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PURPOSE. To develop an annotation-efficient deep learning algorithm for extracting multi-
dimensional features of choroidal vasculature on indocyanine green angiography (ICGA)
images via a human-in-the-loop (HITL) strategy and explore their relationship with multi-
ple chorioretinal diseases.

METHODS. The segmentation model was trained on a multi-source dataset that included
both 55° ICGA and 200° ultra-widefield ICGA (UWF-ICGA) images, using a HITL strategy.
Choroidal vascular fingerprints were generated from the segmentation maps, quantifying
diameter, density, complexity, tortuosity, and branching angle. Reliability was assessed
using intraclass correlation coefficients (ICC), and normal ranges for each measurement
were estimated. The study retrospectively included 243 eyes diagnosed with central
serous chorioretinopathy (CSC), polypoidal choroidal vasculopathy (PCV), or pathologi-
cal myopia (PM), as well as 151 normal control eyes, to investigate their association with
choroidal vascular fingerprints. Multivariable logistic regression models were used for
the analysis.

RESULTS. The model achieved high segmentation accuracy, with the area under the
receiver operating characteristic curve being 0.975 (95% confidence interval [CI, 0.967–
0.983) for 55° view ICGA images and 0.937 (95% CI, 0.914–0.960) for UWF-ICGA images.
Twenty-six, 28, and 29 multidimensional measurements were significantly associated with
CSC, PCV, and PM, respectively (P value < 0.05). The ICC values for 74 choroidal vascular
measurements ranged from 0.71 (95% CI, 0.51–0.84) to 0.97 (95% CI, 0.95–0.99).

CONCLUSIONS. This pioneering study revealed choroidal vascular fingerprints and validated
their associations with various chorioretinal diseases. These findings pave the way for
future exploration of the pathological mechanisms underlying these conditions.

Keywords: choroidal vessel segmentation, choroidal vascular measurement, indocyanine
green angiography, imaging biomarker, human-in-the-loop strategy

The choroidal vascular network plays a vital role in
delivering oxygen and nutrients to the outer retina.

Abnormalities of choroidal circulation can induce progres-
sive dysfunction of retinal pigment epithelium (RPE) and
photoreceptors, which are increasingly recognized as critical
contributors to the pathogenesis of various chorioretinal
diseases.1 Previous studies have established that pachy-
choroid spectrum diseases, such as central serous chori-
oretinopathy (CSC) and polypoidal choroidal vasculopathy
(PCV), were associated with choroidal thickening and vascu-
lar morphological alterations.2,3 Additionally, compromised
choroidal perfusion has been correlated with choroidal thin-
ning and myopia progression.4,5 Quantification of these
vascular changes may enhance our understanding of the
pathological processes and inform targeted therapeutic
strategies for chorioretinal pathologies.

Indocyanine green angiography (ICGA) remains the clin-
ical gold standard examination for visualizing choroidal
vasculature through contrast-enhanced imaging.6 The
advent of ultra-widefield ICGA (UWF-ICGA) technique
further expanded diagnostic capabilities by enabling
comprehensive evaluation of peripheral choroidal vascula-
ture, including vortex vein morphology.7 Several choroidal
vascular characteristics observed on ICGA images have
been extracted via manual segmentation or deep learning-
based approaches for screening and monitoring chori-
oretinal conditions, such as vortex vein engorgement,
fusiform choroidal vein, and vascular density in eyes
with pachychoroidal diseases.2,8–11 However, most of
those studies relied on labor-intensive annotation, suffer-
ing from subjective interpretation and methodological
variability. These drawbacks hinder both reproducibil-
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ity and clinical translation. The development of auto-
mated systems for segmenting and quantifying multi-
dimensional choroidal vascular features in ICGA and UWF-
ICGA imaging remains unresolved in ophthalmic imaging
research for establishing clinically robust choroidal biomark-
ers.

