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Abstract

Background The aim of this study is to investigate the potential of retinal biomarkers (retinomics) derived from color
fundus photography and optical coherence tomography for predicting multiple diseases.

Methods Using UK Biobank cohort data, we applied least absolute shrinkage and selection operator regression

to address multicollinearity and identify key biomarkers. Cox proportional hazards models, with and without retinomic
features. Detection rates (DR) across false positive rates (FPR: 5-40%) were assessed to ensure improved sensitivity
without disproportionate false positives.

Results Three retinomic features emerged as top predictors: ganglion cell-inner plexiform layer (37 diseases), retinal
pigment epithelium (33 diseases), and central subfield of inner segment/outer segment-RPE (32 diseases). Adding
retinomics improved mean C-index from 0.653 to 0.693 (+6.4%) in baseline models (age and sex) and from 0.697

t0 0.721 (+3.5%) in clinical models (traditional common risk factors). A simplified retinal model (retinomics +age/sex)
achieved C-index>0.75 for 13 diseases. Retinomics enhanced prediction by > 5% for 24 diseases in baseline models
and 12 diseases in clinical models. DR improvements across FPR ranges confirmed robust performance without exces-
sive false positives.

Conclusions Retinomics universally enhanced disease prediction, with marked gains for conditions like cardio-
vascular and metabolic disorders. The onset of presbyopia (~ 50 years)—a common trigger for eye exams—aligns
with escalating chronic disease risks, suggesting an opportunity to leverage routine eye care for broader health
assessment. While requiring further validation, this approach demonstrates the potential to enhance health screening
efficiency using existing ophthalmic infrastructure, offering particular value for resource-limited settings.
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Background

Early prediction of disease risk prior to clinical onset is
critical for enabling timely interventions and improving
patient outcomes. While traditional methods such as
blood tests and imaging have advanced significantly, they
remain largely confined to single-disease identification
[1] and face limitations in scalability due to invasiveness,
cost, and technical complexity. The emergence of omics
technologies—high-throughput molecular profiling—has
enabled comprehensive analyses of disease pathways [2,
3] with metabolomics and proteomics demonstrating
potential for multi-disease risk prediction [4, 5]. How-
ever, these approaches are costly, often require special-
ized infrastructure and invasive sampling, hindering their
integration into routine clinical care.

The retina, uniquely, offers a non-invasive window into
systemic health, allowing direct visualization of both
neural and microvascular structures [6] through widely
accessible imaging modalities like color fundus photog-
raphy (CFP) and optical coherence tomography (OCT).
Our group previously developed the Retina-based Micro-
vascular Health Assessment System-Fluorescein Angi-
ography (RMHAS-FA) [7], a deep learning framework
that automates segmentation of retinal vasculature. This
system generates hundreds of intricate “vascular finger-
prints” [8], quantifying retinal microarchitecture with
unprecedented granularity. Furthermore, while prior
work has uncovered multidimensional relationships
between retinal vascular networks from CFP and neural
layers from OCT [9], most research has focused on iso-
lated CFP or OCT measurements [10, 11], neglecting the
complementary insights offered by multimodal imag-
ing. This presents a crucial gap where a comprehensive
neurovascular retinomic approach—combining micro-
vascular, macrovascular, and neural layer data across
modalities—remains unexplored for multi-disease risk
stratification. These features underpin “retinomics;,” an
emerging discipline focused on large-scale biomarker
discovery to link retinal phenotypes with systemic dis-
eases such as cardiovascular disorders, diabetes, and
neurodegeneration [12, 13].

More importantly, retinal screening aligns with a piv-
otal window for preventive care: routine eye exams, often
initiated around age 50 due to presbyopia, coincide with
the onset of elevated risk for chronic diseases. This align-
ment suggests that retinomics may have the potential to
bridge ophthalmology and systemic health.

In this study, we leverage the UK Biobank [14], a large
population-based cohort, to investigate the predictive
value of neurovascular retinomics. By integrating CFP
and OCT-derived features—encompassing large-medium
vessels, capillaries, and neural layers—we aim to estab-
lish a multimodal framework for evaluating the potential
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of retinomics in stratifying risks of systemic conditions.
Our work explores retinomics as a potential non-inva-
sive tool for systemic health assessment, bridging criti-
cal gaps between single-modality studies and holistic risk
prediction.

