ [K]. The following proposition holds.

PROPOSITION 2. Under Assumption 2, Problem (12) has the same optimal value as the following bilinear

SDP formulation:

ΘL(m1) = max
tk ,pk ,Pk ,∀k∈[K],

Z,B

K

∑
k=1

(
tkd0

k +

(
tkµ

⊤ + p⊤
k

(
UΛ

1
2 B
)⊤
)

dk

)
−

τ

∑
i=1

τ

∑
j=1

zija0
ij (25a)

s.t. 1 −
K

∑
k=1

tk = 0,
√

γ1 −
∥∥∥∥∥ K

∑
k=1

pk

∥∥∥∥∥
2

≥ 0, γ2Im1 −
K

∑
k=1

Pk = 0, (25b)

tk (Aµ − b)⊤ + p⊤
k

(
UΛ

1
2 B
)⊤

A⊤ ≤ 0, ∀k ∈ [K], (25c)
K

∑
k=1

(
tkw0

k +

(
tkµ

⊤ + p⊤
k

(
UΛ

1
2 B
)⊤
)

Wk

)
−

τ

∑
i=1

τ

∑
j=1

zijaij = 0, (25d)[
tk p⊤

k
pk Pk

]
⪰ 0, ∀k ∈ [K], B⊤B = Im1 , Z ⪰ 0, (25e)

where pk ∈ Rm1 (k ∈ [K]), Pk ∈ Rm1×m1 (k ∈ [K]), Z ∈ Rτ×τ, B ∈ Rm×m1 , and zij is the element of the

matrix Z. In addition, Z is the dual variable of the constraint ∑n
i=1(∆ixi) + ∆0 ⪰ 0 in X and

[
tk p⊤

k
pk Pk

]
(∀k ∈ [K]) are the dual variables of constraints (13b).

Although solving Problem (25) may not achieve the optimal value of Problem (4), Theorem 7

demonstrates that we are not far from our target to close the approximation gap and motivates

us to further develop an upper bound for the optimal value of Problem (4) while closing the gap

between them in the next section.
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4. Upper Bound

Motivated by the benefits of introducing a decision variable B ∈ Bm1 in (9) to develop an outer

approximation, we develop an inner approximation for Problem (3) in this section by relaxing the

second-moment constraint in DM while optimizing the choice of components in ξI to be relaxed,

leading to the best possible upper bound for the optimal value of Problem (3). Specifically, given

m1 ∈ [m], we build the following optimized inner approximation of Problem (3):

ΘU(m1) := min
B∈Bm1

Θ(m1, B), (26)

where

Θ(m1, B) = min
x∈X

max
PI∈DU

EPI

[
f
(

x, UΛ
1
2 ξI + µ

)]
(27)

with

DU(SI, γ1, γ2) =

PI

∣∣∣∣∣∣ PI (ξI ∈ SI) = 1, EPI

[
ξ⊤

I

]
EPI

[
ξI

]
≤ γ1

EPI

[
B⊤ξIξ

⊤
I B
]
⪯ γ2Im1

 . (28)

The second-moment constraint in DU is relaxed from EPI [ξIξ
⊤
I ]⪯ γ2Im, where we introduce a deci-

sion variable B ∈ Bm1 to optimize such a relaxation of the ambiguity set, leading to optimized dimen-

sionality reduction over this second-moment constraint. Intuitively, the feasible region defined by

the ambiguity set DU is larger than that by DM. Therefore, we have several conclusions based on

this new ambiguity set DU.

THEOREM 3. The following three conclusions hold: (i) Problem (26) provides an upper bound for the

optimal value of Problem (3), i.e., ΘU(m1)≥ ΘM(m) for any m1 ≤ m; (ii) the optimal value of Problem (26)

is nonincreasing in m1, i.e., ΘU(m1) ≥ ΘU(m2) for any m1 < m2 ≤ m; and (iii) when m1 = m, Problem

(26) and Problem (3) have the same optimal value, i.e., ΘU(m) = ΘM(m).

Theorem 3 shows that Problem (26) provides a valid upper bound for the optimal value of

Problem (3), ΘM(m), and the upper bound is closer to ΘM(m) if less information is relaxed in DU.

PROPOSITION 3. Under Assumption 1, Problem (27) has the same optimal value as the following SDP

formulation:

Θ(m1, B) = min
x,s,λ̂,

q,Qr,û

ϕ(m1, s, q, Qr) (29a)

s.t.
[

χ(k, x, s, λk)
1
2 u⊤

k
1
2 uk Qr

]
⪰ 0, ∀k ∈ [K], (29b)

q +
(

UΛ
1
2

)⊤
ψ(k, x, λk) = Buk, ∀k ∈ [K], (29c)

x ∈ X , q ∈ Rm, Qr ∈ Rm1×m1 , (29d)

λ̂ = {λ1, . . . , λK} , λk ∈ Rl
+, û = {u1, . . . , uK} , uk ∈ Rm1 , ∀k ∈ [K]. (29e)
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Proposition 3 shows that Problem (26) can be updated by replacing its inner optimization Prob-

lem (27) with Problem (29). More importantly, Problem (26) becomes a low-dimensional SDP

formulation, which can be solved more efficiently than solving the original high-dimensional for-

mulation (4). With the updated Problem (26), we have the following conclusion.

THEOREM 4. Consider the optimal solution (x∗, s∗, λ̂
∗
, q′, Q′) of Problem (4), Sk (∀k ∈ [K]), V, δ, Y11,

and νk (∀k ∈ [K]) that are defined in Theorem 2. If m1 ≥ K, then ΘU(m1) = ΘM(m).

Theorem 4 shows that when m1 ≥ K, the optimal value of Problem (26) is always equal to the

optimal value of the original problem, ΘM(m). Specifically, when m1 = K, there exist optimal B =

V and Qr = Y11 in Problem (26) such that ΘU(m1) = Θ(m1, V). Recall that K represents the number

of pieces in the piecewise linear objective function f (x, ξ) and also determines the rank of the

optimal Q in the original Problem (4) (see Theorem 2). Thus, we can decompose an optimal Q with

a rank of K into VY11V⊤, where V ∈ Rm×K such that V⊤V = IK and Y11 ∈ RK×K. In Problem (26),

when m1 = K, we have B ∈ Rm×K and Qr ∈ RK×K in the subproblem (29), by which constructing

a solution with B = V and Qr = Y11 shows that ΘU(K) = ΘM(m). Clearly, such a tightness result

also holds when m1 > K by the monotonicity result in Theorem 3.

We may further interpret the insights as follows. Comparing the inner-approximation Problem

(26) and the original Problem (3), we can notice that they differ only in the second-moment con-

straints in their ambiguity sets. When m1 = K, we relax the original second-moment constraint

from EPI [ξIξ
⊤
I ] ⪯ γ2Im to B⊤EPI [ξIξ

⊤
I ]B ⪯ γ2IK with B ∈ BK. That is, when such a relaxation is

jointly optimized via the decision B with the subsequent SDP reformulation, it eventually does

not lead to a different optimal value. Specifically, under a worst-case distribution P∗
I generated by

solving Problem (3), we have EP∗
I
[ξIξ

⊤
I ] ⪯ γ2Im may be equivalent to B⊤EP∗

I
[ξIξ

⊤
I ]B ⪯ γ2IK. Such

equivalence largely depends on the low-rank property provided by Theorem 2, which states that

the rank of an optimal solution of Q of Problem (4) is not larger than K. Note that the variable Q

in Problem (4) is a dual variable with respect to the second-moment constraint EPI [ξIξ
⊤
I ] ⪯ γ2Im,

indicating that the rank of EP∗
I
[ξIξ

⊤
I ] may not be large. More specifically, we have the following

proposition holds.

PROPOSITION 4. For any PSD matrix X ∈ Rm×m such that rank(X) ≤ m1 ≤ m, we have the following

equivalence holds:

X ⪯ Im ⇐⇒
(
B⊤XB ⪯ Im1 , ∀B ∈ Bm1

)
.

COROLLARY 1. For any PSD matrix X ∈ Rm×m and rank(X) ≤ m1 ≤ m, there exists a B ∈ Bm1 such

that X ⪯ Im is equivalent to B⊤XB ⪯ Im1 .
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In the context of solving Problem (3) and its inner-approximation Problem (26), Proposition 4

and Corollary 1 show that there exist a worst-case distribution P∗
I ∈ DM such that the rank of

EP∗
I
[ξIξ

⊤
I ] is not larger than K and an optimal solution B∗ ∈ Bm1 such that EP∗

I
[ξIξ

⊤
I ] ⪯ γ2Im is

equivalent to (B∗)⊤EP∗
I
[ξIξ

⊤
I ]B

∗ ⪯ γ2IK. As such, even when we use a relaxed second-moment

constraint, Problem (26) with m1 ≥ K does not lose the optimality.

5. Lower Bound Revisited

Given that Problem (26) with m1 = K maintains the optimal value of the original Problem (3), we

can further perform dimensionality reduction based on Problem (26) as we do in Section 3, thereby

obtaining a new lower bound for the optimal value of Problem (3). Specifically, we consider K ≤ m

and recall that BK = {B ∈ Rm×K | B⊤B = IK}. Given any m1 ∈ [K], we consider

min
B∈BK

min
x∈X

max
PI∈DL2

EPI

[
f
(

x, UΛ
1
2 ξI + µ

)]
(30)

with

DL2(SI, γ1, γ2) =

PI

∣∣∣∣∣∣ PI (ξI ∈ SI) = 1, EPI

[
ξ⊤

I

]
EPI

[
ξI

]
≤ γ1

EPI

[
B⊤

1 ξIξ
⊤
I B1

]
⪯ γ2Im1 , EPI

[
B⊤

2 ξIξ
⊤
I B2

]
⪯ 0(K−m1)×(K−m1)

 ,

B = [B1, B2], B1 ∈ Rm×m1 , and B2 ∈ Rm×(K−m1). To obtain the above ambiguity set DL2, we

shrink the ambiguity set DU of Problem (26) by replacing the second-moment constraint

EPI [B
⊤ξIξ

⊤
I B] ⪯ γ2IK with EPI [B

⊤
1 ξIξ

⊤
I B1] ⪯ γ2Im1 and EPI [B

⊤
2 ξIξ

⊤
I B2] ⪯ 0(K−m1)×(K−m1). The con-

straint EPI [B
⊤
2 ξIξ

⊤
I B2] ⪯ 0(K−m1)×(K−m1) implies that we project the random vector ξI to the space

spanned by the columns of B2 and the second-moment value of the projected random vector is

fixed at 0. By doing so, we may slightly lose some information to characterize the distribution

PI, but we can obtain a formulation with an even smaller size than Problem (26) and maintain

high-quality solutions. Specifically, the following theorem holds.

THEOREM 5. Under Assumption 1, by dualizing the inner maximization problem of Problem (30), we

obtain the following SDP formulation:

ΘL2(m1) = min
x,s,λ̂,

q,Q′
r,û′ ,û′′ ,

B1,B2

ϕ(m1, s, q, Qr) (31a)

s.t.
[

χ(k, x, s, λk)
1
2(u

′
k)

⊤

1
2 u′

k Q′
r

]
⪰ 0, ∀k ∈ [K], (31b)

q +
(

UΛ
1
2

)⊤
ψ(k, x, λk) = B1u′

k + B2u′′
k , ∀k ∈ [K], (31c)

x ∈ X , q ∈ Rm, Q′
r ∈ Rm1×m1 , (31d)

B1 ∈ Rm×m1 , B2 ∈ Rm×(K−m1), [B1, B2]
⊤[B1, B2] = IK, (31e)
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λ̂ = {λ1, . . . , λK} , λk ∈ Rl
+, ∀k ∈ [K], (31f)

û′ = {u′
1, . . . , u′

K} , u′
k ∈ Rm1 , ∀k ∈ [K], (31g)

û′′ = {u′′
1 , . . . , u′′

K} , u′′
k ∈ RK−m1 , ∀k ∈ [K]. (31h)

In addition, the following three conclusions hold: (i) Problem (31) provides a lower bound for the optimal

value of Problem (4), i.e., ΘL2(m1) ≤ ΘM(m) for any m1 ≤ K; (ii) the optimal value of Problem (31) is

nondecreasing in m1, i.e., ΘL2(m1)≤ ΘL2(m2) for any m1 < m2 ≤ K; and (iii) when m1 = K, Problem (31)

and Problem (4) have the same optimal value, i.e., ΘL2(K) = ΘM(m).

Recall that the lower bound provided by Problem (12) may not achieve the optimal value of

the original Problem (4) when reducing the dimensionality to K. However, the new lower bound

provided by Problem (31) achieves the optimal value of the original problem when m1 = K.

6. Efficient Algorithm

In Sections 3–5, we provide two outer approximations (i.e., Problems (25) and (31)) leading to

lower bounds for the optimal value of Problem (3) and an inner approximation (i.e., Problem (26))

leading to an upper bound. Both Problems (26) and (31) can achieve the same optimal value as the

original problem when m1 = K. Note that the three approximations are low-dimensional bilinear

SDP problems, which are nonconvex. It is hard to obtain the optimal solution of a bilinear SDP

problem. To develop computationally efficient algorithms for bilinear SDPs, we derive Alternat-

ing Direction Method of Multipliers (ADMM) algorithms (Hajinezhad and Shi 2018, Wang et al.

2019, Themelis and Patrinos 2020) to solve the three approximations (see Appendix F.1 for more

detailed reasons for choosing ADMM rather than other techniques). Meanwhile, it is important

to note that our proposed algorithms are used to obtain a near-optimal dimensionality reduction

matrix B. Other solutions (e.g., x) returned by the ADMM algorithm are not used here. Given this

near-optimal B, we can solve the low-dimensional SDP problems to retrieve the efficient lower

and upper bounds for the original optimal value (see details in Section 6.2).

Note that Problems (25), (26), and (31) share the following generic formulation:

min
B,x,ũk ,uk ,∀k∈[K]

g (x, uk, ũk,∀k ∈ [K]) (32a)

s.t. (x, uk, ũk, ∀k ∈ [K]) ∈ U , (32b)

B⊤B = Im1 , (32c)

ũk = Buk, ∀k ∈ [K], (32d)
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where B ∈ Rm×m1 , uk ∈ Rm1 , ũk ∈ Rm, ∀k ∈ [K], U is a convex set with at least one interior point,

and g(·) is a differentiable convex function. Note that constraints (32c) and (32d) are bilinear

constraints. We consider the following augmented Lagrangian problem for Problem (32):

min
x,ũk ,uk ,∀k∈[K];

B; βk ,∀k∈[K]

{
g (x, uk, ũk,∀k ∈ [K]) +

K

∑
k=1

β⊤
k (ũk − Buk) +

K

∑
k=1

ρk

2
∥ũk − Buk∥2

2

∣∣∣∣∣ (32b) − (32c)

}
, (33)

where βk ∈ Rm (∀k ∈ [K]) are Lagrangian multipliers and ρk > 0 (∀k ∈ [K]) are the penalty param-

eters. Thus, we design Algorithm 1 to solve Problem (33). Thereafter, we use the superscript i to

denote the iteration step of Algorithm 1.

Algorithm 1 ADMM for Problem (32)

Initialize: B0, β0
k,∀k ∈ [K]

Repeat: update (x, ũk, uk,∀k ∈ [K]) , B and βk(∀k ∈ [K]) alternatingly by

Given Bi and βi
k for any k ∈ [K], solve Problem (33) to obtain the optimal solution

(x, ũk, uk,∀k ∈ [K])i+1;

Given (x, ũk, uk,∀k ∈ [K])i+1 and βi
k for any k ∈ [K], solve Problem (33) to obtain the optimal

solution Bi+1;

βi+1
k = βi

k + ρi
k

(
ũi+1

k − Bi+1ui+1
k

)
, ∀k ∈ [K];

Until Convergence.

In Algorithm 1, we initialize B0 =
[

Im1
0(m−m1)×m1

]
based on the PCA approximation in Cheramin

et al. (2022) and set β0
k = 0 for any k ∈ [K]. We terminate the iteration when the improvement

(regarding the relative gap) of the objective value is less than 10−4. In this algorithm, given B and

βk for any k ∈ [K], Problem (33) becomes a low-dimensional (i.e., m1 + 1) SDP problem. Given

(x, ũk, uk, βk,∀k ∈ [K]), Problem (33) becomes a nonconvex optimization problem, while the fol-

lowing proposition shows that it has an analytical optimal solution. Thus, Algorithm 1 can be

performed efficiently.

PROPOSITION 5. Given (x, ũk, uk, βk,∀k ∈ [K]), Problem (33) has an optimal solution B∗ = ŨṼ⊤, where

∑K
k=1(βku

⊤
k + ρkũku⊤

k ) = ŨΣ̃Ṽ⊤ for Ũ ∈ Rm×m1 , Σ̃ ∈ Rm1×m1 , and Ṽ ∈ Rm1×m1 by the singular value

decomposition (SVD).

6.1. Convergence Analyses

We further analyze the convergence property of Algorithm 1 to ensure the dimensionality reduc-

tion solution B returned by this algorithm is near-optimal, i.e., a theoretical guarantee. First, the

following lemma holds.
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LEMMA 3. Given (x, ũk, uk, βk,∀k ∈ [K]), we have B∗ = ŨṼ⊤ (an optimal solution of Problem (33)) is

also an optimal solution of the following convex optimization problem:

max
B∈Rm×m1

{
K

∑
k=1

(
βku

⊤
k + ρũku⊤

k

)
• B

∣∣∣∣∣ B⊤B ⪯ Im1

}
. (34)

To the best of our knowledge, no proof of convergence exists for the proposed ADMM algo-

rithm in our specific setting. Existing convergence results focus on different problem settings. For

instance, Hajinezhad and Shi (2018) employ the ADMM algorithm to solve a general bilinear opti-

mization problem. Similar to our approach, they penalize the linking constraint and incorporate

other constraints using an indicator function. However, in their setting, all the constraints except

the linking constraint are convex, whereas we need to further deal with the nonconvex constraint

B⊤B = I. In addition, Chen and Goulart (2023) design an ADMM algorithm for diagonally con-

strained SDPs. Due to such a specific structure, they can derive the analytical optimal solution

at each step. In contrast, the first step of our ADMM algorithm involves solving a general SDP

problem for which no analytical optimal solution can be obtained.

Next, we present the convergence properties of our proposed ADMM algorithm. We let

L (B, (x, ũk, uk,∀k ∈ [K]) , (βk,∀k ∈ [K])) =

g (x, ũk, uk,∀k ∈ [K]) +
K

∑
k=1

β⊤
k (ũk − Buk) +

K

∑
k=1

ρk

2
∥ũk − Buk∥2

2 ,

and introduce the following assumption commonly used in the convergence analysis of ADMM

(Luo et al. 2008, Shen et al. 2014, Bertsekas 2014, Bai et al. 2021).

ASSUMPTION 3. Given any k ∈ [K], the sequence {βi
k} is bounded and ∑∞

i=0 ∥βi+1
k − βi

k∥2
2 < ∞.

Because every bounded sequence has a convergent subsequence, we have

βi
k → β∗

k , i → ∞, i ∈ I , ∀k ∈ [K], (35)

where {βi
k}i∈I is a subsequence of {βi

k}. Meanwhile, under Assumption 3, by the update rule

βi+1
k = βi

k + ρi
k(ũ

i+1
k − Bi+1ui+1

k ), we have

βi+1
k − βi

k = ρi
k(ũ

i+1
k − Bi+1ui+1

k )→ 0, i → ∞, ∀k ∈ [K].

Because ρi
k > 0 for any k ∈ [K], we have

ũi
k − Biui

k → 0, i → ∞, ∀k ∈ [K]. (36)

We are now ready to state the convergence theorem of Algorithm 1 as follows.
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THEOREM 6. Let (B∗, x∗, ũ∗
k , u∗

k ,∀k ∈ [K]) be any accumulation point of the sequence {Bi, xi, ũi
k, ui

k,∀k ∈
[K]} generated by Algorithm 1. Then, (B∗, x∗, ũ∗

k , u∗
k ,∀k ∈ [K]) satisfies the first-order stationary condi-

tions of Problem (32).

Note that one sufficient condition to ensure the existence of the accumulation point is that, at

each iteration step i + 1, given Bi and (βi
k,∀k ∈ [K]) obtained from the previous iteration i, the

optimal solution of the following problem is bounded:

min
x,ũk ,uk ,∀k∈[K]

{
L
(

Bi, (x, ũk, uk,∀k ∈ [K]) ,
(

βi
k,∀k ∈ [K]

)) ∣∣∣ (32b)
}

. (37)

This implies that, at iteration step i + 1, the optimal solution of Problem (37), i.e., (x, ũk, uk,∀k ∈
[K])i+1, is bounded. By Assumption 3, the sequence {βi

k} is also bounded. It follows that Bi+1 is

also bounded because Bi+1 depends on βi
k, ui+1

k , and ũi+1
k by Proposition 5. Therefore, the bounded

sequence {Bi, xi, ũi
k, ui

k,∀k ∈ [K]} must have accumulation points.

6.2. Quality of the Dimensionality Reduction Solution B

Although the optimal value of our proposed three approximations can provide efficient lower or

upper bounds for the original optimal value, our derived ADMM algorithms may not produce

an optimal solution for each corresponding approximation problem because all three approxima-

tions are nonconvex problems. Therefore, it is important to recover the efficient lower or upper

bounds using the dimensionality reduction solution BADMM returned by the ADMM algorithms.

Clearly, a better dimensionality reduction solution BADMM leads to a better lower or upper bound.

Thus, we focus on the near-optimal dimensionality reduction solution BADMM that solving these

outer and inner approximations can produce, rather than the solution of x that the ADMM algo-

rithm returns. Specifically, we use this BADMM to recover the lower or upper bound for the optimal

value of Problem (3) as follows.

(i) For Problem (25) (the first outer approximation), given the BADMM returned by the ADMM

algorithm, we solve the low-dimensional SDP problem (13) to retrieve the lower bound.

(ii) For Problem (26) (the inner approximation), given the BADMM returned by the ADMM algo-

rithm, we solve the low-dimensional SDP problem (29) to retrieve the upper bound.