Despite advances in deep learning–based quantification
of retinal vasculature in fundus imaging to precisely eval-
uate morphological alterations,12,13 analogous progress in
choroidal vascular analysis has been impeded by distinct
anatomical and technical challenges. The complex structure
of choroidal vascular plexus complicates vascular annota-
tion and decreases the efficiency of model development.
Recently, human-in-the-loop (HITL) strategies that inte-
grate limited expert annotation with active learning frame-
works have offered promising solutions for effective model
training.14,15 By integrating an interactive object detec-
tion architecture, this approach leverages clinician exper-
tise to iteratively refine preliminary annotations generated
by a pre-trained detector,16,17 thereby avoiding a cold start
of annotation within conventional model training. Collab-
oration between machine intelligence and human feed-
back could benefit both training efficiency and model
performance.18,19

This study aims to develop an automated algorithm
for segmenting choroidal vessels in ICGA and UWF-
ICGA images and quantifying vascular features by integrat-
ing the deep learning framework with a HITL platform.
This model is expected to achieve accurate measurements
of choroidal vascular morphologies and provide multi-
dimensional choroidal vascular fingerprints to enhance
management of chorioretinal conditions.

METHODS

We used deidentified existing data for our study, which
received approval from the Institutional Review Board of
the Hong Kong Polytechnic University.

Dataset

We used a multisource ICGA image dataset, compris-
ing 55° view ICGA images and 200° view UWF-ICGA
images, to develop this choroidal vessel segmentation
model. The dataset includes ICGA images from patients
with various chorioretinal diseases, including CSC, PCV,
pathological myopia (PM), AMD, choroidal neovasculariza-
tion, and ocular inflammatory diseases, as well as normal
controls.

Because of the ineligibility of perfectly healthy individ-
uals for invasive ICGA examinations, “normal controls” in
this study were defined as patients who, although suspected
of having choroidal vascular diseases and being recom-
mended for ICGA examination, exhibited normal results on
the ICGA results. All patient data underwent anonymization
and deidentification. The 55° view ICGA and 200° view UWF-
ICGA images were acquired using Heidelberg Spectralis
cameras (Heidelberg Engineering, Heidelberg, Germany)
and Optos Silverstone (Optos, Dunfermline, UK). To ensure
precise segmentation of choroidal vascular network, we
selected ICGA images captured between 30 seconds and
three minutes after dye injection, because these early-phase
images offer the clearest visualization of the choroidal
vasculature.

Segmentation Model Development Using the HITL
Strategy

Because no existing model is specifically designed for
choroidal vessel segmentation in ICGA images, we lever-
aged a pretrained retinal vessel segmentation model as base
model to generate pre-segmentation due to the tubular struc-
tural similarities between retinal and choroidal vessels.20 The
55° view ICGA images were resized to 512 × 512 and fed
into this pre-trained model. A threshold (ranging from 0 to
1) was used to binarize the vessel probability maps gener-
ated by the model. Specifically, the threshold was applied to
convert continuous probability outputs into binary predic-
tions to distinguish vascular from non-vascular regions. A
human expert (D.S.) manually explored and adjusted the
threshold to optimize the identification of visible choroidal
vascular structures in ICGA images and reduce manual label-
ing efforts.

The interactive HITL strategy was used to fine-tune the
pretrained model for choroidal vascular segmentation on
ICGA images. Two experienced ophthalmologists (R.C and
Z.Z) randomly selected 50 presegmented vessel maps for
independent manual modification using a custom software
(VesselLabel).13 The presegmented choroidal vessel map
could be overlaid on either the original ICGA images or the
contrast-enhanced ones. The ophthalmologists could toggle
between modes to correct vessel annotations suggested by
the presegmentation model, including removing false labels
(e.g., retinal vessels) and adding missing vessel annotations.
Supplementary Figure S1 shows the interface of this custom
vessel labeling software. A detailed protocol for human
evaluation and modification is provided in Supplementary
Figure S2. The Dice coefficient was used to assess the consis-
tency between annotators.

In each HITL cycle, human-modified ICGA images (modi-
fied by R.C.) served as the ground truth and were randomly
split into training, validation, and test sets in a ratio of
70%:15%:15%. Specifically, 70% of these modified vascular
segmentations were used to fine-tune the model (training
set), 15% were used to adjust hyperparameters and to select
the best model configuration during the model development
phase (validation set), and the remaining 15% were used as
the final benchmark for assessing the model’s performance
on unseen data (test set).

