
https://doi.org/10.1038/s41746-025-02300-y

Received: 11 June 2025

Accepted: 17 December 2025

Cite this article as: Jin, K., Sun, Q.,
Kang, D. et al. Grounded report
generation for enhancing ophthalmic
ultrasound interpretation using
Vision-Language Segmentation
models. npj Digit. Med. (2025).
https://doi.org/10.1038/
s41746-025-02300-y

Kai Jin, Qixuan Sun, Daohuan Kang, Ziyao Luo, Tao Yu, Wenzheng Han, Yi Zhang, Meng
Wang, Danli Shi & Andrzej Grzybowski

We are providing an unedited version of this manuscript to give early access to its
findings. Before final publication, the manuscript will undergo further editing. Please
note there may be errors present which affect the content, and all legal disclaimers
apply.

If this paper is publishing under a Transparent Peer Review model then Peer
Review reports will publish with the final article.

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not
have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

npj Digital Medicine
Article in Press

Grounded report generation for enhancing
ophthalmic ultrasound interpretation using Vision-
Language Segmentation models

ARTI
CLE

 IN
 P

RES
S

https://doi.org/10.1038/s41746-025-02300-y
https://doi.org/10.1038/s41746-025-02300-y
https://doi.org/10.1038/s41746-025-02300-y
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Grounded Report Generation for Enhancing Ophthalmic Ultrasound Interpretation using Vision-

Language Segmentation Models 

 

Kai Jin a,b*, Qixuan Sun c, Daohuan Kang d, Ziyao Luo a,b, Tao Yu a,b, Wenzheng Han e, Yi Zhang f, Meng 

Wang g,h, Danli Shi i,j, Andrzej Grzybowski k,l. 

 

a Eye Center of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. 

b Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for 

Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China. 

c Department of Biomedical Engineering, Zhejiang University, Hangzhou, China. 

d Department of Ophthalmology, Children's Hospital, Zhejiang University School of Medicine，National 

Clinical Research Center for Child Health, Hangzhou, China. 

e The First Affiliated Hospital, Wannan Medical College, Wuhu, Anhui, China. 

f Department of Ophthalmology, the First Affiliated Hospital of Zhejiang Chinese Medicine University, 

Hangzhou, China. 

g Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University 

of Singapore, Singapore. 

h Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 

Singapore. 

i School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong. 

j Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong 

Kong. 

k Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland. 

l Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland. 

 

 

*Corresponding author: Kai Jin, jinkai@zju.edu.cn.  

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 

Abstract 

Accurate interpretation of ophthalmic ultrasound is crucial for diagnosing eye conditions but remains time-

consuming and requires significant expertise. With the increasing volume of ultrasound data, there is a need 

for Artificial Intelligence (AI) systems capable of efficiently analyzing images and generating reports. 

Traditional AI models for report generation cannot simultaneously identify lesions and lack interpretability. 

This study proposes the Vision-Language Segmentation (VLS) model, combining Vision-Language Model 

(VLM) with the Segment Anything Model (SAM) to improve interpretability in ophthalmic ultrasound 

imaging. Using data from three hospitals, totaling 64,098 images and 21,355 reports, the VLS model 

achieved a BLEU4 score of 66.37 in internal test set, and 85.36 and 73.77 in external test sets. The model 

achieved a mean dice coefficient of 59.6% in internal test set, and dice coefficients of 50.2% and 51.5% 

with specificity values of 97.8% and 97.7% in external test sets, respectively. Overall diagnostic accuracy 

was 90.59% in internal and 71.87% in external test sets. A cost-effectiveness analysis demonstrated a 30-

fold reduction in report costs, from $39 per report by senior ophthalmologists to $1.3 for VLS. This 

approach enhances diagnostic accuracy, reduces manual effort, and accelerates workflows, offering a 

promising solution for ophthalmic ultrasound interpretation.   
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Introduction 

Accurate interpretation of medical images and the generation of comprehensive narrative reports are crucial 

for patient care, yet they place considerable demands on clinical professionals1. In ophthalmology, 

ophthalmic ultrasound plays a pivotal role, offering invaluable insights for diagnosing and managing a wide 

array of eye conditions, such as retinal diseases, and ocular tumors2,3. As a non-invasive imaging technique, 

it provides clinicians with detailed structural information that guides treatment decisions and disease 

monitoring. However, interpreting ophthalmic ultrasound images remains a time-intensive task and requires 

substantial expertise4,5. The growing volume of ultrasound data in clinical settings further complicates this 

process, increasing the need for advanced systems capable of analyzing the images and generating 

meaningful diagnostic reports6.  

 

While traditional AI models have shown substantial progress in medical image analysis and screening, their 

integration with report generation remains limited7,8. Many existing models lack interpretability, producing 

automated outputs that often require further examination and explanation9,10. Moreover, they often fail to 

highlight key lesions or abnormalities, which significantly reduces their practical utility. Furthermore, most 

AI tools are confined to specific medical specialties, limiting their broader applicability11. Previous research 

has shown that while the deep learning models achieves high accuracy in automating the classification of 

ophthalmic diseases using ultrasound images, it is limited to disease screening and lacks the ability to 

generate detailed image reports or provide precise clinical interpretations12-14. As a result, there is a notable 

gap in AI systems that combine image analysis with clear, interpretable reports, making them useful across 

various domains in medicine. 

 

Recent advancements in artificial intelligence (AI), particularly through Vision-Language Model (VLM), 

are transforming ophthalmic diagnostics15. These models integrate visual and textual data to enhance 

diagnostic accuracy and support clinical decision-making by interpreting complex ocular images and 

generating comprehensive reports16,17. Meanwhile, Segment Anything Model (SAM), initially developed 

for natural images, has been adapted for medical imaging, enabling zero-shot segmentation of anatomical 
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structures18,19. Combining VLM and SAM holds significant promise for improving diagnostic precision, 

and supporting personalized care. However, challenges such as ensuring model interpretability and 

reliability in clinical settings remain, requiring further research and development to fully integrate these 

technologies into ophthalmic care. 

