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ARTICLE INFO ABSTRACT
Keywords: Background: Vision and vision-language foundation models, a subset of advanced artificial intelligence (AI)
Ophthalmology frameworks, have shown transformative potential in various medical fields. In ophthalmology, these models,

Vision foundation models
Vision-language models
Artificial intelligence
Clinical integration

particularly large language models and vision-based models, have demonstrated great potential to improve
diagnostic accuracy, enhance treatment planning, and streamline clinical workflows. However, their deployment
in ophthalmology has faced several challenges, particularly regarding generalizability and integration into
clinical practice. This systematic review aims to summarize the current evidence on the use of vision and vision-
language foundation models in ophthalmology, identifying key applications, outcomes, and challenges.

Main text: A comprehensive search on PubMed, Web of Science, Scopus, and Google Scholar was conducted to
identify studies published between January 2020 and July 2025. Studies were included if they developed or
applied foundation models, such as vision-based models and large language models, to clinically relevant
ophthalmic applications. A total of 10 studies met the inclusion criteria, covering areas such as retinal diseases,
glaucoma, and ocular surface tumor. The primary outcome measures are model performance metrics, integration
into clinical workflows, and the clinical utility of the models. Additionally, the review explored the limitations of
foundation models, such as the reliance on large datasets, computational resources, and interpretability
challenges.

The majority of studies demonstrated that foundation models could achieve high diagnostic accuracy, with
several reports indicating excellent performance comparable to or exceeding those of experienced clinicians.
Foundation models achieved high accuracy rates up to 95% for diagnosing retinal diseases, and similar per-
formances for detecting glaucoma progression. Despite promising results, concerns about algorithmic bias,
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overfitting, and the need for diverse training data were common. High computational demands, EHR compati-
bility, and the need for clinician validation also posed challenges. Additionally, model interpretability issues
hindered clinician trust and adoption.

Conclusions: Vision and vision-language foundation models in ophthalmology show significant potential for
advancing diagnostic accuracy and treatment strategies, particularly in retinal diseases, glaucoma, and ocular
oncology. However, challenges such as data quality, transparency, and ethical considerations must be addressed.
Future research should focus on refining model performance, improving interpretability and generalizability, and
exploring strategies for integrating these models into routine clinical practice to maximize their impact in clinical

ophthalmology.

1. Introduction

Recent advancements in artificial intelligence (AI), particularly
through the development of vision and vision-language foundation
models, have demonstrated great potential to transform medical appli-
cations.! These models, which encompass large language models (LLMs)
and vision-based architectures, have shown substantial promise across
various healthcare domains, with ophthalmology emerging as one of the
key beneficiaries of these applications.>> Ophthalmology, with its high
dependence on image-based diagnostics, complex decision-making
processes, and increasing demand for automation, therefore offers an
ideal landscape for the integration of AI technologies.*°

Vision and vision-language foundation models are pretrained on
large heterogeneous datasets comprising millions of images and paired
image-text corpora, spanning both medical and non-medical sources.
The pretraining process often leverages self-supervised learning para-
digms such as masked auto encoding, contrastive learning, or cross-
modal alignment (e.g., CLIP-like architectures), which enable the
extraction of both fine-grained visual representations (e.g., retinal mi-
crostructures, vascular patterns) and higher-order semantic features
relevant to clinical interpretation. These models can subsequently be
fine-tuned for ophthalmic applications using transfer learning or
parameter-efficient strategies like adapter tuning and prompt engi-
neering, thereby reducing the demand for large, domain-specific anno-
tated datasets. A defining characteristic is their cross-task
transferability: the same backbone can seamlessly support tasks ranging
from fundus and Optical Coherence Tomography (OCT) segmentation to
disease classification, prognosis modeling, and even ophthalmic report
generation. These models possess cross-task transferability and multi-
modal capabilities, enabling them to handle both image and language
tasks. Unlike task-specific models, they can adapt to various ophthalmic
applications, often achieving performance comparable to traditional
machine learning (ML) methods while improving efficiency and adapt-
ability. This adaptability is largely driven by their ability to leverage
shared representations across domains, where features learned from
general visual patterns can be repurposed for disease-specific recogni-
tion in ophthalmic imaging.>” In ophthalmology, these models are
increasingly explored for diagnosing and predicting the prognosis of
retinal diseases, glaucoma, and other ocular conditions.®° They are also
employed to predict patient outcomes, automate routine tasks, and
support clinical decision-making, thereby enhancing the efficiency of
ophthalmic care.!°

Despite the promising results, the widespread adoption of foundation
models in clinical practice is hindered by several challenges.'’ These
include concerns about the interpretability of models, biases in training
data, and the generalizability of models across diverse patient pop-
ulations. Furthermore, integrating these models into existing healthcare
infrastructures and ensuring reliable real-time performance in clinical
settings remain a significant hurdles.'?

This systematic review aims to systematically explore the potential
applications of vision and vision-language foundation models in
ophthalmology by synthesizing current literature. It examines the
effectiveness of these models in improving diagnostic accuracy,

optimizing treatment plans, and enhancing clinical workflows. Addi-
tionally, this review addresses limitations and challenges faced by these
Al-driven tools and provides recommendations for future research and
clinical implementation.

By evaluating the current state of vision and vision-language foun-
dation models in ophthalmology, this review seeks to provide a
comprehensive overview of their role in modernizing ophthalmic care,
highlighting both their potential and the need for cautious, evidence-
based integration into clinical practice.

2. Methods

This systematic review was conducted to evaluate the application,
performance, and challenges associated with vision and vision-language
foundation models in ophthalmology. The review followed the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines to ensure transparency and reproducibility.