Human-modified annotations in training set were used
to fine-tune the pretrained model for 50 epoch. Next, we
applied this refined model to new unlabeled ICGA images
to generate predictions for the second version of choroidal
vascular presegmentations, followed by further visual eval-
uation and corrections. This iterative process was integrated
into the entire fine-tuning workflow and repeated until
the model could segment the visible choroidal vessels in
ICGA images. The training data from each cycle were cumu-
latively added to the training set of the previous cycle.
To prevent data leakage, the test set for each cycle only
included images that were newly labeled in that cycle
and had never been used in any prior training or valida-
tion.

After the model achieved high accuracy in segmenting
choroidal vascular in 55° view ICGA images, UWF-ICGA
images were resized to 1024 × 1024 pixels and input into
the model. The ophthalmologist (R.C.) randomly selected
twenty UWF-ICGA pre-segmentations for modification, and
a similar iterative cycle was repeated until the model success-
fully segmented visible vessels in the UWF-ICGA images. The
flowchart of this study is shown in Figure 1A. The models
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FIGURE 1. Flowchart of this study. (A) Overview of human-in-the-loop strategy: A pretrained generative adversarial network (GAN)-based
model was applied for vessel presegmentation on ICGA images. These presegmentations were randomly selected and modified by human
experts. The modified choroidal vascular maps were then used to fine-tune the pretrained model to segment choroidal vessels on ICGA
images. This refined segmentation model was deployed on new unlabeled ICGA images to obtain an upgraded version of choroidal vascular
segmentation. (B) Cycles of human modification: The iterative process was performed for three cycles on 55° view ICGA images and one
cycle on UWF-ICGA images, progressively enhancing the model’s ability to segment visible vessels. Examples of the presegmentation and
human-modified segmentations for each cycle are presented in this section. (C) Choroidal vascular fingerprints: Quantification of caliber,
complexity, tortuosity, branching angle, and density constitutes choroidal vascular fingerprints. The association between choroidal vascular
fingerprints and chorioretinal diseases was evaluated.

were trained with a batch size of 4 and a learning rate of
0.0002.

Evaluation of Segmentation Performance

The iterative process of the HITL strategy ended once human
experts (R.C. and Z.Z.) visually confirmed that the model
could successfully segment visible choroidal vasculature
(as defined in Supplementary Fig. S2: Vessel Annotation
Protocol—Step 1 and Step 2) in test set. Then, the objec-
tive evaluation metrics at the pixel level were calculated in
the final cycle to complement human assessment and reduce
potential bias, including F1-score, the area under the receiver
operating characteristic curve (AUC), accuracy, sensitivity,
and specificity, between predictions of model and human
modified choroidal vascular segmentations. To ensure the
reliability of the evaluation results, the calculation of quan-
titative metrics conducted by another researcher (D.S.) was
entirely independent of the annotation process.

Choroidal Vascular Fingerprints

The Retina-based Microvascular Health Assessment System
pipeline was used to quantify vessel characteristics from

the predicted choroidal vessel maps across five dimen-
sions: density, complexity, tortuosity, caliber, and branch-
ing angle.13,21 These parameters formed choroidal vascu-
lar fingerprints. Because the vascular trees were segmented
into numerous vessel segments for analysis, resulting in
hundreds of individual measurements per image for each
metric, we used summary statistics, including mean, stan-
dard deviation, maximum, and minimum values to consol-
idate these measurements and provide a comprehensive
overview of each image. These summary statistics offer
a multifaceted representation of the measurements.22,23

Supplementary Table S1 offers a detailed explanation of
extracted choroidal vascular parameters.