 

This study introduces a novel AI model that leverages advanced VLM to generate comprehensive diagnostic 

reports and annotate lesions directly on medical images. By merging image understanding with natural 

language processing, our approach creates grounded, meaningful reports, providing a scalable solution that 

integrates image analysis with explanatory report generation. Central to our approach is the Visual-

Language Segmentation (VLS) model, which combines visual understanding with natural language 

processing, and the use of the SAM for precise lesion segmentation. These technologies enable the model 

to not only classify conditions but also generate accurate annotations on images. The model’s potential 

extends beyond ophthalmology, offering a pathway for advancements in AI-driven diagnostic tools 

applicable to various medical imaging modalities, thus revolutionizing diagnostics across multiple medical 

specialties.  
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Results 

This study utilized data from three distinct datasets: the Second Affiliated Hospital of Zhejiang University 

(SAHZU), the First Affiliated Hospital of Zhejiang Chinese Medical University (FAHZC), and the First 

Affiliated Hospital of Wannan Medical College (FAHWM), encompassing a total of 63,979 images and 

21,239 real-world reports across seven ocular conditions. The demographic characteristics and distribution 

of findings from the datasets are detailed in Table 1. The overall workflow of the study is illustrated in 

Figure 1. Firstly, we conducted an automatic evaluation by comparing the performance of the developed 

VLS model with that of the VL model, as well as pre- and post-fine-tuned performance, to validate the 

strong capabilities of the VLS model in generating ocular ultrasound reports. Secondly, a systematic clinical 

effectiveness evaluation was performed by inviting one senior ophthalmologist and one junior 

ophthalmologist to assess report generation and diagnosis. Thirdly, we found that AI-assisted ocular 

ultrasound reporting demonstrated higher diagnostic accuracy and significantly reduced reporting time, 

validating the potential of our model as an auxiliary tool. 

 

Demographic Data 

Table 1 provides a comprehensive summary of the datasets used in this study, including details of the 

SAHZU datasets, as well as the FAHWM and FAHZC datasets used as external test sets. The data 

encompasses various patient, image, report, and diagnosis characteristics, and the following descriptions 

highlight key aspects: The training dataset consists of 5,497 patients, with 37,917 images and 12,649 reports, 

while the validation dataset includes 1,915 patients, 12,639 images, and 4,197 reports. The test dataset has 

1,919 patients, 12,640 images, and 4,170 reports. Additionally, two external test sets are included: External 

Test Set 1 (FAHWM Dataset) contains 269 patients, 742 images, and 269 reports, while External Test Set 

2 (FAHZC Dataset) consists of 70 patients, 160 images, and 70 reports. In total, 9,670 patients, 64,098 

images, and 21,355 reports are included across all datasets. The mean age of patients across the datasets is 

similar, with a range of 49.5 to 49.7 years for the internal datasets and 50.8 years for External Test Set 1, 

and 57.4 years for External Test Set 2. The gender distribution is fairly balanced across the internal datasets, 

with 47.4% male and 52.6% female, while External Test Set 1 has a higher proportion of females (59.9%) 
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and External Test Set 2 shows a more balanced distribution (45.7% male, 54.3% female). 

 

Regarding the eye side, the majority of cases involve both eyes (OS&OD), comprising 51.6% of the total 

for the internal datasets, while OS (left eye) and OD (right eye) have similar proportions. In External Test 

Set 1, all cases involve both eyes, while External Test Set 2 shows a smaller proportion of cases involving 

both eyes (52.9%). The report length shows some variation, with the internal datasets having an average 

report length of 99.6-99.7 words, while External Test Set 1 has a much shorter report length (28.6 words) 

and External Test Set 2 has a much longer average report length (132.8 words). The diagnostic distribution 

is also summarized, with the most common conditions across all datasets being retinal detachment (RD) 

(33.1% of total cases), followed by vitreous hemorrhage (VH) (24.0%), high myopia (HM) (18.5%), and 

cataract (10.7%). Other conditions like uveal melanoma (UM), refractive error (RE), and retinoblastoma 

(RB) are much less common.  

 

Evaluation of Reports 

Figure 2 presents examples of grounded AI-generated reports for real-world ophthalmic cases, including 

retinoblastoma, retinal detachment, cataract, and choroidal melanoma. In the left column, original ocular 

ultrasound images are displayed alongside the segmentation results from the VLS model, where the blue-

filled areas represent the segmented lesions, and green dashed circles indicate the lesion annotations made 

by senior ophthalmologists. The second column features the written reports provided by ophthalmologists, 

and the third column shows the corresponding reports generated by the VLS system. These examples 

highlight the model's ability to generate clinically relevant reports that align closely with ophthalmologists' 

observations, demonstrating its potential for assisting in diagnostic and reporting tasks in real-world clinical 

settings. 

 

The performance of report generation was evaluated in both the internal and external test sets, as shown in 

Figure 3. In the internal test set (Figure 3 A-E), both VLS and VL models achieved strong performance, 

with VL obtaining slightly higher BLEU4 (71.32 vs. 66.37) and ROUGE scores (84.49/75.99 vs. 
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82.39/73.49), indicating high fluency and accuracy in generating reports. These models processed samples 

at an efficient rate, with Lora_Qwen2.5vl achieving 0.16 samples per second and VL at 0.194 samples per 

second, significantly outperforming other models such as Qwen2.5vl and Llava_onevision, which 

processed at 0.043 and 0.055 samples per second, respectively. 

 

In the external test sets, both models showed promising results (Figure 3 F-J). In External Test Set 1, VLS 

slightly outperformed VL (Figure 3 F–I). In External Test Set 1, VLS substantially outperformed VL across 

all NLG metrics, achieving a BLEU4 score of 85.36 compared to 64.47 for VL. Similarly, VLS achieved 

higher ROUGE-1 (88.45 vs. 75.75), ROUGE-2 (84.75 vs. 66.08), and ROUGE-L (90.37 vs. 75.76). 

Processing efficiency was comparable, with VL slightly faster (0.168 vs. 0.132 samples per second). In 

External Test Set 2, VLS again outperformed VL, though with a narrower margin: BLEU4 was 73.77 for 

VLS vs. 53.80 for VL, ROUGE-1 was 82.97 vs. 70.98, ROUGE-2 was 76.79 vs. 57.63, and ROUGE-L was 

84.54 vs. 66.83. Processing speeds were again slightly higher for VLS (0.159 vs. 0.182 samples per second). 

