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A B S T R A C T

Background: Vision and vision-language foundation models, a subset of advanced artificial intelligence (AI) 
frameworks, have shown transformative potential in various medical fields. In ophthalmology, these models, 
particularly large language models and vision-based models, have demonstrated great potential to improve 
diagnostic accuracy, enhance treatment planning, and streamline clinical workflows. However, their deployment 
in ophthalmology has faced several challenges, particularly regarding generalizability and integration into 
clinical practice. This systematic review aims to summarize the current evidence on the use of vision and vision-
language foundation models in ophthalmology, identifying key applications, outcomes, and challenges.
Main text: A comprehensive search on PubMed, Web of Science, Scopus, and Google Scholar was conducted to 
identify studies published between January 2020 and July 2025. Studies were included if they developed or 
applied foundation models, such as vision-based models and large language models, to clinically relevant 
ophthalmic applications. A total of 10 studies met the inclusion criteria, covering areas such as retinal diseases, 
glaucoma, and ocular surface tumor. The primary outcome measures are model performance metrics, integration 
into clinical workflows, and the clinical utility of the models. Additionally, the review explored the limitations of 
foundation models, such as the reliance on large datasets, computational resources, and interpretability 
challenges.
The majority of studies demonstrated that foundation models could achieve high diagnostic accuracy, with 
several reports indicating excellent performance comparable to or exceeding those of experienced clinicians. 
Foundation models achieved high accuracy rates up to 95% for diagnosing retinal diseases, and similar per-
formances for detecting glaucoma progression. Despite promising results, concerns about algorithmic bias,
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overfitting, and the need for diverse training data were common. High computational demands, EHR compati-
bility, and the need for clinician validation also posed challenges. Additionally, model interpretability issues 
hindered clinician trust and adoption.
Conclusions: Vision and vision-language foundation models in ophthalmology show significant potential for 
advancing diagnostic accuracy and treatment strategies, particularly in retinal diseases, glaucoma, and ocular 
oncology. However, challenges such as data quality, transparency, and ethical considerations must be addressed. 
Future research should focus on refining model performance, improving interpretability and generalizability, and 
exploring strategies for integrating these models into routine clinical practice to maximize their impact in clinical 
ophthalmology.

1. Introduction

Recent advancements in artificial intelligence (AI), particularly 
through the development of vision and vision-language foundation 
models, have demonstrated great potential to transform medical appli-
cations. 1 These models, which encompass large language models (LLMs) 
and vision-based architectures, have shown substantial promise across 
various healthcare domains, with ophthalmology emerging as one of the 
key beneficiaries of these applications. 2,3 Ophthalmology, with its high 
dependence on image-based diagnostics, complex decision-making 
processes, and increasing demand for automation, therefore offers an 
ideal landscape for the integration of AI technologies. 4,5

Vision and vision-language foundation models are pretrained on 
large heterogeneous datasets comprising millions of images and paired 
image–text corpora, spanning both medical and non-medical sources. 
The pretraining process often leverages self-supervised learning para-
digms such as masked auto encoding, contrastive learning, or cross-
modal alignment (e.g., CLIP-like architectures), which enable the 
extraction of both fine-grained visual representations (e.g., retinal mi-
crostructures, vascular patterns) and higher-order semantic features 
relevant to clinical interpretation. These models can subsequently be 
fine-tuned for ophthalmic applications using transfer learning or 
parameter-efficient strategies like adapter tuning and prompt engi-
neering, thereby reducing the demand for large, domain-specific anno-
tated datasets. A defining characteristic is their cross-task 
transferability: the same backbone can seamlessly support tasks ranging 
from fundus and Optical Coherence Tomography (OCT) segmentation to 
disease classification, prognosis modeling, and even ophthalmic report 
generation. These models possess cross-task transferability and multi-
modal capabilities, enabling them to handle both image and language 
tasks. Unlike task-specific models, they can adapt to various ophthalmic 
applications, often achieving performance comparable to traditional 
machine learning (ML) methods while improving efficiency and adapt-
ability. This adaptability is largely driven by their ability to leverage 
shared representations across domains, where features learned from 

general visual patterns can be repurposed for disease-specific recogni-
tion in ophthalmic imaging. 6,7 In ophthalmology, these models are 
increasingly explored for diagnosing and predicting the prognosis of 
retinal diseases, glaucoma, and other ocular conditions. 8,9 They are also 
employed to predict patient outcomes, automate routine tasks, and 
support clinical decision-making, thereby enhancing the efficiency of 
ophthalmic care. 10

Despite the promising results, the widespread adoption of foundation 
models in clinical practice is hindered by several challenges. 11 These 
include concerns about the interpretability of models, biases in training 
data, and the generalizability of models across diverse patient pop-
ulations. Furthermore, integrating these models into existing healthcare 
infrastructures and ensuring reliable real-time performance in clinical 
settings remain a significant hurdles. 12

This systematic review aims to systematically explore the potential 
applications of vision and vision-language foundation models in 
ophthalmology by synthesizing current literature. It examines the 
effectiveness of these models in improving diagnostic accuracy,

optimizing treatment plans, and enhancing clinical workflows. Addi-
tionally, this review addresses limitations and challenges faced by these 
AI-driven tools and provides recommendations for future research and 
clinical implementation.

By evaluating the current state of vision and vision-language foun-
dation models in ophthalmology, this review seeks to provide a 
comprehensive overview of their role in modernizing ophthalmic care, 
highlighting both their potential and the need for cautious, evidence-
based integration into clinical practice.

2. Methods

This systematic review was conducted to evaluate the application, 
performance, and challenges associated with vision and vision-language 
foundation models in ophthalmology. The review followed the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines to ensure transparency and reproducibility.

