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Abstract

Accurate interpretation of ophthalmic ultrasound is crucial for diagnosing eye conditions but remains time-
consuming and requires significant expertise. With the increasing volume of ultrasound data, there is a need
for Artificial Intelligence (Al) systems capable of efficiently analyzing images and generating reports.
Traditional Al models for report generation cannot simultaneously identify lesions and lack interpretability.
This study proposes the Vision-Language Segmentation (VLS) model, combining Vision-Language Model
(VLM) with the Segment Anything Model (SAM) to improve interpretability in ophthalmic ultrasound
imaging. Using data from three hospitals, totaling 64,098 images and 21,355 reports, the VLS model
achieved a BLEU4 score of 66.37 in internal test set, and 85.36 and 73.77 in external test sets. The model
achieved a mean dice coefficient of 59.6% in internal test set, and dice coefficients of 50.2% and 51.5%
with specificity values of 97.8% and 97.7% in external test sets, respectively. Overall diagnostic accuracy
was 90.59% in internal and 71.87% in external test sets. A cost-effectiveness analysis demonstrated a 30-
fold reduction in report costs, from $39 per report by senior ophthalmologists to $1.3 for VLS. This
approach enhances diagnostic accuracy, reduces manual effort, and accelerates workflows, offering a

promising solution for ophthalmic ultrasound interpretation.



Introduction

Accurate interpretation of medical images and the generation of comprehensive narrative reports are crucial
for patient care, yet they place considerable demands on clinical professionals'. In ophthalmology,
ophthalmic ultrasound plays a pivotal role, offering invaluable insights for diagnosing and managing a wide
array of eye conditions, such as retinal diseases, and ocular tumors>*. As a non-invasive imaging technique,
it provides clinicians with detailed structural information that guides treatment decisions and disease
monitoring. However, interpreting ophthalmic ultrasound images remains a time-intensive task and requires
substantial expertise™”. The growing volume of ultrasound data in clinical settings further complicates this
process, increasing the need for advanced systems capable of analyzing the images and generating

meaningful diagnostic reports®.

While traditional AI models have shown substantial progress in medical image analysis and screening, their
integration with report generation remains limited’*. Many existing models lack interpretability, producing

automated outputs that often require further examination and explanation® '

. Moreover, they often fail to
highlight key lesions or abnormalities, which significantly reduces their practical utility. Furthermore, most
Al tools are confined to specific medical specialties, limiting their broader applicability''. Previous research
has shown that while the deep learning models achieves high accuracy in automating the classification of
ophthalmic diseases using ultrasound images, it is limited to disease screening and lacks the ability to
generate detailed image reports or provide precise clinical interpretations'>'*. As a result, there is a notable

gap in Al systems that combine image analysis with clear, interpretable reports, making them useful across

various domains in medicine.

Recent advancements in artificial intelligence (Al), particularly through Vision-Language Model (VLM),
are transforming ophthalmic diagnostics'®. These models integrate visual and textual data to enhance
diagnostic accuracy and support clinical decision-making by interpreting complex ocular images and
generating comprehensive reports'®!’. Meanwhile, Segment Anything Model (SAM), initially developed

for natural images, has been adapted for medical imaging, enabling zero-shot segmentation of anatomical



structures'®!®. Combining VLM and SAM holds significant promise for improving diagnostic precision,
and supporting personalized care. However, challenges such as ensuring model interpretability and
reliability in clinical settings remain, requiring further research and development to fully integrate these

technologies into ophthalmic care.

This study introduces a novel Al model that leverages advanced VLM to generate comprehensive diagnostic
reports and annotate lesions directly on medical images. By merging image understanding with natural
language processing, our approach creates grounded, meaningful reports, providing a scalable solution that
integrates image analysis with explanatory report generation. Central to our approach is the Visual-
Language Segmentation (VLS) model, which combines visual understanding with natural language
processing, and the use of the SAM for precise lesion segmentation. These technologies enable the model
to not only classify conditions but also generate accurate annotations on images. The model’s potential
extends beyond ophthalmology, offering a pathway for advancements in Al-driven diagnostic tools
applicable to various medical imaging modalities, thus revolutionizing diagnostics across multiple medical

specialties.



Results

This study utilized data from three distinct datasets: the Second Affiliated Hospital of Zhejiang University
(SAHZU), the First Affiliated Hospital of Zhejiang Chinese Medical University (FAHZC), and the First
Affiliated Hospital of Wannan Medical College (FAHWM), encompassing a total of 63,979 images and
21,239 real-world reports across seven ocular conditions. The demographic characteristics and distribution
of findings from the datasets are detailed in Table 1. The overall workflow of the study is illustrated in
Figure 1. Firstly, we conducted an automatic evaluation by comparing the performance of the developed
VLS model with that of the VL model, as well as pre- and post-fine-tuned performance, to validate the
strong capabilities of the VLS model in generating ocular ultrasound reports. Secondly, a systematic clinical
effectiveness evaluation was performed by inviting one senior ophthalmologist and one junior
ophthalmologist to assess report generation and diagnosis. Thirdly, we found that Al-assisted ocular
ultrasound reporting demonstrated higher diagnostic accuracy and significantly reduced reporting time,

validating the potential of our model as an auxiliary tool.

Demographic Data

Table 1 provides a comprehensive summary of the datasets used in this study, including details of the
SAHZU datasets, as well as the FAHWM and FAHZC datasets used as external test sets. The data
encompasses various patient, image, report, and diagnosis characteristics, and the following descriptions
highlight key aspects: The training dataset consists of 5,497 patients, with 37,917 images and 12,649 reports,
while the validation dataset includes 1,915 patients, 12,639 images, and 4,197 reports. The test dataset has
1,919 patients, 12,640 images, and 4,170 reports. Additionally, two external test sets are included: External
Test Set 1 (FAHWM Dataset) contains 269 patients, 742 images, and 269 reports, while External Test Set
2 (FAHZC Dataset) consists of 70 patients, 160 images, and 70 reports. In total, 9,670 patients, 64,098
images, and 21,355 reports are included across all datasets. The mean age of patients across the datasets is
similar, with a range of 49.5 to 49.7 years for the internal datasets and 50.8 years for External Test Set 1,
and 57.4 years for External Test Set 2. The gender distribution is fairly balanced across the internal datasets,

with 47.4% male and 52.6% female, while External Test Set 1 has a higher proportion of females (59.9%)



and External Test Set 2 shows a more balanced distribution (45.7% male, 54.3% female).

