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Abstract

In this paper, a radial finite strain thermal consolidation model is extended to further consider the viscous behavior of soft
soils. A newly developed thermal elastic visco-plastic (TEVP) constitutive model for the temperature and time-dependent
stress—strain behavior of soft soils is implemented in a radial finite strain thermal consolidation model, which is solved
through a numerical solver. This solving method is verified by comparing the calculated results by the numerical solver
with two existing studies. After this, a particle swarm optimization (PSO) algorithm is employed to enhance the prediction
performance of the proposed consolidation model by automatically calibrating the model parameters during the consoli-
dation process. Two physical model tests were conducted to examine the validity of the proposed model and PSO-assisted
method. The results indicate that the proposed radial consolidation model captures the viscous characteristics (including
creep) of the time-dependent settlements of soft soils, which could not be simulated by the former reported models. The
PSO-assisted method has demonstrated practical applicability when compared with physical model tests. The longer the
observation time, the better the predictive performance of our radial finite strain thermal consolidation model. It is
recommended that the observation time should not be shorter than the time required for primary consolidation.

Keywords Finite strain consolidation - Parameter calibration - Physical model test - PSO-assisted method -
Thermal elastic visco-plasticity
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1 Introduction

Prefabricated vertical drains (PVD) combined with vacuum
preloading have been widely employed in soft ground
improvement [4, 10, 11, 14, 15]. To further accelerate the
consolidation process and enhance drainage efficiency,
heating wires have been embedded into PVDs [31, 34],
giving rise to the development of heated PVD technology,
namely PVTD technology, shown in Fig. 1. Heat
preloading reduces the viscosity of pore water and accel-
erates drainage [35], resulting in a markedly enhanced
consolidation rate [8, 13].

A variety of constitutive models
[1,2,6,7,12, 17, 21, 29, 32, 33] and theoretical investi-
gations have been proposed to study the mechanisms
involved in PVTD technology; among them, several
thermo-hydro-mechanical (THM) models have been
developed. For example, built on the thermal elastoplastic
framework developed by Laloui and Cekerevac [21],
recently, Lu et al. [28] introduced a nonlinear 1D thermal
consolidation model; Liu et al. [25] developed a fully
coupled axisymmetric large-strain thermal consolidation
model; and Zhou et al. [37] presented the RTCS1 model, a
large-strain thermal consolidation model established from
the well-known RCS1 model established by Fox et al. [14],
almost at the same time. These models effectively capture
the coupled interactions among heat transfer, fluid flow,

Heating PVD/PVTD

and mechanical deformation, as well as the temperature
dependence of soil properties. While valuable, these
models typically neglect the effect of viscous characteris-
tics, a time-dependent deformation that is intrinsic to soft
soils. Under external loading and elevated temperatures,
time-dependent viscous behavior of soft soil can contribute
significantly to long-term settlements and alter the rate of
consolidation [23, 24, 36]. The experimental data in this
paper also reveal that the soil exhibits obvious viscous
characteristics. However, above-mentioned existing THM
models neglect considering viscous characteristics of soft
soils, which may limit their long-term prediction accuracy.

Moreover, most existing theoretical models are con-
strained to Class C level prediction, meaning that they are
primarily interpretative and rely on fitting known data
without predictive capacity beyond the observation period
[22]. Heins and Grabe [16] and Losacco and Viggiani [27]
indicated that Class C prediction needs artificially adjusted
model parameters of a new proposed model or simulation
to fit the known data. That is, this approach is carried out
after the data are available, aiming to reproduce the data
rather than forward prediction; hence, it is more accurately
characterized as back analysis. This limitation hinders their
practical utility in construction monitoring and post-treat-
ment performance evaluation. To bridge the gap between
academic modeling and engineering application, it is
essential to develop a theoretical framework that not only

Embankment

Soft soil foundation

Fig. 1 Schematic diagram of heating PVD improved soft soils under embankment: a plane layout (triangular arrangement of PVTD), b cross

section, and ¢ unit cell
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incorporates realistic soil behavior but also enables real-
time forward prediction based on limited data.