(iii) For Problem (31) (the second outer approximation), given the [B1, B2]ADMM returned by the

ADMM algorithm, we solve the low-dimensional SDP problem (13) to retrieve the lower

bound.

Note that for Problem (31), given the [B1, B2]ADMM returned by the ADMM algorithm, solving

the subproblem of Problem (31) may not provide a lower bound for the original optimal value.

Therefore, to recover a lower bound, we solve the low-dimensional SDP problem (13) to retrieve

the lower bound.
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In addition, we can measure the quality of the BADMM by deriving a theoretical interval in which

the optimal value of Problem (3) is located via the following proposition.

PROPOSITION 6. Given any m1 ∈ [m] and B′ ∈ Bm1 , we use (x∗, s∗, λ̂
∗
, q∗

r , Q∗
r ) to denote an optimal

solution of Problem (13). Let P = ∑K
k=1(γ2/4)Im • Mk and S = min{Sk, ∀k ∈ [K]}, where

Mk =

(
B′q∗

r +
(

UΛ
1
2

)⊤ (
A⊤λ∗

k − yk(x∗)
))(

B′q∗
r +

(
UΛ

1
2

)⊤ (
A⊤λ∗

k − yk(x∗)
))⊤

, ∀k ∈ [K],

Sk = s∗ − y0
k(x

∗)− λ∗⊤
k b − yk(x∗)⊤µ + λ∗⊤

k Aµ, ∀k ∈ [K].

We have

ΘM(m)− Θ(m1, B′)≤ P
S

1(
√

P − S < 0) + (2
√

P − S)1(
√

P − S ≥ 0).

Given any feasible B′ ∈ Bm1 , solving the low-dimensional SDP problem (13) to obtain

(x∗, s∗, λ̂
∗
, q∗

r , Q∗
r ) is efficient. Thus, by solving an easy problem, we can obtain a theoretical lower

bound Θ(m1, B′) and upper bound Θ(m1, B′) + (P/S)1(
√

P − S < 0) + (2
√

P − S)1(
√

P − S ≥ 0)

for the original Problem (3) and quantify the gap between them in Proposition 6. More specifically,

we can obtain their theoretical relative gap (denoted by “Theoretical Gap”) as follows:

Theoretical Gap =
P
S 1(

√
P − S < 0) + (2

√
P − S)1(

√
P − S ≥ 0)

|Θ(m1, B′)| × 100%. (38)

Note that this theoretical gap can be applied to all the three proposed approximations (i.e., Prob-

lems (25), (26), and (31)) because the theoretical gap can be calculated for any B′ ∈ Bm1 and all

three approximations can yield a high-quality dimensionality reduction matrix BADMM satisfying

(BADMM)⊤BADMM = Im1 by using our proposed ADMM algorithm.

Proposition 6 implies that a better BADMM returned by our proposed ADMM algorithms leads

to a tighter theoretical gap. Note that our proposed three approximations provide efficient lower

and upper bounds for the original Problem (3) and two of them are exact when we reduce the

dimensionality of the uncertain space from m to m1 = K (see Theorems 4 and 5). Thus, we expect

to have a very high-quality dimensionality reduction solution BADMM returned by our ADMM

algorithms, thereby implying a high-quality theoretical gap (38). Our numerical results in Section

7.2 show that such a theoretical gap is usually less than 5%.

7. Numerical Experiments

We perform extensive numerical experiments to demonstrate the effectiveness of our ODR

approach in solving two moment-based DRO problems: multiproduct newsvendor and

production-transportation problems. The mathematical models are implemented in MATLAB

R2022a (ver. 9.12) by the modeling language CVX (ver. 2.2) and solved by the Mosek solver
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(ver. 9.3.20) on a PC with 64-bit Windows Operating System, an Intel(R) Xeon(R) W-2195 CPU @

2.30GHz processor, and a 128 GB of memory. The time limit for each run is set at two hours. In

Section 7.1, we specify the proposed inner and outer approximations under the ODR approach in

the context of the multiproduct newsvendor and production-transportation problems. In Section

7.2, we report and analyze all the numerical results. All the data instances and source code can be

found in Jiang et al. (2025).

7.1. Numerical Setup

7.1.1. Multiproduct Newsvendor Problem In the deterministic multiproduct newsvendor

problem (Cheramin et al. 2022), we consider m products and the demand for each product i ∈ [m]

is ξi. Given the wholesale, retail, and salvage prices: c ∈ Rm
+, v ∈ Rm

+, and g ∈ Rm
+, respectively, we

decide an ordering amount x ∈ Rm
+ to minimize the total cost

f (x, ξ) = max
{
(c − v)⊤ x, (c − g)⊤ x + (g − v)⊤ ξ

}
.

Note that this piecewise linear function f (x, ξ) has only two pieces, i.e., K = 2. When the demand

ξ is uncertain and its probability distribution belongs to a distributional ambiguity set DM0 as

defined in Section 2, we obtain the following DRO counterpart:

min
x≥0

max
P∈DM0

EP

[
max

{
(c − v)⊤ x, (c − g)⊤ x + (g − v)⊤ ξ

}]
. (39)

We can apply Proposition 1 to reformulate Problem (39) and the proposed inner and outer approx-

imations (i.e., Problems (25), (26), and (31)) to approximate it (see details in Appendix G.1).

When the dimension m of ξ is large, the original SDP reformulation of Problem (39) (i.e., Prob-

lem (108)) becomes very difficult to solve because of the large-scale SDP constraints. Nevertheless,

our approximations under the ODR approach (i.e., Problems (109)–(111)) have SDP matrices with

very small sizes (e.g., K + 1 = 3), largely reducing the computational burden while maintaining

the solution quality.

7.1.2. Production-Transportation Problem (Bertsimas et al. 2010) The deterministic

production-transportation problem considers G suppliers, each with normalized capacity one,

and H customers, each with demand dj (∀j ∈ [H]) such that ∑H
j=1 dj ≤ G. Supplier i ∈ [G] produces

xi goods with unit production cost ci and delivers zij goods to customer j ∈ [H] with unit

transportation cost ξij, thereby satisfying all customer demands and minimizing the total cost.

We can formulate this problem as follows:

min
x,z

c⊤x + ξ⊤z (40a)



24

s.t. 0 ≤ xi ≤ 1, ∀i ∈ [G], (40b)
G

∑
i=1

zij = dj, ∀j ∈ [H],
H

∑
j=1

zij = xi, ∀i ∈ [G], zij ≥ 0, ∀i ∈ [G], j ∈ [H], (40c)

where ξ = (ξij, ∀i ∈ [G], j ∈ [H])⊤ and zij = (zij, ∀i ∈ [G], j ∈ [H])⊤. Following the same setting in

Bertsimas et al. (2010), we consider ξ is random and its probability distribution P belongs to DM0.

Thus, we can derive the two-stage DRO counterpart:

min
x

{
c⊤x + max

P∈DM0
EP [U (Q (x, ξ))]

∣∣∣∣ (40b)
}

, (41)

where U (Q(x, ξ)) = maxk∈[K]{αkQ(x, ξ) + βk} is a convex nondecreasing disutility function that

incorporates risk attitudes into the second-stage cost and Q(x, ξ) = minz{ξ⊤z | (40c)}. We can

reformulate Problem (41) into an SDP problem and apply our inner and outer approximations to

approximate it (see details in Appendix G.2).

When the dimension GH of ξ is large, the original SDP reformulation of Problem (41) (i.e.,

Problem (112)) becomes very difficult to solve due to the high-dimensional SDP constraints, while

our approximations (i.e., Problems (114)–(116)) have SDP matrices with very small sizes (e.g.,

K + 1) and can be solved efficiently.

7.2. Numerical Results

We compare the performance of our ODR approach (that provides two lower bounds and one

upper bound) with three benchmark approaches: (i) the Mosek solver with default settings,

which can provide the optimal value of the original problem; (ii) the low-rank algorithm pro-

posed by Burer and Monteiro (2003) to solve the SDP reformulation of the original problem,

i.e., Problem (4), generating a lower bound for the optimal value of Problem (4); and (iii) the

existing PCA approximation proposed by Cheramin et al. (2022), generating PCA-based lower

and upper bounds. For the third benchmark, we consider the reduced dimension m1 ∈ {100% ×

dim(ξ), 80% × dim(ξ), 60% × dim(ξ), 40% × dim(ξ), 20% × dim(ξ), K}, where dim(ξ) represents

the dimension of the random vector ξ. Note that K = 2 in the multiproduct newsvendor prob-

lem. For the production-transportation problem, we consider K ∈ {5, 10, 15}. Our proposed inner

and outer approximations under the ODR approach are solved using Algorithm 1, providing

near-optimal B∗ and recovering valid lower and upper bounds (see Section 6.2). For all instances,

through tuning a range of values, we set the initial Lagrangian multipliers (βk,∀k ∈ [K]) to 0 and

the penalty parameters (ρk,∀k ∈ [K]) to 200 in Algorithm 1.
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7.2.1. Instance Generation and Table Header Description We consider various instances

of the multiproduct newsvendor and production-transportation problems. In the multiproduct

newsvendor problem, the mean and standard deviation of ξ are randomly generated from the

intervals [0, 10] and [1, 2], respectively. We further generate a correlation matrix randomly using

the MATLAB function “gallery(‘randcorr’,n)” and then convert it to a covariance matrix. We fol-

low Xu et al. (2018) to set the wholesale, retail, and savage prices as ci = 0.1(5 + i − 1), vi =

0.15(5 + i − 1), and gi = 0.05(5 + i − 1) for any i ∈ [m], respectively. Meanwhile, we consider

m ∈ {100, 200, 400, 800, 1200, 1600, 2000} in this problem.

In the production-transportation problem, we follow Bertsimas et al. (2010) to randomly gen-

erate the locations of G suppliers and H customers from a unit square and use ξij to measure the

distance between supplier i ∈ [G] and customer j ∈ [H]. For any i ∈ [G] and j ∈ [H], we generate

10, 000 samples of ξij from the interval [0.5ξ̄ij, 1.5ξ̄ij] and use them to estimate the mean, stan-

dard deviation, and covariance matrix of ξ. Using γ0 denoting the average transportation cost,

we then generate production cost ci and demand dj uniformly on the intervals [0.5γ0, 1.5γ0] and

[0.5G/H, G/H], respectively, for any i ∈ [G] and j ∈ [H]. The disutility function U (x) = 0.25(e2x −
1) and is approximated by a piecewise-linear function with K equidistant segments on the interval

[0, 1]. Meanwhile, we consider (G, H) ∈ {(4, 25), (5, 20), (5, 40), (8, 25), (10, 40), (20, 30), (20, 40)}.

For any given value of m in the multiproduct newsvendor problem or (G, H) in the production-

transportation problem, we randomly generate five instances and report the average performance

in Tables 1–4. Here we describe several table headers that are shared by these tables. We use

“Mosek” and “Low-rank” to represent the performance of the Mosek solver and the low-rank

algorithm (Burer and Monteiro 2003), respectively. The abbreviations “LB,” “UB,” and “RLB” rep-

resent lower, upper, and revisited lower bounds, respectively. Specifically, the labels “ODR-LB,”

“ODR-UB,” and “ODR-RLB” denote the lower-bound performance after solving the first outer

approximation (25) with m1 = K, the upper-bound performance after solving the inner approxi-

mation (26) with m1 = K, and the other lower-bound performance after solving the second outer

approximation (31) with m1 = K, respectively. Note that using the dimensionality reduction solu-

tion B given by our proposed ADMM algorithms after solving each approximation, we retrieve

the corresponding lower or upper bound following the recovery process described in Section 6.2.

We use “PCA-100%,” “PCA-80%,” “PCA-60%,” “PCA-40%,” “PCA-20%,” and “PCA-K” to denote

the performance of the PCA approximation by Cheramin et al. (2022) when the reduced dimen-

sion m1 equals 100% × dim(ξ), 80% × dim(ξ), 60% × dim(ξ), 40% × dim(ξ), 20% × dim(ξ), and

K, respectively. For instance, “PCA-20%” and “PCA-2” in Table 1 denote the performance of the

case when m1 = 20% × dim(ξ) and m1 = K = 2, respectively.
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In all the tables, we use “Size” to represent the value of m in the multiproduct newsvendor

problem or (G, H) in the production-transportation problem and “Time” to represent the compu-

tational time in seconds required to solve each instance. Note that following the recovery process

described in Section 6.2, the computational time includes two parts. The first part is the time

spent using the ADMM algorithm to solve an approximation problem. The second part is the

time spent solving the lower- or upper-bound subproblem. The lower-bound subproblem (13)

and the upper-bound subproblem (29) are low-dimensional SDP problems. In all our computa-

tional experiments, the time spent on the second part is less than 1% of the time spent on the first

part. Therefore, we report the total time without separately distinguishing between the two parts.

We use “Gap1” (resp. “Gap2”) to represent the relative gap in percentage between a lower (resp.

an upper) bound and the optimal value provided by the Mosek solver. That is,

Gap1 =
optimal value − lower bound

|optimal value| × 100%, Gap2 =
upper bound − optimal value

|optimal value| × 100%.

We further use “Interval Gap” to represent the relative gap in percentage between a lower bound

and an upper bound, i.e.,

Interval Gap =
upper bound − lower bound

|upper bound| × 100%. (42)

Specifically, for both the ODR approach and the low-rank algorithm, we take the objective value

of “ODR-UB” as the value of “upper bound” in (42). For the PCA approximation approach, the

value of “upper bound” in (42) is provided by this approach itself. The value of the “Theoretical

Gap” for each instance is defined in (38).

To further illustrate how to calculate the “Interval Gap,” we consider the “Interval Gap” in the

row “ODR-LB” of Table 1 as an example. We first use our ADMM algorithm to solve the first outer

approximation, i.e., Problem (25), and record the obtained dimensionality reduction solution BLB.

Given this BLB, we solve Problem (13) and obtain Θ(m1, BLB), which is a lower bound. We then

use the ADMM algorithm to solve the inner approximation, i.e., Problem (26), and record BUB.

Given this BUB, we solve Problem (29) and obtain Θ(m1, BUB), which is an upper bound. Thus, we

calculate the “Interval Gap” by (Θ(m1, BUB)− Θ(m1, BLB))/|Θ(m1, BUB)| × 100%.

Finally, we use “-” to represent that no result can be obtained within the time limit (i.e., two

hours). For instance, the Mosek solver cannot solve the original problem to the optimality within

two hours for the newsvendor problem with m ≥ 400. Hence, we cannot obtain the value of

“Gap1” for the “Mosek,” “ODR-LB,” and “ODR-RLB” approaches.

7.2.2. Numerical Performance From Tables 1–4, we have the following observations. First, in

the newsvendor problem with m ∈ {100, 200} and the production-transportation problem with

(G, H) ∈ {(4, 25), (5, 20), (5, 40), (8, 25)}, the Mosek solver solves each instance of the original

problem to the optimality. Our ODR approach performs much better than the three benchmark
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Table 1 Average Performance on the Newsvendor Problem

Size (m) 100 200 400 800 1200 1600 2000

Mosek Time (secs) 13.02 363.54 - - - - -

Low-rank
Gap1 (%) 2.52 1.79 - - - - -

Time (secs) 0.26 0.80 5.46 47.34 110.33 309.00 825.62
Interval Gap (%) 4.27 3.66 2.67 2.32 2.28 2.36 2.52

ODR-LB
Gap1 (%) 0.09 0.00 - - - - -

Time (secs) 0.77 0.78 0.83 0.85 1.13 2.01 2.54
Interval Gap (%) 1.81 1.83 1.44 1.44 1.56 1.73 1.96

Theoretical Gap (%) 2.73 3.27 2.47 3.15 4.28 2.91 3.58

ODR-RLB
Gap1 (%) 0.03 0.03 - - - - -

Time (secs) 1.95 2.60 4.33 9.75 20.83 38.36 56.68
Interval Gap (%) 1.74 1.86 1.46 1.46 1.56 1.78 1.98

Theoretical Gap (%) 1.92 2.36 1.27 2.44 1.90 3.01 2.58

ODR-UB Gap2 (%) 1.68 1.80 - - - - -
Time (secs) 1.95 2.60 4.33 9.75 20.83 38.36 56.68

Theoretical Gap (%) 1.92 2.36 1.27 2.44 1.90 3.01 2.58

PCA-100%

Gap1 (%) 0.00 0.00 - - - - -
Time (secs) 13.04 361.54 - - - - -
Gap2 (%) 0.00 0.00 - - - - -

Time (secs) 12.99 361.91 - - - - -
Interval Gap (%) 0.00 0.00 - - - - -

PCA-80%

Gap1 (%) 0.50 0.31 - - - - -
Time (secs) 5.05 120.72 3348.00 - - - -
Gap2 (%) 12.23 11.13 - - - - -

Time (secs) 7.77 155.39 4793.72 - - - -
Interval Gap (%) 14.54 12.90 13.57 - - - -

PCA-60%

Gap1 (%) 0.98 0.73 - - - - -
Time (secs) 1.44 28.73 785.63 - - - -
Gap2 (%) 23.33 24.07 - - - - -

Time (secs) 2.29 44.28 1196.98 - - - -
Interval Gap (%) 31.76 32.79 31.87 - - - -

PCA-40%

Gap1 (%) 1.69 1.20 - - - - -
Time (secs) 0.39 5.21 125.43 3351.00 - - -
Gap2 (%) 35.79 35.94 - - - - -

Time (secs) 0.57 8.03 177.96 5237.40 - - -
Interval Gap (%) 58.50 58.26 56.45 57.18 - - -

PCA-20%

Gap1 (%) 2.71 1.90 - - - - -
Time (secs) 0.15 0.43 6.49 136.97 971.60 3546.30 -
Gap2 (%) 47.92 48.19 - - - - -

Time (secs) 0.17 0.60 9.25 203.97 1340.46 4940.28 -
Interval Gap (%) 97.74 84.05 90.65 93.17 92.38 94.27 -

PCA-2

Gap1 (%) 4.26 3.24 - - - - -
Time (secs) 0.11 0.12 0.13 0.20 0.26 0.36 0.50
Gap2 (%) 57.60 59.25 - - - - -

Time (secs) 0.13 0.14 0.16 0.22 0.32 0.46 0.60
Interval Gap (%) 147.12 154.40 141.39 149.18 146.92 150.96 153.57
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Table 2 Average Performance on the Production-Transportation Problem with K = 5

Size ((G, H)) (4,25) (5,20) (5,40) (8,25) (10,40) (20,30) (20,40)

Mosek Time (secs) 56.04 70.10 1524.45 1612.68 - - -

Low-rank
Gap1 (%) 3.69 4.17 2.94 3.42 - - -

Time (secs) 14.87 15.28 44.82 41.34 192.21 710.28 1678.21
Interval Gap (%) 3.69 4.17 2.94 3.42 5.44 4.12 5.93

ODR-LB

Gap1 (%) 0.14 0.34 0.22 0.29 - - -
Time (secs) 4.03 3.63 6.01 4.82 12.41 25.03 57.79

Interval Gap (%) 0.15 0.34 0.43 0.29 0.52 0.55 0.51
Theoretical Gap (%) 1.24 1.07 4.91 0.77 2.71 1.25 1.09

ODR-RLB

Gap1 (%) 0.01 0.02 0.01 0.00 - - -
Time (secs) 5.42 5.36 22.40 20.86 123.64 330.29 665.43

Interval Gap (%) 0.02 0.02 0.01 0.01 0.00 0.00 0.00
Theoretical Gap (%) 1.13 1.17 1.80 0.81 1.22 1.92 1.32

ODR-UB
Gap2 (%) 0.01 0.01 0.00 0.00 - - -

Time (secs) 5.48 5.32 22.41 20.86 123.48 329.95 665.35
Theoretical Gap (%) 1.13 1.17 1.80 0.81 1.22 1.92 1.32

PCA-100%

Gap1 (%) 0.00 0.00 0.00 0.00 - - -
Time (secs) 56.74 68.76 1521.32 1612.94 - - -
Gap2 (%) 0.00 0.00 0.00 0.00 - - -

Time (secs) 55.49 68.49 1521.04 1611.67 - - -
Interval Gap (%) 0.00 0.00 0.00 0.00 - - -

PCA-80%

Gap1 (%) 0.52 0.99 0.33 1.50 - - -
Time (secs) 23.41 27.68 589.74 625.65 - - -
Gap2 (%) 3.31 2.18 1.15 2.76 - - -

Time (secs) 29.33 31.20 657.78 639.09 - - -
Interval Gap (%) 3.63 3.08 1.44 4.12 - - -

PCA-60%

Gap1 (%) 1.60 2.61 1.26 3.41 - - -
Time (secs) 8.54 8.41 143.60 115.54 3087.98 - -
Gap2 (%) 9.02 7.33 3.45 8.62 - - -

Time (secs) 9.04 8.88 158.95 152.21 3484.45 - -
Interval Gap (%) 9.50 9.17 4.36 11.04 4.85 - -

PCA-40%

Gap1 (%) 3.75 4.23 2.33 4.00 - - -
Time (secs) 2.18 2.11 30.80 23.44 512.53 3004.06 -
Gap2 (%) 14.05 11.58 6.57 9.96 - - -

Time (secs) 2.61 2.37 37.08 30.60 633.00 3149.11 -
Interval Gap (%) 15.42 14.04 7.94 12.66 8.52 5.05 -

PCA-20%

Gap1 (%) 4.45 5.41 3.59 4.16 - - -
Time (secs) 0.74 0.69 6.21 5.59 38.03 205.25 741.71
Gap2 (%) 17.07 12.66 9.25 10.08 - - -

Time (secs) 1.11 1.01 7.31 6.26 64.54 276.63 883.55
Interval Gap (%) 18.35 15.95 11.32 12.91 9.39 5.22 4.85

PCA-5

Gap1 (%) 5.35 5.73 4.55 4.39 - - -
Time (secs) 0.38 0.36 0.52 0.45 0.66 0.79 1.00
Gap2 (%) 17.99 15.35 12.71 10.08 - - -