Regarding the eye side, the majority of cases involve both eyes (OS&OD), comprising 51.6% of the total
for the internal datasets, while OS (left eye) and OD (right eye) have similar proportions. In External Test
Set 1, all cases involve both eyes, while External Test Set 2 shows a smaller proportion of cases involving
both eyes (52.9%). The report length shows some variation, with the internal datasets having an average
report length of 99.6-99.7 words, while External Test Set 1 has a much shorter report length (28.6 words)
and External Test Set 2 has a much longer average report length (132.8 words). The diagnostic distribution
is also summarized, with the most common conditions across all datasets being retinal detachment (RD)
(33.1% of total cases), followed by vitreous hemorrhage (VH) (24.0%), high myopia (HM) (18.5%), and
cataract (10.7%). Other conditions like uveal melanoma (UM), refractive error (RE), and retinoblastoma

(RB) are much less common.

Evaluation of Reports

Figure 2 presents examples of grounded Al-generated reports for real-world ophthalmic cases, including
retinoblastoma, retinal detachment, cataract, and choroidal melanoma. In the left column, original ocular
ultrasound images are displayed alongside the segmentation results from the VLS model, where the blue-
filled areas represent the segmented lesions, and green dashed circles indicate the lesion annotations made
by senior ophthalmologists. The second column features the written reports provided by ophthalmologists,
and the third column shows the corresponding reports generated by the VLS system. These examples
highlight the model's ability to generate clinically relevant reports that align closely with ophthalmologists'
observations, demonstrating its potential for assisting in diagnostic and reporting tasks in real-world clinical

settings.

The performance of report generation was evaluated in both the internal and external test sets, as shown in

Figure 3. In the internal test set (Figure 3 A-E), both VLS and VL models achieved strong performance,

with VL obtaining slightly higher BLEU4 (71.32 vs. 66.37) and ROUGE scores (84.49/75.99 vs.



82.39/73.49), indicating high fluency and accuracy in generating reports. These models processed samples
at an efficient rate, with Lora_Qwen2.5vl achieving 0.16 samples per second and VL at 0.194 samples per
second, significantly outperforming other models such as Qwen2.5vl and Llava onevision, which

processed at 0.043 and 0.055 samples per second, respectively.

In the external test sets, both models showed promising results (Figure 3 F-J). In External Test Set 1, VLS
slightly outperformed VL (Figure 3 F-I). In External Test Set 1, VLS substantially outperformed VL across
all NLG metrics, achieving a BLEU4 score of 85.36 compared to 64.47 for VL. Similarly, VLS achieved
higher ROUGE-1 (88.45 vs. 75.75), ROUGE-2 (84.75 vs. 66.08), and ROUGE-L (90.37 vs. 75.76).
Processing efficiency was comparable, with VL slightly faster (0.168 vs. 0.132 samples per second). In
External Test Set 2, VLS again outperformed VL, though with a narrower margin: BLEU4 was 73.77 for
VLS vs. 53.80 for VL, ROUGE-1 was 82.97 vs. 70.98, ROUGE-2 was 76.79 vs. 57.63, and ROUGE-L was

84.54 vs. 66.83. Processing speeds were again slightly higher for VLS (0.159 vs. 0.182 samples per second).

Evaluation of Segmentation

Figure 4 evaluates the zero-shot segmentation accuracy of the VLS model, prioritizing the dice coefficient
as the primary metric, complemented by F1 score and specificity with 95% confidence intervals (CI) to
better capture segmentation performance under potential class imbalance. Across various ophthalmic
conditions, such as vitreous hemorrhage, cataract, uveal melanoma, retinoblastoma, retinal detachment, and
high myopia, the model achieved a mean dice coefficient of 59.6% (95% CI: 51.2-68.0) and a mean F1
score of 59.6% (95% CI: 50.7-68.3) in the internal test set, with high specificity (99.3%) but variable

sensitivity (63.9%). Performance was strongest for cataract (dice = 69.0%) and UM (dice = 68.2%).

When compared with Grounding DINO-US-SAM, the VLS model achieved a similar mean dice coefficient
(59.6% vs. 57.7%), demonstrating broadly comparable overall segmentation accuracy. VLS showed
substantial advantages for cataract (69.0% vs. 38.4%) and UM (68.2% vs. 52.5%), while DINO-US-SAM

outperformed VLS in RD (77.4% vs. 53.3%) and HM (68.0% vs. 49.4%). Performance for VH was similar



across models (62.3% vs. 64.6%). These results suggest that VLS and DINO-US-SAM offer

complementary strengths across different ophthalmic conditions.

Figure 4 also provides the external evaluation of the VLS model's segmentation accuracy on two external
test sets. While the model performs well across different conditions, the results show variability between
the test sets. In External Test Set 1, the model demonstrates dice coefficient of 50.2%, the mean specificity
is 97.8%. In External Test Set 2, the model's performance decreases slightly, with a mean Dice coefficient
of 51.5%, and the mean specificity is 97.7%. Notably, conditions such as HM exhibit higher performance

in external validation, especially in terms of F1 score.

Evaluation of Diagnostic Performance

Figure 5 summarizes the diagnostic performance of residents Al-aided modes for various ocular conditions
across three test sets: internal test set, external test set 1, and external test set 2. The diagnostic accuracy
(ACC), sensitivity, and specificity are presented with 95% CI for each condition. For cataracts, the
diagnostic accuracy was high in the internal test set (93.6%), but sensitivity was low (66.47%), indicating
that the model could miss some cases. In the external test set 1, the accuracy dropped to 71.88%, with a
sensitivity of just 19.05%. For vitreous hemorrhage, the VLS model significantly improved diagnostic
accuracy, especially in the external test sets, achieving 94.38% in external test set 1, though sensitivity
remained low (25.0%). In contrast, specificity remained high (98.03%) in this case. In the case of high
myopia, the performance in the internal test set was good, with an accuracy of 86.65% and high specificity
(91.36%). However, the sensitivity was relatively lower (68.26%), especially in external test set 1, where
sensitivity was 100% but specificity was only 18.59%. For uveal melanoma, diagnostic accuracy was near-
perfect in the internal and external test sets, with 99.91% in the internal test set, but sensitivity was 0%,
indicating a major issue in detecting this condition. Refractive error and retinoblastoma showed excellent
specificity (100%) in the external test sets, but diagnostic accuracy varied across different test sets. For
retinal detachment, diagnostic performance improved across all test sets, especially in external test set 2,

where specificity reached 100%. Overall, VLS model diagnosis achieved 90.59% accuracy in the internal



set, and 71.87% on the external datasets, though sensitivity and specificity varied notably across test sets.