In this study, a novel thermo-hydro-mechanical (THM)
coupled consolidation model is proposed by incorporating
viscous behaviors of soft soils into the existing THM
framework [25]. A particle swarm optimization (PSO)
algorithm proposed by Kennedy and Eberhart [20] is
employed to enable the automatic identification of model
parameters from limited experimental data. This approach
allows the model not only to interpret past observations but
also to reliably predict future consolidation behavior. To
validate the proposed model and identification method, a
carefully designed laboratory test was conducted. The
results demonstrate the model’s capability to capture the
essential features of heat-assisted consolidation with vis-
cous characteristics of soft soils and highlight its potential
for practical engineering applications.

2 Evaluated model
2.1 Model establishment

To consider the temperature and time-dependent stress—
strain behavior of soft soils, Chen and Yin [6] developed a
one-dimensional constitutive model. The total strain rate
can be expressed by Eq. (1), and more details can be
referred to Chen and Yin [6] and are not repeated here.

TVTa  Vedr Vi |y

(2)G)

in which T and T, denote the current and reference ther-
modynamic temperatures; ¢’ and G;po are the present

effective stress and the soil’s preconsolidation pressure,
respectively, with ¢, being the corresponding strain on the
reference time line at (ri,po. to and ¢, refer to the reference
and equivalent times, while V is the specific volume. The
normal compression and recompression behaviors are
quantified by indices / and «, respectively, /, is the creep
coefficient accounting for temperature effects. ky captures
the elastic response during cooling-reheating; and Ar rep-
resents the virgin heating compression index.

By introducing the Terzaghi effective stress principle
and transferring the thermodynamic temperature to degrees
Celsius, Eq. (1) can be rewritten as

O¢ _Kkr T Kk 0(0 — uy)/0t
o VT+273.15 V

+ v e v (s € )
2 expl——(e—
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o—u,\ (T+273.15\7 )
00 Ty +273.15

where u,, is total pore pressure and o is total stress.

Liu et al. [25] derived a radial finite strain consolidation
model incorporating the thermal elastoplastic constitutive

model proposed by Laloui and Cekerevac [21], and the
strain rate of soil can be written as follows:
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in which k¢ and k, are the hydraulic conductivities in the ¢-
and r-directions, with their initial values of kg7, and k7,
and Cy, and Cy are the corresponding permeability indices.
pywr and p, . denote pore water density at the current and
reference temperatures, respectively; p(7T) is the water
viscosity; and 7 its unit weight. The remaining symbols
are total soil strain ¢, the thermal expansion coefficient of
saturated soft clay a,(= (1 — n)a; + no,,), and porosity n.

To further consider the viscous characteristics of soft
soils, this paper extends the previous model [25] and
incorporates the 1D TEVP model proposed by Chen and
Yin [6]. The basic assumptions can be referenced from the
previous study by Liu et al. [25]. Flow in fully saturated
clay obeys to Darcy’s law; pore water experiences no phase
transition during consolidation; thermal equilibrium is
maintained within the representative volume element,
resulting in equal temperatures for pore water and particles;
deformation is only occur in vertical direction (i.e., a-di-
rection); and temperature changes have an insignificant
impact on the density of soil particles. Based on these
assumptions, and combining Eqgs.(2) and (3), the governing
equation can be expressed as
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By introducing a variable o,,, the Eq. (5) can be
expressed as:
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where o, is the total stress above hydrostatic pressure; uy,
is hydrostatic pore pressure; i, iS excess pore pressure, e is
void ratio; and ey is initial void ratio.

The governing equation for energy conservation does
not change when considering the 1D TEVP constitutive
model; hence, this equation can be referred to Liu et al.
[25] and presented as
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where C,, and C; are the specific heat capacity of pore
water and soil particles, respectively, and 4,, and A, are the
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thermal conductivity of pore water and soil particles,
respectively.

Based on the characteristics of the proposed consolida-
tion model, the initial and boundary conditions can also
refer to the previous research of Liu et al. [25] as fol-
lows or based on actual boundary conditions.

Gy, —1

1+eo a
(considering self - weight consolidation process)
oruy(a,r,0) =Q

(loading after self - weight consolidation),
T(a,r,0) =Ty

boundary conditions for:

initial conditions : u,(a,r,0) =

ue(a,ry, t) = —P(t)
a e s hey
ue(a,re,t) —0
or
eXcess pore pressure : (10)
u.(H,r,1) =0
0u.(0,r,,1)
AW
Oa
T(a,ry,t) =A(t)
oT(a,r,,t
T(aarf.’?t) +h%: 0
temperature : OT(H.r.t
T(H,r, 1)+ h % -
or s b
T(Ovrw7t)+h2 (%6: : ):TO

where Q is external loading, A, h, and h, are heat-related
boundary parameters, and P(f), A(f) are external time-de-
pendent vacuum and heat preloadings, respectively, which
have been introduced by Liu et al. [25].