Methods

Study population

The study population was derived from the UK Biobank
study, a prospective cohort study that recruited around
500,000 participants aged between 40 and 69 years at the
baseline from 2006 to 2010 [14]. Ocular imaging includ-
ing CFP and OCT was introduced in 2019 at six assess-
ment centers [15]. The UK Biobank study received ethics
approval from the North West Multi-Centre Research
Ethics Committee (Ref 11/N'W/0382) and obtained con-
sent from participants at enrollment.

Inclusion and exclusion criteria

Participants who withdrew consent or lacked CFP/OCT
data were excluded. Low-quality CFP images classified
as “Reject” by RMHAS-FA [7] were removed. For OCT,
quality control indicators generated by the Topcon 3D
OCT-1000 Mark II system [15, 16] were applied. After
matching OCT and CFP images by eye laterality, only
the highest-quality pair per participant was retained. For
each incident disease analysis, participants with prevalent
disease at baseline were excluded, and for sex-specific
conditions, people of the opposite sex were removed. The
inclusion/exclusion processes for participants and image
data at each stage of the selection process are shown in
Fig. 1.

Retinomic profiling

Topcon 3D OCT-1000 Mark II system was used for reti-
nal image acquisition [15]. The retinomic profiles con-
sisted of retinal vascular features and retinal neural layer
measurements. The measurements of large-medium
vessels and capillaries were extracted from CFP using
RMHAS-FA(7), including measurements of caliber, den-
sity, complexity, tortuosity, and branching angle. Details
on the vascular measurements have been previously
published [8]. The measurements of retinal neural layers
were derived from OCT scans using Topcon Advanced
Boundary Segmentation software [16]. Details can be
found at https://biobank.ndph.ox.ac.uk/showcase/label.
cgi?id=100016.

Outcomes

We included 63 chronic conditions as specified in the
previous publication [17] and identified those condi-
tions using the International Classification of Diseases,
edition 10 (ICD-10) and ICD-9. Additional file 1: Tables


https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100016
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100016

Yusufu et al. BMC Medicine (2025) 23:662

Page 3 of 13

UK Biobank cohort study

56,474 participants had CFP (n=102,131)

502,366 participants

Remove low-quality CFP
(n=28,211)

43,432 participants with CFP (n=73,920)

Overall study population

41,434 participants (68,083 eyes with both CFP and OCT data)

67,555 participants had OCT data (n= 134,838)

Remove low-quality OCT based
on quality control indicator
(n=17,223)

63,278 participants with OCT data (n=117,615)

Keep one pair of CFP and OCT for each participant
based on vessel density (n= 26,649)

41,434 participants

Fig. 1 Participants selection process. OCT optical coherence tomography, CFP color fundus photograph. N indicates the number of images

S1-S2 present the Field IDs and ICD codes used to iden-
tify prevalent and incident diseases. Follow-up starts on
the date of the image acquisition and ends on the date of
death, or incident outcomes, or October 31, 2022, which-
ever occurs first. We excluded those diseases with less
than 30 incident events (the cut off was 15 for sex-spe-
cific diseases).

Statistical analysis
Retinal parameters with>30% missing values were
excluded, and outliers were removed following the
method proposed by Zekayat et al. [18]. Remaining miss-
ing data were imputed using the multiple imputation by
chained equations (MICE) package in R. After removing
outliers, the distributions of all parameters were approxi-
mately normal upon visual inspection. All parameters
were z-score standardized, which does not assume nor-
mality and ensures comparable scales across parameters
for subsequent feature selection and predictive modeling.
The least absolute shrinkage and selection opera-
tor (LASSO) regression was used to identify retinomic

biomarkers with predictive associations for each disease.
LASSO’s L1 regularization automatically excludes non-
informative features by shrinking their coefficients to
zero, ensuring only meaningful retinal biomarkers con-
tribute to the predictive models. Prevalent cases for the
corresponding outcome were excluded from the analysis,
and sex-specific conditions were taken into consideration
if applicable.