Evaluation by Ophthalmologists

In Domain 1, which evaluated the extent of inappropriate content, the majority of reports generated by both
Al systems and human physicians were rated as containing "None" inappropriate content (Figure 6A).
Specifically, the SO produced the most appropriate reports (mean score: 2.70 in Chinese, 2.70 in English),
followed by VLS (2.65 in Chinese, 2.68 in English) and VL (2.52 in Chinese, 2.61 in English). JO had the
lowest appropriateness (2.39 in Chinese, 2.44 in English). Reports with "Present, little clinical significance"
inappropriate content were more frequently observed in reports by the JO (38% in Chinese and 32% in
English evaluations) compared to other systems, while reports with "Present, substantial clinical
significance" inappropriate content were most commonly found in VL (highest risk profile, with

inappropriate content score of 2.61 in English).

For Domain 2, which assessed the extent of missing content, the VLS Al system demonstrated superior
performance (2.61 in Chinese, 2.17 in English), and the SO demonstrated consistently strong results (2.57
in Chinese, 2.63 in English) (Figure 6A). Interestingly, the JO showed better performance in English
evaluation (2.40), compared to Chinese (2.34). Reports with "Present, little clinical significance" missing
content were most frequently observed in reports by the JO (48% in Chinese evaluation), while reports with
"Present, substantial clinical significance" missing content were most commonly found in VL (lowest score:

1.73 in English evaluation).

In Domain 3 (Figure 6A), the SO demonstrated the highest percentage of reports with low harm likelihood
(2.82 in Chinese, 2.79 in English), followed by the VLS (2.76 in Chinese, 2.83 in English). Notably, VL
had the lowest safety scores (1.73 in Chinese, 1.95 in English), indicating the greatest risk of harmful

recommendations.

The total scores comparison (Figure 6B) revealed statistically significant differences between the Al



systems and human physicians. In the Chinese language evaluation, the SO achieved the highest score of
8.09, followed closely by VLS (8.02), both significantly outperforming JO (7.13) and VL (6.64, p <0.001).
Similarly, in the English language evaluation, SO achieved the highest score of 8.12, followed by VLS with

a score of 7.68, both of which significantly outperformed VL (6.29, p < 0.001) and JO (7.34).

Cost-effective Analysis

The total reading time (measured in minutes) showed substantial differences between Al systems and
human physicians (Figure 7). The JO required the longest total reading time (approximately 163 minutes),
followed by the SO (approximately 122 minutes). In contrast, the Al systems VLS and VL demonstrated
significantly shorter total reading times of approximately 10.3 minutes and 8.7 minutes, respectively. This

reflects a 15-18-fold reduction in reading time by Al systems compared to human physicians.

The per ophthalmic report reading time (measured in seconds) exhibited a similar pattern. Both JO and SO
required substantially longer times per report (~98.0 and 70.4 seconds, respectively), as visualized in the
violin plots showing their distributions concentrated in the higher range. The Al systems VLS and VL
demonstrated markedly shorter per-report reading times (6.2 and 5.2 seconds, respectively), with their
distributions concentrated in the lower range. The violin plot distributions also indicate greater consistency

in reading times for Al systems compared to the wider variability observed in reports by human physicians.

The total cost analysis (measured in USD) revealed that the SO incurred the highest expenses
(approximately $39.4), followed by the JO (approximately $28.3). In contrast, the Al systems VLS and VL
demonstrated substantially lower total costs of approximately $1.3 and $1.0, respectively. This represents
an approximately 30-40-fold difference in total cost between human physicians and Al systems. The per
ophthalmic report cost followed a similar pattern. The Al systems VLS and VL demonstrated significantly

lower per-report costs.

Human-AI Comparative Study



In total, 200 ophthalmic ultrasound cases encompassing seven diagnostic categories were independently
evaluated by three junior ophthalmologists (JO1-JO3), both with and without Al assistance. When unaided,
diagnostic accuracies were 88.0% for JO1, 84.0% for JO2, and 87.0% for JO3, corresponding to an average

accuracy of 86.3%.

Following Al assistance, diagnostic performance improved markedly across all three participants. JO1
achieved 92.0% accuracy (+4%), while JO2 and JO3 both reached 96.0% accuracy, reflecting relative gains
of +12% and +9%, respectively. The overall average accuracy with Al support was 94.7%, representing an

absolute improvement of 8.3% compared to unaided performance.

At the disease level, Al assistance reduced misclassifications in common entities such as cataract, VH, and
RD, while also stabilizing performance in less prevalent conditions, including RB and UM. Importantly,
diagnostic sensitivity for high-morbidity conditions such as RD and VH improved consistently with Al

support.



Discussion

The accurate and efficient interpretation of ophthalmic ultrasound images is crucial for early diagnosis and
management of eye diseases. In this study, we have proposed an innovative approach that combines VLS
with the SAM to generate grounded reports in ophthalmic ultrasound interpretation. For the interface of
the VLS system and the demonstration of two analytical cases, please refer to Supplementary Movie 1. This
approach leverages the strengths of advanced Al technologies to bridge the gap between visual data and

clinical insights, offering a more reliable, scalable, and efficient solution for ophthalmic image analysis.

This study demonstrates the effectiveness of the VLS Model for ophthalmic ultrasound interpretation,
which outperforms traditional methods, including reports generated by junior ophthalmologists and senior
ophthalmologists. The VLS model achieved a BLEU4 score of 66.37 and a ROUGE-2 score of 73.49 in the
internal test set, showing strong performance in both fluency and accuracy. More importantly, in the external
test sets, the VLS model consistently outperformed the VL model, achieving markedly higher scores across
all NLG metrics, including BLEU4 (85.36 vs. 64.47) and ROUGE-L (90.37 vs. 75.76) in External Test Set
1, and BLEU4 (73.77 vs. 53.80) and ROUGE-L (84.54 vs. 66.83) in External Test Set 2. These results
underscore the model’s strong generalizability across diverse datasets, despite variations in imaging devices
and reporting practices. This highlights the potential of Al to automate ophthalmic report generation,
offering superior efficiency and quality compared to expert-driven methods. Clinical effectiveness
evaluations showed promising results, with the AI system achieving 94.38% accuracy for vitreous
hemorrhage in external test set 1. However, sensitivity was low (25%), highlighting the need for further
refinement to improve detection in certain conditions. For cataracts, the model reached 93.6% accuracy but
showed reduced sensitivity, indicating challenges in detecting all cases. Overall, Al-aided diagnostic
accuracy was 90.59%, a notable achievement in ophthalmic Al. Taken together, these findings suggest that
the VLS model not only provides superior report fluency and content accuracy but also holds significant
potential to improve efficiency and diagnostic consistency in real-world ophthalmic practice. Nonetheless,
challenges remain in enhancing sensitivity for specific conditions and in addressing the variability

introduced by heterogeneous imaging devices. Future work should therefore focus on multi-device domain



adaptation, standardized reporting protocols, and larger-scale prospective validation to fully realize the

clinical utility of Al-assisted ophthalmic ultrasound interpretation.

