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Moment-based distributionally robust optimization (DRO) provides an optimization framework to integrate
statistical information with traditional optimization approaches. Under this framework, one assumes that
the underlying joint distribution of random parameters runs in a distributional ambiguity set constructed
by moment information and makes decisions against the worst-case distribution within the set. Although
most moment-based DRO problems can be reformulated as semidefinite programming (SDP) problems that
can be solved in polynomial time, solving high-dimensional SDPs is still time-consuming. Unlike existing
approximation approaches that first reduce the dimensionality of random parameters and then solve the
approximated SDPs, we propose an optimized dimensionality reduction (ODR) approach by integrating the
dimensionality reduction of random parameters with the subsequent optimization problems. Such integration
enables two outer and one inner approximations of the original problem, all of which are low-dimensional
SDPs that can be solved efficiently, providing two lower bounds and one upper bound correspondingly. More
importantly, these approximations can theoretically achieve the optimal value of the original high-dimensional
SDPs. As these approximations are nonconvex SDPs, we develop modified Alternating Direction Method of
Multipliers (ADMM) algorithms to solve them efficiently. We demonstrate the effectiveness of our proposed
ODR approach and algorithm in solving multiproduct newsvendor and production-transportation problems.
Numerical results show significant advantages of our approach regarding computational time and solution
quality over the three best possible benchmark approaches. Our approach can obtain an optimal or near-

optimal (mostly within 0.1%) solution and reduce the computational time by up to three orders of magnitude.
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1. Introduction

Distributionally robust optimization (DRO) is a modeling framework that integrates statistical
information with traditional optimization methods (Scarf 1958, Delage and Ye 2010). Under this
framework, one assumes that the underlying joint distribution of random parameters runs in
a distributional ambiguity set inferred from given data or prior belief and then optimizes their
decisions against the worst-case distribution within the set (see Rahimian and Mehrotra 2019 and

Lin et al. 2022 for detailed review).



To solve different applications, researchers study the DRO under various ambiguity sets. The
ambiguity set plays a crucial role in connecting statistical information and optimization model-
ing, providing a flexible framework to model uncertainties and incorporate partial information
of random parameters (e.g., from historical data and prior belief) into the model. Moreover, the
performance of DRO depends significantly on the distributional ambiguity set (Mohajerin Esfa-
hani and Kuhn 2018, Chen et al. 2023). This paper focuses on moment-based ambiguity sets,
which include all distributions satisfying certain moment constraints. Examples of such con-
straints include restricting the exact mean and covariance matrix (Scarf 1958) and bounding the
tirst and second moments (Ghaoui et al. 2003, Delage and Ye 2010). Moment-based DRO has been
extensively studied and has a wide range of applications in industry, including but not limited to
newsvendor problems (Gallego and Moon 1993, Yue et al. 2006, Natarajan et al. 2018), portfolio
optimization (Ghaoui et al. 2003, Goldfarb and Iyengar 2003, Zymler et al. 2013, Rujeerapaiboon
et al. 2016, Li 2018, Lotfi and Zenios 2018), knapsack problems (Cheng et al. 2014), transportation
problems (Zhang et al. 2017, Ghosal and Wiesemann 2020), reward-risk ratio optimization (Liu
et al. 2017), scheduling problems (Shehadeh et al. 2020), and machine learning (Lanckriet et al.
2002, Farnia and Tse 2016).

As a moment-based DRO model can be reformulated as a semi-infinite program (Xu et al. 2018),
three approaches are mainly used to solve such a reformulation: (i) the cutting plane/surface
method (Gotoh and Konno 2002, Mehrotra and Papp 2014), by which a solution is first obtained
by considering a subset of the ambiguity set and cuts are then added iteratively until converging
to an optimal solution; (ii) the dual method (Delage and Ye 2010, Bertsimas et al. 2019), by which
the inner optimization problem (e.g., a minimization problem) is dualized and integrated with the
outer optimization problem (e.g., a maximization problem); (iii) the analytical method (Scarf 1958,
Popescu 2007), by which the worst-case distribution is obtained and its properties are analyzed.
Among these methods, the dual method is the most popular. Most literature focuses on convex
reformulations of different moment-based DRO problems, mainly including second-order cone
programming (SOCP) (Ghaoui et al. 2003, Lotfi and Zenios 2018, Goldfarb and Iyengar 2003) and
semidefinite programming (SDP) (Ghaoui et al. 2003, Delage and Ye 2010, Cheng et al. 2014).

While SOCPs can be solved efficiently, theoretically efficient algorithms (e.g., the interior-
point methods) to solve SDPs impose substantial demands on computational time and memory
resources (Vandenberghe and Boyd 1996, Helmberg 2002), particularly when addressing high-
dimensional SDPs. Widely adopted commercial solvers (e.g., Mosek) exhibit prohibitively long
computational times when solving high-dimensional SDPs, and the computational burden esca-
lates considerably even as the problem dimension increases gradually (see our numerical results

in Section 7). Thus, it is of great interest to study efficient algorithms for solving SDPs in the



context of moment-based DRO. Besides the generic methods (e.g., the interior point methods),
two types of algorithms can speed up solving SDP reformulations of moment-based DRO: low-
rank SDP algorithms and dimensionality reduction methods. First, some studies develop efficient
algorithms by exploiting the low-rank properties of SDP constraints (Burer and Monteiro 2003,
Yurtsever et al. 2021). These algorithms rarely have theoretical guarantees but are practically effi-
cient. Specifically, the existing studies may reformulate convex SDPs as non-convex problems
and subsequently develop efficient algorithms to deliver high-quality solutions within reduced
time frames (Lemon et al. 2016). Second, dimensionality reduction techniques represent data
with important statistical information while omitting the trivial one. In the context of moment-
based DRO, such techniques can be extended to reduce the dimension of random parameters and
approximate the high-dimensional SDP reformulations using low-dimensional SDPs (Cheng et al.
2018, Cheramin et al. 2022), thereby reducing computational time significantly.

However, both the general SDP algorithms and existing dimensionality reduction methods may
not perform well for moment-based DRO. The general SDP algorithm aims to solve general SDPs
and may fail to consider the specific structure of the moment-based DRO models. The existing
dimensionality reduction methods fail to consider the subsequent optimization problems when
reducing the dimensionality space. For example, Cheng et al. (2018) and Cheramin et al. (2022)
first use the PCA to choose the random parameters corresponding to the largest eigenvalues and
then solve the low-dimensional SDP problem with the chosen random parameters. Such a sequen-
tial process may not provide an optimal solution of the original problem because the aim of lever-
aging data is to reduce the dimensionality space by focusing on only the statistical information,
rather than optimizing the subsequent SDP problems. Therefore, in this paper, we integrate the
dimensionality reduction with subsequent SDP problems, leading to an optimized dimensionality
reduction (ODR) approach for moment-based DRO. We summarize our contributions as follows:

1. Unlike the PCA approximation approaches (Cheng et al. 2018, Cheramin et al. 2022) that first
reduce dimensionality and then solve approximation problems, we integrate the dimension-
ality reduction with the subsequent optimization problems and provide an ODR approach.
With the ODR approach, we develop two outer and one inner approximations for the original
problem, leading to three low-dimensional SDP problems that can be solved efficiently.

2. We prove the low-rank property of the original high-dimensional SDP reformulations of
moment-based DRO problems. Specifically, we show that there exists an optimal solution
such that the ranks of matrices in SDP reformulations are less than the number of SDP con-
straints plus one. Such a property helps our low-dimensional approximations achieve the

original optimal value, closing the approximation gap.



3. The low-dimensional SDP problems are nonconvex with bilinear terms and we develop mod-
ified Alternating Direction Method of Multipliers (ADMM) algorithms to solve them effi-
ciently. We prove that any accumulation point of the sequence produced by the ADMM algo-
rithm satisfies the first-order stationary conditions of the low-dimensional bilinear SDP prob-
lem. We apply the ODR approach and ADMM algorithms to solve multiproduct newsvendor
and production-transportation problems. We compare our ODR approach with three bench-
mark approaches: the Mosek solver, low-rank algorithm (Burer and Monteiro 2003), and
PCA approximations (Cheramin et al. 2022). The results demonstrate that our ODR approach
significantly outperforms them in terms of computational time and solution quality. Our
approach can obtain an optimal or near-optimal (mostly within 0.1%) solution and reduce
the computational time by up to three orders of magnitude. More importantly, our approach
is not sensitive to the dimension m of random parameters, while the benchmark approaches
perform much worse when m is larger.

Note that the ODR approach echoes the recently emerging framework that integrates machine
learning (e.g., parameter estimation) with decision-making (Bertsimas and Kallus 2020, Bertsimas
and Koduri 2022, ElImachtoub and Grigas 2022). More relevant applications of such a framework
are recently studied. For instance, Ban and Rudin (2019) and Zhang et al. (2023) integrate fea-
ture data within the newsvendor problem; Liu et al. (2021) integrate travel-time predictors with
order-assignment optimization to provide last-mile delivery services; Kallus and Mao (2023) pro-
pose a new random forest algorithm that considers the downstream optimization problem; Zhu
et al. (2022) develop a joint estimation and robustness optimization framework; Qi et al. (2023)
and Ho-Nguyen and Kiling-Karzan (2022) provide an end-to-end framework to integrate pre-
diction and optimization. Unlike the above applications, we integrate dimensionality reduction
with optimization in this paper (Jiang et al. 2023), which is recently followed by He and Mak
(2023). He and Mak (2023) integrate the PCA with a subsequent stochastic program and provide
a distributionally robust bound for the error between the objective values of the original and inte-
grated problems. The integrated approach in He and Mak (2023) involves solving nonconvex and
high-dimensional SDPs and may not reduce the error to zero, while our approach solves low-
dimensional SDPs and can achieve the optimal value of the original moment-based DRO problem,
thereby offering guidance on selecting the reduced dimension for practical applicability.

The remainder of this paper is organized as follows. Section 2 provides the SDP reformulation
of moment-based DRO problems and illustrates the disadvantages of the PCA approximation
approaches (Cheng et al. 2018, Cheramin et al. 2022). In Section 3, we propose the first outer

approximation under the ODR approach, leading to a lower bound for the original problem, and



are then motivated to develop the low-rank property of the original high-dimensional SDP refor-
mulation, aiming to find a small reduced dimension to close the approximation gap. In Sections
4 and 5, motivated by the results in Section 3, we provide an inner approximation and a second
outer approximation for the original problem, respectively, and both of them can achieve the orig-
inal optimal value. Section 6 develops efficient algorithms to solve the above three approxima-
tions, all of which are low-dimensional bilinear SDP problems. In Section 7, we conduct extensive
numerical experiments on multiproduct newsvendor and production-transportation problems.

Section 8 concludes the paper. All proofs are presented in the Appendix if not specified.

Notation We use non-bold symbols to denote scalar values, e.g., s and 7;, and bold symbols
to denote vectors, e.g., x = (x1,...,x,) " and q. Similarly, matrices are represented by bold capital
symbols, e.g., A and X, and the size of a matrix is indicated by r x ¢, where r and c indicate the
numbers of rows and columns, respectively. Italic subscripts indicate indices, e.g., Sy, while non-
italic ones represent simplified specifications, e.g., Q,. We use Ep|-] to represent the expectation
over distribution IP and use ” @ ” to denote the inner product defined by A ¢ B = ):i,j AjjB;j, where
A and B are two conformal matrices. For any matrix M, we use M = 0 (resp. M > 0) to indicate
that it is positive semi-definite (PSD) (resp. positive definite). Symbols || - ||; and | - ||» denote
L1-Norm and L2-Norm, respectively. For any integer number n > 1, we use [n] to denote the set
{1,2,...,n}. The identity matrix of size m is denoted by I,,. Symbols 0,, and 0, represent a zero
vector of size m and a zero matrix of size r X c, respectively. Symbols 1,, and 1,.. represent a one
vector of size m and a one matrix of size r x c, respectively. We use 1(-) to denote the indicator

function, which takes 1 if all the conditions encompassed in (-) are satisfied and takes 0 otherwise.

2. SDP Reformulation

Given the distribution IP of a random vector ¢ € IR”, the following stochastic programming (SP)

formulation seeks an x € X C R" to minimize the expectation of an objective function f(x, §):

min Ex [f (x¢)]. 0

As the distribution IP is often unknown, we assume that IP belongs to a distributional ambiguity
set Dy constructed by statistical information estimated from historical data, and then minimize

f(x,&) against the worst-case distribution instead. It leads to the following DRO formulation:

min max Ep[f(x,§)]. (2)

xeX ]PEDMO
We consider moment-based information (Delage and Ye 2010) is included in Dy as follows:

P(EeS)=1 (Be[¢]—n) =" (Er[d] —p) <m }

Dyvo (S, 1, Z,71,72) = {IP Ep {(g —n)(&— y)T] =Tk
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which describes that (i) the support of ¢ is S, (ii) the mean of ¢ lies in an ellipsoid of size v;
centered at y, and (iii) the covariance of ¢ is bounded from above by 7,X, with y; >0, 7, > 1, and

L > 0. We perform eigenvalue decomposition on the covariance matrix X as follows:
1 1\ |
E=UAU' =UA! (UAE)

where U € R"*" is an orthogonal matrix and A € R"*" is a diagonal matrix. Without loss of
generality, we assume that the diagonal elements of A are arranged in a nonincreasing order. By

letting ¢ = UA? ¢; + u, we can reformulate Problem (2) as:

Owm(m) :=min max Ep, {f (x,UA%é'I —I—ﬂ)] , 3)

xeX P1eD\

where

Dwm (511 'h,’)’z) = {]PI

P (g €8) =1, Ep, [gﬂ Ep, {61} =N
Er, |28/ | <72l ’
with S := {& € R" | UAZE, + u € S}. Similar to Cheng et al. (2018) and Cheramin et al. (2022),

we make the following assumption throughout the paper.

ASSUMPTION 1. Function f(x,&) is piecewise linear convex in ¢, ie., f(x,&) = maxt_ {y)(x) +
Y (%) "€} with yp(x) = (yi(x), ...,y (x)) " and y2 (x) affine in x for any k € [K], and S is polyhedral, i.e.,
S={¢| AZ<b} with A€ R™" and b € R, with at least one interior point.

PROPOSITION 1 (Cheramin et al. 2022). Under Assumption 1, Problem (3) has the same optimal value
as the following SDP formulation:

Oum(m) = min ¢(m,s, q,Q) (4a)
x,5,A,q,Q
1\ T T
x(k, x5, Ar) 1 (q + (UA?) 1p(k,x,/\k)>
s.t. T =0,
i (q + (UA7> 1/J(k,x,2tk)> Q
Vke K], (4b)
MER,, Vke [K], xe X, (4c)

where A = {A,..., A}, Q € R", Q € R™™, ¢p(m,s,q,Q) :=5+ 7,1, ¢ Q + vrillallz x(kx,s,A) =
s—12(x) —ATb —y(X) T+ AT Ap, and P (k,x, M) := ATA — y(x).

Note that the functions ¢(m,s,q,Q), x(k,x,s,A), and (k,x, A) will also be used in the remain-
der of this paper to simplify other SDP formulations. Although Problem (4) is a convex program

when x is given, it can be difficult to solve because a large m leads to high-dimensional SDP

constraints at size m + 1. As such SDP constraints originate from the covariance matrix X, early



attempts in Cheng et al. (2018) and Cheramin et al. (2022) exploit the statistical information X to
address the computational challenge while maintaining solution quality. Specifically, they adopt
the PCA, a dimensionality reduction method commonly used in statistical learning, to capture the
dominant variability of UA%Q"I by maintaining the first m; (< m) components of &; and fixing its

other components at 0; that is,
1
&~ UA (850, ) + 1= Upn Ad &+ 1, ®)

1
where ¢. € R™, and U,,.,,, € R™™ and Az, € R™*™ are upper-left submatrices of U and A,
respectively. That is, the m; components of ¢, corresponding to the largest eigenvalues are main-
tained as uncertain and the other components are fixed at their means. With a lower-dimensional

random vector ¢, we can have a relaxation of Problem (3):

@uom) = mip max B [f (x Uneo AnnZ, + 1) ] (&)
where
P, (. €S.) =1, Ep, |& | Ep, || <7
Dy (St 71,72) = {]Pr Ep [f;‘r(ﬂ <ol ) [ } ) [ } ' } (6b)
with
S={g ern UmxmlAélgr+yes}. (60)

Meanwhile, the corresponding SDP formulation of Problem (6) has SDP constraints with smaller
size at m; + 1 and can be solved more efficiently than Problem (4), leading to an efficient “PCA

approximation.” Specifically, Cheramin et al. (2022) show that the following PCA approximation

Om(my) = mi{l ¢(m1,s,qr, Q:) (7a)
4
1\ T T
X(klxlsl Ak) % <qr + (Umxm1A13q> lp(k/ X, Ak))
s.t. LT =0,

% <qr + (UmxmlAgﬁ) lp(k/x//\k)> Qr

Vk e [K], (7b)

MER,, Vke [K],xe X, (70)

where A = {A1,..., Ak}, q: € R™, and Q, € R™*™  provides a lower bound for the optimal value of
Problem (3) (i.e., Problem (4)). The PCA approximation that leads to an upper bound for the optimal
value of Problem (3) can be similarly derived. Hereafter, we call the problem whose optimal value
is a lower bound of the original Problem (3) as an outer approximation. In contrast, the problem

generating an upper bound is called an inner approximation of Problem (3).



However, relying on only the statistical information (i.e., dominant variability) to choose the
components and reducing the high-dimensional uncertainty space may not lead to the best
approximation performance. Although Cheramin et al. (2022) provide a performance guarantee
to bound the gap between the original and approximated objective values, it is difficult to close
the gap when reducing the dimensionality of ¢;. Such a difficulty is not surprising because main-
taining only the largest statistical variability in the PCA approximations does not capture the
optimality conditions of the original problems (e.g., Problem (3)). We provide an example as fol-
lows to illustrate that choosing the components of ¢; corresponding to the largest eigenvalues can

be even worse than choosing the components corresponding to the least eigenvalues.
EXAMPLE 1. Given x € X, we consider the CVaR;_, of a cost function g(x,¢) formulated as the
following optimization problem (Rockafellar and Uryasev 2000):

min t + 1]EIP [g(x,&) — t]+ , (8)

teR 14

where « € (0,1) is a risk tolerance level and function [-]* := max{0, - }. For brevity, we let g(x, &) =
x'&X={xeR} | 0L x=1},D={P [P eS)=1 Ep[¢l =p, Ep[(—p)({ —p)'] X}, S
is compact, and p is in the interior of S. We reformulate the distributionally robust counterpart
of Problem (8) in Appendix B.1 and obtain Problem (46). Let « = 0.05, S ={ € R* | 0< ¢ <

1 02 01
8,1<¢,<12,2<¢& <16}, u=11,2,3], 2= [0.2 3 0‘15} with eigenvalues 3.044, 1.983, and 0.973.

Solving Problem (46) gives the optimal Valug15(.)8;1 2with x; = 0.719, x, = 0.135, x3 = 0.145, and
t = 3.129. Following Cheng et al. (2018) and Cheramin et al. (2022) to perform PCA approximation
over Problem (46) by capturing only one of the three components in ¢, we observe the following:
¢ Choosing the component corresponding to the largest eigenvalue 3.044, the PCA approxima-
tion gives the optimal value at 1.788 with x; =1, x, =0, x3 =0, and t = 1.373.
* Choosing the component corresponding to the second largest eigenvalue 1.983, the PCA
approximation gives the optimal value at 1.3 with x; =0.7, x, = 0.3, x3 =0, and t = 1.3.

¢ Choosing the component corresponding to the smallest eigenvalue 0.973, the PCA approxi-

mation gives the optimal value at 1.915 with x; = 0.085, x, = 0.915, x3 =0, and t = 1.915.

Example 1 shows that performing dimensionality reduction (i.e., from ¢ to ¢,) using the compo-
nents with the largest variability may not produce a good optimal value from the subsequent PCA
approximation (i.e., an SDP) and it can be even worse than using the component with the small-
est variability. To solve this issue, we integrate the dimensionality reduction with the subsequent
approximation in the following sections, leading to an optimized dimensionality reduction (ODR)
approach. Correspondingly, we obtain efficient lower and upper bounds in the following Sections

3-5 and more importantly, the bounds can achieve the optimal value of the original Problem (3).



3. Lower Bound

We extend the dimensionality reduction method (i.e., PCA) in (5) by introducing a decision vari-
able Be B, :={BcR™"™ | B'B=1,, } C R" such that

E=UAZE +p~UABE, +p, )

where B will be optimized in the subsequent PCA approximation, i.e., optimized dimensional-
ity reduction. By (9), we project ¢; onto a subspace of R"*" spanned by the columns of B € B,,
and approximate ¢; by the projection B¢, instead of considering only the random variables corre-
sponding to the largest eigenvalues. When B = [0<n,j;:’;>xn,1] , (9) reduces to (5). Therefore, we would
like to choose a good (even an optimal) B to obtain a better lower bound for Problem (3) than
Problem (7). Unlike the existing PCA approach that first reduces the dimension of the uncertainty
space and then provides approximations, our ODR method innovatively integrates dimensional-
ity reduction with the subsequent optimization problems. Such an integrated framework deviates
from the traditional dimensionality reduction method like PCA because we do not predetermine
a low-dimensional space to consider in the subsequent optimization problem. Instead, we linearly
map the high-dimensional uncertainty space to a low-dimensional space while such a mapping
relationship (represented by the decision B) is carefully optimized together with the subsequent
optimization problems.

Given any m; € [m] and B € B,,,, we obtain a relaxation of Problem (3) by extending Problem
(6). If the relaxation provides a lower bound for the optimal value of Problem (3), then we may
choose the best B € B3,,, such that we obtain the largest possible lower bound. Thus, we build the
following integrated dimensionality reduction and optimization problem:

O (m;) = max min max Ep, {f (x, UA%B{;’r + y)] , (10)

BeBu; xeX PreDy

where D, is defined in (6b) with

S = {fr e R™

UA%BgrﬂteS}. (11)

We will show that Problem (10) provides a lower bound for Problem (3) (see Theorem 1). Before
presenting this theorem, we prepare the following two lemmas.