 

Evaluation of Segmentation 

Figure 4 evaluates the zero-shot segmentation accuracy of the VLS model, prioritizing the dice coefficient 

as the primary metric, complemented by F1 score and specificity with 95% confidence intervals (CI) to 

better capture segmentation performance under potential class imbalance. Across various ophthalmic 

conditions, such as vitreous hemorrhage, cataract, uveal melanoma, retinoblastoma, retinal detachment, and 

high myopia, the model achieved a mean dice coefficient of 59.6% (95% CI: 51.2–68.0) and a mean F1 

score of 59.6% (95% CI: 50.7–68.3) in the internal test set, with high specificity (99.3%) but variable 

sensitivity (63.9%). Performance was strongest for cataract (dice = 69.0%) and UM (dice = 68.2%). 

 

When compared with Grounding DINO-US-SAM, the VLS model achieved a similar mean dice coefficient 

(59.6% vs. 57.7%), demonstrating broadly comparable overall segmentation accuracy. VLS showed 

substantial advantages for cataract (69.0% vs. 38.4%) and UM (68.2% vs. 52.5%), while DINO-US-SAM 

outperformed VLS in RD (77.4% vs. 53.3%) and HM (68.0% vs. 49.4%). Performance for VH was similar 
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across models (62.3% vs. 64.6%). These results suggest that VLS and DINO-US-SAM offer 

complementary strengths across different ophthalmic conditions. 

 

Figure 4 also provides the external evaluation of the VLS model's segmentation accuracy on two external 

test sets. While the model performs well across different conditions, the results show variability between 

the test sets. In External Test Set 1, the model demonstrates dice coefficient of 50.2%, the mean specificity 

is 97.8%. In External Test Set 2, the model's performance decreases slightly, with a mean Dice coefficient 

of 51.5%, and the mean specificity is 97.7%. Notably, conditions such as HM exhibit higher performance 

in external validation, especially in terms of F1 score. 

 

Evaluation of Diagnostic Performance 

Figure 5 summarizes the diagnostic performance of residents AI-aided modes for various ocular conditions 

across three test sets: internal test set, external test set 1, and external test set 2. The diagnostic accuracy 

(ACC), sensitivity, and specificity are presented with 95% CI for each condition. For cataracts, the 

diagnostic accuracy was high in the internal test set (93.6%), but sensitivity was low (66.47%), indicating 

that the model could miss some cases. In the external test set 1, the accuracy dropped to 71.88%, with a 

sensitivity of just 19.05%. For vitreous hemorrhage, the VLS model significantly improved diagnostic 

accuracy, especially in the external test sets, achieving 94.38% in external test set 1, though sensitivity 

remained low (25.0%). In contrast, specificity remained high (98.03%) in this case. In the case of high 

myopia, the performance in the internal test set was good, with an accuracy of 86.65% and high specificity 

(91.36%). However, the sensitivity was relatively lower (68.26%), especially in external test set 1, where 

sensitivity was 100% but specificity was only 18.59%. For uveal melanoma, diagnostic accuracy was near-

perfect in the internal and external test sets, with 99.91% in the internal test set, but sensitivity was 0%, 

indicating a major issue in detecting this condition. Refractive error and retinoblastoma showed excellent 

specificity (100%) in the external test sets, but diagnostic accuracy varied across different test sets. For 

retinal detachment, diagnostic performance improved across all test sets, especially in external test set 2, 

where specificity reached 100%. Overall, VLS model diagnosis achieved 90.59% accuracy in the internal 
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set, and 71.87% on the external datasets, though sensitivity and specificity varied notably across test sets.  

 

Evaluation by Ophthalmologists 

In Domain 1, which evaluated the extent of inappropriate content, the majority of reports generated by both 

AI systems and human physicians were rated as containing "None" inappropriate content (Figure 6A). 

Specifically, the SO produced the most appropriate reports (mean score: 2.70 in Chinese, 2.70 in English), 

followed by VLS (2.65 in Chinese, 2.68 in English) and VL (2.52 in Chinese, 2.61 in English). JO had the 

lowest appropriateness (2.39 in Chinese, 2.44 in English). Reports with "Present, little clinical significance" 

inappropriate content were more frequently observed in reports by the JO (38% in Chinese and 32% in 

English evaluations) compared to other systems, while reports with "Present, substantial clinical 

significance" inappropriate content were most commonly found in VL (highest risk profile, with 

inappropriate content score of 2.61 in English). 

 

For Domain 2, which assessed the extent of missing content, the VLS AI system demonstrated superior 

performance (2.61 in Chinese, 2.17 in English), and the SO demonstrated consistently strong results (2.57 

in Chinese, 2.63 in English) (Figure 6A). Interestingly, the JO showed better performance in English 

evaluation (2.40), compared to Chinese (2.34). Reports with "Present, little clinical significance" missing 

content were most frequently observed in reports by the JO (48% in Chinese evaluation), while reports with 

"Present, substantial clinical significance" missing content were most commonly found in VL (lowest score: 

1.73 in English evaluation). 

 

In Domain 3 (Figure 6A), the SO demonstrated the highest percentage of reports with low harm likelihood 

(2.82 in Chinese, 2.79 in English), followed by the VLS (2.76 in Chinese, 2.83 in English). Notably, VL 

had the lowest safety scores (1.73 in Chinese, 1.95 in English), indicating the greatest risk of harmful 

recommendations. 

 

The total scores comparison (Figure 6B) revealed statistically significant differences between the AI 
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systems and human physicians. In the Chinese language evaluation, the SO achieved the highest score of 

8.09, followed closely by VLS (8.02), both significantly outperforming JO (7.13) and VL (6.64, p < 0.001). 

Similarly, in the English language evaluation, SO achieved the highest score of 8.12, followed by VLS with 

a score of 7.68, both of which significantly outperformed VL (6.29, p < 0.001) and JO (7.34). 

 

Cost-effective Analysis 

The total reading time (measured in minutes) showed substantial differences between AI systems and 

human physicians (Figure 7). The JO required the longest total reading time (approximately 163 minutes), 

followed by the SO (approximately 122 minutes). In contrast, the AI systems VLS and VL demonstrated 

significantly shorter total reading times of approximately 10.3 minutes and 8.7 minutes, respectively. This 

reflects a 15-18-fold reduction in reading time by AI systems compared to human physicians. 

 

The per ophthalmic report reading time (measured in seconds) exhibited a similar pattern. Both JO and SO 

required substantially longer times per report (~98.0 and 70.4 seconds, respectively), as visualized in the 

violin plots showing their distributions concentrated in the higher range. The AI systems VLS and VL 

demonstrated markedly shorter per-report reading times (6.2 and 5.2 seconds, respectively), with their 

distributions concentrated in the lower range. The violin plot distributions also indicate greater consistency 

in reading times for AI systems compared to the wider variability observed in reports by human physicians. 