When compared to JO, the VLS system performed better in terms of the proportion of reports with no
inappropriate content, with 74% of reports in Chinese and 79% in English evaluations showing no
inappropriate content. The VLS model also excelled in detecting and reducing missing content, with 70%
of reports in Chinese evaluations containing no missing information, further emphasizing its effectiveness.
The VLS model reduced report costs by 40-fold compared to senior ophthalmologists, highlighting its
practical value in resource-limited settings. This is especially valuable in ophthalmology, where expert
interpretation is both time-consuming and expensive”. Additionally, the VLS model processed samples at

a rate of 0.16 per second, demonstrating its efficiency in real-world clinical settings.

When compared to prior studies in the medical Al field, our approach offers a notable advancement by
integrating VLM with SAM, an emerging methodology that enables precise image segmentation and
enhanced understanding of medical terminology. BiomedGPT is an open-source, lightweight generalist Al
model for biomedical tasks, achieving state-of-the-art performance in radiology question answering, report
generation, and summarization, with potential to enhance diagnosis and workflow efficiency?'. EchoCLIP
is a vision-language model for echocardiography that effectively assesses cardiac function, identifies
devices, and enables patient identification, advancing Al-driven preliminary interpretation of
echocardiographic findings'’. Previous works have explored Al models for ophthalmic image analysis, but
few have integrated these two domains into a cohesive, closed-loop system that not only segments the
images accurately but also generates clinically relevant and context-aware reports. Antaki et al. evaluated
the performance of the Gemini Pro VLM for detecting macular diseases from OCT scans, showing limited
feature detection capabilities but strong language consistency, highlighting the potential for VLMs in
ophthalmology with further validation??. Chen et al. presented an Al-based framework for automated fundus
fluorescein angiography interpretation, achieving strong performance with a BERTScore of 0.70 and F1

scores of 0.64-0.82 for detecting retinal conditions, alongside high accuracy and completeness in report



generation as validated by ophthalmologists®®. By leveraging both visual and linguistic models, our
approach sets itself apart in the field of medical Al, offering a holistic solution that can bridge the gap

between raw image data and clinical decision-making®*.

However, while the current study demonstrates promising results, several limitations must be addressed.
Firstly, the dataset used in this study was somewhat limited in terms of the range of clinical conditions
considered. While we observed strong performance in conditions like cataracts, vitreous hemorrhage, and
retinal detachment, expanding the dataset to include a broader range of clinical diseases, such as diabetic
retinopathy, glaucoma, and uveal melanoma, would enhance the model’s robustness. Incorporating
additional imaging modalities like optical coherence tomography (OCT) and fundus photography could
further support a comprehensive multi-modal Al system®. This system could simultaneously analyze
various types of imaging data, offering a unified platform for interpreting a broader range of ophthalmic
diseases?®*’. Although the VLS model demonstrated promising segmentation performance across various
ophthalmic conditions, there is still room for improvement, particularly in achieving higher precision for
certain conditions such as vitreous hemorrhage and retinal detachment. The model’s performance showed
variability between internal and external test sets, indicating that it may be sensitive to changes in dataset
characteristics. This suggests that further refinement is needed to enhance its robustness and accuracy.
Continued advancements in model architecture, training techniques, and data diversity will be essential for
improving segmentation accuracy and ensuring that large models like VLS can achieve more reliable and

precise results in clinical practice.

In addition, the system’s performance can be negatively influenced by low-quality ultrasound images (e.g.,
blurred, noisy, or with poor contrast), which may reduce both segmentation accuracy and report
reliability”®?. Another limitation lies in the detection of rare or small lesions, where limited training
samples hinder the model’s ability to generalize. These challenges highlight the need for future work to
incorporate image quality assessment modules, targeted data augmentation, and the prospective inclusion

of rare cases from multiple centers®’. Such strategies would improve robustness and support the system’s



deployment in diverse real-world clinical settings. Moreover, although our model demonstrated faster
processing times and reduced costs, integrating the system into real-world clinical workflows will require
careful consideration of how to balance performance, speed, and resource use?*'. This could involve
building Al systems that are not only efficient in terms of computational cost but also agile enough to adapt

to different clinical settings with minimal latency**.

In terms of future directions, we envision expanding our multi-modal Al system to support more complex
clinical workflows by integrating data from various sources, such as patient history, and clinical notes. This
would create a more holistic diagnostic tool capable of offering more accurate and comprehensive insights®*.
Our previous research shows that ChatGPT performs better with English prompts than Chinese prompts in
diagnosing retinal vascular diseases, but still falls short of ophthalmologists, highlighting the need for
further improvement in language models for clinical use®. Further, an important goal would be to create a
truly agile Al system that can learn from new data in real-time, enabling continuous improvement as new
clinical scenarios and imaging modalities emerge®®. Furthermore, the importance of clinician-Al
collaboration is evident, as demonstrated by the Flamingo-CXR Al system for automated chest radiograph
report generation®’. The system shows that Al-generated reports can be comparable to, or even preferable
to, clinician reports in many cases, emphasizing the potential of human-Al teamwork to enhance report

quality, reduce errors, and improve clinical workflows.

In conclusion, our study introduces a novel approach that integrates cutting-edge Al technologies to enhance
the accuracy, efficiency, and cost-effectiveness of ophthalmic ultrasound interpretation. While the current
model demonstrates significant promise, future work focusing on expanding the clinical dataset, integrating
multi-modal imaging data, and improving the system’s sensitivity for rare conditions will be essential for
developing a more robust and comprehensive Al solution for ophthalmology. With continued advancements
in Al technology, there is significant potential to revolutionize clinical practice by providing real-time,
accurate, and cost-effective tools for healthcare professionals, ultimately improving patient outcomes in the

field of ophthalmology.



Methods

This study developed a system combining a vision-language model for report generation and the SAM
(Segmentation Anything Model) for lesion recognition (Figure 1). The methodology involved four key
steps: (i) collecting and preparing a medical image dataset with lesion annotations for training; (ii)
developing the VLM integrated with SAM for automatic lesion segmentation and report generation; (iii)
conducting external validation to evaluate the system’s performance, comparing it with baseline models;
and (iv) performing clinical evaluations by ophthalmologists diagnosed and interpreted B-scan cases with
the system's assistance, measuring diagnostic accuracy and reporting time, while six ophthalmologists
assessed the clinical quality of the generated reports. This comprehensive evaluation ensured both technical

performance and clinical applicability of the system.