After feature selection, we fitted Cox proportional haz-
ards models to assess the performance of 4 survival mod-
els in predicting incident diseases: (1) Baseline model:
incorporating age and sex only; (2) Clinical model: age
and sex along with clinical factors including body mass
index (BMI), ethnicity, smoking status, alcohol con-
sumption, and physical activity (well-established com-
mon modifiable risk factors for a wide range of diseases);
(3) Retinal model: combining the baseline model and
selected retinal features from LASSO regression; (4) Full
model: combination of the clinical model and selected
retinal features. Additional file 1: Table S3 shows the defi-
nitions of variables used in the current study.
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The concordance index (C-index) was used to evalu-
ate predictive performance. The C-index measures the
probability that, for any randomly selected pair of sub-
jects, the one with the higher predicted risk experiences
the event earlier. We selected the C-index because it
accounts for time-to-event information, making it more
appropriate than traditional binary classification metrics
for evaluating predictive models of chronic disease pro-
gression. In addition, to assess the statistical significance
of improvements in model discrimination after adding
retinal parameters, we employed the Likelihood Ratio
Test (LRT) for each disease where we observed a>5%
improvement in C-index (either retinal model vs. base-
line model, or full model vs. clinical model). Additionally,
we calculated detection rate (DR) and false positive rate
(FPR) to evaluate the models’ screening capabilities and
to assess the balance between correctly identifying dis-
ease cases while minimizing false alarms. We focused on
the DR across FPR range of 5% to 40%, as this reflects the
clinically practical operating range for predictive models.
FPR values exceeding 40% would result in unacceptably
high false positive rates, making such models unsuit-
able for real-world implementation. DR (proportion of
affected people with a positive result) was defined by the
number of true positives divided by the sum of the false
negatives and the true positives. FPR (proportion of unaf-
fected people with a positive result) was determined by
the ratio of false positives to the sum of true negatives
and false positives. We further assessed calibration using
the Integrated Calibration Index (ICI), which measures
how closely predicted risks match observed outcomes.
Additional file 1: Fig. S1 shows the general design of
current study and Fig. 2 illustrates the methodological
framework of the analyses.

In addition, we investigated the predictive values of
vascular and neural retinomics separately (Additional
file 1: Figs. S2—S3) and model evaluation without LASSO
feature selection (Additional file 1: Fig. S4). Further, we
examined 5-year and 10-year predictions as sensitivity
analyses (Additional file 1: Figs. S5-S6). All analyses were
conducted using R Version 4.2.3 (Vienna, Austria).

Results

Characteristics of participants

The study included a total of 41,434 participants, com-
prising 22,898 (55.3%) females and 18,536 (44.7%) males.
The mean age of the overall sample was 55.3 years (stand-
ard deviation [SD] 8.19). The mean BMI was 27.2 kg/m?
(SD: 4.74), and physical activity levels were mostly mod-
erate to high. Table 1 shows the details of the baseline
characteristics of participants in the overall sample and
by sex.
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After excluding human immunodeficiency virus and
anorexia due to insufficient incident cases (1 and 8 cases,
respectively), 61 diseases were analyzed. The highest
numbers of incident cases were observed in cardiometa-
bolic conditions, with hypertension (n=4162), high cho-
lesterol (n=3334), and coronary heart disease (n=2450)
being the most prevalent. Among musculoskeletal condi-
tions, osteoporosis showed a high incidence (n=3259),
as did painful conditions (#=3111). Gastrointestinal
disorders were also common, with dyspepsia and diver-
ticular disease accounting for 5084 and 4185 incident
cases, respectively. For cancers, apart from other cancers
(n=2341), the most frequent were skin cancer (n=1461),
followed by prostate cancer (#=942), and breast cancer
(n=799). Among neurological and mental health con-
ditions, anxiety (#=1883) and depression (n=1464)
showed the highest incidence. The least frequent condi-
tions (excluding those already excluded) were polycystic
ovary (n=16), uterine/endometrial cancer (n=20), and
schizophrenia/bipolar disorder (n=37). The details of
disease incidence and follow-up period can be found in
Additional file 1: Table S4.

Retinomic features selected for disease prediction

LASSO identified retinal parameters for all diseases
except for schizophrenia/bipolar disorder, Meniere dis-
ease, and polycystic ovary, leaving 58 diseases included
in the further analysis. Figure 3A shows the retinomic
feature types selected with LASSO for the prediction
of diseases and Fig. 3B shows the number of diseases
where the retinal parameter was selected for predic-
tion. Average ganglion cell inner plexiform layer thick-
ness (GC-IPL), inner segment/outer segment—retinal
pigment epithelium (ISOS-RPE) thickness of central
subfield, and overall average RPE thickness, and were
selected for 37, 33, and 32 diseases, respectively. Other
neural retinal parameters selected for more than 20
diseases included average external limiting membrane-
ISOS (ELM-ISOS) thickness, average retinal nerve fiber
layer thickness (RNFL), ELM-ISOS thickness of outer
subfield, ELM-ISOS thickness of central subfield, ISOS-
RPE thickness of outer subfield, and average inner
nuclear layer thickness (INL), while vascular retinal
parameters selected for more than 20 diseases included
width of non-terminal veins, venular curve angle, arte-
rial vessel area density (VAD) in the macular region,
venular VAD, the width of veins, venular VAD outside
the macular region, number of arterial bifurcation and
non-terminal arteries, venular branching angle, and
arterial twist-based tortuosity. Additional file 1: Tables
S5-S6 show the full list of selected retinomics and cor-
responding diseases, from the feature-centered and dis-
ease-centered perspectives, respectively. There were 11
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Table 1 Baseline characteristics of participants