I, B

LEMMA 1. When B € R™*™, the following three constraints are equivalent: (i) [BT I

L, and (iii) B'B < 1,,,.

} >0, (i) BBT <

Lemma 1 shows that both BB" <1,, and B'B < I, can be reformulated as an SDP constraint

I, B
B L,

usually does not create additional computational challenges.

] = 0. Although this SDP constraint has a high dimension at m + m;,, it is very sparse and
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LEMMA 2. For any matrix V € R™" and symmetric matrices X € R™™ and Y € R™*™, we have: (i) If
X =Y, then VIXV = V'YV; (ii) If n = m and V is invertible, then X =Y is equivalent to V' XV =
VYV,

Lemma 2 shows that a PSD matrix (e.g., X — Y) remains PSD if it is pre-multiplied by an arbi-
trary matrix with appropriate dimensions (e.g., V') and post-multiplied by this arbitrary matrix’s
transpose (e.g., V). Furthermore, if this arbitrary matrix is invertible, then the original PSD matrix
is equivalent to the matrix after the pre-multiplication and post-multiplication. With Lemmas 1

and 2, we are now ready to present the following theorem.

THEOREM 1. The following three conclusions hold: (i) Problem (10) provides a lower bound for the optimal
value of Problem (3), i.e., ©p(my) < Oy (m) for any my < m; (ii) the optimal value of Problem (10) is
nondecreasing in my, i.e., Op(my) < Op(my) for any my < my < m; and (iii) when my = m, Problem (3)

and Problem (10) have the same optimal value, i.e., O (m) = Oy (m).

Theorem 1 shows that we obtain a lower bound for the optimal value of Problem (3) when
reducing the dimensionality space of §; while optimizing the choice of B € B, in Problem (10).
When the reduced dimensionality (i.e., 71,) is higher, we obtain a better lower bound. We maintain
the optimal value of Problem (3) if the dimensionality space is not reduced (i.e., m; = m). Note
that the conclusions in Theorem 1 are similar to those in Theorem 2 in Cheramin et al. (2022),
both demonstrating the validity of dimensionality reduction in solving the moment-based DRO
problems. However, here by optimizing the choice of B € B,,,, Problem (10) provides a better
lower bound than Problem (6) (i.e., the PCA approximation in Cheramin et al. 2022) does because
the latter problem is a special case of the former problem. More importantly, we may expect to
close the gap between @ (m;) and @y (1) when we choose a small ;. To that end, we follow the

PCA approximation (7) to reformulate Problem (10) as the following SDP formulation:

O (m) = é?gnﬁ Q(my,B), (12)
where
O(my,B) := min ¢(my,s,q,, Q) (13a)
.
1 T T
x(k,x,s,Ax) 3 <qr + (UAZB) 1[J(k,x,/\k)>
s.t. T =0,
% <qr + (UA2B> lp(k/x/Ak)> Qr

Vk € [K], (13b)
xCX; A={Ay,..., A}, A €R!, Vk€[K]; q: €R™; Q. € R™*™.  (13¢)
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Now we would like to find an m; < m such that ® (m;) in Problem (12) is close (even equal) to
©Owm(m) in Problem (4). Note that if ®; (m;) = Oy (m), then comparing the SDP constraints between
(4) and (12) shows that the rank of Q in the optimal solution of Problem (4) can be smaller than
m. Specifically, we are motivated to explore the low-rank property of Problem (4) and obtain the

following significant conclusion.

THEOREM 2. Consider K < m and any optimal solution (x*,s*,/i*,q*,Q*) of Problem (4) with Sy =
s* —y2(x*) — AL — y(x*) T + AT Ap for any k € [K]. We can always construct another opti-
mal solution (x*,s*,/i*,q’, Q') of Problem (4) such that rank(Q') < K, q' =V, Q' = VY, V', and
(UA)T(ATAL — yi(x*)) = Vy forany k € [K], where Y11 € REK, Y, =0, V = [vy, Vk € [K]] € R™K
with orthonormal vectors v, € R™, § € RX, and v, € RX for any k € [K] depend on the optimal solution
(x,s%,A°,q",Q%).

Proof. Note that the optimal solution (x*,s*,i*,q*,Q*) of Problem (4) leads to the optimal
value s* 4 7,I,, « Q" + /71 ||q*||,- Based on this optimal solution, we construct a feasible solution
of Problem (4), denoted by (X, s/, )A\/, q’,Q’) such that X' = x*, s’ =s*, and A=A

Now we construct the values of q' and Q'. By constraints (4b), we have

.
Sk ! (q* + (UA%>T (ATA; — (x*))>
. =0, Vke K]
s (uad) @i -n ) o

(14)

We can equivalently rewrite (14) as

18,Q" = <q* + (UA%)T (ATA; - yk(x*)>) (q* + (UA%)T (ATA; - yk(x*)>)T, Vk e [K]; Q= 0.

(15)

Note that, if Sy > 0 for any k € [K], then (14) is equivalent to (15) by Schur complement; other-
wise, when S, = 0 for some k € [K], we have (1/2)(q* + (UAY*)T(ATA; — yi(x*))) = 0,, by the
definition of a PSD matrix. Thus, (14) is equivalent to Q* > 0, i.e., (15).

Note that K < m. Thus, through the Gram-Schmidt process, we can always construct K

orthonormal vectors v, € R", Vk € [K], and K real vectors x; € R¥, Vk € [K], such that
T
(UA%) (ATA; —y(x")) = Vi, Vk € [K], (16)

V = [v;, Vk € [K]] € R"™X. We further extend V to [V, V] € R™" with V € R"*"X such that
all the column vectors of [V, V] can span the space of R". As q* € R", we can find x, € R and

io € R™" K such that

q* = VKO + VRO (17)
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As Q" € R™™, we can then decompose Q* as

-Yll Y12

C=VVlly, v,

.
} [34 =VY; V' + VY VI + VY,V + VY, VT, (18)

where Yy, € RKK) Yy, € RKX0K) Y, € RUK*K and Y,, € R"Kxm=K) As Q* > 0, we have
1-1

i T
R; Qﬂ =[v V] 'Q* R//T = 0 by Lemma 2. By (15), (16), and (17), we have

45,Q" = (Vo + Vito + Vi) (Vicg + Vito + Vi) |, Vk € [K]. (19)
By (18) and (19), we have
45 (VY VT + VY0 VI 4 VY,V VY, VT = (Vg + Vitg + Vi) (Vo + Vi + Vi) ', Vk € [K].
By Lemma 2, we further have

4V (VY VI + VY5 VI + VY, VT + VY, VIV
= V' (Vi + Vo + Vi) (Vo + Vg + Vi) 'V, Vk € [K]. (20)

Because VIV =0, V'V =0, and V'V = I, constraints (20) become
4.5le1 ~ (Ko + Kk)(Ko + Kk)T, Yk € [K] (21)
Now we let @' = Vkg and Q' = VY;; V'. By (21) and Lemma 2, we have
45,Q' =45, VY1 V' = (Vo + Vi) (Vo + Vi)
1\ | . 1\ | N T
_ <q' + (UAz) (ATA; — yk(x*))> (q’ + (Um) (ATA; — yk(x*))> ,Vke K], (22)

Comparing (4b) and (22), we have (x/,s’, /i/, q’,Q’) is a feasible solution of Problem (4) and the

corresponding objective value is

S+ 7l e Q + VArllall, =5 + 1L 0 Q + v | q (23)

where the inequality holds because (x/, s/, /i/, q’, Q') is a feasible solution of Problem (4) and Prob-

lem (4) is a minimization problem. Note that
x _ N o [ Yu Y| [V _ Y Y| [V 1| Y Y
L, eQ =tr(Q) =tr <[V V] [Y21 Yzz} [VT}> =1 ([Ym Yzz] [VT VVl)=t Y2 Yo
= IK [ ] Yll + Ime o Yzz Z IK o Y11 = tT(Yn) = t?’(YnVTV) = tT(VYHVT) = ti"(Q/),

where the first equality holds by the definition of a matrix’s trace, the second equality holds by
(18), the third equality holds by the cyclic property of a matrix’s trace, the fourth equality holds
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} [V V] =1, and the first inequality holds because [Y“ Yu} > 0 and accordingly I,,_x ®

b v
ecause |: Yo Yo

VT
Y, > 0. Meanwhile,

a3 =(q") " q" = (Vo + Vio) " (Vo + Vio) = (i ko + &g &o)
> g0 = (Vio) (Vo) =(q')" q'=||q'[l3,

where the second equality holds by (17), the third equality holds because V'V =0, V'V =
0, VIV=Ix, V'V =1, g, and the first inequality holds because &, ¥y > 0. Thus, we have

S+l e Q'+ vmldl, <"+ 7ln e Q"+ v llq7]l,- (24)

Combining (23) and (24) leads to

'+ 1l e Q' + 1 qfl,=s" + 1l e Q" + /11147,

which indicates that (x/, s/, A, q’,Q’) is also an optimal solution of Problem (4). Meanwhile, note
that rank(Q’) = rank(VY;; V') < min{rank(V),rank(Yy;)} < K, § = %o, and vy = «; for any k €
[K]. Thus, the proof is complete. ]

When K > m, we have rank(Q’) < m < K, thereby no need to consider this case in Theorem
2. Note that K is the number of pieces formulating the piecewise linear function f(x, ) and it is
usually small for practical problems. For instance, in the CVaR and newsvendor problems, we
have K =2 (see Example 1 and Section 7.1.1, respectively). Thus, Theorem 2 shows that the rank
of Q' that optimizes Problem (4), i.e., K, is usually small. We then expect that for any m; € [m] and
B € B,,, the rank of the optimal Q, in Problem (13) might also be no greater than K and hence
small for practical problems. With Problem (12), we then would like to choose a small 7; > K and
find a B € B,,, such that ®; () can be close to Oy (m).

We used to conjecture that the optimal value of Problem (12) equals that of Problem (4) when
my > K. Most numerical experiments (see Section 7) show this conjecture may be correct, while
we also find a feasible solution of Problems (12) and (13) such that the corresponding objective
value is equal to the optimal value of the original Problem (4) (see Theorem 7 in Appendix C.4).
Nevertheless, we find an example to illustrate that the optimal value of Problem (12) with m; = K
can be strictly less than the optimal value of Problem (4) (see Example 2 in Appendix C.5). Thus,
while the optimized dimensionality reduction maintains very high-quality solutions (mostly the
optimal solutions as shown in our later numerical experiments in Section 7), we may still poten-
tially lose some useful information that achieves the optimal solution of the original problem. To
resolve this issue, we will also derive an upper bound and a new lower bound for the optimal

value of the original problem in the later sections.
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Note that Problem (12) is a nonconvex optimization problem due to the max-min operator.
That is, we develop a low-dimensional nonconvex optimization technique to solve the original
high-dimensional SDP problem, which can be significantly difficult to solve because of the large
sizes of SDP matrices. To further efficiently solve Problem (12), we first reformulate it into a bilin-
ear SDP problem (see Proposition 2) under the following assumption and then propose efficient

algorithms (see Section 6) to solve it.

ASSUMPTION 2. The set X is convex with at least one interior point. More specifically, we consider the
convex set X in a generic SDP form: X = {x e R" | Yi'; (Aix;) + Ay = 0}, where A; € R™" is symmetric
forany i€ {0,1,...,n} and some T > 1.

We use a;x + af; (Vi € [1],] € [7]) to denote the elements of the matrix } [ (A;x;) + Ay, where
a; € R". We let y)(x) = wix + d} and yi(x) = (wix +d}, ..., wi'x +di') " = Wix + di for any k €
[K], where (w})" € R" foranyi € {0,1,...,m} and k € [K], Wy, € R™" for any k € [K], and d; € R"
for any k € [K]. The following proposition holds.

PROPOSITION 2. Under Assumption 2, Problem (12) has the same optimal value as the following bilinear
SDP formulation:

K

Op(m;)=  max Z (tkdg + <tkyT +p; (UA%B>T> dk> — iiziﬂ?j (25a)

tr Pk Py VREK], | = — —
7B k=1 i=1j=1

K K K
st 1=Y =0, vri—|Ypt =0, 2L, — ) Pc=0, (25b)
k=1 k=1 2 k=1
T T 10\ AT
t(Ap—b) +p; (UA'B) AT <0, vke [K], (25¢)
K T T T
Z (tkwg + <tk,MT + ka (UA%B> > Wk> — ZZZ,‘]‘aLj = O, (25d)
k=1 i=1j=1
b Py TR _
[pk p.| =0 Vke[K], B'B=1L,,, Z>0, (25e)

where py € R™ (k € [K]), P, € R™*™ (k € [K]), Z € R™", B € R™™, and z;; is the element of the
matrix Z. In addition, Z is the dual variable of the constraint Y\ | (A;x;) + Ao = 0 in X and Lt)’; }I’,’{ }
(Vk € [K]) are the dual variables of constraints (13b).

Although solving Problem (25) may not achieve the optimal value of Problem (4), Theorem 7
demonstrates that we are not far from our target to close the approximation gap and motivates
us to further develop an upper bound for the optimal value of Problem (4) while closing the gap

between them in the next section.
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4. Upper Bound

Motivated by the benefits of introducing a decision variable B € B,,, in (9) to develop an outer
approximation, we develop an inner approximation for Problem (3) in this section by relaxing the
second-moment constraint in Dy; while optimizing the choice of components in ¢, to be relaxed,
leading to the best possible upper bound for the optimal value of Problem (3). Specifically, given

my € [m], we build the following optimized inner approximation of Problem (3):

Ou(m;) :== min ©(m,,B), (26)
BeBml
where
_ ) 1
) @
with

DU(SI/,Yl/,)/Z) = {]PI (28)

Pi (5 €S) =1, Ep, [gﬂ Ep, |:§Ii| <m
Ep, [BT§1§1TB] = Yol .

The second-moment constraint in Dy is relaxed from Ep, [glgf | < 721, where we introduce a deci-
sion variable B € BB,,, to optimize such a relaxation of the ambiguity set, leading to optimized dimen-
sionality reduction over this second-moment constraint. Intuitively, the feasible region defined by
the ambiguity set Dy is larger than that by Dy;. Therefore, we have several conclusions based on

this new ambiguity set Dy.

THEOREM 3. The following three conclusions hold: (i) Problem (26) provides an upper bound for the
optimal value of Problem (3), i.e., ®y(my) > Owm(m) for any my < m; (i) the optimal value of Problem (26)
is nonincreasing in my, i.e., Ou(my) > Oy(my,) for any my < my < m; and (iii) when m, = m, Problem
(26) and Problem (3) have the same optimal value, i.e., Oy (m) = Oy (m).

Theorem 3 shows that Problem (26) provides a valid upper bound for the optimal value of

Problem (3), ®\(m), and the upper bound is closer to ®y(m) if less information is relaxed in Dy.

PROPOSITION 3. Under Assumption 1, Problem (27) has the same optimal value as the following SDP

formulation:

©(my,B) = min ¢(my,s,q,Q;) (29a)

aGh

x(k,x,s,Ax) 1ukT]
t. 2%k | =0, Vk e [K], 29b
st [MEXSA) ] o, vie K] (29b)
1\

q+ (Um) w(k,x,Ay) = Buy, Vk € [K], (29¢)
xeX, qeR", Q, e R™*™, (29d)

A={A,.. Ak}, M€RY, a={uy,..., ux}, u, € R™, Vk€ [K].  (29€)
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Proposition 3 shows that Problem (26) can be updated by replacing its inner optimization Prob-
lem (27) with Problem (29). More importantly, Problem (26) becomes a low-dimensional SDP
formulation, which can be solved more efficiently than solving the original high-dimensional for-

mulation (4). With the updated Problem (26), we have the following conclusion.

THEOREM 4. Consider the optimal solution (x*,s*,A",q’,Q’) of Problem (4), Sy (Vk € [K]), V, &, Y1,
and vy (Vk € [K]) that are defined in Theorem 2. If my > K, then Oy (m;) = Oy (m).

Theorem 4 shows that when m; > K, the optimal value of Problem (26) is always equal to the
optimal value of the original problem, ®y(m). Specifically, when m; = K, there exist optimal B =
V and Q, = Y;; in Problem (26) such that ®y(11;) = @(m;, V). Recall that K represents the number
of pieces in the piecewise linear objective function f(x,¢) and also determines the rank of the
optimal Q in the original Problem (4) (see Theorem 2). Thus, we can decompose an optimal Q with
a rank of K into VY;; V', where V € R"*K such that V'V = I and Y;; € RX*K, In Problem (26),
when m; = K, we have B € R™*¥ and Q, € R**¥ in the subproblem (29), by which constructing
a solution with B =V and Q, = Y;; shows that Oy (K) = ®y(m). Clearly, such a tightness result
also holds when m; > K by the monotonicity result in Theorem 3.

We may further interpret the insights as follows. Comparing the inner-approximation Problem
(26) and the original Problem (3), we can notice that they differ only in the second-moment con-
straints in their ambiguity sets. When m; = K, we relax the original second-moment constraint
from Ep, [§I§IT] =< 7,1, to B"Ep, [Q‘I{,‘IT]B = 71Ix with B € By. That is, when such a relaxation is
jointly optimized via the decision B with the subsequent SDP reformulation, it eventually does
not lead to a different optimal value. Specifically, under a worst-case distribution IP| generated by
solving Problem (3), we have Ep; [£&]] < 7.1, may be equivalent to B Ep: [&,&]]B < 7,Ix. Such
equivalence largely depends on the low-rank property provided by Theorem 2, which states that
the rank of an optimal solution of Q of Problem (4) is not larger than K. Note that the variable Q
in Problem (4) is a dual variable with respect to the second-moment constraint Ep, [{,‘Ig; | =72l
indicating that the rank of Ep; [£,&]] may not be large. More specifically, we have the following
proposition holds.

PROPOSITION 4. For any PSD matrix X € R"™*" such that rank(X) < m; < m, we have the following

equivalence holds:

X=<1, < (B'XB=1I,, VBeB,,).

COROLLARY 1. For any PSD matrix X € R™*" and rank(X) < my < m, there exists a B € B,,, such
that X < 1, is equivalent to BTXB < 1,,,.



17

In the context of solving Problem (3) and its inner-approximation Problem (26), Proposition 4
and Corollary 1 show that there exist a worst-case distribution IP; € Dy such that the rank of
Ep; [{,‘IZ,‘IT | is not larger than K and an optimal solution B* € B,,, such that Ep: [g',‘I@‘IT | = 7L, is
equivalent to (B*)"Ep; [E,&]B* < 1,Ix. As such, even when we use a relaxed second-moment

constraint, Problem (26) with m; > K does not lose the optimality.

5. Lower Bound Reuvisited

Given that Problem (26) with m; = K maintains the optimal value of the original Problem (3), we
can further perform dimensionality reduction based on Problem (26) as we do in Section 3, thereby
obtaining a new lower bound for the optimal value of Problem (3). Specifically, we consider K < m
and recall that Bx = {B € R™*¥ | B'B = Ix}. Given any m, € [K], we consider

min min max [Ep, [f <x, UA%('fI —|—y>] (30)

BEBK xeX IPIEDLQ
with

Pi (¢ € S1) =1, Ep, [éﬂ Ep, [(31} <m

DLZ(SI,’YL’YZ) =P
Ep, |:B1T§I§IT 31} =72l Ep, [BzT && Bz} = 0Ky ) (K—my)

B = [By,B;], B; € R™™, and B, € R™(X-™), To obtain the above ambiguity set Di,, we
shrink the ambiguity set Dy of Problem (26) by replacing the second-moment constraint
Ep, [BT&E B] < 7.1k with Ep [B] && Bi] < 72L,, and Ep, [B; &E Ba] = 0k my)x(k_m;)- The con-
straint Ep [B; && Ba] = 0k )« (k_m,) implies that we project the random vector ¢ to the space
spanned by the columns of B, and the second-moment value of the projected random vector is
fixed at 0. By doing so, we may slightly lose some information to characterize the distribution
IP;, but we can obtain a formulation with an even smaller size than Problem (26) and maintain

high-quality solutions. Specifically, the following theorem holds.

THEOREM 5. Under Assumption 1, by dualizing the inner maximization problem of Problem (30), we
obtain the following SDP formulation:

Oa(my) = mi){l $(mi,s,q,Q;) (31a)
Q4 ",
By,B;
1(:4/\T
s.t. {X (x5, Ak) - 5 (wp) } =0, Vk € [K], (31b)
Euk Qr
.

q+ (UA%) ¥ (k,x, Ay) = Biu, + Bou!, Vk € [K], (310)
xE€X, €R", Q. e R"*™, (31d)

B, € R™™,B, € R™ &™), [By,B,]" [By,B,] = I, (31e)



18

A={A,.. A}, 4 €RY, VEk€[K], (31f)
o' ={uj,...,u}, u, e R™, Vk € K], (31g)
o' ={u/,...,ul}, uf e R*"™, Vk € [K]. (31h)

In addition, the following three conclusions hold: (i) Problem (31) provides a lower bound for the optimal
value of Problem (4), i.e., Ora(my) < Oum(m) for any my < K; (ii) the optimal value of Problem (31) is
nondecreasing in my, i.e., Or,(my) < Orp(my) for any my < my, < K; and (iii) when my; = K, Problem (31)

and Problem (4) have the same optimal value, i.e., O, (K) = Oy (m).

Recall that the lower bound provided by Problem (12) may not achieve the optimal value of
the original Problem (4) when reducing the dimensionality to K. However, the new lower bound

provided by Problem (31) achieves the optimal value of the original problem when m; = K.

6. Efficient Algorithm

In Sections 3-5, we provide two outer approximations (i.e., Problems (25) and (31)) leading to
lower bounds for the optimal value of Problem (3) and an inner approximation (i.e., Problem (26))
leading to an upper bound. Both Problems (26) and (31) can achieve the same optimal value as the
original problem when m; = K. Note that the three approximations are low-dimensional bilinear
SDP problems, which are nonconvex. It is hard to obtain the optimal solution of a bilinear SDP
problem. To develop computationally efficient algorithms for bilinear SDPs, we derive Alternat-
ing Direction Method of Multipliers (ADMM) algorithms (Hajinezhad and Shi 2018, Wang et al.
2019, Themelis and Patrinos 2020) to solve the three approximations (see Appendix F.1 for more
detailed reasons for choosing ADMM rather than other techniques). Meanwhile, it is important
to note that our proposed algorithms are used to obtain a near-optimal dimensionality reduction
matrix B. Other solutions (e.g., x) returned by the ADMM algorithm are not used here. Given this
near-optimal B, we can solve the low-dimensional SDP problems to retrieve the efficient lower
and upper bounds for the original optimal value (see details in Section 6.2).

