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Abstract
Smart textiles have emerged as a transformative class of materials that extend the role of conventional fabrics into personal-
ized health management. This evolution is driven by the seamless integration of textiles with flexible electronics, enabling 
new paradigms in skin-interfaced systems. In the exploration of novel smart textiles for skin health, microorganisms living 
in the skin microenvironment necessitate consideration. Skin microbiomes are essential to skin homeostasis and balance the 
barrier to infection. Moreover, microbes have been extensively explored as functional components in skin health monitoring 
and therapeutic devices. In this review, the distribution of skin microbes, interactions between host and resident microbiota, 
and mechanisms of microbial functions in the skin microenvironment are introduced systematically. In addition, recent 
progress in skin-based flexible devices for health management, and design and fabrication methods for smart textiles are 
discussed. However, some challenges still exist in association with the integration of microbes into smart textiles, such as 
the biosafety of microbes, long-term storage, and activation. This review provides a summary of innovative technologies 
including microencapsulation, synthetic biology, optogenetics, and artificial intelligence for microbe-integrated smart textiles. 
Next-generation smart textiles will hold significant promise for precision skin disease diagnostics, personalized therapeutics, 
skin status monitoring, and intelligence regulation.

Keywords  Smart textiles · Skin interface · Microbiomes · Flexible electronics · Health management

1  Introduction

Textiles are essential to human life and skin health and are 
exploited for a range of applications including clothing, pro-
tective equipment, and medical health care [1]. Conventional 
textiles are primarily composed of natural materials such as 

cotton, wool, and silk, which provide comfort and breatha-
bility but lack advanced functionalities. Modern textiles have 
evolved with functions that advance comfort, health, and 
safety such as ultraviolet (UV) protection, moisture-wick-
ing, and antimicrobial resistance [2–4]. The emergence of 
flexible electronics has revolutionized textile applications, 
paving the way for smart textiles that seamlessly integrate 
electronic functionalities into fabrics. These smart textiles 
include electronic skin (e-skin), smart wound dressings, and 
intelligent clothing. Compared with basic textiles, they can 
offer advanced functions such as monitoring and therapeu-
tic modules. For instance, e-skin can monitor physiological 
parameters such as body temperature, heart rate, humidity, 
and biomarkers related to skin health [5–7]. Smart wound 
dressings can track wound healing by detecting poten-
tial of hydrogen (pH), moisture, and temperature [8–10]. 
Some advanced dressings can even identify inflammatory 
responses or tissue regeneration status and release drugs 
accordingly to reduce inflammation and accelerate healing 
[11, 12]. These real-time health monitoring and therapeutic 
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capabilities are particularly valuable for personalized medi-
cine, sports performance tracking, and chronic disease man-
agement. According to a market research report by Straits 
Research [13], the global value of the smart textile market 
was USD 3.45 billion in 2024 and it is expected to increase 
from USD 4.23 billion in 2025 to USD 21.46 billion by 
2033.

For the effective design of advanced textiles for skin 
health management, commencing with an in-depth study of 
the skin microenvironment is imperative. Micro-organisms 
that live on human skin comprise a diverse ecosystem known 
as the skin microbiome, which is essential for maintaining 
skin health. This microbiota forms a dynamic and sym-
biotic relationship with the host [14], contributing to the 
skin barrier, immune regulation, metabolic function, and 
disease prevention [15–18]. However, when the balance of 
this microbial community is disrupted, it can lead to vari-
ous skin disorders [19, 20]. A notable example is atopic 
dermatitis (AD), which is a condition characterized by skin 
inflammation and barrier dysfunction. Patients with AD 
often exhibit decreased skin microbiota diversity, accom-
panied by an over-colonization of Staphylococcus aureus, 
which exacerbates symptoms by eliciting aberrant immune 
responses [21, 22]. Current treatment strategies include the 
use of topical corticosteroids and calcineurin inhibitors to 
reduce inflammation, moisturizers to restore the skin bar-
rier, and antimicrobial peptides (AMPs) to control pathogens 
over-colonization [23, 24]. In addition, emerging therapies 
such as probiotics, microbiome transplantation, and targeted 
modulation of the skin microbiota are garnering increasing 
attention, offering new strategies for the management of AD 
[25, 26]. Therefore, understanding the skin microenviron-
ment and intervention measures for microbial balance is cru-
cial for advancing the development of microbial-integrated 
smart textiles.

As important components of living interfaces, these 
microorganisms can play key roles in innovative smart 
textile substrates, sensing, energy harvesting, and therapy. 
Moreover, they expand the range of substrate materials avail-
able for flexible electronics. For example, bacterial cellulose 
exhibits exceptional flexibility, biocompatibility, and tunable 
biodegradability, making it desirable for use as a wearable 
substrate [27, 28]. Microorganisms also serve as the basis 
for biosensing in flexible devices. Body fluids such as sweat 
contain lactic acid, glucose, urea, and diverse microbial spe-
cies, and their metabolic byproducts, such as short-chain 
fatty acids (SCFAs), are closely linked to human health [29]. 
Monitoring these biomarkers enables noninvasive health 
assessment. Sweat-based flexible sensors have been exten-
sively studied, and flexible sensors for other biofluids have 
been further explored [30]. Meanwhile, the impact of micro-
organisms and their metabolites on device performance must 
be considered, as acidic metabolites in sweat can corrode 

electronic components, affecting device longevity [31]. Fur-
thermore, certain microorganisms in living interfaces can 
utilize components of bodily fluids as fuel from the skin 
surface [32, 33], demonstrating their potential as bioenergy 
harvesters or self-powered sources for continuous energy 
supply to next-generation smart textiles.

This review explores the significance of smart textiles 
and microorganisms in skin health management and high-
lights their potential market value. From traditional textiles 
to functional and smart textiles, the key points for textile 
development are briefly summarized in Fig. 1a. Moreover, 
the number of publications on textile-based flexible electron-
ics has increased exponentially since 1980 (Fig. 1b). To bet-
ter understand the role and mechanisms of microorganisms 
in skin health, this article first introduces the distribution of 
skin microbiota across different anatomical sites, their func-
tions in maintaining skin health, and their interactions with 
the host. In addition, because next-generation smart textiles 
are inseparable from flexible electronics and microbes, this 
review reports the latest advancements in flexible devices 
related to health management, emphasizing the potential of 
flexible sensors and devices for real-time health monitoring 
and personalized medical interventions, as well as the criti-
cal role of microorganisms in flexible electronic systems. 
With respect to the design and fabrication of smart textiles, 
this review provides an overview of various current materi-
als, structures, and fabrication techniques. Furthermore, the 
current smart textiles applied to skin health management 
are reviewed. Considering the intricate interplay among 
microorganisms, flexible electronics, textiles, and their col-
lective influence on skin health, their synergistic integration 
is poised to drive the advancement of adaptive, sustainable, 
and multifunctional smart textiles (Fig. 1c). Despite signifi-
cant advances in smart textiles, limited attention has been 
given to their dynamic interactions with the skin microbiome 
and their potential for real-time physiological monitoring 
and targeted therapeutic or regulatory interventions. In this 
review, some technologies are also highlighted that have the 
capacity to propel the development of next-generation smart 
textiles, while current technological limitations are critically 
examined, and future research directions are outlined.

2 � Human Skin Microbiomes and Their 
Working Mechanisms

2.1 � Overview of Human Skin Microbiomes

As the largest organ of the human body, the skin possesses a 
highly complex physiological structure and a unique micro-
biome. The skin surface area of an adult covers approxi-
mately 1.8–2 m2 [50, 51], and an estimated 103–106 CFU/
cm2 of microorganisms are distributed on the skin [52, 53]. 
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Fig. 1   Brief history of textiles and the development of smart tex-
tiles with flexible electronics and microbes. a Key points for the 
development of textiles. Each junction (red arrow) in the image is a 
revolutionary development; reproduced with permission from Ref. 
[34], Copyright © 2022 Elsevier B.V. Reproduced under the CC 
BY 4.0 license from Ref. [35], Copyright © 2024, The Author(s), 
Wiley–VCH. Reproduced under the CC BY 4.0 license from Ref. 
[36], Copyright © 2023, The Author(s), Springer Nature. Repro-
duced under the CC BY 4.0 license from ref [37], Copyright © 2019, 
The Author(s), Springer Nature. Reproduced under the CC BY 4.0 
license from Ref. [38], Copyright © 2020, by the authors, MDPI. 
Reproduced with permission from Ref. [39], Copyright © 2004 
Elsevier B.V. Reproduced with permission from Ref. [40], Copy-
right © 2023 The Authors, some rights reserved; exclusive licensee 
American Association for the Advancement of Science. Reproduced 
with permission from Ref. [41], Copyright © 2016, Springer Nature. 
Reproduced with permission from Ref. [42], Copyright © 2016 The 
Authors, some rights reserved; exclusive licensee American Associa-
tion for the Advancement of Science. Reproduced with permission 
from Ref. [43], Copyright © 2017 The Authors, some rights reserved; 

exclusive licensee American Association for the Advancement of Sci-
ence. Reproduced with permission from Ref. [44], Copyright © 2019, 
The Author(s) Springer Nature. Reproduced with permission from 
Ref. [45], Copyright © 2019 Wiley–VCH. Reproduced with per-
mission from Ref. [46], Copyright © 2020 Elsevier B.V. Reprinted 
with permission from Ref. [47], Copyright © 2021, The Author(s) 
Springer Nature. Reproduced under the CC BY 4.0 license from Ref. 
[48], Copyright © 2023 Owner/Author, Association for Computing 
Machinery. Reproduced with permission from Ref. [49], Copyright © 
2024 The Authors, some rights reserved; exclusive licensee American 
Association for the Advancement of Science. b Publication trends of 
smart textiles. (Data from Web of Science with the keyword “smart 
textiles” in March 2025). c Ternary interactions among textiles, flex-
ible electronics, and microbes (textiles can serve as carriers for both 
flexible electronics and microbes. Flexible electronics enable vari-
ous functions into textiles. Moreover, microbes that are encapsulated 
within the textile or present on the surface of skin can interact with 
both the fabric and the embedded electronics as bioactive contents)
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The composition of these microbial communities varies sig-
nificantly across different skin regions because of distinct 
microenvironmental conditions (Fig. 2a), such as dryness, 

moisture, or lipid richness [54]. For instance, sebaceous 
areas (e.g., the face) are predominantly colonized by lipo-
philic bacterial genera such as Propionibacterium spp., 

Fig. 2   Skin microbiome distribution and relationships between com-
mensals. a Distribution of microorganisms on sebaceous, moist, and 
dry skin surfaces with examples and allocation in the epidermis and 
dermis. b Positive and negative relationships of commensals. Mutual-
ism: Two species benefit each other in terms of survival. Protocoop-
eration: Two species benefit each other, but do not essentially depend 

on each other. Commensalism: one species benefits another species 
without influence. Predation: One species preys on another species. 
Parasitism: one species benefits another species with costs. Competi-
tion: two species compete for survival. Amensalism: one species is 
the nemesis of another species
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whereas moist regions (e.g., the axillary vault) favor the 
proliferation of Staphylococcus spp. and Corynebacterium 
spp. [55, 56]. The cutaneous microecosystem is primarily 
composed of bacteria, fungi, and viruses [57]. To better use 
microbes and design living interfaces, understanding the 
relationships among different microbes and between hosts 
and microbes is very important. These microbial communi-
ties establish complex symbiotic relationships with the host 
and other species (Fig. 2b and Table 1). Microbes are essen-
tial elements for maintaining the natural barrier function of 
the skin, modulating host immune homeostasis, participating 
in metabolic processes, and sustaining microbial equilibrium 
[58, 59]. When the skin microbiome becomes imbalanced, 
it may contribute to various dermatological disorders, such 
as acne, AD, and psoriasis [60, 61]. Furthermore, the com-
position and stability of the skin microbiome are influenced 
by a multitude of intrinsic and extrinsic factors, including 
climatic conditions, environmental pollutants, ultraviolet 
radiation, lifestyle habits, antibiotic exposure, and the over-
all health of the immune system [62, 63].

