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Abstract 

Background  The aim of this study is to investigate the potential of retinal biomarkers (retinomics) derived from color 
fundus photography and optical coherence tomography for predicting multiple diseases.

Methods  Using UK Biobank cohort data, we applied least absolute shrinkage and selection operator regression 
to address multicollinearity and identify key biomarkers. Cox proportional hazards models, with and without retinomic 
features. Detection rates (DR) across false positive rates (FPR: 5–40%) were assessed to ensure improved sensitivity 
without disproportionate false positives.

Results  Three retinomic features emerged as top predictors: ganglion cell-inner plexiform layer (37 diseases), retinal 
pigment epithelium (33 diseases), and central subfield of inner segment/outer segment-RPE (32 diseases). Adding 
retinomics improved mean C-index from 0.653 to 0.693 (+ 6.4%) in baseline models (age and sex) and from 0.697 
to 0.721 (+ 3.5%) in clinical models (traditional common risk factors). A simplified retinal model (retinomics + age/sex) 
achieved C-index ≥ 0.75 for 13 diseases. Retinomics enhanced prediction by > 5% for 24 diseases in baseline models 
and 12 diseases in clinical models. DR improvements across FPR ranges confirmed robust performance without exces-
sive false positives.

Conclusions  Retinomics universally enhanced disease prediction, with marked gains for conditions like cardio-
vascular and metabolic disorders. The onset of presbyopia (~ 50 years)—a common trigger for eye exams—aligns 
with escalating chronic disease risks, suggesting an opportunity to leverage routine eye care for broader health 
assessment. While requiring further validation, this approach demonstrates the potential to enhance health screening 
efficiency using existing ophthalmic infrastructure, offering particular value for resource-limited settings.
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Background
Early prediction of disease risk prior to clinical onset is 
critical for enabling timely interventions and improving 
patient outcomes. While traditional methods such as 
blood tests and imaging have advanced significantly, they 
remain largely confined to single-disease identification 
[1] and face limitations in scalability due to invasiveness, 
cost, and technical complexity. The emergence of omics 
technologies—high-throughput molecular profiling—has 
enabled comprehensive analyses of disease pathways [2, 
3] with metabolomics and proteomics demonstrating 
potential for multi-disease risk prediction [4, 5]. How-
ever, these approaches are costly, often require special-
ized infrastructure and invasive sampling, hindering their 
integration into routine clinical care.

The retina, uniquely, offers a non-invasive window into 
systemic health, allowing direct visualization of both 
neural and microvascular structures [6] through widely 
accessible imaging modalities like color fundus photog-
raphy (CFP) and optical coherence tomography (OCT). 
Our group previously developed the Retina-based Micro-
vascular Health Assessment System-Fluorescein Angi-
ography (RMHAS-FA) [7], a deep learning framework 
that automates segmentation of retinal vasculature. This 
system generates hundreds of intricate “vascular finger-
prints” [8], quantifying retinal microarchitecture with 
unprecedented granularity. Furthermore, while prior 
work has uncovered multidimensional relationships 
between retinal vascular networks from CFP and neural 
layers from OCT [9], most research has focused on iso-
lated CFP or OCT measurements [10, 11], neglecting the 
complementary insights offered by multimodal imag-
ing. This presents a crucial gap where a comprehensive 
neurovascular retinomic approach—combining micro-
vascular, macrovascular, and neural layer data across 
modalities—remains unexplored for multi-disease risk 
stratification. These features underpin “retinomics,” an 
emerging discipline focused on large-scale biomarker 
discovery to link retinal phenotypes with systemic dis-
eases such as cardiovascular disorders, diabetes, and 
neurodegeneration [12, 13].

More importantly, retinal screening aligns with a piv-
otal window for preventive care: routine eye exams, often 
initiated around age 50 due to presbyopia, coincide with 
the onset of elevated risk for chronic diseases. This align-
ment suggests that retinomics may have the potential to 
bridge ophthalmology and systemic health.

In this study, we leverage the UK Biobank [14], a large 
population-based cohort, to investigate the predictive 
value of neurovascular retinomics. By integrating CFP 
and OCT-derived features—encompassing large-medium 
vessels, capillaries, and neural layers—we aim to estab-
lish a multimodal framework for evaluating the potential 

of retinomics in stratifying risks of systemic conditions. 
Our work explores retinomics as a potential non-inva-
sive tool for systemic health assessment, bridging criti-
cal gaps between single-modality studies and holistic risk 
prediction.