Time (secs) 0.78 0.72 2.35 2.08 10.41 27.98 68.39
Interval Gap (%) 19.76 18.26 15.15 13.12 9.69 5.48 5.14



29

Table 3 Average Performance on the Production-Transportation Problem with K = 10

Size ((G, H)) (4,25) (5,20) (5,40) (8,25) (10,40) (20,30) (20,40)

Mosek Time (secs) 115.52 103.52 2866.54 2857.47 - - -

Low-rank
Gap1 (%) 3.41 3.92 3.21 4.08 - - -

Time (secs) 17.67 18.41 56.22 54.17 227.71 929.00 1907.28
Interval Gap (%) 3.41 3.92 3.21 4.08 5.27 6.2 4.62

ODR-LB

Gap1 (%) 0.12 0.19 0.13 0.25 - - -
Time (secs) 6.65 6.41 11.11 10.31 31.42 61.41 131.10

Interval Gap (%) 0.12 0.19 0.13 0.25 0.22 0.19 0.25
Theoretical Gap (%) 1.78 1.97 2.96 1.19 2.10 1.49 1.22

ODR-RLB

Gap1 (%) 0.00 0.00 0.00 0.00 - - -
Time (secs) 11.22 10.65 40.34 32.95 122.54 342.80 748.11

Interval Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Theoretical Gap (%) 1.86 2.27 1.74 1.22 2.10 1.39 2.30

ODR-UB
Gap2 (%) 0.00 0.00 0.00 0.00 - - -

Time (secs) 11.14 10.69 40.28 32.92 122.48 344.10 747.90
Theoretical Gap (%) 1.86 2.27 1.74 1.22 2.10 1.39 2.30

PCA-100%

Gap1 (%) 0.00 0.00 0.00 0.00 - - -
Time (secs) 115.74 102.90 2852.43 2851.09 - - -
Gap2 (%) 0.00 0.00 0.00 0.00 - - -

Time (secs) 116.32 103.70 2853.10 2859.01 - - -
Interval Gap (%) 0.00 0.00 0.00 0.00 - - -

PCA-80%

Gap1 (%) 0.47 0.39 0.38 0.58 - - -
Time (secs) 52.31 50.48 1101.61 979.90 - - -
Gap2 (%) 0.04 0.04 0.02 0.02 - - -

Time (secs) 58.12 58.88 1392.67 1364.82 - - -
Interval Gap (%) 0.51 0.42 0.40 0.61 - - -

PCA-60%

Gap1 (%) 1.54 1.39 0.98 1.57 - - -
Time (secs) 14.48 15.54 270.80 240.40 4182.33 - -
Gap2 (%) 0.96 0.34 0.34 0.40 - - -

Time (secs) 19.64 20.83 455.00 440.12 4582.31 - -
Interval Gap (%) 2.46 1.72 1.32 1.95 2.61 - -

PCA-40%

Gap1 (%) 2.30 2.31 1.76 2.18 - - -
Time (secs) 4.19 4.04 53.67 45.22 831.61 4312.63 -
Gap2 (%) 1.85 1.63 1.10 0.77 - - -

Time (secs) 6.19 5.96 94.74 97.70 931.48 4792.10 -
Interval Gap (%) 4.05 3.87 2.81 2.92 5.01 4.95 -

PCA-20%

Gap1 (%) 2.98 3.20 2.26 2.39 - - -
Time (secs) 2.26 1.91 7.72 7.02 52.34 361.81 1038.72
Gap2 (%) 2.24 2.44 1.71 1.07 - - -

Time (secs) 3.83 3.52 18.70 18.07 71.38 428.93 1391.25
Interval Gap (%) 5.09 5.49 3.90 3.42 6.21 5.48 4.29

PCA-10

Gap1 (%) 3.36 3.26 2.40 2.53 - - -
Time (secs) 0.83 0.76 1.19 1.00 2.01 1.95 2.54
Gap2 (%) 2.51 2.48 2.09 1.11 - - -

Time (secs) 1.93 1.81 7.12 5.97 21.15 43.62 79.15
Interval Gap (%) 5.72 5.59 4.40 3.60 6.36 7.28 6.04
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Table 4 Average Performance on the Production-Transportation Problem with K = 15

Size ((G, H)) (4,25) (5,20) (5,40) (8,25) (10,40) (20,30) (20,40)

Mosek Time (secs) 154.22 159.12 4004.18 4099.14 - - -

Low-rank
Gap1 (%) 4.51 3.52 4.06 5.91 - - -

Time (secs) 21.73 28.14 74.20 62.18 331.01 1124.41 2271.82
Interval Gap (%) 4.51 3.52 4.06 5.91 4.22 5.11 4.83

ODR-LB

Gap1 (%) 0.05 0.10 0.12 0.15 - - -
Time (secs) 13.92 16.56 22.11 26.16 43.02 80.51 168.90

Interval Gap (%) 0.05 0.10 0.12 0.15 0.11 0.13 0.09
Theoretical Gap (%) 4.69 5.22 5.57 6.38 3.29 4.41 3.95

ODR-RLB

Gap1 (%) 0.00 0.00 0.00 0.00 - - -
Time (secs) 22.60 21.45 77.18 63.99 241.03 689.24 1550.21

Interval Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Theoretical Gap (%) 1.38 2.61 1.79 1.73 2.14 1.94 2.25

ODR-UB
Gap2 (%) 0.00 0.00 0.00 0.00 - - -

Time (secs) 22.61 21.44 76.99 64.08 149.21 401.63 878.68
Theoretical Gap (%) 1.38 2.61 1.79 1.73 2.14 1.94 2.25

PCA-100%

Gap1 (%) 0.00 0.00 0.00 0.00 - - -
Time (secs) 154.64 158.67 4024.62 4095.91 - - -
Gap2 (%) 0.00 0.00 0.00 0.00 - - -

Time (secs) 156.32 155.64 4050.04 4059.01 - - -
Interval Gap (%) 0.00 0.00 0.00 0.00 - - -

PCA-80%

Gap1 (%) 0.47 0.53 0.62 0.58 - - -
Time (secs) 68.31 69.22 1439.48 1428.65 - - -
Gap2 (%) 0.04 0.06 0.15 0.08 - - -

Time (secs) 79.55 80.20 2120.31 2146.05 - - -
Interval Gap (%) 0.51 0.57 0.75 0.62 - - -

PCA-60%

Gap1 (%) 0.95 1.13 1.28 1.25 - - -
Time (secs) 22.50 25.11 411.27 398.64 - - -
Gap2 (%) 0.22 0.31 0.47 0.62 - - -

Time (secs) 33.28 38.11 658.16 624.21 - - -
Interval Gap (%) 1.17 1.40 1.74 1.85 - - -

PCA-40%

Gap1 (%) 1.68 1.67 1.78 1.81 - - -
Time (secs) 6.61 8.53 81.20 80.88 1553.12 - -
Gap2 (%) 1.65 2.58 2.54 1.96 - - -

Time (secs) 10.21 12.37 137.98 155.84 2296.17 - -
Interval Gap (%) 3.23 4.27 4.31 3.76 4.53 - -

PCA-20%

Gap1 (%) 2.22 3.01 2.09 1.91 - - -
Time (secs) 4.74 4.98 13.21 14.20 81.28 375.81 1671.21
Gap2 (%) 3.07 3.61 2.98 2.48 - - -

Time (secs) 9.24 8.19 27.26 28.79 124.04 496.38 2517.39
Interval Gap (%) 5.27 6.59 5.06 4.22 5.78 6.29 5.88

PCA-15

Gap1 (%) 2.24 3.32 2.94 3.09 - - -
Time (secs) 1.91 2.07 2.52 2.73 4.25 4.87 6.27
Gap2 (%) 3.10 4.12 3.57 4.01 - - -

Time (secs) 4.74 5.12 12.86 12.92 23.16 48.21 95.72
Interval Gap (%) 5.31 7.40 6.41 7.03 6.42 7.19 6.83
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approaches. Both the “ODR-LB” and “ODR-RLB” provide a smaller value of “Gap1” than the

low-rank algorithm and the PCA approximation, and require a shorter computational time than

the three benchmark approaches. The “ODR-UB” also provides a smaller value of “Gap2” than

the PCA approximation if m1 ̸= 100% × dim(ξ) therein and requires shorter computational time.

Specifically, the objective value of our “ODR-LB” reaches the optimal value of the original

problem for some instances of the multiproduct newsvendor problem (see Table 1) and provides

near-optimal solutions for the production-transportation problem with “Gap1” less than 0.34%

(see Tables 2–4). More importantly, the “ODR-LB” reduces the computational time by up to three

orders of magnitude compared to the Mosek solver. In addition, the “ODR-RLB” and “ODR-UB”

reach the optimal value of the original problem for all instances in Tables 3–4 and provide objective

values that are near-optimal (within 1.8% for all instances and 0.03% for most instances) in Tables

1–2, while reducing the computational time significantly. The results imply that our ADMM algo-

rithms return the optimal B∗ for most instances and the numerical gap between our derived lower

and upper bounds (i.e., “Interval Gap”) can be tight.

In addition, Tables 1–4 show that our ODR approach (including “ODR-LB,” “ODR-UB,” and

“ODR-RLB”) provides a better solution in terms of the objective value than the PCA approxi-

mation if the reduced dimension m1 ≤ 80% × dim(ξ) in the latter approach. That is, even if we

maintain 80% of the random parameters corresponding to the largest eigenvalues to be uncertain

in the PCA approximation by focusing on only their statistical information, the performance is

worse than our ODR approach, where we optimize the dimensionality reduction from dim(ξ) to

K (i.e., maintaining only 1% of the original dimensionality size when m = 200 and K = 2 for the

multiproduct newsvendor problem). More importantly, the inner and outer approximations of

our ODR approach can be solved efficiently.

Second, when the problem size is large, i.e., m ≥ 400 in the newsvendor problem and (G, H) ∈
{(10, 40), (20, 30), (20, 40)} in the production-transportation problem, the Mosek solver cannot

solve any instance of the original problem to the optimality. Our ODR approach also performs

better than the three benchmark approaches. Tables 1–4 show that “ODR-LB” provides a smaller

value of “Interval Gap” (within 2%) and requires a much shorter computational time than both

the low-rank algorithm and the PCA approximation. For instance, when m = 1600 in the multi-

product newsvendor problem, the low-rank algorithm and “ODR-LB” take 309 and 2.01 seconds

to solve an instance of the multiproduct newsvendor problem and provide the value of “Interval

Gap” at 2.36% and 1.73%, respectively. The PCA approximation solves this instance only when

the reduced dimension m1 is not larger than 20% × m, by which it takes 3546.3 seconds while the

solution quality is very poor, providing the value of “Interval Gap” at 94.27%. Tables 2–4 show

that the “ODR-RLB” and “ODR-UB” reach the optimal value of the original problem for all instances
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(with “Interval Gap” at 0); that is, our ADMM algorithms return the optimal B∗. Meanwhile, the

value of the “Theoretical Gap” is mostly within 5%. More importantly, our ODR approach is not

sensitive to the value of dim(ξ), while the benchmark approaches perform much worse when

dim(ξ) is larger. Thus, when we cannot obtain the optimal value of the original problem, the

“ODR-LB”, “ODR-RLB”, and “ODR-UB” can be efficiently solved to provide a narrower inter-

val that includes the optimal value than the benchmark approaches. That is, our ODR approach

can provide a near-optimal solution very efficiently for the moment-based DRO problems where

other best possible benchmark approaches are struggling.

Third, “ODR-RLB” leads to better solution quality than “ODR-LB”. From Tables 1-4, we observe

that (i) there is no significant difference between the theoretical gaps of two outer approximations,

(ii) the “Gap1” and “Interval Gap” of “ODR-RLB” are smaller than those of “ODR-LB” for most

instances. Thus, we recommend that practitioners solve the second outer approximation to obtain

a lower bound, where this approximation also provides a theoretical optimality guarantee when

m1 = K (see Theorem 5).

Furthermore, although we obtain near-optimal solutions by setting m1 = K in the ODR

approach, the sensitivity analyses of our ODR approach in Tables G3–G5 (see details in Appendix

G.4) with respect to m1 also show valuable results. Specifically, we consider the production-

transportation problem (41), where m1 takes values from {3, 5, 7} when K = 5, {8, 10, 12} when

K = 10, and {13, 15, 17} when K = 15. Concerning our ODR approach (i.e., “ODR-LB,” “ODR-UB,”

and “ODR-RLB”), we observe a general trend where the values of “Gap1,” “Gap2,” and “Interval

Gap” all tend to decrease as m1 increases. This trend aligns with the theoretical results in Theo-

rems 1, 3, and 5. Meanwhile, we consider the same problem with G = 5, H = 20, and K = 10 and

provide a line chart in Figure 1 to demonstrate the trend concerning the value of m1 in a higher

granularity. These results demonstrate that (i) the computational times of our three approxima-

tions increase when we choose a larger m1, (ii) for the first outer approximation, the gap between

the lower bound and the optimal value decreases from 0.28% to 0.01% when we increase m1 from

2 to 40, (iii) for the second outer approximation and the inner approximation, a similar conclusion

holds, and they will achieve the original optimal value when we choose m1 ≥ 6. These results also

demonstrate that m1 = K is a good choice, and increasing m1 further may not bring significant

improvement in terms of solution quality. Combining the tightness results from Theorems 4 and

5 and the sensitivity analyses here, we recommend that practitioners choose m1 = K to ensure that

the proposed approximations yield high-quality results.

7.2.3. Numerical Insights In the multiproduct newsvendor problem, Tables 1 show that our

ODR approach performs better than the PCA approximation with respect to the objective values
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Figure 1 Sensitivity Analyses on the Production-Transportation Problem

for all the cases except that the “PCA-100%” (i.e., the original problem) provides the optimal value

when the problem size is small. Note that the PCA approximation reduces the dimensionality of

the random vector ξ by focusing on only the statistical information of ξ, while the ODR approach

integrates the dimensionality reduction with the optimization of the original problem. Here we

would like to further demonstrate the benefits of our approach, thereby providing insights into

how we can choose the value of B without solving the models in our ODR approach.

Consider the multiproduct newsvendor problem. The PCA approximation chooses the ran-

dom parameters corresponding to the largest eigenvalues by maximizing the expectation of ξ⊤ξ,

i.e., the variability of ξ. Adopting the idea of our ODR approach to integrate the dimensional-

ity reduction with the subsequent optimization problem, we can consider the objective function

f (x, ξ) when choosing the random parameters in ξ. Specifically, we can maximize the variabil-

ity of (g − v)⊤ξ, which is the only random component in f (x, ξ). By (9), we solve the following

problem to reduce the dimension from m to m1:

max
B⊤B=Im1

EP

[
(g − v)⊤ξξ⊤(g − v)

]
≈ EP

[
(g − v)⊤

(
UΛ

1
2 Bξr + µ

)(
UΛ

1
2 Bξr + µ

)⊤
(g − v)

]
=EP

[
(g − v)⊤

((
UΛ

1
2 Bξr

)(
UΛ

1
2 Bξr

)⊤
+ 2UΛ

1
2 Bξrµ

⊤ + µµ⊤
)
(g − v)

]
=EP

[
(g − v)⊤

((
UΛ

1
2 Bξr

)(
UΛ

1
2 Bξr

)⊤
+ µµ⊤

)
(g − v)

]
. (43)

By introducing r = (Λ
1
2 U⊤)(g − v), Problem (43) clearly has the same optimal solution as

max
B⊤B=Im1

r⊤BB⊤r. (44)
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PROPOSITION 7. We have B∗ = [r/∥r∥2, 0m×(m1−1)] is an optimal solution of Problem (44).

By considering the partial feature of the original optimization problem, the optimal B∗ of

Problem (43) by Proposition 7 performs better than the PCA approximation that only considers

statistical information of random parameters. Note that our proposed inner and outer approxi-

mations of the ODR approach consider the complete feature of the original optimization prob-

lem and can provide an even better choice of B. In the multiproduct newsvendor problem with

K = 2, we can compare the B∗ of Problem (43) with the optimal B provided by our proposed

outer approximation (25) with m1 = K. Specifically, letting m = 10, we have (i) the optimal value

given by the PCA approximation (lower bound) with m1 = K is −18.62; (ii) the optimal value

given by (43) is −17.53 with B =
[
−0.8696 −0.0478 0.3285 −0.0930 −0.2762 0.2126 −0.0456 −0.0034 0.0361 0.0097

0 0 0 0 0 0 0 0 0 0

]⊤
;

(iii) the optimal value given by (25) (lower bound) with m1 = K is −17.38 with

B =
[
−0.8964 −0.1886 0.2094 −0.0327 −0.2497 0.2215 −0.0548 −0.0216 0.0289 0.0104
0.0143 0.0052 −0.0014 −0.0004 0.0034 −0.0035 0.0010 0.0006 −0.0003 −0.0002

]⊤
. Clearly, our ODR

approach performs the best and the value of B from solving (43) is close to that from our ODR

approach (the Frobenius norm of the difference between the two matrices is less than 0.1). That

is, if a decision-maker does not have enough capacity to solve the approximations of our ODR

approach, the decision-maker may consider the partial feature of the optimization problem when

reducing the dimensionality.

8. Conclusion

Moment-based DRO provides a theoretical framework to integrate moment-based information

from available data with optimal decision-making. Extensive studies have demonstrated the

effectiveness of this framework in solving various industrial applications under uncertainties.

Although moment-based DRO problems can be reformulated as SDPs that can be solved in poly-

nomial time, solving high-dimensional SDPs is significantly challenging. More importantly, high-

dimensional random parameters are generally involved in industrial applications, demanding

efficient approaches to solve the high-dimensional SDPs in the context of moment-based DRO.

Current approaches adopt the PCA to first reduce the dimensionality of random parameters

using only the statistical information and then solve the subsequent low-dimensional approxima-

tion (SDPs). We show that performing dimensionality reduction using the components with the

largest variability may not produce a good optimal value from the subsequent PCA approxima-

tion and it can be even worse than using the components with the least variability (Example 1).

Thus, we integrate the dimensionality reduction with subsequent SDP problems and hence pro-

pose an optimized dimensionality reduction (ODR) approach for the moment-based DRO (Sec-

tions 3–5), aiming to drastically reduce the computational time of solving the SDP reformulations

while maintaining the optimal solution of the original problem.
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We first derive an outer approximation under the ODR approach to provide a lower bound for

the optimal value of the original problem (Theorem 1), where the lower bound is nondecreasing in

the reduced dimension m1. We aim to choose a small m1 to close the approximation gap between

the derived lower bound and the original optimal value. To that end, we show that the rank

of each SDP matrix with respect to an optimal solution of the original high-dimensional SDP

reformulation is small, guiding us on how to optimize the dimensionality reduction (Theorem

2). With this low-rank property, we observe that the derived lower bound can be close to the

original optimal value (Theorem 7) but may not reach it (Example 2). Nevertheless, Theorem 7

demonstrates that we are not far from closing the approximation gap and motivates us to derive

an inner approximation to provide an upper bound for the optimal value of the original problem

(Theorem 3). More importantly, this upper bound reaches the original optimal value when the

reduced dimension m1 is small (Theorem 4). Building on this significant result, we further derive

an outer approximation to provide the second lower bound for the optimal value of the original

problem, where the gap between the new lower bound and the original optimal value can be

closed when the reduced dimension m1 is small (Theorem 5).

The two outer and one inner approximations derived for the original problem are all low-

dimensional SDPs and nonconvex with bilinear terms (Propositions 2 and 3 and Theorem 5). We

accordingly develop modified ADMM algorithms to solve them efficiently (Section 6) and analyze

the convergence property of the ADMM algorithms (see Section 6.1). Based on the near-optimal

dimensionality reduction solution BADMM returned by the ADMM algorithms, we also explain

how to recover the corresponding lower and upper bounds for the original optimal value (see

Section 6.2). Finally, we demonstrate the effectiveness of our ODR approach in solving multiprod-

uct newsvendor and production-transportation problems. We compare our ODR approach and

algorithms with three benchmark approaches: the Mosek solver, the low-rank algorithm by Burer

and Monteiro (2003), and existing PCA approximations by Cheramin et al. (2022). The numerical

results show that our ODR approach significantly outperforms these benchmarks in computa-

tional time and solution quality. Our approach can obtain an optimal or near-optimal (mostly

within 0.1%) solution and reduce the computational time by up to three orders of magnitude.

More importantly, unlike the existing approaches that become more computationally challeng-

ing when the dimension m of random parameters increases, our approach is not sensitive to

m, demonstrating significant strength in solving large-scale practical problems (Section 7.2.2). In

addition, we provide insights into why our ODR approach performs better than the existing PCA

approximations (Section 7.2.3).

Our research can be further extended in various directions. First, this paper considers a piece-

wise linear cost function in the original problem. Thus, it would be attractive to consider a more



36

general objective function. Second, it would be interesting to apply our approach to more appli-

cation problems to generate practical insights. Third, it is also of great interest to integrate the

idea of dimensionality reduction into the Wasserstein DRO or two-stage stochastic programming.