All Female Male
(N=41,434) (N=22,898) (N=18,536)

Age (years)

Mean (SD) 553 (8.19) 55.1 (8.05) 55.5(8.35)
Education, N (%)

High 15,098 (36.4%) 8082 (35.3%) 7016 (37.9%)

Intermediate 20,668 (49.9%) 11,777 (51.4%) 8891 (48.0%)

Low 5150 (12.4%) 2763 (12.1%) 2387 (12.9%)

Missing 518 (1.3%) 276 (1.2%) 242 (1.3%)
Smoking status, N (%)

Never 23,376 (56.4%) 13,903 (60.7%) 9473 (51.1%)

Previous 13,769 (33.2%) 7001 (30.6%) 6768 (36.5%)

Current 4053 (9.8%) 1873 (8.2%) 2180 (11.8%)

Missing 236 (0.6%) 121 (0.5%) 115 (0.6%)
Drinking status, N (%)

Never 1980 (4.8%) 1403 (6.1%) 577 (3.1%)

Previous 1429 (3.4%) 805 (3.5%) 624 (3.4%)

Current 37,870(91.4%) 20,602 (90.0%) 17,268 (93.2%)

Missing 155 (0.4%) 88 (0.4%) 67 (0.4%)
Body mass index (kg/m?)

Mean (SD) 27.2 (4.74) 26.8 (5.14) 27.7 (4.13)

Missing, N (%) 212 (0.5%) 112 (0.5%) 100 (0.5%)

Physical activity, N (%)

Low 5742 (13.9%) 2964 (12.9%) 2778 (15.0%)
Moderate 13,552 (32.7%) 7646 (33.4%) 5906 (31.9%)
High 13,764 (33.2%) 7077 (30.9%) 6687 (36.1%)
Missing 8376 (20.2%) 5211 (22.8%) 3165 (17.1%)

Overall health, N (%)

Good/Excellent 30,465 (73.5%) 17,218 (75.2%) 13,247 (71.5%)

Fair 8931 (21.6%) 4603 (20.1%) 4328 (23.3%)

Poor 1775 (4.3%) 937 (4.1%) 838 (4.5%)

Missing 263 (0.6%) 140 (0.6%) 123 (0.7%)
SBP (mmHg)

Mean (SD) 136 (18.1) 133(18.8) 139(16.8)

Missing, N (%) 147 (0.4%) 90 (0.4%) 57 (0.3%)
DBP (mmHg)

Mean (SD) 81.6(10.0) 80.1 (9.96) 83.5(9.81)

Missing, N (%) 147 (0.4%) 90 (0.4%) 57 (0.3%)
HbA1c (mmol/mol)

Mean (SD) 35.7 (6.36) 35.5(5.79) 36.1 (6.98)

Missing, N (%) 4057 (9.8%) 2384 (10.4%) 1673 (9.0%)
HDL (mmol/L)

Mean (SD) 1.48(0.387) 1.63(0.383) 1.31(0.312)

Missing, N (%) 5080 (12.3%) 2987 (13.0%) 2093 (11.3%)
LDL (mmol/L)

Mean (SD) 3.54(0.852) 3.58(0.851) 3.50 (0.850)

Missing, N (%) 3370 (8.1%) 1918 (8.4%) 1452 (7.8%)

SD standard deviation, N number, SBP systolic blood pressure; diastolic blood
pressure, HbATc glycated hemoglobin, HDL high-density lipoprotein, LDL low-
density lipoprotein. Continuous variables were described as the mean (SD), and
categorical variables as N (percentage)
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retinomics selected for only one disease, among which,
fractal dimension and Strahler order of arterial capil-
lary were only selected for hypertension (Additional
file 1: Fig. S7).