2.1. Eligibility criteria

Studies were included in the review if they met the following criteria: 
(1) The study applied a foundation model, in clinical ophthalmology; (2) 
The model was used for diagnosis, prediction for incidence or progres-
sion, or treatment planning of eye diseases (e.g., retinal diseases, glau-
coma); (3) The study was published between January 2020 and July 
2025 in peer-reviewed journals, with full-text paper available in English. 
This period was chosen as this period marked a significant increase in 
the application and development of foundation models in the medical 
field.

Exclusion criteria were: (1) Studies that did not use foundation 
models or did not focus on ophthalmology; (2) Study papers that were 
reviews, opinions, or case reports; (3) Studies that did not report on 
model performance or clinical outcomes.

2.2. Information sources and search strategy

A comprehensive literature search was conducted on July 7th, 2025, 
in several electronic databases, including PubMed, Web of Science, 
Scopus, and Google Scholar. Google Scholar was used only for forward/ 
backward citation chasing rather than as a primary database. Boolean 
operators (AND, OR) were used to refine the search strategy. Specif-
ically, "Foundation model" AND ("deep learning" OR "artificial intelli-
gence") were combined to focus on studies integrating advanced AI 
methods. Terms related to the medical domain, such as "ophthalmology" 
AND ("retinal diseases" OR "ocular diseases"), were used to ensure the 
inclusion of relevant clinical research. To ensure the comprehensiveness 
of the search, "glaucoma" was included as a separate term, combined 
with "ocular diseases" using the OR operator. The search was restricted 
to articles published between January 1st, 2020 (the period marking the 
emergence of large-scale pretraining and multi-task transfer in medi-
cine), and July 7th, 2025, to ensure the relevance and timeliness of the 
literature.
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2.3. Study selection

After removing duplicates, titles and abstracts were screened by two 
independent reviewers (KJ and TY) to identify studies that met the 
eligibility criteria (Table S1). Full-text articles of potentially relevant 
studies were assessed for inclusion. Any disagreements between re-
viewers were resolved by consensus or by consulting a third reviewer 
(AG).

2.4. Data extraction

Data was extracted from the included studies using a standardized 
data extraction form. The following information was collected: Study 
characteristics (author(s), year of publication, study design), model type 
(e.g., deep learning, large language models (LLMs)), application area (e. 
g., retinal disease diagnosis, glaucoma monitoring), data used for 
training and validation (e.g., clinical images, datasets), performance 
metrics (e.g., diagnostic accuracy, sensitivity, specificity, area under the 
curve (AUC)), limitations and challenges discussed in the study (e.g., 
data quality, model interpretability).

2.5. Quality Assessment

The quality of the included studies was assessed using the QUADAS-2 
(Quality Assessment of Diagnostic Accuracy Studies) tool, which eval-
uates the risk of bias in diagnostic accuracy studies. 13 Each study was

independently assessed by two reviewers (KJ and TY), with disagree-
ments resolved by consensus. We added a summary table (Table S2) and 
a heatmap of domain-level ratings (Fig. 3).

2.6. Data synthesis

The data were qualitatively and quantitatively synthesized, and a 
narrative summary was provided. Due to the heterogeneous nature of 
the included studies, a meta-analysis was not performed. Key themes 
and findings regarding the applications of foundation models in 
ophthalmology, performance outcomes, and limitations were identified 
and discussed.

2.7. Outcome measures

The outcome measures of this review included performance metrics 
of the models, their integration into clinical workflows and clinical 
utility; limitations and challenges related to the integration of founda-
tion models into clinical practice, such as data quality, interpretability, 
and bias.

3. Results

A total of 10 studies met the inclusion criteria and were included in 
this systematic review (Fig. 1). These studies collectively demonstrate 
the growing application of vision-based and vision-language foundation

Fig. 1. PRISMA 2020 flow diagram for this systematic review.
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models, including both large language and vision-based models in 
various ophthalmological domains. The focus areas included retinal 
diseases, glaucoma, and ocular surface tumors (OSTs), with significant 
methodological diversity and performance outcomes.

3.1. Study characteristics

All included studies reviewed were published between 2023 and 
2025, reflecting the rapid advancement of foundation model develop-
ment in recent years (Table 1). All of these studies trained the founda-
tion models using large datasets. Six studies utilized publicly available 
datasets (e.g., the EyePACS dataset, which contains 288,307 images), 
while four studies used institution-specific proprietary dataset, often 
integrating imaging with clinical data such as electronic health records 
(EHRs). 14,15 The model training scale was substantial: for instance, 
VisionFM was trained on 3.4 million multimodal images, and MetaGP 
incorporated 8 million EHRs, indicating a trend toward large-scale 
pretraining for generalizability (Table 1).

3.2. Application and model performance

Retinal Diseases: The majority of studies (n = 8) focused on the 
diagnosis of retinal diseases, including diabetic retinopathy (DR) (n = 

8), age-related macular degeneration (AMD) (n = 8), and diabetic 
macular edema (DME) (n = 3). Vision-based models demonstrated high 
diagnostic performance. 16–21

• RETFound achieved AUC = 0.94 for DR on the EyePACS dataset (N
= 288307, internal validation, prevalence ≈ 22%) and AUC = 0.86 
for wet AMD on the AREDS dataset (N = 12532, external validation, 
prevalence ≈ 19%).

• RetiZero reported top-5 accuracy of 75.6% in detecting over 400 rare 
fundus conditions (N = 342000, multi-ethnic, external validation).

• FLAIR and RETFound-DE showed strong performance even under 
few-shot and zero-shot scenarios (DR detection, sensitivity 0.91, 
specificity 0.89), reflecting their capacity for efficient adaptation 
with limited labeled data.