Reliability of Choroidal Vascular Fingerprints

The intraclass correlation coefficients (ICC) were calcu-
lated for evaluating the intra-visit repeatability of all
enrolled choroidal vascular measurements. Because ICGA is
a dynamic process, changes in choroidal vascular fluores-
cence over time during ICGA imaging can inherently lead
to measurement variability in choroidal vessels. Therefore,
to minimize the impact of time and changes in patients’ eye
positions on the measurements, early-phase ICGA images
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captured with a time interval of less than 10 seconds and
under consistent eye positioning were selected for ICC calcu-
lation. A total of 39 eyes from 39 patients were included, with
two images per eye. ICC values of <0.5, 0.5–0.75, 0.75–0.90,
and ≥0.90 indicate poor, moderate, good, and excellent reli-
ability, respectively.24

Association Between Choroidal Vascular
Fingerprints and Chorioretinal Disease State

To evaluate the clinical significance of these choroidal vascu-
lar fingerprints on segmented choroidal vascular maps, we
compared these parameters between normal controls (with-
out any abnormalities on ICGA images) and those with
pachychoroid spectrum diseases (CSC, PCV) and choroidal
thinning disease (PM). We retrospectively included ICGA
images from 394 patients with complete ICGA reports and
definitive diagnoses, comprising 151 images from normal
controls, 46 images from CSC patients, 130 images from PCV
patients, and 67 images from PM patients. The median age of
the participants was 50.03 (±19.43) years, and 235 (59.64%)
were male. Primary normal ranges were established based
on the current dataset.

Statistical Analysis

Continuous variables are reported as mean ± SD, whereas
categorical variables are presented as frequencies and
percentages. Extreme outliers for choroidal vascular param-
eters were removed using the Robustbase package in R soft-
ware (range = 3), which accounts for skewness. To enable
uniform comparison across variables and eliminate scale
differences, we normalized the values of choroidal vascu-
lar parameters to SD units. Multivariable logistic regres-
sion models were used to examine the association between
choroidal vascular parameters and CSC, PCV, and PM, with
adjustments for age and sex.

For establishing normal ranges for each choroidal vascu-
lar measurement, outliers were initially removed through
the interquartile range method. Normality for each variable
was subsequently assessed using the Shapiro-Wilk test. For
normally distributed data, the mean and standard deviation
were computed to establish the 95% confidence interval (CI).
For non-normally distributed data, the first and third quar-
tiles were utilized as the bounds.

Given the multiple parameters and resulting multiple
comparisons, P values were adjusted for the false discovery
rate to control for type I error, with the significance level set
at a two-tailed P value of 0.05. All statistical analyses were
performed using R software (4.3.3)

RESULTS

A total of four HITL cycles were performed to fine-tune the
pre-trained model for choroidal vascular segmentation on
55° view ICGA images and UWF-ICGA images, with three
cycles for 55° view ICGA images (50 images per cycle)
and one cycle for UWF-ICGA images (20 images per cycle)
(Fig. 1B). Detailed characteristics of images used in each
cycle are summarized in the Table.

The average time needed to manually correct a pre-
segmented 55° ICGA image decreased significantly with
each cycle. For 55° ICGA pre-segmentations, the average
time (mean±standard deviation) required for manual correc-
tion was 20.05 ± 2.15 minutes each for the first round,
5.40 ± 1.87 minutes each for the second round, and 1.38
± 1.03 minutes each for the third round. For UWF-ICGA
pre-segmentations, the human expert (R.C.) only needed
to add a few missing vessel annotations in the peripheral
area since the model could successfully identify choroidal
vascular in the posterior area after training with the first
three rounds of the HITL process. Thus the average time
required for manual correction was just 10.49 ± 1.95 minutes
per UWF-ICGA image. In comparison, manually segmenting
choroidal vascular networks from scratch required approxi-
mately 50.23 ± 4.27 minutes per 55° ICGA image and 74.93
± 5.82 minutes per UWF-ICGA image, highlighting that the
HITL strategy significantly reduced the time required for
training.