Improvement in prediction performance

after incorporating retinomics

The predictive performance of the baseline and clini-
cal models for the 58 diseases are shown by dots in
Fig. 4. The baseline model (including only age and
sex) showed moderate predictive performance with a
mean C-index of 0.653 (range, 0.551-0.819). Notably,
the predictive performance of the baseline model was
greatest for the risk of dementia, age-related macular
degeneration (AMD), cataract, and Parkinson’s disease
(C indices >0.75). The clinical model, which incorpo-
rated common risk factors, achieved a mean C-index
of 0.697 (range 0.573 to 0.822), demonstrating the
highest predictive values for dementia and lung cancer
(C-indices > 0.80).

Figure 4 also illustrates how the addition of reti-
nal features improved predictive performance, with
purple connecting lines showing the improvement
from baseline to retinal model and orange connecting
lines indicating the improvement from clinical to full
model. Adding retinal features to the baseline model
improved the predictive performance, resulting in a
mean C-index of 0.693 (range, 0.563-0.832). This rep-
resented a mean improvement of 6.42% (range, 1.08—
33.18%). The retinal model, using only retinomics with
age and sex, achieved a C-index >0.75 for 13 diseases,
encompassing a range of conditions across multiple
organ systems. These included cardiovascular diseases
(atrial fibrillation, heart failure), neurodegenerative and
mental health disorders (Parkinson’s disease, dementia,
psychoactive substance abuse), ophthalmic conditions
(glaucoma, cataract, AMD), fractures, and several can-
cers (lung cancer, stomach cancer, esophageal cancer,
uterine/endometrial cancer). The addition of selected
retinomic features to the clinical model improved the
predictive performance to a mean C-index of 0.721
(range, 0.576-0.858), with a mean increase of 3.53%
(range, 0.50-19.37%). The full model demonstrated
optimal performance for predicting uterine/endome-
trial cancer, lung cancer, dementia, esophageal cancer,
chronic obstructive pulmonary disease (COPD), and
psychoactive substance abuse (C-indices>0.8). The
C-index values of all models and the relative increase
in C-index can be found in Additional file 1: Table S7
and the predictive value of individual retinal features is
provided in Additional file 1: Table S8.
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A. Selected Retinomics for Disease Prediction
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B. Selection Frequency of Retinomic Features

Il Hootor oo [ overcuarosonse [ ot Hoan Cardia praiem

| B [ ovepepsia [ oer Psychoactive Substance Abuse

W Aoy [ encometiosis [ ovarian Cancer

B stma B eviepsy [ Painful Conditons

[ e Fivritaton W Frecue [ Parkinson Disease

[ 8ein nivry B ciavcoma [ Peripheral Vascular Diseaso

[l Breast Cancer [ Hearing Impaiment [ Pemicious Anemia
Bronchiectasis [ Hear Faiure Prostate Gancer

W ceterect [ +ign crotesteral Prostate Disorders

- Chronic Fatigue Syndrome . Hypertension Psoriasis Eczema

- Chronic Disease

[l chronic iver Disease [l itable Bowel Syncrome Skin Cancer

[l ctroric sinusiis [ Lung Cancer ‘Stomach Cancer

Stroke Tia

[ coen cencer

I Comnscvo Tsuo Diortrs [ Mirane

W o
[ |

[ vearoma
Ty Disorders

Viral Hepatitis

. [
‘ I ementa [ osteoporosis
[l oevression [ oter Brain Problem
‘ ‘»\ [ oatetes [ other Cancers
i il
| | [
L |

Retinal Features

Fig. 3 LASSO-Selected retinomics for disease prediction and selection frequency. A Circular diagram showing categories of retinal biomarkers
selected by LASSO regression as predictive for specific diseases; connecting lines indicate selection relationships. B Bar chart showing the number
of diseases associated with each retinal biomarker. Full lists of selected features and corresponding diseases are provided in Additional file 1: Tables
S5 (feature-centered view) and S6 (disease-centered view). LASSO least absolute shrinkage and selection operator, COPD chronic obstructive
pulmonary disease, TIA transient ischemic attack, AMD age-related macular degeneration

Comparison of the screening matrix after incorporating
retinomic features

When comparing the retinal model with baseline model,
a substantial predictive improvement (>5% improve-
ment in C-index) with introduction of retinal profiles was
found for 24 incident diseases. The LRT test revealed that
statistical significance in the improvement for all 24 dis-
eases. When further comparing clinical model and full
model, the improvement was over 5% for 12 incident dis-
eases, all statistically significant. Additional file 1: Tables
S§9-S10 show the result of LRT tests, and Additional
file 1: Table S11 shows the results for ICI across four
models. Figure 5 presents DR over the FPR ranging from
5 to 40% for those diseases.