Glaucoma Detection: Three studies explored the use of foundation 
models for glaucoma detection, with models such as EyeCLIP and 
RETFound-DE reporting AUCs values between 0.721 and 0.913 
(external dataset). 15 RETFound-DE achieved AUC = 0.902 for glaucoma 
on REFUGE-2 (external validation), with sensitivity 0.89 and specificity 
0.86 at the pre-specified operating threshold. RETFound-DE demon-
strated robust performance in both few-shot and cross-domain gener-
alization tasks, supporting deployment across diverse clinical 
environments.

Ocular Surface Tumors: Two studies examined the application of AI 
models for detecting malignant and premalignant OSTs. The OSPM 

model achieved outstanding AUCs scores between 0.986 and 0.993, 
validating its potential as a screening tool in oncology ophthalmology 
(internal and external validation against histopathology gold stan-
dard). 22 The model also maintained accuracy across external datasets 
such as JEH (Dataset or Clinical Site), highlighting its generalizability. 

Multimodal and Rare Disease Integration: Several studies, such as 
MetaGP, extended foundation model capabilities to rare and urgent 
conditions through multimodal integration of fundus imaging, EHRs, 
and CT (Computed Tomography)/CXR (Chest X-Ray) scans. MetaGP 
yielded a diagnostic score of 1.57, outperforming GPT-4 (0.93) in rare 
disease classification, which reflects the model's performance in rare 
disease classification tasks by combining EHR data and imaging. 14

For retinal diseases, the foundation models demonstrated sensitivity 
values ranging from 0.88 to 0.96 and specificity values from 0.85 to 0.93 
(n = 8), indicating strong diagnostic performance. In glaucoma detec-
tion, sensitivity ranged from 0.89 to 0.94, while specificity ranged from 

0.84 to 0.91, refers to the three studies. Notably, several models

maintained high performance when evaluated on external validation 
datasets, highlighting their robustness and generalizability across 
diverse clinical populations and settings. A detailed summary of model 
performance is presented in Table 2.

3.3. Clinical integration and real-world deployment

Six of the included studies discussed efforts toward the integration of 
foundation models into clinical workflows. While all models demon-
strated promising diagnostic results, none have yet achieved full 
deployment in routine ophthalmic practice. However, some models 
have been tested in pilot studies or limited-scope deployments. For 
instance, MetaGP has been used in real-world settings to integrate EHR 
and imaging data for diagnosing rare diseases, showing promising re-
sults in clinical trials for urgent care situations. Similarly, VisionFM has 
been tested in specific clinical environments for glaucoma and diabetic 
retinopathy screening. These examples highlight the translational po-
tential of foundation models, particularly when compared to traditional 
task-specific AI models, which are already deployed for routine clinical 
tasks such as diabetic retinopathy screening.

Nonetheless, the findings suggest considerable translational poten-
tial, particularly when contrasted with traditional task-specific AI 
models. As illustrated in Fig. 2, foundation models offer distinct ad-
vantages over conventional architectures. Unlike traditional models that 
require separate training for each task using isolated labeled datasets, 
foundation models leverage large-scale pretraining on unlabelled data 
and can be adapted across multiple tasks with minimal labeled super-
vision. This results in improved generalizability, label efficiency, and 
computational scalability. Despite their promise, several technical and 
implementation-related challenges persist, as detailed below.

• Computational Resource Demands: Advanced models such as 
VisionFM, which incorporates multimodal imaging from over 
500000 individuals across 3.4 million images, require substantial 
GPU-intensive infrastructure for both training and inference. 19 While 
such models achieved AUCs up to 0.974 (AMD) and 0.945 (DR), 
real-time deployment in resource-constrained clinical environments 
remains a limitation without edge optimization or cloud-based 
support.

• EHR Interoperability: MetaGP, which integrates structured EHR data 
with multimodal images for rare disease diagnosis, demonstrated an 
average diagnostic score of 1.57, significantly outperforming GPT-4 
(0.93). 14 However, integration into diverse and often fragmented 
hospital information systems presents significant interoperability 
and data privacy challenges.

• Clinician Validation and Interpretability Needs: Even models with 
strong internal test results such as FMUE (focused on OCT-based 
retinal disease diagnosis with built-in uncertainty estimation) with 
F1 score of 95.7% and AUC of 0.989, necessitate clinicians involve-
ment for results validation. Similarly, EyeCLIP, which achieved AUC 
values ranging from 0.681 to 0.757 (DR) and 0.721–0.684 (glau-
coma), remains dependent clinician oversight due to model perfor-
mance variability across external datasets. Models like FLAIR and 
RetiZero, despite notable success in rare disease recognition, also 
highlight the need for human-in-the-loop verification to ensure 
contextual appropriateness in diagnosis.

3.4. Risk of bias in studies

The QUADAS-2 assessment (Fig. 3) showed that the main source of 
potential bias across the ten included studies was in patient selection, 
with nine studies judged at high risk due to reliance on convenience 
sampling from public datasets or retrospective case series, while only the 
OSPM study used consecutive multi-center enrollment and was rated 
low risk. In contrast, the index test and reference standard domains were 
consistently low risk, as model outputs were generated automatically
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Table
 
1

Characteristics of 10 foundation
 
models for application in

 
ophthalmology. AUC (Area

 
Under the Curve), DR (Diabetic Retinopathy), Wet-AMD

 
(Wet Age-Related Macular Degeneration), OCT (Optical Coherence To-

mography), EHR (Electronic Health Records), CXR (Chest X-Ray), CT (Computed
 
Tomography), MRI (Magnetic Resonance Imaging), F1 Score (F1 Score), IIR (Image-Image Retrieval), ITR (Image-Text Retrieval), OST 

(Ocular Surface Tumor).

Author Publication
 

Year
Model
Name

Sample Size Objective Data
 
Types Main

 
Findings Clinical Significance Study

 
Design

 
External 
Validation

Geography

Yukun
 
Zhou

 
et al. 