2.1. Eligibility criteria

Studies were included in the review if they met the following criteria:
(1) The study applied a foundation model, in clinical ophthalmology; (2)
The model was used for diagnosis, prediction for incidence or progres-
sion, or treatment planning of eye diseases (e.g., retinal diseases, glau-
coma); (3) The study was published between January 2020 and July
2025 in peer-reviewed journals, with full-text paper available in English.
This period was chosen as this period marked a significant increase in
the application and development of foundation models in the medical
field.

Exclusion criteria were: (1) Studies that did not use foundation
models or did not focus on ophthalmology; (2) Study papers that were
reviews, opinions, or case reports; (3) Studies that did not report on
model performance or clinical outcomes.

2.2. Information sources and search strategy

A comprehensive literature search was conducted on July 7th, 2025,
in several electronic databases, including PubMed, Web of Science,
Scopus, and Google Scholar. Google Scholar was used only for forward/
backward citation chasing rather than as a primary database. Boolean
operators (AND, OR) were used to refine the search strategy. Specif-
ically, "Foundation model" AND ("deep learning" OR "artificial intelli-
gence") were combined to focus on studies integrating advanced Al
methods. Terms related to the medical domain, such as "ophthalmology"
AND ('retinal diseases" OR "ocular diseases"), were used to ensure the
inclusion of relevant clinical research. To ensure the comprehensiveness
of the search, "glaucoma" was included as a separate term, combined
with "ocular diseases" using the OR operator. The search was restricted
to articles published between January 1st, 2020 (the period marking the
emergence of large-scale pretraining and multi-task transfer in medi-
cine), and July 7th, 2025, to ensure the relevance and timeliness of the
literature.
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2.3. Study selection

After removing duplicates, titles and abstracts were screened by two
independent reviewers (KJ and TY) to identify studies that met the
eligibility criteria (Table S1). Full-text articles of potentially relevant
studies were assessed for inclusion. Any disagreements between re-
viewers were resolved by consensus or by consulting a third reviewer
(AG).

2.4. Data extraction

Data was extracted from the included studies using a standardized
data extraction form. The following information was collected: Study
characteristics (author(s), year of publication, study design), model type
(e.g., deep learning, large language models (LLMs)), application area (e.
g., retinal disease diagnosis, glaucoma monitoring), data used for
training and validation (e.g., clinical images, datasets), performance
metrics (e.g., diagnostic accuracy, sensitivity, specificity, area under the
curve (AUCQ)), limitations and challenges discussed in the study (e.g.,
data quality, model interpretability).

2.5. Quality Assessment

The quality of the included studies was assessed using the QUADAS-2
(Quality Assessment of Diagnostic Accuracy Studies) tool, which eval-
uates the risk of bias in diagnostic accuracy studies.'® Each study was
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independently assessed by two reviewers (KJ and TY), with disagree-
ments resolved by consensus. We added a summary table (Table S2) and
a heatmap of domain-level ratings (Fig. 3).

2.6. Data synthesis

The data were qualitatively and quantitatively synthesized, and a
narrative summary was provided. Due to the heterogeneous nature of
the included studies, a meta-analysis was not performed. Key themes
and findings regarding the applications of foundation models in
ophthalmology, performance outcomes, and limitations were identified
and discussed.

2.7. Outcome measures

The outcome measures of this review included performance metrics
of the models, their integration into clinical workflows and clinical
utility; limitations and challenges related to the integration of founda-
tion models into clinical practice, such as data quality, interpretability,
and bias.

3. Results
A total of 10 studies met the inclusion criteria and were included in

this systematic review (Fig. 1). These studies collectively demonstrate
the growing application of vision-based and vision-language foundation
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Fig. 1. PRISMA 2020 flow diagram for this systematic review.
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models, including both large language and vision-based models in
various ophthalmological domains. The focus areas included retinal
diseases, glaucoma, and ocular surface tumors (OSTs), with significant
methodological diversity and performance outcomes.

3.1. Study characteristics

All included studies reviewed were published between 2023 and
2025, reflecting the rapid advancement of foundation model develop-
ment in recent years (Table 1). All of these studies trained the founda-
tion models using large datasets. Six studies utilized publicly available
datasets (e.g., the EyePACS dataset, which contains 288,307 images),
while four studies used institution-specific proprietary dataset, often
integrating imaging with clinical data such as electronic health records
(EHRs).M’15 The model training scale was substantial: for instance,
VisionFM was trained on 3.4 million multimodal images, and MetaGP
incorporated 8 million EHRs, indicating a trend toward large-scale
pretraining for generalizability (Table 1).

3.2. Application and model performance

Retinal Diseases: The majority of studies (n = 8) focused on the
diagnosis of retinal diseases, including diabetic retinopathy (DR) (n =
8), age-related macular degeneration (AMD) (n = 8), and diabetic
macular edema (DME) (n = 3). Vision-based models demonstrated high
diagnostic performance.'® 2!

e RETFound achieved AUC = 0.94 for DR on the EyePACS dataset (N
= 288307, internal validation, prevalence ~ 22%) and AUC = 0.86
for wet AMD on the AREDS dataset (N = 12532, external validation,
prevalence ~ 19%).

RetiZero reported top-5 accuracy of 75.6% in detecting over 400 rare
fundus conditions (N = 342000, multi-ethnic, external validation).
FLAIR and RETFound-DE showed strong performance even under
few-shot and zero-shot scenarios (DR detection, sensitivity 0.91,
specificity 0.89), reflecting their capacity for efficient adaptation
with limited labeled data.

Glaucoma Detection: Three studies explored the use of foundation
models for glaucoma detection, with models such as EyeCLIP and
RETFound-DE reporting AUCs values between 0.721 and 0.913
(external dataset).'® RETFound-DE achieved AUC = 0.902 for glaucoma
on REFUGE-2 (external validation), with sensitivity 0.89 and specificity
0.86 at the pre-specified operating threshold. RETFound-DE demon-
strated robust performance in both few-shot and cross-domain gener-
alization tasks, supporting deployment across diverse clinical
environments.