In the comparison between baseline and retinal mod-
els (Fig. 5A), the retinal model demonstrated an over-
all trend of superior detection rates compared to the
baseline model across all 24 conditions with substantial
C-index improvement. The results showed that incorpo-
rating retinomic features led constant improvement in

(See figure on next page.)

DR without introducing more false positive cases, with
the exception for ovarian cancer at FPR of 0.2 and viral
hepatitis at FPR of 0.25. Among 22 conditions showing
consistently higher DR across all FPR levels, when sim-
ply using retinomics with age and sex, five conditions
had a C-index higher than 0.75, including psychoac-
tive substance abuse, glaucoma, and cancers (lung can-
cer, esophageal cancer, uterine/endometrial cancer).
Similarly, when comparing clinical versus full models
(Fig. 5B), the full model also showed a consistent superior
performance over the clinical model for 11 out of 12 key
diseases, suggesting robust and reliable improvement in
predictive capability even after accounting for common
clinical factors. Additional file 1: Fig. S8 shows compari-
son among all models for all 24 diseases.

Discussion

Our study explores the potential of retinal imaging—
neurovascular retinomics—as a promising tool for
predicting incident chronic diseases, using data from

Fig.4 C-index improvement with the introduction of retinomic profiles. The plot shows C-index values for 58 chronic conditions, sorted by full
model C-index from highest (top) to lowest (bottom). Teal dots represent the baseline model (age and sex only); purple dots represent the retinal
model (baseline model plus selected retinal features from LASSO regression); blue dots represent the clinical model (baseline model plus clinical

factors including body mass index, ethnicity, smoking status, alcohol consumption, and physical activity); and orange dots represent the full model
(combination of clinical and retinal models). Connecting lines show the improvement from baseline to retinal model (purple lines) and from clinical
to full model (orange lines). LASSO least absolute shrinkage and selection operator
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C-Index Values of Four Models
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among all models for all 24 diseases

41,434 UK Biobank participants tracked over a decade.
With feature selection, GC-IPL, ISOS-RPE thickness of
central subfield, and RPE, and were selected for 37, 33,
and 32 diseases, respectively. In addition, retinomics
contributed to the universal improvement in the pre-
dictive performance, with the mean C-index increased
from 0.653 to 0.693 when added to the baseline model
and from 0.697 to 0.721 in the clinical model. Notably,

retinomics boosted discriminative power by>5% for
24 diseases in the Baseline Model and 12 in the Clini-
cal Model, while maintaining specificity. Strikingly, a
minimalistic model combining retinomics with age/sex
achieved robust performance (C-index>0.75) for 13
conditions, spanning neurodegenerative, cardiovascu-
lar, oncologic, and ophthalmic diseases.
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GC-IPL, ISOS-RPE thickness of central subfield, and
RPE serving as predictors for over 30 distinct diseases.
These findings align with the retina’s unique window
into systemic health, where microvascular integrity and
neural tissue reflect cumulative pathological processes.
Previous studies explored those features separately and
revealed their associations with a variety of systemic
conditions. For instance, significant GC-IPL thinning
was observed in patients with Alzheimer’s disease, mild
cognitive impairment, Parkinson’s disease, and changes
in ISOS-RPE and RPE thickness with diabetes, sys-
temic lupus erythematosus and multiple sclerosis [19—
24]. Our study revealed their wide associations with
chronic conditions and indicated the potential of these
biomarkers further explored as comprehensive health
assessment tools.

While introduction of retinomics led to universal
improvement in prediction performance, such increase
was particularly prominent (exceeding 5%) across 24 con-
ditions when compared with the baseline model. Further
analysis on DR across FPR showed that adding retinom-
ics led to consistently higher DR across all FPR levels
in 22 conditions. This indicated that adding retinomics
increased detection of positive cases without introduc-
ing more false positive cases. More importantly, among
those 22 conditions, when simply using retinomics with
age and sex, five conditions had a C-index higher than
0.75, including psychoactive substance abuse, glaucoma,
lung cancer, esophageal cancer, and uterine/endometrial
cancer. This demonstrated that adding retinomics not
only substantially improved the discriminative power
of the predictive models, as evidenced by the enhanced
C-indices, but also achieved superior diagnostic effi-
ciency by optimizing the sensitivity—specificity trade-off.
This encouraging finding suggests that retinal biomark-
ers contribute meaningful and specific signal rather than
statistical noise to the disease detection paradigm. This
favorable performance characteristic would be important
prerequisites for population-level screening applications,
where minimizing false positives while maintaining high
detection sensitivity is crucial for both clinical utility and
resource optimization. However, additional validation
studies would be needed to establish clinical implemen-
tation feasibility.