Note that Problems (25), (26), and (31) share the following generic formulation:

i i, Vk € [K 2
B,x,ﬁ;{,rul:,r\}ke[m 8 (x wy, T, Vk € [K]) (32a)
st (xw,y, Vke[K]) €U, (32b)
B'B=1I,, (320)

i, = Bu, Vk € [K], (32d)
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where B € R"™™, u, € R™, i, € R", Vk € [K], U is a convex set with at least one interior point,
and g(+) is a differentiable convex function. Note that constraints (32c) and (32d) are bilinear

constraints. We consider the following augmented Lagrangian problem for Problem (32):

K K
,min {g (x,uy, Gy, Vk € [K]) + ) B, (8 — Buy) + Z% [ — Buy |3 | (32b) — (32c)} , (33)
X, Uy, Uy, ; k=1 k=1
B; By Vke[K]

where B, € R" (Vk € [K]) are Lagrangian multipliers and p, > 0 (Vk € [K]) are the penalty param-
eters. Thus, we design Algorithm 1 to solve Problem (33). Thereafter, we use the superscript i to

denote the iteration step of Algorithm 1.

Algorithm 1 ADMM for Problem (32)

Initialize: B°, ,B,?,Vk € [K]
Repeat: update (x, @iy, uy, Vk € [K]),B and B, (Vk € [K]) alternatingly by

Given B’ and ,B;( for any k € [K], solve Problem (33) to obtain the optimal solution
(X, uy, uy, Vk € [K])H_l,'

Given (x, i, ui, Vk € [K])™" and B, for any k € [K], solve Problem (33) to obtain the optimal
solution B'*!;

=B ol (7~ B ), Ve (K]
Until Convergence.

Im]

In Algorithm 1, we initialize B® = [0 } based on the PCA approximation in Cheramin

et al. (2022) and set B, = 0 for any k E(m[Ién]l.) X\n/l\lle terminate the iteration when the improvement
(regarding the relative gap) of the objective value is less than 10~*. In this algorithm, given B and
B, for any k € [K], Problem (33) becomes a low-dimensional (i.e., m; + 1) SDP problem. Given
(x, @, wi, B, Vk € [K]), Problem (33) becomes a nonconvex optimization problem, while the fol-
lowing proposition shows that it has an analytical optimal solution. Thus, Algorithm 1 can be

performed efficiently.

PROPOSITION 5. Given (x, @iy, ux, B,, Vk € [K]), Problem (33) has an optimal solution B* = UV, where
Y (Bl + peiiu) ) = UEVT for U e R™™, £ € R™*™, and V € R™*™ by the singular value
decomposition (SVD).

6.1. Convergence Analyses

We further analyze the convergence property of Algorithm 1 to ensure the dimensionality reduc-
tion solution B returned by this algorithm is near-optimal, i.e., a theoretical guarantee. First, the

following lemma holds.
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LEMMA 3. Given (x, 1, uy, B, Vk € [K]), we have B* = UV (an optimal solution of Problem (33)) is

also an optimal solution of the following convex optimization problem:

K
R {Z(ﬁku,? +ptiu)) o B BTBflml}‘ (34)
k=1

BERWI ><m1

To the best of our knowledge, no proof of convergence exists for the proposed ADMM algo-
rithm in our specific setting. Existing convergence results focus on different problem settings. For
instance, Hajinezhad and Shi (2018) employ the ADMM algorithm to solve a general bilinear opti-
mization problem. Similar to our approach, they penalize the linking constraint and incorporate
other constraints using an indicator function. However, in their setting, all the constraints except
the linking constraint are convex, whereas we need to further deal with the nonconvex constraint
BB = L. In addition, Chen and Goulart (2023) design an ADMM algorithm for diagonally con-
strained SDPs. Due to such a specific structure, they can derive the analytical optimal solution
at each step. In contrast, the first step of our ADMM algorithm involves solving a general SDP
problem for which no analytical optimal solution can be obtained.

Next, we present the convergence properties of our proposed ADMM algorithm. We let

L (B, (x, @, ug, Vk € [K]), (ﬁkakG[ 1) =

K
g (x, @, ug, Vk € [K +Zﬁk (i — Buy) + Z% 6 — Buglf3,
k=1

and introduce the following assumption commonly used in the convergence analysis of ADMM
(Luo et al. 2008, Shen et al. 2014, Bertsekas 2014, Bai et al. 2021).

ASSUMPTION 3. Given any k € [K], the sequence {B}} is bounded and Y2 || B, — Bi||3 < co.

Because every bounded sequence has a convergent subsequence, we have
B.— Bi, i—o0,icT, Vke K], (35)

where {B,}icz is a subsequence of {B;}. Meanwhile, under Assumption 3, by the update rule

= B+ pi (@ — Bitul!), we have
= Be=pi(u =B ul) 0, i — o, Vk € [K].
Because pi > 0 for any k € [K], we have
—B'u, —0, i — oo, Vk € [K]. (36)

We are now ready to state the convergence theorem of Algorithm 1 as follows.
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THEOREM 6. Let (B*,x*, @}, u;,Vk € [K]) be any accumulation point of the sequence {B',x', i, u}, Vk €
[K]} generated by Algorithm 1. Then, (B*,x*, @}, u;,Vk € [K]) satisfies the first-order stationary condi-
tions of Problem (32).

Note that one sufficient condition to ensure the existence of the accumulation point is that, at
each iteration step i + 1, given B’ and (B}, Vk € [K]) obtained from the previous iteration i, the
optimal solution of the following problem is bounded:

omin {£ (B, (xau, ke [K), (B, ¥k e K])) | (320)}. (37)
This implies that, at iteration step i + 1, the optimal solution of Problem (37), i.e., (x, @i, ux, Vk €
[K])**!, is bounded. By Assumption 3, the sequence {B,} is also bounded. It follows that B*! is
also bounded because B*! depends on B}, u;"!, and @, by Proposition 5. Therefore, the bounded

sequence {B',x', @i, u}, Vk € [K]} must have accumulation points.

6.2. Quality of the Dimensionality Reduction Solution B

Although the optimal value of our proposed three approximations can provide efficient lower or
upper bounds for the original optimal value, our derived ADMM algorithms may not produce
an optimal solution for each corresponding approximation problem because all three approxima-
tions are nonconvex problems. Therefore, it is important to recover the efficient lower or upper
bounds using the dimensionality reduction solution BAPMM returned by the ADMM algorithms.
Clearly, a better dimensionality reduction solution BAPMM Jeads to a better lower or upper bound.
Thus, we focus on the near-optimal dimensionality reduction solution BAPM that solving these
outer and inner approximations can produce, rather than the solution of x that the ADMM algo-
rithm returns. Specifically, we use this BAPMM to recover the lower or upper bound for the optimal
value of Problem (3) as follows.

(i) For Problem (25) (the first outer approximation), given the BAPMM returned by the ADMM

algorithm, we solve the low-dimensional SDP problem (13) to retrieve the lower bound.

(ii) For Problem (26) (the inner approximation), given the BAP™M returned by the ADMM algo-
rithm, we solve the low-dimensional SDP problem (29) to retrieve the upper bound.

(iii) For Problem (31) (the second outer approximation), given the [B;, B;]*PMM returned by the
ADMM algorithm, we solve the low-dimensional SDP problem (13) to retrieve the lower
bound.

Note that for Problem (31), given the [B;, B,]*P™" returned by the ADMM algorithm, solving
the subproblem of Problem (31) may not provide a lower bound for the original optimal value.
Therefore, to recover a lower bound, we solve the low-dimensional SDP problem (13) to retrieve

the lower bound.
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In addition, we can measure the quality of the BAPMM by deriving a theoretical interval in which

the optimal value of Problem (3) is located via the following proposition.

PROPOSITION 6. Given any my € [m] and B' € B,,,, we use (x*,s*,A",q,Q;) to denote an optimal
solution of Problem (13). Let P = Y (72/4)1, e My and S = min{S,, Vk € [K]}, where

1\ " 1\ " !
M, = (B’qﬁ + (UA?> (ATA; — yk(x*))> (B/qf + (UA?) (ATA —yk(x*))> , Vk € [K],
S =5 — () — A "b — ylx’) e+ A7 Ap, V€ [K].

We have
Ou(m) — O (1, B) < gn(ﬁ ~5<0)+ (2P - S)L(VP — S >0).

Given any feasible B’ € B,,, solving the low-dimensional SDP problem (13) to obtain
(x*,s*, i*, q;,Q;) is efficient. Thus, by solving an easy problem, we can obtain a theoretical lower
bound @(m;, B’) and upper bound @(m;,B') + (P/S)1(v/P — S < 0) + (2v/P — S)1(v/P — S > 0)
for the original Problem (3) and quantify the gap between them in Proposition 6. More specifically,
we can obtain their theoretical relative gap (denoted by “Theoretical Gap”) as follows:

P1(vP — S <0) + (2P — S)1(VP — 5§ > 0)

x 100%. 38
©(m, B) (38)

Theoretical Gap =

Note that this theoretical gap can be applied to all the three proposed approximations (i.e., Prob-
lems (25), (26), and (31)) because the theoretical gap can be calculated for any B’ € B,,, and all
three approximations can yield a high-quality dimensionality reduction matrix BAPMM satisfying

(BADMM ) T BADMM =1

m, by using our proposed ADMM algorithm.

Proposition 6 implies that a better BAPMM

returned by our proposed ADMM algorithms leads
to a tighter theoretical gap. Note that our proposed three approximations provide efficient lower
and upper bounds for the original Problem (3) and two of them are exact when we reduce the
dimensionality of the uncertain space from m to m; = K (see Theorems 4 and 5). Thus, we expect
to have a very high-quality dimensionality reduction solution BAPMM returned by our ADMM
algorithms, thereby implying a high-quality theoretical gap (38). Our numerical results in Section

7.2 show that such a theoretical gap is usually less than 5%.

7. Numerical Experiments

We perform extensive numerical experiments to demonstrate the effectiveness of our ODR
approach in solving two moment-based DRO problems: multiproduct newsvendor and
production-transportation problems. The mathematical models are implemented in MATLAB

R2022a (ver. 9.12) by the modeling language CVX (ver. 2.2) and solved by the Mosek solver
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(ver. 9.3.20) on a PC with 64-bit Windows Operating System, an Intel(R) Xeon(R) W-2195 CPU @
2.30GHz processor, and a 128 GB of memory. The time limit for each run is set at two hours. In
Section 7.1, we specify the proposed inner and outer approximations under the ODR approach in
the context of the multiproduct newsvendor and production-transportation problems. In Section
7.2, we report and analyze all the numerical results. All the data instances and source code can be

found in Jiang et al. (2025).

7.1. Numerical Setup

7.1.1. Multiproduct Newsvendor Problem In the deterministic multiproduct newsvendor
problem (Cheramin et al. 2022), we consider m products and the demand for each product i € [m]
is ¢;. Given the wholesale, retail, and salvage prices: ¢ € R, v € R, and g € R", respectively, we

decide an ordering amount x € R” to minimize the total cost

f (8 =max{(c—v) x (c—g) x+(g—v) &}

Note that this piecewise linear function f(x, &) has only two pieces, i.e., K =2. When the demand
¢ is uncertain and its probability distribution belongs to a distributional ambiguity set Dy as
defined in Section 2, we obtain the following DRO counterpart:

min max Ep [max{(c —v)'x(c—g) x+(g— V)TQ‘H . (39)

x>0 IPEDMO

We can apply Proposition 1 to reformulate Problem (39) and the proposed inner and outer approx-
imations (i.e., Problems (25), (26), and (31)) to approximate it (see details in Appendix G.1).
When the dimension m of ¢ is large, the original SDP reformulation of Problem (39) (i.e., Prob-
lem (108)) becomes very difficult to solve because of the large-scale SDP constraints. Nevertheless,
our approximations under the ODR approach (i.e., Problems (109)—(111)) have SDP matrices with
very small sizes (e.g., K + 1 = 3), largely reducing the computational burden while maintaining

the solution quality.

7.1.2. Production-Transportation Problem (Bertsimas et al. 2010) The deterministic
production-transportation problem considers G suppliers, each with normalized capacity one,
and H customers, each with demand d; (Vj € [H]) such that Y;', d; < G. Supplier i € [G] produces
x; goods with unit production cost ¢; and delivers z; goods to customer j € [H| with unit
transportation cost ¢;;, thereby satisfying all customer demands and minimizing the total cost.

We can formulate this problem as follows:

min ¢ x+¢& 'z (40a)
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st. 0<x; <1, Vie[G], (40b)
G H
Y zj=d;, Vjc[H], Y zy=x,Vie[G], z;>0,Vie|G], je[H], (40c)
i=1 =1

where & = (§j;, Vi€ [G], j€ [H])" and z; = (z;, Vi € [G], j € [H])". Following the same setting in
Bertsimas et al. (2010), we consider ¢ is random and its probability distribution IP belongs to Dy.
Thus, we can derive the two-stage DRO counterpart:

mxin{ch—F max Ep [ (Q (x,E))] ‘ (40b)} , (41)

]PGDMO

where U(Q(x,&)) = maxee{arQ(x, &) + B} is a convex nondecreasing disutility function that
incorporates risk attitudes into the second-stage cost and Q(x,&) = min,{¢'z | (40c)}. We can
reformulate Problem (41) into an SDP problem and apply our inner and outer approximations to
approximate it (see details in Appendix G.2).

When the dimension GH of ¢ is large, the original SDP reformulation of Problem (41) (i.e.,
Problem (112)) becomes very difficult to solve due to the high-dimensional SDP constraints, while
our approximations (i.e., Problems (114)-(116)) have SDP matrices with very small sizes (e.g.,

K +1) and can be solved efficiently.

7.2. Numerical Results

We compare the performance of our ODR approach (that provides two lower bounds and one
upper bound) with three benchmark approaches: (i) the Mosek solver with default settings,
which can provide the optimal value of the original problem; (ii) the low-rank algorithm pro-
posed by Burer and Monteiro (2003) to solve the SDP reformulation of the original problem,
i.e., Problem (4), generating a lower bound for the optimal value of Problem (4); and (iii) the
existing PCA approximation proposed by Cheramin et al. (2022), generating PCA-based lower
and upper bounds. For the third benchmark, we consider the reduced dimension m; € {100% X
dim(¢),80% x dim(§),60% x dim(&),40% x dim(¢&),20% x dim(¢), K}, where dim(¢) represents
the dimension of the random vector ¢. Note that K = 2 in the multiproduct newsvendor prob-
lem. For the production-transportation problem, we consider K € {5,10,15}. Our proposed inner
and outer approximations under the ODR approach are solved using Algorithm 1, providing
near-optimal B* and recovering valid lower and upper bounds (see Section 6.2). For all instances,
through tuning a range of values, we set the initial Lagrangian multipliers (B,, Vk € [K]) to 0 and

the penalty parameters (o, Vk € [K]) to 200 in Algorithm 1.
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7.2.1. Instance Generation and Table Header Description We consider various instances
of the multiproduct newsvendor and production-transportation problems. In the multiproduct
newsvendor problem, the mean and standard deviation of ¢ are randomly generated from the
intervals [0,10] and [1,2], respectively. We further generate a correlation matrix randomly using
the MATLAB function “gallery(‘randcorr’,n)” and then convert it to a covariance matrix. We fol-
low Xu et al. (2018) to set the wholesale, retail, and savage prices as ¢; =0.1(5+i—1), v; =
0.15(5+i—1), and g; = 0.05(5 +i — 1) for any i € [m], respectively. Meanwhile, we consider
m € {100,200,400,800,1200,1600,2000} in this problem.

In the production-transportation problem, we follow Bertsimas et al. (2010) to randomly gen-
erate the locations of G suppliers and H customers from a unit square and use §;; to measure the
distance between supplier i € [G| and customer j € [H]. For any i € [G] and j € [H], we generate
10,000 samples of ¢;; from the interval [0.557‘}‘,1.561‘]‘] and use them to estimate the mean, stan-
dard deviation, and covariance matrix of . Using 7, denoting the average transportation cost,
we then generate production cost ¢; and demand d; uniformly on the intervals [0.57,1.570] and
[0.5G/H,G/H], respectively, for any i € [G] and j € [H]. The disutility function ¢/ (x) = 0.25(¢** —
1) and is approximated by a piecewise-linear function with K equidistant segments on the interval
[0,1]. Meanwhile, we consider (G, H) € {(4,25), (5,20), (5,40), (8,25), (10,40), (20,30), (20,40) }.

For any given value of m in the multiproduct newsvendor problem or (G, H) in the production-
transportation problem, we randomly generate five instances and report the average performance
in Tables 1-4. Here we describe several table headers that are shared by these tables. We use
“Mosek” and “Low-rank” to represent the performance of the Mosek solver and the low-rank
algorithm (Burer and Monteiro 2003), respectively. The abbreviations “LB,” “UB,” and “RLB” rep-
resent lower, upper, and revisited lower bounds, respectively. Specifically, the labels “ODR-LB,”
“ODR-UB,” and “ODR-RLB” denote the lower-bound performance after solving the first outer
approximation (25) with m; = K, the upper-bound performance after solving the inner approxi-
mation (26) with m; = K, and the other lower-bound performance after solving the second outer
approximation (31) with m; = K, respectively. Note that using the dimensionality reduction solu-
tion B given by our proposed ADMM algorithms after solving each approximation, we retrieve
the corresponding lower or upper bound following the recovery process described in Section 6.2.
We use “PCA-100%,” “PCA-80%,” “PCA-60%,” “PCA-40%,” “PCA-20%,” and “PCA-K” to denote
the performance of the PCA approximation by Cheramin et al. (2022) when the reduced dimen-
sion m; equals 100% x dim(¢), 80% x dim(¢), 60% x dim(¢), 40% x dim(¢), 20% x dim(g), and
K, respectively. For instance, “PCA-20%" and “PCA-2" in Table 1 denote the performance of the

case when m; =20% x dim(¢) and m; = K = 2, respectively.
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In all the tables, we use “Size” to represent the value of m in the multiproduct newsvendor
problem or (G, H) in the production-transportation problem and “Time” to represent the compu-
tational time in seconds required to solve each instance. Note that following the recovery process
described in Section 6.2, the computational time includes two parts. The first part is the time
spent using the ADMM algorithm to solve an approximation problem. The second part is the
time spent solving the lower- or upper-bound subproblem. The lower-bound subproblem (13)
and the upper-bound subproblem (29) are low-dimensional SDP problems. In all our computa-
tional experiments, the time spent on the second part is less than 1% of the time spent on the first
part. Therefore, we report the total time without separately distinguishing between the two parts.
We use “Gapl” (resp. “Gap2”) to represent the relative gap in percentage between a lower (resp.
an upper) bound and the optimal value provided by the Mosek solver. That is,

optimal value — lower bound
|optimal value|

upper bound — optimal value
|optimal value|

Gapl = x 100%, Gap2 = x 100%.

We further use “Interval Gap” to represent the relative gap in percentage between a lower bound
and an upper bound, i.e.,

upper bound — lower bound
|upper bound]|

Interval Gap = x 100%. (42)

Specifically, for both the ODR approach and the low-rank algorithm, we take the objective value
of “ODR-UB” as the value of “upper bound” in (42). For the PCA approximation approach, the
value of “upper bound” in (42) is provided by this approach itself. The value of the “Theoretical
Gap” for each instance is defined in (38).

To further illustrate how to calculate the “Interval Gap,” we consider the “Interval Gap” in the
row “ODR-LB” of Table 1 as an example. We first use our ADMM algorithm to solve the first outer
approximation, i.e., Problem (25), and record the obtained dimensionality reduction solution B".
Given this B'®, we solve Problem (13) and obtain ©@(m;, B'®), which is a lower bound. We then
use the ADMM algorithm to solve the inner approximation, i.e., Problem (26), and record B"".
Given this BV?, we solve Problem (29) and obtain ®(1,, B"®), which is an upper bound. Thus, we
calculate the “Interval Gap” by (®(m,,BY8) — @(m,, B'®))/|@(m;, BYB)| x 100%.

“” o7

Finally, we use to represent that no result can be obtained within the time limit (i.e., two
hours). For instance, the Mosek solver cannot solve the original problem to the optimality within
two hours for the newsvendor problem with m > 400. Hence, we cannot obtain the value of

“Gapl” for the “Mosek,” “ODR-LB,” and “ODR-RLB” approaches.