Ocular Surface Tumors: Two studies examined the application of Al
models for detecting malignant and premalignant OSTs. The OSPM
model achieved outstanding AUCs scores between 0.986 and 0.993,
validating its potential as a screening tool in oncology ophthalmology
(internal and external validation against histopathology gold stan-
dard).?? The model also maintained accuracy across external datasets
such as JEH (Dataset or Clinical Site), highlighting its generalizability.

Multimodal and Rare Disease Integration: Several studies, such as
MetaGP, extended foundation model capabilities to rare and urgent
conditions through multimodal integration of fundus imaging, EHRs,
and CT (Computed Tomography)/CXR (Chest X-Ray) scans. MetaGP
yielded a diagnostic score of 1.57, outperforming GPT-4 (0.93) in rare
disease classification, which reflects the model's performance in rare
disease classification tasks by combining EHR data and imaging.'*

For retinal diseases, the foundation models demonstrated sensitivity
values ranging from 0.88 to 0.96 and specificity values from 0.85 to 0.93
(n = 8), indicating strong diagnostic performance. In glaucoma detec-
tion, sensitivity ranged from 0.89 to 0.94, while specificity ranged from
0.84 to 0.91, refers to the three studies. Notably, several models

11
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maintained high performance when evaluated on external validation
datasets, highlighting their robustness and generalizability across
diverse clinical populations and settings. A detailed summary of model
performance is presented in Table 2.

3.3. Clinical integration and real-world deployment

Six of the included studies discussed efforts toward the integration of
foundation models into clinical workflows. While all models demon-
strated promising diagnostic results, none have yet achieved full
deployment in routine ophthalmic practice. However, some models
have been tested in pilot studies or limited-scope deployments. For
instance, MetaGP has been used in real-world settings to integrate EHR
and imaging data for diagnosing rare diseases, showing promising re-
sults in clinical trials for urgent care situations. Similarly, VisionFM has
been tested in specific clinical environments for glaucoma and diabetic
retinopathy screening. These examples highlight the translational po-
tential of foundation models, particularly when compared to traditional
task-specific AI models, which are already deployed for routine clinical
tasks such as diabetic retinopathy screening.

Nonetheless, the findings suggest considerable translational poten-
tial, particularly when contrasted with traditional task-specific Al
models. As illustrated in Fig. 2, foundation models offer distinct ad-
vantages over conventional architectures. Unlike traditional models that
require separate training for each task using isolated labeled datasets,
foundation models leverage large-scale pretraining on unlabelled data
and can be adapted across multiple tasks with minimal labeled super-
vision. This results in improved generalizability, label efficiency, and
computational scalability. Despite their promise, several technical and
implementation-related challenges persist, as detailed below.

e Computational Resource Demands: Advanced models such as
VisionFM, which incorporates multimodal imaging from over
500000 individuals across 3.4 million images, require substantial
GPU-intensive infrastructure for both training and inference.'® While
such models achieved AUCs up to 0.974 (AMD) and 0.945 (DR),
real-time deployment in resource-constrained clinical environments
remains a limitation without edge optimization or cloud-based
support.

EHR Interoperability: MetaGP, which integrates structured EHR data
with multimodal images for rare disease diagnosis, demonstrated an
average diagnostic score of 1.57, significantly outperforming GPT-4
(0.93).1% However, integration into diverse and often fragmented
hospital information systems presents significant interoperability
and data privacy challenges.

Clinician Validation and Interpretability Needs: Even models with
strong internal test results such as FMUE (focused on OCT-based
retinal disease diagnosis with built-in uncertainty estimation) with
F1 score of 95.7% and AUC of 0.989, necessitate clinicians involve-
ment for results validation. Similarly, EyeCLIP, which achieved AUC
values ranging from 0.681 to 0.757 (DR) and 0.721-0.684 (glau-
coma), remains dependent clinician oversight due to model perfor-
mance variability across external datasets. Models like FLAIR and
RetiZero, despite notable success in rare disease recognition, also
highlight the need for human-in-the-loop verification to ensure
contextual appropriateness in diagnosis.

3.4. Risk of bias in studies

The QUADAS-2 assessment (Fig. 3) showed that the main source of
potential bias across the ten included studies was in patient selection,
with nine studies judged at high risk due to reliance on convenience
sampling from public datasets or retrospective case series, while only the
OSPM study used consecutive multi-center enrollment and was rated
low risk. In contrast, the index test and reference standard domains were
consistently low risk, as model outputs were generated automatically
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Table 1

Characteristics of 10 foundation models for application in ophthalmology. AUC (Area Under the Curve), DR (Diabetic Retinopathy), Wet-AMD (Wet Age-Related Macular Degeneration), OCT (Optical Coherence To-
mography), EHR (Electronic Health Records), CXR (Chest X-Ray), CT (Computed Tomography), MRI (Magnetic Resonance Imaging), F1 Score (F1 Score), IIR (Image-Image Retrieval), ITR (Image-Text Retrieval), OST

(Ocular Surface Tumor).