Methods
Study population
The study population was derived from the UK Biobank 
study, a prospective cohort study that recruited around 
500,000 participants aged between 40 and 69 years at the 
baseline from 2006 to 2010 [14]. Ocular imaging includ-
ing CFP and OCT was introduced in 2019 at six assess-
ment centers [15]. The UK Biobank study received ethics 
approval from the North West Multi-Centre Research 
Ethics Committee (Ref 11/NW/0382) and obtained con-
sent from participants at enrollment.

Inclusion and exclusion criteria
Participants who withdrew consent or lacked CFP/OCT 
data were excluded. Low-quality CFP images classified 
as “Reject” by RMHAS-FA [7] were removed. For OCT, 
quality control indicators generated by the Topcon 3D 
OCT-1000 Mark II system [15, 16] were applied. After 
matching OCT and CFP images by eye laterality, only 
the highest-quality pair per participant was retained. For 
each incident disease analysis, participants with prevalent 
disease at baseline were excluded, and for sex-specific 
conditions, people of the opposite sex were removed. The 
inclusion/exclusion processes for participants and image 
data at each stage of the selection process are shown in 
Fig. 1.

Retinomic profiling
Topcon 3D OCT-1000 Mark II system was used for reti-
nal image acquisition [15]. The retinomic profiles con-
sisted of retinal vascular features and retinal neural layer 
measurements. The measurements of large-medium 
vessels and capillaries were extracted from CFP using 
RMHAS-FA(7), including measurements of caliber, den-
sity, complexity, tortuosity, and branching angle. Details 
on the vascular measurements have been previously 
published [8]. The measurements of retinal neural layers 
were derived from OCT scans using Topcon Advanced 
Boundary Segmentation software [16]. Details can be 
found at https://​bioba​nk.​ndph.​ox.​ac.​uk/​showc​ase/​label.​
cgi?​id=​100016.

Outcomes
We included 63 chronic conditions as specified in the 
previous publication [17] and identified those condi-
tions using the International Classification of Diseases, 
edition 10 (ICD-10) and ICD-9. Additional file 1: Tables 

https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100016
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100016
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S1–S2 present the Field IDs and ICD codes used to iden-
tify prevalent and incident diseases. Follow-up starts on 
the date of the image acquisition and ends on the date of 
death, or incident outcomes, or October 31, 2022, which-
ever occurs first. We excluded those diseases with less 
than 30 incident events (the cut off was 15 for sex-spe-
cific diseases).

Statistical analysis
Retinal parameters with > 30% missing values were 
excluded, and outliers were removed following the 
method proposed by Zekayat et al. [18]. Remaining miss-
ing data were imputed using the multiple imputation by 
chained equations (MICE) package in R. After removing 
outliers, the distributions of all parameters were approxi-
mately normal upon visual inspection. All parameters 
were z-score standardized, which does not assume nor-
mality and ensures comparable scales across parameters 
for subsequent feature selection and predictive modeling.

The least absolute shrinkage and selection opera-
tor (LASSO) regression was used to identify retinomic 

biomarkers with predictive associations for each disease. 
LASSO’s L1 regularization automatically excludes non-
informative features by shrinking their coefficients to 
zero, ensuring only meaningful retinal biomarkers con-
tribute to the predictive models. Prevalent cases for the 
corresponding outcome were excluded from the analysis, 
and sex-specific conditions were taken into consideration 
if applicable.

After feature selection, we fitted Cox proportional haz-
ards models to assess the performance of 4 survival mod-
els in predicting incident diseases: (1) Baseline model: 
incorporating age and sex only; (2) Clinical model: age 
and sex along with clinical factors including body mass 
index (BMI), ethnicity, smoking status, alcohol con-
sumption, and physical activity (well-established com-
mon modifiable risk factors for a wide range of diseases); 
(3) Retinal model: combining the baseline model and 
selected retinal features from LASSO regression; (4) Full 
model: combination of the clinical model and selected 
retinal features. Additional file 1: Table S3 shows the defi-
nitions of variables used in the current study.