 

The total cost analysis (measured in USD) revealed that the SO incurred the highest expenses 

(approximately $39.4), followed by the JO (approximately $28.3). In contrast, the AI systems VLS and VL 

demonstrated substantially lower total costs of approximately $1.3 and $1.0, respectively. This represents 

an approximately 30-40-fold difference in total cost between human physicians and AI systems. The per 

ophthalmic report cost followed a similar pattern. The AI systems VLS and VL demonstrated significantly 

lower per-report costs. 

 

Human–AI Comparative Study 
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In total, 200 ophthalmic ultrasound cases encompassing seven diagnostic categories were independently 

evaluated by three junior ophthalmologists (JO1–JO3), both with and without AI assistance. When unaided, 

diagnostic accuracies were 88.0% for JO1, 84.0% for JO2, and 87.0% for JO3, corresponding to an average 

accuracy of 86.3%. 

 

Following AI assistance, diagnostic performance improved markedly across all three participants. JO1 

achieved 92.0% accuracy (+4%), while JO2 and JO3 both reached 96.0% accuracy, reflecting relative gains 

of +12% and +9%, respectively. The overall average accuracy with AI support was 94.7%, representing an 

absolute improvement of 8.3% compared to unaided performance. 

 

At the disease level, AI assistance reduced misclassifications in common entities such as cataract, VH, and 

RD, while also stabilizing performance in less prevalent conditions, including RB and UM. Importantly, 

diagnostic sensitivity for high-morbidity conditions such as RD and VH improved consistently with AI 

support.  
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Discussion 

The accurate and efficient interpretation of ophthalmic ultrasound images is crucial for early diagnosis and 

management of eye diseases. In this study, we have proposed an innovative approach that combines VLS 

with the SAM to generate grounded reports in ophthalmic ultrasound interpretation.  For the interface of 

the VLS system and the demonstration of two analytical cases, please refer to Supplementary Movie 1. This 

approach leverages the strengths of advanced AI technologies to bridge the gap between visual data and 

clinical insights, offering a more reliable, scalable, and efficient solution for ophthalmic image analysis. 

 

This study demonstrates the effectiveness of the VLS Model for ophthalmic ultrasound interpretation, 

which outperforms traditional methods, including reports generated by junior ophthalmologists and senior 

ophthalmologists. The VLS model achieved a BLEU4 score of 66.37 and a ROUGE-2 score of 73.49 in the 

internal test set, showing strong performance in both fluency and accuracy. More importantly, in the external 

test sets, the VLS model consistently outperformed the VL model, achieving markedly higher scores across 

all NLG metrics, including BLEU4 (85.36 vs. 64.47) and ROUGE-L (90.37 vs. 75.76) in External Test Set 

1, and BLEU4 (73.77 vs. 53.80) and ROUGE-L (84.54 vs. 66.83) in External Test Set 2. These results 

underscore the model’s strong generalizability across diverse datasets, despite variations in imaging devices 

and reporting practices. This highlights the potential of AI to automate ophthalmic report generation, 

offering superior efficiency and quality compared to expert-driven methods. Clinical effectiveness 

evaluations showed promising results, with the AI system achieving 94.38% accuracy for vitreous 

hemorrhage in external test set 1. However, sensitivity was low (25%), highlighting the need for further 

refinement to improve detection in certain conditions. For cataracts, the model reached 93.6% accuracy but 

showed reduced sensitivity, indicating challenges in detecting all cases. Overall, AI-aided diagnostic 

accuracy was 90.59%, a notable achievement in ophthalmic AI. Taken together, these findings suggest that 

the VLS model not only provides superior report fluency and content accuracy but also holds significant 

potential to improve efficiency and diagnostic consistency in real-world ophthalmic practice. Nonetheless, 

challenges remain in enhancing sensitivity for specific conditions and in addressing the variability 

introduced by heterogeneous imaging devices. Future work should therefore focus on multi-device domain 
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adaptation, standardized reporting protocols, and larger-scale prospective validation to fully realize the 

clinical utility of AI-assisted ophthalmic ultrasound interpretation. 

 

When compared to JO, the VLS system performed better in terms of the proportion of reports with no 

inappropriate content, with 74% of reports in Chinese and 79% in English evaluations showing no 

inappropriate content. The VLS model also excelled in detecting and reducing missing content, with 70% 

of reports in Chinese evaluations containing no missing information, further emphasizing its effectiveness. 

The VLS model reduced report costs by 40-fold compared to senior ophthalmologists, highlighting its 

practical value in resource-limited settings. This is especially valuable in ophthalmology, where expert 

interpretation is both time-consuming and expensive20. Additionally, the VLS model processed samples at 

a rate of 0.16 per second, demonstrating its efficiency in real-world clinical settings. 

 

When compared to prior studies in the medical AI field, our approach offers a notable advancement by 

integrating VLM with SAM, an emerging methodology that enables precise image segmentation and 

enhanced understanding of medical terminology. BiomedGPT is an open-source, lightweight generalist AI 

model for biomedical tasks, achieving state-of-the-art performance in radiology question answering, report 

generation, and summarization, with potential to enhance diagnosis and workflow efficiency21. EchoCLIP 

is a vision-language model for echocardiography that effectively assesses cardiac function, identifies 

devices, and enables patient identification, advancing AI-driven preliminary interpretation of 

echocardiographic findings17. Previous works have explored AI models for ophthalmic image analysis, but 

few have integrated these two domains into a cohesive, closed-loop system that not only segments the 

images accurately but also generates clinically relevant and context-aware reports. Antaki et al. evaluated 

the performance of the Gemini Pro VLM for detecting macular diseases from OCT scans, showing limited 

feature detection capabilities but strong language consistency, highlighting the potential for VLMs in 

ophthalmology with further validation22. Chen et al. presented an AI-based framework for automated fundus 

fluorescein angiography interpretation, achieving strong performance with a BERTScore of 0.70 and F1 

scores of 0.64-0.82 for detecting retinal conditions, alongside high accuracy and completeness in report 
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generation as validated by ophthalmologists23. By leveraging both visual and linguistic models, our 

approach sets itself apart in the field of medical AI, offering a holistic solution that can bridge the gap 

between raw image data and clinical decision-making24. 