7.2.2. Numerical Performance From Tables 14, we have the following observations. First, in
the newsvendor problem with m € {100,200} and the production-transportation problem with
(G,H) € {(4,25),(5,20), (5,40), (8,25)}, the Mosek solver solves each instance of the original
problem to the optimality. Our ODR approach performs much better than the three benchmark
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Table 1 Average Performance on the Newsvendor Problem

Size (1) 100 | 200 | 400 800 | 1200 | 1600 | 2000
Mosek Time (secs) 13.02 | 363.54 - - - - -
Gapl (%) 252 | 1.79 - - - - -
Low-rank Time (secs) 026 | 0.80 | 546 | 47.34 | 110.33 | 309.00 |825.62
Interval Gap (%) | 427 | 3.66 | 267 | 232 | 228 | 236 | 252
Gapl (%) 0.09 | 0.00 - - - - -
ODR-LB Time (secs) 077 | 078 | 0.83 0.85 1.13 201 | 254
Interval Gap (%) | 1.81 | 1.83 | 144 | 144 | 156 | 173 | 196
Theoretical Gap (%) | 2.73 | 3.27 247 3.15 4.28 291 3.58
Gapl (%) 0.03 | 0.03 - - - - -
ODR-RLB Time (secs) 195 | 260 | 433 | 975 | 2083 | 3836 | 56.68
Interval Gap (%) | 1.74 | 1.86 | 146 | 146 | 156 | 178 | 198
Theoretical Gap (%) | 1.92 | 236 | 127 | 244 | 190 | 3.01 | 258
ODR-UB gapz (%) 1.68 | 1.80 - - - - -
Time (secs) 195 | 260 | 433 | 975 | 20.83 | 3836 | 56.68
Theoretical Gap (%) | 1.92 | 236 | 127 | 244 | 190 | 3.01 | 258
Gapl (%) 0.00 | 0.00 - - - - -
Time (secs) 13.04 | 361.54 - - - - -
PCA-100% Gap2 (%) 0.00 | 0.00 - - - - -
Time (secs) 12.99 |361.91 - - - - -
Interval Gap (%) 0.00 | 0.00 - - - - -
Gapl (%) 050 | 0.31 - - - - -
Time (secs) 5.05 [120.72|3348.00| - - - -
PCA-80% Gap?2 (%) 1223 | 1113 | - - - - -
Time (secs) 7.77 |155.39 | 4793.72| - - - -
Interval Gap (%) 14.54 | 12.90 | 13.57 - - - -
Gapl (%) 098 | 0.73 - - - - -
Time (secs) 144 | 28.73 | 785.63 - - - -
PCA-60% Gap2 (%) 2333 | 2407 | - - - - -
Time (secs) 2.29 | 44.28 | 1196.98 - - - -
Interval Gap (%) | 31.76 | 32.79 | 31.87 - - - -
Gapl (%) 1.69 | 1.20 - - - - -
Time (secs) 0.39 | 521 | 12543 |3351.00| - - -
PCA-40% Gap?2 (%) 3579 | 3594 | - - . . .
Time (secs) 0.57 | 8.03 | 177.96 |5237.40 - - -
Interval Gap (%) | 58.50 | 58.26 | 56.45 | 57.18 - - -
Gapl (%) 2.71 | 1.90 - - - - -
Time (secs) 015 | 043 | 649 | 13697 | 971.60 |3546.30 | -
PCA-20% Gap2 (%) 4792 | 4819 | - - - - -
Time (secs) 0.17 | 0.60 | 925 | 203.97 |1340.46 | 494028 | -
Interval Gap (%) | 97.74 | 84.05 | 90.65 | 93.17 | 92.38 | 94.27 -
Gapl (%) 426 | 3.24 - - - - -
Time (secs) 011 | 012 | 013 | 020 | 026 | 036 | 0.50
PCA-2 Gap?2 (%) 5760 | 59.25 | - - - - -
Time (secs) 013 | 014 | 016 | 022 | 032 | 046 | 0.60
Interval Gap (%) |147.12|154.40 | 141.39 | 149.18 | 146.92 | 150.96 |153.57
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Table 2 Average Performance on the Production-Transportation Problem with K =5
Size ((G,H)) | (425)|(5,20)| (540) | (825) | (10,40) | (20,30) | (20,40)
Mosek Time (secs) 56.04 | 70.10 | 1524.45 | 1612.68 | - - -
Gapl (%) 369 | 417 | 294 | 342 - - -
Low-rank Time (secs) 14.87 | 1528 | 44.82 | 4134 | 192.21 | 710.28 | 1678.21
Interval Gap (%) | 3.69 | 417 | 294 | 342 | 544 | 412 | 593
Gapl (%) 014 | 034 | 022 | 029 - - -
ODR-LB Time (secs) 403 | 363 | 601 | 482 | 1241 | 2503 | 57.79
Interval Gap (%) | 0.15 | 0.34 | 043 | 029 | 052 | 055 | 051
Theoretical Gap (%) | 124 | 1.07 | 491 | 077 | 271 | 125 | 1.09
Gapl (%) 001 | 002 | 001 | 0.0 - - -
ODR-RLB Time (secs) 542 | 536 | 2240 | 20.86 | 123.64 | 330.29 | 665.43
Interval Gap (%) | 0.02 | 0.02 | 0.01 | 001 | 000 | 0.00 | 0.00
Theoretical Gap (%) | 1.13 | 1.17 1.80 0.81 1.22 1.92 1.32
Gap2 (%) 0.01 | 001 | 0.00 | 0.00 - - -
ODR-UB Time (secs) 548 | 532 | 2241 | 20.86 | 12348 | 329.95 | 665.35
Theoretical Gap (%) | 1.13 | 1.17 1.80 0.81 1.22 1.92 1.32
Gapl (%) 0.00 | 0.00 | 0.00 | 0.0 - - -
Time (secs) 56.74 | 68.76 | 1521.32 | 1612.94 | - - -
PCA-100% Gap2 (%) 0.00 | 0.00 | 0.00 | 0.0 - - -
Time (secs) 55.49 | 68.49 | 1521.04 | 1611.67 | - - -
Interval Gap (%) 0.00 | 0.00 0.00 0.00 - - -
Gap1 (%) 052 | 099 | 033 | 1.50 - - -
. Time (secs) 2341|2768 | 589.74 | 625.65 | - - -
PCA-80% Gap2 (%) 331 | 218 | 115 | 276 - - -
Time (secs) 29.33 | 31.20 | 657.78 | 639.09 | - - -
Interval Gap (%) 3.63 | 3.08 1.44 4.12 - - -
Gapl (%) 160 | 261 | 126 | 341 - - -
) Time (secs) 854 | 841 | 143.60 | 115.54 | 3087.98 | - -
PCA-60% Gap2 (%) 9.02 | 733 | 345 | 8.62 - - -
Time (secs) 9.04 | 8.88 | 158.95 | 152.21 |3484.45 - -
Interval Gap (%) 950 | 917 | 4.36 11.04 4.85 - -
Gapl (%) 375 | 423 | 233 | 4.00 - - -
) Time (secs) 2.18 | 2.11 | 30.80 | 2344 | 512.53 |3004.06| -
PCA-40% Gap?2 (%) 14.05 | 1158 | 657 | 9.96 - - -
Time (secs) 261 | 2.37 | 37.08 | 30.60 | 633.00 |3149.11| -
Interval Gap (%) | 1542 | 14.04 | 794 | 1266 | 852 | 5.05 -
Gapl (%) 445 | 541 | 359 | 4.16 - - -
) Time (secs) 074 | 069 | 621 | 559 | 38.03 | 20525 | 741.71
PCA-20% Gap2 (%) 17.07 | 12.66 | 9.25 | 10.08 - - -
Time (secs) 111 | 1.01 | 731 | 626 | 64.54 | 276.63 | 883.55
Interval Gap (%) | 1835|1595 | 11.32 | 1291 | 939 | 522 | 485
Gapl (%) 535 | 573 | 455 | 439 - - -
Time (secs) 038 | 036 | 052 | 045 | 066 | 079 | 1.00
PCA-5 Gap?2 (%) 17.99 | 1535 | 12.71 | 10.08 - - -
Time (secs) 078 | 072 | 235 | 208 | 1041 | 27.98 | 68.39
Interval Gap (%) |19.76 | 1826 | 1515 | 1312 | 9.69 | 548 | 5.14
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Table 3 Average Performance on the Production-Transportation Problem with K =10
Size ((G, H)) (4,25) | (520) | (5,40) | (8,25) | (10,40) | (20,30) | (20,40)
Mosek Time (secs) 115.52 | 103.52 | 2866.54 | 2857.47 | - - -
Gap1 (%) 341 | 392 | 321 | 4.08 - - -
Low-rank Time (secs) 17.67 | 1841 | 56.22 | 54.17 | 227.71 | 929.00 |1907.28
Interval Gap (%) | 341 | 392 | 321 | 408 | 527 6.2 4.62
Gapl (%) 012 | 019 | 013 | 025 - - -
ODR-LB Time (secs) 6.65 | 641 | 11.11 | 1031 | 3142 | 61.41 | 131.10
Interval Gap (%) | 012 | 019 | 013 | 025 | 022 | 019 | 025
Theoretical Gap (%) | 1.78 | 197 | 296 | 119 | 210 | 149 | 1.22
Gap1 (%) 0.00 | 0.00 | 0.0 | 0.00 - - -
ODR-RLB Time (secs) 11.22 | 10.65 | 40.34 | 32.95 | 122.54 | 342.80 | 748.11
Interval Gap (%) 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
Theoretical Gap (%) | 1.86 | 227 | 174 | 122 | 210 | 139 | 230
Gap2 (%) 0.00 | 0.00 | 0.00 | 0.00 - - -
ODR-UB Time (secs) 11.14 | 10.69 | 4028 | 3292 | 122.48 | 344.10 | 747.90
Theoretical Gap (%) | 1.86 | 227 | 174 | 122 | 210 | 1.39 | 230
Gapl (%) 0.00 | 0.00 | 0.00 | 0.00 - - -
Time (secs) 115.74 | 102.90 | 2852.43 | 2851.09 | - - -
PCA-100% Gap2 (%) 0.00 | 0.00 | 000 | 0.00 - - -
Time (secs) 116.32 | 103.70 | 2853.10 | 2859.01 | - - -
Interval Gap (%) 0.00 | 0.00 0.00 0.00 - - -
Gapl (%) 047 | 039 | 038 | 058 - - -
Time (secs) 52.31 | 50.48 |1101.61 | 979.90 - - -
PCA-80% Gap2 (%) 004 | 004 | 002 | 002 - ; -
Time (secs) 58.12 | 58.88 |1392.67 | 1364.82| - - -
Interval Gap (%) 051 | 042 0.40 0.61 - - -
Gapl (%) 154 | 139 | 098 | 157 - - -
Time (secs) 14.48 | 1554 | 270.80 | 240.40 |4182.33| - -
PCA-60% Gap2 (%) 096 | 034 | 034 | 040 - - -
Time (secs) 19.64 | 20.83 | 455.00 | 440.12 |4582.31| - -
Interval Gap (%) 246 | 1.72 1.32 1.95 2.61 - -
Gapl (%) 230 | 231 | 176 | 218 - - -
Time (secs) 419 | 4.04 | 53.67 | 4522 | 831.61 |4312.63| -
PCA-40% Gap2 (%) 185 | 1.63 | 110 | 077 - - -
Time (secs) 6.19 | 596 | 9474 | 97.70 | 931.48 [4792.10| -
Interval Gap (%) | 405 | 387 | 281 | 292 | 501 | 495 -
Gapl (%) 298 | 320 | 226 | 239 - - -
Time (secs) 226 | 191 | 772 | 7.02 | 5234 | 361.81 |1038.72
PCA-20% Gap2 (%) 224 | 244 | 171 | 107 - - -
Time (secs) 3.83 | 352 | 1870 | 18.07 | 71.38 | 428.93 |1391.25
Interval Gap (%) | 5.09 | 549 | 390 | 342 | 621 | 548 | 429
Gapl (%) 336 | 326 | 240 | 253 - - -
Time (secs) 083 | 076 | 119 | 1.00 | 201 195 | 254
PCA-10 Gap2 (%) 251 | 248 | 209 | 111 - - -
Time (secs) 193 | 1.81 | 712 | 597 | 21.15 | 4362 | 79.15
Interval Gap (%) | 572 | 559 | 440 | 360 | 636 | 728 | 6.04
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Table 4 Average Performance on the Production-Transportation Problem with K =15
Size (G, H)) (4,25) | (5,20) | (540) | (8,25) | (10,40) | (20,30) | (20,40)
Mosek Time (secs) 154.22 | 159.12 | 4004.18 | 4099.14 | - - -
Gapl (%) 451 | 352 | 406 | 591 - - -
Low-rank Time (secs) 21.73 | 28.14 | 7420 | 62.18 | 331.01 |1124.41|2271.82
Interval Gap (%) | 451 | 352 | 406 | 591 | 422 | 511 | 483
Gapl (%) 0.05 | 010 | 012 | 0.15 - - -
ODR-LB Time (secs) 13.92 | 16.56 | 22.11 | 26.16 | 43.02 | 80.51 | 168.90
Interval Gap (%) | 0.05 | 0.10 | 012 | 015 | 0.11 0.13 | 0.09
Theoretical Gap (%) | 4.69 | 522 | 557 | 638 | 329 | 441 3.95
Gapl (%) 0.00 | 0.00 | 0.00 | 0.00 - - -
ODR-RLB Time (secs) 2260 | 2145 | 77.18 | 63.99 | 241.03 | 689.24 |1550.21
Interval Gap (%) 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
Theoretical Gap (%) | 1.38 | 2.61 | 1.79 173 | 2.14 194 | 225
Gap2 (%) 0.00 | 0.00 | 0.00 | 0.00 - - -
ODR-UB Time (secs) 2261 | 21.44 | 7699 | 64.08 | 149.21 | 401.63 | 878.68
Theoretical Gap (%) | 1.38 | 261 | 1.79 173 | 2.14 194 | 225
Gap1 (%) 0.00 | 0.00 | 0.00 | 0.00 - - -
) Time (secs) 154.64 | 158.67 | 4024.62 | 409591 | - - -
PCA-100% Gap2 (%) 0.00 | 0.00 | 000 | 0.00 - - -
Time (secs) 156.32 | 155.64 | 4050.04 | 4059.01 | - - -
Interval Gap (%) 0.00 | 0.00 0.00 0.00 - - -
Gapl (%) 047 | 053 | 0.62 | 058 - - -
Time (secs) 68.31 | 69.22 | 1439.48 | 1428.65 | - - -
PCA-80% Gap2 (%) 004 | 006 | 015 | 0.08 - ; -
Time (secs) 79.55 | 80.20 | 2120.31|2146.05| - - -
Interval Gap (%) 051 | 0.57 0.75 0.62 - - -
Gap1 (%) 095 | 113 | 1.28 1.25 - - -
Time (secs) 2250 | 25.11 | 411.27 | 398.64 - - -
PCA-60% Gap2 (%) 022 | 031 | 047 | 062 - - -
Time (secs) 33.28 | 38.11 | 658.16 | 624.21 - - -
Interval Gap (%) 117 | 140 1.74 1.85 - - -
Gapl (%) 168 | 167 | 1.78 1.81 - - -
Time (secs) 6.61 | 853 | 81.20 | 80.88 [1553.12| - -
PCA-40% Gap?2 (%) 165 | 258 | 254 | 196 - - -
Time (secs) 10.21 | 12.37 | 137.98 | 155.84 |2296.17 | - -
Interval Gap (%) 3.23 | 4.27 4.31 3.76 4.53 - -
Gap1 (%) 222 | 301 | 2.09 1.91 - - -
Time (secs) 474 | 498 | 1321 | 1420 | 81.28 | 375.81 |1671.21
PCA-20% Gap2 (%) 307 | 361 | 298 | 248 - - -
Time (secs) 924 | 819 | 2726 | 2879 | 124.04 | 496.38 |2517.39
Interval Gap (%) 527 | 6.59 5.06 4.22 5.78 6.29 5.88
Gapl (%) 224 | 332 | 294 | 3.09 - - -
Time (secs) 191 | 207 | 252 | 273 | 425 | 487 | 627
PCA-15 Gap?2 (%) 310 | 412 | 357 | 4.01 - - -
Time (secs) 474 | 512 | 1286 | 1292 | 23.16 | 4821 | 95.72
Interval Gap (%) | 531 | 740 | 6.41 703 | 642 | 719 | 683




31

approaches. Both the “ODR-LB” and “ODR-RLB” provide a smaller value of “Gapl” than the
low-rank algorithm and the PCA approximation, and require a shorter computational time than
the three benchmark approaches. The “ODR-UB” also provides a smaller value of “Gap2” than
the PCA approximation if m; # 100% x dim(¢) therein and requires shorter computational time.

Specifically, the objective value of our “ODR-LB” reaches the optimal value of the original
problem for some instances of the multiproduct newsvendor problem (see Table 1) and provides
near-optimal solutions for the production-transportation problem with “Gap1” less than 0.34%
(see Tables 2—4). More importantly, the “ODR-LB” reduces the computational time by up to three
orders of magnitude compared to the Mosek solver. In addition, the “ODR-RLB” and “ODR-UB”
reach the optimal value of the original problem for all instances in Tables 3-4 and provide objective
values that are near-optimal (within 1.8% for all instances and 0.03% for most instances) in Tables
1-2, while reducing the computational time significantly. The results imply that our ADMM algo-
rithms return the optimal B* for most instances and the numerical gap between our derived lower
and upper bounds (i.e., “Interval Gap”) can be tight.

In addition, Tables 1-4 show that our ODR approach (including “ODR-LB,” “ODR-UB,” and
“ODR-RLB”) provides a better solution in terms of the objective value than the PCA approxi-
mation if the reduced dimension m; < 80% x dim(¢g) in the latter approach. That is, even if we
maintain 80% of the random parameters corresponding to the largest eigenvalues to be uncertain
in the PCA approximation by focusing on only their statistical information, the performance is
worse than our ODR approach, where we optimize the dimensionality reduction from dim(¢) to
K (i.e., maintaining only 1% of the original dimensionality size when m = 200 and K = 2 for the
multiproduct newsvendor problem). More importantly, the inner and outer approximations of
our ODR approach can be solved efficiently.

Second, when the problem size is large, i.e., m > 400 in the newsvendor problem and (G, H) €
{(10,40), (20,30), (20,40) } in the production-transportation problem, the Mosek solver cannot
solve any instance of the original problem to the optimality. Our ODR approach also performs
better than the three benchmark approaches. Tables 1-4 show that “ODR-LB” provides a smaller
value of “Interval Gap” (within 2%) and requires a much shorter computational time than both
the low-rank algorithm and the PCA approximation. For instance, when m = 1600 in the multi-
product newsvendor problem, the low-rank algorithm and “ODR-LB” take 309 and 2.01 seconds
to solve an instance of the multiproduct newsvendor problem and provide the value of “Interval
Gap” at 2.36% and 1.73%, respectively. The PCA approximation solves this instance only when
the reduced dimension m; is not larger than 20% x m, by which it takes 3546.3 seconds while the
solution quality is very poor, providing the value of “Interval Gap” at 94.27%. Tables 2-4 show
that the “ODR-RLB” and “ODR-UB” reach the optimal value of the original problem for all instances
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(with “Interval Gap” at 0); that is, our ADMM algorithms return the optimal B*. Meanwhile, the
value of the “Theoretical Gap” is mostly within 5%. More importantly, our ODR approach is not
sensitive to the value of dim(¢), while the benchmark approaches perform much worse when
dim(¢) is larger. Thus, when we cannot obtain the optimal value of the original problem, the
“ODR-LB”, “ODR-RLB”, and “ODR-UB” can be efficiently solved to provide a narrower inter-
val that includes the optimal value than the benchmark approaches. That is, our ODR approach
can provide a near-optimal solution very efficiently for the moment-based DRO problems where
other best possible benchmark approaches are struggling.

Third, “ODR-RLB” leads to better solution quality than “ODR-LB”. From Tables 1-4, we observe
that (i) there is no significant difference between the theoretical gaps of two outer approximations,
(ii) the “Gapl” and “Interval Gap” of “ODR-RLB” are smaller than those of “ODR-LB” for most
instances. Thus, we recommend that practitioners solve the second outer approximation to obtain
a lower bound, where this approximation also provides a theoretical optimality guarantee when
my = K (see Theorem 5).

Furthermore, although we obtain near-optimal solutions by setting m; = K in the ODR
approach, the sensitivity analyses of our ODR approach in Tables G3-G5 (see details in Appendix
G.4) with respect to m; also show valuable results. Specifically, we consider the production-
transportation problem (41), where m; takes values from {3,5,7} when K =5, {8,10,12} when
K =10, and {13,15,17} when K = 15. Concerning our ODR approach (i.e., “ODR-LB,” “ODR-UB,”
and “ODR-RLB”), we observe a general trend where the values of “Gapl,” “Gap2,” and “Interval
Gap” all tend to decrease as m; increases. This trend aligns with the theoretical results in Theo-
rems 1, 3, and 5. Meanwhile, we consider the same problem with G =5, H =20, and K = 10 and
provide a line chart in Figure 1 to demonstrate the trend concerning the value of m; in a higher
granularity. These results demonstrate that (i) the computational times of our three approxima-
tions increase when we choose a larger 1, (ii) for the first outer approximation, the gap between
the lower bound and the optimal value decreases from 0.28% to 0.01% when we increase m; from
2 to 40, (iii) for the second outer approximation and the inner approximation, a similar conclusion
holds, and they will achieve the original optimal value when we choose m, > 6. These results also
demonstrate that m; = K is a good choice, and increasing m; further may not bring significant
improvement in terms of solution quality. Combining the tightness results from Theorems 4 and
5 and the sensitivity analyses here, we recommend that practitioners choose m; = K to ensure that

the proposed approximations yield high-quality results.

7.2.3. Numerical Insights In the multiproduct newsvendor problem, Tables 1 show that our

ODR approach performs better than the PCA approximation with respect to the objective values
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Figure 1  Sensitivity Analyses on the Production-Transportation Problem

for all the cases except that the “PCA-100%" (i.e., the original problem) provides the optimal value
when the problem size is small. Note that the PCA approximation reduces the dimensionality of
the random vector ¢ by focusing on only the statistical information of ¢, while the ODR approach
integrates the dimensionality reduction with the optimization of the original problem. Here we
would like to further demonstrate the benefits of our approach, thereby providing insights into
how we can choose the value of B without solving the models in our ODR approach.

Consider the multiproduct newsvendor problem. The PCA approximation chooses the ran-
dom parameters corresponding to the largest eigenvalues by maximizing the expectation of &',
i.e., the variability of . Adopting the idea of our ODR approach to integrate the dimensional-
ity reduction with the subsequent optimization problem, we can consider the objective function
f(x,¢&) when choosing the random parameters in ¢. Specifically, we can maximize the variabil-
ity of (g — v) &, which is the only random component in f(x,&). By (9), we solve the following
problem to reduce the dimension from m to m;:

max [Ep (g —v) & (g — V)} ~ Ep [(g —v)' (UA%B{,‘r + ,u) <UA%B§,‘r + y)T (g — V):|

BT B=I,

By |(g—v)' <(UA%B¢;) (UA%Bgr)T +2UABEN" + mﬁ) (g— v)}

R (AT I @)

By introducing r = (A%UT) (g — v), Problem (43) clearly has the same optimal solution as

max r BB'r. (44)

BT B=Ly,
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PROPOSITION 7. We have B* = [t/ |||, 0y« (m,—1)] is an optimal solution of Problem (44).