It should be noted that the retinal model, using only
retinomics with age and sex, achieved a C-index>0.75
for 13 diseases, encompassing cardiovascular diseases
(atrial fibrillation, heart failure), neurodegenerative and
mental health disorders (Parkinson’s disease, demen-
tia, psychoactive substance abuse), ophthalmic condi-
tions (glaucoma, cataract, AMD), fractures, and several
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cancers (lung cancer, stomach cancer, esophageal cancer,
uterine/endometrial cancer). The typical age of pres-
byopia onset (around 50) naturally brings patients to eye
care providers at a life stage when most of those chronic
disease risks escalate. This alignment raises the possibil-
ity of integrating retinal imaging assessment into routine
eye examinations, potentially leveraging existing health-
care touchpoints and infrastructure following evaluation
against well-recognized screening frameworks, such as
the Wilson—Jungner principles [25].

When added to the clinical model, retinomics led to
yield a more than 5% increase in the C-index for 12 con-
ditions, which were all among the above 24 conditions.
Apart from ovarian cancer, all conditions had a consist-
ently higher DR across all FPR levels, including psychi-
atric conditions such as psychoactive substance abuse
and alcohol problems, multiple sclerosis, malignancies
(esophageal cancer, rectal cancer, and uterine/endome-
trial cancer), and a cluster of interconnected conditions,
including chronic fatigue syndrome and pernicious ane-
mia. These findings underscore the broad applicability of
retinomics across a wide range of diseases and highlight
its potential as a valuable biomarker, even when inte-
grated with existing Clinical Models that already account
for common factors.

Previous studies showed the psychoactive substance
abuse can lead to drug-induced retinopathy, with mani-
festations such as retinal vascular occlusion diseases
and toxic optic neuropathy [26], and thinning of RNFL
was also observed in terms of retinal measurements
[27]. In our study, LASSO feature selection identified
37 retinal parameters with predictive potential for inci-
dent substance abuse, including tortuosity, density, and
complexity of the vascular network, and INL, GC-IPL,
and photoreceptor sublayers. This could be plausibly
attributed to the risk factors of psychoactive substance
abuse, such as genetic susceptibility, prenatal exposure,
and early alcohol and drug use [28, 29]. For instance, a
previous study found abnormal retinal tortuosity and
optic nerve hypoplasia in children with prenatal alcohol
exposure [30]. While some evidence suggests potential
retinal associations with substance abuse, the predic-
tive relationship between baseline retinal features and
future substance abuse risk remains largely unexplored
and requires mechanistic validation. Further research is
required to disentangle the retinal profiles of other risk
factors of substance abuse.

Previous studies also showed the retinal profiles related
to neurodegenerative diseases, including multiple sclero-
sis (MS) [31-33]. Characterized by axonal loss (demyeli-
nation), the retina could show signs of decreased ganglion
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cell complex, RNFL thickness, and macular volume [31],
decreased vessel density, and reduced macular superficial
plexus [32]. In comparison, apart from GC-IPL, we also
found tortuosity of arterial capillaries to have increased
predictive value of future MS, suggesting that disruptions
in both microcirculation and neurodegeneration predate
the onset of the disease.

Intriguingly, retinomic profiles also demonstrated
increased predictive ability for incident malignancies,
such as uterine/endometrial cancer and esophageal can-
cer. There was scarce evidence on the retina-cancer risk
association previously; however, the potential explana-
tion may be exemplified by a recent study showing the
association with microvascular dysfunction and inci-
dent cancer risk [34]. Oxidative stress was proposed as
the common culprit as it leads to endothelial dysfunc-
tion and interfering with DNA methylation and genetic
instability [34]. Notably, uterine/endometrial cancer is
estrogen dependent disorder. Estrogen was found to
regulate critical signaling pathways in the retina [35] and
a trend narrowing of retinal arterioles and venules were
observed with individuals with longer duration of estro-
gen replacement therapy [36]. However, given the limited
prior evidence and indirect mechanistic pathways, these
cancer-related findings should be considered exploratory
and investigated to establish a mechanistic basis.