Dataset Establishment

This study utilized data from three distinct datasets: SAHZU, FAHWM, and FAHZC, along with two
external datasets, which includes a total of 63,979 images and 21,239 reports (Table 1). This study was
performed in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics
Committees of the Second Affiliated Hospital, Zhejiang University School of Medicine (No. Y2023-1073),
the First Affiliated Hospital of Zhejiang Chinese Medical University No. 2024-KL.S-583-02), and the First
Affiliated Hospital of Wannan Medical College (No. Y2024-1015). The retrospective data were
anonymized and approved by the Ethics Committees without the need for patient consent, while informed
consent was obtained for the two external independent validation datasets. The datasets were divided into
different subsets for training, validation, and testing. The SAHZU dataset consisted of 54,971 images and
12,649 reports, which were split into a training set (37,917 images), validation set (12,639 images), and test
set (12,640 images). The FAHWM and FAHZC dataset included 652 images, and 163 images for the
external test sets. The dataset establishment process adhered to rigorous inclusion criteria and underwent
careful data handling to ensure data consistency and quality. For each dataset, images and reports were

associated and reviewed by experts to ensure the highest accuracy in labeling and diagnosis.



The imaging machines used for data collection include the following models: For the SAHZU dataset, the
imaging was performed using the Compact Touch, Cinescan, and Aviso machines from Quantel Medical
(Clermont-Ferrand, France), as well as the ODM-2100 and MD2400S machines from MEDA Medical
(Tianjin, China). The FAHWM dataset was acquired using the Compact Touch, Cinescan machines from
Quantel Medical (Clermont-Ferrand, France). For the FAHZC dataset, the imaging was conducted with the
SOVI Ophthalmic A/B Ultrasound Diagnostic Device SW-2100 from Tianjin SOVI. These machines were
selected for their reliability and consistency in capturing high-quality ophthalmic ultrasound images,

ensuring the validity and clinical relevance of the dataset.

The ophthalmic ultrasound images and corresponding free-text reports were retrieved from the picture
archiving and communication system (PACS). Due to the use of different systems for external datasets, the
image formats and resolutions varied. To ensure consistency, cases with poor image quality (e.g., significant
blur or high noise caused by either pathological or technical issues) or those lacking corresponding free-
text reports were excluded. After excluding these cases, the selected reports were initially reviewed by two
residents (Z.L. and T.Y.), and then underwent quality control and final review by senior ophthalmologist

(D.K. and K.J.) to correct any spelling errors and modify/exclude reports with incomplete information.

For all datasets, reports and images were annotated using a standardized annotation procedure. All
annotations were performed by three ophthalmologists with over 5 years of experience, ensuring accuracy
and consistency. The annotated reports were reviewed by two senior ophthalmologists with over 10 years
of experience to further enhance the reliability of the dataset. Additionally, the lesion bounding boxes
suggested by the SAM model were annotated by one senior ophthalmologist (D.K.) and reviewed by the

other senior ophthalmologist (K.J.), ensuring the accuracy of lesion identification.

Model Development
In the development of the Vision-Language Model and SAM Integration, we employed two vision-language

models: LLaVA One version and Qwen 2.5VL, both of which were trained to generate detailed and accurate



medical reports from visual inputs. These models are designed to effectively handle complex medical
imagery, making them well-suited for tasks involving nuanced and detailed descriptions such as those
required in medical report generation. The LLaVA One version is specifically optimized for multi-modal
tasks, combining image understanding and language generation capabilities®®. It can effectively process
medical images, extract relevant features, and generate coherent textual descriptions. Qwen 2.5VL, on the
other hand, offers enhanced fine-tuning capabilities, enabling it to generate more contextually precise
reports based on medical images®’. This combination of models ensures high flexibility and accuracy in

report generation across various clinical scenarios.

In addition to these models, we utilized LoRA (Low-Rank Adaptation) fine-tuning techniques to further
enhance the performance of the vision-language models. LoRA enables efficient adaptation of pre-trained
models by introducing low-rank decomposition layers, allowing for specialized fine-tuning with relatively
fewer resources. This technique was particularly useful in tailoring the models to the specific task of

medical report generation and lesion identification, without requiring extensive retraining from scratch.

As shown in Figure 1, lesion segmentation and report generation are tightly coupled within the proposed
framework. First, during the model fine-tuning phase, we integrate bounding box information from images
into existing medical reports. Using predefined prompts, multiple images, and curated medical reports, we
fine-tune the Visual Language Model (VLM) to enable report generation and bounding box prediction
capabilities. Then, during the inference stage, users input multiple images to obtain medical reports and
potential lesion locations. If lesion locations exist, the original images are segmented using SAM to overlay
the VLM-generated lesion bounding box information onto the images, yielding the final segmentation
results. These bounding boxes serve a dual purpose: for the vision-language model (VLM, Qwen2.5VL),
they provide visual context by describing lesion type, location, and clinical significance; for arbitrary

segmentation models (SAM), they function as spatial prompts to guide the segmentation process.

The SAM model was not fine-tuned on ocular ultrasound images. Instead, its prompt encoder utilized



bounding boxes to focus the segmentation, while its image encoder and mask decoder produced high-
resolution lesion masks that refined boundaries beyond the initial box. By integrating these segmentation
outputs into the VLM reasoning chain, the system ensured that textual reports were explicitly grounded in
visual evidence. This linkage reduced the risk of hallucinations and enhanced clinical interpretability by

providing explicit lesion localization within the report.

To further improve robustness, we implemented a rule-based arbitration mechanism when discrepancies
arose between SAM and VLM outputs (e.g., the VLM narrative suggested “retinal detachment” while SAM
highlighted a different region). The system jointly evaluated the segmentation confidence score (Dice-based)
and the VLM confidence score (logit-based). If segmentation confidence was low, the VLM narrative was
prioritized. If segmentation confidence was high but conflicted with the VLM interpretation, the final report
explicitly noted the inconsistency (e.g., “segmentation suggests X, but textual interpretation indicates Y").
This design ensured that neither model operated in isolation and that potential conflicts were transparently

reported rather than suppressed.

All the models were trained using two Nvidia V100 GPUs on the backend framework of PyTorch,
leveraging distributed parallelism to accelerate the training process. The Adam optimizer was employed for
optimization, with initial learning rates set at 5e-5 for the visual extractor and le-4 for all other model
parameters. The learning rate was decayed by a factor of 0.8 at the end of each epoch to facilitate stable
convergence. For the diagnosis-supervised contrastive loss, the weight o was set to 0.2, balancing the
contribution of the contrastive loss with other components of the total loss function. This training
configuration ensured efficient model optimization while maintaining high performance across both vision-

language processing and lesion segmentation tasks.