By considering the partial feature of the original optimization problem, the optimal B* of
Problem (43) by Proposition 7 performs better than the PCA approximation that only considers
statistical information of random parameters. Note that our proposed inner and outer approxi-
mations of the ODR approach consider the complete feature of the original optimization prob-
lem and can provide an even better choice of B. In the multiproduct newsvendor problem with
K =2, we can compare the B* of Problem (43) with the optimal B provided by our proposed
outer approximation (25) with m; = K. Specifically, letting m = 10, we have (i) the optimal value

given by the PCA approximation (lower bound) with m; = K is —18.62; (ii) the optimal value
given by (43) is —17.53 with B = | 0869 ~00478 0.3285 ~00930 ~0.2762 02126 ~0.0456 —0.0034 0.0361 0.0097 I

0 0 0 0 0 0 0 0 0 0 ’

(iii) the optimal value given by (25) (lower bound) with m; = K is —17.38 with

B — [-08%4 0188 02094 —0.0327 —02497 02215 —0.0548 —0.0216 0.0289 0.0104 T Clearl ODR
= | 00143 00052 —0.0014 —0.0004 0.0034 —0.0035 0.0010 0.0006 —0.0003 —0.0002| - - €arly, our

approach performs the best and the value of B from solving (43) is close to that from our ODR
approach (the Frobenius norm of the difference between the two matrices is less than 0.1). That
is, if a decision-maker does not have enough capacity to solve the approximations of our ODR
approach, the decision-maker may consider the partial feature of the optimization problem when

reducing the dimensionality.

8. Conclusion

Moment-based DRO provides a theoretical framework to integrate moment-based information
from available data with optimal decision-making. Extensive studies have demonstrated the
effectiveness of this framework in solving various industrial applications under uncertainties.
Although moment-based DRO problems can be reformulated as SDPs that can be solved in poly-
nomial time, solving high-dimensional SDPs is significantly challenging. More importantly, high-
dimensional random parameters are generally involved in industrial applications, demanding
efficient approaches to solve the high-dimensional SDPs in the context of moment-based DRO.
Current approaches adopt the PCA to first reduce the dimensionality of random parameters
using only the statistical information and then solve the subsequent low-dimensional approxima-
tion (SDPs). We show that performing dimensionality reduction using the components with the
largest variability may not produce a good optimal value from the subsequent PCA approxima-
tion and it can be even worse than using the components with the least variability (Example 1).
Thus, we integrate the dimensionality reduction with subsequent SDP problems and hence pro-
pose an optimized dimensionality reduction (ODR) approach for the moment-based DRO (Sec-
tions 3-5), aiming to drastically reduce the computational time of solving the SDP reformulations

while maintaining the optimal solution of the original problem.
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We first derive an outer approximation under the ODR approach to provide a lower bound for
the optimal value of the original problem (Theorem 1), where the lower bound is nondecreasing in
the reduced dimension m,. We aim to choose a small m; to close the approximation gap between
the derived lower bound and the original optimal value. To that end, we show that the rank
of each SDP matrix with respect to an optimal solution of the original high-dimensional SDP
reformulation is small, guiding us on how to optimize the dimensionality reduction (Theorem
2). With this low-rank property, we observe that the derived lower bound can be close to the
original optimal value (Theorem 7) but may not reach it (Example 2). Nevertheless, Theorem 7
demonstrates that we are not far from closing the approximation gap and motivates us to derive
an inner approximation to provide an upper bound for the optimal value of the original problem
(Theorem 3). More importantly, this upper bound reaches the original optimal value when the
reduced dimension 1, is small (Theorem 4). Building on this significant result, we further derive
an outer approximation to provide the second lower bound for the optimal value of the original
problem, where the gap between the new lower bound and the original optimal value can be
closed when the reduced dimension m; is small (Theorem 5).

The two outer and one inner approximations derived for the original problem are all low-
dimensional SDPs and nonconvex with bilinear terms (Propositions 2 and 3 and Theorem 5). We
accordingly develop modified ADMM algorithms to solve them efficiently (Section 6) and analyze
the convergence property of the ADMM algorithms (see Section 6.1). Based on the near-optimal
dimensionality reduction solution BAPM" returned by the ADMM algorithms, we also explain
how to recover the corresponding lower and upper bounds for the original optimal value (see
Section 6.2). Finally, we demonstrate the effectiveness of our ODR approach in solving multiprod-
uct newsvendor and production-transportation problems. We compare our ODR approach and
algorithms with three benchmark approaches: the Mosek solver, the low-rank algorithm by Burer
and Monteiro (2003), and existing PCA approximations by Cheramin et al. (2022). The numerical
results show that our ODR approach significantly outperforms these benchmarks in computa-
tional time and solution quality. Our approach can obtain an optimal or near-optimal (mostly
within 0.1%) solution and reduce the computational time by up to three orders of magnitude.
More importantly, unlike the existing approaches that become more computationally challeng-
ing when the dimension m of random parameters increases, our approach is not sensitive to
m, demonstrating significant strength in solving large-scale practical problems (Section 7.2.2). In
addition, we provide insights into why our ODR approach performs better than the existing PCA
approximations (Section 7.2.3).

Our research can be further extended in various directions. First, this paper considers a piece-

wise linear cost function in the original problem. Thus, it would be attractive to consider a more
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general objective function. Second, it would be interesting to apply our approach to more appli-
cation problems to generate practical insights. Third, it is also of great interest to integrate the
idea of dimensionality reduction into the Wasserstein DRO or two-stage stochastic programming.
Fourth, our ODR approach can be potentially generalized to solve general SDPs with certain
structures. Thus, it would be appealing to exploit the structures of SDP constraints and apply the
ODR approach to solve more general SDPs. Fifth, it would be an interesting extension to consider
cases with K > m. Note that for these cases, our proposed ODR approach can still be used to
improve the traditional PCA approximation by choosing an appropriate m, such that the solution
quality is good and the computational time is short, and also provide theoretical guarantees that
bound the gap between the proposed upper bound and the original optimal value, as well as the
gap between the original optimal value and the proposed lower bound. Nevertheless, we may not
provide clear guidance on choosing m1; so that our proposed approximations achieve the optimal

value of the original problem. We leave the above extensions for future research.
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Appendix A: Table of Notations

Table A1  Summary of Notations

Notation Description
Random
Variables:
¢ The random vector ¢ € R™
3 The random vector ¢; € R™ obtained by the linearly transformation of ¢
¢, The random vector ¢, € R™ obtained by reducing the dimension of &;
Distributions:
P The probability distribution of the random vector ¢
Py The probability distribution of the random vector ¢;
P, The probability distribution of the random vector ¢,
Decision
Variables:
X The decision variable x € R"
s, A, q, Q Decision variables in original SDP problem
/i /iiz{/\l,...,AK}
qr, Qr Decision variables in PCA approximation
B The decision variable used in the optimized dimensionality reduction
te, Pr, Pr, Z Decision variables used in the lower bound
/,4’,4",B1,B, Decision variables used in the revisited lower bound
Parameters
and Sets:
X The feasible set of decision variable x
Do The distributional ambiguity set constructed by statistical information
Dwm The distributional ambiguity set corresponding to ¢;
S The support of ¢
02 A scalar 1 >0
Y2 A scalar y, >'1
u The estimated mean of ¢
X The estimated covariance matrix of ¢
U A Two matrices produced by the eigenvalue decomposition on the covariance matrix X
Ab S:={¢| AL <Db}
St The support of ¢;
Sr The support of ¢,
Dr The distributional ambiguity set corresponding to ¢,
B, The feasible set of decision variable B € R"*"™
Dy The distributional ambiguity set by relaxing the second-moment constraint in Dy,
Optimal Value
Functions:
Onm(m) The optimal value of the original problem
On(my) The optimal value of the PCA approximation
O (mq) The optimal value of the first outer approximation
©(m1,B) The optimal value of the subproblem of the first outer approximation
Ouy(my) The optimal value of the inner approximation
©(my,B) The optimal value of the subproblem of the inner approximation

Or2(my)

The optimal value of the second outer approximation




Appendix B: Supplement to Section 2

B.1. Reformulations in Example 1

The distributionally robust counterpart of the CVaR problem (8) can be formulated as

) . 1 +
rxrg)? {ggg rtrglgl t+ &]EIP g (x,&) —t]

= min max t—l—llE]p [¢(x,&) —t]",

xeX, teR PeD [

(45)

where the equality holds by the Sion’s minimax theorem (Sion 1958) because t +

(1/a)Ep[g(x,&) — t|" is convex in t, concave (specifically, linear) in IP, and D is

compact. By

Proposition 1, Problem (45) has the same optimal value with the following SDP formulation:

min s+1,,¢Q
x,5,t,A1,
22,9.Q

] o .

s—t—AMb+A[Ap ] (q + (UAz) AT/\1>

s.t. T t 01

! (q + (UA%> AT/\1> o)

s—(1-=t-2b— (%) u+rA]Apl <q+ (UA%)T (ATA, — ;x))

1\ T
Ha (ual) (a2 1) Q

xeX, teR, M eR,, L eR,.

Appendix C: Supplement to Section 3
C.1. Proof of Lemma 1

First, we have

“3"; IB ] >0 <= 1,—-BL/B" =0 < BB <1,
my

where the first equivalence is by Schur complement and the second is because I,,| =

Second, we have

I, B .
[BT 1,,,1] >0 <=L, —B'I,'B~0 < B'B<I,,

(46a)

(46b)

=0, (46¢)
I,

where the first equivalence is by Schur complement and the second is because I,,! = I,,. Thus, the

lemma is proved. [

C.2. Proof of Lemma 2

(i) Suppose X = Y. For any a € R", we have Va € R". It follows that

X=Y=(Va)"(X—-Y)(Va) >0, VacR"



<—a (VI(X-Y)V)a>0, VaecR"
=V (X-Y)V=0 <= VIXV=V'YV.

(ii) First, for any V € R"*", we have
XY= V'XV=V'YV

by (i). Second, suppose V'XV = V'YV. Note that V! € R™". According to (i), the matrix
VXV — V'YV remains as PSD if it multiplies (V') " before it and V! after it, i.e.,

(V) VIXVv = (v viyvv L

It follows that X *= Y because (V')"V'T =1, and VV~! =1,,. Thus, X = Y is equivalent to
VXV >=VTYVif VeR™™isinvertible. [

C.3. Proof of Theorem 1

(i) Given any x € X and B € B,,,, i.e, B'B=1,,, we define { = UA%B{,‘r + p and use S; and D;
to denote its support and ambiguity set, respectively. As S, = {¢, € R™ | UA%Bé,‘r +ueS}and
S;={leR"|{= UA%B@‘r +u, ¢ €8, }, we can deduce S; C S. We also have

(IEIPg 7] - y) Ty (IEIPg = y) - (EP, [UA%B;;] ) 'R, [UA%BL‘r]

[ 87 (uAl) =7 (uad) By, ) = B 2] 87 (UAY) (UAUT) " (UAY) BE 2)
~Ey, [¢/] BT (UA%>T ((UA%) (UAi)T> ) (ua?) BEr, [¢]
—n [1] 8 (0ad) ((0al)')(un) " (unt) B )

~Er, [/ B'BEx 8] = Er, ¢/ Er, 2] <, 47)

where the inequality holds because of (6b). Meanwhile, we have

1 1
Ep, [((—p)(C—p)'] =Ep, [UAZB;&IBTAzUT}
<UA?B7,1,,BTATU" = 1,UATBB AU < 1,UAU" = 1,3, (48)

where the first inequality holds because of (6b) and the second inequality holds because B'B =
I, leading to B'B < L, which is further equivalent to BB' <1, by Lemma 1. By S; C S, (47),
and (48), it follows that D, lies in Dy, i.e., D; C Dyyp.

Therefore, given any x € & and B € 3,,,, we have

max Er, |f (% UABE, + ) | = max Br, [f (x.0)] < max Er [f (x )],

Pr GDL IPGDMO
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where the equality holds by change of variables and the inequality holds because D; C Dyy. It
follows that

max min max Ep, [f (x,UA%Bgr +y>} <min max Ep[f(x,¢)],

BEBm, xeX PreDy xeX PeDyy

which demonstrates that the optimal value of Problem (10) is a lower bound for that of Problem
(3) (i-e., Problem (2)).

(i) For any my < my, < m, B; € R™™, and C ¢ R™*(m2=m) gych that B/ B, = I, and
[B1,C]"[By,C] = I,,, we have B, = [B;,C] € R™™. Meanwhile, we have B,, = {B €
R™™ | B'B =1, } and define {; = UA%Bi{,'ri +p € R™ for any i € [2], where ¢, € R". Clearly,
B, € B,,, because B, B, =1,,,. We further define the ambiguity set of {; as

D, = {P; |~ Py, {=UAIBE, +p1, &, ~P, €D, }, vic[2), (49)

where D, represents the ambiguity set of &, for any i € [2]. Given {; ~ P, € D, there exists a
g, ~P, €D, suchthat{, = UA'B,, +pu=UAB,E, +p where, =(& 0, ) €R™

7 Yy —my

By using S, (see definition in (11)) to denote the support of £, for any i € [2], we have
P {grl e Srl} —P {UA%B@H +pe 5} —P {UA%BZErZ +pe 5} —1,
where the second equality holds because UA%Blg',‘rl = UA%Bzgrz. It follows that P{¢, € S,,} =1

by the definition of S,,. In addition, we have IE[E; JE[Z, ] =E[¢ ]E[, ] <7 and

-
E |:§r1 §r1i| Omlx(mzfml)

(my—my)xmq 0(”12*"11 ) x (my—my)

j ,)/2 ITHZ .

E[¢.5| =

Thus, the probability distribution of £, belongs to D;,. Meanwhile, by the definition of D, for any
i€2]in(49)and {, = UA%BZZ‘r2 + u, we have IP;, € D;, and further D;, C D,. Therefore, for any
x € X, B; € R™™, and C € R"*(">=™) guch that B/ B; =1,,, and [B;,C]"[B;,C] =1I,,,, we have

max Er, [f (% 8,)] < max Br, [f (x8.)]. (50)

]Pél Epél ]Péz ED@Z

Together with the definitions of ; (Vi € [2]) and B,, inequality (50) leads to

max Ep, [f (x,UA%Blfr] —i—y)} < max Ep,_ [f <x,UA%[1_~31,C]§r2 —|—y)}.

Py, €Dryy Py, €Dy,
Considering an optimal solution B; € R™*™ of Problem (10), for any x € X’ and C € R"*(m2~m)

such that [B;, C]"[B;, C] =1,,,, we have

max Ep_ {f (x,UA%BIg'frl +y)} < max Ep_ [f (x,UA%[Bi‘,C]gr2 +,u)} .

Py, €Dy Py, €Dr.
1 1 2 2
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For any C € R"*("2=") such that [B}, C]" [B},C] = L,,, we have

min max Ep, [f (x,UA%B}‘frl +y)} <min max Ep, [f (x,UA%[lﬁ,C]{fr2 +y)} . (B

xeX ]PrleDrl xeX ]PrZEDrz

It follows that

‘max min max Ep {f (x,UA%Bli,"rl +y>} =min max Ep_ {f (X,UA%BT@,‘rl +y>}

B By=Iy, x€X PPr; €Dry x€X Pr €Dy

<min max Ep, [f (x,UA%[Bi‘,C]{,‘r2 —I—y)} < max min max Ep, [f (X,UA%BZQZ +P‘)] ,

xeX I[’rzeDr2 BzeBn,Z xeX ]PrzeDr2

where the first inequality holds by (51) and the second inequality holds because [B;, C| € B,,,.
That is, the optimal value of Problem (10) is nondecreasing in ;.

(iii) When m; = m, we have B € B,, CR"*", i.e., B'B = 1,,. First, we have O (m) < Oy(m) by
the conclusion (i). Second, when B = I, Problem (10) becomes Problem (3). Because B =1,, is a
feasible solution of Problem (10), it follows that @y (m) > Oy(m). Therefore, we have O (m) =
Oum(m). O
C.4. Theorem 7
THEOREM 7. Consider the optimal solution (x*,s*,i*, q’,Q’) of Problem (4), S(Vk € [K]), V, 4,
vi(Vk € [K]), and Y1, that are defined in Theorem 2. When my > K, there exists a feasible solution B* =
[V,C] in Problem (12) with C € R™("~X and [V,C]"[V,C| = L, and given this BY, there exists a
feasible solution (x' = x*,s" = s, A = ALq = (67,05, )", Qf = [ ( i Oy —K) } ) in Problem

0 mp—K)xK 0(1711 —K)x (my—K)

(13) such that the corresponding objective value equals the optimal value of Problem (4), @y (m).
Proof. We construct a solution (x*,s*,/f, q!,Q/,B") of Problems (12) and (13) by setting x" =
X, st=s, A =4, q=(5",0 )7, Qf = { ( Y Okcx(my k) } and B' = [V, C], where C €

my— 0 mp—K)xK 0(m1—K)><(m1—K)
R™*(m~K) and [V,C]"[V, C] = L,,. First, we show this constructed solution is feasible to Problems

(12) and (13). Clearly, this solution satisfies constraints (13c). In addition, from Problem (4), as
q' =Vdand Q' =VY; V', for any k € [K], we have

1\ | !
Sk % <V(5 + (UAj) (AT/\Z — yk(X*))>
AT =0,
% <V5 + (UA7> (ATAZ — yk<X*))> ‘/Yll‘]T
which, by Schur complement, is equivalent to
-
S, (VYHVT) - % (V§+ (UA%)T (ATA;; —yk(x*)>) (V5+ (UA%)T (ATA;‘ —yk(X*))> . (52)
From (52), for any k € [K], we have the following inequality holds by Lemma 2:

Se ([V,C]'VY V[V, C])
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= -[v,q]" <V5+ (UA%)T (ATA; —yk(x*))> <V5+ (UA%)T (ATA; —yk(x*))>T v,C],

| =

which is equivalent to
.
o 1 t 1ot ATqs X + 1ot (AT *

S Q! = 1\ + (UAZB ) (ATAL —y(x) ) | aqf + (UAZB ) (ATAL —ye(x)) (53)
by the construction of the solution q;, Qf,B" and [V,C]"V = [I, 0xx(m,—x)] . By Schur comple-
ment, (53) indicates that the constructed solution (x',s", /f, q',Q/,B") also satisfies constraints
(13b) and thus it is a feasible solution of Problems (12) and (13).

Second, we show the objective value of this feasible solution (x,s", /f, q,Q/,B") is equal to the

optimal value of Problem (4). The objective value corresponding to this solution is

s+ ol @ Q7+ v [|arl, = 5"+ 2l @ Yur + /1 |16
=5+ lke (YuV'V) + /71 (6],
=5+ 71,0 (VY V') + vriléll,
="+ 7l e Q + /1 ||6],
— sl e Q 4+ VTS
:s*+721moQ’+ﬁm
=5+ 7L, 0Q + V9 q
=5+ 70,0 Q + /71 ||q|
= Ou(m), (54)

where the first equality holds by the construction of (x',s*, ]f,q:, f,B"), the second equality
holds because V'V = I, the third equality holds by the cyclic property of a matrix’s trace, the
fourth equality holds by the definition of Q' in Theorem 2, and the seventh equality holds because
q=Vs 0O

Theorem 7 shows that, when m; > K, we can always find a feasible solution of Problems (12)
and (13) such that the corresponding objective value is equal to the optimal value of the original
Problem (4). More importantly, the SDP constraints in Problem (12) have smaller sizes (i.e., m; 4 1)
than those in Problem (4) (i.e., m + 1), potentially reducing computational challenges because K
is usually small (e.g., K = 2 in the distributionally robust CVaR problem in Example 1).

It is important to note that, although the constructed feasible solution of Problem (12) has an
objective value of @y (m) and Problem (12) serves as an outer approximation for Problem (4), this

does not imply that the constructed feasible solution is optimal for Problem (12). The primary



reason is that Problem (12) is a max-min problem. For any m; < m, we would like to have an
optimal B* € B,,, such that the optimal value of the inner minimization problem given this B* can
be maximized. By Theorem 1, we have ©O(m;, B*) = O (m;) < Oy (m) for any m; < m.

According to Theorem 7, when m; > K, we can construct a feasible solution B" = [V, C] of the
outer maximization problem. Note that B is not necessarily optimal for Problem (12). Because the
outer problem is a maximization problem, we have @(m;, B") < @(m;,B*) = Op(m;) < Oy (m).

Given this feasible B', we can construct a feasible solution of the inner minimization problem
(13) such that the corresponding objective value (here denoted by ¢) is equal to @y (m). Note
that this constructed feasible solution is not necessarily optimal for Problem (12) or Problem (13).
Because the inner problem is a minimization problem, we have @(m;, B") < ¢ = Oy (m).

Now, we construct a feasible solution B for the outer maximization problem and, given this
B', we also construct a feasible solution for the inner minimization problem. Although the cor-
responding objective value ¢ is equal to ®y(m) and Problem (12) is an outer approximation for
the original problem, we cannot claim that this constructed feasible solution is optimal due to
the max-min natrue. One key reason is that the constructed solution of the inner minimization
problem (13) may not be optimal. Thus, © (1, B*) < ¢ = Oy (m) may hold.

We used to conjecture that this constructed feasible solution is an optimal solution of Problems
(12) and (13) such that the optimal value of Problem (12) equals that of Problem (4) when m; > K.
Most numerical experiments (see Section 7) show this conjecture may be correct, but we find a
counter-example (see Example 2 in Appendix C.5). Example 2 illustrates that the optimal value of
Problem (13) with m; = K and B =V is strictly less than the optimal value of Problem (4), which

means that the constructed feasible solution (B = V) is not optimal.

C.5. Counter-Example

Now we provide an example as follows to illustrate that the optimal value of Problem (13) with
my = K and B = V is strictly less than the optimal value of Problem (4), which means that the

constructed feasible solution (B = V) is not optimal.