Fig. 1  Participants selection process. OCT optical coherence tomography, CFP color fundus photograph. N indicates the number of images
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The concordance index (C-index) was used to evalu-
ate predictive performance. The C-index measures the 
probability that, for any randomly selected pair of sub-
jects, the one with the higher predicted risk experiences 
the event earlier. We selected the C-index because it 
accounts for time-to-event information, making it more 
appropriate than traditional binary classification metrics 
for evaluating predictive models of chronic disease pro-
gression. In addition, to assess the statistical significance 
of improvements in model discrimination after adding 
retinal parameters, we employed the Likelihood Ratio 
Test (LRT) for each disease where we observed a > 5% 
improvement in C-index (either retinal model vs. base-
line model, or full model vs. clinical model). Additionally, 
we calculated detection rate (DR) and false positive rate 
(FPR) to evaluate the models’ screening capabilities and 
to assess the balance between correctly identifying dis-
ease cases while minimizing false alarms. We focused on 
the DR across FPR range of 5% to 40%, as this reflects the 
clinically practical operating range for predictive models. 
FPR values exceeding 40% would result in unacceptably 
high false positive rates, making such models unsuit-
able for real-world implementation. DR (proportion of 
affected people with a positive result) was defined by the 
number of true positives divided by the sum of the false 
negatives and the true positives. FPR (proportion of unaf-
fected people with a positive result) was determined by 
the ratio of false positives to the sum of true negatives 
and false positives. We further assessed calibration using 
the Integrated Calibration Index (ICI), which measures 
how closely predicted risks match observed outcomes. 
Additional file  1: Fig. S1 shows the general design of 
current study and Fig.  2 illustrates the methodological 
framework of the analyses.

In addition, we investigated the predictive values of 
vascular and neural retinomics separately (Additional 
file 1: Figs. S2–S3) and model evaluation without LASSO 
feature selection (Additional file  1: Fig. S4). Further, we 
examined 5-year and 10-year predictions as sensitivity 
analyses (Additional file 1: Figs. S5–S6). All analyses were 
conducted using R Version 4.2.3 (Vienna, Austria).

Results
Characteristics of participants
The study included a total of 41,434 participants, com-
prising 22,898 (55.3%) females and 18,536 (44.7%) males. 
The mean age of the overall sample was 55.3 years (stand-
ard deviation [SD] 8.19). The mean BMI was 27.2 kg/m2 
(SD: 4.74), and physical activity levels were mostly mod-
erate to high. Table  1 shows the details of the baseline 
characteristics of participants in the overall sample and 
by sex.

After excluding human immunodeficiency virus and 
anorexia due to insufficient incident cases (1 and 8 cases, 
respectively), 61 diseases were analyzed. The highest 
numbers of incident cases were observed in cardiometa-
bolic conditions, with hypertension (n = 4162), high cho-
lesterol (n = 3334), and coronary heart disease (n = 2450) 
being the most prevalent. Among musculoskeletal condi-
tions, osteoporosis showed a high incidence (n = 3259), 
as did painful conditions (n = 3111). Gastrointestinal 
disorders were also common, with dyspepsia and diver-
ticular disease accounting for 5084 and 4185 incident 
cases, respectively. For cancers, apart from other cancers 
(n = 2341), the most frequent were skin cancer (n = 1461), 
followed by prostate cancer (n = 942), and breast cancer 
(n = 799). Among neurological and mental health con-
ditions, anxiety (n = 1883) and depression (n = 1464) 
showed the highest incidence. The least frequent condi-
tions (excluding those already excluded) were polycystic 
ovary (n = 16), uterine/endometrial cancer (n = 20), and 
schizophrenia/bipolar disorder (n = 37). The details of 
disease incidence and follow-up period can be found in 
Additional file 1: Table S4.

Retinomic features selected for disease prediction
LASSO identified retinal parameters for all diseases 
except for schizophrenia/bipolar disorder, Meniere dis-
ease, and polycystic ovary, leaving 58 diseases included 
in the further analysis. Figure 3A shows the retinomic 
feature types selected with LASSO for the prediction 
of diseases and Fig.  3B shows the number of diseases 
where the retinal parameter was selected for predic-
tion. Average ganglion cell inner plexiform layer thick-
ness (GC-IPL), inner segment/outer segment—retinal 
pigment epithelium (ISOS-RPE) thickness of central 
subfield, and overall average RPE thickness, and were 
selected for 37, 33, and 32 diseases, respectively. Other 
neural retinal parameters selected for more than 20 
diseases included average external limiting membrane-
ISOS (ELM-ISOS) thickness, average retinal nerve fiber 
layer thickness (RNFL), ELM-ISOS thickness of outer 
subfield, ELM-ISOS thickness of central subfield, ISOS-
RPE thickness of outer subfield, and average inner 
nuclear layer thickness (INL), while vascular retinal 
parameters selected for more than 20 diseases included 
width of non-terminal veins, venular curve angle, arte-
rial vessel area density (VAD) in the macular region, 
venular VAD, the width of veins, venular VAD outside 
the macular region, number of arterial bifurcation and 
non-terminal arteries, venular branching angle, and 
arterial twist-based tortuosity. Additional file 1: Tables 
S5–S6 show the full list of selected retinomics and cor-
responding diseases, from the feature-centered and dis-
ease-centered perspectives, respectively. There were 11 
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Fig. 2  Methodological framework for retinomics-based predictive modeling. This figure used image provided by Servier Medical Art (https://​smart.​
servi​er.​com/), licensed under CC BY 4.0 (https://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/) and from Chilton, J. (2020). Ependymal cell.Zenodo. https://​
doi.​org/​10.​5281/​zenodo.​39264​97 from SciDraw licensed under CC BY 4.0. RNFL retinal nerve fiber layer, GC-IPL ganglion cell layer-inner plexiform 
layer, INL inner nuclear layer, ELM external limiting membrane, ISOS inner segment/outer segment, RPE retinal pigment epithelium