 

However, while the current study demonstrates promising results, several limitations must be addressed. 

Firstly, the dataset used in this study was somewhat limited in terms of the range of clinical conditions 

considered. While we observed strong performance in conditions like cataracts, vitreous hemorrhage, and 

retinal detachment, expanding the dataset to include a broader range of clinical diseases, such as diabetic 

retinopathy, glaucoma, and uveal melanoma, would enhance the model’s robustness. Incorporating 

additional imaging modalities like optical coherence tomography (OCT) and fundus photography could 

further support a comprehensive multi-modal AI system25. This system could simultaneously analyze 

various types of imaging data, offering a unified platform for interpreting a broader range of ophthalmic 

diseases26,27. Although the VLS model demonstrated promising segmentation performance across various 

ophthalmic conditions, there is still room for improvement, particularly in achieving higher precision for 

certain conditions such as vitreous hemorrhage and retinal detachment. The model’s performance showed 

variability between internal and external test sets, indicating that it may be sensitive to changes in dataset 

characteristics. This suggests that further refinement is needed to enhance its robustness and accuracy. 

Continued advancements in model architecture, training techniques, and data diversity will be essential for 

improving segmentation accuracy and ensuring that large models like VLS can achieve more reliable and 

precise results in clinical practice.  

 

In addition, the system’s performance can be negatively influenced by low-quality ultrasound images (e.g., 

blurred, noisy, or with poor contrast), which may reduce both segmentation accuracy and report 

reliability28,29. Another limitation lies in the detection of rare or small lesions, where limited training 

samples hinder the model’s ability to generalize. These challenges highlight the need for future work to 

incorporate image quality assessment modules, targeted data augmentation, and the prospective inclusion 

of rare cases from multiple centers30. Such strategies would improve robustness and support the system’s 
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deployment in diverse real-world clinical settings. Moreover, although our model demonstrated faster 

processing times and reduced costs, integrating the system into real-world clinical workflows will require 

careful consideration of how to balance performance, speed, and resource use20,31. This could involve 

building AI systems that are not only efficient in terms of computational cost but also agile enough to adapt 

to different clinical settings with minimal latency32,33. 

 

In terms of future directions, we envision expanding our multi-modal AI system to support more complex 

clinical workflows by integrating data from various sources, such as patient history, and clinical notes. This 

would create a more holistic diagnostic tool capable of offering more accurate and comprehensive insights34. 

Our previous research shows that ChatGPT performs better with English prompts than Chinese prompts in 

diagnosing retinal vascular diseases, but still falls short of ophthalmologists, highlighting the need for 

further improvement in language models for clinical use35. Further, an important goal would be to create a 

truly agile AI system that can learn from new data in real-time, enabling continuous improvement as new 

clinical scenarios and imaging modalities emerge36. Furthermore, the importance of clinician-AI 

collaboration is evident, as demonstrated by the Flamingo-CXR AI system for automated chest radiograph 

report generation37. The system shows that AI-generated reports can be comparable to, or even preferable 

to, clinician reports in many cases, emphasizing the potential of human-AI teamwork to enhance report 

quality, reduce errors, and improve clinical workflows.  

 

In conclusion, our study introduces a novel approach that integrates cutting-edge AI technologies to enhance 

the accuracy, efficiency, and cost-effectiveness of ophthalmic ultrasound interpretation. While the current 

model demonstrates significant promise, future work focusing on expanding the clinical dataset, integrating 

multi-modal imaging data, and improving the system’s sensitivity for rare conditions will be essential for 

developing a more robust and comprehensive AI solution for ophthalmology. With continued advancements 

in AI technology, there is significant potential to revolutionize clinical practice by providing real-time, 

accurate, and cost-effective tools for healthcare professionals, ultimately improving patient outcomes in the 

field of ophthalmology.  
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Methods 

This study developed a system combining a vision-language model for report generation and the SAM 

(Segmentation Anything Model) for lesion recognition (Figure 1). The methodology involved four key 

steps: (i) collecting and preparing a medical image dataset with lesion annotations for training; (ii) 

developing the VLM integrated with SAM for automatic lesion segmentation and report generation; (iii) 

conducting external validation to evaluate the system’s performance, comparing it with baseline models; 

and (iv) performing clinical evaluations by ophthalmologists diagnosed and interpreted B-scan cases with 

the system's assistance, measuring diagnostic accuracy and reporting time, while six ophthalmologists 

assessed the clinical quality of the generated reports. This comprehensive evaluation ensured both technical 

performance and clinical applicability of the system. 

 

Dataset Establishment 

This study utilized data from three distinct datasets: SAHZU, FAHWM, and FAHZC, along with two 

external datasets, which includes a total of 63,979 images and 21,239 reports (Table 1). This study was 

performed in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics 

Committees of the Second Affiliated Hospital, Zhejiang University School of Medicine (No. Y2023-1073), 

the First Affiliated Hospital of Zhejiang Chinese Medical University No. 2024-KLS-583-02), and the First 

Affiliated Hospital of Wannan Medical College (No. Y2024-1015). The retrospective data were 

anonymized and approved by the Ethics Committees without the need for patient consent, while informed 

consent was obtained for the two external independent validation datasets. The datasets were divided into 

different subsets for training, validation, and testing. The SAHZU dataset consisted of 54,971 images and 

12,649 reports, which were split into a training set (37,917 images), validation set (12,639 images), and test 

set (12,640 images). The FAHWM and FAHZC dataset included 652 images, and 163 images for the 

external test sets. The dataset establishment process adhered to rigorous inclusion criteria and underwent 

careful data handling to ensure data consistency and quality. For each dataset, images and reports were 

associated and reviewed by experts to ensure the highest accuracy in labeling and diagnosis. 
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The imaging machines used for data collection include the following models: For the SAHZU dataset, the 

imaging was performed using the Compact Touch, Cinescan, and Aviso machines from Quantel Medical 

(Clermont-Ferrand, France), as well as the ODM-2100 and MD2400S machines from MEDA Medical 

(Tianjin, China). The FAHWM dataset was acquired using the Compact Touch, Cinescan machines from 

Quantel Medical (Clermont-Ferrand, France). For the FAHZC dataset, the imaging was conducted with the 

SOVI Ophthalmic A/B Ultrasound Diagnostic Device SW-2100 from Tianjin SOVI. These machines were 

selected for their reliability and consistency in capturing high-quality ophthalmic ultrasound images, 

ensuring the validity and clinical relevance of the dataset. 