EXAMPLE 2. We consider an instance of Problem (4), where m=n=4, 1 =1, 7, =2, A = 0.,
1000
b=0,u=1,E=L, K=3y(x) =0 (Vk € [K]), yx(x) = Wix (Vk € [K]) with W, = |00 00|,
0001
0000 0000
o100 __loooo _ 4 v v
Wo= 0000l andWs= |/ 7 |, and X = {x € R* | x; = x3 =x, = 1,x, € {—7,1}}, then Prob-
002 0001

0
lem (4) becomes

[S —xX"W[1, L(q— kaf] -0, Vk € [K]} o)

min <s+2[,eQ +
{ Q ||q||2 %(q_wkx) Q

x€X,5,9,Q



Solving Problem (55) gives the optimal value 59882 with x = [1,1,1,1]T, Q =
0.0911 —0.0558 —0.0354 —0.0558

—0.0558 01115 —0.0558 0.1115 _ . .
00354 —0.0558 00911 —0.055s | - and rank(Q) = 2. By Theorem 2, we can correspondingly obtain a

—0.0558 0.1115 —0.0558 0.1115

0.7071 —0.5774 —0.1543

8 0'507 74 _099";%26 . Now given m; = K =3 and B =V, Problem (13) becomes

0.7071 0.5774 0.1543

feasible V =

min {S + 2L, @ Q,: + |||,

x€X,s,qr,Qr

s—x'"Wi1, ;(q—V' kx)T]>0 Vk }
V' W ,VkelK]p. (56
[;(qr—Vkax) Q: K] (56)

Solving Problem (56) gives the optimal value 5.1139 with x = [1,—7,1,1]". That is, the optimal
value of Problem (13) with B = V is strictly less than the optimal value of Problem (4).

C.6. Proof of Proposition 2

We consider the Lagrangian dual of the inner minimization part (i.e., Problem (13)) of Problem
(12) as follows:

max min £ (x $,A, Qe Qi; Z, tr, pr, Pr, Vk € [K ]) (57)
t T x,5,A>0,

k pk =0, dr, Qr
pr Px

Vke[K],

70

where the Lagrangian function
£ (X, S/ i/ qI‘/ QI‘/ Z/ tk/ Pk/ Pk/ vk e [K])

:S+721m1 .Qr+\/ﬂ||qr”2 - (Z iXi +A0> Z |:tk Pk:|

= LPr Pr

T

Nl—

-
s—yg(x —Aka—yk(x)Tpt—l—/\TAy %(qr—l— (UA B) (ATAk—yk(x)))

)
( + (UAtB) (ATA -~ ilx ))) Q

K K L AT K
1 ) 3 (a7 g (UAT) AT) A vl bl
k=1 k=1

k=1

( Yol — 2 Pk> Z Zzij (aijx + a?j) + i (tkyﬁi <tkﬂ + Pk (UA;B)T> yk(x))

i=1j=1

+
(1 i ) i (tk(Aﬂb)T+P’j (UA%B)TAT) Ak+\/ﬂl\qulszp;qr
+ (’Yzlml Z Pk) Q: — i izijai, Z Zz,]al] + Z (tkwk + (fkﬂ +p] (UA2B>T) Wk) i}

i=1j=1 i=1j=1

K 1 T
+y <tkd2 + <tk;4T +p] (UA?B) > dk>

k=1

K T K
(1 Ztk> -1 (tk (Au—1b)" +p] (UA?B) AT) At vt llaella = ) pe ar
k=1
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K K 0 - T 1 T T T
+ ')/ZIml — Z P | e Q; + Z (tkwk + (tky + Pk (UA7 B) ) Wk> - Z Zzi]-ai]- X
k=1 k=1 '
K 1 T T T
+ E <i’kd2 + <tk]lT + ka (UA7 B) > dk> — E ZZi]'ll%.
k=1 i=1j=1
To present the objective value of the inner minimization problem of (57) from going to negative

infinity, we require

K K K
1-Y t=0, V71— ||Y_px|| =0, 72, — ) _P=0, (58a)
k=1 k=1 2 k=1
T
b (Ap—b) +p (UA'B) AT <0, vke [K], (58b)
K T T T
y <tkw2 + (tk;ﬁ +p/l (UA%B) > wk> ~ Y)Y zja; =0, (58¢)
k=1 i=1j=1
.
[tk Pk} =0, Vk € [K], Z > 0. (58d)
Pk Py

Then, the dual problem of Problem (13) can be described as follows:
K

max Z (tkd,e + <1fk;1T +pe (UA%B)T> dk> — iiZi]’a?j (59)

tk,pk,Pk,VkE[K],Z k=1 i=1 ]:1

s.t.  (58a) — (58d).

By integrating the outer maximization part of Problem (12) and Problem (59), we obtain the
bilinear SDP problem (25). Now we would like to prove the strong duality between Problem (13)
and Problem (59); that is, these two problems share the same optimal value, which further shows
that Problem (12) has the same optimal value as Problem (25). To that end, we find an interior
point of Problem (13).

Let x' be an interior point in X, we can construct an interior point by setting A=
{L,.. 1}, 8" = 5L RO +1b +y(X) 'u—1/Ap| +1, q; = 0, and Q] = Y, 1/(4(s' —
) ~1b— (X)) T+ 1 Ap)) (UAYB)T (AT, — 1, (x'))(ATL - (X)) T (UAB) 4 1,,. Clearly,
(UAPB)T(ATT, — y:(x'))(AT1, — y(x')) T (UA?B) &= 0. Thus, Q' - 0. Now we only need to show
that constraints (13b) hold in the positive-definite sense with respect to this constructed solution.

By the construction of Q., for any k € [K], we have
1\ 1\ T
(COLRIDICONERTY)
4(s =) =L b= y(¥) Tu +1/ Ap)
1\ 1\ T !
<(UA2B> (ATL -y (x’))) ((UAzB) (AT - w(X’)))

- VK € [K]:K £k 4 (S/ —yp(x) — 1sz —y(X) T+ 11TAF)

Q. -

+ L, =0, (60)
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where s’ — 1% (x') — 1] b — y (x') "p + 1] Ap > 0 by the construction of s’. By Schur complement,
(60) is equivalent to

T

S =y (x) =1 b—y(X) " u+ 1] Ap

NI

((UA%B) L (AT, - yk(x’))>

) 0, Vk € [K].
§<(UA%B) (ATll—}/k(X/))> Q; i )

Thus, (X, s/, /A\/, q.,Q.) is an interior point of Problem (13) and the strong duality between Problem
(13) and Problem (59) holds. [

Appendix D: Supplement to Section 4

D.1. Proof of Theorem 3

(i) For any ¢; ~ IP; € Dy, we have Ep, [(;‘I(',‘IT] = 721,,. Then, by Lemma 2, for any given x € X
and B € B,,, i.e, B'B =1,,, we further have B' (Ep,[&&])B < B (72L,,)B, ie., Ep [BT&& B] <
'yzBTImlB = 7,1, . It follows that Dy C Dy. Thus, given any x € X and B € B,,, we have

max [Ep, [f (x,UA%g',‘I—i—y)} > max Ep, {f (x,UA%gl—l—y)} .

]PIEDU Py EDM

It follows that

min min max Ep, [f (x,UA%g',‘I +y)} > min max Ep, [f (x,UA%é‘I —I-y)} ,

BeBu, xeX P1€Dy xeX PreDy

which demonstrates that the optimal value of Problem (26) is an upper bound for that of Problem
(3) (i.e., Problem (2)).

(ii) Consider any m; < m, < m. We have B,, := {B € R"*" | B'B =1,,} and consider an
optimal solution (B*,x*) of Problem (26), i.e., Brggill 1)21}(1 fnax Ep, [f(x, UA%@fI +u)).

Note that (B*) "B* =I,,,. We can then construct B’ = [B*,C] € R"*"2 such that C € R"*(m2~m)
and B’ € B,,, i.e., (B') "B’ =1,,. With B/, we use Dj; to denote the corresponding ambiguity set

defined in (28). By the second-moment constraint in Dy;, we have
(B) 58 B|
~Er, |[B',C] "¢ [B,C]|

g, |(B)&& B (B) 58 c]
'L CTgE BT CggC

which implies that Ep, [(B*)T&& B*] < 7L, It follows that D}; C Dy. Therefore, we have

max [Ep, [f (x*,UA%QfI —i—y)} > max Ep, [f (x*,UA%gI —|—y)} . (61)

IPIEDU ]PIGDU
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Because B’ € B, and x* € X, the constructed solution (B’,x*) is feasible to the problem

. . 1
min min max Ep [f(x,UA2g; + u)]. Then, we have
BeB’m2 xeX ]plep{J

Oy(m,) = min min max Ep, [f (x,UA%Q’I +y)}

BEBu, XX PeD]

< max Ep, [f (x*,UA%é‘I +y)}

o ]PIE'D{j

< max Ep, [f (x*,UA%g’I —|—y)}

P[€DU

= min min max Ep, [f <x,UA%§,‘I —l—,uﬂ

BEBy, xeX PeDy

= ®U(m1),

where the first inequality holds because (B’,x*) is a feasible solution of the problem
1{2!%;1;12 1’)21/? ugféap){i Ep, [f(x, UA%Q‘I + )|, the second inequality holds by (61), and the second equal-
ity holds because (B*,x*) is an optimal solution of Problem (26). That is, the optimal value of
Problem (26) is nonincreasing in m;.

(iii) When m; = m, we have B € B,, C R"*", i.e., B'B = I,,. First, we have Oy (m) > Oy (m) by
the conclusion (i). Second, when B =1,,, Problem (26) becomes Problem (3). Because B=1,, is a
feasible solution of Problem (26), it follows that ®y(m) < Oy(m). Therefore, we have Oy(m) =
Oum(m). O
D.2. Proof of Proposition 3

First, by Theorem 3 in Cheramin et al. (2022), Problem (27) has the same optimal value as the

following problem:

min s+ 72l ¢ Qe+ v/11lqll, (62a)
st. s> f (x, UAZE + p> — &' BOQBTE —q'E, VE €S, (62b)
Q, >0, xeX, Q R, qeR". (62¢)

Next, we apply the strong duality theorem to constraints (62b). We define
g(&) =5+ & BQB G +a'& — 1200 —1u(x) (UALg + ), Vke [K].
As function f(x, {) is piecewise linear convex, we can reformulate (62b) as
(&) >0, V¢ €S, Vke [K],
which is equivalent to

min 2(&)) >0, Vk € [K]. (63)

1
A (UAZ §I+y> <b, &ER™
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For any k € [K], the Lagrangian dual problem of min gk(&;) is

1
A(UA2g1+p)<b, GieR™

max min (&) + A/ <A (UA%gl + y) - b) ,

A>0 EERM

where A, € R’. Because there exists an interior point for the primal problem, the strong duality

holds. Thus, constraints (63) are equivalent to

max min gi(&,) + A/ ( (UA%{,‘I —|—y> - b) >0, Vk € [K],

A=0 G

which are further equivalent to

We=0:5+ 8 BOB'E +q 86— yi(x) —y(x)” (UM + 1)
+A] (A (UA%gI + ,u> - b) >0, V&, € R", Vk € [K]. (64)

Note that B'B = I,,,; that is, all the column vectors of B are orthogonal. We can then extend B
to [B,B] € R™" with B € R"*("=™) guch that all the column vectors of [B, B] span the space of
R™. Thus, we can always find ¢, € R™ and ¢, € R"™ " such that

(:I = B‘:l + ]_3;'2.

It follows that constraints (64) become

We=0:5+8 Q& +q' (BE +BE) —1i(x) —wi(x) (UAE (BE, +BE,) +1)
A (A (UA% (BE, + BE,) + y) - b) >0, V& € R™, & e R"™, Vke [K]. (65)

We further define

T T
s —Yp(x) = A b —y(x) T+ A Ap i(BTqﬂL(UA%B) (ATM—yk(X))>

Z, = - , Vk € [K].
(BT (Uat) (aTa - ux) ) o
Thus, we have
(65) <= A >0: (1,gf)zk (1,gf>T+g; (gTq+ (UA%B)T (ATA — ) >0,
V& eR™,E e R"™, Vk € [K].
e JA>0: (1,;;) ( ;;) >0, V&, € R™, Yk € [K]; (66)
B'q+ (UA!B ) «(x)) =0, ¥k € [K].

e I >0:Z, -0, B q+ (UA?B) (ATAk—yk(x)) =0, Vk € [K].

) (AT, —yk(x))> —0, ke K. (67)

Nj—

= 3N >0:Z,=0, BT <q+(UA
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.
= IN>0,wER™: Z, =0, q+ (UAZ) (ATAr —yu(x)) =Buy, k€ [K].  (68)
q y

The first equivalence holds due to the definition of Z. For the third equivalence, clearly <—
follows from the definition of a PSD matrix. To prove =, we consider two possible cases for
any (7o € R,y" € R™)" € R™™: (i) if 150 = 0, then (0,577 )Zi(170,1")" = 7 Q.5 > 0 because Q,
is PSD; (ii) if 170 # 0, then we have (170,517 )Zx (10,17 )" = 15(1, %)Zk(l, '}%)T > 0 according to (66).
Therefore, = holds. For the fifth equivalence, (67) shows that q + (UA%)T(ATA,( — y(x)) is in
the null space of B and thus cannot be represented by basis vectors in the space of B. Because
[B, B] span the space of R", we have q + (UA?)T(ATA,— Yx(x)) should be in the space of B. That
is, there exists u; € R"™ such that q + (UA?)T (AT A; — yx(x)) = Bu for any k € [K]. Meanwhile,

because B'B =1,, , we have
LNT
B'q+ (UA?B) (A"Ac — yi(x)) = B"Buy = uy, Vk € [K].

Finally, we obtain Problem (29) by replacing constraints (62b) with (68) and replacing B'q +
(UAPB)T (AT A — yi(x)) with w. O
D.3. Proof of Theorem 4
Consider m; = K. We construct a solution (x',s", )ALJF, q',Qf,a", B") of Problem (26) by setting x" =
x,st=s,A'=A", q" =q'=V3,Qf =Yy, B' =V, and &} = & + v (k € [K]).

First, we show this constructed solution is feasible to Problem (26). Clearly, this solution satisfies

constraints (29d)—(29¢). By the construction of the solution, for any k € [K], we further have

q + (UA%)T (AD\Z - yk(x*)) — Vi + (UA%)T (ATA; — y(x))
— V6 + Vi, = B'd,

where the first equality holds by the construction of q', the second equality holds by (16), and
the third equality holds by the construction of . Thus, this solution satisfies constraints (29c).
Meanwhile, V'V = Iy =1, . It follows that (B*) "B* =1, .

In addition, from Problem (4), as q' = VJ and Q' = VY;; V', for any k € [K], we have
T

S ;<V5+ (UA%)T (ATA; —yk(x*))>

=0
. -
1 <V(5 + (UA%> (ATA; — yk(x*))> VY, VT

7

which, by Schur complement, is equivalent to

45 (VY V') = <V5 + <UA%)T (ATA; — yk(x*))> <V5 + (UA%)T (ATA; — yk(x*))>
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= (Vuf) (Vuf) ', (69)

where the equality holds by (16) and the construction of }. From (69), for any k € [K], we have
the following inequality holds by Lemma 2:

-
48 (VIVYn VI V) = VT (vaf) (Vf) v,
which is equivalent to

4SkY11 i u,‘:u,tT (70)

because V'V = Ix. By Schur complement, for any k € [K], (70) further becomes
Sk %UZT
=0,
AR
which indicates that the constructed solution (x*,s*,f,q*,Qf,ﬁ*,B*) also satisfies constraints
(29b) and thus it is a feasible solution of Problem (26).
Second, we show this feasible solution (x,s", Al q',Qf,af,B") is an optimal solution of Prob-

lem (26). The objective value corresponding to this solution is

s'+ oL, 0 Q7 + V71 || 47|, =5+ Yol @ Y + V1 14,
=5+ 7Ly, ¢ (YnV'V) + /7 |d ], ="+ 72Ln e (VY V) + 71 14|l
=s"+ ')’ZIm 4 Q/ + VT quHz = ®M(m)/

where the first equality holds by the construction of (x',s", )AU, q', Q!

,0",B"), the second equal-
ity holds because V'V = I, the third equality holds by the cyclic property of a matrix’s trace,
and the fourth equality holds by the definition of Q" in Theorem 2. Therefore, the solution
(x*,s*,/fr, q',Qf, 4", B") is an optimal solution of Problem (26).

Finally, when m; > K and m; < m, we have Oy(m;) > Oy (m) by the conclusion (i) in Theorem
3 and Oy(m;) < Oy(K) = Oy (m) by the conclusion (ii) in Theorem 3. It follows that @y (m;) =
Oum(m). O
D.4. Proof of Proposition 4

First, by Lemma 2, for any B € B,,,, we have
X<I,=—B'XB=<B'I,B= L.

Second, we perform eigenvalue decomposition on X, i.e,, X = QAQ', where Q € R™*" is a
matrix with orthonormal column vectors and A € R"*" is a diagonal matrix. Without loss of
generality, we assume that the diagonal elements of A are arranged in a nonincreasing order and

let A, «m, represent the upper-left submatrix of A.
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Now we let B = Q,,,, where Q,,., is the left submatrix of Q. Then we have B € 53, and

BTXB = In11 — BTQAQTB = Im1 — Q;,lernl QAQTmeml = Iml

— [Imlr Omlx(m—ml)]A[ImlrOmlx(m—ml)]T = Iml

= Ale"ﬁ = Iml = AL, = QAQT = QImQT =X =L,

where the first deduction holds by the eigenvalue decomposition of X, the second deduction
holds by the construction of B, the third deduction holds because all the column vectors in Q are
orthonormal, the fourth deduction holds by the definition of A, ., the fifth deduction holds
because rank(X) < m;, the sixth deduction holds by Lemma 2. Thus, if B'XB < 1,,, for any B €
B,,,, then we have X <X I,,. The proof is complete.  []

Appendix E: Supplement to Section 5

E.1. Proof of Theorem 5

By dualizing the inner maximization problem of Problem (30) and integrating it with the outer

minimization operators, we first obtain the following formulation:

Jmin s+ 7l o Q;+ v ldll, (71a)
B1,B;

st s> f(xUAMN +p) —& BIQB& — & B.Q/BIE —q'8, VG €S, (71b)

Q; =0, Q/ =0, xe X, Qe R"*™, Q! e R« ™)*K=m) qeR", (71c)

B, € R™™,B, ¢ R"™X-") [B,,B,]"[By, B, = Ix. (71d)

Next, we apply the strong duality theorem to constraints (71b). We define
g(&) =5+ & BIQIB/ & + &/ BQ/BI & + ' & — vi(x) —ne(x) (UAZg +1), vk € [K].
As function f(x, {) is piecewise linear convex, we can reformulate (71b) as
g(&) 20, V¢, € S, Vk € [K],
which is equivalent to

min 2(&;) >0, Vk € [K]. (72)
A(UA%;I+,4> <b, &ER

gk(8y) is

For any k € [K], the Lagrangian dual problem of MIN, e b, R

max min (&) + A, <A (UA%gI + y) - b) ,

/\k >0 CIE]Rm
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where A, € R'. Because there exists an interior point for the primal problem, the strong duality

holds. Thus, constraints (72) are equivalent to

max rr}in (&) + AL <A (UA%{,‘I —i—;u) — b) >0, Vk € [K],
1

A¢>0

which are further equivalent to
W= 0:5+8  BIQUBI &+ & B.QVBI &+ & — yi(x) —yi(x)” (UAZE + )

+A] (A (UAY + 1) —b) >0, vg € R, k€ [K]. (73)

Note that B'B = I,; that is, all the column vectors of B are orthogonal. We can then extend B
to [B, B] € R™" with B € R™*("~K) such that all the column vectors of [B, B] span the space of R".
Thus, we can always find &, € R™, &, € R, and , € R" X such that

¢ =B1g, + Bxg, + B§3.
It follows that constraints (73) become

A =>0:s+ §1TQ;§1 + ‘ngQ;/gz + qT (B1&; + By, + B§3) - yg(x)
—y(0)" (UAY (Big, + Bog, + BE,) + 1)
+ A (A (UAZ(Big, +Bag, +BE,) + 1) —b) >0,

Vg, eR™,E, e R™,Z, e R" X, Vk € [K]. (74)
We further define
s—yh(x) = A b —y(x) ' m+ A Ap J(hp)T 1(h))T
Zk - %h,lk, Q; Omlx(lfl,ml) ’ Vk € [K],
2 by Ok—my)yxm — Q:

where h, = B/ q + (UA?B;) " (ATA; — yx(x)) and h) = B] q + (UAZB,) " (ATA; — yk(x)) for any
k € [K]. It follows that
T _ N T
74 = In=0: (1.8,8)z(1E,8) +& (BTq +(UAiB) (ATA, - m(x))) >0,
Vg eR™, g, e R™, g e R" K, Vk € [K].
.
= IN=0: (1,8,8) 2 (18],8) =0,V eR™, & eRE™, Ve [K]; (75)

B'q+ (UAYB) (A"A— () =0, Vke K]

i
e A >0:Z,-0,B q+ (UA%I?.) (ATAx — y4(x)) =0, Vk € [K].

NI—

e A, >0:Z,>0,B" <q—|— (UA )T (ATAk—yk(x))> —0, Vk € [K]. (76)
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< AN >0,u, € R™,u) e RE™

.
Z,-0, q+ (UA%) (ATAx — i (x)) = By} + Byuf, Vk € [K]. (77)

The first equivalence holds due to the definition of Z,. For the third equivalence, clearly <= fol-
lows from the definition of a PSD matrix. To prove =, we consider two possible cases for any
(0 € R,yy € R™M, 3, € RET™M)T € RE (i) if 199 = O, then (170,111, 11, ) Zi (0,111 11, )T = 11y Qunpy +
11, Q/n, > 0 because Q. and Q! are PSD; (ii) if 1y # 0, then we have (10,1, ,1, )Zc(170,1, 4, )" =
n3(1, %, %)Zk(l, %, %)T > 0 according to (75). Therefore, = holds. For the fifth equivalence,
(76) shows that q + (UA%)T(AT/\,{ — yx(x)) is in the null space of B and thus cannot be rep-
resented by basis vectors in the space of B. Because [B, B] span the space of R”, we have q +
(UA?)T(ATA; — yk(x)) should be in the space of B. That is, there exists u; € R"™ and u} € R
such that q + (UA%)T(AT)L,( — yx(x)) = Byu}, + Byuf for any k € [K]. Meanwhile, because B' B =

Ix, we have
.
h,=B]q+ (UA%Bl) (ATAc — yi(x)) = By Byu) = u}, Vk € [K],
T
h!=BJq+ (UA%BZ) (ATA; — vi(x)) = B] Bou) = u, Vk € [K].