2.2 � Mechanisms of Skin Microbial Functions

The symbiotic relationship between the skin microbiota 
and the human body reflects a complex and dynamic 
equilibrium. In a healthy individual, these micro-organ-
isms are primarily categorized into three types: com-
mensal microbes, mutualistic microbes, and pathogenic 
microbes. Under normal circumstances, these microbial 

communities work collectively to maintain skin health. 
However, when the delicate balance is disrupted, patho-
genic microbes and some mutualistic microbes may domi-
nate and lead to various skin disorders. Consequently, 
understanding the functions and mechanisms of the skin 
microbiota is essential for preserving microbial homeo-
stasis. Skin microorganisms contribute primarily to bar-
rier function, immune regulation, metabolic processes, 
and disease prevention. This section focuses on these four 
key functions and their underlying mechanisms.

2.2.1 � Barrier Protection

Three mechanisms of microbes-assisted barrier protection 
of skin have been shown in Fig. 3a. The pH of the skin 
surface is typically 4.5–5.5 [83]. This acidic environment 
contributes to the establishment of an antimicrobial bar-
rier. Certain mutualistic microorganisms, such as Staphy-
lococcus epidermidis and Cutibacterium acnes, contribute 
to lowering the pH of skin. The mechanism of this process 
involves the activity of lipases within these microbes, which 
hydrolyze phospholipids into free fatty acids (FFAs) and 
contribute to acidifying the skin surface [84, 85]. Some 
studies have shown that FFAs also possess certain antimi-
crobial properties [86]. In addition, as host and symbiotic 
microbes coevolve, beneficial microbes will colonize the 
skin and possess a certain ability to directly resist foreign 
pathogens [87]. Alternatively commensal microbes and 

Table 1   Microbes distributed in the human skin and influence factors

Main type Distribution Factors Refs.

 Bacteria Host: Sex, age, distribution, diseases, immune system, living place, 
life habits, medicines, etc

Environment: Occupation, climate, ultraviolet light, location, 
contamination

 Propionibacterium spp. Dry, moist, and sebaceous sites [64, 65]
 Corynebacterium spp. Dry, moist, and sebaceous sites [14, 66]
 Staphylococcus spp. Dry, moist, and sebaceous sites [67, 68]
 Streptococcus spp. Dry and sebaceous sites [69]
 Micrococcus spp. Dry and moist sites [70]
 Veillonella spp. Dry sites [71]

Fungi
 Trichophyton mentagrophytes Moist sites [72, 73]
 Epidermophyton floccosum Dry sites [74]
 Malassezia spp. Dry, moist, and sebaceous sites [75, 76]
 Aspergillus spp. Dry and moist sites [77]
 Candida spp. Dry sites [78]

Virus
 Molluscum contagiosum virus Dry, moist, and sebaceous sites [79]
 Human papillomavirus Dry, moist, and sebaceous sites [80]
 Herpes simplex virus Dry, moist, and sebaceous sites [81]
 Actinomyces phage Dry and moist sites [82]
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mutualistic microbes can indirectly reduce the living space 
of pathogens by competitively growing to occupy nutrients 
and territory [88]. Furthermore, the intake of probiotics 

and other beneficial microbes by the host can contribute to 
maintaining skin stability and enhancing the barrier func-
tion [89].

Fig. 3   Skin microbial functions and related mechanisms. a Barrier 
protection of microbes against extraneous microbes and pathogens. ① 
Acidification; ② physical barrier; ③ intake of probiotics to balance the 
microbiome. b Immune regulation with the host. ① The host immune 
response to external pathogens; ② an example of the immune system 
against pathogens: Staphylococcus epidermidis and dendritic cells 
to control barrier function. c Metabolism of commensals with host 

proteins and lipids to create cytokines and complement for barrier 
enhancement. d Disease prevention by microbes. ① Partial microbes 
at the skin surface can directly or indirectly secrete antimicrobial 
peptides to prevent pathogens; ② microbes can release phenol-solu-
ble modulins to disrupt pathogen membranes; ③ regulatory T cells 
release anti-inflammatory mediators to inhibit pathogen invasion
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2.2.2 � Immune Regulation

In addition to providing a barrier, skin microbes are also 
involved in regulating the host immune system to maintain a 
stable symbiotic relationship (Fig. 3b). However, the interac-
tion mechanism between microbes and the immune system 
is a complex and multifaceted process involving multiple 
micro-organisms and immune cells. In general, commensal 
and mutualistic microbes regulate inflammatory responses 
and skin immune tolerance by interacting with dendritic 
cells, macrophages, and T cells [90, 91]. For example, the 
responses of the commensal microbe Staphylococcus epi-
dermidis and the pathogenic microbe Staphylococcus aureus 
trigger different T-cell activities. The response of Staphylo-
coccus epidermidis inhibits the occurrence of inflammation 
and promotes tolerance to future commensal colonization. 
In contrast, the response to Staphylococcus aureus promotes 
neutrophil responses to eliminate pathogens and enhance the 
resistance of the immune system [67, 92].

2.2.3 � Metabolic Intervention

The metabolic effects of commensal and mutualistic 
microbes are closely linked to the above two functions 
(Fig. 3c). These micro-organisms metabolize skin-derived 
compounds, produce bioactive molecules, and influence the 
chemical environment of the skin, collectively benefiting 
the host in multiple ways. For example, FFAs are metabolic 
byproducts of microbes and play a critical role in barrier 
function. In addition, SCFAs produced by microbes can 
regulate host cell metabolism, promoting the differentiation 
of skin cells and immune cells [90, 93]. Moreover, certain 
microbes in the skin contribute to the synthesis and metabo-
lism of vitamins and support skin health and homeostasis 
[94, 95]. An essential metabolic function of the skin micro-
biota is its ability to process xenobiotics and environmental 
toxins. The micro-organisms residing on the skin can break 
down and neutralize potentially harmful substances, such 
as pollutants that accumulate on the surface of the skin. By 
metabolizing these compounds, micro-organisms help shield 
skin cells from oxidative stress and inflammation, and sup-
port overall skin health [96].

2.2.4 � Disease Prevention

A healthy microbiome maintains a stable and mutually 
beneficial relationship with the host. This microbial system 
promotes skin homeostasis, inhibits the growth of patho-
genic microorganisms, and regulates immune responses 
to reduce the risk of infections and chronic inflammatory 
diseases (Fig. 3d). Studies have demonstrated that micro-
bial dysbiosis is closely associated with inflammatory skin 

conditions such as AD, psoriasis, and eczema. Moreover, 
some pathogenic microbes that coexist with the host can 
exacerbate skin inflammation when skin homeostasis is 
disrupted, and can even potentially lead to further compli-
cations [97, 98]. Some commensal microbes can directly 
synthesize AMPs or stimulate host cells to secrete such 
molecules to enhance the barrier [99]. For example, Staph-
ylococcus epidermidis induces the host to produce AMP 
β-defensins to directly kill pathogens [100]. Furthermore, 
Staphylococcus epidermidis can physically block patho-
genic microbes by forming biofilms and secreting phenol-
soluble modulins to disrupt the membrane structure of 
pathogens [101].

3 � Skin‑Based Flexible Electronics for Health 
Management

3.1 � Types of Skin‑Based Flexible Sensors 
and Devices

Skin-based flexible sensors are devices that directly or 
indirectly contact the skin and are capable of detecting 
environmental changes and converting them into elec-
trical signals. Their fundamental characteristics include 
being lightweight, thin, stretchable, extremely sensitive, 
and responsive [102]. These features grant flexible sen-
sors broad application prospects in various fields, such 
as human health monitoring, human–machine interac-
tion (HMI), and diagnostics. Microbes are an insepa-
rable part of the human body and are very important in 
biological processes and medical diagnostics. They can 
interact with various biomolecules, generate bioelectrical 
signals, and respond to environmental changes, making 
them ideal components for health monitoring sensors and 
therapeutic devices [103, 104]. By combining the proper-
ties of microorganisms and flexible sensors, researchers 
can develop flexible, multifunctional devices with high 
sensitivity, biocompatibility, and eco-friendliness for bio-
medical applications such as disease detection, metabolite 
analysis, and personalized medicine. The integration of 
flexible sensors and microorganisms not only extends the 
functional boundaries of medical diagnostics but also pro-
vides innovative solutions for sustainable development, 
personalized health management, and intelligent health 
management. In terms of applications, skin-based flexible 
sensors and devices can be categorized into three types: 
monitor, therapy, and energy-supplying devices. The 
principles, involved microbes, and specific applications 
of these three types of devices are summarized in Table 2. 
Detailed descriptions of the three types of flexible sensors 
and their related devices are provided in this chapter.
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3.2 � Health Monitoring Flexible Sensors and Devices

As one of the core functions, monitoring represents a criti-
cal application direction for flexible sensors, further driv-
ing technology advancements in portable health care, envi-
ronmental protection, and intelligent detection. For human 
health monitoring (Fig. 4a), flexible sensors can detect 
microorganisms and their metabolites in bodily fluids (such 
as sweat, saliva, or urine) or exhaled gases [122–124], ena-
bling early disease diagnosis, infection monitoring, and 
personalized medicine. Depending on the mode of opera-
tion, these sensors can be classified into mechanical, elec-
trochemical, and optical sensors.