 

The ophthalmic ultrasound images and corresponding free-text reports were retrieved from the picture 

archiving and communication system (PACS). Due to the use of different systems for external datasets, the 

image formats and resolutions varied. To ensure consistency, cases with poor image quality (e.g., significant 

blur or high noise caused by either pathological or technical issues) or those lacking corresponding free-

text reports were excluded. After excluding these cases, the selected reports were initially reviewed by two 

residents (Z.L. and T.Y.), and then underwent quality control and final review by senior ophthalmologist 

(D.K. and K.J.) to correct any spelling errors and modify/exclude reports with incomplete information. 

 

For all datasets, reports and images were annotated using a standardized annotation procedure. All 

annotations were performed by three ophthalmologists with over 5 years of experience, ensuring accuracy 

and consistency. The annotated reports were reviewed by two senior ophthalmologists with over 10 years 

of experience to further enhance the reliability of the dataset. Additionally, the lesion bounding boxes 

suggested by the SAM model were annotated by one senior ophthalmologist (D.K.) and reviewed by the 

other senior ophthalmologist (K.J.), ensuring the accuracy of lesion identification. 

 

Model Development 

In the development of the Vision-Language Model and SAM Integration, we employed two vision-language 

models: LLaVA One version and Qwen 2.5VL, both of which were trained to generate detailed and accurate 
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medical reports from visual inputs. These models are designed to effectively handle complex medical 

imagery, making them well-suited for tasks involving nuanced and detailed descriptions such as those 

required in medical report generation. The LLaVA One version is specifically optimized for multi-modal 

tasks, combining image understanding and language generation capabilities38. It can effectively process 

medical images, extract relevant features, and generate coherent textual descriptions. Qwen 2.5VL, on the 

other hand, offers enhanced fine-tuning capabilities, enabling it to generate more contextually precise 

reports based on medical images39. This combination of models ensures high flexibility and accuracy in 

report generation across various clinical scenarios. 

 

In addition to these models, we utilized LoRA (Low-Rank Adaptation) fine-tuning techniques to further 

enhance the performance of the vision-language models. LoRA enables efficient adaptation of pre-trained 

models by introducing low-rank decomposition layers, allowing for specialized fine-tuning with relatively 

fewer resources. This technique was particularly useful in tailoring the models to the specific task of 

medical report generation and lesion identification, without requiring extensive retraining from scratch. 

 

As shown in Figure 1, lesion segmentation and report generation are tightly coupled within the proposed 

framework. First, during the model fine-tuning phase, we integrate bounding box information from images 

into existing medical reports. Using predefined prompts, multiple images, and curated medical reports, we 

fine-tune the Visual Language Model (VLM) to enable report generation and bounding box prediction 

capabilities. Then, during the inference stage, users input multiple images to obtain medical reports and 

potential lesion locations. If lesion locations exist, the original images are segmented using SAM to overlay 

the VLM-generated lesion bounding box information onto the images, yielding the final segmentation 

results. These bounding boxes serve a dual purpose: for the vision-language model (VLM, Qwen2.5VL), 

they provide visual context by describing lesion type, location, and clinical significance; for arbitrary 

segmentation models (SAM), they function as spatial prompts to guide the segmentation process. 

 

The SAM model was not fine-tuned on ocular ultrasound images. Instead, its prompt encoder utilized 
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bounding boxes to focus the segmentation, while its image encoder and mask decoder produced high-

resolution lesion masks that refined boundaries beyond the initial box. By integrating these segmentation 

outputs into the VLM reasoning chain, the system ensured that textual reports were explicitly grounded in 

visual evidence. This linkage reduced the risk of hallucinations and enhanced clinical interpretability by 

providing explicit lesion localization within the report. 

 

To further improve robustness, we implemented a rule-based arbitration mechanism when discrepancies 

arose between SAM and VLM outputs (e.g., the VLM narrative suggested “retinal detachment” while SAM 

highlighted a different region). The system jointly evaluated the segmentation confidence score (Dice-based) 

and the VLM confidence score (logit-based). If segmentation confidence was low, the VLM narrative was 

prioritized. If segmentation confidence was high but conflicted with the VLM interpretation, the final report 

explicitly noted the inconsistency (e.g., “segmentation suggests X, but textual interpretation indicates Y”). 

This design ensured that neither model operated in isolation and that potential conflicts were transparently 

reported rather than suppressed. 

 

All the models were trained using two Nvidia V100 GPUs on the backend framework of PyTorch, 

leveraging distributed parallelism to accelerate the training process. The Adam optimizer was employed for 

optimization, with initial learning rates set at 5e-5 for the visual extractor and 1e-4 for all other model 

parameters. The learning rate was decayed by a factor of 0.8 at the end of each epoch to facilitate stable 

convergence. For the diagnosis-supervised contrastive loss, the weight α was set to 0.2, balancing the 

contribution of the contrastive loss with other components of the total loss function. This training 

configuration ensured efficient model optimization while maintaining high performance across both vision-

language processing and lesion segmentation tasks. 

 

Automatic Evaluation of Reports  

The performance of the four models described earlier was automatically evaluated using NLG (Natural 

Language Generation) and CE (Classification Evaluation) metrics on the SAHZU test set as well as two 
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external test datasets. The NLG metrics utilized in this evaluation included Bilingual Evaluation 

Understudy 1 (BLEU), Metric for Evaluation of Translation with Explicit Ordering (METEOR), and 

ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation - Longest common subsequence). BLEU 

is commonly used to assess the quality of machine translation by measuring the overlap of n-grams 

(sequences of n words) between the generated text and the reference text. In this study, we computed 

BLEU1, BLEU2, BLEU3, and BLEU4 as part of our evaluation. METEOR builds upon BLEU by 

incorporating synonyms and paraphrases, thus offering a more flexible approach to evaluating the generated 

ultrasound reports. ROUGE-L, which emphasizes recall, is especially valuable for evaluating how well the 

generated text captures the essential ideas and key clinical information, making it ideal for assessing the 

coherence of complex medical descriptions. 