Accuracy of Choroidal Vessel Segmentation

The inter-grader Dice coefficient (R.C. and Z.Z.) was 0.870.
The predicted choroidal vascular maps showed strong align-
ment with the ground truth: AUC = 0.975 (95% CI, 0.967–
0.983), F1-score = 0.867 (95% CI, 0.856–0.878), accuracy
= 0.950 (95% CI, 0.946–0.954), sensitivity = 0.858 (95%
CI, 0.844–0.872), specificity = 0.972 (95% CI, 0.968–0.976).
The model also demonstrated high accuracy in segment-
ing choroidal vasculature on UWF-ICGA images: AUC =
0.937 (95% CI, 0.914–0.960), F1-score = 0.780 (95% CI,
0.763–0.797), accuracy = 0.895 (95% CI, 0.862–0.928), sensi-
tivity = 0.784 (95% CI, 0.762–0.806), specificity = 0.927
(95% CI, 0.895–0.959). Examples of predicted choroidal
vessel networks on ICGA and UWF-ICGA images are shown
in Figures 2 and 3.

Association Between Choroidal Vascular
Fingerprints and Chorioretinal Diseases

The Retina-based Microvascular Health Assessment System
extracted 164 choroidal vessel measurements from the

TABLE. Detailed Characteristics of ICGA Images Used in Each HITL Round

Tasks Total Normal CSC PCV PM AMD Others

Model development (images)
Round 1 50 (100%) 6 (12%) 9 (18%) 11 (22%) 7 (14%) 6 (12%) 11 (20%)
Round 2 50 (100%) 6 (12%) 7 (14%) 10 (20%) 9 (18%) 8 (16%) 10 (20%)
Round 3 50 (100%) 5 (10%) 10 (20%) 7 (14%) 15 (30%) 5 (10%) 8 (16%)
Round 4 20 (100%) 3 (15%) 1 (5%) 1 (5%) 0 (0%) 4 (20%) 11 (55%)

Association analysis
Patients 394 (100%) 151 (38%) 46 (12%) 130 (33%) 67 (17%)

AMD; age-related macular degeneration; CSC; central serous chorioretinopathy, PCV; polypoidal choroidal vasculopathy, PM; pathological
myopia.
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FIGURE 2. Examples of predicted choroidal vascular networks on ICGA images and vascular measurement plots.

FIGURE 3. Examples of predicted choroidal vascular networks on UWF-ICGA images and vascular measurement plots.

predicted choroidal vessel segmentation, covering five cate-
gories: density, complexity, tortuosity, caliber and branching
angle. After removing measurements with 90% missing data
or where more than 95% of elements were the same value,
74 choroidal vessel measurements were included in further
analysis. The ICC values ranged from 0.71 (95% CI, 0.51–
0.84) to 0.97 (95% CI, 0.95–0.99). Details of ICC values in
each measurement are provided in Supplementary Table S5.
The significant associations (false discovery rate–adjusted

P < 0.05) between various chorioretinal diseases and multi-
ple vessel measurements are illustrated in Figure 4. Normal
ranges of each choroidal vessel measurement are presented
in Supplementary Table S6. All the results were adjusted for
sex and age. Unadjusted results are shown in Supplementary
Tables S2–S4.

The relationship between various choroidal vessel
measurements and CSC is shown in Figure 4A. Twenty-
six parameters were significantly associated with CSC after
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FIGURE 4. Association between chorioretinal diseases and selected choroidal vascular-related parameters. (A) Central serous chorioretinopa-
thy. (B) Polypoidal choroidal vasculopathy. (C) Pathological myopia. P values were adjusted for sex and age.

adjusting for sex and age. The complexity-related parame-
ters (Strahler number), most of the caliber-related param-
eters (mean caliber, minimum caliber, maximum caliber,
caliber range, and terminal caliber), and tortuosity-related
parameters (angle-based tortuosity, curve angle) were signif-
icantly and positively associated with CSC. In contrast, most
of the choroidal vascular density-related parameters (arc
length, chord length, and vessel skeleton density), tortuosity-
related parameters (tortuosity density, fractal tortuosity, and
inflection tortuosity), and all the branching angle-related
parameters (angular asymmetry) were negatively correlated
with CSC. Specifically, branching density (mean value per
image) was associated with increased risk of CSC (odds
ratio [OR] = 1.72 [95% CI, 1.12–2.63]), angle-based tortu-

osity (mean value per image) was also related to increased
risk of CSC (OR = 1.77 [95% CI, 1.16–2.68]. Additionally,
the mean width of the choroidal vascular (mean value
per image) was associated with increased risk of CSC
(OR = 2.24 [95% CI, 1.53–3.84]), the maximum width of
choroidal vasculature (mean value per image) was asso-
ciated with increased risk of CSC (OR = 2.26 [95% CI,
1.41–3.61]).