By replacing constraints (71b) with (77), we obtain the following problem:

min s+ 2Ly, ¢ Q;+ /7 [l (783)
Qé,é{/,ff’lfﬁ“,
By,By
s—y () —Ab—y(x) p+ A A J(up)" A(u))T
s.t. %u;c ; Ole(K,ml) b O, Vk € [K], (78b)
Euﬁ O(Kfml)xml Q;/
.

q+ (UA%> (ATAx — y(x)) = Byuy + Bouy, Vk € [K], (78¢)
xeX, qeR", Qe R""*™, Q € RK-m)xK=m), (78d)
B, € R™™,B, € R™* =) [B,,B,]"[By,By] = I, (78e)
A={M, ..., A}, M €R,, V€ [K], (78f)
o' ={uj,...,u}, uy, e R™, Vk € [K], (78g)
o ={u’,...,ul}, u/ e R"™, Vk e [K]. (78h)

Note that the value of Q; does not contribute to the objective function (78a). We can then let M be
an arbitrarily large positive number and Q; = MI(x_,)x(k—m,) be an optimal solution, by which
constraints (78b) become

s—y)(x) — A b —y(x)Tu+ AL Ap ;(g‘/)T =0, Vk € [K]. (79)

1.,/
Euk r
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By replacing (78b) with (79), we obtain the formulation of Problem (31).

Based on the formulation of Problem (31), now we show that the three conclusions hold. Note
that for any B € By = {B € R"*X | B'B = Ix}, the optimal value of Problem (26), i.e., @y(K),
reaches the optimal value of the original Problem (4), i.e., ©Oy(m). We would like to show that
by relaxing the constraints in Problem (26), we can obtain the exact formulation of Problem (31),
thereby the three conclusions hold.

First, we rewrite constraints (29b)—(29¢) in Problem (26) with m; = K by dividing B into [B;, B,]

and uy into ((u}) ", (u))")". Thus, we obtain the following formulation:

mijn s+ 720k 0 Qr + /711 [l4lf, (80a)
0.Qr 88,
By,B;
_ 4,0 _ T 1 INT T
s.t. 5 yk(x) . /\ . yk/gx) H + Ak A” 2 <(uk) ’ (uk) ) =0, Vk € [K], (80b)
E((u) l(uk) ) Qr

q+ (UA%) (AT A — yi(x)) = Byu) + Byul, Vk € [K], (80c)
xe X, [BerZ]T[BllBZ] =Ix, (80d)
q<€R", Q, € R“K, B, ¢ R™™,B, € R™*&-m), (80e)
A={Ay,..., A}, M €R,, VE € [K], (80f)
o' ={uj,...,ui}, u, e R™, Vk € [K], (80g)
0 ={u],...,u}, uf e R""™, Vk € [K]. (80h)

Second, we relax constraints (80b) into

s — (%) — Alb;—ulkyk(X)Tﬂ + A Ap iglgf =0, k€ [K], (81)
where Q) € R"1*™ is the upper-left submatrix of Q,. Note that if we use (81) to replace (80b), we
obtain a relaxation and accordingly lower bound for Problem (80). In addition, we further reduce
the optimal value of the relaxation by replacing Q. in the objective function (80a) with Q;. That
is, we obtain a lower bound for the optimal value of Problem (26) with m; = K (i.e., Problem
(4)). After these two steps of relaxations, we obtain the exact formulation of Problem (31). Thus,
we can conclude that Problem (31) is a relaxation of Problem (26) with m; = K. Therefore, by the

conclusion in Theorem 4, we have
@Lz(ml) S @U(K) = @M(m)

That is, the conclusion (i) holds.
For the conclusion (ii): For any 0 < m; < m, < K, we can follow the above two steps of relax-

ations to relax Problem (80) to the problem with the optimal value O, (m,), and based on this
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relaxed problem, we can further relax it to the problem with the optimal value ®,(m;). Because
all these problems are minimization problems, we have @y, (m;) < O, (m,).
For the conclusion (iii): When m; = K, Problem (31) becomes Problem (26) with m; = K. Thus,

by the conclusion in Theorem 4, we have
®L2(K) :®U(K) :®M(Wl) O

Appendix F: Supplement to Section 6
F.1. Motivation to Derive ADMM Algorithms

Several techniques, including the McCormick envelopes and spatial branch-and-bound, can han-
dle bilinear constraints and solve bilinear SDP problems like Problems (25), (26), and (31). How-
ever, to the best of our knowledge, the currently available bilinear SDP solvers, such as PENLAB
and BMIBNB (Lofberg 2004), are not yet fully mature and only succeed on relatively small and
simple problems. Therefore, we derive ADMM algorithms to solve the three approximations effi-
ciently. To illustrate this, we consider the multiproduct newsvendor problem (39) in Section 7 as
an example to compare our ADMM algorithms with benchmark solvers with default settings in
solving this problem, where no time limit is given.

First, we use the Mosek solver to solve the original high-dimensional SDP problem (4) and
report the optimality gap and computational time. Note that the Mosek solver uses the interior-
point algorithm to solve an SDP problem and terminates when the relative gap between the pri-
mal and dual objective values is no greater than 10~?. Second, we use the BMIBNB solver (the
state-of-the-art bilinear SDP solver, to the best of our knowledge) to solve the low-dimensional
bilinear SDP problem (26) with m; = K. Note that the BMIBNB solver uses the spatial branch-and-
bound algorithm to solve a bilinear SDP problem. In the BMIBNB solver, we set “Mosek” as the
lower bound solver and “fmincon” as the upper bound solver. The default termination condition
of the BMIBNB solver is that the relative gap between the lower and upper bounds is no greater
than 0.01 or the maximum number of nodes in the branch-and-bound tree is greater than 100.
Third, we use our derived ADMM algorithms to solve Problems (25), (26), and (31), respectively.
For each of the three problems, we follow the instructions in Section 6.2 to recover the lower or
upper bounds in the following two steps: (i) We use the ADMM algorithm to solve the approxi-
mation problem and obtain a near-optimal dimensionality reduction matrix BAPM; (ii) Given this
BAPMM ‘we solve a low-dimensional SDP problem to recover the lower or upper bound for the
original optimal value. Kindly note that the reported time for our lower or upper bounds reflects

the combined time for both steps. Other numerical setups are detailed in Section 7.
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Table F2 Performance of Bilinear SDP Solver on the Newsvendor Problem

Size (m)-Instance Id | 100-1 | 100-2 | 100-3 | 200-1 | 200-2 200-3
Mosek Optimality Gap (%) | 0.00 0.00 0.00 0.00 0.00 0.00
Time (secs) 12.32 | 11.34 | 13.36 | 342.00 | 432.57 | 368.04
BMIBNB Optimality Gap (%) | 4.31 3.89 3.65 4.25 3.83 3.85
Time (secs) 3840.00 | 5552.10 | 6412.50 | 9885.50 | 9942.50 | 10643.00
ODR-LB Qapl (%) 0.07 0.07 0.09 0.00 0.00 0.00
Time (secs) 0.58 0.72 0.83 0.42 0.91 0.88
ODR-RLB Gapl (%) 0.03 0.04 0.03 0.06 0.02 0.02
Time (secs) 2.45 1.74 1.98 2.57 2.42 2.76
ODR-UB Gap2 (%) 1.56 1.81 1.65 1.73 1.92 2.03
Time (secs) 2.45 1.74 1.98 2.57 242 2.76

Table F2 shows the numerical results, where “Optimality Gap (%)” and “Time (secs)” are
reported by the corresponding solver, and “Gap1 (%)” (resp. “Gap2 (%)”) represents the rela-
tive gap in percentage between a lower (resp. an upper) bound and the optimal value provided
by the Mosek solver. Note that when m > 200, the BMIBNB solver fails to obtain any feasible
solution within three hours, and thus, these cases are not reported in Table F2. For the reported
six instances, the Mosek solver can solve them to optimality, and the BMIBNB solver terminates
when reaching the limit of the maximum number of nodes. These numerical results demon-
strate that using the bilinear SDP solver to solve the low-dimensional bilinear SDP reformula-
tion of the high-dimensional SDP leads to poor performance. It is not surprising. The Mosek
solver employs the interior-point method to solve the high-dimensional SDP problem, leading
to a polynomial-time algorithm. In contrast, the BMIBNB solver uses spatial branch-and-bound
to solve the low-dimensional bilinear SDP problem, leading to an exponential-time algorithm.
More importantly, the bilinear SDP problem is nonconvex, significantly increasing the computa-
tional challenge. Finally, these numerical results demonstrate that the ADMM algorithms bring

significant improvement in terms of optimality gap and computational time.

F.2. The ADMM Algorithm for Problem (26)
Note that Algorithm 1 serves as a unified ADMM algorithm for all the three proposed approxima-

tions, i.e., Problems (25), (26), and (31). Here, we take Problem (26) as an example to demonstrate
corresponding specific details for this problem. Recall that Problem (26) can be formulated as
follows:

®U(m1) — mln ¢(mllsl q/ Qr) (82&)

B,x,5,9,Qr,
Ak,ﬁk,uk,VkE [K]

1..T
st |XEXSA) w6 ek, (82b)

iuk Qr
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q+ (Ua?) k% A = iy, VK € [K], (820)
xeX,B'B=I,, BER"™, qeR", Q, e R""™, (82d)
M ERL, we e R™, @, € R", Vk € [K], (82e)
i, = Bu,, Vk € [K]. (82f)

where constraints (82f) and B'B = I, are bilinear constraints. We consider the following aug-

mented Lagrangian problem for Problem (82):

x,5,9,Qr,
/\k,ﬁk,uk,VkE [K];
B; B, Vke K]

K K
min {sﬂzlml Q-+ villall+ LB (@ — Bug) + Y i — Buy
k=1 k=1

(82b) — (82e)} )

(83)

where B, € R" (Vk € [K]) are Lagrangian multipliers and p, > 0 (Vk € [K]) are the penalty param-
eters. Thus, we design Algorithm 2 to solve Problem (82).

Algorithm 2 ADMM for Problem (82)

Initialize: B°, ,B,(j,Vk € [K]
Repeat: update (x,s,q, Q,, A, Uiy, u, Vk € [K]),B and B, (Vk € [K]) alternatingly by

Given B’ and ,B;( for any k € [K], solve Problem (83) to obtain the optimal solution
(x/ 5,9, Qr/ Ak/ l’:ik/ Uy, Vk € [K])H_l;

Given (x,5,q, Q:, Ay, @ik, ug, Vk € [K])™" and B} for any k € [K], solve Problem (83) to obtain the
optimal solution B;

=B ol (a7~ B ), Ve (K]
Until Convergence.

In this algorithm, given B and B, for any k € [K], Problem (83) becomes a low-dimensional (i.e.,
my + 1) SDP problem. Given (x,s, q, Q., A, @ik, wx, B, Vk € [K]), Problem (83) becomes a nonconvex
optimization problem, while the following proposition shows that it has an analytical optimal

solution. Thus, Algorithm 2 can be performed efficiently.

PROPOSITION 8. Given (X,s,q, Q,, Ax, Uik, ux, B,, Vk € [K]), Problem (83) has an optimal solution B* =
UV, where Y, (Bou + pripu) ) = OZVT for U € R™™, £ € R™*™, and V € R™*"™ by the sin-
gular value decomposition (SVD).

We further analyze the convergence property of Algorithm 2 to ensure the dimensionality

reduction solution B returned by this algorithm is near-optimal, i.e., a theoretical guarantee. First,

the following lemma holds.
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LEMMA 4. Given (x,s,q,Q;, A, @iy, wi, B, Vk € [K]), we have B* = UV (an optimal solution of Prob-

lem (83)) is also an optimal solution of the following convex optimization problem:

BER‘VHXW}l k:l

K
max {Z (Byu) +pieu) oB

B'B=<I, } . (84)
We then present the convergence properties of our proposed ADMM algorithm. We let

L (B, (X,S, q, Q., Ay, Uy, ug, Vk € [K]) , (‘Bk,Vk S [K])) =

K K
s+ 726, 0 Qe+ 71 lall, + Y B, (T — Buy) + Z% 6 — Buy])3,
P Pt

and continue to adopt Assumption 3. We state the convergence theorem of Algorithm 2 as follows.

THEOREM 8. Let (B*,x*,s*,q%,Q;, Ay, @}, u;, Vk € [K]) be any accumulation point of the sequence {B’,
x,s',q, Qi A, i, ul, Vk € [K]} generated by Algorithm 2. Then, (B*,x*,s*,q*,Q%, A;, a;, uf, Vk € [K])
satisfies the first-order stationary conditions of Problem (82).

Proof. Let (B*,x*,s*,q%, Qi A, 6, u;,Vk € [K]) be an accumulation point of the sequence
{Bi,x,s',q",Q!,A,, @, u,Vk € [K]}. Then, there exists a subsequence {B,x,s’,q,Q, A}, i, ul,
Vk € [K]}iez that converges to (B*,x*,s*, q*, QF, Ay, 6, u;, Vk € [K]).

First, note that (x,s, q, Q;, Ak, Gk, ur, Vk € [K])™™ is the optimal solution of the convex problem

min {ﬁ (Bf, (x5, q, Qr, Ay, Gy, ug, Yk € [K]), (ﬁf{,Vke [K])) ‘ (82b) —(82e)}. (85)

%,5,9,Qr,
/\k,ﬁk,uk,VkG [K]

We show that there exists an interior point in the feasible region of Problem (85), by which the
KKT conditions are first-order necessary conditions for the optimal solution of Problem (85).
Specifically, by letting x’ be an interior point in X' (by Assumption 2), we can set A={1,...,1},
=L [RO) + 1/ b+ y(x) T — 1] Ap| +1, @' =0, @ = (UA?)T (AT, — 5i(X)), ue = 0,,,
and Q, =1I,,,. Clearly, (x,s/, /A\/, q’,Q., o, ux, Vk € [K]) is an interior point in the feasible region of
Prleem (85). Therefore, the following first-order stationary conditions hold; that is, there exists

i i\T
[tk (pi) ] =0, i >0, 5, € R", and Z' > 0 such that

P Pi
K .
1-) (=0, (86a)
k=1
K .
'YZIml - Z P;q = Oml XMy 7 (86b)
k=1
,)/ +1\T K ;
m +Y ()" =0, (86¢)
k=1

f(b—Aw) + () (UAY) AT — ()" =0, ke K], (86d)
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—(pi)" — (B) "B —pi(w"" — B'ui")B =0, Vk e [K], (86e)
()" + (B)" +pi(w — B'wi™") =0, vk [K], (86f)
. . . T T
) (t}cwg - <t}(;tT + ()" (UA%) > Wk) - Y ) ziyasy =0. (86g)
k=1 i'=1j'=1

By (86a) and t. > 0 (Vk € [K]), we have that {ti},cz (Vk € [K]) are bounded. Because every
bounded sequence has a convergent subsequence, without loss of generality, we can assume that

ti — t; (i — 00,i € Z,Vk € [K]). Taking limits in (86a) for i € Z, we have
K
1-) =0 (87)
k=1
Similarly, by (86b), we have P;, — P; (i — oo,i € Z,Vk € [K]) and
K
r)/2Im1 - ZP}): = Oml><m1~ (88)
k=1

Taking limits in (86e) and (86f) for i € Z, by (35)and (36), we have that p, — p;, 1, — 15 (i — o0,i €
7,k € [K]), and

—(pi)" —(B;)'B"=0, Vke K], (89)
— ()" + (By)" =0, Vke [K]. (90)

Taking limits in (86d) and (86g) for i € Z, we have that Z' — Z*, t} — 7t} (Vk € [K]), and

.

ti(b—Aw) "+ ()" (UAY) AT = (=) =0, vke K], (91)
K inNT T T

) (t;wg + (t;;ﬁ + ()" (UA?> ) wk> - Y ) zia=0. (92)
k=1 i'=1j'=1

Taking limits in (86c) for i € Z, we have

vila). +Z 7;) =0 (93)
el S

Next, note that B'*! is the optimal solution of the nonconvex problem
min { £ (B, (x5, Qu A i, ue, vk € [K))'™, (B, ¥k € [K]) ) | (82b) — (320)}

In Proposition 8, we give an analytical optimal solution of B'*'. However, there is no optimal-
ity condition for this B'*!. By Lemma 4, we have that B'"! is an optimal solution of the convex
problem (84). Clearly, B = 0,,,.,,, is an interior point of Problem (84). Therefore, Bi*! satisfies the

first-order stationary conditions of Problem (84); that is, there exists C"™ > 0 such that

K
o Zﬁk z+1 Bl+1 Cl+1 p Z ~l+1 BH_lll;{) (u;c)T =0. (94)
k=1
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Taking limits in (94) for i € Z, we have that B/(C))" — Y, Bi(uf)T (i — oo,Vi € T). Because
(B')"B' =1,, and B' — B* (i — 0,Vi € 7), it follows that
K
(B)'B(C)" — (B)" ) _Bi(w)', i—oo,VieT,

k=1

K
— (C)" — (Bi)TZﬁZ(uZ)T, i—oo,Viel,
k=1

K
— (C)' = (B) ") Bi(u)), i—oo,Viel,
k=1
. K
= C —C:= (Y u(B) |B,ivooVieT.
k=1

Thus, taking limits in (94) for i € Z, we have
K
~ Y Bi(u)" +B(C) =0. (95)
k=1

Finally, combining (87)-(93) and (95), we have that (B*,x*,s*, q*, Q;, A;, @}, u;, Vk € [K]) satisfies
T
the stationary conditions of Problem (82); that is, there exists }f)k II)’k =0, n,, wi, T >0, C, and
k Pk
Z = 0 such that

K
1— Ztk =0, (96a)
k=1
K
’)’2Im1 - ZPk = Oml Xy s (96b)
k=1
*\ T K
la*l. =
T T N AT T
b (b—Ap) +7 (UAz) AT -] =0, Vke [K], (96d)
—pi —w/B* =0, Vk € [K], (96e)
—1y +w) =0, Vke [K], (96f)
K
—Y wi(u;)" +B°C" =0, (96g)
k=1
K INT T T
Y <tkw§3 + (tk;f +1 (Um) > wk) —Y ) zja;=0. (96h)
k=1 i=1j=1

This completes the proof. [J

F.3. Proof of Propositions 5 and 8

In Proposition 5, given (x, Ti, uy, B, Vk € [K]), we can omit the constant in the objective function

of Problem (33) and rewrite this problem as follows:

. K T X _T Pk TnpT
min 2 —B; Bu; + E <—pkuk Bu; + Euk B Buk)
k=1

mxm
BeR"™ M | 1=

B'B=1,, } ) (97)
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In Proposition 8, given (x,s, q, Q, A, ik, u, B, Vk € [K]), we can also omit the constant in the
objective function of Problem (83) and rewrite this problem as Problem (97).

By B'B =1, , the term u/ B” Bu;, is also a constant. Because B8, Bu; = (B8,u, ) e B and i, Bu, =
Yy 1 k k Uk k

BTB:Iml}.

B = argmax (Ij):VT) e B =argmax tr (ﬁiVTBT)

(Tixu, ) ® B, we can further rewrite Problem (97) as follows:

K
max {Z (Byu;, + prieu, ) o B

BeIRWIXWl k:l

By the SVD, i.e., Yi, (B,u] + priizu) ) = ULV, we have

BTB:I,,,1 BTB:I,,,1
—argmax tr (LV'B'U) =argmax Le (U'BV),
BT BTy, BT BTy,

where the second and fourth equalities hold by the definition of a matrix’s trace and the third
equality holds by the cyclic property of a matrix’s trace. Eldén and Park (1999) show that B* =
UV is an optimal solution. [
F.4. Proof of Lemmas 3 and 4
By the SVD in Propositions 5 and 8, we have

K ~ o~ o~

) _(Bawg +priw) ) = ULV

k=1
We construct U € R™" by adding m — m; orthonormal columns to U € R™*™ such that U'U =
L,, and add m — m; zero rows to £ € R™*™ to construct & = [£;0(,—m,)xm | € R™™. It follows
that ULV = ULV,
Meanwhile, by the cyclic property of a matrix’s trace, we have

(UZV')eB=tr(ULV'B") =tr(EV'B'U) =L e (U'BV).