Author Publication Model Sample Size Objective Data Types Main Findings Clinical Significance Study Design External Geography
Year Name Validation
Yukun Zhou 2023 RETFound 1.6 million For generalizable disease OCT, fundus images RETFound improves Facilitates faster Cross-sectional ~ Yes (EyePACS) Global
etal.'® unlabelled detection from Fundus diagnostic accuracy with ~ adaptation to diverse
Fundus images images fewer labeled data medical tasks
Julio Silva- 2024 FLAIR 38 open-access Enhance retinal fundus Fundus images with FLAIR outperforms task- Enhances disease Retrospective Yes (AREDS) Multi-center
Rodriguez datasets, image analysis using textual descriptions specific models with recognition accuracy cohort (International)
etal.?’ 288,307 images domain-specific expert knowledge in fundus images
knowledge integration
Qiu et al.'? 2024 VisionFM 3.4 million Develop a multimodal Ophthalmic images VisionFM shows Transforms clinical AI Cohort study Yes (DR cohort, Multi-center
images from multitask Al model for across various generalization and by enabling AMD cohort) (Global)
500,000+ ophthalmic use modalities diagnostic accuracy multimodal task
individuals across multiple adaptability
modalities
Danli Shi 2025 EyeCLIP 2.77 million Develop a multimodal Multimodal EyeCLIP shows robust Improves early Cross-sectional ~ Yes (MESSIDOR, Multi-center
et al.*? images from 11 model for computational ophthalmic images, performance in disease detection of eye UK Biobank) (Global)
modalities ophthalmology clinical text classification and few- diseases with
shot learning multimodal AI
Yuanyuan 2025 FMUE 102,468 OCT Improve Al reliability in OCT images FMUE enhances clinical Increases diagnostic Cross-sectional ~ Yes (External Local
Peng images OCT-based retinal disease Al reliability, achieving reliability in clinical OCT)
et al.*! diagnosis excellent performance on  environments
OCT data
FeiLiuetal.'* 2025 MetaGP 8 million EHRs, Develop a model EHRs, fundus MetaGP boosts diagnosis Improves clinician Cohort study Yes (Composite Multi-center
biomedical integrating medical images, chest X-rays  of rare and emergent decision-making, rare-disease (Global)
literature records and imaging for (CXR) and CT scans diseases especially in rare benchmark)
diagnostics disease diagnosis
Jinzhuo 2024 MINIM 200k + paired Build a self-improving OCT, fundus images, =~ MINIM generates Enables non-invasive, Prospective Yes (Internal) Multi-center
Wang images across 6 generative model to chest X-ray, chest realistic images and Al-guided detection of ~ cohort (Global)
etal.'® modalities synthesize high-fidelity CT, brain MRI, improves diagnosis and HER2/EGFR
medical images from text breast MRI mutation prediction mutations
Yugi Sun 2025 RETFound- 1 million Develop a data-efficient Fundus images, RETFound-DE shows Increases model Cross-sectional ~ Yes (DR cohort, Global
etall” DE synthetic strategy for building chest X-ray images competitive performance  performance with Glaucoma)
images, 16.7% medical foundation with synthetic data limited data
real data models
Meng Wang 2025 RetiZero 341896 fundus Enhance diagnostic Fundus images RetiZero enhances Improves diagnostic Cohort study Yes (H1/H2/H3 Multi-center
etal.'® images accuracy in fundus diagnostic accuracy in accuracy in clinical external (Global)
diseases with Al models rare fundus diseases settings datasets)
Zhongwen Li 2025 OSPM 0.76 million Create a model for Ocular surface OSPM improves accuracy ~ Enhances early Cross-sectional ~ Yes (JEH Multi-center

et al.?

ocular surface
images

detecting malignant and
premalignant ocular
tumors

images

in detecting malignant
and premalignant OSTs

detection and
treatment of ocular
tumors

external dataset)

(Global)

Uy
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Table 2

Summary of foundation model performance in ophthalmology. AUC (Area Under the Curve), DR (Diabetic Retinopathy), Wet-AMD (Wet Age-Related Macular Degeneration), OCT (Optical Coherence Tomography),
OCTDL (Optical Coherence Tomography Deep Learning), F1 Score (F1 Score), EHR (Electronic Health Records), IIR (Image-Image Retrieval), ITR (Image-Text Retrieval), JEH (Dataset or Clinical Site), MMAC (Multi-class
Multi-label Classification), FIVES (Dataset for Retinal Disease Classification).

Model Application Focus Validation Dataset Key Performance Metrics Supervised Finetune Few-shot Zero-shot
Name
RETFound Disease detection from fundus EyePACS (Internal) AUC 0.94 (DR), AUC 0.86 (Wet-AMD), AUC 0.943 (DR), 0.822 Good performance with 50 % AUC 0.754 (Ischemic Stroke), 0.669
images (CFP & OCT) AREDS (External) AUC 0.79 (Heart Failure) (IDRID) labeled data (Parkinson's Disease)
FLAIR Retinal image understanding via 20 x 3 (Internal) Accuracy 98.3% (20 x 3), 66.7% AUC 0.602 (DR), AUC Significant improvement in 33% (20 x 3), 20% (ODIR200 x 3,
vision-language pre-training ODIR200 x 3 (External) (ODIR200 x 3), 40% (MMAC) 0.918 (Glaucoma) few-shot settings with linear MMAC) improvement
MMAC (External) probe
VisionFM Multimodal AI for ophthalmology Internal aggregate (Internal) AUC 0.950 (Internal), AUC 0.945 AUC 0.950 (Internal) Dice 77.54% (Few-shot OCT AUC 0.945 (DR)
(8 imaging modalities) DR cohort (External) (DR), AUC 0.974 (AMD) segmentation)
AMD cohort (External)
EyeCLIP Multimodal ophthalmic visual- MESSIDOR (External) AUC 0.681-0.757 (DR), AUC 0.835 (DR), 0.913 Outperformed others in few- AUC 0.681-0.757 (DR),0.684-0.721
language model UK Biobank/REFUGE-2 AUCO0.684-0.721 (Glaucoma), AUC (Glaucoma), 0.993 shot tasks (Glaucoma)
(External) 0.800 (OCTID) (OCTDL)
OCTID (External)
FMUE OCT-based retinal disease Internal OCT (Internal) F1 95.7%, AUC 0.989 (internal) F1 97.23% (Internal), Good performance with 1-16 Top-1 36%, Top-5 75.6% (rare disease
diagnosis with uncertainty External OCT (External) 99.16% (External) labeled examples diagnosis)
estimation
MetaGP EHR & retinal imaging integration Composite rare-disease Diagnostic score 1.57 (rare diseases) Diagnostic score 1.57 (rare ~ Outperformed GPT-4 with Mean accuracy 0.698, F1 0.754 (rare
for rare/urgent disease diagnosis benchmark (External) diseases) 10-20% labeled data disease diagnosis)
MINIM OCT retinal disease diagnosis with Internal (Internal) F1 93.0%, AUC 0.973 Top-1 79.7% (OCT), Top-1 Performed well in few-shot IIR: 62.25% (OCT), 64.83% (Fundus),
synthetic data augmentation 86.0% (Fundus) settings ITR: 43.41% (OCT), 49.93% (Fundus)
RETFound- Disease diagnosis with synthetic- DR cohort (External) AUC 0.958 (DR), 0.732 (Glaucoma) AUC ~ 0.82 (few-shot) AUC ~ 0.82 with 2-16 samples AUC 0.84 (cross-domain
DE data pretraining Glaucoma (External, REFUGE-2) per class generalization)
RetiZero Vision-language model for 400+ Three clinical datasets of retinal ~ AUC 0.997 (H1), AUC 0.980 (H2), AUC 0.967 (H1), AUC Top-5 accuracy 75.6% (52 Top-1 accuracy 0.442, Top-5 accuracy
retinal diseases photographs H1/H2/H3 AUC 0.993 (H3) 0.859 (H2), AUC 0.942 diseases) 0.840 (EYE-15)
(External) (H3)
OSPM Ocular surface tumor classification =~ Multicenter internal (Internal) AUC 0.986-0.993 (internal) AUC 0.986 (Malignant), Better performance with AUC 0.694-0.940 (JEH external