https://smart.servier.com/
https://smart.servier.com/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.3926497
https://doi.org/10.5281/zenodo.3926497
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retinomics selected for only one disease, among which, 
fractal dimension and Strahler order of arterial capil-
lary were only selected for hypertension (Additional 
file 1: Fig. S7).

Improvement in prediction performance 
after incorporating retinomics
The predictive performance of the baseline and clini-
cal models for the 58 diseases are shown by dots in 
Fig.  4. The baseline model (including only age and 
sex) showed moderate predictive performance with a 
mean C-index of 0.653 (range, 0.551–0.819). Notably, 
the predictive performance of the baseline model was 
greatest for the risk of dementia, age-related macular 
degeneration (AMD), cataract, and Parkinson’s disease 
(C indices > 0.75). The clinical model, which incorpo-
rated common risk factors, achieved a mean C-index 
of 0.697 (range 0.573 to 0.822), demonstrating the 
highest predictive values for dementia and lung cancer 
(C-indices > 0.80).

Figure  4 also illustrates how the addition of reti-
nal features improved predictive performance, with 
purple connecting lines showing the improvement 
from baseline to retinal model and orange connecting 
lines indicating the improvement from clinical to full 
model. Adding retinal features to the baseline model 
improved the predictive performance, resulting in a 
mean C-index of 0.693 (range, 0.563–0.832). This rep-
resented a mean improvement of 6.42% (range, 1.08–
33.18%). The retinal model, using only retinomics with 
age and sex, achieved a C-index ≥ 0.75 for 13 diseases, 
encompassing a range of conditions across multiple 
organ systems. These included cardiovascular diseases 
(atrial fibrillation, heart failure), neurodegenerative and 
mental health disorders (Parkinson’s disease, dementia, 
psychoactive substance abuse), ophthalmic conditions 
(glaucoma, cataract, AMD), fractures, and several can-
cers (lung cancer, stomach cancer, esophageal cancer, 
uterine/endometrial cancer). The addition of selected 
retinomic features to the clinical model improved the 
predictive performance to a mean C-index of 0.721 
(range, 0.576–0.858), with a mean increase of 3.53% 
(range, 0.50–19.37%). The full model demonstrated 
optimal performance for predicting uterine/endome-
trial cancer, lung cancer, dementia, esophageal cancer, 
chronic obstructive pulmonary disease (COPD), and 
psychoactive substance abuse (C-indices > 0.8). The 
C-index values of all models and the relative increase 
in C-index can be found in Additional file  1: Table  S7 
and the predictive value of individual retinal features is 
provided in Additional file 1: Table S8.

Table 1  Baseline characteristics of participants

SD standard deviation, N number, SBP systolic blood pressure; diastolic blood 
pressure, HbA1c glycated hemoglobin, HDL high-density lipoprotein, LDL low-
density lipoprotein. Continuous variables were described as the mean (SD), and 
categorical variables as N (percentage)

All
(N = 41,434)

Female 
(N = 22,898)

Male 
(N = 18,536)

Age (years)
  Mean (SD) 55.3 (8.19) 55.1 (8.05) 55.5 (8.35)

Education, N (%)
  High 15,098 (36.4%) 8082 (35.3%) 7016 (37.9%)

  Intermediate 20,668 (49.9%) 11,777 (51.4%) 8891 (48.0%)

  Low 5150 (12.4%) 2763 (12.1%) 2387 (12.9%)