15
2023

 
RETFound

 
1.6
 
million

 
unlabelled

 
Fundus images 

For generalizable disease 
detection

 
from

 
Fundus 

images

OCT, fundus images RETFound
 
improves 

diagnostic accuracy with 
fewer labeled data

 

Facilitates faster 
adaptation

 
to
 
diverse 

medical tasks 

Cross-sectional Yes (EyePACS) Global

Julio
 
Silva-

Rodríguez 
et al. 

20

2024
 

FLAIR
 

38
 
open-access 

datasets, 
288,307

 
images

Enhance retinal fundus 
image analysis using 
domain-specific 
knowledge

Fundus images with 
textual descriptions

FLAIR
 
outperforms task-

specific models with 
expert knowledge 
integration

Enhances disease 
recognition

 
accuracy

 
in
 
fundus images

Retrospective
cohort

Yes (AREDS) Multi-center 
(International)

Qiu
 
et al. 

19
 2024

 
VisionFM

 
3.4
 
million

 
images from 500,000+

 individuals

Develop
 
a
 
multimodal 

multitask
 
AI model for 

ophthalmic use

Ophthalmic images 
across various 
modalities

VisionFM
 

shows 
generalization

 
and

 
diagnostic accuracy 
across multiple 
modalities

Transforms clinical AI 
by
 
enabling

 
multimodal task 
adaptability

Cohort study Yes (DR cohort, 
AMD

 
cohort)

Multi-center
(Global)

Danli Shi 
et al. 

42
2025

 
EyeCLIP

 
2.77

 
million

 
images from 

11
 

modalities

Develop
 
a
 
multimodal 

model for computational 
ophthalmology

Multimodal 
ophthalmic images, 
clinical text

EyeCLIP
 
shows robust 

performance in disease 
classification

 
and

 
few-

shot learning

Improves early 
detection

 
of eye 

diseases with 
multimodal AI 

Cross-sectional Yes (MESSIDOR, 
UK
 
Biobank)

Multi-center
(Global)

Yuanyuan
 

Peng
 

et al. 
21

2025
 

FMUE
 

102,468
 
OCT

 
images

Improve AI reliability in 
OCT-based

 
retinal disease 

diagnosis

OCT
 
images FMUE

 
enhances clinical 

AI reliability, achieving 
excellent performance on 
OCT

 
data

Increases diagnostic 
reliability

 
in
 
clinical 

environments

Cross-sectional Yes (External 
OCT)

Local

Fei Liu et al. 
14
 2025

 
MetaGP

 
8
 
million

 
EHRs, 

biomedical 
literature

Develop
 
a
 
model 

integrating
 
medical 

records and imaging
 
for 

diagnostics

EHRs, fundus 
images, chest X-rays 
(CXR) and CT

 
scans

MetaGP
 
boosts diagnosis 

of rare and emergent 
diseases

Improves clinician 
decision-making, 
especially

 
in
 
rare 

disease diagnosis 

Cohort study Yes (Composite 
rare-disease 
benchmark)

Multi-center
(Global)

Jinzhuo
 

Wang
 

et al. 
16

2024
 

MINIM
 

200k
 
+
 
paired

 
images across 6 
modalities

Build
 
a
 
self-improving

 
generative model to 
synthesize high-fidelity 
medical images from 

text 

OCT, fundus images, 
chest X-ray, chest 
CT, brain MRI, 
breast MRI

MINIM
 

generates 
realistic images and 
improves diagnosis and 
mutation

 
prediction

 

Enables non-invasive, 
AI-guided

 
detection

 
of 

HER2/EGFR
 

mutations

Prospective
cohort

Yes (Internal) Multi-center 
(Global)

Yuqi Sun 
et al. 

17
2025

 
RETFound-
DE

1
 
million

 
synthetic 
images, 16.7%

 real data 

Develop
 
a
 
data-efficient 

strategy
 
for building 

medical foundation 
models

Fundus images, 
chest X-ray images

RETFound-DE
 
shows 

competitive performance 
with

 
synthetic data

Increases model 
performance with 
limited

 
data

Cross-sectional Yes (DR cohort, 
Glaucoma)

Global

Meng
 
Wang

 
et al. 

18
2025 RetiZero 341896

 
fundus 

images
Enhance diagnostic 
accuracy

 
in
 
fundus 

diseases with AI models 

Fundus images RetiZero
 
enhances 

diagnostic accuracy in 
rare fundus diseases 

Improves diagnostic 
accuracy

 
in
 
clinical 

settings

Cohort study Yes (H1/H2/H3 
external 
datasets) 

Multi-center
(Global)

Zhongwen
 
Li 

et al. 
22

2025
 

OSPM
 

0.76
 
million

 
ocular surface 
images

Create a model for 
detecting

 
malignant and 

premalignant ocular 
tumors

Ocular surface 
images

OSPM
 
improves accuracy 

in
 
detecting

 
malignant 

and
 
premalignant OSTs

Enhances early 
detection

 
and

 
treatment of ocular 
tumors

Cross-sectional Yes (JEH external dataset)
Multi-center
(Global)
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Table
 
2

Summary
 
of foundation model performance in ophthalmology. AUC (Area

 
Under the Curve), DR (Diabetic Retinopathy), Wet-AMD

 
(Wet Age-Related Macular Degeneration), OCT (Optical Coherence Tomography), 

OCTDL
 
(Optical Coherence Tomography Deep Learning), F1 Score (F1 Score), EHR (Electronic Health Records), IIR (Image-Image Retrieval), ITR (Image-Text Retrieval), JEH 

(Dataset or Clinical Site), MMAC
 
(Multi-class 

Multi-label Classification), FIVES (Dataset for Retinal Disease Classification).