(malignant, premalignant, benign)

0.993 (Benign)

35-50% labeled data

dataset)

Uy

61-8 (9202) 9 Y2059y pup 29101d A30j0uDyIYdO Ul SPIUDAPY



K. Jin et al.

Advances in Ophthalmology Practice and Research 6 (2026) 8-19

Traditional Models

&

%)

&

Labelled Data 1 Labelled Data 2 Labelled Data 3
Train 1 Train l Train l

Model 1 Model 2 Model 3

Deploy 1 Deploy 1 Deploy 1

Task 2 Task 3

)

Foundation Models

Unlabelled Data

Train 1

k

Foundation Model
Adapt

=N |

Labelled Data 2

Task 2

Adapt

& !

Labelled Data 1

o

Task 1

Adapt

= |

Labelled Data 3

Task 3
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making fine-tuning more efficient than training separate models from scratch.
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and compared against expert annotations or histopathology without
review bias. For flow and timing, most studies were low risk, but MINIM
and RETFound-DE were rated unclear because of potential in-
consistencies when integrating synthetic and real data. Overall, these
findings indicate that while the technical evaluation of foundation
models in ophthalmology is generally robust, limitations in study pop-
ulations, particularly non-consecutive and heterogeneous sampling,
represent the predominant risk of bias and may constrain generaliz-
ability to real-world practice.

4. Discussion

The promising results of foundation models for eye diseases
demonstrate their great potential to transform the landscape of diag-
nostic medicine. Synthesizing evidence from ten foundation model
studies, the review reveals that both vision-based models and LLMs have
demonstrated impressive diagnosis capabilities across a range of
ophthalmological conditions, particularly retinal diseases, glaucoma,
and ocular surface tumors. These models, pretrained on vast, often
unlabelled datasets, are subsequently fine-tuned to tackle an array of
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downstream ophthalmic applications, including disease classification,
progression tracking, and rare condition recognition. Most studies
focused on high-prevalence pathologies such as diabetic retinopathy,
age-related macular degeneration, and glaucoma, while others extended
to rarer or underexplored conditions, demonstrating the breadth of use
cases enabled by these systems. Collectively, these models offer signif-
icant opportunities to enhance diagnostic accuracy, streamline clinical
efficiency, and expand access to expert-level interpretation in diverse
clinical contexts.

4.1. Unifying multimodal data for enhanced diagnostic accuracy

A key advantage of foundation models lies in their capacity to pro-
cess and integrate multimodal data sources, a feature that elevates their
diagnostic breadth and depth.?® Several reviewed studies utilized vast
amounts of ophthalmic data, including images from diverse modalities
such as OCT, color fundus photography (CFP), and fluorescein fundus
angiography (FFA), as well as clinical text and EHRs. For instance,
EyeCLIP, a multimodal visual-language model, was trained on over 2.77
million ophthalmology images from 11 imaging modalities, augmented
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by partial clinical text, exemplifying the shift toward large-scale,
multimodal learning architectures. This reflects significant progress in
computational ophthalmology, enabling more comprehensive and
adaptable diagnostic tools.

These foundation models are not confined to specific tasks or disease
categories. In particular, models such as VisionFM and MetaGP
demonstrated high generalization abilities, performing effectively
across various diseases and clinical scenarios. VisionFM, a foundation
model pretrained on 3.4 million ophthalmic images across multiple
modalities, demonstrated strong generalization in diagnosing diseases
like DR, glaucoma, and macular degeneration. It achieved high accuracy
across diverse datasets, highlighting its adaptability to tasks ranging
from screening to prognosis. This multimodal co-adaptation reflects a
significant departure from prior siloed model designs and supports
diagnostic personalization through data synthesis across anatomical,
temporal, and contextual layers.