 

Automatic Evaluation of Segmentation 

The VLS model was evaluated for zero-shot segmentation accuracy across multiple ophthalmic conditions, 

including vitreous hemorrhage, cataract, uveal melanoma, retinoblastoma, retinal detachment, and high 

myopia. Model performance was assessed using metrics such as dice coefficient, sensitivity, specificity, 

and F1 score. The internal evaluation was conducted on a set of annotated images, while external 

evaluations were performed on two separate test sets to examine the model's generalizability. Statistical 

analysis included the calculation of 95% confidence intervals for all metrics, allowing for a comprehensive 

assessment of the model’s accuracy and reliability in both internal and external settings. 

 

For benchmarking, we additionally compared the VLS framework with the Grounding DINO-US-SAM 

model40. Specifically, we employed the publicly available implementation of Grounding DINO coupled 

with SAM for zero-shot segmentation. The same annotated internal dataset was used for evaluation to 

ensure consistency across models. Both VLS and DINO-US-SAM were tested under identical experimental 

conditions, including preprocessing steps, evaluation metrics, and confidence interval estimation. This 

setup enabled a direct and reproducible comparison of segmentation performance between the two 

approaches, highlighting complementary strengths across different ophthalmic conditions. 
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Evaluation of diagnostic accuracy 

We developed an online tool for drafting and diagnosing ophthalmic ultrasound reports. This tool simulates 

real-world PACS viewer functionalities, including image switching, zooming, labeling, measurement 

adjustments, and contrast modifications, without displaying any patient-specific information. In the AI-

assisted mode, an AI-generated report is displayed when viewers examine the corresponding ultrasound 

images. Viewers have the option to either adopt, modify, or discard the AI-generated report based on their 

own clinical observations and expertise. In the standard template-aided mode, preformatted reports 

corresponding to the seven ophthalmic conditions are presented as references. Viewers can then select an 

appropriate diagnosis based on the displayed information. Additionally, the tool records both the time taken 

for diagnosis and report generation.  

 

Human Evaluation of the Head-to-Head Comparison 

To assess the performance of the VLS compared to VL, junior ophthalmologists (JO), and senior 

ophthalmologists (SO) in providing management recommendations for ophthalmic cases, we curated a 

dataset comprising 100 clinical cases. These cases were randomly selected and used to evaluate the models' 

capabilities in both English and Chinese languages. In this evaluation, three core criteria were considered: 

the extent of inappropriate content, the extent of missing content, and the likelihood of potential harm in 

the management recommendations. The evaluations were performed by a panel of expert evaluators who 

rated the cases based on these criteria. The evaluators included six licensed ophthalmologists in total: three 

JOs and three SOs. 

 

The ophthalmologists involved in this evaluation all hold valid medical licenses. The three JOs, each with 

3-5 years of clinical experience, are familiar with a wide range of ophthalmic conditions and management 

strategies. The three SOs, with over 10 years of clinical experience, possess deep expertise in complex and 

rare ophthalmic conditions. Their extensive experience enables them to make well-rounded, informed 

clinical decisions, especially in complicated cases. This diverse panel of both junior and senior 

ophthalmologists, along with the AI models, provided valuable insights into the effectiveness of the VLS 
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compared to human expertise in ophthalmology. 

 

For each of the 100 cases, management recommendations were generated using the VLS, VL, and the two 

ophthalmologist groups (JO and SO). These recommendations were anonymized and then assessed by a 

separate panel of two expert ophthalmologists. The evaluations were carried out in both English and 

Chinese, with each language having a distinct expert panel. For the English evaluation, the panel consisted 

of bilingual ophthalmologists who rated the management recommendations based on the pre-established 

criteria. The assessment employed a box plot to display the total scores, which incorporated the extent of 

inappropriate content, missing content, and potential harm. Statistical comparisons between the four groups 

(VLS, VL, JO, and SO) were performed using two-sided Friedman tests. Post-hoc pairwise comparisons 

were carried out using two-sided Wilcoxon signed-rank tests, with P-values adjusted for multiple 

comparisons using the Bonferroni method. 

 

Additionally, to ensure robust and reliable evaluations, a separate ablation study was conducted to compare 

the performance of VLS and VL in both languages. For detailed evaluation methods and criteria, please 

refer to Supplementary Table 1-3. 

 

Cost-Effectiveness Analysis 

A cost-effectiveness analysis was conducted to compare the total reading time and the total cost for each 

AI system and human physician. Total reading time was measured in minutes, and per-report reading time 

was recorded in seconds. Each system's performance was analyzed in terms of how quickly reports could 

be processed, with a focus on the difference between human physicians and AI systems. Additionally, the 

total cost incurred by each system was evaluated. The cost was calculated based on the time and resources 

required to process the reports. The analysis allowed for a comparison of the economic efficiency of the AI 

systems versus human physicians, with particular attention to the differences in both total costs and per-

report costs. 
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Human–AI Comparative Study Design 

To evaluate the impact of AI-assisted interpretation on diagnostic performance, we conducted a human–AI 

comparative experiment. Three ophthalmology residents independently reviewed and interpreted 200 

ophthalmic ultrasound cases (Supplementary Table 4). For each case, the residents generated a structured 

diagnostic report and provided a final diagnosis without access to the VLS AI system. After a washout 

period, the same residents re-evaluated the identical set of cases with the assistance of the AI, which 

automatically generated preliminary diagnostic suggestions and structured outputs. The final diagnoses 

made by each resident, both with and without AI support, were compared against the gold standard 

established by two senior ophthalmologists. Diagnostic accuracy rates were calculated for each resident in 

the unassisted and AI-assisted conditions, enabling quantitative assessment of the effect of AI on diagnostic 

performance. 