Automatic Evaluation of Reports
The performance of the four models described earlier was automatically evaluated using NLG (Natural

Language Generation) and CE (Classification Evaluation) metrics on the SAHZU test set as well as two



external test datasets. The NLG metrics utilized in this evaluation included Bilingual Evaluation
Understudy 1 (BLEU), Metric for Evaluation of Translation with Explicit Ordering (METEOR), and
ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation - Longest common subsequence). BLEU
is commonly used to assess the quality of machine translation by measuring the overlap of n-grams
(sequences of n words) between the generated text and the reference text. In this study, we computed
BLEU1, BLEU2, BLEU3, and BLEU4 as part of our evaluation. METEOR builds upon BLEU by
incorporating synonyms and paraphrases, thus offering a more flexible approach to evaluating the generated
ultrasound reports. ROUGE-L, which emphasizes recall, is especially valuable for evaluating how well the
generated text captures the essential ideas and key clinical information, making it ideal for assessing the

coherence of complex medical descriptions.

Automatic Evaluation of Segmentation

The VLS model was evaluated for zero-shot segmentation accuracy across multiple ophthalmic conditions,
including vitreous hemorrhage, cataract, uveal melanoma, retinoblastoma, retinal detachment, and high
myopia. Model performance was assessed using metrics such as dice coefficient, sensitivity, specificity,
and F1 score. The internal evaluation was conducted on a set of annotated images, while external
evaluations were performed on two separate test sets to examine the model's generalizability. Statistical
analysis included the calculation of 95% confidence intervals for all metrics, allowing for a comprehensive

assessment of the model’s accuracy and reliability in both internal and external settings.

For benchmarking, we additionally compared the VLS framework with the Grounding DINO-US-SAM
model®’. Specifically, we employed the publicly available implementation of Grounding DINO coupled
with SAM for zero-shot segmentation. The same annotated internal dataset was used for evaluation to
ensure consistency across models. Both VLS and DINO-US-SAM were tested under identical experimental
conditions, including preprocessing steps, evaluation metrics, and confidence interval estimation. This
setup enabled a direct and reproducible comparison of segmentation performance between the two

approaches, highlighting complementary strengths across different ophthalmic conditions.



Evaluation of diagnostic accuracy

We developed an online tool for drafting and diagnosing ophthalmic ultrasound reports. This tool simulates
real-world PACS viewer functionalities, including image switching, zooming, labeling, measurement
adjustments, and contrast modifications, without displaying any patient-specific information. In the Al-
assisted mode, an Al-generated report is displayed when viewers examine the corresponding ultrasound
images. Viewers have the option to either adopt, modify, or discard the Al-generated report based on their
own clinical observations and expertise. In the standard template-aided mode, preformatted reports
corresponding to the seven ophthalmic conditions are presented as references. Viewers can then select an
appropriate diagnosis based on the displayed information. Additionally, the tool records both the time taken

for diagnosis and report generation.

Human Evaluation of the Head-to-Head Comparison

To assess the performance of the VLS compared to VL, junior ophthalmologists (JO), and senior
ophthalmologists (SO) in providing management recommendations for ophthalmic cases, we curated a
dataset comprising 100 clinical cases. These cases were randomly selected and used to evaluate the models'
capabilities in both English and Chinese languages. In this evaluation, three core criteria were considered:
the extent of inappropriate content, the extent of missing content, and the likelihood of potential harm in
the management recommendations. The evaluations were performed by a panel of expert evaluators who
rated the cases based on these criteria. The evaluators included six licensed ophthalmologists in total: three

JOs and three SOs.

The ophthalmologists involved in this evaluation all hold valid medical licenses. The three JOs, each with
3-5 years of clinical experience, are familiar with a wide range of ophthalmic conditions and management
strategies. The three SOs, with over 10 years of clinical experience, possess deep expertise in complex and
rare ophthalmic conditions. Their extensive experience enables them to make well-rounded, informed
clinical decisions, especially in complicated cases. This diverse panel of both junior and senior

ophthalmologists, along with the Al models, provided valuable insights into the effectiveness of the VLS



compared to human expertise in ophthalmology.

For each of the 100 cases, management recommendations were generated using the VLS, VL, and the two
ophthalmologist groups (JO and SO). These recommendations were anonymized and then assessed by a
separate panel of two expert ophthalmologists. The evaluations were carried out in both English and
Chinese, with each language having a distinct expert panel. For the English evaluation, the panel consisted
of bilingual ophthalmologists who rated the management recommendations based on the pre-established
criteria. The assessment employed a box plot to display the total scores, which incorporated the extent of
inappropriate content, missing content, and potential harm. Statistical comparisons between the four groups
(VLS, VL, JO, and SO) were performed using two-sided Friedman tests. Post-hoc pairwise comparisons
were carried out using two-sided Wilcoxon signed-rank tests, with P-values adjusted for multiple

comparisons using the Bonferroni method.

Additionally, to ensure robust and reliable evaluations, a separate ablation study was conducted to compare
the performance of VLS and VL in both languages. For detailed evaluation methods and criteria, please

refer to Supplementary Table 1-3.

Cost-Effectiveness Analysis

A cost-effectiveness analysis was conducted to compare the total reading time and the total cost for each
Al system and human physician. Total reading time was measured in minutes, and per-report reading time
was recorded in seconds. Each system's performance was analyzed in terms of how quickly reports could
be processed, with a focus on the difference between human physicians and Al systems. Additionally, the
total cost incurred by each system was evaluated. The cost was calculated based on the time and resources
required to process the reports. The analysis allowed for a comparison of the economic efficiency of the Al
systems versus human physicians, with particular attention to the differences in both total costs and per-

report costs.



Human-AI Comparative Study Design

To evaluate the impact of Al-assisted interpretation on diagnostic performance, we conducted a human—Al
comparative experiment. Three ophthalmology residents independently reviewed and interpreted 200
ophthalmic ultrasound cases (Supplementary Table 4). For each case, the residents generated a structured
diagnostic report and provided a final diagnosis without access to the VLS Al system. After a washout
period, the same residents re-evaluated the identical set of cases with the assistance of the Al, which
automatically generated preliminary diagnostic suggestions and structured outputs. The final diagnoses
made by each resident, both with and without Al support, were compared against the gold standard
established by two senior ophthalmologists. Diagnostic accuracy rates were calculated for each resident in
the unassisted and Al-assisted conditions, enabling quantitative assessment of the effect of Al on diagnostic

performance.