It follows that Problem (84) is equivalent to

max {Ze(U'BV)|B'B=I,}. (98)

BGRTHXWII
Note that we have UU" =1,, and VVT =1, by the SVD and the construction of U. We then have
B'B=<I, < B'UU'B<I, < V'B'UU'BV=<I,,

where the first equivalence holds by UUT =1,, and the second equivalence holds by VV' =1,

and Lemma 2.
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Therefore, Problem (98) is equivalent to

max {Ze (UTBV) | (V'B0) (U"BV) <1, }. (99)

BERWIXWI]

Because L € R™*™ is a rectangular diagonal matrix with non-negative numbers on the diagonal,
we have that UTBV = (L5 O(m—my)xm; ] Will lead to the optimal value. Note that when we choose
B=UVT, we have

UTBV = GTGVTV = [Iml;o(mfml)xml]lml = [Iml;o(mfml)xml]-

Therefore, B* = UV is an optimal solution of Problem (99), i.e., Problem (84). [

F.5. Proof of Theorem 6

Let (B*,x*, @}, u;, Vk € [K]) be an accumulation point of the sequence {B’,x/, @i}, u}, Vk € [K]}. Then,
there exists a subsequence {B',x/, i, u}, Vk € [K] },cr that converges to (B*, i}, u;, Vk € [K]).
First, note that (x, @i, ur, Vk € [K])"™! is the optimal solution of the convex problem

min {z (B", (x, &, up, Vk € [K]), (ﬁ;, Vk € [K])) ‘ (32b) — (32c)} . (100)

X,ﬁk,uk,VkE

Because there exists an interior point in the feasible region of Problem (100), by which the KKT
conditions are first-order necessary conditions for the optimal solution of Problem (100). Specifi-

cally, the following first-order stationary conditions hold; that is,

0
(B')" B +pi(B))" (af"" — B'uj™)
—Vg(xiﬂ,uiﬂ,ﬁ;{ﬂ,Vk c [K]) + (Bi)Tﬁ% '-l- p%(Bi)T (ﬁ?l o Biu?l) € Nu(xiﬂlu;‘(ﬂlﬁiﬂlwc e [K]),
—B, —pi (@ — Bluy™)

e )
(101)
where Ny (x*1,ui™, @™, Vk € [K]) is the normal cone of U at (x'*!,ui™, @™, Vk € [K]). Taking
limits in (101) for i € Z, we have
-0 1
(B*)" B
—Vg(x*,ui,u;,Vk € [K]) + | (B*)"Bx | € Nu(x*,ug, i, Vk € [K]). (102)
-B

| -8, |
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Next, note that B! is the optimal solution of the nonconvex problem

min { £ (B, (x, &, u, vk € [K])"", (B, ¥k € [K])) )(3219) (320}

In Proposition 5, we give an analytical optimal solution of B'*'. However, there is no optimal-
ity condition for this B'"'. By Lemma 3, we have that B! is an optimal solution of the convex
problem (34). Clearly, B = 0,,.,, is an interior point of Problem (34). Therefore, B'*! satisfies the

tirst-order stationary conditions of Problem (34); that is, there exists Ci+1 > 0 such that
_ Zﬁ (u;(ﬂ) + B1+1 Cz+1 P Z ~1+1 Bl+1u;<) (u;()T —0. (103)
k=1

k=1

Taking limits in (103) for i € Z, we have that B/(C')" — Y©, B;(u;)" (i — oo, Vi € T). Because
(B')"B' =1, and B — B* (i — oo, Vi € T), it follows that

K

(B)"B(C)" — (B)" }_Bi(w)", i—ooVieT,
k=1

— (C)7 — (B') TZﬁk up), i, VieT,

= (C)" — (B")" Zﬁ;(u,’;)T, i—oo,VieT,
k=1
) K
—C —>C:= Zu;j(ﬁ,’:)T B*,i—oo,VieT.
k=1
Thus, taking limits in (103) for i € Z, we have
K
~ Y Bi(u) +B(C) =0 (104)

k=1

Finally, combining (102) and (104), we have that (B*,x*, @}, u;, Vk € [K]) satisfies the stationary
conditions of Problem (33); that is, there exist w; and C such that

(B*) "wy

— Vge(x*,uf,t;, Vk € [K]) + | (B*) Twk | € Ny (x*,ug, i, Vk € [K])

K
—Y wi(u;)" +B*CT =0 (105)
k=1

This completes the proof. [
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F.6. Proof of Proposition 6
First, we have @y(m) > O(m;) > O(my,B') = s* + 7.1, ® Q; + /71]|q;||2, where the first
inequality holds by conclusion (i) of Theorem 1 and the second inequality holds because B’ is a
feasible solution of Problem (12) and this problem is a maximization problem.

Next, we would like to construct a feasible solution (x/,s’, )AL/, q’,Q’) of Problem (4). We set x' =
x, A=A, ¢ =5 +s, q =B/'q;, and Q' = B'Q;(B’)" 4+ Qo, where s, > 0 and Q, = 0 and their
values will be decided later. Clearly, this solution satisfies constraints (4c). For this solution to

satisfy constraints (4b), the values s, and Q, should satisfy

(Sc+50) (BQ;(B) +Q0) = (B'q: + (uat) (aTa; - yk<x*>))

T 1
X (B’qf - (UA%> (ATA; — yk(x*))> = ZMk' Vk € [K]. (106)
Note that, if (S + 59)Qo > (1/4)M; for any k € [K], then (106) holds. By the definition of My, we
have M, - 0 for any k € [K]. Therefore, for any s, > 0, we can construct
K 1
= —M
QO le 4(5 + 50) k

k=

such that (106) holds and hence (X, s/, ft/, q’,Q’) is a feasible solution of Problem (4). The objective

value (denoted by ®y,) with respect to this constructed solution is

'+ 72ln e Q + v llq'll, =5+ 50+ 7Ly ¢ B'QI(B) " + 721 © Qo + /11 [Bq;
=5"+50+ 7oLy, ©Q; + 1oL, ¢ Qo + /71 /|q; ||,

K
l T2
= B —I, e M,,
O(m, )+50+k;4(5+50) o M
where the second equality holds because I,, @ B'Q;(B)" =1, ¢ Q:(B')'B' = 1,, ¢ Q; and
(q7)"(B")"B'q; = (q}) " q;. As this constructed solution is a feasible solution of Problem (4), which

is a minimization problem, we have @y (m) < 04, It follows that

K
Oy (m) — O(m) <Oy — O(my,B') =sp+ ) — 2y, eM, (107)
=1 4(5 + 59

)

We further choose a value of 5, to minimize the right-hand side (RHS) of (107). Note that (i) If
VP — S <0, then the RHS of (107) is minimized at P/S with sy = 0; (ii) If /P — S > 0, then the RHS
of (107) is minimized at 2v/P — S with s, = v/P — S. Therefore, we conclude that the proposition
holds. [
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Appendix G: Supplement to Section 7
G.1. Multiproduct Newsvendor Problem

By Proposition 1, Problem (39) has the same optimal value as the following SDP formulation:

min s+ 7L, ¢ Q+ /71 |ql, (108a)
12,40
- T T
s—(c—v)Tx—A{ (b—Ap) 1 (q+ (UAT) AT/\1>
s.t. T >0, (108b)
1 (q+ (UAz) AT/\1> Q
— . T T
s—(c—g)'x—A, (b—Au)+(v—g)'p i (q + (UA?) (ATAy+v— g))
o > 0(108c)
;(q+(UAz) (ATA2+vg)) Q
xeR”", M eR,, 1, eR,, qeR", Qe R™". (108d)

By the first outer approximation (25), the following problem provides a lower bound for the

optimal value of Problem (108):

.
max (tzyT +p, (UA%B) > (g—v) (109a)
B,t1,p1,P1,
t2,p2, Py
s.t. 1—t1—t2:0, m— ||p1+p2||220, (109b)
T
h(Au—b)" +p; (UA%B) AT <0, (109¢)
T
L(Ap—b) +p] (UA%B) AT <0, (109d)
’)’zlml — P1 — P2 t 0, ty (C — V) + 1t (C — g) Z O, (1096)
hpi| g [P g gTp_] (1091)
P Pl Y P2 P2 Y myrs
Bc lRmxmll p1 € ]le, p2€ lleI Pl c lexmll P2 c R™>*m (109g)

By the inner approximation (26), the following problem provides an upper bound for the opti-

mal value of Problem (108) and achieves the optimal value of Problem (108) when m; > 2:

er?}%n}\ S"")’2Im1 .Qr+ﬁ||q||2 (110a)
q/,ér//ul{ruzzr
. . Tv _ AT . 1..T
" [s (c=v)"x=A{ (b—Ap) u; ] 0, (110b)
Eul Qr
T T T 1..T
[s—(c—g) X—/\ng—Aﬂ)JF(V_g)l‘ ZHZ}EOI (110c)
2112 Qr
1 T
q+ (UAY) ATA, =Bu, (110d)

.
q+ (UA%> (A"A, 4+ v —g) =Bu,, (110e)
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xeR”, L eR,, 1, eR,, B'B=1,,, (110f)
q c IRm, Qr c lexmll B c IRmxmll u c ]le, u, c Ile. (1108,)
By the second outer approximation (31), the following problem with m; <2 provides another

lower bound for the optimal value of Problem (108) and achieves the optimal value of Problem

(108) when m; = 2:

,min S+')’21m1 .Qr+ Vals! ”qHz (111a)
B,B,X,S,A1,/\2,
q,Qr,ug,up,hy hy

T T 1..T
s.t. {S —(e=v)'x=2A,(b—Ap) 3u } -0, (111b)

Eul Qr
ol AN Oog T g

5“2 Qr -
1\ | _
q+ (UA?) ATA; = Bu, + Bhy, (111d)
T —_

a+ (UA?) (A"A:+v—g)=Bu, +Bh, (111e)
xeR”, M, eR,, 1, eR,, [B,B]|"[B,B] =1, (111f)
qc ]Rm, Qr c llexmll Be IRmel, B c IRmX(K—ml), (1118,)
u; € Ile, u; € Rm], hl € IRKim], h2 S IRKiml. (1111’1)

G.2. Production-Transportation Problem

By the reformulation results of Section 4.1 of Bertsimas et al. (2010) and Appendix C of Cheramin
et al. (2022), we have the following SDP reformulation for Problem (41):

min s+ 7len e Q+ /711 ql, (112a)

x,z (Vke[K]),
sAk(Vke[K]),q.Q

T T T T 1 N AT !
s—c'X—Bi—AMb—wmzip+A A 5 q+<UA2> (ATA, — zy))

s.t. T t O/
% <q + (UAE) (AT/\k — D(ka))> Q

Vke[K],  (112b)
A €R!, Vk € [K],q € R, Q € REH~CH, (112¢)
0=x=1 (112d)
G
Y ziw=d;, Vi€ [H], ke [K], (112¢)
i=1
H
Y ziw =x;, Vie [G], ke [K], (112f)

j=1

zix >0, Vie [G], j€ [H], ke [K], (112g)
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where z; is a vector whose ((i — 1)G + j)-th element is z;;. Note that, by Theorem 1 in Cheramin

et al. (2022), the following problem can be reformulated as Problem (112):

. T T 1
X,Zg\}irelm 11{12%)154 Ep [1}23()}( {c X + xzy (UA2§I —l—,u) + ﬁk}] (113a)
s.t. (112d) — (112g). (113b)

By the first outer approximation (25), the following problem provides a lower bound for the

optimal value of Problem (112):

K G K H
maXx Ztkﬁk — Z’U;‘ + Zijkdj (114&)
tePrPr YkEK], i=i k=1j=1
wiuy, Vke[K],v,B
K K
st 1=) k=0, 71— | Y_ps|| =0 (114b)
k=1 k=1 )
T
t(Ap—b) +p] (UAB) AT <0, vke [K], (1140)
K K
Yooy — Y P20, ) (ke +w) +v >0, (114d)
k=1 k=1
T T 15\ T T
Déktk‘ll —|—1kak (UAZB> — (Wk soee s Wi ) — (u1k1~ Uk, e, UGKy - - .,qu) >0,
repeat G times repeat H times
Vk € [K], (114e)
te Pr TR _ G GHxm
[pk P, ~0,Vke K], B B=I,, veR}, BER 1 (114f)
pr €R™, P, e R™*™, wi € RY, u, € R, Vk € [K]. (114g)

By the inner approximation (26), the following problem provides an upper bound for the opti-

mal value of Problem (112) and achieves the optimal value of Problem (112) when m; > K:

min s+ 7oLy, Q.+ /11 4ll, (115a)

B,x,z. (Vke[K]),
A, Vk€[K],5,q,Qr

s.t.

[s—ch—ﬁk—AZb—aszu+AZAu éukT =0, Vke[K],  (115b)

%uk r
1 T
q+ (UAf) (A"A¢ — ;zy)) = Buy, Vk € [K], (115¢)
M ER,, uy € R™, Vk € [K],q € R, Q, € R™>*™, (115d)
(112d) — (112g), B'B =1, B € R°"*™, (115e)

By the second outer approximation (31), the following problem with m; < K provides another
lower bound for the optimal value of Problem (112) and achieves the optimal value of Problem
(112) when m; = K:

min s+ 7l ¢ Q+v/1llql, (116a)

B,B x,z; (Vke[K]),
ui by A Vke (K] 5,9,Qr
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T T T T 1..,T
s.t. s—exX—fe—Mbouzpt M Ap Ul g yre [, (116b)
Euk Qr
.
q+ (UA%) (ATAy — azy)) = Buy + Bhy, Vk € [K], (116¢)

MER,, up € R™, hy e RE™, Vk € [K],q € R%,Q, e R"™*™,  (116d)

(112d) — (112g), [B,B]"[B,B] =1, B € R°"*™ B c RC"*(K=m)_ (116e)

G.3. Proof of Proposition 7
Because B'B = 1,,, we have B'B < I,,,, which implies BB" < I,, by Lemma 1. It follows that

r' BB r < r'r. Meanwhile, we have

r'r
rTB*B*Tr: |:ﬁ le(mlfl)i| [ Tell2 ] :rTI',
(

[Ixll2 my—1)x1
indicating that B* = [r/||r||2, 04 (m,—1)] is an optimal solution of Problem (44). O

G.4. Sensitivity Analyses



34

Table G3  Sensitivity Analyses on the Production-Transportation Problem with K =5
Size ((G, H)) (4,25) | (5,20) | (5,40) | (8,25) | (10,40) | (20,30) | (20,40)
Gapl1 (%) 037 | 0.71 | 0.67 | 047 - - -
ODR-LB Time (secs) 2.86 | 2.81 | 487 | 432 | 15.16 | 27.51 | 57.45
Interval Gap (%) 069 | 0.79 | 0.73 | 0.51 | 049 0.51 0.57
Theoretical Gap (%) | 1.27 | 0.62 | 2.20 | 1.36 - - -
my =3 Gapl1 (%) 0.07 | 0.17 | 0.02 | 0.02 - - -
ODR-RLB Time (secs) 13.53 | 14.19 | 43.93 | 57.79 | 205.99 | 442.26 | 1092.43
Interval Gap (%) 039 | 0.25 | 0.08 | 0.06 | 0.03 0.02 0.02
Theoretical Gap (%) | 1.08 | 3.19 | 1.96 | 0.96 - - -
Gap2 (%) 0.32 | 0.08 | 0.06 | 0.04 - - -
ODR-UB Time (secs) 6.03 | 5.60 | 22.31 | 20.53 | 122.04 | 332.10 | 660.08
Theoretical Gap (%) | 1.28 | 1.03 | 3.20 | 2.05 - - -
Gapl1 (%) 0.14 | 0.34 | 0.22 | 0.29 - - -
ODR-LB Time (secs) 4.03 | 3.63 | 6.01 | 4.82 | 1241 | 25.03 | 57.79
Interval Gap (%) 0.15 | 0.34 | 043 | 029 | 0.52 0.55 0.51
Theoretical Gap (%) | 1.24 | 1.07 | 491 | 0.77 | 2.71 1.25 1.09
my =5 Gapl1 (%) 0.01 | 0.02 | 0.01 | 0.00 - - -
ODR-RLB Time (secs) 542 | 5.36 | 22.40 | 20.86 | 123.64 | 330.29 | 665.43
Interval Gap (%) 0.02 | 0.02 | 0.01 | 0.01 | 0.00 0.00 0.00
Theoretical Gap (%) | 1.13 | 1.17 | 1.80 | 0.81 | 1.22 1.92 1.32
Gap2 (%) 0.01 | 0.01 | 0.00 | 0.00 - - -
ODR-UB Time (secs) 5.48 | 5.32 | 22.41 | 20.86 | 123.48 | 329.95 | 665.35
Theoretical Gap (%) | 1.13 | 1.17 | 1.80 | 0.81 | 1.22 1.92 1.32
Gapl (%) 0.16 | 0.21 | 0.53 | 0.23 - - -
ODR-LB Time (secs) 356 | 429 | 539 | 570 | 19.27 | 22.89 | 58.38
7 Interval Gap (%) 0.17 | 022 | 053 | 0.24 | 0.31 0.56 0.50
= Theoretical Gap (%) | 1.22 | 0.88 | 1.67 | 0.79 - - -
Gap2 (%) 0.02 | 0.01 | 0.00 | 0.00 - - -
ODR-UB Time (secs) 5.62 | 548 | 2242 |21.24 | 121.61 | 330.94 | 660.85
Theoretical Gap (%) | 1.15 | 1.04 | 1.28 | 0.59 - - -
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Table G4 Sensitivity Analyses on the Production-Transportation Problem with K =10
Size ((G,H)) (4,25) | (5,20) | (5,40) | (8,25) | (10,40) | (20,30) | (20,40)
Gapl (%) 0.17 | 0.15 | 0.16 | 0.28 - - -
ODR-LB Time (secs) 6.26 | 575 | 9.80 | 8.87 | 29.94 | 54.71 | 133.58
Interval Gap (%) | 0.17 | 0.15 | 0.16 | 028 | 0.23 | 022 | 027
Theoretical Gap (%) | 4.32 | 453 | 6.22 | 6.09 - - -
m; =8 Gapl (%) 0.01 | 0.00 | 0.01 | 0.00 - - -
ODR-RLB Time (secs) 13.03 | 12.91 | 53.84 | 35.92 | 205.07 | 593.38 | 1334.02
Interval Gap (%) | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00
Theoretical Gap (%) | 3.53 | 3.02 | 4.24 | 4.86 - - -
Gap2 (%) 0.00 | 0.00 | 0.00 | 0.00 - - -
ODR-UB Time (secs) 10.31 | 10.23 | 39.26 | 31.59 | 119.58 | 339.84 | 755.18
Theoretical Gap (%) | 2.21 | 2.40 | 3.98 | 3.04 - - -
Gapl (%) 0.12 | 0.19 | 0.13 | 0.25 - - -
ODR-LB Time (secs) 6.65 | 6.41 [11.11|10.31 | 31.42 | 61.41 | 131.10
Interval Gap (%) | 0.12 | 0.19 | 0.13 | 025 | 022 | 0.19 | 025
Theoretical Gap (%) | 1.78 | 1.97 | 296 | 1.19 | 2.10 | 149 | 1.22
my =10 Gapl (%) 0.00 | 0.00 | 0.00 | 0.00 - - -
ODR-RLB Time (secs) 11.22 | 10.65 | 40.34 | 32.95 | 122.54 | 342.80 | 748.11
Interval Gap (%) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Theoretical Gap (%) | 1.86 | 227 | 1.74 | 122 | 2.10 | 139 | 2.30
Gap?2 (%) 0.00 | 0.00 | 0.00 | 0.00 - - -
ODR-UB Time (secs) 11.14 | 10.69 | 40.28 | 32.92 | 122.48 | 344.10 | 747.90
Theoretical Gap (%) | 1.86 | 227 | 1.74 | 122 | 210 | 139 | 2.30
Gapl (%) 0.11 | 0.14 | 0.15 | 0.23 - - -
ODR-LB Time (secs) 8.89 | 7.90 | 11.78 | 13.44 | 32.16 | 63.96 | 12291
b Interval Gap (%) | 0.11 | 0.14 | 0.15 | 023 | 0.19 | 0.19 | 027
= Theoretical Gap (%) | 3.64 | 501 | 741 | 7.85 | - - -
Gap2 (%) 0.00 | 0.00 | 0.00 | 0.00 - - -
ODR-UB Time (secs) 11.71 | 11.55 | 38.59 | 29.68 | 123.40 | 346.68 | 761.21
Theoretical Gap (%) | 0.81 | 1.32 | 2.20 | 2.75 - - -
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Table G5 Sensitivity Analyses on the Production-Transportation Problem with K =15
Size ((G,H)) (4,25) | (5,20) | (5,40) | (8,25) | (10,40) | (20,30) | (20,40)
Gapl (%) 0.08 | 0.21 | 0.15 | 0.18 - - -
ODR-LB Time (secs) 11.12 | 11.10 | 18.00 | 24.05 | 31.32 | 71.04 | 142.88
Interval Gap (%) | 0.08 | 0.21 | 0.15 | 0.18 | 0.25 | 0.19 | 0.23
Theoretical Gap (%) | 4.56 | 7.01 | 5.79 | 6.95 - - -
my; =13 Gapl (%) 0.00 | 0.03 | 0.00 | 0.00 - - -
ODR-RLB Time (secs) 26.19 | 25.91 | 97.35 | 68.99 | 213.44 | 641.74 | 1451.80
Interval Gap (%) | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00
Theoretical Gap (%) | 6.09 | 5.83 | 5.88 | 6.12 - - -
Gap2 (%) 0.00 | 0.00 | 0.00 | 0.00 - - -
ODR-UB Time (secs) 19.46 | 19.15 | 71.71 | 50.62 | 128.92 | 367.33 | 833.81
Theoretical Gap (%) | 2.44 | 3.00 | 2.52 | 3.07 - - -
Gapl (%) 0.05 | 0.10 | 0.12 | 0.15 - - -
ODR-LB Time (secs) 13.92 | 16.56 | 22.11 | 26.16 | 43.02 | 80.51 | 168.90
Interval Gap (%) 0.05 | 0.10 | 012 | 015 | 0.11 0.13 0.09
Theoretical Gap (%) | 4.69 | 522 | 557 | 638 | 329 | 441 | 3.95
my =15 Gapl (%) 0.00 | 0.00 | 0.00 | 0.00 - - -
ODR-RLB Time (secs) 22.60 | 21.45 | 77.18 | 63.99 | 241.03 | 689.24 | 1550.21
Interval Gap (%) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Theoretical Gap (%) | 1.38 | 2.61 | 1.79 | 1.73 | 214 | 194 | 225
Gap?2 (%) 0.00 | 0.00 | 0.00 | 0.00 - - -
ODR-UB Time (secs) 22.61 | 21.44 | 76.99 | 64.08 | 149.21 | 401.63 | 878.68
Theoretical Gap (%) | 1.38 | 2.61 | 1.79 | 1.73 | 214 | 194 | 225
Gapl (%) 0.10 | 0.09 | 0.13 | 0.16 - - -
ODR-LB Time (secs) 18.10 | 21.04 | 28.81 | 32.61 | 52.71 | 84.10 | 188.21
1 Interval Gap (%) | 0.10 | 0.09 | 0.13 | 0.16 | 0.10 | 0.08 | 0.13
= Theoretical Gap (%) | 4.75 | 4.13 | 550 | 6.16 - - -
Gap2 (%) 0.00 | 0.00 | 0.00 | 0.00 - - -
ODR-UB Time (secs) 26.83 | 27.84 | 84.70 | 63.17 | 161.79 | 447.03 | 926.33
Theoretical Gap (%) | 2.20 | 3.61 | 2.58 | 2.20 - - -
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