Electrochemical sensors typically leverage electrochemi-
cal reactions to detect microbial metabolites or specific bio-
logical markers. Enzyme- or antibody-based electrochemical 
sensors further expand the ability to detect pathogenic toxins 
and microbial metabolites, such as enterotoxins secreted by 
Staphylococcus aureus or endotoxins released by Gram-
negative bacteria [125]. Beyond traditional biosensing 
approaches, the latest advancements in enzyme-based elec-
trochemical sensors have significantly enhanced detection 
sensitivity and stability by increasing the catalytic efficiency 
of natural enzymes [126]. For instance, enzyme-based elec-
trochemical biosensors have demonstrated exceptional 
performance in the rapid and highly sensitive detection of 
hydrogen peroxide and hydrogen sulfide released by cells, 
paving the way for next-generation diagnostic and monitor-
ing technologies [127].

In recent years, researchers have integrated electrochemi-
cal sensor arrays into flexible substrates that mimic the prop-
erties of human skin [5, 105, 128]. Flexible e-skin enables 
the quantitative detection of glucose and lactate by analyzing 
redox signals in sweat secretions and other signals (Fig. 4b). 
To provide stable sensing and recording in different environ-
ments, such as sweat skin, researchers have demonstrated 
innovative strategies, such as seamlessly integrating the sys-
tem and improving hydrophobic encapsulation to enhance 
performance and durability under sweat-rich conditions. 
These studies provide valuable insights into device robust-
ness, signal integrity, and energy autonomy [129–131]. In 
addition, traditional mechanical sensors can be integrated 
into e-skin for monitoring cardiovascular diseases and long-
term heart rate records [132]. Due to the strategic selection 
of flexible materials and biomimetic design, these sensors 
can adhere to the skin for extended periods, allowing nonin-
vasive, continuous monitoring.

In terms of human health, environmental and intake mon-
itoring also influence disease prevention and overall well-
being. By tracking environmental effects, detecting hazard-
ous chemical intake, food quality, and water quality, and 
identifying microbial contamination on surfaces, advanced 
sensing technologies help mitigate health risks associated 

with pollution and toxic exposure [133]. Furthermore, real-
time detection of airborne pathogens can prevent the spread 
of respiratory diseases, while monitoring food and water 
safety reduces the risk of contamination-related illnesses. 
Water quality monitoring and virus detection are shown 
as examples in Fig. 4c. Integrating monitoring ability into 
dermal-interfaced flexible systems not only enhances pub-
lic health but also facilitates early diagnosis and prevents 
potential health hazards. Owing to the high sensitivity, rapid 
response, and label-free detection capabilities of optical 
sensors, they are broadly applied in environmental pollu-
tion monitoring and food safety testing. Currently, optical 
sensors enable detection with various techniques, including 
fluorescence labeling, surface plasmon resonance, fiber-optic 
biosensing, and colorimetric analysis [134]. In addition, flex-
ible sensors allow real-time monitoring of volatile organic 
compounds and airborne pathogenic microorganisms [135].

Beyond monitoring physical health parameters, assess-
ing stress levels is equally important for maintaining men-
tal health and well-being. However, stress arises from the 
complex interplay of the nervous, endocrine, and immune 
systems, making its detection particularly challenging. In a 
recent study, researchers developed a flexible sensor specifi-
cally designed for stress monitoring (Fig. 4d). By tracking 
key physiological signals, metabolites, and electrolytes, and 
employing machine learning algorithms for data classifica-
tion and interpretation, the system achieved an impressive 
accuracy rate of 98% [107].

3.3 � Invasive, Noninvasive, and Implantable Flexible 
Devices

Invasive flexible devices refer primarily to innovative medi-
cal instruments that integrate microneedle technology with 
flexible sensors. Microneedle technology is a minimally 
invasive drug delivery and biosensing technique. It consists 
of an array of microscale needle-like structures and has gar-
nered significant attention in recent years [136]. Micronee-
dles can effortlessly penetrate the outer layer of the skin 
without reaching deeper nerves or blood vessels, hence sig-
nificantly reducing pain and the risk of tissue damage [137]. 
In the application of invasive flexible devices, microneedles 
have two primary functions: The first function is serving as a 
physical interface for sensors, enabling direct access to inter-
stitial fluid to increase detection accuracy. Another function 
is to serve as a drug carrier, facilitating targeted delivery 
and controlled release. By integrating the minimally invasive 
property of microneedles with the high sensitivity of flexible 
sensors, these devices allow efficient physiological signal 
monitoring and therapeutic interventions with minimal tis-
sue disruption. Because microneedles can penetrate the skin 
barrier, enabling direct delivery of drugs or bioactive factors 
to damaged tissues, microneedle technology has been widely 
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Fig. 4   Representative health monitoring sensors and devices. a 
Bionic e-skin structure distribution and in  situ health monitoring 
before/after sports; reproduced with permission from Ref. [105], 
Copyright © 2024 Wiley–VCH. b Biosensor patch for sweat collec-
tion, sensing, and analysis; reproduced with permission from Ref. 
[108], Copyright © 2020 The Authors, some rights reserved; exclu-
sive licensee American Association for the Advancement of Science. 

c Virus monitoring devices for pathogen contamination detection; 
reproduced under the CC BY 4.0 license from Ref. [111], Copyright 
© 2024 The Authors, some rights reserved; exclusive licensee Ameri-
can Association for the Advancement of Science. d Flexible e-skin 
patch for monitoring human stress responses; reproduced with per-
mission from Ref. [107], Copyright © 2024, Springer Nature
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applied in wound healing, bone and cartilage regeneration, 
and fibrosis prevention [138, 139]. Furthermore, microor-
ganisms can serve as biological engines embedded within 
microneedles to generate gas, hence propelling drug mol-
ecules to penetrate up to 1000 μm beneath the skin for deep 
tissue therapeutic delivery (Fig. 5a) [115]. A recent study 
introduced a digitally controlled automated transdermal drug 
delivery system. This system employs an electrotriggered 
mechanism to achieve high-precision (< 1 mm2) and rapid-
response (< 30 s) melatonin release. This system enables 
on-demand drug delivery and allows for the personalized 
customization of drug formulations tailored to different dis-
eases [140]. The wireless-controlled drug delivery system 
integrates remote modulation capabilities, enabling physi-
cians to dynamically adjust drug release dosage and timing 
in response to disease progression. Simultaneously, flexible 
sensors facilitate real-time monitoring of tissue regenera-
tion by measuring critical physiological parameters such 
as local pH levels, temperature, and electrical conductiv-
ity [141–143]. By leveraging feedback-driven optimization, 
treatment strategies can be refined to enhance therapeutic 
efficacy. The convergence of remote monitoring and per-
sonalized regulation allows patients to receive precise and 
necessary treatment without the need for frequent hospital 
visits, significantly improving both convenience and clinical 
outcomes.

Noninvasive flexible devices focus mostly on health 
monitoring. In addition to health monitoring capabilities, 
noninvasive flexible devices can also be used in therapeutic 
applications. In recent years, a noninvasive device combin-
ing monitoring and therapeutic functions has been devel-
oped (Fig. 5b). In addition, noninvasive sensor can be used 
to detect human motion, or pathogens, or to capture subtle 
electrophysiological signals for medical diagnosis of dis-
eases and dysfunctions [145–147]. Some kinds of sensors 
can also provide UV protection, extending their operational 
lifespan. In one type of sensor, MXene and tannic acid are 
incorporated, and the antibacterial properties of the sen-
sor are excellent. It can effectively cover irregularly shaped 
wounds and provide efficient hemostatic functionality [148]. 
Noninvasive therapeutic technologies significantly increase 
patient comfort while minimizing the side effects associated 
with conventional treatment methods.

Implantable devices can be directly placed within the 
body to treat diseases or regulate bioelectrical signals, such 
as cardiac implants and neural interfaces. With advance-
ments in microelectronics and nanofabrication technologies, 
implantable sensors are evolving toward higher sensitivity, 
lower power consumption, and multifunctional integration. 
The introduction of flexible electronics allows these sensors 
and devices to better conform to tissue surfaces, minimiz-
ing mechanical irritation and enhancing biocompatibility. 
Furthermore, by integrating wireless power transfer and data 

communication technologies, implantable devices enable 
long-term data acquisition and remote monitoring, offering 
new possibilities for personalized medicine and intelligent 
health management. For instance, battery-free implantable 
sensors have been developed for real-time physiological sig-
nal monitoring (Fig. 5c) [116, 149]. In addition to sensing, 
implantable sensors can facilitate neural function restoration 
through electrical stimulation while precisely modulating the 
intensity and location of stimulation [116, 150]. A recent 
study proposed a temperature-sensitive implantable sensor 
array capable of dynamically locating inflamed regions and 
triggering drug release [151]. These devices and sensors typ-
ically require biocompatibility and long-term stability. Nota-
bly, biodegradable implantable devices can autonomously 
degrade after tissue healing, eliminating the need for sur-
gical removal and significantly improving patient comfort.

3.4 � Microbial Fuel Cells, Self‑Powered Flexible 
Devices, and Enzymatic Fuel Cells

Microbial fuel cells (MFCs) are bioelectrochemical systems 
that directly convert chemical energy into electrical energy 
through microbial catalytic reactions. Based on their core 
catalytic mechanisms, MFCs can be broadly classified into 
two main types. The first type utilizes electroactive bacte-
ria or photosynthetic organisms such as cyanobacteria and 
microalgae to facilitate biological catalytic reactions, hence 
driving electron transfer and generating electricity. Another 
type of MFC does not rely on intact microbial cells; rather, 
they use extracted biocatalysts such as enzymes, enzymatic 
cascades, or mitochondria to increase electron transfer and 
improve energy conversion efficiency. Integrating biofuel 
cells with flexible electronics enables the development of 
both energy harvesters [152] and self-powered wearable 
devices [153], ensuring an efficient and sustainable energy 
supply. These MFCs can generate electricity in situ with 
high efficiency by utilizing human body fluids and metabolic 
byproducts as fuel [154]. In addition, self-powered devices 
can simultaneously monitor biomarkers present in epidermal 
sweat or exudates from wounds, offering dual functionality 
of energy generation and real-time health monitoring.

Bacteria- and algae-catalyzed fuel cells typically employ 
a double-chamber structure (Fig. 6a) to optimize electron 
transfer and oxygen reduction reactions through Eqs. (1) 
and (2), hence enhancing the overall energy conversion 
efficiency.