Beyond the ten core studies included, additional foundation models
provide important insights into the evolution of ophthalmic FMs. For
instance, EyeFM was trained on 10 million multimodal ophthalmic
images and clinical reports, demonstrating robust performance in
glaucoma detection.?* Its strength lies in integrating textual and imaging
data, supporting cross-modal reasoning tasks. Similarly, multiple
RETFound variants have been developed since the original 2023
RETFound model, including RETFound-DE (data-efficient pretraining
with synthetic images), RETFound-Green (optimized for low-resource
fundus screening with 75000 images), and RETFound-MEH (a
900000-image Moorfields dataset). These variants extend the general-
izability of the RETFound framework, enabling adaptation to few-shot
learning, domain shifts, and rare disease recognition. Together, EyeFM
and the RETFound variants illustrate the rapid diversification of foun-
dation model architectures in ophthalmology, highlighting a trend to-
ward specialization while maintaining general-purpose adaptability.

4.2. Addressing rare and complex ophthalmic conditions

The ability of foundation models to handle rare and complex diseases
is a particularly exciting development in ophthalmology. A few studies
reviewed here focused on rare diseases or conditions with limited data
availability. For example, MetaGP demonstrated robust diagnostic per-
formance in rare disease and urgent care scenarios, such as Pompe dis-
ease and hereditary transthyretin amyloidosis, by integrating diverse
datasets such as EHRs and multimodal imaging. RetiZero also showed
remarkable zero-shot capabilities in identifying rare fundus diseases that
are rarely represented in training data, such as Bietti crystalline dys-
trophy, chorioretinal coloboma, and punctate inner choroidopathy,
achieving notably high top-3 accuracies and substantially out-
performing prior models. EyeCLIP demonstrated improved diagnostic
performance on 17 rare conditions such as birdshot retinochoroidop-
athy, central areolar choroidal dystrophy, choroidal melanoma,
choroidal osteoma, cone dystrophy, Stargardt disease.

This advancement is particularly valuable in ophthalmology, where
early and accurate diagnosis of less common or clinically complex
conditions is essential to prevent irreversible vision loss. The ability of
these models to identify subtle patterns and anomalies in medical im-
ages or clinical data makes them invaluable tools for clinicians, partic-
ularly in settings where access to expert care is limited.?

4.3. Demonstrating promising diagnostic accuracy and cross-domain
robustness

Foundation models in ophthalmology have exhibited consistently
high diagnostic performance across a wide spectrum of vision-
threatening diseases. In the domain of retinal diseases, models ach-
ieved sensitivity ranging from 0.88 to 0.96 and specificity from 0.85 to
0.93. These performance metrics not only approach but in many in-
stances exceed clinician-level diagnostic accuracy, particularly for DR
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and AMD-two of the leading causes of preventable blindness globally.
Such performance highlights the clinical potential of these models in
both screening and referral decision-making, where early identification
and stratification are essential. Similarly, in the detection of glaucoma, a
condition notoriously difficult to diagnose in its early stages due to the
subtlety of anatomical changes, foundation models showed sensitivities
ranging from 0.89 to 0.94 and specificities from 0.84 to 0.91. These
figures surpass the typical performance metrics of traditional rule-based
algorithms and some classical ML approaches, which often underper-
form in early-stage disease when functional deficits have not yet man-
ifested. The ability of models such as RETFound, FMUE, and EyeCLIP to
capture both structural and contextual features through multimodal
input (e.g., OCT, fundus images, and clinical metadata) likely contrib-
utes to their superior predictive granularity.

An essential characteristic of foundation models, setting them apart
from narrowly trained systems, is their demonstrated resilience when
applied to external validation datasets. For example, FMUE, an OCT-
based retinal model with embedded uncertainty estimation, retained
an AUC of 0.989 on internal testing and performed comparably on
external cohorts. Similarly, RETFound-DE, trained partially on synthetic
data, achieved stable diagnostic performance across domains with only
2-16 labeled samples per class, illustrating the strength of its few-shot
learning capabilities. These findings support the claim that foundation
models not only learn visual and textual representations but also encode
generalizable medical semantics that extend across imaging devices,
healthcare institutions, and patient demographics.

4.4. Challenges in model optimization

However, it is critical to recognize that diagnostic accuracy in
foundational models is not a static or absolute measure. Rather, it re-
flects a dynamic range that can evolve over time as the models are
iteratively fine-tuned, retrained on new data distributions, or deployed
in environments with different disease prevalence, annotation protocols,
or clinical practices. Moreover, the operationalization of accuracy in
real-world workflows is influenced by context-dependent factors,
including user interface design, interpretability of results, integration
into clinical decision support systems, and the training of end-users.
Without alignment between algorithmic output and clinical utility,
even high-accuracy models may fail to deliver meaningful benefit at the
point of care.

What is particularly noteworthy of foundation models is the
robustness of these models when validated on external datasets, high-
lighting their generalizability across different patient populations and
settings.”® This is a crucial step toward ensuring the clinical applicability
of these models in real-world environments and can continue to evolve
as new data becomes available. Their evolving nature, while a strength
in terms of adaptability, necessitates proactive model governance stra-
tegies to ensure sustained clinical relevance and safety in real-world
settings.

4.5. Challenges in data quality, interpretability, and model generalization

Despite the impressive advancements, several challenges persist in
the development and integration of foundation models into ophthal-
mology. Data quality and diversity are among the most significant
concerns. Many studies relied on relatively homogeneous datasets, often
sourced from single clinical centers or specific ethnic populations.?” This
limitation could hinder the models’ ability to generalize to diverse pa-
tient demographics and real-world clinical scenarios.

Furthermore, algorithmic bias and overfitting remain persistent is-
sues, particularly when models are trained on small or unbalanced
datasets.?® This highlights the need for more diverse and representative
data sources for training models to ensure that these models can perform
reliably across various patient groups.?’ While current diagnostic met-
rics are promising, they must be viewed as interim performance
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indicators. Continued validation across diverse and representative
populations, particularly those historically underrepresented in
ophthalmic Al research, will be essential to ensure fairness, reliability,
and regulatory compliance.>>*! Additionally, longitudinal studies are
warranted to assess the consistency of these models in real-time diag-
nostic pipelines, where variability in image quality, disease spectrum,
and clinician feedback loops can impact model behavior. Establishing
frameworks for post-deployment monitoring and adaptive recalibration
will be key to sustaining diagnostic performance over time.