Fourth, our ODR approach can be potentially generalized to solve general SDPs with certain

structures. Thus, it would be appealing to exploit the structures of SDP constraints and apply the

ODR approach to solve more general SDPs. Fifth, it would be an interesting extension to consider

cases with K ≥ m. Note that for these cases, our proposed ODR approach can still be used to

improve the traditional PCA approximation by choosing an appropriate m1 such that the solution

quality is good and the computational time is short, and also provide theoretical guarantees that

bound the gap between the proposed upper bound and the original optimal value, as well as the

gap between the original optimal value and the proposed lower bound. Nevertheless, we may not

provide clear guidance on choosing m1 so that our proposed approximations achieve the optimal

value of the original problem. We leave the above extensions for future research.
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Appendix A: Table of Notations

Table A1 Summary of Notations

Notation Description

Random
Variables:

ξ The random vector ξ ∈ Rm

ξI The random vector ξI ∈ Rm obtained by the linearly transformation of ξ
ξr The random vector ξr ∈ Rm1 obtained by reducing the dimension of ξI

Distributions:
P The probability distribution of the random vector ξ
PI The probability distribution of the random vector ξI
Pr The probability distribution of the random vector ξr

Decision
Variables:

x The decision variable x ∈ Rn

s, λk, q, Q Decision variables in original SDP problem
λ̂ λ̂ := {λ1, . . . , λK}

qr, Qr Decision variables in PCA approximation
B The decision variable used in the optimized dimensionality reduction

tk, pk, Pk, Z Decision variables used in the lower bound
Q′

r, û′, û′′, B1, B2 Decision variables used in the revisited lower bound

Parameters
and Sets:

X The feasible set of decision variable x
DM0 The distributional ambiguity set constructed by statistical information
DM The distributional ambiguity set corresponding to ξI
S The support of ξ
γ1 A scalar γ1 ≥ 0
γ2 A scalar γ2 ≥ 1
µ The estimated mean of ξ
Σ The estimated covariance matrix of ξ

U, Λ Two matrices produced by the eigenvalue decomposition on the covariance matrix Σ
A, b S := {ξ | Aξ ≤ b}
SI The support of ξI
Sr The support of ξr
DL The distributional ambiguity set corresponding to ξr
Bm1 The feasible set of decision variable B ∈ Rm×m1

DU The distributional ambiguity set by relaxing the second-moment constraint in DM

Optimal Value
Functions:

ΘM(m) The optimal value of the original problem
ΘM(m1) The optimal value of the PCA approximation
ΘL(m1) The optimal value of the first outer approximation

Θ(m1, B) The optimal value of the subproblem of the first outer approximation
ΘU(m1) The optimal value of the inner approximation
Θ(m1, B) The optimal value of the subproblem of the inner approximation
ΘL2(m1) The optimal value of the second outer approximation
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Appendix B: Supplement to Section 2

B.1. Reformulations in Example 1

The distributionally robust counterpart of the CVaR problem (8) can be formulated as

min
x∈X

max
P∈D

min
t∈R

t +
1
α

EP [g (x, ξ)− t]+

= min
x∈X , t∈R

max
P∈D

t +
1
α

EP [g (x, ξ)− t]+ , (45)

where the equality holds by the Sion’s minimax theorem (Sion 1958) because t +

(1/α)EP[g(x, ξ) − t]+ is convex in t, concave (specifically, linear) in P, and D is compact. By

Proposition 1, Problem (45) has the same optimal value with the following SDP formulation:

min
x,s,t,λ1,
λ2,q,Q

s + Im • Q (46a)

s.t.

 s − t − λ⊤
1 b + λ⊤

1 Aµ 1
2

(
q +

(
UΛ

1
2

)⊤
A⊤λ1

)⊤

1
2

(
q +

(
UΛ

1
2

)⊤
A⊤λ1

)
Q

⪰ 0, (46b)

s −
(
1 − 1

α

)
t − λ⊤

2 b −
(

1
α
x
)⊤

µ + λ⊤
2 Aµ 1

2

(
q +

(
UΛ

1
2

)⊤ (
A⊤λ2 − 1

α
x
))⊤

1
2

(
q +

(
UΛ

1
2

)⊤ (
A⊤λ2 − 1

α
x
))

Q

⪰ 0, (46c)

x ∈ X , t ∈ R, λ1 ∈ Rl
+, λ2 ∈ Rl

+.

Appendix C: Supplement to Section 3

C.1. Proof of Lemma 1

First, we have [
Im B
B⊤ Im1

]
⪰ 0 ⇐⇒ Im − BI−1

m1
B⊤ ⪰ 0 ⇐⇒ BB⊤ ⪯ Im,

where the first equivalence is by Schur complement and the second is because I−1
m1

= Im1 .

Second, we have [
Im B
B⊤ Im1

]
⪰ 0 ⇐⇒ Im1 − B⊤I−1

m B ⪰ 0 ⇐⇒ B⊤B ⪯ Im1 ,

where the first equivalence is by Schur complement and the second is because I−1
m = Im. Thus, the

lemma is proved. □

C.2. Proof of Lemma 2

(i) Suppose X ⪰ Y. For any a ∈ Rn, we have Va ∈ Rm. It follows that

X ⪰ Y =⇒(Va)⊤(X − Y)(Va)≥ 0, ∀a ∈ Rn
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⇐⇒ a⊤ (V⊤(X − Y)V
)

a ≥ 0, ∀a ∈ Rn

⇐⇒ V⊤(X − Y)V ⪰ 0 ⇐⇒ V⊤XV ⪰ V⊤YV.

(ii) First, for any V ∈ Rm×m, we have

X ⪰ Y =⇒ V⊤XV ⪰ V⊤YV

by (i). Second, suppose V⊤XV ⪰ V⊤YV. Note that V−1 ∈ Rm×m. According to (i), the matrix

V⊤XV − V⊤YV remains as PSD if it multiplies (V−1)⊤ before it and V−1 after it, i.e.,(
V−1

)⊤ V⊤XVV−1 ⪰
(
V−1

)⊤ V⊤YVV−1.

It follows that X ⪰ Y because (V−1)⊤V⊤ = Im and VV−1 = Im. Thus, X ⪰ Y is equivalent to

V⊤XV ⪰ V⊤YV if V ∈ Rm×m is invertible. □

C.3. Proof of Theorem 1

(i) Given any x ∈ X and B ∈ Bm1 , i.e., B⊤B = Im1 , we define ζ = UΛ
1
2 Bξr + µ and use Sζ and Dζ

to denote its support and ambiguity set, respectively. As Sr = {ξr ∈ Rm1 | UΛ
1
2 Bξr + µ ∈ S} and

Sζ = {ζ ∈ Rm | ζ = UΛ
1
2 Bξr + µ, ξr ∈ Sr}, we can deduce Sζ ⊆ S . We also have(

EPζ
[ζ]− µ

)⊤
Σ−1

(
EPζ

[ζ]− µ
)
=
(

EPr

[
UΛ

1
2 Bξr

])⊤
Σ−1EPr

[
UΛ

1
2 Bξr

]
= EPr

[
ξ⊤

r

]
B⊤
(

UΛ
1
2

)⊤
Σ−1

(
UΛ

1
2

)
BEPr [ξr] = EPr

[
ξ⊤

r

]
B⊤
(

UΛ
1
2

)⊤ (
UΛU⊤)−1

(
UΛ

1
2

)
BEPr [ξr]

= EPr

[
ξ⊤

r

]
B⊤
(

UΛ
1
2

)⊤
((

UΛ
1
2

)(
UΛ

1
2

)⊤
)−1 (

UΛ
1
2

)
BEPr [ξr]

= EPr

[
ξ⊤

r

]
B⊤
(

UΛ
1
2

)⊤
((

UΛ
1
2

)⊤
)−1 (

UΛ
1
2

)−1 (
UΛ

1
2

)
BEPr [ξr]

= EPr

[
ξ⊤

r

]
B⊤BEPr

[
ξr

]
= EPr

[
ξ⊤

r

]
EPr

[
ξr

]
≤ γ1, (47)

where the inequality holds because of (6b). Meanwhile, we have

EPζ

[
(ζ − µ)(ζ − µ)⊤

]
= EPr

[
UΛ

1
2 Bξrξ

⊤
r B⊤Λ

1
2 U⊤

]
⪯UΛ

1
2 Bγ2Im1 B⊤Λ

1
2 U⊤ = γ2UΛ

1
2 BB⊤Λ

1
2 U⊤ ⪯ γ2UΛU⊤ = γ2Σ, (48)

where the first inequality holds because of (6b) and the second inequality holds because B⊤B =

Im1 , leading to B⊤B ⪯ Im1 , which is further equivalent to BB⊤ ⪯ Im by Lemma 1. By Sζ ⊆ S , (47),

and (48), it follows that Dζ lies in DM0, i.e., Dζ ⊆DM0.

Therefore, given any x ∈ X and B ∈ Bm1 , we have

max
Pr∈DL

EPr

[
f
(

x, UΛ
1
2 Bξr + µ

)]
= max

Pζ∈Dζ

EPζ
[ f (x, ζ)]≤ max

P∈DM0
EP [ f (x, ξ)] ,
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where the equality holds by change of variables and the inequality holds because Dζ ⊆ DM0. It

follows that

max
B∈Bm1

min
x∈X

max
Pr∈DL

EPr

[
f
(

x, UΛ
1
2 Bξr + µ

)]
≤ min

x∈X
max

P∈DM0
EP [ f (x, ξ)] ,

which demonstrates that the optimal value of Problem (10) is a lower bound for that of Problem

(3) (i.e., Problem (2)).

(ii) For any m1 < m2 ≤ m, B1 ∈ Rm×m1 , and C ∈ Rm×(m2−m1) such that B⊤
1 B1 = Im1 and

[B1, C]⊤[B1, C] = Im2 , we have B2 = [B1, C] ∈ Rm×m2 . Meanwhile, we have Bm2 = {B ∈
Rm×m2 | B⊤B = Im2} and define ζi = UΛ

1
2 Biξri

+ µ ∈ Rm for any i ∈ [2], where ξri
∈ Rmi . Clearly,

B2 ∈ Bm2 because B⊤
2 B2 = Im2 . We further define the ambiguity set of ζi as

Dζi =
{

Pζi

∣∣∣ ζi ∼ Pζi , ζi = UΛ
1
2 Biξri

+ µ, ξri
∼ Pri ∈Dri

}
, ∀i ∈ [2], (49)

where Dri represents the ambiguity set of ξri
for any i ∈ [2]. Given ζ1 ∼ Pζ1 ∈ Dζ1 , there exists a

ξr1
∼ Pr1 ∈Dr1 such that ζ1 = UΛ

1
2 B1ξr1

+ µ = UΛ
1
2 B2ξ̄r2

+ µ, where ξ̄r2
= (ξ⊤

r1
, 0⊤

m2−m1
)⊤ ∈ Rm2 .

By using Sri (see definition in (11)) to denote the support of ξri
for any i ∈ [2], we have

P
{

ξr1
∈ Sr1

}
= P

{
UΛ

1
2 B1ξr1

+ µ ∈ S
}
= P

{
UΛ

1
2 B2ξ̄r2

+ µ ∈ S
}
= 1,

where the second equality holds because UΛ
1
2 B1ξr1

= UΛ
1
2 B2ξ̄r2

. It follows that P{ξ̄r2
∈ Sr2} = 1

by the definition of Sr2 . In addition, we have E[ξ̄
⊤
r2
]E[ξ̄r2

] = E[ξ⊤
r1
]E[ξr1

]≤ γ1 and

E
[
ξ̄r2

ξ̄
⊤
r2

]
=

[
E
[
ξr1

ξ⊤
r1

]
0m1×(m2−m1)

0(m2−m1)×m1 0(m2−m1)×(m2−m1)

]
⪯ γ2Im2 .

Thus, the probability distribution of ξ̄r2
belongs to Dr2 . Meanwhile, by the definition of Dζi for any

i ∈ [2] in (49) and ζ1 = UΛ
1
2 B2ξ̄r2

+ µ, we have Pζ1 ∈Dζ2 and further Dζ1 ⊆Dζ2 . Therefore, for any

x ∈ X , B1 ∈ Rm×m1 , and C ∈ Rm×(m2−m1) such that B⊤
1 B1 = Im1 and [B1, C]⊤[B1, C] = Im2 , we have

max
Pζ1

∈Dζ1

EPζ1
[ f (x, ζ1)]≤ max

Pζ2
∈Dζ2

EPζ2
[ f (x, ζ2)] . (50)

Together with the definitions of ζi (∀i ∈ [2]) and B2, inequality (50) leads to

max
Pr1∈Dr1

EPζ1

[
f
(

x, UΛ
1
2 B1ξr1

+ µ
)]

≤ max
Pr2∈Dr2

EPζ2

[
f
(

x, UΛ
1
2 [B1, C]ξr2

+ µ
)]

.

Considering an optimal solution B∗
1 ∈ Rm×m1 of Problem (10), for any x ∈ X and C ∈ Rm×(m2−m1)

such that [B∗
1, C]⊤[B∗

1, C] = Im2 , we have

max
Pr1∈Dr1

EPζ1

[
f
(

x, UΛ
1
2 B∗

1ξr1
+ µ

)]
≤ max

Pr2∈Dr2

EPζ2

[
f
(

x, UΛ
1
2 [B∗

1, C]ξr2
+ µ

)]
.
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For any C ∈ Rm×(m2−m1) such that [B∗
1, C]⊤[B∗

1, C] = Im2 , we have

min
x∈X

max
Pr1∈Dr1

EPζ1

[
f
(

x, UΛ
1
2 B∗

1ξr1
+ µ

)]
≤ min

x∈X
max

Pr2∈Dr2

EPζ2

[
f
(

x, UΛ
1
2 [B∗

1, C]ξr2
+ µ

)]
. (51)

It follows that

max
B⊤

1 B1=Im1

min
x∈X

max
Pr1∈Dr1

EPζ1

[
f
(

x, UΛ
1
2 B1ξr1

+ µ
)]

= min
x∈X

max
Pr1∈Dr1

EPζ1

[
f
(

x, UΛ
1
2 B∗

1ξr1
+ µ

)]
≤ min

x∈X
max

Pr2∈Dr2

EPζ2

[
f
(

x, UΛ
1
2 [B∗

1, C]ξr2
+ µ

)]
≤ max

B2∈Bm2

min
x∈X

max
Pr2∈Dr2

EPζ2

[
f
(

x, UΛ
1
2 B2ξr2

+ µ
)]

,

where the first inequality holds by (51) and the second inequality holds because [B∗
1, C] ∈ Bm2 .

That is, the optimal value of Problem (10) is nondecreasing in m1.

(iii) When m1 = m, we have B ∈ Bm ⊆ Rm×m, i.e., B⊤B = Im. First, we have ΘL(m) ≤ ΘM(m) by

the conclusion (i). Second, when B = Im, Problem (10) becomes Problem (3). Because B = Im is a

feasible solution of Problem (10), it follows that ΘL(m) ≥ ΘM(m). Therefore, we have ΘL(m) =

ΘM(m). □

C.4. Theorem 7

THEOREM 7. Consider the optimal solution (x∗, s∗, λ̂
∗
, q′, Q′) of Problem (4), Sk(∀k ∈ [K]), V, δ,

νk(∀k ∈ [K]), and Y11 that are defined in Theorem 2. When m1 ≥ K, there exists a feasible solution B† =

[V, C] in Problem (12) with C ∈ Rm×(m1−K) and [V, C]⊤[V, C] = Im1 and given this B†, there exists a

feasible solution (x† = x∗, s† = s∗, λ̂
†
= λ̂

∗
, q†

r = (δ⊤, 0⊤
m1−K)

⊤, Q†
r =

[
Y11 0K×(m1−K)

0(m1−K)×K 0(m1−K)×(m1−K)

]
) in Problem

(13) such that the corresponding objective value equals the optimal value of Problem (4), ΘM(m).

Proof. We construct a solution (x†, s†, λ̂
†
, q†

r , Q†
r , B†) of Problems (12) and (13) by setting x† =

x∗, s† = s∗, λ̂
†
= λ̂

∗
, q†

r = (δ⊤, 0⊤
m1−K)

⊤, Q†
r =

[
Y11 0K×(m1−K)

0(m1−K)×K 0(m1−K)×(m1−K)

]
, and B† = [V, C], where C ∈

Rm×(m1−K) and [V, C]⊤[V, C] = Im1 . First, we show this constructed solution is feasible to Problems

(12) and (13). Clearly, this solution satisfies constraints (13c). In addition, from Problem (4), as

q′ = Vδ and Q′ = VY11V⊤, for any k ∈ [K], we have Sk
1
2

(
Vδ +

(
UΛ

1
2

)⊤
(A⊤λ∗

k − yk(x∗))

)⊤

1
2

(
Vδ +

(
UΛ

1
2

)⊤
(A⊤λ∗

k − yk(x∗))

)
VY11V⊤

⪰ 0,

which, by Schur complement, is equivalent to

Sk

(
VY11V⊤

)
⪰ 1

4

(
Vδ +

(
UΛ

1
2

)⊤ (
A⊤λ∗

k − yk(x
∗)
))(

Vδ +
(

UΛ
1
2

)⊤ (
A⊤λ∗

k − yk(x
∗)
))⊤

. (52)

From (52), for any k ∈ [K], we have the following inequality holds by Lemma 2:

Sk
(
[V, C]⊤VY11V⊤[V, C]

)
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⪰ 1
4
[V, C]⊤

(
Vδ +

(
UΛ

1
2

)⊤ (
A⊤λ∗

k − yk(x∗)
))(

Vδ +
(

UΛ
1
2

)⊤ (
A⊤λ∗

k − yk(x∗)
))⊤

[V, C],

which is equivalent to

SkQ†
r ⪰

1
4

(
q†

r +
(

UΛ
1
2 B†
)⊤ (

A⊤λ∗
k − yk(x∗)

))(
q†

r +
(

UΛ
1
2 B†
)⊤ (

A⊤λ∗
k − yk(x∗)

))⊤

(53)

by the construction of the solution q†
r , Q†

r , B† and [V, C]⊤V = [IK, 0K×(m1−K)]⊤. By Schur comple-

ment, (53) indicates that the constructed solution (x†, s†, λ̂
†
, q†

r , Q†
r , B†) also satisfies constraints

(13b) and thus it is a feasible solution of Problems (12) and (13).

Second, we show the objective value of this feasible solution (x†, s†, λ̂
†
, q†

r , Q†
r , B†) is equal to the

optimal value of Problem (4). The objective value corresponding to this solution is

s† + γ2Im1 • Q†
r +

√
γ1

∥∥q†
r

∥∥
2 = s∗ + γ2IK • Y11 +

√
γ1 ∥δ∥2

= s∗ + γ2IK • (Y11V⊤V) +
√

γ1 ∥δ∥2

= s∗ + γ2Im • (VY11V⊤) +
√

γ1 ∥δ∥2

= s∗ + γ2Im • Q′ +
√

γ1 ∥δ∥2

= s∗ + γ2Im • Q′ +
√

γ1

√
δ⊤δ

= s∗ + γ2Im • Q′ +
√

γ1

√
δ⊤V⊤Vδ

= s∗ + γ2Im • Q′ +
√

γ1

√
q′⊤q′

= s∗ + γ2Im • Q′ +
√

γ1 ∥q′∥2

= ΘM(m), (54)

where the first equality holds by the construction of (x†, s†, λ̂
†
, q†

r , Q†
r , B†), the second equality

holds because V⊤V = IK, the third equality holds by the cyclic property of a matrix’s trace, the

fourth equality holds by the definition of Q′ in Theorem 2, and the seventh equality holds because

q′ = Vδ. □

Theorem 7 shows that, when m1 ≥ K, we can always find a feasible solution of Problems (12)

and (13) such that the corresponding objective value is equal to the optimal value of the original

Problem (4). More importantly, the SDP constraints in Problem (12) have smaller sizes (i.e., m1 + 1)

than those in Problem (4) (i.e., m + 1), potentially reducing computational challenges because K

is usually small (e.g., K = 2 in the distributionally robust CVaR problem in Example 1).

It is important to note that, although the constructed feasible solution of Problem (12) has an

objective value of ΘM(m) and Problem (12) serves as an outer approximation for Problem (4), this

does not imply that the constructed feasible solution is optimal for Problem (12). The primary
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reason is that Problem (12) is a max-min problem. For any m1 ≤ m, we would like to have an

optimal B∗ ∈ Bm1 such that the optimal value of the inner minimization problem given this B∗ can

be maximized. By Theorem 1, we have Θ(m1, B∗) = ΘL(m1)≤ ΘM(m) for any m1 ≤ m.

According to Theorem 7, when m1 ≥ K, we can construct a feasible solution B† = [V, C] of the

outer maximization problem. Note that B† is not necessarily optimal for Problem (12). Because the

outer problem is a maximization problem, we have Θ(m1, B†)≤ Θ(m1, B∗) = ΘL(m1)≤ ΘM(m).

Given this feasible B†, we can construct a feasible solution of the inner minimization problem

(13) such that the corresponding objective value (here denoted by ϕ) is equal to ΘM(m). Note

that this constructed feasible solution is not necessarily optimal for Problem (12) or Problem (13).

Because the inner problem is a minimization problem, we have Θ(m1, B†)≤ ϕ = ΘM(m).

Now, we construct a feasible solution B† for the outer maximization problem and, given this

B†, we also construct a feasible solution for the inner minimization problem. Although the cor-

responding objective value ϕ is equal to ΘM(m) and Problem (12) is an outer approximation for

the original problem, we cannot claim that this constructed feasible solution is optimal due to

the max-min natrue. One key reason is that the constructed solution of the inner minimization

problem (13) may not be optimal. Thus, Θ(m1, B†)< ϕ = ΘM(m) may hold.

We used to conjecture that this constructed feasible solution is an optimal solution of Problems

(12) and (13) such that the optimal value of Problem (12) equals that of Problem (4) when m1 ≥ K.

Most numerical experiments (see Section 7) show this conjecture may be correct, but we find a

counter-example (see Example 2 in Appendix C.5). Example 2 illustrates that the optimal value of

Problem (13) with m1 = K and B = V is strictly less than the optimal value of Problem (4), which

means that the constructed feasible solution (B = V) is not optimal.

C.5. Counter-Example

Now we provide an example as follows to illustrate that the optimal value of Problem (13) with

m1 = K and B = V is strictly less than the optimal value of Problem (4), which means that the

constructed feasible solution (B = V) is not optimal.