The association between multiple choroidal vessel
parameters and PCV is shown in Figure 4B. Twenty-eight
parameters were significantly associated with PCV after
adjusting for sex and age. Among these, most complexity-
related metrics (Strahler number, level, and number of termi-
nal points), caliber-related metrics (mean caliber, maximum
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FIGURE 4. Continued.

caliber, minimum caliber, and caliber range), branching
angle-related metrics (branching angle) and all tortuosity-
related metrics were associated with increased risk of PCV. In
contrast, most choroidal vascular density-related parameters
(arc length, chord length, and vessel skeleton density) were
inversely correlated with PCV. Specifically, branching density
(mean value per image) was associated with increased risk
of PCV (OR = 1.91 [95% CI, 1.34–2.74]), complexity-related
metrics, Strahler number (mean value per image) was asso-
ciated with increased risk of PCV (OR = 2.10 [95% CI, 1.43–
3.00]), angle-based tortuosity (mean value per image) was
associated with increased risk of PCV (OR = 1.86 [95% CI,
1.32–2.61]. Additionally, mean width of the choroidal vascu-
lar (mean value per image) was associated with increased

risk of PCV (OR] = 1.65 [95% CI, 1.15–2.36]), maximum
width of choroidal vasculature (mean value per image) was
associated with increased risk of PCV (OR = 1.57 [95% CI,
1.09–2.27]).

The significant relationships between multiple choroidal
vessel parameters and PM are illustrated in Figure 4C.
Twenty-nine parameters were significantly associated with
PM after adjusting for age and sex. Among these,
density-related parameters (arc length and chord length),
complexity-related parameters (Strahler number, level, and
fractal dimension), caliber-related parameters (mean caliber,
maximum caliber, minimum caliber, surface area, caliber
range, and length diameter ratio) and branching angle-
related parameters (Asymmetry Ratio) were positively corre-
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FIGURE 4. Continued.

lated with the occurrence of PM. On the contrary, most
of the tortuosity-related parameters (tortuosity, tortuosity
density, curve angle, curve angle tortuosity and inflection
tortuosity) were negatively correlated with PM. Arc length
(mean value per image) was associated with increased risk
of PM (OR = 6.46 [95% CI, 3.28–12.70]), Strahler number
(mean value per image) was associated with increased risk
of PM (OR = 2.73 [95% CI, 1.84–4.08]), fractal dimen-
sion (mean value per image) was associated with increased
risk of PM (OR = 3.28 [95% CI: 2.15–5.01]), asymmetry
ratio (mean value per image) was associated with increased
risk of PM (OR = 1.51 [95% CI, 1.11–2.06]). Besides, the
mean width of choroidal vascular (max value per image)

was also positively correlated to PM (OR = 1.70 [95% CI,
1.21–2.39])

DISCUSSION

In this study, we developed an innovative high-precision
choroidal vessel segmentation model using a HITL frame-
work, significantly reducing labor requirements. This model
demonstrated robust accuracy for both 55° view ICGA and
UWF-ICGA images. Additionally, the algorithm automatically
quantifies multidimensional choroidal vascular characteris-
tics, namely choroidal vascular fingerprints. Our key findings
indicated that choroidal vascular fingerprints can serve as
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reliable and comprehensive biomarkers, significantly asso-
ciated with CSC, PCV and PM. These quantified vascular
features are expected to enhance our understanding of the
different pathological processes of chorioretinal diseases.