The interpretability of foundation models remains a significant and
unresolved challenge, particularly in the context of clinical adoption.
We further included a worked example (Fig. 4) demonstrating how sa-
liency overlays on fundus images can be combined with clinical inter-
pretation, illustrating the practical role of interpretability tools in
guiding ophthalmic decision-making. While vision-based models have
demonstrated high diagnostic capabilities, their inherent “black-box”
nature often makes it difficult for clinicians to discern the rationale
behind individual predictions.>? This opacity poses a substantial barrier
to epistemic trust, a critical factor for the safe and effective deployment of
Al in medicine. Clinicians must not only receive accurate outputs, but
also be able to understand, scrutinize, and justify those outputs within
the broader context of clinical decision-making.

To address this issue, a growing suite of explainable AI (XAI) tools
has been proposed. Techniques such as SHAP (Shapley Additive Expla-
nations) offer model-agnostic solutions for highlighting input features
most influential to a model's output, thereby generating locally faithful
surrogate explanations.>®> These tools are particularly useful for
high-dimensional imaging inputs, allowing ophthalmologists to visu-
alize which anatomical structures, such as the macula, optic disc, or
nerve fiber layer, most influenced a diagnosis. In addition to feature
attribution methods, attention mechanisms embedded within model
architectures can help surface implicit weighting strategies during
training, particularly in vision-language models such as EyeCLIP or
RetiZero. Such visual saliency maps and token-level relevance outputs
provide clinicians with interpretable cues about both image and text
contributions to the model's decision.>* More advanced forms of
explanation, such as counterfactual reasoning, are increasingly being
explored in the context of foundation models.>> Counterfactual expla-
nations allow clinicians to ask "what-if" questions about model behavior,
such as how a diagnosis might change if a specific retinal lesion were

Foundation Model

Fundus Images

Downstream
Applications
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absent or if visual field metrics were altered. These counterfactuals not
only aid transparency but also support error analysis, differential diag-
nosis, and model debugging. These advancements would increase
clinician trust and facilitate the broader adoption of Al models in clinical
workflows.

However, while these interpretability methods represent important
steps forward, they are often developed independently of clinical
context and remain underutilized in ophthalmology-specific applica-
tions. For these tools to support real-world diagnostic workflows, they
must be embedded within clinician-facing interfaces, validated for
clinical relevance, and co-designed with healthcare professionals.
Future research should thus focus not only on improving algorithmic
transparency but also on evaluating the usability, fidelity, and cognitive
load of interpretability techniques within clinical decision support
systems.

4.6. Clinical integration challenges: from architecture to application

The integration of foundation models into routine clinical practice
remains a work in progress. Several studies noted the barriers to inte-
gration, including the need for substantial computational resources,
compatibility with EHR systems, and clinician involvement in validating
model outputs.*® Firstly, the computational burden is substantial.
VisionFM and MINIM, for instance, require high-throughput computing
to manage multimodal data fusion during inference, limiting their
feasibility in real-time applications without edge-computing support.
Secondly, EHR integration is fragmented. While MetaGP achieved a
diagnostic score of 1.57 (vs. GPT-4's 0.93) by combining clinical records
with imaging, the heterogeneity of EHR systems impedes seamless
translation into hospital settings. Additionally, clinician validation is
still essential. Models such as EyeCLIP, despite few-shot learning ca-
pacities, yielded AUC ranges of 0.681-0.757 for diabetic retinopathy,
reinforcing the need for human-in-the-loop mechanisms for safe clinical
implementation. To contextualize these gaps, Table 3 outlines the core
architectural and deployment differences between traditional
ophthalmic models and foundation models. As the table illustrates,
foundation models offer a scalable and unified architecture, better
suited for environments with evolving diagnostic needs and heteroge-
neous data. However, they simultaneously introduce novel demands in
terms of governance, explainability, and clinical co-adaptation.

Clinical Takeaway

Glaucoma

Saliency Maps Overlay

Fig. 4. Worked example illustrating a fundus image with saliency overlay and corresponding clinical interpretation, demonstrating how interpretability tools can

support decision-making in practice.

Table 3

Conceptual comparison of traditional models and foundation models in ophthalmology.

Aspect Traditional Models

Foundation Models

Training Data Source
Label Dependency
Model Architecture
Training Strategy
Task Adaptation

Task-specific labeled datasets

High (manual expert annotation required)
Independent models per task

Train from scratch for each application
Poor (requires retraining)

Scalability Low (siloed per-task deployment)
Computational Efficiency Low (duplicate model development and training)
Generalizability Often limited to training domain

Clinical Integration Potential

Limited due to fragmented deployment pipelines

Large-scale unlabelled or weakly labeled data

Low (supports few-/zero-shot learning)

Unified backbone with modular fine-tuning

Pretrain once, fine-tune for downstream tasks

Strong (supports cross-domain generalization)

High (one model across multiple clinical tasks)

Higher (shared backbone; economies of scale)

High; validated on external datasets

Promising, contingent on transparency, interpretability, and oversight

Note: This framework is derived from a synthesis of current literature on medical Al systems and reflects the expert consensus of the authors based on the studies

reviewed in this systematic analysis.
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To move foundation models toward routine use, several practical
steps are required: (1) develop minimum integration layers to fit existing
workflows; (2) optimize models for limited GPU and battery resources to
enable use with portable fundus cameras; (3) ensure interoperability
with PACS/EHR systems; (4) set fail-safe thresholds so that uncertain
cases are referred to clinicians; and (5) implement continuous post-
deployment monitoring for drift and fairness.