2.2 Numerical implementation

The governing equations (i.e., Egs. (6) and (8)) are highly
nonlinear in space and time domains. It is therefore a
challenge to give a reliable and robust analytical solution to
the proposed governing equations. Considering this com-
plexity, numerical solving tools are employed to calculate
these equations. Several numerical solving tools are
available for this task, and the COMSOL Multiphysics
software is chosen to perform calculations. The soil domain
is constructed within the COMSOL Multiphysics software
utilizing the 2D axisymmetric modeling module, and the
mesh is generated using the software’s extra fine mesh
setting. The governing equations are implemented using
three coefficient form partial differential equation modules.
This includes one module for the mass conservation
equation (i.e., Eq. (6)), another for the energy conservation
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equation (i.e., Eq. (8)), and a third module that implements
the ordinary differential equation defined by the TEVP
constitutive model in Eq. (2). Initial and boundary condi-
tions are established in the coefficient form partial differ-
ential equation module in accordance with the actual
boundary and initial conditions, followed by defining the
simulation time span. The equations are subsequently
solved utilizing the default solver (MUMPS solver) along
with the standard solver parameters to achieve the simu-
lations. All the calculation data are exported in the form of
CSV or TXT format to conduct further analysis.

2.3 Verification of the numerical method

To verify the correctness and reliability of the numerical
method, this section presents two verification examples
comparing the proposed consolidation model with two
existing consolidation models.

2.3.1 Verification with the RCS1T model

Fox et al. [14] once proposed a piecewise-linear model for
a large-strain radial consolidation model, namely RCS1
model. This subsection employed the same parameters
used in the RCS1 model to evaluate the numerical algo-
rithm proposed in this paper. In order to compare with
RCS1 model, the proposed consolidation model is degra-
ded into a radial large-strain consolidation model under
room temperature by setting the temperature of the heating
PVD to room temperature and neglecting viscous charac-
teristics of soft soils. The parameters for comparison are
summarized by Fox et al. [14] and listed in Table 1.

The average degree of consolidation defined by the
settlement is shown as follows:
Us =

5
— 11
- (1)

Table 1 Parameters for model verification with Fox et al. [14]

Parameter Value Unit
H 10 m
I 0.05 m
Te 0.5 m
Gy 2.7 -
€0 2.1 -
ker, 2x 107 m/s
kr, 3x107? m/s
A 0.434 -
L0 50 kPa
0 50 kPa

(]

[
<

£
<

Average degree of consolidation U, %

60 | = RCSI1 model, C,=0.8
Proposed model, C,=0.8
A RCS1 model, C;=1.2
80 Proposed model, C,=1.2
100 L L
107" 10° 10' 10°

Time, days

Fig. 2 The comparison of the average degree of consolidation and the
results of Fox et al. [14]

in which S, is average settlement at a given time 7 and S, is
average settlement at the end of consolidation.

Figure 2 compares the average degree of consolidation
obtained from the RCS1 model and the proposed degraded
model. It can be observed that the greater value of C, the
faster the consolidation speed, and the greater the average
degree of consolidation. The reason is that a greater C;
results in greater hydraulic conductivity at a given void
ratio, thereby accelerating the consolidation rate. The
average degree of consolidation calculated from the pro-
posed numerical method shows a good agreement with the
results from the well-established RCS1 model, which
illustrates the correctness and reliability of the proposed
numerical method.

2.3.2 Verification with large-strain radial consolidation
model

Indraratna et al. [18] presented a finite element simulation

for a large-strain radial consolidation model considering
the nonlinear compressibility and permeability properties

Table 2 Parameters for model verification with Indraratna et al. [18]

Parameter Value Unit
T 0.1 m
T, 1 m
€250 1.5 _
k1, 1x10°8 m/s
A 0.217 -
Cir 0.75 -
J’ZI,O 50 kPa

@ Springer
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Fig. 3 The comparison of the proposed model with Indraratna et al.
[18]:a vertical strain and b excess pore pressure

of soft clays. For ease of comparison, this subsection
compares the calculation results from the proposed con-
solidation model by setting the temperature of the heating
PVD to room temperature and neglecting viscous charac-
teristics of soft soils against the results from ABAQUS
simulations by Indraratna et al. [18]. The parameters used
for comparison are summarized by Indraratna et al. [18]
and listed in Table 2. The vacuum pressure of —80 kPa was
applied at + = 0 and remained constant thereafter.