Model
Name

Application
 
Focus Validation

 
Dataset Key

 
Performance Metrics Supervised

 
Finetune Few-shot Zero-shot

RETFound
 

Disease detection from
 

fundus 
images (CFP & 

OCT)
EyePACS

 
(Internal) AUC

 
0.94

 
(DR), AUC 0.86

 
(Wet-AMD),

AUC
 
0.79

 
(Heart Failure) 

AUC
 
0.943

 
(DR), 0.822

(IDRID) 

Good
 
performance with 50

 
%

labeled
 
data

 

AUC
 
0.754

 
(Ischemic Stroke), 0.669

(Parkinson's Disease)AREDS
 
(External) 

FLAIR
 

Retinal image understanding via 
vision-language pre-training

20
 
×
 
3
 
(Internal) Accuracy

 
98.3%

 
(20
 
×
 
3), 66.7%

(ODIR200
 
×
 
3), 40%

 
(MMAC) 

AUC
 
0.602

 
(DR), AUC

0.918
 
(Glaucoma) 

Significant improvement in
few-shot settings with linear 
probe

33%
 

(20
 
×
 
3), 20%

 
(ODIR200

 
×
 
3,

MMAC) improvementODIR200
 
×
 
3
 
(External) 

MMAC
 
(External) 

VisionFM
 

Multimodal AI for ophthalmology 
(8
 
imaging

 
modalities)

Internal aggregate (Internal) AUC
 
0.950

 
(Internal), AUC 0.945

(DR), AUC 0.974
 
(AMD)

AUC
 
0.950

 
(Internal) Dice 77.54% 

(Few-shot OCT 
segmentation)

AUC
 
0.945

 
(DR)

DR
 
cohort (External) 

AMD
 
cohort (External)

EyeCLIP
 

Multimodal ophthalmic visual-
language model

MESSIDOR
 
(External) AUC

 
0.681–0.757

 
(DR),

AUC0.684–0.721
 
(Glaucoma), AUC 

0.800
 
(OCTID)

AUC
 
0.835

 
(DR), 0.913

(Glaucoma), 0.993 
(OCTDL)

Outperformed
 
others in few-

shot tasks 

AUC
 
0.681–0.757

 
(DR),0.684–0.721

(Glaucoma)UK
 
Biobank/REFUGE-2

 
(External) 
OCTID

 
(External)

FMUE OCT-based
 
retinal disease 

diagnosis with uncertainty
 

estimation

Internal OCT (Internal) F1
 
95.7%, AUC 0.989

 
(internal) F1

 
97.23%

 
(Internal),

99.16%
 

(External) 

Good
 
performance with 1–16

labeled
 
examples 

Top-1
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and compared against expert annotations or histopathology without 
review bias. For flow and timing, most studies were low risk, but MINIM 

and RETFound-DE were rated unclear because of potential in-
consistencies when integrating synthetic and real data. Overall, these 
findings indicate that while the technical evaluation of foundation 
models in ophthalmology is generally robust, limitations in study pop-
ulations, particularly non-consecutive and heterogeneous sampling, 
represent the predominant risk of bias and may constrain generaliz-
ability to real-world practice.

4. Discussion

The promising results of foundation models for eye diseases 
demonstrate their great potential to transform the landscape of diag-
nostic medicine. Synthesizing evidence from ten foundation model 
studies, the review reveals that both vision-based models and LLMs have 
demonstrated impressive diagnosis capabilities across a range of 
ophthalmological conditions, particularly retinal diseases, glaucoma, 
and ocular surface tumors. These models, pretrained on vast, often 
unlabelled datasets, are subsequently fine-tuned to tackle an array of

downstream ophthalmic applications, including disease classification, 
progression tracking, and rare condition recognition. Most studies 
focused on high-prevalence pathologies such as diabetic retinopathy, 
age-related macular degeneration, and glaucoma, while others extended 
to rarer or underexplored conditions, demonstrating the breadth of use 
cases enabled by these systems. Collectively, these models offer signif-
icant opportunities to enhance diagnostic accuracy, streamline clinical 
efficiency, and expand access to expert-level interpretation in diverse 
clinical contexts.

4.1. Unifying multimodal data for enhanced diagnostic accuracy

A key advantage of foundation models lies in their capacity to pro-
cess and integrate multimodal data sources, a feature that elevates their 
diagnostic breadth and depth. 23 Several reviewed studies utilized vast 
amounts of ophthalmic data, including images from diverse modalities 
such as OCT, color fundus photography (CFP), and fluorescein fundus 
angiography (FFA), as well as clinical text and EHRs. For instance, 
EyeCLIP, a multimodal visual-language model, was trained on over 2.77 
million ophthalmology images from 11 imaging modalities, augmented

Fig. 2. Diagram for traditional models and foundation models. This diagram highlights the advantages of foundation models over traditional models in general-
izability, label efficiency, and computational efficiency. Unlike traditional models, a single foundation model can adapt to multiple tasks with less labeled data, 
making fine-tuning more efficient than training separate models from scratch.

Fig. 3. QUADAS-2 traffic light plot.
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by partial clinical text, exemplifying the shift toward large-scale, 
multimodal learning architectures. This reflects significant progress in 
computational ophthalmology, enabling more comprehensive and 
adaptable diagnostic tools.

These foundation models are not confined to specific tasks or disease 
categories. In particular, models such as VisionFM and MetaGP 
demonstrated high generalization abilities, performing effectively 
across various diseases and clinical scenarios. VisionFM, a foundation 
model pretrained on 3.4 million ophthalmic images across multiple 
modalities, demonstrated strong generalization in diagnosing diseases 
like DR, glaucoma, and macular degeneration. It achieved high accuracy 
across diverse datasets, highlighting its adaptability to tasks ranging 
from screening to prognosis. This multimodal co-adaptation reflects a 
significant departure from prior siloed model designs and supports 
diagnostic personalization through data synthesis across anatomical, 
temporal, and contextual layers.