  Missing 518 (1.3%) 276 (1.2%) 242 (1.3%)

Smoking status, N (%)
  Never 23,376 (56.4%) 13,903 (60.7%) 9473 (51.1%)

  Previous 13,769 (33.2%) 7001 (30.6%) 6768 (36.5%)

  Current 4053 (9.8%) 1873 (8.2%) 2180 (11.8%)

  Missing 236 (0.6%) 121 (0.5%) 115 (0.6%)

Drinking status, N (%)
  Never 1980 (4.8%) 1403 (6.1%) 577 (3.1%)

  Previous 1429 (3.4%) 805 (3.5%) 624 (3.4%)

  Current 37,870 (91.4%) 20,602 (90.0%) 17,268 (93.2%)

  Missing 155 (0.4%) 88 (0.4%) 67 (0.4%)

Body mass index (kg/m2)
  Mean (SD) 27.2 (4.74) 26.8 (5.14) 27.7 (4.13)

  Missing, N (%) 212 (0.5%) 112 (0.5%) 100 (0.5%)

Physical activity, N (%)
  Low 5742 (13.9%) 2964 (12.9%) 2778 (15.0%)

  Moderate 13,552 (32.7%) 7646 (33.4%) 5906 (31.9%)

  High 13,764 (33.2%) 7077 (30.9%) 6687 (36.1%)

  Missing 8376 (20.2%) 5211 (22.8%) 3165 (17.1%)

Overall health, N (%)
  Good/Excellent 30,465 (73.5%) 17,218 (75.2%) 13,247 (71.5%)

  Fair 8931 (21.6%) 4603 (20.1%) 4328 (23.3%)

  Poor 1775 (4.3%) 937 (4.1%) 838 (4.5%)

  Missing 263 (0.6%) 140 (0.6%) 123 (0.7%)

SBP (mmHg)
  Mean (SD) 136 (18.1) 133 (18.8) 139 (16.8)

  Missing, N (%) 147 (0.4%) 90 (0.4%) 57 (0.3%)

DBP (mmHg)
  Mean (SD) 81.6 (10.0) 80.1 (9.96) 83.5 (9.81)

  Missing, N (%) 147 (0.4%) 90 (0.4%) 57 (0.3%)

HbA1c (mmol/mol)
  Mean (SD) 35.7 (6.36) 35.5 (5.79) 36.1 (6.98)

  Missing, N (%) 4057 (9.8%) 2384 (10.4%) 1673 (9.0%)

HDL (mmol/L)
  Mean (SD) 1.48 (0.387) 1.63 (0.383) 1.31 (0.312)

  Missing, N (%) 5080 (12.3%) 2987 (13.0%) 2093 (11.3%)

LDL (mmol/L)
  Mean (SD) 3.54 (0.852) 3.58 (0.851) 3.50 (0.850)

  Missing, N (%) 3370 (8.1%) 1918 (8.4%) 1452 (7.8%)
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Comparison of the screening matrix after incorporating 
retinomic features
When comparing the retinal model with baseline model, 
a substantial predictive improvement (> 5% improve-
ment in C-index) with introduction of retinal profiles was 
found for 24 incident diseases. The LRT test revealed that 
statistical significance in the improvement for all 24 dis-
eases. When further comparing clinical model and full 
model, the improvement was over 5% for 12 incident dis-
eases, all statistically significant. Additional file 1: Tables 
S9–S10 show the result of LRT tests, and Additional 
file  1: Table  S11 shows the results for ICI across four 
models. Figure 5 presents DR over the FPR ranging from 
5 to 40% for those diseases.

In the comparison between baseline and retinal mod-
els (Fig.  5A), the retinal model demonstrated an over-
all trend of superior detection rates compared to the 
baseline model across all 24 conditions with substantial 
C-index improvement. The results showed that incorpo-
rating retinomic features led constant improvement in 

DR without introducing more false positive cases, with 
the exception for ovarian cancer at FPR of 0.2 and viral 
hepatitis at FPR of 0.25. Among 22 conditions showing 
consistently higher DR across all FPR levels, when sim-
ply using retinomics with age and sex, five conditions 
had a C-index higher than 0.75, including psychoac-
tive substance abuse, glaucoma, and cancers (lung can-
cer, esophageal cancer, uterine/endometrial cancer). 
Similarly, when comparing clinical versus full models 
(Fig. 5B), the full model also showed a consistent superior 
performance over the clinical model for 11 out of 12 key 
diseases, suggesting robust and reliable improvement in 
predictive capability even after accounting for common 
clinical factors. Additional file 1: Fig. S8 shows compari-
son among all models for all 24 diseases.