EXAMPLE 2. We consider an instance of Problem (4), where m = n = 4, γ1 = 1, γ2 = 2, A = 0l×m,

b = 0l, µ = 1m, Σ = Im, K = 3, y0
k(x) = 0 (∀k ∈ [K]), yk(x) = Wkx (∀k ∈ [K]) with W1 =

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

,

W2 =

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 2

, and W3 =

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

, and X = {x ∈ R4 | x1 = x3 = x4 = 1, x2 ∈ {−7, 1}}, then Prob-

lem (4) becomes

min
x∈X ,s,q,Q

{
s + 2Im • Q + ∥q∥2

∣∣∣∣ [s − x⊤W⊤
k 1m

1
2 (q − Wkx)

⊤

1
2 (q − Wkx) Q

]
⪰ 0, ∀k ∈ [K]

}
. (55)
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Solving Problem (55) gives the optimal value 5.9882 with x = [1, 1, 1, 1]⊤, Q = 0.0911 −0.0558 −0.0354 −0.0558
−0.0558 0.1115 −0.0558 0.1115
−0.0354 −0.0558 0.0911 −0.0558
−0.0558 0.1115 −0.0558 0.1115

, and rank(Q) = 2. By Theorem 2, we can correspondingly obtain a

feasible V =

0.7071 −0.5774 −0.1543
0 0.5774 −0.3086
0 0 0.9258

0.7071 0.5774 0.1543

. Now given m1 = K = 3 and B = V, Problem (13) becomes

min
x∈X ,s,qr,Qr

{
s + 2Im1 • Qr + ∥qr∥2

∣∣∣∣ [ s − x⊤W⊤
k 1m

1
2 (qr − V⊤Wkx)

⊤

1
2 (qr − V⊤Wkx) Qr

]
⪰ 0, ∀k ∈ [K]

}
. (56)

Solving Problem (56) gives the optimal value 5.1139 with x = [1,−7, 1, 1]⊤. That is, the optimal

value of Problem (13) with B = V is strictly less than the optimal value of Problem (4).

C.6. Proof of Proposition 2

We consider the Lagrangian dual of the inner minimization part (i.e., Problem (13)) of Problem

(12) as follows:

max tk p⊤
k

pk Pk

⪰0,

∀k∈[K],
Z⪰0

min
x,s,λ̂≥0,

qr,Qr

L
(

x, s, λ̂, qr, Qr; Z, tk, pk, Pk,∀k ∈ [K]
)

, (57)

where the Lagrangian function

L
(

x, s, λ̂, qr, Qr; Z, tk, pk, Pk,∀k ∈ [K]
)

=s + γ2Im1 • Qr +
√

γ1 ∥qr∥2 − Z •
(

n

∑
i=1

(∆ixi) + ∆0

)
−

K

∑
k=1

[
tk p⊤

k
pk Pk

]
• s − y0

k(x)− λ⊤
k b − yk(x)⊤µ + λ⊤

k Aµ 1
2

(
qr +

(
UΛ

1
2 B
)⊤ (

A⊤λk − yk(x)
))⊤

1
2

(
qr +

(
UΛ

1
2 B
)⊤ (

A⊤λk − yk(x)
))

Qr


=

(
1 −

K

∑
k=1

tk

)
s −

K

∑
k=1

(
tk (Aµ − b)⊤ + p⊤

k

(
UΛ

1
2 B
)⊤

A⊤
)

λk +
√

γ1 ∥qr∥2 −
K

∑
k=1

p⊤
k qr

+

(
γ2Im1 −

K

∑
k=1

Pk

)
• Qr −

τ

∑
i=1

τ

∑
j=1

zij

(
aijx + a0

ij

)
+

K

∑
k=1

(
tky0

k(x) +
(

tkµ⊤ + p⊤
k

(
UΛ

1
2 B
)⊤)

yk(x)
)

=

(
1 −

K

∑
k=1

tk

)
s −

K

∑
k=1

(
tk (Aµ − b)⊤ + p⊤

k

(
UΛ

1
2 B
)⊤

A⊤
)

λk +
√

γ1 ∥qr∥2 −
K

∑
k=1

p⊤
k qr

+

(
γ2Im1 −

K

∑
k=1

Pk

)
• Qr −

τ

∑
i=1

τ

∑
j=1

zijaijx −
τ

∑
i=1

τ

∑
j=1

zija0
ij +

K

∑
k=1

(
tkw0

k +

(
tkµ⊤ + p⊤

k

(
UΛ

1
2 B
)⊤)

Wk

)
x

+
K

∑
k=1

(
tkd0

k +

(
tkµ⊤ + p⊤

k

(
UΛ

1
2 B
)⊤)

dk

)

=

(
1 −

K

∑
k=1

tk

)
s −

K

∑
k=1

(
tk (Aµ − b)⊤ + p⊤

k

(
UΛ

1
2 B
)⊤

A⊤
)

λk +
√

γ1 ∥qr∥2 −
K

∑
k=1

p⊤
k qr
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+

(
γ2Im1 −

K

∑
k=1

Pk

)
• Qr +

(
K

∑
k=1

(
tkw0

k +

(
tkµ⊤ + p⊤

k

(
UΛ

1
2 B
)⊤)

Wk

)
−

τ

∑
i=1

τ

∑
j=1

zijaij

)
x

+
K

∑
k=1

(
tkd0

k +

(
tkµ⊤ + p⊤

k

(
UΛ

1
2 B
)⊤)

dk

)
−

τ

∑
i=1

τ

∑
j=1

zija0
ij.

To present the objective value of the inner minimization problem of (57) from going to negative

infinity, we require

1 −
K

∑
k=1

tk = 0,
√

γ1 −
∥∥∥∥∥ K

∑
k=1

pk

∥∥∥∥∥
2

≥ 0, γ2Im1 −
K

∑
k=1

Pk = 0, (58a)

tk (Aµ − b)⊤ + p⊤
k

(
UΛ

1
2 B
)⊤

A⊤ ≤ 0, ∀k ∈ [K], (58b)
K

∑
k=1

(
tkw0

k +

(
tkµ

⊤ + p⊤
k

(
UΛ

1
2 B
)⊤
)

Wk

)
−

τ

∑
i=1

τ

∑
j=1

zijaij = 0, (58c)[
tk p⊤

k
pk Pk

]
⪰ 0, ∀k ∈ [K], Z ⪰ 0. (58d)

Then, the dual problem of Problem (13) can be described as follows:

max
tk ,pk ,Pk ,∀k∈[K],Z

K

∑
k=1

(
tkd0

k +

(
tkµ

⊤ + p⊤
k

(
UΛ

1
2 B
)⊤
)

dk

)
−

τ

∑
i=1

τ

∑
j=1

zija0
ij (59)

s.t. (58a) − (58d).

By integrating the outer maximization part of Problem (12) and Problem (59), we obtain the

bilinear SDP problem (25). Now we would like to prove the strong duality between Problem (13)

and Problem (59); that is, these two problems share the same optimal value, which further shows

that Problem (12) has the same optimal value as Problem (25). To that end, we find an interior

point of Problem (13).

Let x′ be an interior point in X , we can construct an interior point by setting λ̂
′
=

{1l, . . . , 1l}, s′ = ∑K
k=1

∣∣y0
k(x

′) + 1⊤
l b + yk(x′)⊤µ − 1⊤

l Aµ
∣∣ + 1, q′

r = 0, and Q′
r = ∑K

k=1 1/(4(s′ −
y0

k(x
′)− 1⊤

l b− yk(x′)⊤µ+ 1⊤
l Aµ))(UΛ

1
2 B)⊤(A⊤1l − yk(x′))(A⊤1l − yk(x′))⊤(UΛ

1
2 B) + Im1 . Clearly,

(UΛ
1
2 B)⊤(A⊤1l − yk(x′))(A⊤1l − yk(x′))⊤(UΛ

1
2 B)⪰ 0. Thus, Q′

r ≻ 0. Now we only need to show

that constraints (13b) hold in the positive-definite sense with respect to this constructed solution.

By the construction of Q′
r, for any k ∈ [K], we have

Q′
r −

((
UΛ

1
2 B
)⊤

(A⊤1l − yk(x′))

)((
UΛ

1
2 B
)⊤

(A⊤1l − yk(x′))

)⊤

4
(
s′ − y0

k(x′)− 1⊤
l b − yk(x′)⊤µ + 1⊤

l Aµ
)

= ∑
∀k′∈[K]:k′ ̸=k

((
UΛ

1
2 B
)⊤

(A⊤1l − yk′(x′))

)((
UΛ

1
2 B
)⊤

(A⊤1l − yk′(x′))

)⊤

4
(
s′ − y0

k′(x′)− 1⊤
l b − yk′(x′)⊤µ + 1⊤

l Aµ
) + Im1 ≻ 0, (60)
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where s′ − y0
k′(x

′)− 1⊤
l b − yk′(x′)⊤µ + 1⊤

l Aµ > 0 by the construction of s′. By Schur complement,

(60) is equivalent tos′ − y0
k(x

′)− 1⊤
l b − yk(x′)⊤µ + 1⊤

l Aµ 1
2

((
UΛ

1
2 B
)⊤

(A⊤1l − yk(x′))

)⊤

1
2

((
UΛ

1
2 B
)⊤

(A⊤1l − yk(x′))

)
Q′

r

≻ 0, ∀k ∈ [K].

Thus, (x′, s′, λ̂
′
, q′

r, Q′
r) is an interior point of Problem (13) and the strong duality between Problem

(13) and Problem (59) holds. □

Appendix D: Supplement to Section 4

D.1. Proof of Theorem 3

(i) For any ξI ∼ PI ∈ DM, we have EPI [ξIξ
⊤
I ] ⪯ γ2Im1 . Then, by Lemma 2, for any given x ∈ X

and B ∈ Bm1 , i.e., B⊤B = Im1 , we further have B⊤(EPI [ξIξ
⊤
I ])B ⪯ B⊤(γ2Im1)B, i.e., EPI [B

⊤ξIξ
⊤
I B]⪯

γ2B⊤Im1 B = γ2Im1 . It follows that DM ⊆DU. Thus, given any x ∈ X and B ∈ Bm1 , we have

max
PI∈DU

EPI

[
f
(

x, UΛ
1
2 ξI + µ

)]
≥ max

PI∈DM
EPI

[
f
(

x, UΛ
1
2 ξI + µ

)]
.

It follows that

min
B∈Bm1

min
x∈X

max
PI∈DU

EPI

[
f
(

x, UΛ
1
2 ξI + µ

)]
≥ min

x∈X
max

PI∈DM
EPI

[
f
(

x, UΛ
1
2 ξI + µ

)]
,

which demonstrates that the optimal value of Problem (26) is an upper bound for that of Problem

(3) (i.e., Problem (2)).

(ii) Consider any m1 < m2 ≤ m. We have Bm2 := {B ∈ Rm×m2 | B⊤B = Im2} and consider an

optimal solution (B∗, x∗) of Problem (26), i.e., min
B∈Bm1

min
x∈X

max
PI∈DU

EPI [ f (x, UΛ
1
2 ξI + µ)].

Note that (B∗)⊤B∗ = Im1 . We can then construct B′ = [B∗, C] ∈ Rm×m2 such that C ∈ Rm×(m2−m1)

and B′ ∈ Bm2 , i.e., (B′)⊤B′ = Im2 . With B′, we use D′
U to denote the corresponding ambiguity set

defined in (28). By the second-moment constraint in D′
U, we have

EPI

[
(B′)⊤ξIξ

⊤
I B′
]

=EPI

[
[B∗, C]⊤ξIξ

⊤
I [B

∗, C]
]

=EPI

[
(B∗)⊤ξIξ

⊤
I B∗ (B∗)⊤ξIξ

⊤
I C

C⊤ξIξ
⊤
I B∗ C⊤ξIξ

⊤
I C

]
⪯γ2Im2 ,

which implies that EPI [(B
∗)⊤ξIξ

⊤
I B∗]⪯ γ2Im1 . It follows that D′

U ⊆DU. Therefore, we have

max
PI∈DU

EPI

[
f
(

x∗, UΛ
1
2 ξI + µ

)]
≥ max

PI∈D′
U

EPI

[
f
(

x∗, UΛ
1
2 ξI + µ

)]
. (61)
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Because B′ ∈ Bm2 and x∗ ∈ X , the constructed solution (B′, x∗) is feasible to the problem

min
B∈Bm2

min
x∈X

max
PI∈D′

U

EPI [ f (x, UΛ
1
2 ξI + µ)]. Then, we have

ΘU(m2) = min
B∈Bm2

min
x∈X

max
PI∈D′

U

EPI

[
f
(

x, UΛ
1
2 ξI + µ

)]
≤ max

PI∈D′
U

EPI

[
f
(

x∗, UΛ
1
2 ξI + µ

)]
≤ max

PI∈DU
EPI

[
f
(

x∗, UΛ
1
2 ξI + µ

)]
= min

B∈Bm1

min
x∈X

max
PI∈DU

EPI

[
f
(

x, UΛ
1
2 ξI + µ

)]
= ΘU(m1),

where the first inequality holds because (B′, x∗) is a feasible solution of the problem

min
B∈Bm2

min
x∈X

max
PI∈D′

U

EPI [ f (x, UΛ
1
2 ξI + µ)], the second inequality holds by (61), and the second equal-

ity holds because (B∗, x∗) is an optimal solution of Problem (26). That is, the optimal value of

Problem (26) is nonincreasing in m1.

(iii) When m1 = m, we have B ∈ Bm ⊆ Rm×m, i.e., B⊤B = Im. First, we have ΘU(m)≥ ΘM(m) by

the conclusion (i). Second, when B = Im, Problem (26) becomes Problem (3). Because B = Im is a

feasible solution of Problem (26), it follows that ΘU(m) ≤ ΘM(m). Therefore, we have ΘU(m) =

ΘM(m). □

D.2. Proof of Proposition 3

First, by Theorem 3 in Cheramin et al. (2022), Problem (27) has the same optimal value as the

following problem:

min
x,s,q,Qr

s + γ2Im1 • Qr +
√

γ1 ∥q∥2 (62a)

s.t. s ≥ f
(

x, UΛ
1
2 ξI + µ

)
− ξ⊤

I BQrB⊤ξI − q⊤ξI, ∀ξI ∈ SI, (62b)

Qr ⪰ 0, x ∈ X , Qr ∈ Rm1×m1 , q ∈ Rm. (62c)

Next, we apply the strong duality theorem to constraints (62b). We define

gk(ξI) = s + ξ⊤
I BQrB⊤ξI + q⊤ξI − y0

k(x)− yk(x)⊤
(

UΛ
1
2 ξI + µ

)
, ∀k ∈ [K].

As function f (x, ξ) is piecewise linear convex, we can reformulate (62b) as

gk(ξI)≥ 0, ∀ξI ∈ SI, ∀k ∈ [K],

which is equivalent to

min
A
(

UΛ
1
2 ξI+µ

)
≤b, ξI∈Rm

gk(ξI)≥ 0, ∀k ∈ [K]. (63)
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For any k ∈ [K], the Lagrangian dual problem of min
A(UΛ

1
2 ξI+µ)≤b, ξI∈Rm

gk(ξI) is

max
λk≥0

min
ξI∈Rm

gk(ξI) + λ⊤
k

(
A
(

UΛ
1
2 ξI + µ

)
− b

)
,

where λk ∈ Rl. Because there exists an interior point for the primal problem, the strong duality

holds. Thus, constraints (63) are equivalent to

max
λk≥0

min
ξI

gk(ξI) + λ⊤
k

(
A
(

UΛ
1
2 ξI + µ

)
− b

)
≥ 0, ∀k ∈ [K],

which are further equivalent to

∃λk ≥ 0 : s + ξ⊤
I BQrB⊤ξI + q⊤ξI − y0

k(x)− yk(x)⊤
(

UΛ
1
2 ξI + µ

)
+ λ⊤

k

(
A
(

UΛ
1
2 ξI + µ

)
− b

)
≥ 0, ∀ξI ∈ Rm, ∀k ∈ [K]. (64)

Note that B⊤B = Im1 ; that is, all the column vectors of B are orthogonal. We can then extend B

to [B, B̄] ∈ Rm×m with B̄ ∈ Rm×(m−m1) such that all the column vectors of [B, B̄] span the space of

Rm. Thus, we can always find ξ1 ∈ Rm1 and ξ2 ∈ Rm−m1 such that

ξI = Bξ1 + B̄ξ2.

It follows that constraints (64) become

∃λk ≥ 0 : s + ξ⊤
1 Qrξ1 + q⊤ (Bξ1 + B̄ξ2)− y0

k(x)− yk(x)⊤
(

UΛ
1
2 (Bξ1 + B̄ξ2) + µ

)
+ λ⊤

k

(
A
(

UΛ
1
2 (Bξ1 + B̄ξ2) + µ

)
− b

)
≥ 0, ∀ξ1 ∈ Rm1 , ξ2 ∈ Rm−m1 , ∀k ∈ [K]. (65)

We further define

Zk =

 s − y0
k(x)− λ⊤

k b − yk(x)⊤µ + λ⊤
k Aµ 1

2

(
B⊤q +

(
UΛ

1
2 B
)⊤

(A⊤λk − yk(x))
)⊤

1
2

(
B⊤q +

(
UΛ

1
2 B
)⊤

(A⊤λk − yk(x))
)

Qr

 , ∀k ∈ [K].

Thus, we have

(65) ⇐⇒ ∃λk ≥ 0 :
(

1, ξ⊤
1

)
Zk

(
1, ξ⊤

1

)⊤
+ ξ⊤

2

(
B̄⊤q +

(
UΛ

1
2 B̄
)⊤ (

A⊤λk − yk(x)
))

≥ 0,

∀ξ1 ∈ Rm1 , ξ2 ∈ Rm−m1 , ∀k ∈ [K].

⇐⇒ ∃λk ≥ 0 :
(

1, ξ⊤
1

)
Zk

(
1, ξ⊤

1

)⊤
≥ 0, ∀ξ1 ∈ Rm1 , ∀k ∈ [K]; (66)

B̄⊤q +
(

UΛ
1
2 B̄
)⊤ (

A⊤λk − yk(x)
)
= 0, ∀k ∈ [K].

⇐⇒ ∃λk ≥ 0 : Zk ⪰ 0, B̄⊤q +
(

UΛ
1
2 B̄
)⊤ (

A⊤λk − yk(x)
)
= 0, ∀k ∈ [K].

⇐⇒ ∃λk ≥ 0 : Zk ⪰ 0, B̄⊤
(

q +
(

UΛ
1
2

)⊤ (
A⊤λk − yk(x)

))
= 0, ∀k ∈ [K]. (67)
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⇐⇒ ∃λk ≥ 0, uk ∈ Rm1 : Zk ⪰ 0, q +
(

UΛ
1
2

)⊤ (
A⊤λk − yk(x)

)
= Buk, ∀k ∈ [K]. (68)

The first equivalence holds due to the definition of Zk. For the third equivalence, clearly ⇐=

follows from the definition of a PSD matrix. To prove =⇒, we consider two possible cases for

any (η0 ∈ R, η⊤ ∈ Rm1)⊤ ∈ Rm1+1: (i) if η0 = 0, then (η0, η⊤)Zk(η0, η⊤)⊤ = η⊤Qrη ≥ 0 because Qr

is PSD; (ii) if η0 ̸= 0, then we have (η0, η⊤)Zk(η0, η⊤)⊤ = η2
0(1, η⊤

η0
)Zk(1, η⊤

η0
)⊤ ≥ 0 according to (66).

Therefore, =⇒ holds. For the fifth equivalence, (67) shows that q + (UΛ
1
2 )⊤(A⊤λk − yk(x)) is in

the null space of B̄ and thus cannot be represented by basis vectors in the space of B̄. Because

[B, B̄] span the space of Rm, we have q + (UΛ
1
2 )⊤(A⊤λk − yk(x)) should be in the space of B. That

is, there exists uk ∈ Rm1 such that q + (UΛ
1
2 )⊤(A⊤λk − yk(x)) = Buk for any k ∈ [K]. Meanwhile,

because B⊤B = Im1 , we have

B⊤q +
(

UΛ
1
2 B
)⊤ (

A⊤λk − yk(x)
)
= B⊤Buk = uk, ∀k ∈ [K].

Finally, we obtain Problem (29) by replacing constraints (62b) with (68) and replacing B⊤q +

(UΛ
1
2 B)⊤(A⊤λk − yk(x)) with uk. □

D.3. Proof of Theorem 4

Consider m1 = K. We construct a solution (x†, s†, λ̂
†
, q†, Q†

r , û†, B†) of Problem (26) by setting x† =

x∗, s† = s∗, λ̂
†
= λ̂

∗
, q† = q′ = Vδ, Q†

r = Y11, B† = V, and û†
k = δ + νk (k ∈ [K]).

First, we show this constructed solution is feasible to Problem (26). Clearly, this solution satisfies

constraints (29d)–(29e). By the construction of the solution, for any k ∈ [K], we further have

q† +
(

UΛ
1
2

)⊤ (
A⊤λ†

k − yk(x†)
)
= Vδ +

(
UΛ

1
2

)⊤ (
A⊤λ∗

k − yk(x∗)
)

= Vδ + Vνk = B†û†
k ,

where the first equality holds by the construction of q†, the second equality holds by (16), and

the third equality holds by the construction of û†
k . Thus, this solution satisfies constraints (29c).

Meanwhile, V⊤V = IK = Im1 . It follows that (B†)⊤B† = Im1 .

In addition, from Problem (4), as q′ = Vδ and Q′ = VY11V⊤, for any k ∈ [K], we have Sk
1
2

(
Vδ +

(
UΛ

1
2

)⊤
(A⊤λ∗

k − yk(x∗))

)⊤

1
2

(
Vδ +

(
UΛ

1
2

)⊤
(A⊤λ∗

k − yk(x∗))

)
VY11V⊤

⪰ 0,

which, by Schur complement, is equivalent to

4Sk
(
VY11V⊤)⪰(Vδ +

(
UΛ

1
2

)⊤ (
A⊤λ∗

k − yk(x∗)
))(

Vδ +
(

UΛ
1
2

)⊤ (
A⊤λ∗

k − yk(x∗)
))⊤
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=
(
Vu†

k

) (
Vu†

k

)⊤ , (69)

where the equality holds by (16) and the construction of û†
k . From (69), for any k ∈ [K], we have

the following inequality holds by Lemma 2:

4Sk

(
V⊤VY11V⊤V

)
⪰ V⊤

(
Vu†

k

)(
Vu†

k

)⊤
V,

which is equivalent to

4SkY11 ⪰ u†
ku†⊤

k (70)

because V⊤V = IK. By Schur complement, for any k ∈ [K], (70) further becomes[
Sk

1
2 u†⊤

k
1
2 u†

k Y11

]
⪰ 0,

which indicates that the constructed solution (x†, s†, λ̂
†
, q†, Q†

r , û†, B†) also satisfies constraints

(29b) and thus it is a feasible solution of Problem (26).