Equation (1) is the anode reaction and Eq. (2) is the cath-
ode reaction.

(1)C6H12O6 + 6H2O → 6CO2 + 24H
+
+ 24e_

(2)CO2 + H2O + Sunlight → O2 + Organicmatter
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Fig. 5   Representative invasive, noninvasive, and implantable devices. 
a H2 generating living microneedles for deep tissue repair; repro-
duced with permission from Ref. [115], Copyright © 2024, The 
Author(s), Springer Nature. b Noninvasive device for wound monitor-
ing and treatment; reproduced under the CC BY 4.0 license from Ref. 

[144], Copyright © 2023 The Authors, some rights reserved; exclu-
sive licensee American Association for the Advancement of Science. 
c Implantable device for spinal channel and muscle channel stimula-
tion; reproduced under the CC BY 4.0 license from Ref. [116], Copy-
right © 2023, The Author(s), Springer Nature
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This configuration consists of an anode chamber and a 
cathode chamber, separated by a proton exchange mem-
brane or other ion-conducting membranes. This separation 
ensures efficient electron and ion transport within the sys-
tem, facilitating stable and effective energy generation [155]. 
Bacteria-catalyzed fuel cells primarily utilize electroactive 
bacteria such as Pseudomonas, Geobacter, and Shewanella 
[156]. These microorganisms facilitate extracellular electron 
transfer, enabling the transport of electrons generated dur-
ing metabolic processes to the anode, thus driving current 
generation (Fig. 6b). These kinds of bacteria such as Pseu-
domonas aeruginosa PAO1 can be integrated into textiles 
to generate power. This textile-based MFC can generate a 
maximum power and density of 1.0 µW/cm2 and 6.3 µA/cm2, 
respectively (Fig. 6c). In addition, some MFCs are employed 
in wastewater treatment. Bacteria not only degrade organic 
pollutants but also generate electricity, achieving the dual 
functions of pollutant removal and energy recovery [157]. 
In contrast, algae-catalyzed fuel cells rely on photosynthetic 
organisms to increase electron transfer by releasing oxygen 
during photosynthesis and increasing the current output 
of fuel cells. For example, microalgae can absorb carbon 
dioxide and produce oxygen, simultaneously serving as 
electron donors to improve the overall efficiency of the fuel 
cell system. The self-powered mechanism is the same as 
that of the first kind of MFC and power can be supplied for 
flexible sensors and devices. In a recent study, Geobacter 
sulfurreducens biofilms were used as core elements to sup-
ply power. The biofilm contacts the water from the air and 
generates a humidity gradient that facilitates the directional 
transport of water molecules and ions to establish an internal 
electrical field (negative surface potential of approximately 
41.96 mV). This microbial self-powered sensor can maintain 
stability during 30 000 s tests. (Fig. 6d and e).

Enzymatic fuel cells (EFCs) utilize specific redox 
enzymes such as glucose oxidase (GOx), bilirubin oxidase 
(BOD), and laccase to catalyze the oxidation of organic 
fuels (including glucose, ethanol, and lactate) to generate 
electrons (Fig. 6f and g). To increase efficiency, multiple 
enzymes can be integrated into a cascade reaction network. 
For instance, glucose can be oxidized to gluconic acid via 
GOx, and in conjunction with nicotinamide adenine dinu-
cleotide (NADH)-dependent enzymes, the electron transfer 
pathway can be further optimized [160, 161]. Moreover, the 
mitochondrial electron transport chain inherently exhibits 
highly efficient energy conversion capabilities [162]. The 
respiratory chain within mitochondria sequentially trans-
fers electrons derived from NADH to molecular oxygen, 
facilitating ATP synthesis while simultaneously releasing 
electrons to the electrode [163]. EFCs can directly harness 
glucose from biological fluids as self-powered devices. They 
are particularly suitable for powering implantable and wear-
able bioelectronic devices, such as cardiac pacemakers and 

continuous glucose monitoring systems [164, 165]. Owing 
to their ability to function at the microscale, enzymatic fuel 
cells also hold significant potential for driving microrobots, 
nanoelectronic devices, and medical devices [166–168].

3.5 � Others

In addition to the above applications, advancements in skin-
based flexible sensors and devices for olfactory processing 
and filtration have enabled their use in odor detection, deo-
dorization, and the filtration of viruses and bacteria. When 
dermal-interfaced flexible systems are worn for extended 
periods, they often develop an unpleasant odor. This odor 
primarily originates from the accumulation of sweat, sebum, 
and other organic compounds secreted by the skin, which are 
subsequently decomposed by skin-surface microorganisms 
[169]. During this process, microorganisms metabolize these 
organic substances into volatile and irritating molecules such 
as ammonia, sulfur compounds, and organic acids, exacer-
bating body odors, particularly in hot and humid environ-
ments [170]. The latest miniaturized electronic noses can 
rapidly identify and classify odor sources [171], which is 
important in odor analysis and microbial community modu-
lation. Moreover, newly developed olfactory feedback sys-
tems have the potential to release customizable scents [172], 
offering a novel approach to deodorization. In addition, 
intelligent filtration systems can effectively filter out viruses 
and bacteria [118], mitigating health risks while preventing 
excessive odor formation.

4 � Smart Textile Design, Fabrication, 
and Health Management Applications

4.1 � Materials Used for Smart Textiles

Material selection is crucial in smart textile development, as 
it underpins the integration of functions across various appli-
cations. The common types of materials for textiles, sub-
strates, and flexible devices are summarized in Fig. 7. Mate-
rials for smart textiles are primarily categorized into natural 
and synthetic polymers. Natural polymers are derived from 
natural sources, including wool, silk, chitosan, collagen, and 
cellulose. Wool is a naturally occurring type of fiber, that 
features a unique structure composed of microscopic scales 
that effectively trap air and form an intrinsic insulation layer. 
This structure endows wool with superior thermal retention 
properties [173]. In addition, its inherent elasticity allows 
it to recover its original shape after deformation, enhanc-
ing the durability and wrinkle resistance of the fabric [174]. 
Excellent moisture absorption of wool further contributes to 
thermoregulation and perspiration management, making it 
highly suitable for outdoor apparel and garments requiring 
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Fig. 6   Representative MFC, self-powered flexible devices, and EFC. 
a Bacteria and microalgae for a double-chamber MFC; reproduced 
with permission from Ref. [158], Copyright © 2020 Elsevier B.V. b 
Extracellular electron transfer mechanism of the typical EAB stains 
Shewanella oneidensis and Geobacter sulfurreducens; reproduced 
with permission from Ref. [159], Copyright © 2021, The Author(s), 
Springer Nature. c Textile-based flexible microbial fuel cell; repro-

duced with permission from Ref. [119], Copyright © 2017 Elsevier 
B.V. d Composition of self-powered flexible electronics. e Self-pow-
ered MFCs work as a mechanism of bacteria with dynamic water; 
reprinted with permission from Ref. [120], Copyright © 2025 Else-
vier B.V. f Demonstration of enzymatic biofuel cells. g Catalyst load-
ing and reactions at the anode and cathode; reprinted with permission 
from Ref. [121], Copyright © 2023 Wiley–VCH
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advanced thermal insulation [175]. Silk is renowned for its 
distinctive luster, smooth texture, and exceptional mechani-
cal strength. It consists of elongated fibers with a tightly 
packed molecular structure. This structural arrangement 
imparts outstanding tensile strength and flexibility [176]. 
Moreover, the natural protein composition of silk provides 
excellent moisture absorption and breathability, facilitating 
effective body temperature regulation [177]. Consequently, 
silk is typically employed in medical textiles that demand 
high biocompatibility and skin-friendliness. Chitosan is a 
natural polysaccharide extracted from the exoskeletons of 
crustaceans and exhibits remarkable bioactivity. It possesses 
excellent biodegradability and biocompatibility while inher-
ently exhibiting antimicrobial properties, effectively inhibit-
ing bacterial and fungal proliferation [178, 179]. These char-
acteristics make chitosan a valuable additive for functional 
coatings or composite materials in smart textiles, particu-
larly for applications in skin health management, sportswear, 
and antimicrobial odor-resistant textiles. As a fundamental 
protein in human skin and connective tissues, collagen pos-
sesses a three-dimensional (3D) structure closely resembling 
that of endogenous tissues, making it highly promising 
for functional textiles and biomedical applications [180]. 
Incorporating collagen fibers into textiles enhances skin-
friendliness and softness while promoting cellular repair and 
regeneration [181]. The strategic incorporation of natural 
polymers enables smart textiles to exhibit multifunctional 
properties that are adaptable to diverse application domains, 
such as health care, biomedicine, sports, and outdoor perfor-
mance. Cellulose is among the most abundant natural poly-
mers and is obtained from natural sources such as cotton, 
flax, and wood. Certain bacteria are capable of synthesizing 
bacterial cellulose, such as Gluconacetobacter xylinus [182]. 
Compared with plant-derived cellulose, bacterial cellulose 
is inherently free of lignin, hemicellulose, and other impuri-
ties. Therefore, the need for extensive purification processes 
is eliminated [183]. Cellulose exhibits excellent mechanical 
properties, moisture absorption, breathability, and biodegra-
dability, making it highly promising for advanced applica-
tions in biomedical textiles, wearable sensors, and functional 
fabrics.

The synthetic polymers commonly used in textiles include 
PET, nylon, polyurethane (PU), polylactic acid (PLA), and 
polycaprolactone (PCL). PET is not only cost-effective 
for large-scale production but can also be engineered with 
advanced functionalities such as water repellency, strain 
resistance, physical shielding effects, and UV protection by 
specialized treatments [184, 185]. Nylon fibers are known 
for their high strength, excellent wear resistance, and supe-
rior elasticity. Their tightly packed molecular chain structure 
ensures stability under significant tensile and flexural stress 
[186]. These outstanding mechanical properties and durabil-
ity make nylon ideal for use in sportswear, outdoor gear, and 

other smart textiles that require high strength and long-term 
resilience. PU features alternating hard and soft segments 
within its molecular structure, imparting excellent stretch-
ability and fatigue resistance [187]. Due to its remarkable 
softness and elasticity, PU is generally used in elastic fab-
rics, compression garments, and athletic wear. Moreover, PU 
fibers serve as an ideal substrate for integrating sensors and 
conductive elements in smart textiles, enhancing flexibility 
and wearability and providing greater freedom of movement 
for users [188]. PLA is a classical green and sustainable 
material. It offers an excellent balance of mechanical perfor-
mance and biodegradability, and can be chemically modified 
to introduce functionalities such as antibacterial properties, 
electrical conductivity, and stimulation responsiveness [189, 
190]. PCL is characterized by a low melting point, high flex-
ibility, and superior biodegradability and is also a U.S. Food 
and Drug Administration-approved biomaterial [191]. It can 
be blended with other polymers to fine-tune the softness and 
mechanical properties of the fabric [192].