Figure 3 compares the results calculated from the pro-
posed numerical method with the finite element simula-
tions conducted by Indraratna et al. [18]. It can be found
that the calculation results obtained from the numerical
method proposed in this paper have good consistency with
the previous simulations. The good agreement further
confirmed the reliability of the proposed numerical method.

@ Springer

3 Methods for enhancing predictive
capacity

Some existing predictive models primarily adopt Class C
methods, where the analytical model is first developed and
subsequently fitted to complete sets of post-construction
data, such as settlement and excess pore water pressures.
Although these methods can reasonably describe observed
consolidation behaviors retrospectively, their heavy
dependence on extensive historical datasets severely limits
their predictive capability and practical utility in real-time
monitoring and post-treatment evaluation scenarios.
Moreover, certain parameters, for example, parameters Cy
and kg7, in the relationship between void ratio and per-
meability (e-k) under very low effective stresses, cannot be
obtained through standard oedometer tests, or they require
specialized equipment beyond the reach of most practi-
tioners. To address both the data dependence of Class C
prediction and the impracticality of bespoke apparatus, this
study treats these difficult-to-measure coefficients as
unknowns and determines them by combining limited field
or laboratory observed data with a proposed consolidation
model and basic parameters (e.g., void ratio, specific
gravity, etc.) from simple bench-scale tests. The estimated
values are then being input into the analytical consolidation
model, facilitating forward predictions of future soil con-
solidation behavior. The whole process of obtaining
unknown parameters can be regarded as an optimization
task. The main goal is to achieve the global optimal solu-
tion of the fitness function (described in the following step
(2)) using the measured data with the calculated data.
Particle swarm optimization is a swarm intelligence
method that emulates the patterns and collaboration of
avian flocking behavior to identify optimal solutions. In the
application of PSO algorithm in geotechnical engineering,
Cheng et al. [9] presented enhanced discontinuous-flying
PSO variants to handle the non-circular failure surfaces
problem. Ahmadi-Nedushan and Varaee [3] utilized PSO
algorithm to minimize both cost and weight of reinforced
concrete retaining walls. Kashani et al. [19] employed the
algorithm to optimize footing dimensions for shallow
foundations. Each particle, characterized by its position
and velocity, is modified according to its current best
position and the swarm’s historical best position. In each
iteration, particles reposition themselves in pursuit of a
superior solution. The process persists until the specified
number of iterations is fulfilled or a satisfactory solution is
identified. In employing the PSO method, users need
merely to configure essential variables, including popula-
tion size, also called swarm size, and maximum iteration
number. These two variables are crucial and can influence
the optimization outcomes. The swarm size influences the
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Fig. 4 Flowchart of PSO-assisted finite strain thermal consolidation prediction method

computational costs, while the number of maximum iter-
ations influences both the convergence rate and the preci-
sion. The specific illustration of determing these two
variables are provided in Sect. 5. To make the whole
process clear and easier for engineers to use, detailed steps
plotted in Fig. 4 are illustrated in the following:

(1) Collect measured data from the beginning of con-
solidation to a certain time (i.e., S(¢)), say 10 days or
20 days, and conduct conventional geotechnical tests
(e.g., oedometer test) to obtain basic physical and
mechanical parameters of soil. The empirical values
of soil can also be added together as another source
of given parameters. At the same time, determine the
parameters that need to be identified (usually taking
the parameters that are difficult to determine) in the
established mathematical model. Give the initial
guess of these parameters in a reasonable range (this
operation is shown in the following application case)
and calculate the settlement (i.e., S(r)) of soil using
given and guessed parameters during the above-
mentioned limited observed time, followed by
transferring the calculation data from COMSOL to
MATLAB software to evaluate the following fitness
function (also called total error):

£=323 " () = si(m))°

j=1 i=1

!
(12)
where § and § represent the measured and calculated

soil settlement during the observation period,
respectively.