Recent studies have increasingly focused on the rela-
tionship between choroidal vascular alterations and vari-
ous chorioretinal diseases. Optical coherence tomography
(OCT) can capture choroidal vascular-related biomarkers
within macular regions, such as choroidal vascularity index
on B-scan images, flow voids, and choroidal capillary density
on OCT enface images.25–27 However, the limited scanning
area and potential artifacts may compromise the compre-
hensiveness and accuracy of these measurements. Our auto-
matic segmentation model enabled effective quantification
of vascular characteristics on 55° view ICGA and UWF-ICGA
images, including density, complexity, tortuosity, branch-
ing angle, and caliber. This pioneering algorithm repre-
sents a promising approach for multidimensional analysis of
complex choroidal vascular networks and objective evalua-
tion of choroidal circulation in multiple diseases. The current
study serves as an initial exploration using a retrospective
dataset. Future research with larger sample sizes is needed
to establish robust thresholds for choroidal vascular finger-
prints, which may have greater clinical impact.

Choroidal venous overload is a key feature in CSC patho-
genesis, with significant implications for treatment and prog-
nosis.28 Enlarged choroidal vessels and choroidal intervor-
tex veins have been frequently observed on ICGA images
of CSC patients.29,30 Similarly, PCV is another phenotype of
the pachychoroid disease spectrum, characterized by dilated
choroidal veins and remodeling of choroidal vessels.31,32

The current study provides a more detailed perspective for
understanding various chorioretinal diseases. Most parame-
ters related to caliber, complexity, and tortuosity were signif-
icantly associated with an increased risk of CSC and PCV.
Moreover, PM eyes exhibited larger choroidal vascular diam-
eters, possibly due to increased visibility of large choroidal
vessels resulting from axial elongation-associated chorio-
capillaris loss.33,34 These novel biomarkers are expected to
become valuable additions to existing diagnostic criteria
and to facilitate personalized management of multiple chori-
oretinopathies. A future longitudinal study is essential to
monitor changes in choroidal fingerprints during the treat-
ment of different diseases and to assess their potential utility
in predicting clinical outcomes.

A well-developed image processing model requires
massive training data with accurate annotation. However,
labeling large-scale samples is labor-intensive and time-
consuming. The HITL strategy encourages algorithms to
interact with experienced specialists, assisting in improv-
ing both model performance and annotation efficiency
in various tasks.35 In the present study, the pretrained
model initially segmented portions of the choroidal vascu-
lar network, significantly reducing the time required for
human labeling compared to manual segmentation from
scratch. Throughout the HITL strategy, the time required
for manual correction decreased as the model’s perfor-
mance steadily improved with each round of HITL train-
ing, resulting in more accurate pre-segmentations in the
next round and fewer corrections by the human expert.
These findings demonstrate that the HITL strategy signifi-
cantly reduced the time needed for training compared to
the standard training procedure. However, the fact that both
annotators refined the same presegmentation generated by
the model may introduce bias when assessing inter-expert

variability. Besides, although objective metrics validated the
model’s final performance, the HITL cycles in this study were
stopped based on human visual impressions. Incorporating
objective performance thresholds to guide HITL termination
might be beneficial in future exploration.

This study has some limitations. First, the study used
an in-house ICGA image dataset, with all participants from
the Chinese region. Large-scale ICGA databases covering
multiethnic populations and a wide range of diseases are
needed to evaluate the generalizability of our algorithm and
to establish widely applicable thresholds for each measure-
ment. Additionally, the definition of “normal control” in
this study was limited to individuals without significant
choroidal vascular abnormalities. Future research should
aim to address issues related to potential population varia-
tion in the normal values of choroidal vascular fingerprints.
Third, ICGA is an invasive procedure, and future investiga-
tions on noninvasive imaging modalities, such as OCT enface
images of various retinal and choroidal layers, and noninva-
sive ICGA-like choroidal vessel quantification are promising
using generative artificial intelligence.36,37

In summary, the current study represents the first attempt
to reveal choroidal vascular fingerprints. The proposed algo-
rithm can quantify choroidal vascular features from multi-
ple perspectives, with significant associations to CSC, PCV,
and PM. These findings underscore the potential of apply-
ing choroidal vascular fingerprints for accurate and compre-
hensive analysis of choroidal vascular abnormalities, shed-
ding light on the exploration of the pathological mechanisms
behind them.
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