Furthermore, flexible substrates and electrodes are essen-
tial components in imparting intelligent functionalities to 
smart textiles. To achieve superior electrical conductiv-
ity, flexibility, durability, and multifunctionality, various 
functional materials including metals, conductive poly-
mers, carbon-based materials, and electroactive materials 
are typically used. Metallic materials (e.g., silver, copper, 
gold, and titanium) and metal–organic frameworks are typi-
cally utilized in flexible electronic sensors because of their 
exceptional conductivity and chemical stability [193, 194]. 
Silver nanowires and gold nanoparticles serve as primary 

Fig. 7   Classification of materials used for smart textiles, soft sub-
strates, flexible sensors, and devices
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components for flexible electrodes owing to their outstand-
ing electrical performance [195, 196]. Conductive polymers 
such as polyaniline, polypyrrole, MXene, and PEDOT:PSS 
offer a unique combination of flexibility, stretchability, and 
tunable electrical conductivity, making them ideal for appli-
cations in flexible pressure and humidity sensors [197–199]. 
Carbon-based materials including graphene, carbon nano-
tubes (CNTs), and carbon black are highly valued for their 
ultrahigh conductivity, light weight, high-strength proper-
ties, and thermal regulation capabilities [200]. These attrib-
utes make them well-suited for applications in electrically 
heated garments and intelligent protective textiles. Electro-
active materials endow smart textiles with self-powering, 
color-changing, and responsive actuation capabilities. For 
instance, piezoelectric materials (e.g., PVDF and barium 
titanate) facilitate motion monitoring and self-powered 
sensing textiles [201]. Electrochromic materials (e.g., liquid 
crystals) enable the development of color-changing garments 
[202]. Moreover, shape-memory materials are employed 
in environment-responsive clothing and adaptive dermal-
interfaced flexible systems [203]. Other materials with out-
standing electrical properties, such as black phosphorus, also 
meet the needs of flexible electronics [204, 205].

4.2 � Structures and Design of Smart Textiles

The overall performance and specific functionalities of smart 
textiles are determined by not only material selection, but 
also their structural design. Textile structures significantly 
impact mechanical properties, breathability, elasticity, and 
comfort while determining their applicability in smart appli-
cations, such as sensing, conductivity, responsiveness, and 
durability [206, 207]. Consequently, a comprehensive under-
standing for the structural properties of textiles is crucial 
to optimizing their performance in targeted applications. 
Fundamentally, textile structures are composed of fibers 
or yarns, which are organized and processed using vari-
ous techniques to form different types of fabrics. Common 
textile structures include weaving, knitting, braiding, non-
woven, and 3D textile structures (Fig. 8), each possessing 
unique properties and application potential.

Woven fabrics are formed by interlacing warp and weft 
yarns in a systematic pattern, resulting in high stability, 
abrasion resistance, and shape retention. Owing to their 
tightly woven structure, they typically exhibit superior 
mechanical strength and allow adjustments in breathabil-
ity and softness through weaving techniques. Woven fab-
rics are frequently utilized in smart textile applications 
when high structural stability is needed, such as in smart 
protective clothing and medical textiles [211]. Compared 
with woven fabrics, knitted fabrics are characterized by 
interloped yarn structures that offer greater elasticity, 
softness, and breathability [212]. These properties make 

knitted fabrics more suitable for body-conforming appli-
cations, such as smart sportswear, intelligent socks, and 
smart gloves. In addition, knitting structures allow stretch-
able conductive pathways for e-textiles, ensuring adapt-
ability to body movements and enhancing the comfort and 
durability of smart devices [213]. Braiding structures are 
typically formed by interlacing multiple yarns in a criss-
cross pattern, resulting in high flexibility and high wear 
resistance. This structure is relatively uncommon and is 
primarily utilized for the fabrication of fiber-shaped super-
capacitors [214]. Nonwoven fabrics are produced through 
physical or chemical bonding of fibers without traditional 
weaving or knitting. They possess unique properties such 
as low weight, high absorbency, and high porosity [215]. 
These features make nonwoven fabrics applicable in smart 
filtration materials, intelligent medical dressings, and bio-
degradable textiles. 3D textile structures provide enhanced 
dimensionality, mechanical performance, cushioning abil-
ity, and functional integration. Therefore, 3D textiles are 
extensively applied in smart protective gear, aerospace 
composites, and wearable devices. For instance, 3D weav-
ing techniques enable the creation of multilayered, multi-
functional fabrics with integrated sensing capabilities and 
make smart textiles more effective at pressure detection, 
thermal regulation, and energy storage [215, 216]. Based 
on advanced 3D fabrication techniques, 4D textiles can be 
developed using transformable polymers that respond to 
external stimuli. These innovative textiles are capable of 
dynamically changing their shape when exposed to spe-
cific triggers, such as variations in temperature [208]. 4D 
textiles offer programmable and reversible shape transfor-
mations [217]. They can be used to create self-adaptive 
garments that adjust their fit, insulation, or ventilation in 
response to environmental changes. In the field of respon-
sive fashion, 4D textiles can enable clothing that reacts to 
temperature, humidity, or body movement, enhancing both 
comfort and functionality. In addition, owing to their light-
weight and flexible properties, they can serve as adaptive 
substrates for wearable electronic devices, enabling better 
integration of sensors or interactive components.

4.3 � Methods for Fabricating Smart Textiles

The fabrication of smart textiles relies primarily on six key 
technologies: electrospinning, 3D printing, thermal draw-
ing, surface coating, chemical vapor deposition (CVD), and 
embroidery. Each technique offers unique advantages in 
imparting specific functionalities to textiles.

Electrospinning employs a high-voltage electric field to 
elongate polymer solutions, resulting in the formation of 
continuous fibers with diameters ranging from the micro- to 
nanoscale (Fig. 9a). The underlying mechanism involves the 
generation of a Taylor cone at the tip of the spinneret under 
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the influence of an electrostatic field. Once the electrostatic 
force overcomes the surface tension of the polymer solution, 
a charged fluid jet is ejected and undergoes rapid stretch-
ing and solvent evaporation during its flight. The solidified 
ultrafine fibers are subsequently deposited onto a grounded 
collector, forming a nonwoven nanofibrous membrane with 
a high surface-area-to-volume ratio and tunable porosity 
[218]. Electrospinning is typically used for the fabrication 
of breathable textiles, filtration membranes, and medical fab-
rics [219–222]. However, precise control of fiber function-
ality remains challenging for electrospinning. In addition, 
the process is highly sensitive to environmental conditions 
(e.g., humidity and temperature), leading to inconsistencies 
in fiber quality and performance.

3D printing is a layer-by-layer additive manufacturing 
technique for creating 3D structures, enabling the production 
of complex smart textile configurations or their components 
(Fig. 9b). Based on computer-aided design models, digi-
tal designs are converted into layered instructions to guide 
the print head in depositing materials such as conductive 

polymers, biomaterials, and bio-based composites. This 
technology is primarily utilized for the fabrication of smart 
clothing, functional fabrics, bioactive textiles, and flexible 
substrates [224, 229, 230]. 3D printing offers precise fab-
rication of complex structures, but it is still limited by sev-
eral factors. Producing multilayer structures with different 
materials is costly and technically complex. The printing 
of flexible, conductive materials lacks sufficient resolution 
and speed to meet the softness and comfort requirements 
of textiles.

Thermal drawing is an effective and scalable technique 
for fabricating functional fibers by heating and elongating 
thermoplastic polymers or composite materials in their 
molten state (Fig. 9c). This process has been adopted in the 
development of fiber-based electronic systems, enabling the 
integration of electronic, optical, and sensory components 
within flexible fiber architectures [231, 232]. Collectively, 
these technologies constitute a versatile platform for the 
design and production of next-generation smart textiles with 
multifunctional capabilities, thus facilitating considerable 

Fig. 8   Classification of smart textiles from a 1D single fiber structure 
to a 4D response structure; reprinted (adapted) with permission from 
Ref. [208]. Copyright 2020 American Chemical Society. Reproduced 

with permission from Ref. [209], Copyright © 2019 Wiley–VCH. 
Reproduced with permission from Ref. [210], Copyright © 2022 
Wiley–VCH
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progress in wearable electronics, biomedical sensing, and 
energy-harvesting applications. This technique is primarily 
suited for fiber production rather than complex fabric pro-
cessing. It requires high processing temperatures, and the 
process is complex and costly.

Coating involves the application of a functional mate-
rial layer onto the surface of textiles, hence endowing them 
with novel smart properties such as conductivity, sensing 
capability, and waterproof breathability. Coating technol-
ogy is widely employed in the preparation of protective 
textiles and energy-harvesting fabrics. Common coating 
materials include functional polymers, various nanomateri-
als, and conductive inks. These materials adhere to textiles 
via physical (Fig. 9d) or chemical (Fig. 9e) adsorption and 
are stabilized through deposition, thermal curing, or UV 
cross-linking [233, 234]. Surface coating enhances textile 
functionality but shares similar limitations with general 
coating techniques. It may compromise the breathability 

and softness of fabrics, reducing wearer comfort. Achiev-
ing a uniform coating on complex textile geometries is dif-
ficult, and long-term durability is a concern, as coatings may 
wear off or lose functionality after the textile is washed or 
placed under mechanical stress. Chemical vapor deposition 
enables the precise deposition of functional materials, but 
this process is complex and expensive and requires special-
ized equipment. Environmental and biocompatibility issues 
associated with certain coating materials further limit their 
applicability.