 

Statistical Analysis 

Clinical efficacy was assessed by diagnostic accuracy, sensitivity, specificity, and report-writing time across 

all diseases and within disease subgroups. Confidence intervals (CIs) for these metrics were calculated 

using the Wilson score interval method. To compare the performance of AI systems and human physicians, 

descriptive statistics (mean, standard deviation, and percentages) were used to summarize the total scores, 

inappropriate content, missing content, and harm likelihood. For comparisons of total scores, independent 

t-tests or ANOVA were used, depending on the data distribution. Post-hoc pairwise comparisons with 

Bonferroni correction were applied where necessary. Chi-square tests were used to assess significant 

differences in the distribution of content and harm categories between systems. For cost and time-related 

outcomes, independent t-tests were employed to compare total reading time and costs between AI systems 

and human physicians. Per-report costs and reading times were also compared using appropriate statistical 

tests. All statistical tests were two-sided, with p-values < 0.05 considered significant. Bonferroni correction 

was applied for multiple comparisons. Statistical analyses were performed using R software (version 4.2.1), 

and results are presented as mean ± standard deviation for continuous variables and percentages for 

categorical data. 
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The datasets used and analyzed in this study are not publicly available due to patient privacy considerations, 

but they can be obtained from the corresponding author upon reasonable request and with appropriate 

institutional approvals. The source code used in this study has been made publicly available at: 

https://github.com/Qix-Sun/Vit.  
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Figures 

 

Figure 1. Overview of the study design. The Second Affiliated Hospital of Zhejiang University (SAHZU), 

the First Affiliated Hospital of Zhejiang Chinese Medical University (FAHZC), and the First Affiliated 

Hospital of Wannan Medical College (FAHWM);VLM: Vision-Language Models; Segment Anything 
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Model (SAM). The icons were created by Freepik, and permission for their use has been granted. 

 

Figure 2. Examples of grounded AI-generated reports for real-world ophthalmic cases, including 

retinoblastoma, retinal detachment, cataract, and choroidal melanoma. The left column displays original 

ocular ultrasound images with VLS segmentation results (blue-filled area) and lesion annotations made by 

ophthalmologists (green dashed circles). The second column contains the ophthalmologist's written report, 

while the third column shows the report generated by the VLS system. 
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Figure 3. Report generation performance in internal test set (A-E) and in external test sets (F-J). VLS =  

Vision-Language Segmentation model, VL =  Vision-Language model. 
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Figure 4. Evaluation of segmentation accuracy for Vision-Language Segmentation (VLS) models and 

Dino-US-SAM models. VH = vitreous hemorrhage, HM = high myopia, UM = uveal melanoma, RE= 

refractive error, RB = retinoblastoma, RD = retinal detachment. 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 

 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 

Figure 5. The diagnostic performance of Vision-Language Segmentation (VLS) models. VH = vitreous 

hemorrhage, HM = high myopia, UM = uveal melanoma, RE= refractive error, RB = retinoblastoma, RD 

= retinal detachment. 

 

Figure 6. Comparison of VLS (Vision-Language Segmentation) models, VL, 3 junior ophthalmologists 
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(JO), and 3 senior ophthalmologists (SO) in both English and Chinese. (A) Evaluators rated management 

recommendations across three criteria: appropriateness, completeness, and potential harm, using 100 cases. 

(B) Total scores of management recommendations by VLS, VL, JO, and SO based on 100 cases. Box plot 

(n = 100), showing median, quartiles, and data range (whiskers). Comparisons were conducted using two-

sided Friedman tests, with post-hoc pairwise comparisons using two-sided Wilcoxon signed-rank tests. P-

values for multiple comparisons were adjusted using the Bonferroni method. *p < 0.05, **p < 0.01, and 

***p < 0.001. 
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Figure 7. (A) Bar graph displaying total reading time in seconds for VLS (Vision-Language Segmentation 

Models), VL, 3 junior ophthalmologists (JO), and 3 senior ophthalmologists (SO), (B) Violin plot 

illustrating reading time per ophthalmic report in seconds, (C) Bar graph presenting total cost in U.S. dollars 

for VLS, VL, and human readers, (D) Violin plot showing cost per ophthalmic report in U.S. dollars. Dashed 

lines represent medians and dotted lines indicate quartiles, and (E) diagnostic accuracy of three junior 

ophthalmologists with and without AI assistance across 200 ophthalmic ultrasound cases. ***p < 0.001.  
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Tables 

Table 1. Demographic data of the study and distribution of the findings.  

Items 

SAHZU Dataset  FAHWM Dataset  FAHZC Dataset 

Total 
Training set 

Validation 

set 
Test set   External test set 1   External test set 2 

Patients, n 5497 1915 1919  269  70 9670 

Images, n 37917 12639 12640  742  160 64098 

Reports, n 12649 4197 4170  269  70 21355 

Age, mean (SD) 49.6 (17.2) 49.5 (17.4) 49.7 (17.2)  50.8 (18.2)  57.4 (16.1) 51.4 (17.2) 

Gender, n (%)         

Male 2615 (47.6) 906 (47.3) 904 (47.1)  108 (40.1)  32 (45.7) 4565 (47.2) 

Female 2882 (52.4) 1009 (52.7) 1015 (52.9)  161 (59.9)  38 (54.3) 5105 (52.8) 

Eye, n (%)         

OS 2905 (23) 996 (23.7) 978 (23.5)  NA  17 (24.2) 4896 (22.9) 

OD 3160 (25) 1068 (25.5) 1068 (25.6)  NA  16 (22.9) 5312 (24.9) 

OS&OD 
6584 (52) 2133 (50.8) 2124 (50.9) 

 
269 (100) 

 
37 (52.9) 11147 

(52.2) 

Report length, mean (SD) 99.6 (33.8) 99.7 (34) 99.6(33.6)  28.6 (9.3)  132.8(41.1) 92.1 (30.4) 

Diagnosis, n (%)        

Cataract 1350 (10.7) 445 (10.6) 454 (10.9)  32 (11.9)  10 (14.2) 2291 (10.7) 

VH  3016 (23.8) 1123 (26.8) 955 (22.9)  29 (10.8)  10 (14.3) 5133 (24.0) 

HM 2336 (18.5) 763 (18.2) 794 (19.1)  23 (8.6)  10 (14.3) 3926 (18.5) 

UM  16 (0.1) 4 (0.1) 6 (0.1)  15 (5.6)  10 (14.3) 51 (0.2) 

RE 1711 (13.6) 491 (11.7) 495 (11.9)  105 (39.0)  10 (14.3) 2812 (13.2) 

RB 15 (0.1) 6 (0.1) 5 (0.1)  30 (11.1)  10 (14.3) 66 (0.3) 

RD 4205 (33.2) 1365 (32.5) 1461 (35)   35 (13.0)   10 (14.3) 7076 (33.1) 

VH = vitreous hemorrhage, HM = high myopia, UM = uveal melanoma, RE = refractive error, RB = retinoblastoma, RD = retinal 

detachment. The Second Affiliated Hospital of Zhejiang University (SAHZU), the First Affiliated Hospital of Zhejiang Chinese Medical 

University (FAHZC), and the First Affiliated Hospital of Wannan Medical College (FAHWM). 
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