Beyond the ten core studies included, additional foundation models 
provide important insights into the evolution of ophthalmic FMs. For 
instance, EyeFM was trained on 10 million multimodal ophthalmic 
images and clinical reports, demonstrating robust performance in 
glaucoma detection. 24 Its strength lies in integrating textual and imaging 
data, supporting cross-modal reasoning tasks. Similarly, multiple 
RETFound variants have been developed since the original 2023 
RETFound model, including RETFound-DE (data-efficient pretraining 
with synthetic images), RETFound-Green (optimized for low-resource 
fundus screening with 75000 images), and RETFound-MEH (a 
900000-image Moorfields dataset). These variants extend the general-
izability of the RETFound framework, enabling adaptation to few-shot 
learning, domain shifts, and rare disease recognition. Together, EyeFM 

and the RETFound variants illustrate the rapid diversification of foun-
dation model architectures in ophthalmology, highlighting a trend to-
ward specialization while maintaining general-purpose adaptability.

4.2. Addressing rare and complex ophthalmic conditions

The ability of foundation models to handle rare and complex diseases 
is a particularly exciting development in ophthalmology. A few studies 
reviewed here focused on rare diseases or conditions with limited data 
availability. For example, MetaGP demonstrated robust diagnostic per-
formance in rare disease and urgent care scenarios, such as Pompe dis-
ease and hereditary transthyretin amyloidosis, by integrating diverse 
datasets such as EHRs and multimodal imaging. RetiZero also showed 
remarkable zero-shot capabilities in identifying rare fundus diseases that 
are rarely represented in training data, such as Bietti crystalline dys-
trophy, chorioretinal coloboma, and punctate inner choroidopathy, 
achieving notably high top-3 accuracies and substantially out-
performing prior models. EyeCLIP demonstrated improved diagnostic 
performance on 17 rare conditions such as birdshot retinochoroidop-
athy, central areolar choroidal dystrophy, choroidal melanoma, 
choroidal osteoma, cone dystrophy, Stargardt disease.

This advancement is particularly valuable in ophthalmology, where 
early and accurate diagnosis of less common or clinically complex 
conditions is essential to prevent irreversible vision loss. The ability of 
these models to identify subtle patterns and anomalies in medical im-
ages or clinical data makes them invaluable tools for clinicians, partic-
ularly in settings where access to expert care is limited. 25

4.3. Demonstrating promising diagnostic accuracy and cross-domain 
robustness

Foundation models in ophthalmology have exhibited consistently 
high diagnostic performance across a wide spectrum of vision-
threatening diseases. In the domain of retinal diseases, models ach-
ieved sensitivity ranging from 0.88 to 0.96 and specificity from 0.85 to 
0.93. These performance metrics not only approach but in many in-
stances exceed clinician-level diagnostic accuracy, particularly for DR

and AMD-two of the leading causes of preventable blindness globally. 
Such performance highlights the clinical potential of these models in 
both screening and referral decision-making, where early identification 
and stratification are essential. Similarly, in the detection of glaucoma, a 
condition notoriously difficult to diagnose in its early stages due to the 
subtlety of anatomical changes, foundation models showed sensitivities 
ranging from 0.89 to 0.94 and specificities from 0.84 to 0.91. These 
figures surpass the typical performance metrics of traditional rule-based 
algorithms and some classical ML approaches, which often underper-
form in early-stage disease when functional deficits have not yet man-
ifested. The ability of models such as RETFound, FMUE, and EyeCLIP to 
capture both structural and contextual features through multimodal 
input (e.g., OCT, fundus images, and clinical metadata) likely contrib-
utes to their superior predictive granularity.

An essential characteristic of foundation models, setting them apart 
from narrowly trained systems, is their demonstrated resilience when 
applied to external validation datasets. For example, FMUE, an OCT-
based retinal model with embedded uncertainty estimation, retained 
an AUC of 0.989 on internal testing and performed comparably on 
external cohorts. Similarly, RETFound-DE, trained partially on synthetic 
data, achieved stable diagnostic performance across domains with only 
2–16 labeled samples per class, illustrating the strength of its few-shot 
learning capabilities. These findings support the claim that foundation 
models not only learn visual and textual representations but also encode 
generalizable medical semantics that extend across imaging devices, 
healthcare institutions, and patient demographics.

4.4. Challenges in model optimization

However, it is critical to recognize that diagnostic accuracy in 
foundational models is not a static or absolute measure. Rather, it re-
flects a dynamic range that can evolve over time as the models are 
iteratively fine-tuned, retrained on new data distributions, or deployed 
in environments with different disease prevalence, annotation protocols, 
or clinical practices. Moreover, the operationalization of accuracy in 
real-world workflows is influenced by context-dependent factors, 
including user interface design, interpretability of results, integration 
into clinical decision support systems, and the training of end-users. 
Without alignment between algorithmic output and clinical utility, 
even high-accuracy models may fail to deliver meaningful benefit at the 
point of care.

What is particularly noteworthy of foundation models is the 
robustness of these models when validated on external datasets, high-
lighting their generalizability across different patient populations and 
settings. 26 This is a crucial step toward ensuring the clinical applicability 
of these models in real-world environments and can continue to evolve 
as new data becomes available. Their evolving nature, while a strength 
in terms of adaptability, necessitates proactive model governance stra-
tegies to ensure sustained clinical relevance and safety in real-world 
settings.

4.5. Challenges in data quality, interpretability, and model generalization

Despite the impressive advancements, several challenges persist in 
the development and integration of foundation models into ophthal-
mology. Data quality and diversity are among the most significant 
concerns. Many studies relied on relatively homogeneous datasets, often 
sourced from single clinical centers or specific ethnic populations. 27 This 
limitation could hinder the models’ ability to generalize to diverse pa-
tient demographics and real-world clinical scenarios.