Discussion
Our study explores the potential of retinal imaging—
neurovascular retinomics—as a promising tool for 
predicting incident chronic diseases, using data from 

Fig. 3  LASSO-Selected retinomics for disease prediction and selection frequency. A Circular diagram showing categories of retinal biomarkers 
selected by LASSO regression as predictive for specific diseases; connecting lines indicate selection relationships. B Bar chart showing the number 
of diseases associated with each retinal biomarker. Full lists of selected features and corresponding diseases are provided in Additional file 1: Tables 
S5 (feature-centered view) and S6 (disease-centered view). LASSO least absolute shrinkage and selection operator, COPD chronic obstructive 
pulmonary disease, TIA transient ischemic attack, AMD age-related macular degeneration

(See figure on next page.)
Fig. 4  C-index improvement with the introduction of retinomic profiles. The plot shows C-index values for 58 chronic conditions, sorted by full 
model C-index from highest (top) to lowest (bottom). Teal dots represent the baseline model (age and sex only); purple dots represent the retinal 
model (baseline model plus selected retinal features from LASSO regression); blue dots represent the clinical model (baseline model plus clinical 
factors including body mass index, ethnicity, smoking status, alcohol consumption, and physical activity); and orange dots represent the full model 
(combination of clinical and retinal models). Connecting lines show the improvement from baseline to retinal model (purple lines) and from clinical 
to full model (orange lines). LASSO least absolute shrinkage and selection operator
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Fig. 4  (See legend on previous page.)
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41,434 UK Biobank participants tracked over a decade. 
With feature selection, GC-IPL, ISOS-RPE thickness of 
central subfield, and RPE, and were selected for 37, 33, 
and 32 diseases, respectively. In addition, retinomics 
contributed to the universal improvement in the pre-
dictive performance, with the mean C-index increased 
from 0.653 to 0.693 when added to the baseline model 
and from 0.697 to 0.721 in the clinical model. Notably, 

retinomics boosted discriminative power by > 5% for 
24 diseases in the Baseline Model and 12 in the Clini-
cal Model, while maintaining specificity. Strikingly, a 
minimalistic model combining retinomics with age/sex 
achieved robust performance (C-index ≥ 0.75) for 13 
conditions, spanning neurodegenerative, cardiovascu-
lar, oncologic, and ophthalmic diseases.

Fig. 5  Detection rate and false positive rate after incorporating retinomics. A DR over the FPR ranging from 5 to 40% was presented 
for both baseline and retinal models. B DR over the FPR ranging from 5 to 40% was presented for both clinical and full models. The DR over the FPR 
ranging from 5 to 40% plot was generated for those diseases where incorporation of retinomics improve the C-index over 5%. DR detection rate, 
FPR false positive rate, C-index Concordance Index, COPD chronic obstructive pulmonary disease. Additional file 1: Fig. S8 shows comparison 
among all models for all 24 diseases
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GC-IPL, ISOS-RPE thickness of central subfield, and 
RPE serving as predictors for over 30 distinct diseases. 
These findings align with the retina’s unique window 
into systemic health, where microvascular integrity and 
neural tissue reflect cumulative pathological processes. 
Previous studies explored those features separately and 
revealed their associations with a variety of systemic 
conditions. For instance, significant GC-IPL thinning 
was observed in patients with Alzheimer’s disease, mild 
cognitive impairment, Parkinson’s disease, and changes 
in ISOS-RPE and RPE thickness with diabetes, sys-
temic lupus erythematosus and multiple sclerosis [19–
24]. Our study revealed their wide associations with 
chronic conditions and indicated the potential of these 
biomarkers further explored as comprehensive health 
assessment tools.

While introduction of retinomics led to universal 
improvement in prediction performance, such increase 
was particularly prominent (exceeding 5%) across 24 con-
ditions when compared with the baseline model. Further 
analysis on DR across FPR showed that adding retinom-
ics led to consistently higher DR across all FPR levels 
in 22 conditions. This indicated that adding retinomics 
increased detection of positive cases without introduc-
ing more false positive cases. More importantly, among 
those 22 conditions, when simply using retinomics with 
age and sex, five conditions had a C-index higher than 
0.75, including psychoactive substance abuse, glaucoma, 
lung cancer, esophageal cancer, and uterine/endometrial 
cancer. This demonstrated that adding retinomics not 
only substantially improved the discriminative power 
of the predictive models, as evidenced by the enhanced 
C-indices, but also achieved superior diagnostic effi-
ciency by optimizing the sensitivity–specificity trade-off. 
This encouraging finding suggests that retinal biomark-
ers contribute meaningful and specific signal rather than 
statistical noise to the disease detection paradigm. This 
favorable performance characteristic would be important 
prerequisites for population-level screening applications, 
where minimizing false positives while maintaining high 
detection sensitivity is crucial for both clinical utility and 
resource optimization. However, additional validation 
studies would be needed to establish clinical implemen-
tation feasibility.