Embroidery is a commonly used technology to integrate 
flexible electronics into textiles (Fig. 9f), offering a sim-
ple, fast, and versatile approach to creating smart textiles 
[228, 235]. Using conductive fibers, threads or functional 
yarns, electronic components such as sensors can be stitched 
directly onto fabric surfaces without compromising their 
comfort or flexibility [236, 237]. This technique allows for 
precise patterning and customization, making it ideal for 

Fig. 9   Smart textile fabrication methods and related samples. a Elec-
trospinning and fibrous membrane captured by SEM; reproduced 
(adapted) with permission from Ref. [223]. Copyright 2024 Ameri-
can Chemical Society. Reproduced with permission from Ref. [4], 
Copyright © 2023 Elsevier B.V. b 3D-printed and printed textiles; 
Copyright 2024 American Chemical Society. Reproduced with per-
mission from Ref. [224], Copyright © 2021 Elsevier B.V. c Thermal 
drawing and weaving into a textile; reproduced (adapted) with per-
mission from Ref. [223]. Reproduced (adapted) with permission from 
Ref. [225]. Copyright 2019 American Chemical Society. d Surface 

coating and waterproofing before/after treatment; reproduced with 
permission from Ref. [226], Copyright © 2021 Elsevier B.V. e CVD 
process and image of a pattern on a fabric; reproduced with permis-
sion from Ref. [227], Copyright © 2021 The Authors, some rights 
reserved; exclusive licensee American Association for the Advance-
ment of Science. f Embroidery process and image of embroidered 
textiles with devices; reproduced under the CC BY 4.0 license from 
Ref. [228], Copyright © 2022, The Author(s), Springer Nature
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wearable applications such as health monitoring, motion 
tracking, and communication. In addition, embroidery is 
compatible with existing textile manufacturing processes, 
which support mass production and enhance the durability 
and washability of integrated electronics in everyday gar-
ments. However, embroidered regions can increase localized 
stiffness, compromising patient comfort and esthetics. High 
stitch densities may cause fabric wear or breakage. Further-
more, the effectiveness of the application limits its ability to 
support large-scale production.

4.4 � Smart Textiles Applied for Skin Health 
Management

As a pivotal intersection of future technology and fashion, 
smart textiles are reshaping traditional perceptions of tex-
tiles. This field encompasses a wide range of innovations, 
including smart gloves, smart clothing, intelligent pressure-
sensitive socks, smart accessories, smart medical dressings, 
and wearable displays (Table 3) [47, 238–240]. Smart tex-
tiles are particularly well-suited for applications related to 
skin health, because of their prolonged and intimate con-
tact with the human body (Fig. 10a and b). As a signifi-
cant advancement in textile technology, smart garments are 
transforming conventional clothing beyond esthetic appeal, 
decoration, and basic protective functions, evolving toward 
higher intelligence and multifunctionality. The development 
of smart textiles is fundamentally dependent on the seam-
less integration of advanced technologies, including flexible 
electronics, high-performance materials, energy storage, and 
wireless communication systems. This constructive inter-
action enables promising applications in health monitor-
ing, infection prevention, personalized therapy, and wound 
healing acceleration (Fig. 10c). In addition, functional fib-
ers facilitate integration into textiles and electrical signal 
transmission and support various electronic functions. For 
example, self-charging fibers can supply power to sensors 
or devices in smart textiles (Fig. 10d). Intelligent sensors, 
such as temperature sensors, heart rate monitors, and accel-
erometers, enable real-time physiological data collection and 
analysis [241, 242]. Meanwhile, wireless communication 
technologies ensure seamless data transmission to external 
devices, such as smartphones or cloud-based systems [243]. 
Smart garments have demonstrated preliminary function-
alities in Table 3, including temperature regulation, health 
monitoring, wound detection, and interactive features.

Furthermore, to enhance the functionality of smart 
textiles, researchers are considering the introduction of 
microbes into fabrics. In recent years, researchers have 
started to explore how daily human activities influence 
microorganisms and are considering incorporating these 
microorganisms into dermal-interfaced flexible systems. 
Temperature and genetic technologies have been used 

to regulate microbes, enabling them to serve as display 
interfaces in textiles or to increase the yield of sustainable 
materials synthesized by microbes [48, 259]. They have 
shown immense potential in terms of fiber fabrication and 
HMI in health management. However, several technical 
challenges such as energy supply, durability, washability, 
comfort, and the development of intelligent therapeutic 
capabilities still need to be addressed. Overcoming these 
challenges will be crucial for advancing the next genera-
tion of smart textiles, paving the way for broader adoption 
and enhanced user experiences.

5 � Advanced Technologies 
for Next‑Generation Smart Textiles

5.1 � Microbes for Living Smart Textiles

Smart textiles integrate advanced flexible electronic tech-
nologies to create fabrics with enhanced functionalities. 
These innovations allow textiles to perform a variety of 
functions beyond traditional uses, such as self-cleaning, 
energy harvesting, and biosensing [260, 261]. By lever-
aging these capabilities, smart textiles can interact effec-
tively with the human body and its environment. Consid-
ering that skin microbes are particularly important for 
maintaining balanced microenvironment, skin health, and 
wound management, they are essential for the develop-
ment of next-generation smart textiles focused on skin 
health management. They hold the potential to optimize 
skin health management through microbial regulation, 
real-time monitoring, and personalized interventions, 
offering novel solutions for both medical and daily care 
applications. For example, upon identifying pathogenic 
bacterial proliferation, these smart textiles can actively 
trigger antimicrobial mechanisms, such as photothermal, 
photocatalytic, or magnetically responsive technologies 
[262, 263], to eliminate harmful microbes in a targeted 
manner. Future smart textiles can be designed to regulate 
skin pH, humidity, and temperature, creating an optimal 
environment for beneficial microbial growth and maintain-
ing microbiome homeostasis. For acute wounds, chronic 
wounds, and scar management, next-generation smart 
textiles can be engineered to incorporate antimicrobial 
agents, anti-inflammatory compounds, and proregenera-
tive factors. These enhancements aim to reduce infection 
risks; provide smart regulation, wound monitoring and 
intelligence therapy; and promote scarless regeneration. 
This section describes some emerging technologies capa-
ble of achieving these advanced functionalities, laying the 
foundation for the development of living fabrics.
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Table 3   Summarization of skin-related smart textiles with their components, performances, and applications

AP air permeability, WVTR water vapor transmission rate

Smart textile and 
substrate materials

Structure Fabrication method Breathability Washability Application Refs.

Gloves
 Multiwall CNT 

and chitin carbon 
with silk fibroin

Braiding Electrospinning AP > 90 mm/s > 50 washing cycles Noncontact voltage 
detection glove

[244]

 Cu, parylene, and 
polyacrylonitrile

Knitting Surface coating WVTR > 1.2 kg/m2/day > 20 washing cycles Grip posture 
detection

[245]

 Graphene and silk 
sericin

Knitting Cross-linking WVTR > 8.4 kg/m2/day > 2 h Recognizing 
complex activities

[246]

Chest strap
 Polypropylene Nonwoven Melt blowing AP ∼ 215 mm/s > 8 washing cycles Respiratory 

monitoring
[247]

Sensing fabrics
 Semiconducting 

glass and 
polyetherimide

Weaving Thermal drawing – – Temperature-
sensing fabrics

[225]

Clothes
 PVDF, PTFE, and 

PET
Weaving Electrospinning 

and electrospray
WVTR = 8.837 kg/m2/day > 12 h Self-powered 

monitoring
[248]

 Ag/MoS2/HfAlOx/
CNT

Weaving CVD – – Warm fabric [249]

 Chitosan aerogel 
fiber and TPU

Weaving and 
knitting

Freeze-spinning – > 1 washing cycle Thermal insulation [250]

 TPU, ZnS 
phosphors, nylon

Weaving 3D printing – > 100 washing 
cycles

Displays [47]

 Boron nitride 
and poly(vinyl 
alcohol)

Weaving and 
knitting

3D printing – – Thermal regulation [251]

Bedsheet
 PET and silicone 3D fabric Manual fabrication – > 8 washing cycles Sleep-monitoring [252]

Soft prosthesis
 Thermoplastic 

elastomers
Weaving Thermal drawing – > 6 washing cycles Rehabilitation 

medical 
applications

[253]

Smart bandage
 TPU and polyether 

sulfone
Nonwoven Electrospinning AP > 70% – Chronic wound 

management
[254]

Fiber battery
 TiO2 nanotube, 

carboxymethyl 
cellulose, and 
CNT sheet

Weaving Surface coating – > 50 washing cycles Self-charging [255]

Firefighting suits or energy-saving curtains
 PET, TPU, PEG 3D fabric Surface coating WVTR = 3.27 kg/m2/day > 100 washing 

cycles
Thermal 

management and 
fire protection

[256]

Solar control coatings
 Zinc oxide, cotton Weaving Surface coating AP > 6 mL/s/cm2 > 50 washing cycles UV shielding [257]

Conformal textile skin patches
 Galinstan (Ga68.5/

In21.5/Sn10)
3D fabric Embroidery WVTR = 7.2 ± 0.1848 kg/

m2/day
> 10 h Electronic textiles [228]
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5.2 � Microencapsulation Technology

Textiles have the largest contact area with skin and serve 
as highly convenient carriers for delivering therapeutic 
agents and bioactive substances for skin health manage-
ment and wound healing. However, directly introducing 
beneficial microorganisms onto textile surfaces presents 
significant challenges. Their activity can be compromised 
by washing, elevated temperatures, and UV radiation. These 

environmental factors may also lead to reduced efficacy or 
complete deactivation. Therefore, ensuring the protection, 
stability, and controlled release of these microorganisms 
are crucial issues that must be addressed to maximize their 
therapeutic potential.