Furthermore, algorithmic bias and overfitting remain persistent is-
sues, particularly when models are trained on small or unbalanced 
datasets. 28 This highlights the need for more diverse and representative 
data sources for training models to ensure that these models can perform 

reliably across various patient groups. 29 While current diagnostic met-
rics are promising, they must be viewed as interim performance
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indicators. Continued validation across diverse and representative 
populations, particularly those historically underrepresented in 
ophthalmic AI research, will be essential to ensure fairness, reliability, 
and regulatory compliance. 30,31 Additionally, longitudinal studies are 
warranted to assess the consistency of these models in real-time diag-
nostic pipelines, where variability in image quality, disease spectrum, 
and clinician feedback loops can impact model behavior. Establishing 
frameworks for post-deployment monitoring and adaptive recalibration 
will be key to sustaining diagnostic performance over time.

The interpretability of foundation models remains a significant and 
unresolved challenge, particularly in the context of clinical adoption. 
We further included a worked example (Fig. 4) demonstrating how sa-
liency overlays on fundus images can be combined with clinical inter-
pretation, illustrating the practical role of interpretability tools in 
guiding ophthalmic decision-making. While vision-based models have 
demonstrated high diagnostic capabilities, their inherent “black-box” 
nature often makes it difficult for clinicians to discern the rationale 
behind individual predictions. 32 This opacity poses a substantial barrier 
to epistemic trust, a critical factor for the safe and effective deployment of 
AI in medicine. Clinicians must not only receive accurate outputs, but 
also be able to understand, scrutinize, and justify those outputs within 
the broader context of clinical decision-making.

To address this issue, a growing suite of explainable AI (XAI) tools 
has been proposed. Techniques such as SHAP (Shapley Additive Expla-
nations) offer model-agnostic solutions for highlighting input features 
most influential to a model's output, thereby generating locally faithful 
surrogate explanations. 33 These tools are particularly useful for 
high-dimensional imaging inputs, allowing ophthalmologists to visu-
alize which anatomical structures, such as the macula, optic disc, or 
nerve fiber layer, most influenced a diagnosis. In addition to feature 
attribution methods, attention mechanisms embedded within model 
architectures can help surface implicit weighting strategies during 
training, particularly in vision-language models such as EyeCLIP or 
RetiZero. Such visual saliency maps and token-level relevance outputs 
provide clinicians with interpretable cues about both image and text 
contributions to the model's decision. 34 More advanced forms of 
explanation, such as counterfactual reasoning, are increasingly being 
explored in the context of foundation models. 35 Counterfactual expla-
nations allow clinicians to ask "what-if" questions about model behavior, 
such as how a diagnosis might change if a specific retinal lesion were

absent or if visual field metrics were altered. These counterfactuals not 
only aid transparency but also support error analysis, differential diag-
nosis, and model debugging. These advancements would increase 
clinician trust and facilitate the broader adoption of AI models in clinical 
workflows.

However, while these interpretability methods represent important 
steps forward, they are often developed independently of clinical 
context and remain underutilized in ophthalmology-specific applica-
tions. For these tools to support real-world diagnostic workflows, they 
must be embedded within clinician-facing interfaces, validated for 
clinical relevance, and co-designed with healthcare professionals. 
Future research should thus focus not only on improving algorithmic 
transparency but also on evaluating the usability, fidelity, and cognitive 
load of interpretability techniques within clinical decision support 
systems.

4.6. Clinical integration challenges: from architecture to application

The integration of foundation models into routine clinical practice 
remains a work in progress. Several studies noted the barriers to inte-
gration, including the need for substantial computational resources, 
compatibility with EHR systems, and clinician involvement in validating 
model outputs. 36 Firstly, the computational burden is substantial. 
VisionFM and MINIM, for instance, require high-throughput computing 
to manage multimodal data fusion during inference, limiting their 
feasibility in real-time applications without edge-computing support. 
Secondly, EHR integration is fragmented. While MetaGP achieved a 
diagnostic score of 1.57 (vs. GPT-4's 0.93) by combining clinical records 
with imaging, the heterogeneity of EHR systems impedes seamless 
translation into hospital settings. Additionally, clinician validation is 
still essential. Models such as EyeCLIP, despite few-shot learning ca-
pacities, yielded AUC ranges of 0.681–0.757 for diabetic retinopathy, 
reinforcing the need for human-in-the-loop mechanisms for safe clinical 
implementation. To contextualize these gaps, Table 3 outlines the core 
architectural and deployment differences between traditional 
ophthalmic models and foundation models. As the table illustrates, 
foundation models offer a scalable and unified architecture, better 
suited for environments with evolving diagnostic needs and heteroge-
neous data. However, they simultaneously introduce novel demands in 
terms of governance, explainability, and clinical co-adaptation.

Fig. 4. Worked example illustrating a fundus image with saliency overlay and corresponding clinical interpretation, demonstrating how interpretability tools can 
support decision-making in practice.

Table 3
Conceptual comparison of traditional models and foundation models in ophthalmology.

Aspect Traditional Models Foundation Models

Training Data Source Task-specific labeled datasets Large-scale unlabelled or weakly labeled data
Label Dependency High (manual expert annotation required) Low (supports few-/zero-shot learning)
Model Architecture Independent models per task Unified backbone with modular fine-tuning
Training Strategy Train from scratch for each application Pretrain once, fine-tune for downstream tasks
Task Adaptation Poor (requires retraining) Strong (supports cross-domain generalization)
Scalability Low (siloed per-task deployment) High (one model across multiple clinical tasks)
Computational Efficiency Low (duplicate model development and training) Higher (shared backbone; economies of scale)
Generalizability Often limited to training domain High; validated on external datasets
Clinical Integration Potential Limited due to fragmented deployment pipelines Promising, contingent on transparency, interpretability, and oversight

Note: This framework is derived from a synthesis of current literature on medical AI systems and reflects the expert consensus of the authors based on the studies 
reviewed in this systematic analysis.
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To move foundation models toward routine use, several practical 
steps are required: (1) develop minimum integration layers to fit existing 
workflows; (2) optimize models for limited GPU and battery resources to 
enable use with portable fundus cameras; (3) ensure interoperability 
with PACS/EHR systems; (4) set fail-safe thresholds so that uncertain 
cases are referred to clinicians; and (5) implement continuous post-
deployment monitoring for drift and fairness.