It should be noted that the retinal model, using only 
retinomics with age and sex, achieved a C-index ≥ 0.75 
for 13 diseases, encompassing cardiovascular diseases 
(atrial fibrillation, heart failure), neurodegenerative and 
mental health disorders (Parkinson’s disease, demen-
tia, psychoactive substance abuse), ophthalmic condi-
tions (glaucoma, cataract, AMD), fractures, and several 

cancers (lung cancer, stomach cancer, esophageal cancer, 
uterine/endometrial cancer). The typical age of pres-
byopia onset (around 50) naturally brings patients to eye 
care providers at a life stage when most of those chronic 
disease risks escalate. This alignment raises the possibil-
ity of integrating retinal imaging assessment into routine 
eye examinations, potentially leveraging existing health-
care touchpoints and infrastructure following evaluation 
against well-recognized screening frameworks, such as 
the Wilson–Jungner principles [25].

When added to the clinical model, retinomics led to 
yield a more than 5% increase in the C-index for 12 con-
ditions, which were all among the above 24 conditions. 
Apart from ovarian cancer, all conditions had a consist-
ently higher DR across all FPR levels, including psychi-
atric conditions such as psychoactive substance abuse 
and alcohol problems, multiple sclerosis, malignancies 
(esophageal cancer, rectal cancer, and uterine/endome-
trial cancer), and a cluster of interconnected conditions, 
including chronic fatigue syndrome and pernicious ane-
mia. These findings underscore the broad applicability of 
retinomics across a wide range of diseases and highlight 
its potential as a valuable biomarker, even when inte-
grated with existing Clinical Models that already account 
for common factors.

Previous studies showed the psychoactive substance 
abuse can lead to drug-induced retinopathy, with mani-
festations such as retinal vascular occlusion diseases 
and toxic optic neuropathy [26], and thinning of RNFL 
was also observed in terms of retinal measurements 
[27]. In our study, LASSO feature selection identified 
37 retinal parameters with predictive potential for inci-
dent substance abuse, including tortuosity, density, and 
complexity of the vascular network, and INL, GC-IPL, 
and photoreceptor sublayers. This could be plausibly 
attributed to the risk factors of psychoactive substance 
abuse, such as genetic susceptibility, prenatal exposure, 
and early alcohol and drug use [28, 29]. For instance, a 
previous study found abnormal retinal tortuosity and 
optic nerve hypoplasia in children with prenatal alcohol 
exposure [30]. While some evidence suggests potential 
retinal associations with substance abuse, the predic-
tive relationship between baseline retinal features and 
future substance abuse risk remains largely unexplored 
and requires mechanistic validation. Further research is 
required to disentangle the retinal profiles of other risk 
factors of substance abuse.

Previous studies also showed the retinal profiles related 
to neurodegenerative diseases, including multiple sclero-
sis (MS) [31–33]. Characterized by axonal loss (demyeli-
nation), the retina could show signs of decreased ganglion 
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cell complex, RNFL thickness, and macular volume [31], 
decreased vessel density, and reduced macular superficial 
plexus [32]. In comparison, apart from GC-IPL, we also 
found tortuosity of arterial capillaries to have increased 
predictive value of future MS, suggesting that disruptions 
in both microcirculation and neurodegeneration predate 
the onset of the disease.

Intriguingly, retinomic profiles also demonstrated 
increased predictive ability for incident malignancies, 
such as uterine/endometrial cancer and esophageal can-
cer. There was scarce evidence on the retina-cancer risk 
association previously; however, the potential explana-
tion may be exemplified by a recent study showing the 
association with microvascular dysfunction and inci-
dent cancer risk [34]. Oxidative stress was proposed as 
the common culprit as it leads to endothelial dysfunc-
tion and interfering with DNA methylation and genetic 
instability [34]. Notably, uterine/endometrial cancer is 
estrogen dependent disorder. Estrogen was found to 
regulate critical signaling pathways in the retina [35] and 
a trend narrowing of retinal arterioles and venules were 
observed with individuals with longer duration of estro-
gen replacement therapy [36]. However, given the limited 
prior evidence and indirect mechanistic pathways, these 
cancer-related findings should be considered exploratory 
and investigated to establish a mechanistic basis.