Statistical Analysis

Clinical efficacy was assessed by diagnostic accuracy, sensitivity, specificity, and report-writing time across
all diseases and within disease subgroups. Confidence intervals (CIs) for these metrics were calculated
using the Wilson score interval method. To compare the performance of Al systems and human physicians,
descriptive statistics (mean, standard deviation, and percentages) were used to summarize the total scores,
inappropriate content, missing content, and harm likelihood. For comparisons of total scores, independent
t-tests or ANOVA were used, depending on the data distribution. Post-hoc pairwise comparisons with
Bonferroni correction were applied where necessary. Chi-square tests were used to assess significant
differences in the distribution of content and harm categories between systems. For cost and time-related
outcomes, independent t-tests were employed to compare total reading time and costs between Al systems
and human physicians. Per-report costs and reading times were also compared using appropriate statistical
tests. All statistical tests were two-sided, with p-values < 0.05 considered significant. Bonferroni correction
was applied for multiple comparisons. Statistical analyses were performed using R software (version 4.2.1),
and results are presented as mean + standard deviation for continuous variables and percentages for

categorical data.



The datasets used and analyzed in this study are not publicly available due to patient privacy considerations,
but they can be obtained from the corresponding author upon reasonable request and with appropriate
institutional approvals. The source code used in this study has been made publicly available at:

https://github.com/Qix-Sun/Vit.
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Model (SAM). The icons were created by Freepik, and permission for their use has been granted.
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Chinese: I2H#AR: WMREHAINE. REERA: LR
BELCEALKELEREREAHT L, FiamhTEREHRINE
FRERRIEMSRE A TS, FERILAARGIRE THE
IBERERRRME S, WAEERSS, BLARREEEEY
B, BAMER. RERTH ARETEAR S A AR
BERBALRMES A BUH—SRE,

Chinese: iIZHf R4 PN REARNE. REHRA:
ERFRAEAER . AFLRIFREAREZRR
K EREBRE O F RS L R SRR R AR
KR, RIFRTA ARPEERSR (ZRERNE
RIEEEIRR) ZREHANRBEREMAELRE
REPBRERRIMEEE, FEORRE.

English: The diagnosis was: retinoblastoma. Examination results
were: left eye vitreous small amount of light spot light strip left
eye after detachment light band no, posterior motion no left eye
posterior pole near the bulge of the bulb wall detected tortuous
strong echo light band, posterior connection to the optic
papillae left eye posterior pole and below the intravitreous
detected substantial occupations, the internal echogenicity of
non-uniformity, vaguely detected strong echogenic light spot,
the posterior accompanied by the acoustic shadows. The final
suggestion was: left vitreous clouding, left retinal detachment,
left intraocular space, further examination was recommended

English: The diagnosis was: retinoblastoma
Examination findings were: large number of spots and
streaks in the left vitreous body, streaks detected in the
left vitreous body and echogenic adhesion to the
posterior pole wall, and a slit-like bulge detected in the
posterior pole wall of the left eye. The last suggestion
was: left eye vitreous clouding (please combine the
nature of clouding in the left eye with the clinic) left
eye vitreoretinal adhesive changes left eye limited
bulging of the posterior pole bulb wall of the left eye.
please combine the clinic with the clinic.

Chinese: IZHi4AR A UMARHELE . ELERN: GREIEE
DEXROLE, AREBENTE, FEsk, AREN, £
71, THRERI@HBEELEER FERLL. RERETH:
AREEERR, ARVMEHETE.

Chinese: IR A WMBHE. REERN: &
IREWGLERS, ARARBRBLTE, BERE
TH EREEERE, ARIAFERETE.

English: The diagnostic findings were: retinal detachment. The
examination results were: a small amount of vitreous light spots
and light stripes in the right eye, no posterior detachment light
band in the right eye, no posterior motion, the right eye
temporal, superior, and inferior to the detached eye detected a
tortuous echogenic light band bulge, the posterior connection
to the optic papilla. The final suggestion was: clouding of the
right vitreous and possible retinal detachment of the right eye.

English: The diagnosis was: retinal detachment. The
examination results were: a small number of light spots
in the vitreous of the right eye, light strips in the right
eye after detachment of the light band was absent, and
the final suggestion was: vitreous clouding in the right
eye and possible retinal detachment of the right eye.

Chinese: SH#AR A ARE. KELERN. AREEE S
Jem. St FRBMREXEA FEHHE, WMEARE
REREET. RERTH: GRBEBERHEEREME.

Chinese: iZHTEER A AAE. BEERY: FRE
FRAFEENN, AREEEREYXS. XHTR,
KBEBRARER, HRMWMBEARRASHELE.
RinRTA RIREEE SR RIE.

English: The diagnosis was: cataract. The examination results
were: a small number of light spots and light strips in the
vitreous of the right eye, thin light bands in the right eye after
detachment, obvious posterior motion, and no obvious
detachment bands were detected in the retina. The final
suggestion was: vitreous clouding with pasterior detachment in
the right eye.

English: The diagnosis was: cataract. The examination
findings were: light spots were vaguely detected above
the right eye, light spots and light clusters were visible
in the right vitreous, the crystal was vaguely elevated,
and no obvious detached light bands were detected in
the right retina. The final indication was: right eye
vitreous body less light spots and light stripes.

Chinese: iZ#f 45 R A BEBRETRE. KELRAN: ARE
BB, HE ARGEHEXDEL. FiEshEt, AME
FERARHEXE, RREMEDIIRSFRELREREL,
hW5E, WARHSFREER. BERTA: ARBEECRE,
HARBRA SRR L.

Chinese: IZHT45R A BARABERETR. MELFRA:
ARBEGABNS. HEFEIRNE S EATLEE
i, ARBEHRBASHE, FEmx. MRBERERHA
BEEAT. BRERTH AREIBERR, AR
PISERME L.

English: The diagnostic findings were: choroidal melanoma. The
examination results were: a small number of light spots and light
strips in the vitreous body of the right eye, no posterior
detachment of light bands in the right eye, no posterior motion,
no obvious detachment of light bands detected in the retina,
and a substantial bulge was detected in the bulbous wall of the
right eye in the nasal periphery. with clear borders and relatively
uniform medium-strong echoes. The final suggestion was:
vitreous clouding in the right eye, and substantial intraocular
space in the right eye.

English: Diagnostic findings were: choraidal melanoma
Examination results were: right eye vitreous large
number of light spots, light strips of membranous light
bands in contact with the upper sclera, right eye after
the detachment of light bands thin, no posterior
motion, the retina did not detect obvious detachment
of light bands. The final suggestion was: vitreous
clouding with retinal detachment in the right eye, and
substantial intraocular space in the right eye

Figure 2. Examples of grounded Al-generated reports for real-world ophthalmic cases, including
retinoblastoma, retinal detachment, cataract, and choroidal melanoma. The left column displays original
ocular ultrasound images with VLS segmentation results (blue-filled area) and lesion annotations made by
ophthalmologists (green dashed circles). The second column contains the ophthalmologist's written report,

while the third column shows the report generated by the VLS system.
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Figure 3. Report generation performance in internal test set (A-E) and in external test sets (F-J). VLS =

Vision-Language Segmentation model, VL = Vision-Language model.