(2) Check whether the convergence criteria (reaching
maximum iteration number or minimum fitness
function value) are satisfied. If so, the calculation
terminates immediately. If not, these parameters to
be identified are automatically adjusted according to
the basic principle of the PSO algorithm. Then, a
new set of parameters (including given parameters
and optimized parameters) is sent to COMSOL for a
new round of calculation. After several rounds of
iteration, the fitness function reaches a global small
value, followed by the termination of the whole
optimization process and printing the optimized
parameters.

(3) After obtaining the optimization parameters, a
COMSOL calculation with given and optimized
parameters is then performed to calculate the subse-
quent consolidation behavior (i.e., the time after
observation).

4 Application of the proposed method
in physical model testing

Two physical model tests on Hong Kong marine deposits
(HKMD), incorporating self-weight and viscous charac-
teristics of soft soils, were conducted and labeled Test 1
and Test 2. As shown in Fig. 5, each test used a 100-cm-tall
acrylic column with a 40 cm inner diameter and a centrally
installed copper tube (100 cm long, 0.75 cm radius). The
upper end of the tube was connected via a PVC conduit
wrapped in isothermal film to a water-bath heating system
driven by a pump. Test 1 proceeded without heating (room
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Fig. 5 Schematic diagram of the setup of two physical model tests

temperature of 20 °C), while Test 2 was heated to 40 °C at
the start of consolidation. In the physical model tests, only
the copper pipe carrying circulating hot water was installed
along the central axis of the soil, with no horizontal drai-
nage channel (i.e., no PVD installed in the soil). Conse-
quently, when applying the theoretical model derived in
this study to simulate this experiment, the boundary at
r =r, should be treated as impermeable; only the top
boundary is set as a permeable drainage boundary. Under
the combined action of its self-weight and heat preloading,
the soil undergoes consolidation settlement. Test 1 ran for
180 days, while Test 2 lasted 122 days. During each test, a
high-resolution camera was used to track the settlement of
HKMD showing on a tape measure. Based on the recorded
settlements, time at the end of the primary consolidation
(feop) Tor Test 1 is approximately 38.6 days, while for Test
2 it is around 23.7 days.

Referring to Liu et al. [26], the void ratio used was
obtained indirectly through water content. According to the
temperature boundary condition, the coefficients 4 and 5,
were set as relatively large values, say 1000, to simulate the
adiabatic boundary, while the top boundary was a constant

@ Springer

temperature boundary, so i, was set as a relatively small
value (e.g., 0.001). The density of soil particles was mea-
sured at 2.63 g/cm’. The values of expansion coefficients
for soil particles and soil skeleton, specific heat capacity of
the soil, and coefficient of thermal conductivity were
sourced from Liu et al. [26]. The reference time was taken
as 1440 min (24 h). Due to the high initial water content,
the initial effective stress should be set as a very small
value. This value is in the denominator of Eq. (6), which
means it cannot be zero; hence, this value could be taken as
an identified parameter or set as a small value, such as 0.15
kPa, which is equivalent to placing a feather on a finger-
nail. Table 3 summarizes the values of the parameters used
in the proposed model. The parameters selected for opti-
mization included the  hydraulic  conductivity
ker, € [1 X 10~ 8m/s, 1 x 10 °my/s], compression index
A €[0.5, 2], permeability index Cie € (0.5,
1.5] x A-In10, virgin heating compression index
Ar € [0.1, 7], and creep coefficient yy € [0.03, 0.08] x 4.
To balance the calculation efficiency and precision, the
swarm size and maximum number of iterations in the PSO
algorithm were taken as 30 and 50 for different observed
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Table 3 Partial parameters used in the proposed model

Parameter Value Unit

T, 0.2 m

o 0.075 m

Ol 3x 107 1/°C
Oy 2.08 x 1074 1/°C
Ot 5.2 x 1073 1/°C
sty 2.63 g/em®
Pty 0.998 g/em®
As 2.5 W/m/°C
Aoy 0.6 W/m/°C
C, 730 J/kg/°C
C, 4186 J/kg/°C
Cr Cie -

h 1000 -

hy 1000 -

ho 0.001 -

K /5 -

KT Ar/5 -

€ 9.5 -

L0 0.15 kPa

to 1440 min

Table 4 Optimized parameters calculated from different observation
times

Parameter Observed time/days Unit
10 30 50

ker, 1.8466 x 1078 2.1087 x 1078  2.092 x 10~% m/s

A 1.4979 1.4994 1.5 -

Cre 1.5-4-In10 1.5-2-In10 1.5-2:In10 -

v 0.03 0.03141 0.031 -

Ar 6.99651 6.9974 72 -

times, respectively. The selection process of these two
parameters will be illustrated in Sect. 5. The calculation
procedures for obtaining the optimized parameters are
performed on a personal computer equipped with a Win-
dows 11 operating system, an Intel(R) Core(TM) i9-
14900HX CPU running at 2.2 GHz, 32 GB of memory, and
a 1 TB SSD. The CPU calculation time for three different
optimized procedures listed in Table 4 is 6.5321 h, 7.8806
h, and 11.1612 h, respectively.