Microencapsulation is an advanced technique that 
involves the encapsulation of active substances or engi-
neered microorganisms within micro/nanoscale carrier 
materials to increase stability (Fig. 11a), regulate release, 

Fig. 10   Representative current smart textiles for skin health manage-
ment. a Smart gloves for monitoring and recognition of hand activi-
ties; reproduced with permission from Ref. [246], Copyright © 2022 
Wiley–VCH. b Polar bear hair mimetic encapsulated aerogel fiber for 
thermal insulating clothing; reproduced with permission from Ref. 
[250], Copyright © 2023 The Authors, some rights reserved; exclu-
sive licensee American Association for the Advancement of Science. 

c Smart dressing for wound humidity and pressure monitoring and 
acceleration of the healing process; reproduced with permission from 
Ref. [258], Copyright © 2024, Springer Nature. d Self-charging tex-
tiles can supply energy for commercial electronic devices under light. 
Reproduced with permission from Ref. [255], Copyright © 2023 
Wiley–VCH
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improve biocompatibility, facilitate textile processing, and 
detection [264]. These encapsulating carriers, which are 
typically composed of polymers, lipids, or inorganic mate-
rials, shield bioactive agents from external environmen-
tal stressors while enabling precise and controlled release 
[265]. Current applications of microencapsulation include 
the encapsulation of dyes, proteins, fragrances, monomers, 
and catalysts [266]. This technique allows the immobiliza-
tion of active substances (e.g., microorganisms, enzymes, 
and bioactive compounds) within microcapsules, which can 
be incorporated into textiles through coating, impregna-
tion, spraying, or fiber blending [267]. Microencapsulation 
has significant potential for enhancing microbial stability, 
ensuring controlled release, prolonging functional durabil-
ity, and allowing engineered microorganisms to detect spe-
cific microenvironmental conditions. A recent study [268] 
demonstrated that engineered bacteria can be encapsulated 
within miniature biomedical devices and can detect bio-
markers of inflammation in the body as a biosensing tool 
(Fig. 11b). Furthermore, stimuli-responsive microencapsu-
lation enables the intelligent release of active agents under 
specific conditions. For instance, pH-, temperature-, or 
humidity-responsive encapsulating materials can ensure that 
microorganisms are release only under optimal conditions, 
maximizing their effectiveness and minimizing unnecessary 
loss at the same time. For functional clothing, antibacterial 
dressing, and wound dressings (Fig. 11c and d), encapsu-
lated commensal microbes can be released in response to 
triggers such as inflammation, perspiration, pathogen infec-
tion, or other external environmental stimuli. When encap-
sulated microbes are released under certain conditions, they 
can regulate the microbiome balance and improve the skin 
barrier; premature deactivation can be prevented during dry 
storage. In antimicrobial applications, microencapsulation 
can be used to increase the efficacy of beneficial microbes 
while reducing the potential toxicity of traditional antimi-
crobial agents to humans. Encapsulation of Staphylococcus 
epidermidis can enable competitive inhibition of pathogenic 
bacteria and reduce the risk of skin infections [269]. In addi-
tion, Bacillus subtilis can produce natural antimicrobial pep-
tides [270]. This kind of microbe can be encapsulated to 
provide long-lasting antimicrobial protection and avoid rapid 
activity depletion due to premature release. In the context 
of sustainable textile development, microencapsulation can 
drive innovations in eco-friendly and functional textiles. 
Encapsulating pollutant-degrading microorganisms can 
impart air-purification properties to textiles, while encapsu-
lated enzymes can enable self-cleaning capabilities, reduc-
ing the washing frequency and water consumption.

5.3 � Synthetic Biology

Synthetic biology allows researchers to precisely design 
and modify microorganisms. This technology offers revo-
lutionary support for next-generation smart textiles in skin 
health management. Current smart textiles face limitations 
including unreliable durability, poor battery life, and inabil-
ity to sustain bioactive substances for extended periods. The 
integration of synthetic biology enables microorganisms to 
actively sense, regulate, and improve the skin microenviron-
ment, while also providing a biologically driven sustainable 
energy source for smart textiles. Synthetic biology enables 
the programming of microorganisms, which can impart these 
engineered microbes with the ability to manage skin health, 
therapeutic ability, and other applications, such as skin sta-
tus monitoring and increased therapeutic factor release. 
(Fig. 12a). With the use of CRISPR and other gene editing 
technologies, microbes can be engineered to express custom-
ized functional genes under specific conditions [274, 275]. 
Engineered microorganisms can be modified to secrete bio-
active compounds, such as antimicrobial peptides, antioxi-
dants, probiotics, or anti-inflammatory proteins, to protect 
skin health. For example, genes encoding leptin, α-MSH, 
and BDNF have been cloned and inserted into expression 
vectors, lactobacillus-compatible promoters have been used 
to drive gene expression, and signal peptide sequences have 
been incorporated to ensure extracellular protein secretion. 
The weight of mice can be reduced using these engineered 
microbes. [276] (Fig. 12b). These bioactive agents inhibit 
pathogenic bacterial growth, reduce skin inflammation, and 
enhance skin barrier function. Moreover, engineered bac-
teria can be designed to produce beneficial compounds or 
improve the effectiveness of the production of biomaterials 
such as cellulose, hyaluronic acid, and collagen precursors 
[277–279], potentially providing long-lasting hydration or 
supporting tissue repair (Fig. 12c). In addition, engineered 
Komagataeibacter rhaeticus has been used to produce alter-
native polymers such as self-pigmenting bacterial cellulose 
for use as potential biomaterials in textiles and fashion [280].

Synthetic biology can also be leveraged to develop liv-
ing biosensors or gain efficiency for microbe-based devices 
such as MFCs. By optimizing genetic circuits, engineered 
microorganisms can detect changes in sweat composition, 
pH levels, temperature, or inflammatory markers. Microbes 
can provide health feedback through bioluminescence, color 
changes, or electrical signals and ultimately offer immediate 
therapy in specific areas [284]. For example, engineered Lac-
tobacillus species can respond to skin microbiome imbal-
ances by sensing the overgrowth of pathogenic bacteria or 
abnormal skin pH and subsequently triggering the synthesis 
of antimicrobial agents or protective factors to restore skin 
homeostasis [285]. Meanwhile, flexible biosensing devices 
enable remote health monitoring and personalized skin 
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Fig. 11   Microencapsulation for microbes integrated into smart tex-
tiles and related applications. a Design strategies of microencap-
sulation for microbes; reproduced with permission from Ref. [271], 
Copyright © 2024 Elsevier B.V. b Probiotic bacteria-encapsulated 
biosensor for inflammation detection in situ; reproduced with permis-
sion from Ref. [268], Copyright © 2023, Springer Nature. c Encapsu-
lated microbes for pathogen infection treatment; reproduced with per-

mission from Ref. [272], Copyright © 2018 Wiley–VCH. d Chronic 
wound therapy involving oxygen generation from encapsulated bac-
teria; reproduced with permission from Ref. [273], Copyright © 2020 
The Authors, some rights reserved; exclusive licensee American 
Association for the Advancement of Science
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Fig. 12   Synthetic biology strategies for microbes used in smart tex-
tiles. a Synthetic biology processes for functionally engineered 
microbes; reproduced under the CC BY 4.0 license from Ref. [281], 
Copyright © 2022, The Author(s), Springer Nature. b Engineered 
microbes can secrete therapeutic factors or growth factors to assist 
in health management; reproduced under the CC BY 4.0 license 

from Ref. [276], Copyright © 2025, The Author(s), Elsevier B.V. c 
Improving cellulose production with engineered bacteria; reproduced 
under the CC BY 4.0 license from Ref. [282], Copyright © 2024 the 
Author(s). National Academy of Sciences. d Engineered bacteria 
for high-performance MFCs. Reproduced (adapted) with permission 
from Ref. [283], Copyright 2023 American Chemical Society
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health management [286]. In addition, engineered microbes 
can be programmed to respond to humidity or temperature 
changes [287, 288], dynamically modulating textile breatha-
bility and moisture retention for better wearer comfort. For 
instance, genetically modified bacteria can be designed to 
synthesize thermoresponsive proteins [289], which alter the 
hydrophilicity of textile surfaces under high temperatures, 
hence improving the evaporation efficiency of sweat and 
increasing thermal comfort. Furthermore, synthetic biology 
facilitates the integration of bioenergy conversion and self-
repair functionalities into smart textiles. The incorporation 
of MFC technology allows engineered microbes to generate 
more electricity from organic matter on the skin surface and 
textiles [290], providing sustainable and efficient energy for 
smart sensing systems or low-power electronic components. 
Engineered bacteria-triggered MFC provides maximum cur-
rent and power densities that are approximately fourfold to 
sixfold greater than those of mediator-based MFCs reported 
previously (Fig. 12d). In terms of the self-repair property 
of smart textiles, certain engineered microbes can be pro-
grammed to activate self-repair mechanisms [291], produc-
ing biopolymer-based repair agents in response to microda-
mage or exposure. This self-healing potential enhances the 
durability of microbe-based smart textiles. With the genetic 
engineering of microbes, synthetic biology empowers next-
generation smart textiles with initiative-taking regulation, 
real-time monitoring, and personalized skin management.

5.4 � Optogenetics

In recent years, microbial engineering technologies such as 
synthetic biology and optogenetics have provided innova-
tive design strategies for next-generation smart textiles. By 
harnessing engineered microorganisms, smart textiles can 
integrate antibacterial, protective, and reparative functions, 
paving the way for personalized and sustainable skin health 
management.

Optogenetics is a cutting-edge technology that combines 
genetic engineering and optical control. It allows precise 
light-driven regulation of microbial gene expression [292], 
enhancing the controllability and intelligence of smart tex-
tiles. This mechanism relies on light-sensitive proteins or 
photoreceptors that regulate gene activation or suppression, 
such as blue-light receptors and red-light receptors [293, 
294]. By utilizing light of different wavelengths, precise con-
trol of microbial behaviors can potentially be achieved, ena-
bling them to perform specific functions in different physi-
ological states or conduct multitasking operations (Fig. 13a). 
Compared with traditional electrical stimulation and micro-
biota transplantation methods, the optogenetic regulation of 
engineered microbial secretion is more efficient and results 
in lower toxicity and side effects. By integrating optogenetic 
microbes with smart textiles, a wide range of innovative 

applications can be realized. For example, the pDusk and 
pDawn systems can control the MazEF toxin–antitoxin sys-
tem with darkness and blue light. Under blue light, MazE-
mediated inhibition of MazF enables bacterial growth and 
biofilm generation. Conversely, bacterial growth is inhibited 
by the repression of mazE and the expression of mazF in the 
dark (Fig. 13b) [295, 296]. When foreign pathogens invade, 
engineered bacteria can promote the growth of biofilms 
under light regulation, allowing them to occupy colonization 
sites, and compete for nutrients. This approach can effec-
tively inhibit pathogen colonization and spread in situ. Once 
the pathogens are eliminated, the system can regulate bio-
film degradation to prevent the risk of biofouling caused by 
excessive proliferation of the original bacteria. In addition, 
engineered microbes can serve as genetically encoded bac-
tericidal and anti-inflammatory agents, eliminating bacteria 
under optical control [297]. In addition, engineered microbes 
can be used to pattern graphics on textiles (Fig. 13c) [298]. 
For detection and sensing, engineered microbes can be uti-
lized to develop smart monitoring textiles. For instance, a 
light-sensitive biofilm of engineered Escherichia coli has 
been verified to adhere to various surfaces and maintain its 
responsiveness to light signals after being washed [299]. 
This property can be applied to detect volatile compounds or 
pathogens in sweat and body odor on textiles, enabling real-
time health monitoring and early disease warning. Optoge-
netics may also be applied in the development of self-healing 
textiles in the future, where specific light exposure promotes 
volume expansion and deformation to fill damaged areas. 
This light-controlled repair technology can extend the lifes-
pan of smart textiles and reduce material wear. Furthermore, 
engineered microbes may enable self-cleaning functionality 
for the surface of textiles, such as breaking down sweat, 
sebum, and stains on fabric surfaces under light activa-
tion. Overall, optogenetics technology endows engineered 
microbe-based smart textiles with enhanced functionality 
and controllability.