Second, we show this feasible solution (x†, s†, λ̂
†
, q†, Q†

r , û†, B†) is an optimal solution of Prob-

lem (26). The objective value corresponding to this solution is

s† + γ2Im1 • Q†
r +

√
γ1

∥∥q†
∥∥

2 = s∗ + γ2Im1 • Y11 +
√

γ1 ∥q′∥2

= s∗ + γ2Im1 • (Y11V⊤V) +
√

γ1 ∥q′∥2 = s∗ + γ2Im • (VY11V⊤) +
√

γ1 ∥q′∥2

= s∗ + γ2Im • Q′ +
√

γ1 ∥q′∥2 = ΘM(m),

where the first equality holds by the construction of (x†, s†, λ̂
†
, q†, Q†

r , û†, B†), the second equal-

ity holds because V⊤V = IK, the third equality holds by the cyclic property of a matrix’s trace,

and the fourth equality holds by the definition of Q′ in Theorem 2. Therefore, the solution

(x†, s†, λ̂
†
, q†, Q†

r , û†, B†) is an optimal solution of Problem (26).

Finally, when m1 > K and m1 ≤ m, we have ΘU(m1)≥ ΘM(m) by the conclusion (i) in Theorem

3 and ΘU(m1) ≤ ΘU(K) = ΘM(m) by the conclusion (ii) in Theorem 3. It follows that ΘU(m1) =

ΘM(m). □

D.4. Proof of Proposition 4

First, by Lemma 2, for any B ∈ Bm1 , we have

X ⪯ Im =⇒ B⊤XB ⪯ B⊤ImB = Im1 .

Second, we perform eigenvalue decomposition on X, i.e., X = QΛQ⊤, where Q ∈ Rm×m is a

matrix with orthonormal column vectors and Λ ∈ Rm×m is a diagonal matrix. Without loss of

generality, we assume that the diagonal elements of Λ are arranged in a nonincreasing order and

let Λm1×m1 represent the upper-left submatrix of Λ.
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Now we let B = Qm×m1 , where Qm×m1 is the left submatrix of Q. Then we have B ∈ Bm1 and

B⊤XB ⪯ Im1 =⇒ B⊤QΛQ⊤B ⪯ Im1 =⇒ Q⊤
m×m1

QΛQ⊤Qm×m1 ⪯ Im1

=⇒ [Im1 , 0m1×(m−m1)]Λ[Im1 , 0m1×(m−m1)]
⊤ ⪯ Im1

=⇒ Λm1×m1 ⪯ Im1 =⇒ Λ ⪯ Im =⇒ QΛQ⊤ ⪯ QImQ⊤ =⇒ X ⪯ Im

where the first deduction holds by the eigenvalue decomposition of X, the second deduction

holds by the construction of B, the third deduction holds because all the column vectors in Q are

orthonormal, the fourth deduction holds by the definition of Λm1×m1 , the fifth deduction holds

because rank(X) ≤ m1, the sixth deduction holds by Lemma 2. Thus, if B⊤XB ⪯ Im1 for any B ∈
Bm1 , then we have X ⪯ Im. The proof is complete. □

Appendix E: Supplement to Section 5

E.1. Proof of Theorem 5

By dualizing the inner maximization problem of Problem (30) and integrating it with the outer

minimization operators, we first obtain the following formulation:

min
x,s,q,Q′

r,Q′′
r

B1,B2

s + γ2Im1 • Q′
r +

√
γ1 ∥q∥2 (71a)

s.t. s ≥ f
(

x, UΛ
1
2 ξI + µ

)
− ξ⊤

I B1Q′
rB

⊤
1 ξI − ξ⊤

I B2Q′′
r B⊤

2 ξI − q⊤ξI, ∀ξI ∈ SI, (71b)

Q′
r ⪰ 0, Q′′

r ⪰ 0, x ∈ X , Q′
r ∈ Rm1×m1 , Q′′

r ∈ R(K−m1)×(K−m1), q ∈ Rm, (71c)

B1 ∈ Rm×m1 , B2 ∈ Rm×(K−m1), [B1, B2]
⊤[B1, B2] = IK. (71d)

Next, we apply the strong duality theorem to constraints (71b). We define

gk(ξI) = s + ξ⊤
I B1Q′

rB
⊤
1 ξI + ξ⊤

I B2Q′′
r B⊤

2 ξI + q⊤ξI − y0
k(x)− yk(x)⊤

(
UΛ

1
2 ξI + µ

)
, ∀k ∈ [K].

As function f (x, ξ) is piecewise linear convex, we can reformulate (71b) as

gk(ξI)≥ 0, ∀ξI ∈ SI, ∀k ∈ [K],

which is equivalent to

min
A
(

UΛ
1
2 ξI+µ

)
≤b, ξI∈Rm

gk(ξI)≥ 0, ∀k ∈ [K]. (72)

For any k ∈ [K], the Lagrangian dual problem of min
A(UΛ

1
2 ξI+µ)≤b, ξI∈Rm

gk(ξI) is

max
λk≥0

min
ξI∈Rm

gk(ξI) + λ⊤
k

(
A
(

UΛ
1
2 ξI + µ

)
− b

)
,
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where λk ∈ Rl. Because there exists an interior point for the primal problem, the strong duality

holds. Thus, constraints (72) are equivalent to

max
λk≥0

min
ξI

gk(ξI) + λ⊤
k

(
A
(

UΛ
1
2 ξI + µ

)
− b

)
≥ 0, ∀k ∈ [K],

which are further equivalent to

∃λk ≥ 0 : s + ξ⊤
I B1Q′

rB
⊤
1 ξI + ξ⊤

I B2Q′′
r B⊤

2 ξI + q⊤ξI − y0
k(x)− yk(x)⊤

(
UΛ

1
2 ξI + µ

)
+ λ⊤

k

(
A
(

UΛ
1
2 ξI + µ

)
− b

)
≥ 0, ∀ξI ∈ Rm, ∀k ∈ [K]. (73)

Note that B⊤B = Im1 ; that is, all the column vectors of B are orthogonal. We can then extend B

to [B, B̄] ∈ Rm×m with B̄ ∈ Rm×(m−K) such that all the column vectors of [B, B̄] span the space of Rm.

Thus, we can always find ξ1 ∈ Rm1 , ξ2 ∈ RK−m1 , and ξ3 ∈ Rm−K such that

ξI = B1ξ1 + B2ξ2 + B̄ξ3.

It follows that constraints (73) become

∃λk ≥ 0 : s + ξ⊤
1 Q′

rξ1 + ξ⊤
2 Q′′

r ξ2 + q⊤ (B1ξ1 + B2ξ2 + B̄ξ3)− y0
k(x)

− yk(x)⊤
(

UΛ
1
2 (B1ξ1 + B2ξ2 + B̄ξ3) + µ

)
+ λ⊤

k

(
A
(

UΛ
1
2 (B1ξ1 + B2ξ2 + B̄ξ3) + µ

)
− b

)
≥ 0,

∀ξ1 ∈ Rm1 , ξ2 ∈ RK−m1 , ξ3 ∈ Rm−K, ∀k ∈ [K]. (74)

We further define

Zk =

s − y0
k(x)− λ⊤

k b − yk(x)⊤µ + λ⊤
k Aµ 1

2(h
′
k)

⊤ 1
2(h

′′
k )

⊤

1
2 h′

k Q′
r 0m1×(K−m1)

1
2 h′′

k 0(K−m1)×m1 Q′′
r

 , ∀k ∈ [K],

where h′
k = B⊤

1 q + (UΛ
1
2 B1)⊤(A⊤λk − yk(x)) and h′′

k = B⊤
2 q + (UΛ

1
2 B2)⊤(A⊤λk − yk(x)) for any

k ∈ [K]. It follows that

(74) ⇐⇒ ∃λk ≥ 0 :
(

1, ξ⊤
1 , ξ⊤

2

)
Zk

(
1, ξ⊤

1 , ξ⊤
2

)⊤
+ ξ⊤

3

(
B̄⊤q +

(
UΛ

1
2 B̄
)⊤ (

A⊤λk − yk(x)
))

≥ 0,

∀ξ1 ∈ Rm1 , ξ2 ∈ RK−m1 , ξ3 ∈ Rm−K, ∀k ∈ [K].

⇐⇒ ∃λk ≥ 0 :
(

1, ξ⊤
1 , ξ⊤

2

)
Zk

(
1, ξ⊤

1 , ξ⊤
2

)⊤
≥ 0, ∀ξ1 ∈ Rm1 , ξ2 ∈ RK−m1 , ∀k ∈ [K]; (75)

B̄⊤q +
(

UΛ
1
2 B̄
)⊤ (

A⊤λk − yk(x)
)
= 0, ∀k ∈ [K].

⇐⇒ ∃λk ≥ 0 : Zk ⪰ 0, B̄⊤q +
(

UΛ
1
2 B̄
)⊤ (

A⊤λk − yk(x)
)
= 0, ∀k ∈ [K].

⇐⇒ ∃λk ≥ 0 : Zk ⪰ 0, B̄⊤
(

q +
(

UΛ
1
2

)⊤ (
A⊤λk − yk(x)

))
= 0, ∀k ∈ [K]. (76)
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⇐⇒ ∃λk ≥ 0, u′
k ∈ Rm1 , u′′

k ∈ RK−m1 :

Zk ⪰ 0, q +
(

UΛ
1
2

)⊤ (
A⊤λk − yk(x)

)
= B1u′

k + B2u′′
k , ∀k ∈ [K]. (77)

The first equivalence holds due to the definition of Zk. For the third equivalence, clearly ⇐= fol-

lows from the definition of a PSD matrix. To prove =⇒, we consider two possible cases for any

(η0 ∈ R, η⊤
1 ∈ Rm1 , η⊤

2 ∈ RK−m1)⊤ ∈ RK+1: (i) if η0 = 0, then (η0, η⊤
1 , η⊤

2 )Zk(η0, η⊤
1 , η⊤

2 )
⊤ = η⊤

1 Q′
rη1 +

η⊤
2 Q′′

r η2 ≥ 0 because Q′
r and Q′′

r are PSD; (ii) if η0 ̸= 0, then we have (η0, η⊤
1 , η⊤

2 )Zk(η0, η⊤
1 , η⊤

2 )
⊤ =

η2
0(1, η⊤1

η0
, η⊤2

η0
)Zk(1, η⊤1

η0
, η⊤2

η0
)⊤ ≥ 0 according to (75). Therefore, =⇒ holds. For the fifth equivalence,

(76) shows that q + (UΛ
1
2 )⊤(A⊤λk − yk(x)) is in the null space of B̄ and thus cannot be rep-

resented by basis vectors in the space of B̄. Because [B, B̄] span the space of Rm, we have q +

(UΛ
1
2 )⊤(A⊤λk − yk(x)) should be in the space of B. That is, there exists u′

k ∈ Rm1 and u′′
k ∈ RK−m1

such that q + (UΛ
1
2 )⊤(A⊤λk − yk(x)) = B1u′

k + B2u′′
k for any k ∈ [K]. Meanwhile, because B⊤B =

IK, we have

h′
k = B⊤

1 q +
(

UΛ
1
2 B1

)⊤ (
A⊤λk − yk(x)

)
= B⊤

1 B1u′
k = u′

k, ∀k ∈ [K],

h′′
k = B⊤

2 q +
(

UΛ
1
2 B2

)⊤ (
A⊤λk − yk(x)

)
= B⊤

2 B2u′′
k = u′′

k , ∀k ∈ [K].

By replacing constraints (71b) with (77), we obtain the following problem:

min
x,s,λ̂,q,

Q′
r,Q′′

r ,û′ ,û′′ ,
B1,B2

s + γ2Im1 • Q′
r +

√
γ1 ∥q∥2 (78a)

s.t.

s − y0
k(x)− λ⊤

k b − yk(x)⊤µ + λ⊤
k Aµ 1

2 (u
′
k)

⊤ 1
2 (u

′′
k )

⊤

1
2 u′

k Q′
r 0m1×(K−m1)

1
2 u′′

k 0(K−m1)×m1 Q′′
r

⪰ 0, ∀k ∈ [K], (78b)

q +
(

UΛ
1
2

)⊤ (
A⊤λk − yk(x)

)
= B1u′

k + B2u′′
k , ∀k ∈ [K], (78c)

x ∈ X , q ∈ Rm, Q′
r ∈ Rm1×m1 , Q′′

r ∈ R(K−m1)×(K−m1), (78d)

B1 ∈ Rm×m1 , B2 ∈ Rm×(K−m1), [B1, B2]
⊤[B1, B2] = IK, (78e)

λ̂ = {λ1, . . . , λK} , λk ∈ Rl
+, ∀k ∈ [K], (78f)

û′ = {u′
1, . . . , u′

K} , u′
k ∈ Rm1 , ∀k ∈ [K], (78g)

û′′ = {u′′
1 , . . . , u′′

K} , u′′
k ∈ RK−m1 , ∀k ∈ [K]. (78h)

Note that the value of Q′′
r does not contribute to the objective function (78a). We can then let M be

an arbitrarily large positive number and Q′′
r = MI(K−m1)×(K−m1) be an optimal solution, by which

constraints (78b) become[
s − y0

k(x)− λ⊤
k b − yk(x)⊤µ + λ⊤

k Aµ 1
2(u

′
k)

⊤

1
2 u′

k Q′
r

]
⪰ 0, ∀k ∈ [K]. (79)
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By replacing (78b) with (79), we obtain the formulation of Problem (31).

Based on the formulation of Problem (31), now we show that the three conclusions hold. Note

that for any B ∈ BK = {B ∈ Rm×K | B⊤B = IK}, the optimal value of Problem (26), i.e., ΘU(K),

reaches the optimal value of the original Problem (4), i.e., ΘM(m). We would like to show that

by relaxing the constraints in Problem (26), we can obtain the exact formulation of Problem (31),

thereby the three conclusions hold.

First, we rewrite constraints (29b)–(29c) in Problem (26) with m1 = K by dividing B into [B1, B2]

and uk into ((u′
k)

⊤, (u′′
k )

⊤)⊤. Thus, we obtain the following formulation:

min
x,s,λ̂,

q,Qr,û′ ,û′′ ,
B1,B2

s + γ2IK • Qr +
√

γ1 ∥q∥2 (80a)

s.t.

[
s − y0

k(x)− λ⊤
k b − yk(x)⊤µ + λ⊤

k Aµ 1
2 ((u

′
k)

⊤, (u′′
k )

⊤)
1
2 ((u

′
k)

⊤, (u′′
k )

⊤)
⊤ Qr

]
⪰ 0, ∀k ∈ [K], (80b)

q +
(

UΛ
1
2

)⊤ (
A⊤λk − yk(x)

)
= B1u′

k + B2u′′
k , ∀k ∈ [K], (80c)

x ∈ X , [B1, B2]
⊤[B1, B2] = IK, (80d)

q ∈ Rm, Qr ∈ RK×K, B1 ∈ Rm×m1 , B2 ∈ Rm×(K−m1), (80e)

λ̂ = {λ1, . . . , λK} , λk ∈ Rl
+, ∀k ∈ [K], (80f)

û′ = {u′
1, . . . , u′

K} , u′
k ∈ Rm1 , ∀k ∈ [K], (80g)

û′′ = {u′′
1 , . . . , u′′

K} , u′′
k ∈ RK−m1 , ∀k ∈ [K]. (80h)

Second, we relax constraints (80b) into[
s − y0

k(x)− λ⊤
k b − yk(x)⊤µ + λ⊤

k Aµ 1
2 (u

′
k)

⊤

1
2 u′

k Q′
r

]
⪰ 0, ∀k ∈ [K], (81)

where Q′
r ∈ Rm1×m1 is the upper-left submatrix of Qr. Note that if we use (81) to replace (80b), we

obtain a relaxation and accordingly lower bound for Problem (80). In addition, we further reduce

the optimal value of the relaxation by replacing Qr in the objective function (80a) with Q′
r. That

is, we obtain a lower bound for the optimal value of Problem (26) with m1 = K (i.e., Problem

(4)). After these two steps of relaxations, we obtain the exact formulation of Problem (31). Thus,

we can conclude that Problem (31) is a relaxation of Problem (26) with m1 = K. Therefore, by the

conclusion in Theorem 4, we have

ΘL2(m1)≤ ΘU(K) = ΘM(m).

That is, the conclusion (i) holds.

For the conclusion (ii): For any 0 ≤ m1 < m2 ≤ K, we can follow the above two steps of relax-

ations to relax Problem (80) to the problem with the optimal value ΘL2(m2), and based on this
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relaxed problem, we can further relax it to the problem with the optimal value ΘL2(m1). Because

all these problems are minimization problems, we have ΘL2(m1)≤ ΘL2(m2).

For the conclusion (iii): When m1 = K, Problem (31) becomes Problem (26) with m1 = K. Thus,

by the conclusion in Theorem 4, we have

ΘL2(K) = ΘU(K) = ΘM(m). □

Appendix F: Supplement to Section 6

F.1. Motivation to Derive ADMM Algorithms

Several techniques, including the McCormick envelopes and spatial branch-and-bound, can han-

dle bilinear constraints and solve bilinear SDP problems like Problems (25), (26), and (31). How-

ever, to the best of our knowledge, the currently available bilinear SDP solvers, such as PENLAB

and BMIBNB (Löfberg 2004), are not yet fully mature and only succeed on relatively small and

simple problems. Therefore, we derive ADMM algorithms to solve the three approximations effi-

ciently. To illustrate this, we consider the multiproduct newsvendor problem (39) in Section 7 as

an example to compare our ADMM algorithms with benchmark solvers with default settings in

solving this problem, where no time limit is given.

First, we use the Mosek solver to solve the original high-dimensional SDP problem (4) and

report the optimality gap and computational time. Note that the Mosek solver uses the interior-

point algorithm to solve an SDP problem and terminates when the relative gap between the pri-

mal and dual objective values is no greater than 10−9. Second, we use the BMIBNB solver (the

state-of-the-art bilinear SDP solver, to the best of our knowledge) to solve the low-dimensional

bilinear SDP problem (26) with m1 = K. Note that the BMIBNB solver uses the spatial branch-and-

bound algorithm to solve a bilinear SDP problem. In the BMIBNB solver, we set “Mosek” as the

lower bound solver and “fmincon” as the upper bound solver. The default termination condition

of the BMIBNB solver is that the relative gap between the lower and upper bounds is no greater

than 0.01 or the maximum number of nodes in the branch-and-bound tree is greater than 100.

Third, we use our derived ADMM algorithms to solve Problems (25), (26), and (31), respectively.

For each of the three problems, we follow the instructions in Section 6.2 to recover the lower or

upper bounds in the following two steps: (i) We use the ADMM algorithm to solve the approxi-

mation problem and obtain a near-optimal dimensionality reduction matrix BADMM; (ii) Given this

BADMM, we solve a low-dimensional SDP problem to recover the lower or upper bound for the

original optimal value. Kindly note that the reported time for our lower or upper bounds reflects

the combined time for both steps. Other numerical setups are detailed in Section 7.
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Table F2 Performance of Bilinear SDP Solver on the Newsvendor Problem

Size (m)-Instance Id 100-1 100-2 100-3 200-1 200-2 200-3

Mosek Optimality Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00
Time (secs) 12.32 11.34 13.36 342.00 432.57 368.04

BMIBNB Optimality Gap (%) 4.31 3.89 3.65 4.25 3.83 3.85
Time (secs) 3840.00 5552.10 6412.50 9885.50 9942.50 10643.00

ODR-LB Gap1 (%) 0.07 0.07 0.09 0.00 0.00 0.00
Time (secs) 0.58 0.72 0.83 0.42 0.91 0.88

ODR-RLB Gap1 (%) 0.03 0.04 0.03 0.06 0.02 0.02
Time (secs) 2.45 1.74 1.98 2.57 2.42 2.76

ODR-UB Gap2 (%) 1.56 1.81 1.65 1.73 1.92 2.03
Time (secs) 2.45 1.74 1.98 2.57 2.42 2.76

Table F2 shows the numerical results, where “Optimality Gap (%)” and “Time (secs)” are

reported by the corresponding solver, and “Gap1 (%)” (resp. “Gap2 (%)”) represents the rela-

tive gap in percentage between a lower (resp. an upper) bound and the optimal value provided

by the Mosek solver. Note that when m > 200, the BMIBNB solver fails to obtain any feasible

solution within three hours, and thus, these cases are not reported in Table F2. For the reported

six instances, the Mosek solver can solve them to optimality, and the BMIBNB solver terminates

when reaching the limit of the maximum number of nodes. These numerical results demon-

strate that using the bilinear SDP solver to solve the low-dimensional bilinear SDP reformula-

tion of the high-dimensional SDP leads to poor performance. It is not surprising. The Mosek

solver employs the interior-point method to solve the high-dimensional SDP problem, leading

to a polynomial-time algorithm. In contrast, the BMIBNB solver uses spatial branch-and-bound

to solve the low-dimensional bilinear SDP problem, leading to an exponential-time algorithm.

More importantly, the bilinear SDP problem is nonconvex, significantly increasing the computa-

tional challenge. Finally, these numerical results demonstrate that the ADMM algorithms bring

significant improvement in terms of optimality gap and computational time.