4.7. Ethical and regulatory frontiers

Foundational progress must also contend with ethical and regulatory
realities. Regulatory approval, especially in high-stakes clinical appli-
cations such as surgery outcome prediction and diagnostic decision-
making, was highlighted as a critical factor for successful deploy-
ment.*” The opaque decision-making processes inherent to many deep
models risk eroding clinician trust, particularly in ophthalmology,
where diagnostic interpretation is traditionally image-centric and
consultative. Incorporating explainability methods such as SHAP,
attention mechanisms, or counterfactual visualization can help bridge
this gap. Moreover, future regulatory alignment with initiatives like the
European Union (EU)'s Al Act, the FDA's Good Machine Learning Prac-
tices (GMLP), and ISO/IEC 23894 for Al risk management will be pivotal
to ensure safety, fairness, and accountability in clinical use.>®

While many foundation models have demonstrated promising results
in research settings, few have been fully deployed in clinical environ-
ments. This gap between research and clinical application reflects the
challenges of incorporating Al into daily practice, where real-time de-
cision-making and collaboration with healthcare professionals are
essential.>®

4.8. Fairness, accessibility, and equity

An important limitation of current foundation models lies in fairness
and accessibility. While overall AUCs and accuracies appear high, several
recent studies demonstrate that such headline metrics can conceal sig-
nificant disparities across devices, demographic groups, and minority
populations. For example, portable fundus cameras and diverse acquisi-
tion settings, can expand access but also introduce domain shifts that
foundation models may fail to generalize to Ref. 39. Similarly, de-
mographic fairness remains a challenge: a study showed measurable
performance gaps by sex and age, even in high-performing models.*’
Moreover, the Harvard "Glaucoma Fairness" dataset documented sub-
stantial sensitivity differences across racial/ethnic groups, and proposed
Fair Identity Normalization as a mitigation strategy.*! These findings
underscore that models pretrained primarily on high-resource datasets
may perform poorly in underserved settings with different imaging de-
vices, demographic distributions, or disease prevalence. Without delib-
erate validation and adaptation, deploying FMs risks exacerbating
inequities in ophthalmic care rather than reducing them. Therefore, future
research must prioritize targeted external validation, inclusion of under-
represented populations, and fairness-aware training strategies to ensure
safe and equitable deployment of foundation models in ophthalmology.

4.9. Future directions

The findings of this review point to the remarkable promise of
foundation models in transforming ophthalmic diagnostics and clinical
decision-making, particularly for improving diagnostic accuracy,
accelerating disease detection, and enabling the identification of rare
and complex conditions. However, to translate this promise into real-
world impact, several critical challenges must be addressed. Chief
among these are issues related to data heterogeneity, algorithmic bias,
model interpretability, and the practical integration of Al systems into
clinical workflows. Without deliberate, interdisciplinary efforts to
resolve these barriers, the clinical utility and ethical sustainability of
foundation models may remain limited.
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However, a limitation of this review is the possibility of missing
studies due to our search relying on "foundation model" labels. Some
relevant works may not have explicitly used this term or could have been
published in less formal sources, such as conference proceedings (e.g.,
MICCALI, ISBI). Future updates could benefit from broader search terms
and manual curation from these venues to capture additional studies.

Future research should focus on.

(1) Expanding and diversifying of training datasets to encompass
broader demographic, geographic, and phenotypic variation.
This will be essential not only for improving model generaliz-
ability but also for mitigating the risk of performance disparities
across underrepresented populations.

Developing intrinsically interpretable or post hoc explainable
models is vital for fostering clinician trust and ensuring regula-
tory readiness. Such efforts should include the co-design of user-
centric explanation tools that align with real-world clinical
reasoning.

Exploring novel ways to enhance data efficiency, reducing the
reliance on vast annotated datasets. These data-efficient training
strategies, including few-shot learning, synthetic data augmen-
tation, and self-supervised learning frameworks, should be sys-
tematically explored and rigorously validated within
ophthalmology-specific contexts to ensure their effectiveness in
reducing annotation burdens, enhancing model adaptability, and
enabling scalable deployment across diverse clinical settings.
Ensuring that models meet regulatory standards for clinical use
and are capable of integration into real-world clinical environ-
ments. Rigorous attention must be paid to regulatory alignment,
ensuring that foundation models meet evolving standards for
safety, transparency, and post-deployment monitoring, as out-
lined in global frameworks such as the EU Al Act and FDA's GMLP
guidelines.

(2

—
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These efforts will not only enhance the efficacy of foundation models
in ophthalmology but will also ensure their safe and effective integration
into clinical practice, ultimately improving patient outcomes and
transforming the field of ophthalmic care.

5. Conclusions

This systematic review highlights the significant potential of foun-
dation models in ophthalmology, particularly for improving the diag-
nosis of retinal diseases, glaucoma, and ocular surface tumors. These
models, leveraging multimodal data, demonstrate high diagnostic ac-
curacy and robustness across diverse ophthalmic conditions. However,
challenges such as data quality, model interpretability, and integration
into clinical workflows remain. To fully realize the potential of foun-
dation models in ophthalmology, further research is needed to enhance
model generalization, transparency, and clinical applicability. With
continued advancements, foundation models would transform diag-
nostic practices and improve patient outcomes in ophthalmology.
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Abbreviations

Al artificial intelligence

DR diabetic retinopathy

AMD age-related macular degeneration

OCT optical coherence tomography

CFP color fundus photography

CNN convolutional neural network

EHR electronic health record

AUC area under the curve

OST ocular surface tumors

FLAIR  Foundation Language-Image Model of the Retina
MetaGP Generative Foundation Model Integrating Electronic Health

Records and Multimodal Imaging

RETFound Retinal Foundation Model
VisionFM Vision Foundation Model
RetiZero Knowledge-Rich Vision-Language Model for Fundus Diseases
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