5.5 � Artificial Intelligence

Rapid advancements in big data, bioinformatics, synthetic 
biology, and intelligent materials have expanded the applica-
tions of artificial intelligence (AI) beyond computer science 
into interdisciplinary fields such as life science, materials 
science, and engineering. AI has demonstrated remarkable 
capabilities in data analysis, pattern recognition, and predic-
tive modeling [303, 304]. By leveraging big data analysis 
and computational simulations, AI provides powerful tools 
to facilitate the development of next-generation microbe-
integrated smart textiles. The incorporation of microbes into 
smart textiles begins with selection of suitable microbial 
strains for specific textile environments. AI algorithms can 
identify optimal strains for specific applications by analyzing 
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Fig. 13   Optogenetics for microbial modulation and potential appli-
cations in smart textiles. a Optogenetic strategies for engineered 
microbes; reproduced with permission from Ref. [300], Copyright © 
2022 Elsevier B.V. b Biofilms can be regulated by engineered bac-
teria under light control; reproduced (adapted) with permission from 

Ref. [301], Copyright 2018 American Chemical Society. Reproduced 
(adapted) with permission from Ref. [302], Copyright 2021 Ameri-
can Chemical Society. c Projecting patterns on different pellicles 
under light to obtain images. Reproduced with permission from Ref. 
[298], Copyright © 2021, Springer Nature
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their genomic, proteomic, and metabolomic profiles, which 
are powered by large-scale datasets (Fig. 14a) [305, 306]. AI 
can predict the ideal growth conditions for microbes [307], 
and improve their long-term storage, and stable functional-
ity during usage when embedded in textiles. For instance, 
machine learning models can simulate the interactions 
between microorganisms and textile fibers [308], optimizing 
surface properties to enhance microbial adherence and bio-
activity. AI is also instrumental in enabling real-time moni-
toring and dynamic regulation of human activities within 
smart textiles. By integrating sensors into smart textiles, AI 
can continuously track changes in microbial activity and 
monitor environmental factors such as pH, temperature, and 
humidity [309]. In skin health management smart textiles, 
AI can monitor changes in the skin surface or microenviron-
ment and adjust the activity of embedded microbes automat-
ically to maintain the balance of the skin microbiome and 
prevent infection and dermatological disorders. Developers 
can track microbial functionality and textile performance 
in real time. Moreover, end-users can use mobile devices to 
access information about the status of textiles [310], such 
as humidity regulation, microbial activity, or filtration capa-
bilities (Fig. 14b). This integration not only enhances user 
convenience but also promotes the development of intel-
ligent textile ecosystems. One of the most transformative 
aspects of AI in smart textiles is its ability to deliver person-
alized solutions (Fig. 14c). When AI is combined with the 
Internet of Things (IoT), it enables personalized skin health 
monitoring and management by smart textiles [311, 312]. By 
analyzing user-specific data, such as health conditions, life-
style habits, and environmental factors, AI can recommend 
tailored solutions with doctors in hospitals. For instance, 
AI can assist doctors in hospitals in quickly determining 
skin characteristics and specific patient issues and provide 
suggestions for related cases. Thus, doctors save time, and 
the probability of error decreases. In addition, AI can pre-
dict user preferences [313] for textile design and functional-
ity and optimize product development to enhance the user 
experience. Personalization ensures that smart textiles meet 
diverse user needs while providing targeted health and well-
ness benefits. AI is driving the deep integration of microor-
ganisms and smart textiles, enabling unprecedented levels 
of intelligence, bioactivity, and environmental adaptability. 
By empowering microbial selection, structural design, mate-
rial optimization, intelligent monitoring, and personalized 
regulation, AI is redefining the capabilities of smart textiles 
in skin health management and beyond.

6 � Conclusion and Future Perspectives

The advancement of smart textile technologies accelerates 
the development of textile systems with enhanced function-
ality and intelligence. Strikingly, applications in skin health 
management are driving smart textiles beyond the traditional 
roles of comfort and protection, toward real-time physiologi-
cal monitoring, active therapeutic intervention, and adaptive 
microenvironmental regulation. The integration of microor-
ganisms is a promising and innovative strategy for further 
enhancing the intelligence and multifunctionality of smart 
textiles.

Microbes that naturally interact with the skin microen-
vironment can be engineered or selectively introduced onto 
textile surfaces or within fiber matrices to enable function-
alities such as health monitoring, environmental respon-
siveness, and antimicrobial defense. This review began by 
highlighting the pivotal role of microorganisms in both the 
human body and textile interfaces. As the primary barrier 
of the body, the skin hosts a diverse and dynamic micro-
bial community that plays essential roles in barrier func-
tion, immune modulation, and disease prevention. Similarly, 
microbial colonization on textiles can yield both beneficial 
and adverse outcomes. The types, distributions, and func-
tional mechanisms of skin-associated microbes, as well as 
their interactions with the human host, were systematically 
summarized. Beyond passive functions, the integration of 
microorganisms into flexible electronics provides new pos-
sibilities for active health monitoring and management. Der-
mal-interfaced flexible systems, such as electronic skin, flex-
ible sensors, smart dressings, and intelligent garments enable 
real-time acquisition of physiological parameters, including 
skin temperature, humidity, sweat composition, and bioelec-
trical signals. The incorporation of living microorganisms 
into such systems can further expand their capabilities: 
Microbial metabolites can serve as diagnostic biomarkers 
or even generate bioelectricity to power on-body electronics. 
This review also provided a comprehensive overview of the 
development of microbially enabled smart textiles, encom-
passing material selection, textile architecture, fabrication 
techniques, and applications in skin health. To accelerate 
the development of next-generation smart textiles, several 
enabling technologies were discussed. Microencapsulation 
allows for the protection and controlled release of micro-
organisms on textile substrates, enhancing their stability 
and functionality. Synthetic biology offers tools to engineer 
microbes with tailored functionalities for specific textile 
applications. Optogenetics enables precise control over 
microbial activity via light stimuli, opening new avenues 
for dynamic and responsive systems. AI and big data analyt-
ics further support personalized microbiome regulation and 
real-time decision-making in intelligent textile platforms.
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Fig. 14   AI for next-generation living smart textiles. a AI recognition, 
classification, quantification, and selection for microbes that can be 
used in smart textiles; reproduced with permission from Ref. [314], 
Copyright © 2021 Elsevier B.V. b Smart textiles applied in the medi-
cal HMI field with AI; reproduced with permission from Ref. [315], 

Copyright © 2024, The Author(s), Elsevier B.V. c AI-based person-
alized health management system in smart textiles. Reproduced with 
permission from Ref. [316], Copyright © 2023, The Author(s), Else-
vier B.V. Reproduced with permission from Ref. [317], Copyright © 
2023, The Author(s), Elsevier B.V.
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Despite the promising potential of integrating microen-
capsulation, biosynthesis, optogenetic technologies, and AI 
into next-generation smart textiles, several significant chal-
lenges hinder their commercial translation. First, the high 
cost and low scalability of current manufacturing processes 
remain major limitations. Microencapsulation techniques 
often do not achieve a high ratio in batch production, and 
ensuring uniformity, biocompatibility, and long-term stabil-
ity across large textile surfaces is technically demanding. 
Although microbially enabled smart textiles hold trans-
formative potential for future skin health management, sev-
eral challenges remain particularly in terms of optimizing 
microbial stability, ensuring biocompatibility with textile 
matrices, and scaling from laboratory proof-of-concept to 
industrial production. Moreover, the use of genetically modi-
fied organisms (GMOs), particularly those with optogenetic 
modifications, introduces regulatory, biosafety, and ethical 
challenges, as there are currently no globally standardized 
frameworks governing the use of living engineered microbes 
in consumer textiles.

The evolution of next-generation smart textiles is being 
shaped by several key trends, including advanced material 
selection, biocompatibility, microbial viability, user com-
fort, integrated intelligent functionality, and commercial 
scalability (Fig. 15). The critical concerns in microbial-
enabled textiles include biosafety and ethical considera-
tions. Importantly, establishing safe-by-design standards 
and engaging in early dialog with regulatory bodies may 

accelerate approval pathways and build consumer trust. 
These strategies collectively pave the way for transforma-
tion of these cutting-edge biohybrid technologies into viable 
commercial textile products. The integration of microbes 
into textile systems, thus, requires the use of nontoxic, well-
characterized strains, along with advanced bioencapsulation 
strategies to ensure functional stability and safety over time. 
In terms of functionality, real-time physiological monitor-
ing represents one of the most compelling applications of 
microbe-integrated smart textiles. Leveraging the biosens-
ing capabilities of engineered microbes, these systems can 
detect biomarkers such as sweat metabolites, temperature 
variations, and other physiological cues. In addition, sus-
taining microbial viability in textile environments remains 
a significant challenge, as microbial activity is highly sensi-
tive to environmental factors such as temperature, humidity, 
pH, and nutrient availability. To address this issue, various 
immobilization techniques, such as hydrogel encapsulation, 
nanocarrier embedding, and controlled-release systems, are 
being investigated to prolong microbial functionality and 
maintain biosensing performance. The growing demand for 
lightweight, multifunctional, and user-friendly smart textiles 
imposes stringent design requirements. Traditional strate-
gies often rely on surface coatings or embedded electron-
ics to achieve functionality. In contrast, microbe-integrated 
smart textiles aim to integrate diverse capabilities includ-
ing self-cleaning, thermoregulation, antimicrobial protec-
tion, and even bioelectricity generation directly through 

Fig. 15   Characteristics and functions of next-generation smart textiles
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microbial metabolic activity, without compromising flex-
ibility or load. Genetic engineering approaches offer power-
ful tools to optimize microbes for multifunctionality. Engi-
neered microbial consortia may be embedded into textiles 
to modulate the skin microbiome of wearers, reduce the use 
of conventional electronic components, or enhance overall 
comfort and wearability. Durability is another critical con-
sideration. Repeated usage leads to mechanical abrasion, 
laundering, and UV exposure of smart textiles, all of which 
can impair microbial function and textile integrity. Future 
microbe-integrated smart textiles must incorporate robust 
design strategies to maintain functionality under real-world 
conditions. Advanced microbial engineering and regula-
tory systems may enable dynamic stabilization of the skin 
microbiome, real-time biomarker detection, personalized 
therapeutic responses, and enhanced wound healing. As 
research in this interdisciplinary field continues to advance, 
microbe-integrated smart textiles are poised to become pow-
erful commercial products for improving human health.
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