As mentioned above, the primary consolidation times
under the two tests were approximately 38.6 days (Test 1)
and 23.7 days (Test 2), respectively. Based on these values,
three observation windows of 10, 30, and 50 days were

selected to assess the PSO-assisted method across
increasingly complete stages of consolidation. Specifically,
a 10-day window represents a severely truncated dataset,
testing whether early-stage measurements alone can yield
meaningful parameter estimates. A 30-day window, by
contrast, allows evaluation of the PSO-assisted method
when observations approach the completion time of pri-
mary consolidation. Finally, a 50-day window that sur-
passes both primary consolidation times and subsequent
creep-driven settlements was employed to test the perfor-
mance of the PSO-assisted method. The fitness function
was calculated according to Eq. (12), and the calculation
process followed the detailed steps illustrated in Sect. 3.
Table 4 summarizes the optimized parameters calculated
using the PSO-assisted finite strain thermal consolidation
calculation procedure.

Figures 6, 7, and 8 demonstrate the parameter opti-
mization and error convergence behavior of a PSO-assisted
method under varying observation durations (10, 30, and
50 days). Each figure comprises six subplots tracking the
iteration evolution of hydraulic conductivity, normal
compression index, permeability index, creep index, and
virgin heating compression index During the iteration
process. For 10-day observation (Fig. 6), the parameters
converge to stable equilibria within 30 to 40 iterations: k¢,
at 1.8466 x 10~% m/s (Fig. 6a), / at 1.4979 (Fig. 6b), Ci;
at 1.5 x A-In10 (Fig. 6¢), ¥ at 0.03 /. (Fig. 6d), Ar at
6.9965 A(Fig. 6e). Total error (Fig. 6f) decreases mono-
tonically, demonstrating rapid error suppression. For
30-day observation (Fig. 7), parameter stability improves
significantly. Extending the observation to 50 days, opti-
mization efficiency further increases. As shown in Fig. §,
all parameters achieve convergence 20% to 30% faster than
in shorter observation time. All the optimization parame-
ters are listed in Table 4. Figures 6f, 7f, and 8f show that
for observation times of 10, 30, and 50 days, and the total
errors converge to 25.70, 159.24, and 166.00, respectively,
yielding mean squared error (MSE) values of 0.41, 1.54,
and 1.46 via Eq. (13). That is, an average prediction error
per point of less than 1.25 cm. A smaller MSE at the
shorter (10-day) observation interval arises simply because
fewer data points dilute the accumulated error. However,
this does not mean superior model performance is reached,
since dividing a small total error by a small sample size can
produce a lower per-point average.

Figure 9 shows the calculation results using the opti-
mized parameters listed in Table 4 under two temperatures
(i.e., 20 °C in Test 1 and 40 °C in Test 2) and three dif-
ferent observation times. It can be seen from the figure that
time ¢ is divided into two parts, the first part named Stage 1
is used in the PSO-assisted method for searching the
undetermined parameters, while the second part named
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Fig. 6 Optimization parameters and total error calculated using PSO-assisted method with the observed time of 10 days

1x1077 1.6 r 1.6
(a) (b)
8x10°° © L4r / (©)1
@ /
g 6x1078 1.4} - 1.2} 1.5 ]
= 1.4994 W
e 2.1087x10°® ~ )
o ax107® \ 10
2x10°78 m\—“———o 12 0.8 -{
0 0.6
0.048 r r r r r 8 5000
(d) (®
0.044 | E 6 / (e) 4000 E
5
0.040 | 6997 £ 3000
s &t ' -
I
0.036 0.0314 . £ 2000
\ =
2F
0.032 F _/_o 1 1000
0.028 . . . . . 0 . . . 1 . 0 . : : : i
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Iteration Iteration Iteration