For the connection between retina and liver diseases,
previous research argued that the combination of hyper-
ammonemia (damaging retinal cells), hypoalbumine-
mia (altering vascular pressure), and impaired estrogen
metabolism, along with portal hypertension, can col-
lectively induce retinal vascular and structural changes
detectable through retinal imaging [37]. Our findings
extend beyond liver disease to its common complication,
anemia, where the predictive value of retinomic profiles
was supported by previous studies showing associations
between retinal measures (decreased venous tortuosity
and reduced central retinal artery equivalent) and anemia
[38, 39], and the successful development of deep learning
algorithms for hemoglobin prediction [40]. Furthermore,
our discovery of retinomic profiles’ predictive value for
fatigue aligns with the interconnected nature of these
conditions, as fatigue often manifests as a compound
symptom of both liver disease and anemia, malignancies,
or malnutrition from substance abuse [41, 42]. While the
retinal-fatigue association appears biologically plausible
through these interconnected pathways, further research
is needed to validate the predictive utility of retinal bio-
markers for fatigue as a standalone condition.

Our study found that retinal imaging shows the poten-
tial to enhance risk stratification of multiple chronic
diseases. Retinal imaging is widely adopted in clini-
cal practice and is less expensive than other omics
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technologies. In addition, our results suggested that
adding retinomics not only substantially improved the
discriminative power of the predictive models but also
achieved superior diagnostic efficiency by optimizing
the sensitivity—specificity trade-off. Most significantly,
using only retinomics with age and sex, a C-index>0.75
for over a dozen chronic diseases. This temporal conver-
gence between presbyopia-driven eye examinations and
peak chronic disease risk creates a potentially valuable
screening window. This approach shows the potential to
be investigated as a screening tool, particularly in low-
resource settings where non-invasive, low-cost, accessi-
ble, and simple screening tools are crucial.

However, our study presents some limitations. While
our findings are promising, translation to clinical prac-
tice would require rigorous evaluation against estab-
lished screening criteria, including cost-effectiveness
analysis, validation of clinical utility through prospective
studies, and assessment against Wilson-Jungner princi-
ples for population screening programs. Moreover, the
varying predictive performance across diseases neces-
sitates focused analysis to identify specific conditions
where retinomics offers clinically meaningful improve-
ments and meets decision-making thresholds for prac-
tical implementation. Other limitations include the UK
Biobank’s predominantly White, middle-aged cohort
and potential underrepresentation of advanced diseases.
Additionally, all retinal images were acquired using the
same Topcon device, which may limit generalizabil-
ity across different imaging platforms. External valida-
tion in diverse, high-risk populations using independent
datasets from various clinical sites is essential to estab-
lish the robustness and clinical applicability of retinom-
ics in real-world settings. Furthermore, with automated
retinal image analysis tools, we adopted multiple qual-
ity control measures to maximize segmentation and
quantification reliability. Nevertheless, exclusion of
lower-quality images may introduce selection bias, and
measurement variability cannot be entirely eliminated.
Despite these limitations, the observed robust improve-
ments in C-index across multiple conditions following
LASSO feature selection suggest that biological signal
strength exceeded technical measurement noise. Addi-
tionally, elucidating causal pathways linking retinal fea-
tures to systemic diseases—e.g., disentangling substance
abuse-related retinal changes from confounding factors
like hypertension—warrants further research.

Conclusions

In conclusion, we comprehensively examined neurovas-
cular retinomics as predictors and found added value of
the retinomic signatures across a wide spectrum of dis-
eases. Retinal imaging offers advantages as a non-invasive
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approach that could potentially leverage existing eye-
care infrastructure already frequented by aging popu-
lations for presbyopia management (typically from age
50). Its balanced performance with simplicity suggests
the potential for preventive healthcare, particularly in
resource-limited settings. Future studies validating these
biomarkers in diverse populations and evaluating this
approach against established screening criteria will be
necessary to determine their potential for further practi-
cal translation.
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DBP Diastolic blood pressure

DR Detection rate
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FPR False positive rate
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LASSO Least absolute shrinkage and selection operator
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LRT Likelihood ratio test
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RMHAS-FA  Retina-based Microvascular Health Assessment System-Fluo-
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RNFL Retinal nerve fiber layer

SBP Systolic blood pressure

) Standard deviation

TIA Transient ischemic attack

VAD Vessel area density
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