4.7. Ethical and regulatory frontiers

Foundational progress must also contend with ethical and regulatory 
realities. Regulatory approval, especially in high-stakes clinical appli-
cations such as surgery outcome prediction and diagnostic decision-
making, was highlighted as a critical factor for successful deploy-
ment. 37 The opaque decision-making processes inherent to many deep 
models risk eroding clinician trust, particularly in ophthalmology, 
where diagnostic interpretation is traditionally image-centric and 
consultative. Incorporating explainability methods such as SHAP, 
attention mechanisms, or counterfactual visualization can help bridge 
this gap. Moreover, future regulatory alignment with initiatives like the 
European Union (EU)'s AI Act, the FDA's Good Machine Learning Prac-
tices (GMLP), and ISO/IEC 23894 for AI risk management will be pivotal 
to ensure safety, fairness, and accountability in clinical use. 30

While many foundation models have demonstrated promising results 
in research settings, few have been fully deployed in clinical environ-
ments. This gap between research and clinical application reflects the 
challenges of incorporating AI into daily practice, where real-time de-
cision-making and collaboration with healthcare professionals are 
essential. 38

4.8. Fairness, accessibility, and equity

An important limitation of current foundation models lies in fairness 
and accessibility. While overall AUCs and accuracies appear high, several 
recent studies demonstrate that such headline metrics can conceal sig-
nificant disparities across devices, demographic groups, and minority 
populations. For example, portable fundus cameras and diverse acquisi-
tion settings, can expand access but also introduce domain shifts that 
foundation models may fail to generalize to Ref. 39. Similarly, de-
mographic fairness remains a challenge: a study showed measurable 
performance gaps by sex and age, even in high-performing models. 40 

Moreover, the Harvard "Glaucoma Fairness" dataset documented sub-
stantial sensitivity differences across racial/ethnic groups, and proposed 
Fair Identity Normalization as a mitigation strategy. 41 These findings 
underscore that models pretrained primarily on high-resource datasets 
may perform poorly in underserved settings with different imaging de-
vices, demographic distributions, or disease prevalence. Without delib-
erate validation and adaptation, deploying FMs risks exacerbating 
inequities in ophthalmic care rather than reducing them. Therefore, future 
research must prioritize targeted external validation, inclusion of under-
represented populations, and fairness-aware training strategies to ensure 
safe and equitable deployment of foundation models in ophthalmology.

4.9. Future directions

The findings of this review point to the remarkable promise of 
foundation models in transforming ophthalmic diagnostics and clinical 
decision-making, particularly for improving diagnostic accuracy, 
accelerating disease detection, and enabling the identification of rare 
and complex conditions. However, to translate this promise into real-
world impact, several critical challenges must be addressed. Chief 
among these are issues related to data heterogeneity, algorithmic bias, 
model interpretability, and the practical integration of AI systems into 
clinical workflows. Without deliberate, interdisciplinary efforts to 
resolve these barriers, the clinical utility and ethical sustainability of 
foundation models may remain limited.

However, a limitation of this review is the possibility of missing 
studies due to our search relying on "foundation model" labels. Some 
relevant works may not have explicitly used this term or could have been 
published in less formal sources, such as conference proceedings (e.g., 
MICCAI, ISBI). Future updates could benefit from broader search terms 
and manual curation from these venues to capture additional studies. 

Future research should focus on.

(1) Expanding and diversifying of training datasets to encompass 
broader demographic, geographic, and phenotypic variation. 
This will be essential not only for improving model generaliz-
ability but also for mitigating the risk of performance disparities 
across underrepresented populations.

(2) Developing intrinsically interpretable or post hoc explainable 
models is vital for fostering clinician trust and ensuring regula-
tory readiness. Such efforts should include the co-design of user-
centric explanation tools that align with real-world clinical 
reasoning.

(3) Exploring novel ways to enhance data efficiency, reducing the 
reliance on vast annotated datasets. These data-efficient training 
strategies, including few-shot learning, synthetic data augmen-
tation, and self-supervised learning frameworks, should be sys-
tematically explored and rigorously validated within 
ophthalmology-specific contexts to ensure their effectiveness in 
reducing annotation burdens, enhancing model adaptability, and 
enabling scalable deployment across diverse clinical settings.

(4) Ensuring that models meet regulatory standards for clinical use 
and are capable of integration into real-world clinical environ-
ments. Rigorous attention must be paid to regulatory alignment, 
ensuring that foundation models meet evolving standards for 
safety, transparency, and post-deployment monitoring, as out-
lined in global frameworks such as the EU AI Act and FDA's GMLP 
guidelines.

These efforts will not only enhance the efficacy of foundation models 
in ophthalmology but will also ensure their safe and effective integration 
into clinical practice, ultimately improving patient outcomes and 
transforming the field of ophthalmic care.

5. Conclusions

This systematic review highlights the significant potential of foun-
dation models in ophthalmology, particularly for improving the diag-
nosis of retinal diseases, glaucoma, and ocular surface tumors. These 
models, leveraging multimodal data, demonstrate high diagnostic ac-
curacy and robustness across diverse ophthalmic conditions. However, 
challenges such as data quality, model interpretability, and integration 
into clinical workflows remain. To fully realize the potential of foun-
dation models in ophthalmology, further research is needed to enhance 
model generalization, transparency, and clinical applicability. With 
continued advancements, foundation models would transform diag-
nostic practices and improve patient outcomes in ophthalmology.
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