Fig. 7 Optimization parameters and total error calculated using PSO-assisted method with the observed time of 30 days

Stage 2 is employed to examine the predictive capacity. As
shown in Fig. 9, when the observed time is taken as 10
days, a pronounced difference (at least larger than 11%)
has been found in the subsequent prediction process, and
the larger the value of observed time, the smaller the dif-
ference in observed and measured data, the better the
predictive effects. Limited observational data may contain
inherent noise and fail to comprehensively characterize the

@ Springer

nonlinear finite strain thermo-consolidation behavior.
Extending observation periods mitigates the impact of
noise while accentuating the distinctive features of non-
linear consolidation, allowing mathematical models to
better capture these changes. Consequently, the PSO-as-
sisted method achieves higher efficiency in parameter
optimization and presents improved predictive accuracy.
Even though predicted settlements calculated by the
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Fig. 8 Optimization parameters and total error calculated using PSO-assisted method with the observed time of 50 days

optimized parameters obtained from a shorter observed
time (e.g., 10 days) may not have a good prediction of a
large time range, the subsequent few days’ predictions, say
2 or 3 days, can still provide a reasonable reference. By
obtaining and introducing more observed settlement data,
such as 30 days (see Fig. 9a) or 50 days (see Fig. 9b), the
predicted settlement curve gradually aligns with real-world
measurements. Therefore, it can be concluded that the
more monitoring data the algorithm incorporates, the
higher its accuracy becomes. Moreover, the observed data
show viscous characteristics (refer to creep deformation
here), which have been captured by the proposed model.
Therefore, considering the viscous characteristics of soft
soils is meaningful. Although there remains a deviation
between the predicted curves and measured data During
Stage 2, with the proposed model appearing to slightly
overestimate measured settlement when the observation
time is 30 days or longer, this error is minor (below 4%, see
Fig. 10c) and is expected to decrease as additional obser-
vation points are incorporated.

To quantify the predictive effects, two indices, namely
MSE and relative error (RE), are employed to evaluate the
capacity. The square mean error and relative error are
defined as:

n

MSE = lz (S,' — §i)2
i (13)

RE = 2%« 100%

Si

where s; is the ith observed settlement value and s; is the ith
predicting settlement value.

Figure 10a to 10c displays scatter plots that compare
predicted and observed settlement at two temperature
conditions (i.e., 20 °C and 40 °C). Figure 10a illustrates
that the predicted settlement values at 20 °C (blue squares)
closely align with the observed data along the optimum
prediction line (dashed line), resulting in a minimal relative
error of 7.99%. Predicted settlements at 40 °C (red dots)
show increased deviations, with a maximum relative error
of 19.54%. Figure 10b illustrates enhanced precision at
both temperatures, with relative error diminished to 5%
(40 °C) and 3.88% (20 °C). The small range in Fig. 10c
reaches nearly ideal accuracy, with errors as minimal as
1.69% (20 °C) and 3.54% (40 °C). Besides, the overall
MSE (i.e., a combination of MSE in different temperatures
during Stage 2 period) during Stage 2 period, calculated
using Eq. (13) for three different observed times, is 3.0993,
0.2877, and 0.2705, respectively. The quantified error
analysis further emphasizes that when the chosen obser-
vation period is equal to or greater than the primary con-
solidation completion time, the error of Stage 2 falls below
5%. Therefore, to achieve high-accuracy predictions, the
observation window should be no shorter than the time
required for primary consolidation. Moreover, in practical
applications of the present model combined with the PSO-
assisted method, monitoring data collected continuously
after the primary consolidation period could be incorpo-
rated to further enhance prediction accuracy.
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5 Selection of PSO algorithm parameters

The selection of PSO parameters, particularly the swarm
size and maximum iteration numbers, significantly impacts
the computation of optimized parameters and, as a result,
affects the predictive capability of a prediction model.
Optimal settings must achieve a balance between estima-
tion accuracy and computational cost. A swarm size and
maximum iteration numbers that are too small can result in
unstable searches and biased fits. Conversely, excessively
large values may enhance precision but significantly
increase the runtime.