Specificity (%)

F1 Score (%)

120~

100

FLE

o0

120

100

120+

100+

60

40+

20+

= VLS Internal test set Dice (%)

Dice
mm  Dinc-US-SAM Internal test set Dice (%)
0 WLS External test set 1 Dice (%)
VLS External test set 2 Dice (%)
Cataract VH um RB RD HM Mean
Category
== VLS Internal test sat Specificity (%)
Specificity ™= Dino-US-SAM Internal test set Specificity (%)
VLS External test set 1 Specificity (%)
VLS External test set 2 Specificity (%)
A gn e N e e PR o NS MR . e
Al
Cataract VH HM um RB RD Total
Category
F1 Score mm VLS Internal test set F1 Score (%)
== Dinc-US-SAM Internal test set F1 Score (%)
VLS External test set 1 F1 Score (%)
VLS External test set 2 F1 Score (%)
Cataract VH uMm RB RD HM Mean

Category



Figure 4. Evaluation of segmentation accuracy for Vision-Language Segmentation (VLS) models and
Dino-US-SAM models. VH = vitreous hemorrhage, HM = high myopia, UM = uveal melanoma, RE=
refractive error, RB = retinoblastoma, RD = retinal detachment.



Sensitivity (%)

Specificity (%)

Accuracy (%)

120+

1004

804

404

120+

100+

80+

60+

40+

20+

60+

0=

120+

1004

80+

60+

404

B nternal test set Accuracy (%)

Accuracy
mm External test set 1 Accuracy (%)
External test set 2 Accuracy (%)
Cataract VH HM um RE RB RD Total
Category
P == |nternal test set Sensitivity (%
SIE-I"ISI'I.WIty nternal S ensitivity (%)
mm External test set 1 Sensitivity (%)
*External test set 2 Sensitivity (%)
nu
. s
L
. iy
i
na sz
3k
. o 2
Cataract VH HM RE RD Total
Category
— = |nternal test set Specificity (%
Specificity pecificity (%)
= External test set 1 Specificity (%)
ww External test set 2 Specificity (%)
Cataract VH HM um RE RB RD Total

Category



Figure 5. The diagnostic performance of Vision-Language Segmentation (VLS) models. VH = vitreous
hemorrhage, HM = high myopia, UM = uveal melanoma, RE= refractive error, RB = retinoblastoma, RD
= retinal detachment.
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Figure 6. Comparison of VLS (Vision-Language Segmentation) models, VL, 3 junior ophthalmologists



(JO), and 3 senior ophthalmologists (SO) in both English and Chinese. (A) Evaluators rated management
recommendations across three criteria: appropriateness, completeness, and potential harm, using 100 cases.
(B) Total scores of management recommendations by VLS, VL, JO, and SO based on 100 cases. Box plot
(n = 100), showing median, quartiles, and data range (whiskers). Comparisons were conducted using two-
sided Friedman tests, with post-hoc pairwise comparisons using two-sided Wilcoxon signed-rank tests. P-

values for multiple comparisons were adjusted using the Bonferroni method. *p < 0.05, **p < 0.01, and
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Figure 7. (A) Bar graph displaying total reading time in seconds for VLS (Vision-Language Segmentation
Models), VL, 3 junior ophthalmologists (JO), and 3 senior ophthalmologists (SO), (B) Violin plot
illustrating reading time per ophthalmic report in seconds, (C) Bar graph presenting total cost in U.S. dollars
for VLS, VL, and human readers, (D) Violin plot showing cost per ophthalmic report in U.S. dollars. Dashed
lines represent medians and dotted lines indicate quartiles, and (E) diagnostic accuracy of three junior

ophthalmologists with and without Al assistance across 200 ophthalmic ultrasound cases. ***p < 0.001.



Tables

Table 1. Demographic data of the study and distribution of the findings.

SAHZU Dataset

FAHWM Dataset

FAHZC Dataset

Items Training set Vahsd;tlon Test set External test set 1 External test set 2 Total
Patients, n 5497 1915 1919 269 70 9670
Images, n 37917 12639 12640 742 160 64098
Reports, n 12649 4197 4170 269 70 21355
Age, mean (SD) 49.6 (17.2) 495(17.4) 49.7(17.2) 50.8 (18.2) 57.4 (16.1) 51.4 (17.2)
Gender, n (%)
Male 2615 (47.6) 906 (47.3) 904 (47.1) 108 (40.1) 32 (45.7) 4565 (47.2)
Female 2882 (52.4) 1009 (52.7) 1015 (52.9) 161 (59.9) 38 (54.3) 5105 (52.8)
Eye, n (%)
0os 2905 (23) 996 (23.7) 978 (23.5) NA 17 (24.2) 4896 (22.9)
oD 3160 (25) 1068 (25.5) 1068 (25.6) NA 16 (22.9) 5312 (24.9)
0S&0D 6584 (52)  2133(50.8) 2124 (50.9) 269 (100) 37 (52.9) %512145
Report length, mean (SD) 99.6 (33.8) 99.7 (34) 99.6(33.6) 28.6(9.3) 132.8(41.1) 92.1 (30.4)
Diagnosis, n (%)
Cataract 1350 (10.7) 445 (10.6) 454 (10.9) 32 (11.9) 10 (14.2) 2291 (10.7)
VH 3016 (23.8) 1123 (26.8) 955 (22.9) 29 (10.8) 10 (14.3) 5133 (24.0)
HM 2336 (18.5) 763 (18.2) 794 (19.1) 23 (8.6) 10 (14.3) 3926 (18.5)
UM 16 (0.1) 4 (0.1) 6 (0.1) 15 (5.6) 10 (14.3) 51 (0.2)
RE 1711 (13.6) 491 (11.7) 495 (11.9) 105 (39.0) 10 (14.3) 2812 (13.2)
RB 15 (0.1) 6 (0.1) 5(0.1) 30 (11.1) 10 (14.3) 66 (0.3)
RD 4205 (33.2) 1365(32.5) 1461 (35) 35 (13.0) 10 (14.3) 7076 (33.1)

"VH = vitreous hemorrhage, HM = high myopia, UM = uveal melanoma, RE = refractive error, RB = retinoblastoma, RD = retinal
detachment. The Second Affiliated Hospital of Zhejiang University (SAHZU), the First Affiliated Hospital of Zhejiang Chinese Medical

University (FAHZC), and the First Affiliated Hospital of Wannan Medical College (FAHWM).