F.2. The ADMM Algorithm for Problem (26)

Note that Algorithm 1 serves as a unified ADMM algorithm for all the three proposed approxima-

tions, i.e., Problems (25), (26), and (31). Here, we take Problem (26) as an example to demonstrate

corresponding specific details for this problem. Recall that Problem (26) can be formulated as

follows:

ΘU(m1) = min
B,x,s,q,Qr,

λk ,ũk ,uk ,∀k∈[K]

ϕ(m1, s, q, Qr) (82a)

s.t.
[

χ(k, x, s, λk)
1
2 u⊤

k
1
2 uk Qr

]
⪰ 0, ∀k ∈ [K], (82b)
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q +
(

UΛ
1
2

)⊤
ψ(k, x, λk) = ũk, ∀k ∈ [K], (82c)

x ∈ X , B⊤B = Im1 , B ∈ Rm×m1 , q ∈ Rm, Qr ∈ Rm1×m1 , (82d)

λk ∈ Rl
+, uk ∈ Rm1 , ũk ∈ Rm, ∀k ∈ [K], (82e)

ũk = Buk, ∀k ∈ [K]. (82f)

where constraints (82f) and B⊤B = Im1 are bilinear constraints. We consider the following aug-

mented Lagrangian problem for Problem (82):

min
x,s,q,Qr,

λk ,ũk ,uk ,∀k∈[K];
B; βk ,∀k∈[K]

{
s + γ2Im1 • Qr +

√
γ1 ∥q∥2 +

K

∑
k=1

β⊤
k (ũk − Buk) +

K

∑
k=1

ρk

2
∥ũk − Buk∥2

2

∣∣∣∣∣ (82b) − (82e)

}
,

(83)

where βk ∈ Rm (∀k ∈ [K]) are Lagrangian multipliers and ρk > 0 (∀k ∈ [K]) are the penalty param-

eters. Thus, we design Algorithm 2 to solve Problem (82).

Algorithm 2 ADMM for Problem (82)

Initialize: B0, β0
k,∀k ∈ [K]

Repeat: update (x, s, q, Qr, λk, ũk, uk,∀k ∈ [K]) , B and βk(∀k ∈ [K]) alternatingly by

Given Bi and βi
k for any k ∈ [K], solve Problem (83) to obtain the optimal solution

(x, s, q, Qr, λk, ũk, uk,∀k ∈ [K])i+1;

Given (x, s, q, Qr, λk, ũk, uk,∀k ∈ [K])i+1 and βi
k for any k ∈ [K], solve Problem (83) to obtain the

optimal solution Bi+1;

βi+1
k = βi

k + ρi
k

(
ũi+1

k − Bi+1ui+1
k

)
, ∀k ∈ [K];

Until Convergence.

In this algorithm, given B and βk for any k ∈ [K], Problem (83) becomes a low-dimensional (i.e.,

m1 + 1) SDP problem. Given (x, s, q, Qr, λk, ũk, uk, βk,∀k ∈ [K]), Problem (83) becomes a nonconvex

optimization problem, while the following proposition shows that it has an analytical optimal

solution. Thus, Algorithm 2 can be performed efficiently.

PROPOSITION 8. Given (x, s, q, Qr, λk, ũk, uk, βk,∀k ∈ [K]), Problem (83) has an optimal solution B∗ =

ŨṼ⊤, where ∑K
k=1(βku

⊤
k + ρkũku⊤

k ) = ŨΣ̃Ṽ⊤ for Ũ ∈ Rm×m1 , Σ̃ ∈ Rm1×m1 , and Ṽ ∈ Rm1×m1 by the sin-

gular value decomposition (SVD).

We further analyze the convergence property of Algorithm 2 to ensure the dimensionality

reduction solution B returned by this algorithm is near-optimal, i.e., a theoretical guarantee. First,

the following lemma holds.
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LEMMA 4. Given (x, s, q, Qr, λk, ũk, uk, βk,∀k ∈ [K]), we have B∗ = ŨṼ⊤ (an optimal solution of Prob-

lem (83)) is also an optimal solution of the following convex optimization problem:

max
B∈Rm×m1

{
K

∑
k=1

(
βku

⊤
k + ρũku⊤

k

)
• B

∣∣∣∣∣ B⊤B ⪯ Im1

}
. (84)

We then present the convergence properties of our proposed ADMM algorithm. We let

L (B, (x, s, q, Qr, λk, ũk, uk,∀k ∈ [K]) , (βk,∀k ∈ [K])) =

s + γ2Im1 • Qr +
√

γ1 ∥q∥2 +
K

∑
k=1

β⊤
k (ũk − Buk) +

K

∑
k=1

ρk

2
∥ũk − Buk∥2

2 ,

and continue to adopt Assumption 3. We state the convergence theorem of Algorithm 2 as follows.

THEOREM 8. Let (B∗, x∗, s∗, q∗, Q∗
r , λ∗

k , ũ∗
k , u∗

k ,∀k ∈ [K]) be any accumulation point of the sequence {Bi,

xi, si, qi, Qi
r, λi

k, ũi
k, ui

k,∀k ∈ [K]} generated by Algorithm 2. Then, (B∗, x∗, s∗, q∗, Q∗
r , λ∗

k , ũ∗
k , u∗

k ,∀k ∈ [K])

satisfies the first-order stationary conditions of Problem (82).

Proof. Let (B∗, x∗, s∗, q∗, Q∗
r , λ∗

k , ũ∗
k , u∗

k ,∀k ∈ [K]) be an accumulation point of the sequence

{Bi, xi, si, qi, Qi
r, λi

k, ũi
k, ui

k,∀k ∈ [K]}. Then, there exists a subsequence {Bi, xi, si, qi, Qi
r, λi

k, ũi
k, ui

k,

∀k ∈ [K]}i∈I that converges to (B∗, x∗, s∗, q∗, Q∗
r , λ∗

k , ũ∗
k , u∗

k ,∀k ∈ [K]).

First, note that (x, s, q, Qr, λk, ũk, uk,∀k ∈ [K])i+1 is the optimal solution of the convex problem

min
x,s,q,Qr,

λk ,ũk ,uk ,∀k∈[K]

{
L
(

Bi, (x, s, q, Qr, λk, ũk, uk,∀k ∈ [K]) ,
(

βi
k,∀k ∈ [K]

)) ∣∣∣ (82b) − (82e)
}

. (85)

We show that there exists an interior point in the feasible region of Problem (85), by which the

KKT conditions are first-order necessary conditions for the optimal solution of Problem (85).

Specifically, by letting x′ be an interior point in X (by Assumption 2), we can set λ̂
′
= {1l, . . . , 1l},

s′ = ∑K
k=1

∣∣y0
k(x

′) + 1⊤
l b + yk(x′)⊤µ − 1⊤

l Aµ
∣∣ + 1, q′ = 0m, ũk = (UΛ

1
2 )⊤(A⊤1l − yk(x′)), uk = 0m1 ,

and Q′
r = Im1 . Clearly, (x′, s′, λ̂

′
, q′, Q′

r, ũk, uk,∀k ∈ [K]) is an interior point in the feasible region of

Problem (85). Therefore, the following first-order stationary conditions hold; that is, there exists[
ti

k (pi
k)

⊤

pi
k Pi

k

]
⪰ 0, π i

k ≥ 0, ηi
k ∈ Rm, and Zi ⪰ 0 such that

1 −
K

∑
k=1

ti
k = 0, (86a)

γ2Im1 −
K

∑
k=1

Pi
k = 0m1×m1 , (86b)

√
γ1(qi+1)⊤

∥qi+1∥2
+

K

∑
k=1

(ηi
k)

⊤ = 0, (86c)

ti
k (b − Aµ)

⊤
+ (ηi

k)
⊤
(

UΛ
1
2

)⊤
A⊤ − (π i

k)
⊤ = 0, ∀k ∈ [K], (86d)
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−(pi
k)

⊤ − (βi
k)

⊤Bi − ρi
k(ũ

i+1
k − Biui+1

k )Bi = 0, ∀k ∈ [K], (86e)

−(ηi
k)

⊤ + (βi
k)

⊤ + ρi
k(ũ

i+1
k − Biui+1

k ) = 0, ∀k ∈ [K], (86f)
K

∑
k=1

(
ti

kw
0
k +

(
ti

kµ
⊤ + (ηi

k)
⊤
(

UΛ
1
2

)⊤
)

Wk

)
−

τ

∑
i′=1

τ

∑
j′=1

zi
i′ j′ai′ j′ = 0. (86g)

By (86a) and ti
k ≥ 0 (∀k ∈ [K]), we have that {ti

k}i∈I (∀k ∈ [K]) are bounded. Because every

bounded sequence has a convergent subsequence, without loss of generality, we can assume that

ti
k → t∗k (i → ∞, i ∈ I ,∀k ∈ [K]). Taking limits in (86a) for i ∈ I , we have

1 −
K

∑
k=1

t∗k = 0. (87)

Similarly, by (86b), we have Pi
k → P∗

k (i → ∞, i ∈ I ,∀k ∈ [K]) and

γ2Im1 −
K

∑
k=1

P∗
k = 0m1×m1 . (88)

Taking limits in (86e) and (86f) for i ∈ I , by (35)and (36), we have that pi
k → p∗

k , ηi
k → η∗

k (i → ∞, i ∈
I ,∀k ∈ [K]), and

− (p∗
k)

⊤ − (β∗
k)

⊤B∗ = 0, ∀k ∈ [K], (89)

− (η∗
k)

⊤ + (β∗
k)

⊤ = 0, ∀k ∈ [K]. (90)

Taking limits in (86d) and (86g) for i ∈ I , we have that Zi → Z∗, π i
k → π∗

k (∀k ∈ [K]), and

t∗k (b − Aµ)
⊤
+ (η∗

k)
⊤
(

UΛ
1
2

)⊤
A⊤ − (π∗

k)
⊤ = 0, ∀k ∈ [K], (91)

K

∑
k=1

(
t∗k w0

k +

(
t∗k µ⊤ + (η∗

k)
⊤
(

UΛ
1
2

)⊤
)

Wk

)
−

τ

∑
i′=1

τ

∑
j′=1

z∗i′ j′ai′ j′ = 0. (92)

Taking limits in (86c) for i ∈ I , we have
√

γ1(q∗)⊤

∥q∗∥2
+

K

∑
k=1

(η∗
k)

⊤ = 0. (93)

Next, note that Bi+1 is the optimal solution of the nonconvex problem

min
B

{
L
(

B, (x, s, q, Qr, λk, ũk, uk,∀k ∈ [K])i+1 ,
(

βi
k,∀k ∈ [K]

)) ∣∣∣ (82b) − (82e)
}

.

In Proposition 8, we give an analytical optimal solution of Bi+1. However, there is no optimal-

ity condition for this Bi+1. By Lemma 4, we have that Bi+1 is an optimal solution of the convex

problem (84). Clearly, B = 0m×m1 is an interior point of Problem (84). Therefore, Bi+1 satisfies the

first-order stationary conditions of Problem (84); that is, there exists Ci+1 ⪰ 0 such that

−
K

∑
k=1

βi
k(u

i+1
k )⊤ + Bi+1(Ci+1)⊤ − ρi

k

K

∑
k=1

(
ũi+1

k − Bi+1ui
k

)
(ui

k)
⊤ = 0. (94)
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Taking limits in (94) for i ∈ I , we have that Bi(Ci)⊤ → ∑K
k=1 β∗

k(u
∗
k)

⊤ (i → ∞,∀i ∈ I). Because

(Bi)⊤Bi = Im1 and Bi → B∗ (i → ∞,∀i ∈ I), it follows that

(Bi)⊤Bi(Ci)⊤ → (Bi)⊤
K

∑
k=1

β∗
k(u

∗
k)

⊤, i → ∞,∀i ∈ I ,

=⇒ (Ci)⊤ → (Bi)⊤
K

∑
k=1

β∗
k(u

∗
k)

⊤, i → ∞,∀i ∈ I ,

=⇒ (Ci)⊤ → (B∗)⊤
K

∑
k=1

β∗
k(u

∗
k)

⊤, i → ∞,∀i ∈ I ,

=⇒ Ci → C∗ :=

(
K

∑
k=1

u∗
k(β∗

k)
⊤

)
B∗, i → ∞,∀i ∈ I .

Thus, taking limits in (94) for i ∈ I , we have

−
K

∑
k=1

β∗
k(u

∗
k)

⊤ + B∗(C∗)⊤ = 0. (95)

Finally, combining (87)–(93) and (95), we have that (B∗, x∗, s∗, q∗, Q∗
r , λ∗

k , ũ∗
k , u∗

k ,∀k ∈ [K]) satisfies

the stationary conditions of Problem (82); that is, there exists
[

tk p⊤
k

pk Pk

]
⪰ 0, ηk, ωk, πk ≥ 0, C, and

Z ⪰ 0 such that

1 −
K

∑
k=1

tk = 0, (96a)

γ2Im1 −
K

∑
k=1

Pk = 0m1×m1 , (96b)

√
γ1(q∗)⊤

∥q∗∥2
+

K

∑
k=1

η⊤
k = 0, (96c)

tk (b − Aµ)
⊤
+ η⊤

k

(
UΛ

1
2

)⊤
A⊤ − π⊤

k = 0, ∀k ∈ [K], (96d)

−p⊤
k − ω⊤

k B∗ = 0, ∀k ∈ [K], (96e)

−η⊤
k + ω⊤

k = 0, ∀k ∈ [K], (96f)

−
K

∑
k=1

ωk(u∗
k)

⊤ + B∗C⊤ = 0, (96g)

K

∑
k=1

(
tkw0

k +

(
tkµ

⊤ + η⊤
k

(
UΛ

1
2

)⊤
)

Wk

)
−

τ

∑
i=1

τ

∑
j=1

zijaij = 0. (96h)

This completes the proof. □

F.3. Proof of Propositions 5 and 8

In Proposition 5, given (x, ũk, uk, βk,∀k ∈ [K]), we can omit the constant in the objective function

of Problem (33) and rewrite this problem as follows:

min
B∈Rm×m1

{
K

∑
k=1

−β⊤
k Buk +

K

∑
k=1

(
−ρkũ⊤

k Buk +
ρk

2
u⊤

k B⊤Buk

) ∣∣∣∣∣ B⊤B = Im1

}
. (97)
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In Proposition 8, given (x, s, q, Qr, λk, ũk, uk, βk,∀k ∈ [K]), we can also omit the constant in the

objective function of Problem (83) and rewrite this problem as Problem (97).

By B⊤B = Im1 , the term u⊤
k B⊤Buk is also a constant. Because β⊤

k Buk = (βku
⊤
k ) • B and ũ⊤

k Buk =

(ũku⊤
k ) • B, we can further rewrite Problem (97) as follows:

max
B∈Rm×m1

{
K

∑
k=1

(
βku

⊤
k + ρkũku⊤

k

)
• B

∣∣∣∣∣ B⊤B = Im1

}
.

By the SVD, i.e., ∑K
k=1(βku

⊤
k + ρkũku⊤

k ) = ŨΣ̃Ṽ⊤, we have

B∗ = arg max
B⊤B=Im1

(
ŨΣ̃Ṽ⊤) • B = arg max

B⊤B=Im1

tr
(
ŨΣ̃Ṽ⊤B⊤)

= arg max
B⊤B=Im1

tr
(
Σ̃Ṽ⊤B⊤Ũ

)
= arg max

B⊤B=Im1

Σ̃ •
(
Ũ⊤BṼ

)
,

where the second and fourth equalities hold by the definition of a matrix’s trace and the third

equality holds by the cyclic property of a matrix’s trace. Eldén and Park (1999) show that B∗ =

ŨṼ⊤ is an optimal solution. □

F.4. Proof of Lemmas 3 and 4

By the SVD in Propositions 5 and 8, we have

K

∑
k=1

(βku
⊤
k + ρkũku⊤

k ) = ŨΣ̃Ṽ⊤.

We construct Ū ∈ Rm×m by adding m − m1 orthonormal columns to Ũ ∈ Rm×m1 such that Ū⊤Ū =

Im, and add m − m1 zero rows to Σ̃ ∈ Rm1×m1 to construct Σ̄ = [Σ̃; 0(m−m1)×m1 ] ∈ Rm×m1 . It follows

that ŨΣ̃Ṽ⊤ = ŪΣ̄Ṽ⊤.

Meanwhile, by the cyclic property of a matrix’s trace, we have

(
ŪΣ̄Ṽ⊤) • B = tr

(
ŪΣ̄Ṽ⊤B⊤)= tr

(
Σ̄Ṽ⊤B⊤Ū

)
= Σ̄ •

(
Ū⊤BṼ

)
.

It follows that Problem (84) is equivalent to

max
B∈Rm×m1

{
Σ̄ •

(
Ū⊤BṼ

) ∣∣ B⊤B ⪯ Im1

}
. (98)

Note that we have ŪŪ⊤ = Im and ṼṼ⊤ = Im1 by the SVD and the construction of Ū. We then have

B⊤B ⪯ Im1 ⇐⇒ B⊤ŪŪ⊤B ⪯ Im1 ⇐⇒ Ṽ⊤B⊤ŪŪ⊤BṼ ⪯ Im1 ,

where the first equivalence holds by ŪŪ⊤ = Im and the second equivalence holds by ṼṼ⊤ = Im1

and Lemma 2.
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Therefore, Problem (98) is equivalent to

max
B∈Rm×m1

{
Σ̄ •

(
Ū⊤BṼ

) ∣∣ (Ṽ⊤B⊤Ū
) (

Ū⊤BṼ
)
⪯ Im1

}
. (99)

Because Σ̄ ∈ Rm×m1 is a rectangular diagonal matrix with non-negative numbers on the diagonal,

we have that Ū⊤BṼ = [Im1 ; 0(m−m1)×m1 ] will lead to the optimal value. Note that when we choose

B = ŨṼ⊤, we have

Ū⊤BṼ = Ū⊤ŨṼ⊤Ṽ = [Im1 ; 0(m−m1)×m1 ]Im1 = [Im1 ; 0(m−m1)×m1 ].

Therefore, B∗ = ŨṼ⊤ is an optimal solution of Problem (99), i.e., Problem (84). □

F.5. Proof of Theorem 6

Let (B∗, x∗, ũ∗
k , u∗

k ,∀k ∈ [K]) be an accumulation point of the sequence {Bi, xi, ũi
k, ui

k,∀k ∈ [K]}. Then,

there exists a subsequence {Bi, xi, ũi
k, ui

k,∀k ∈ [K]}i∈I that converges to (B∗, ũ∗
k , u∗

k ,∀k ∈ [K]).

First, note that (x, ũk, uk,∀k ∈ [K])i+1 is the optimal solution of the convex problem

min
x,ũk ,uk ,∀k∈[K]

{
L
(

Bi, (x, ũk, uk,∀k ∈ [K]) ,
(

βi
k,∀k ∈ [K]

)) ∣∣∣ (32b) − (32c)
}

. (100)

Because there exists an interior point in the feasible region of Problem (100), by which the KKT

conditions are first-order necessary conditions for the optimal solution of Problem (100). Specifi-

cally, the following first-order stationary conditions hold; that is,

−∇g(xi+1, ui+1
k , ũi+1

k ,∀k ∈ [K]) +



0
(Bi)⊤βi

1 + ρi
1(Bi)⊤

(
ũi+1

1 − Biui+1
1

)
...

(Bi)⊤βi
K + ρi

K(Bi)⊤
(
ũi+1

K − Biui+1
K

)
−βi

1 − ρi
1

(
ũi+1

1 − Biui+1
1

)
...

−βi
K − ρi

K

(
ũi+1

K − Biui+1
K

)


∈NU (xi+1, ui+1

k , ũi+1
k ,∀k ∈ [K]),

(101)

where NU (xi+1, ui+1
k , ũi+1

k ,∀k ∈ [K]) is the normal cone of U at (xi+1, ui+1
k , ũi+1

k ,∀k ∈ [K]). Taking

limits in (101) for i ∈ I , we have

−∇g(x∗, u∗
k , ũ∗

k ,∀k ∈ [K]) +



0
(B∗)⊤β∗

1
...

(B∗)⊤β∗
K

−β∗
1

...
−β∗

K


∈NU (x∗, u∗

k , ũ∗
k ,∀k ∈ [K]). (102)
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Next, note that Bi+1 is the optimal solution of the nonconvex problem

min
B

{
L
(

B, (x, ũk, uk,∀k ∈ [K])i+1 ,
(

βi
k,∀k ∈ [K]

)) ∣∣∣ (32b) − (32c)
}

.

In Proposition 5, we give an analytical optimal solution of Bi+1. However, there is no optimal-

ity condition for this Bi+1. By Lemma 3, we have that Bi+1 is an optimal solution of the convex

problem (34). Clearly, B = 0m×m1 is an interior point of Problem (34). Therefore, Bi+1 satisfies the

first-order stationary conditions of Problem (34); that is, there exists Ci+1 ⪰ 0 such that

−
K

∑
k=1

βi
k(u

i+1
k )⊤ + Bi+1(Ci+1)⊤ − ρi

k

K

∑
k=1

(
ũi+1

k − Bi+1ui
k

)
(ui

k)
⊤ = 0. (103)

Taking limits in (103) for i ∈ I , we have that Bi(Ci)⊤ → ∑K
k=1 β∗

k(u
∗
k)

⊤ (i → ∞,∀i ∈ I). Because

(Bi)⊤Bi = Im1 and Bi → B∗ (i → ∞,∀i ∈ I), it follows that

(Bi)⊤Bi(Ci)⊤ → (Bi)⊤
K

∑
k=1

β∗
k(u

∗
k)

⊤, i → ∞,∀i ∈ I ,

=⇒ (Ci)⊤ → (Bi)⊤
K

∑
k=1

β∗
k(u

∗
k)

⊤, i → ∞,∀i ∈ I ,

=⇒ (Ci)⊤ → (B∗)⊤
K

∑
k=1

β∗
k(u

∗
k)

⊤, i → ∞,∀i ∈ I ,

=⇒ Ci → C∗ :=

(
K

∑
k=1

u∗
k(β∗

k)
⊤

)
B∗, i → ∞,∀i ∈ I .

Thus, taking limits in (103) for i ∈ I , we have

−
K

∑
k=1

β∗
k(u

∗
k)

⊤ + B∗(C∗)⊤ = 0. (104)

Finally, combining (102) and (104), we have that (B∗, x∗, ũ∗
k , u∗

k ,∀k ∈ [K]) satisfies the stationary

conditions of Problem (33); that is, there exist ωk and C such that

−∇g(x∗, u∗
k , ũ∗

k ,∀k ∈ [K]) +



0
(B∗)⊤ω1

...
(B∗)⊤ωK

−ω1
...