A universal combination of swarm size and maximum
iteration numbers may not exist. Two practical strategies
are commonly recommended. One approach is to ignore
calculation costs and utilize significantly large values (e.g.,
swarm size = 100 and maximum iteration numbers = 100
as referenced in [5]), which demonstrates robustness but
lacks efficiency. This study adheres to a more cost-effec-
tive protocol. The swarm size is initially selected from the
recommended range of 20—40 [30], with a fixed size of 30
in this paper. Subsequently, the maximum number of
iterations is increased until convergence is achieved for
both the total error function and the optimized parameters.
The data provide evidence that supports this choice.
Table 5 presents a comparison of three sets of PSO algo-
rithm parameter combinations, namely, combination I,
combination II, and combination III, and the corresponding
swarm sizes and maximum iteration numbers for these
combinations are (10, 30), (30, 50), and (50, 70), respec-
tively. The computation duration increases markedly from
1.6415 h for combination I to 7.8806 h for combination II
and thereafter to 20.1054 h for combination III. Notably,
the optimized parameters for combination II and combi-
nation III are almost identical. The convergence histories
presented in Fig. 11 demonstrate that the total loss and
optimized parameter estimates converged after approxi-
mately 45 iterations. Figure 12 consistently demonstrates
that the predicted settlement curves for combinations II and
IIl are nearly identical, while combination I exhibits a
significant deviation. Based on this analysis, we select 30
as the swarm size and 50 as the maximum number of
iterations. The selected parameter combination ensures
quick and stable convergence, avoiding the diminishing
returns associated with larger swarms or increased iteration
numbers.

Increasing the number of observation points results in a
higher cost for each fitness evaluation, as each particle
must be assessed against a greater volume of data. How-
ever, this adjustment does not change the dimensionality of
the optimized parameter space. Therefore, the swarm size
and maximum iteration numbers typically do not require
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Table 5 Optimized parameters calculated from different sets of PSO algorithm parameter combinations

Parameter Different PSO algorithm parameter combinations Unit
I 11 11T
ker, 2.4790 x 1078 2.1087 x 1078 2.1020 x 1078 m/s
A 1 1.4994 1.4999 -
Cre 1.5-A-In10 1.5-4-In10 1.5-2-In10 -
v 0.03142 0.03144 0.03154 -
Ar 7 6.9974 6.9994 -
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Fig. 11 Optimization parameters and total error calculated from three sets of PSO algorithm parameter combinations with the observed time of

30 days

changing when the dataset is extended. The results from
our experiments demonstrate that, when utilizing consistent
settings (swarm size = 30, maximum iteration num-
bers = 50), the 50-day observations yielded stable parame-
ter estimates and a converged loss. This confirms the
effectiveness of our selected PSO algorithm parameters
across varying data lengths without compromising perfor-
mance (refer to Fig. 8).

6 Conclusions

The main conclusions of this paper are summarized as follows:

(1) A radial finite strain consolidation model incorpo-
rating thermal elastic visco-plastic constitutive
model is extended to further consider the viscous

behavior of soft soils. A numerical solver has been
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3)

employed to solve the coupled governing equations.
Two verification cases have been conducted to verify
the correctness of the numerical solution method.

A PSO-assisted method has been proposed to
enhance the performance of the proposed consolida-
tion model. This algorithm combines the established
consolidation model, limited observed data, and
results from conventional techniques to conduct
real-time accurate prediction of thermal consolida-
tion behavior for soft soils.

Two physical model tests have been performed to
examine the validity of the proposed consolidation
model as well as the PSO-assisted analysis method.
The comparison between the test and calculation
results highlights the necessity of establishing the
newly developed consolidation model and the use-
fulness of the proposed algorithm.
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Fig. 12 The comparison of settlement between experimental and predicted values calculated from three sets of PSO algorithm parameters

combination when the observed time of 30 days

(4) For field-scale applications of the proposed consol-
idation model, it is recommended that the observa-
tion dataset should include primary consolidation
measurements to ensure high accuracy of subsequent
predictions. Additionally, even when predictions are
based on observation times beyond primary consol-
idation, practical application of the present model
with the PSO-assisted method can incorporate mon-
itoring data collected after the primary consolidation
period to further improve forecast accuracy During
Stage 2.

(5) The determination of swarm size and maximum
iteration numbers in the PSO algorithm typically
involves two methods. One option for the swarm size
is to select a range between 20 and 40. The minimum
number, or any number above this threshold, that
ensures the convergence of optimized parameters
and the loss function can be regarded as the
maximum number of iterations. In contrast, two big
values, such as 100 and 100, can be selected for
swarm size and maximum iteration numbers without
considering computational costs.
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