For the connection between retina and liver diseases, 
previous research argued that the combination of hyper-
ammonemia (damaging retinal cells), hypoalbumine-
mia (altering vascular pressure), and impaired estrogen 
metabolism, along with portal hypertension, can col-
lectively induce retinal vascular and structural changes 
detectable through retinal imaging [37]. Our findings 
extend beyond liver disease to its common complication, 
anemia, where the predictive value of retinomic profiles 
was supported by previous studies showing associations 
between retinal measures (decreased venous tortuosity 
and reduced central retinal artery equivalent) and anemia 
[38, 39], and the successful development of deep learning 
algorithms for hemoglobin prediction [40]. Furthermore, 
our discovery of retinomic profiles’ predictive value for 
fatigue aligns with the interconnected nature of these 
conditions, as fatigue often manifests as a compound 
symptom of both liver disease and anemia, malignancies, 
or malnutrition from substance abuse [41, 42]. While the 
retinal-fatigue association appears biologically plausible 
through these interconnected pathways, further research 
is needed to validate the predictive utility of retinal bio-
markers for fatigue as a standalone condition.

Our study found that retinal imaging shows the poten-
tial to enhance risk stratification of multiple chronic 
diseases. Retinal imaging is widely adopted in clini-
cal practice and is less expensive than other omics 

technologies. In addition, our results suggested that 
adding retinomics not only substantially improved the 
discriminative power of the predictive models but also 
achieved superior diagnostic efficiency by optimizing 
the sensitivity–specificity trade-off. Most significantly, 
using only retinomics with age and sex, a C-index ≥ 0.75 
for over a dozen chronic diseases. This temporal conver-
gence between presbyopia-driven eye examinations and 
peak chronic disease risk creates a potentially valuable 
screening window. This approach shows the potential to 
be investigated as a screening tool, particularly in low-
resource settings where non-invasive, low-cost, accessi-
ble, and simple screening tools are crucial.

However, our study presents some limitations. While 
our findings are promising, translation to clinical prac-
tice would require rigorous evaluation against estab-
lished screening criteria, including cost-effectiveness 
analysis, validation of clinical utility through prospective 
studies, and assessment against Wilson-Jungner princi-
ples for population screening programs. Moreover, the 
varying predictive performance across diseases neces-
sitates focused analysis to identify specific conditions 
where retinomics offers clinically meaningful improve-
ments and meets decision-making thresholds for prac-
tical implementation. Other limitations include the UK 
Biobank’s predominantly White, middle-aged cohort 
and potential underrepresentation of advanced diseases. 
Additionally, all retinal images were acquired using the 
same Topcon device, which may limit generalizabil-
ity across different imaging platforms. External valida-
tion in diverse, high-risk populations using independent 
datasets from various clinical sites is essential to estab-
lish the robustness and clinical applicability of retinom-
ics in real-world settings. Furthermore, with automated 
retinal image analysis tools, we adopted multiple qual-
ity control measures to maximize segmentation and 
quantification reliability. Nevertheless, exclusion of 
lower-quality images may introduce selection bias, and 
measurement variability cannot be entirely eliminated. 
Despite these limitations, the observed robust improve-
ments in C-index across multiple conditions following 
LASSO feature selection suggest that biological signal 
strength exceeded technical measurement noise. Addi-
tionally, elucidating causal pathways linking retinal fea-
tures to systemic diseases—e.g., disentangling substance 
abuse-related retinal changes from confounding factors 
like hypertension—warrants further research.

Conclusions
In conclusion, we comprehensively examined neurovas-
cular retinomics as predictors and found added value of 
the retinomic signatures across a wide spectrum of dis-
eases. Retinal imaging offers advantages as a non-invasive 



Page 12 of 13Yusufu et al. BMC Medicine          (2025) 23:662 

approach that could potentially leverage existing eye-
care infrastructure already frequented by aging popu-
lations for presbyopia management (typically from age 
50). Its balanced performance with simplicity suggests 
the potential for preventive healthcare, particularly in 
resource-limited settings. Future studies validating these 
biomarkers in diverse populations and evaluating this 
approach against established screening criteria will be 
necessary to determine their potential for further practi-
cal translation.
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