−ωK


∈NU (x∗, u∗

k , ũ∗
k ,∀k ∈ [K])

−
K

∑
k=1

ωk(u∗
k)

⊤ + B∗C⊤ = 0 (105)

This completes the proof. □
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F.6. Proof of Proposition 6

First, we have ΘM(m) ≥ ΘL(m1) ≥ Θ(m1, B′) = s∗ + γ2Im1 • Q∗
r +

√
γ1∥q∗

r∥2, where the first

inequality holds by conclusion (i) of Theorem 1 and the second inequality holds because B′ is a

feasible solution of Problem (12) and this problem is a maximization problem.

Next, we would like to construct a feasible solution (x′, s′, λ̂
′
, q′, Q′) of Problem (4). We set x′ =

x∗, λ̂
′
= λ̂

∗
, s′ = s∗ + s0, q′ = B′q∗

r , and Q′ = B′Q∗
r (B′)⊤ + Q0, where s0 ≥ 0 and Q0 ⪰ 0 and their

values will be decided later. Clearly, this solution satisfies constraints (4c). For this solution to

satisfy constraints (4b), the values s0 and Q0 should satisfy

(Sk + s0)
(
B′Q∗

r (B
′)⊤ + Q0

)
⪰ 1

4

(
B′q∗

r +
(

UΛ
1
2

)⊤ (
A⊤λ∗

k − yk(x∗)
))

×
(

B′q∗
r +

(
UΛ

1
2

)⊤ (
A⊤λ∗

k − yk(x∗)
))⊤

=
1
4

Mk, ∀k ∈ [K]. (106)

Note that, if (S + s0)Q0 ⪰ (1/4)Mk for any k ∈ [K], then (106) holds. By the definition of Mk, we

have Mk ⪰ 0 for any k ∈ [K]. Therefore, for any s0 ≥ 0, we can construct

Q0 =
K

∑
k=1

1
4(S + s0)

Mk

such that (106) holds and hence (x′, s′, λ̂
′
, q′, Q′) is a feasible solution of Problem (4). The objective

value (denoted by Θ′
M) with respect to this constructed solution is

s′ + γ2Im • Q′ +
√

γ1 ∥q′∥2 = s∗ + s0 + γ2Im • B′Q∗
r (B

′)⊤ + γ2Im • Q0 +
√

γ1 ∥B′q∗
r∥2

= s∗ + s0 + γ2Im1 • Q∗
r + γ2Im • Q0 +

√
γ1 ∥q∗

r∥2

= Θ(m1, B′) + s0 +
K

∑
k=1

γ2

4(S + s0)
Im • Mk,

where the second equality holds because Im • B′Q∗
r (B′)⊤ = Im1 • Q∗

r (B′)⊤B′ = Im1 • Q∗
r and

(q∗
r )

⊤(B′)⊤B′q∗
r = (q∗

r )
⊤q∗

r . As this constructed solution is a feasible solution of Problem (4), which

is a minimization problem, we have ΘM(m)≤ Θ′
M It follows that

ΘM(m)− ΘL(m1)≤ Θ′
M − Θ(m1, B′) = s0 +

K

∑
k=1

γ2

4(S + s0)
Im • Mk. (107)

We further choose a value of s0 to minimize the right-hand side (RHS) of (107). Note that (i) If
√

P− S < 0, then the RHS of (107) is minimized at P/S with s0 = 0; (ii) If
√

P− S ≥ 0, then the RHS

of (107) is minimized at 2
√

P − S with s0 =
√

P − S. Therefore, we conclude that the proposition

holds. □
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Appendix G: Supplement to Section 7

G.1. Multiproduct Newsvendor Problem

By Proposition 1, Problem (39) has the same optimal value as the following SDP formulation:

min
x,s,λ1,
λ2,q,Q

s + γ2Im • Q +
√

γ1 ∥q∥2 (108a)

s.t.

s − (c − v)⊤x − λ⊤
1 (b − Aµ) 1

2

(
q +

(
UΛ

1
2

)⊤
A⊤λ1

)⊤

1
2

(
q +

(
UΛ

1
2

)⊤
A⊤λ1

)
Q

⪰ 0, (108b)

s − (c − g)⊤x − λ⊤
2 (b − Aµ) + (v − g)⊤µ 1

2

(
q +

(
UΛ

1
2

)⊤ (
A⊤λ2 + v − g

))⊤

1
2

(
q +

(
UΛ

1
2

)⊤ (
A⊤λ2 + v − g

))
Q

⪰ 0,(108c)

x ∈ Rm
+, λ1 ∈ Rl

+, λ2 ∈ Rl
+, q ∈ Rm, Q ∈ Rm×m. (108d)

By the first outer approximation (25), the following problem provides a lower bound for the

optimal value of Problem (108):

max
B,t1,p1,P1,

t2,p2,P2

(
t2µ⊤ + p⊤

2

(
UΛ

1
2 B
)⊤
)
(g − v) (109a)

s.t. 1 − t1 − t2 = 0,
√

γ1 − ∥p1 + p2∥2 ≥ 0, (109b)

t1(Aµ − b)⊤ + p⊤
1

(
UΛ

1
2 B
)⊤

A⊤ ≤ 0, (109c)

t2(Aµ − b)⊤ + p⊤
2

(
UΛ

1
2 B
)⊤

A⊤ ≤ 0, (109d)

γ2Im1 − P1 − P2 ⪰ 0, t1 (c − v) + t2 (c − g)≥ 0, (109e)[
t1 p⊤

1
p1 P1

]
⪰ 0,

[
t2 p⊤

2
p2 P2

]
⪰ 0, B⊤B = Im1 , (109f)

B ∈ Rm×m1 , p1 ∈ Rm1 , p2 ∈ Rm1 , P1 ∈ Rm1×m1 , P2 ∈ Rm1×m1 . (109g)

By the inner approximation (26), the following problem provides an upper bound for the opti-

mal value of Problem (108) and achieves the optimal value of Problem (108) when m1 ≥ 2:

min
B,x,s,λ1,λ2,
q,Qr,u1,u2

s + γ2Im1 • Qr +
√

γ1 ∥q∥2 (110a)

s.t.
[

s − (c − v)⊤x − λ⊤
1 (b − Aµ) 1

2 u⊤
1

1
2 u1 Qr

]
⪰ 0, (110b)[

s − (c − g)⊤x − λ⊤
2 (b − Aµ) + (v − g)⊤µ 1

2 u⊤
2

1
2 u2 Qr

]
⪰ 0, (110c)

q +
(

UΛ
1
2

)⊤
A⊤λ1 = Bu1, (110d)

q +
(

UΛ
1
2

)⊤ (
A⊤λ2 + v − g

)
= Bu2, (110e)
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x ∈ Rm
+, λ1 ∈ Rl

+, λ2 ∈ Rl
+, B⊤B = Im1 , (110f)

q ∈ Rm, Qr ∈ Rm1×m1 , B ∈ Rm×m1 , u1 ∈ Rm1 , u2 ∈ Rm1 . (110g)

By the second outer approximation (31), the following problem with m1 ≤ 2 provides another

lower bound for the optimal value of Problem (108) and achieves the optimal value of Problem

(108) when m1 = 2:

min
B,B̄,x,s,λ1,λ2,

q,Qr,u1,u2,h1,h2

s + γ2Im1 • Qr +
√

γ1 ∥q∥2 (111a)

s.t.
[

s − (c − v)⊤x − λ⊤
1 (b − Aµ) 1

2 u⊤
1

1
2 u1 Qr

]
⪰ 0, (111b)[

s − (c − g)⊤x − λ⊤
2 (b − Aµ) + (v − g)⊤µ 1

2 u⊤
2

1
2 u2 Qr

]
⪰ 0, (111c)

q +
(

UΛ
1
2

)⊤
A⊤λ1 = Bu1 + B̄h1, (111d)

q +
(

UΛ
1
2

)⊤ (
A⊤λ2 + v − g

)
= Bu2 + B̄h2, (111e)

x ∈ Rm
+, λ1 ∈ Rl

+, λ2 ∈ Rl
+, [B, B̄]⊤[B, B̄] = IK, (111f)

q ∈ Rm, Qr ∈ Rm1×m1 , B ∈ Rm×m1 , B̄ ∈ Rm×(K−m1), (111g)

u1 ∈ Rm1 , u2 ∈ Rm1 , h1 ∈ RK−m1 , h2 ∈ RK−m1 . (111h)

G.2. Production-Transportation Problem

By the reformulation results of Section 4.1 of Bertsimas et al. (2010) and Appendix C of Cheramin

et al. (2022), we have the following SDP reformulation for Problem (41):

min
x,zk(∀k∈[K]),

s,λk(∀k∈[K]),q,Q

s + γ2IGH • Q +
√

γ1 ∥q∥2 (112a)

s.t.

s − c⊤x − βk − λ⊤
k b − αkz⊤

k µ + λ⊤
k Aµ 1

2

(
q +

(
UΛ

1
2

)⊤
(A⊤λk − αkzk))

)⊤

1
2

(
q +

(
UΛ

1
2

)⊤
(A⊤λk − αkzk))

)
Q

⪰ 0,

∀k ∈ [K], (112b)

λk ∈ Rl
+, ∀k ∈ [K], q ∈ RGH, Q ∈ RGH×GH, (112c)

0 ≤ x ≤ 1, (112d)
G

∑
i=1

zijk = dj, ∀j ∈ [H], k ∈ [K], (112e)

H

∑
j=1

zijk = xi, ∀i ∈ [G], k ∈ [K], (112f)

zijk ≥ 0, ∀i ∈ [G], j ∈ [H], k ∈ [K], (112g)
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where zk is a vector whose ((i − 1)G + j)-th element is zijk. Note that, by Theorem 1 in Cheramin

et al. (2022), the following problem can be reformulated as Problem (112):

min
x,zk ,∀k∈[K]

max
PI∈DM

EP

[
max
k∈[K]

{
c⊤x + αkz⊤

k

(
UΛ

1
2 ξI + µ

)
+ βk

}]
(113a)

s.t. (112d) − (112g). (113b)

By the first outer approximation (25), the following problem provides a lower bound for the

optimal value of Problem (112):

max
tk ,pk ,Pk ,∀k∈[K],

wk ,uk ,∀k∈[K],v,B

K

∑
k=1

tkβk −
G

∑
i=i

vi +
K

∑
k=1

H

∑
j=1

wjkdj (114a)

s.t. 1 −
K

∑
k=1

tk = 0,
√

γ1 −
∥∥∥∥∥ K

∑
k=1

pk

∥∥∥∥∥
2

≥ 0, (114b)

tk(Aµ − b)⊤ + p⊤
k

(
UΛ

1
2 B
)⊤

A⊤ ≤ 0, ∀k ∈ [K], (114c)

γ2Im1 −
K

∑
k=1

Pk ⪰ 0,
K

∑
k=1

(tkc + uk) + v ≥ 0, (114d)

αktkµ
⊤ + αkp⊤

k

(
UΛ

1
2 B
)⊤

− (w⊤
k , . . . , w⊤

k︸ ︷︷ ︸
repeat G times

)− (u1k, . . . , u1k︸ ︷︷ ︸
repeat H times

, . . . , uGk, . . . , uGk)≥ 0,

∀k ∈ [K], (114e)[
tk p⊤

k
pk Pk

]
⪰ 0, ∀k ∈ [K], B⊤B = Im1 , v ∈ RG

+, B ∈ RGH×m1 , (114f)

pk ∈ Rm1 , Pk ∈ Rm1×m1 , wk ∈ RH, uk ∈ RG, ∀k ∈ [K]. (114g)

By the inner approximation (26), the following problem provides an upper bound for the opti-

mal value of Problem (112) and achieves the optimal value of Problem (112) when m1 ≥ K:

min
B,x,zk(∀k∈[K]),

uk ,λk ,∀k∈[K],s,q,Qr

s + γ2Im1 • Qr +
√

γ1 ∥q∥2 (115a)

s.t.
[

s − c⊤x − βk − λ⊤
k b − αkz⊤

k µ + λ⊤
k Aµ 1

2 u⊤
k

1
2 uk Qr

]
⪰ 0, ∀k ∈ [K], (115b)

q +
(

UΛ
1
2

)⊤ (
A⊤λk − αkzk)

)
= Buk, ∀k ∈ [K], (115c)

λk ∈ Rl
+, uk ∈ Rm1 , ∀k ∈ [K], q ∈ RGH, Qr ∈ Rm1×m1 , (115d)

(112d) − (112g), B⊤B = Im1 , B ∈ RGH×m1 . (115e)

By the second outer approximation (31), the following problem with m1 ≤ K provides another

lower bound for the optimal value of Problem (112) and achieves the optimal value of Problem

(112) when m1 = K:

min
B,B̄,x,zk(∀k∈[K]),

uk ,hk ,λk ,∀k∈[K],s,q,Qr

s + γ2Im1 • Qr +
√

γ1 ∥q∥2 (116a)



33

s.t.
[

s − c⊤x − βk − λ⊤
k b − αkz⊤

k µ + λ⊤
k Aµ 1

2 u⊤
k

1
2 uk Qr

]
⪰ 0, ∀k ∈ [K], (116b)

q +
(

UΛ
1
2

)⊤ (
A⊤λk − αkzk)

)
= Buk + B̄hk, ∀k ∈ [K], (116c)

λk ∈ Rl
+, uk ∈ Rm1 , hk ∈ RK−m1 , ∀k ∈ [K], q ∈ RGH, Qr ∈ Rm1×m1 , (116d)

(112d) − (112g), [B, B̄]⊤[B, B̄] = Im1 , B ∈ RGH×m1 , B̄ ∈ RGH×(K−m1). (116e)

G.3. Proof of Proposition 7

Because B⊤B = Im1 , we have B⊤B ⪯ Im1 , which implies BB⊤ ⪯ Im by Lemma 1. It follows that

r⊤BB⊤r ≤ r⊤r. Meanwhile, we have

r⊤B∗B∗⊤r =
[

r⊤r
∥r∥2

01×(m1−1)

] [ r⊤r
∥r∥2

0(m1−1)×1

]
= r⊤r,

indicating that B∗ = [r/∥r∥2, 0m×(m1−1)] is an optimal solution of Problem (44). □

G.4. Sensitivity Analyses
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Table G3 Sensitivity Analyses on the Production-Transportation Problem with K = 5

Size ((G, H)) (4,25) (5,20) (5,40) (8,25) (10,40) (20,30) (20,40)

m1 = 3

ODR-LB

Gap1 (%) 0.37 0.71 0.67 0.47 - - -
Time (secs) 2.86 2.81 4.87 4.32 15.16 27.51 57.45

Interval Gap (%) 0.69 0.79 0.73 0.51 0.49 0.51 0.57
Theoretical Gap (%) 1.27 0.62 2.20 1.36 - - -

ODR-RLB

Gap1 (%) 0.07 0.17 0.02 0.02 - - -
Time (secs) 13.53 14.19 43.93 57.79 205.99 442.26 1092.43

Interval Gap (%) 0.39 0.25 0.08 0.06 0.03 0.02 0.02
Theoretical Gap (%) 1.08 3.19 1.96 0.96 - - -

ODR-UB
Gap2 (%) 0.32 0.08 0.06 0.04 - - -

Time (secs) 6.03 5.60 22.31 20.53 122.04 332.10 660.08
Theoretical Gap (%) 1.28 1.03 3.20 2.05 - - -

m1 = 5

ODR-LB

Gap1 (%) 0.14 0.34 0.22 0.29 - - -
Time (secs) 4.03 3.63 6.01 4.82 12.41 25.03 57.79

Interval Gap (%) 0.15 0.34 0.43 0.29 0.52 0.55 0.51
Theoretical Gap (%) 1.24 1.07 4.91 0.77 2.71 1.25 1.09

ODR-RLB

Gap1 (%) 0.01 0.02 0.01 0.00 - - -
Time (secs) 5.42 5.36 22.40 20.86 123.64 330.29 665.43

Interval Gap (%) 0.02 0.02 0.01 0.01 0.00 0.00 0.00
Theoretical Gap (%) 1.13 1.17 1.80 0.81 1.22 1.92 1.32

ODR-UB
Gap2 (%) 0.01 0.01 0.00 0.00 - - -

Time (secs) 5.48 5.32 22.41 20.86 123.48 329.95 665.35
Theoretical Gap (%) 1.13 1.17 1.80 0.81 1.22 1.92 1.32

m1 = 7

ODR-LB

Gap1 (%) 0.16 0.21 0.53 0.23 - - -
Time (secs) 3.56 4.29 5.39 5.70 19.27 22.89 58.38

Interval Gap (%) 0.17 0.22 0.53 0.24 0.31 0.56 0.50
Theoretical Gap (%) 1.22 0.88 1.67 0.79 - - -

ODR-UB
Gap2 (%) 0.02 0.01 0.00 0.00 - - -

Time (secs) 5.62 5.48 22.42 21.24 121.61 330.94 660.85
Theoretical Gap (%) 1.15 1.04 1.28 0.59 - - -



35

Table G4 Sensitivity Analyses on the Production-Transportation Problem with K = 10

Size ((G, H)) (4,25) (5,20) (5,40) (8,25) (10,40) (20,30) (20,40)

m1 = 8

ODR-LB

Gap1 (%) 0.17 0.15 0.16 0.28 - - -
Time (secs) 6.26 5.75 9.80 8.87 29.94 54.71 133.58

Interval Gap (%) 0.17 0.15 0.16 0.28 0.23 0.22 0.27
Theoretical Gap (%) 4.32 4.53 6.22 6.09 - - -

ODR-RLB

Gap1 (%) 0.01 0.00 0.01 0.00 - - -
Time (secs) 13.03 12.91 53.84 35.92 205.07 593.38 1334.02

Interval Gap (%) 0.01 0.00 0.01 0.01 0.00 0.00 0.00
Theoretical Gap (%) 3.53 3.02 4.24 4.86 - - -

ODR-UB
Gap2 (%) 0.00 0.00 0.00 0.00 - - -

Time (secs) 10.31 10.23 39.26 31.59 119.58 339.84 755.18
Theoretical Gap (%) 2.21 2.40 3.98 3.04 - - -

m1 = 10

ODR-LB

Gap1 (%) 0.12 0.19 0.13 0.25 - - -
Time (secs) 6.65 6.41 11.11 10.31 31.42 61.41 131.10

Interval Gap (%) 0.12 0.19 0.13 0.25 0.22 0.19 0.25
Theoretical Gap (%) 1.78 1.97 2.96 1.19 2.10 1.49 1.22

ODR-RLB

Gap1 (%) 0.00 0.00 0.00 0.00 - - -
Time (secs) 11.22 10.65 40.34 32.95 122.54 342.80 748.11

Interval Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Theoretical Gap (%) 1.86 2.27 1.74 1.22 2.10 1.39 2.30

ODR-UB
Gap2 (%) 0.00 0.00 0.00 0.00 - - -

Time (secs) 11.14 10.69 40.28 32.92 122.48 344.10 747.90
Theoretical Gap (%) 1.86 2.27 1.74 1.22 2.10 1.39 2.30

m1 = 12

ODR-LB

Gap1 (%) 0.11 0.14 0.15 0.23 - - -
Time (secs) 8.89 7.90 11.78 13.44 32.16 63.96 122.91

Interval Gap (%) 0.11 0.14 0.15 0.23 0.19 0.19 0.27
Theoretical Gap (%) 3.64 5.01 7.41 7.85 - - -

ODR-UB
Gap2 (%) 0.00 0.00 0.00 0.00 - - -

Time (secs) 11.71 11.55 38.59 29.68 123.40 346.68 761.21
Theoretical Gap (%) 0.81 1.32 2.20 2.75 - - -
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Table G5 Sensitivity Analyses on the Production-Transportation Problem with K = 15

Size ((G, H)) (4,25) (5,20) (5,40) (8,25) (10,40) (20,30) (20,40)

m1 = 13

ODR-LB

Gap1 (%) 0.08 0.21 0.15 0.18 - - -
Time (secs) 11.12 11.10 18.00 24.05 31.32 71.04 142.88

Interval Gap (%) 0.08 0.21 0.15 0.18 0.25 0.19 0.23
Theoretical Gap (%) 4.56 7.01 5.79 6.95 - - -

ODR-RLB

Gap1 (%) 0.00 0.03 0.00 0.00 - - -
Time (secs) 26.19 25.91 97.35 68.99 213.44 641.74 1451.80

Interval Gap (%) 0.00 0.03 0.00 0.00 0.00 0.01 0.00
Theoretical Gap (%) 6.09 5.83 5.88 6.12 - - -

ODR-UB
Gap2 (%) 0.00 0.00 0.00 0.00 - - -

Time (secs) 19.46 19.15 71.71 50.62 128.92 367.33 833.81
Theoretical Gap (%) 2.44 3.00 2.52 3.07 - - -

m1 = 15

ODR-LB

Gap1 (%) 0.05 0.10 0.12 0.15 - - -
Time (secs) 13.92 16.56 22.11 26.16 43.02 80.51 168.90

Interval Gap (%) 0.05 0.10 0.12 0.15 0.11 0.13 0.09
Theoretical Gap (%) 4.69 5.22 5.57 6.38 3.29 4.41 3.95

ODR-RLB

Gap1 (%) 0.00 0.00 0.00 0.00 - - -
Time (secs) 22.60 21.45 77.18 63.99 241.03 689.24 1550.21

Interval Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Theoretical Gap (%) 1.38 2.61 1.79 1.73 2.14 1.94 2.25

ODR-UB
Gap2 (%) 0.00 0.00 0.00 0.00 - - -

Time (secs) 22.61 21.44 76.99 64.08 149.21 401.63 878.68
Theoretical Gap (%) 1.38 2.61 1.79 1.73 2.14 1.94 2.25

m1 = 17

ODR-LB

Gap1 (%) 0.10 0.09 0.13 0.16 - - -
Time (secs) 18.10 21.04 28.81 32.61 52.71 84.10 188.21

Interval Gap (%) 0.10 0.09 0.13 0.16 0.10 0.08 0.13
Theoretical Gap (%) 4.75 4.13 5.50 6.16 - - -

ODR-UB
Gap2 (%) 0.00 0.00 0.00 0.00 - - -

Time (secs) 26.83 27.84 84.70 63.17 161.79 447.03 926.33
Theoretical Gap (%) 2.20 3.61 2.58 2.20 - - -
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