
RESEARCH PAPER

A finite strain thermal elastic visco-plastic consolidation model
enhanced by particle swarm optimization of model parameters

Yang Liu1,2 • Peichen Wu2 • An Li2 • Weiqiang Feng3 • Zejian Chen2 • Xudong Zhao4 •

Jun-Jie Zheng5 • Jian-Hua Yin1,6

Received: 11 June 2025 / Accepted: 31 August 2025
� The Author(s) 2025

Abstract
In this paper, a radial finite strain thermal consolidation model is extended to further consider the viscous behavior of soft

soils. A newly developed thermal elastic visco-plastic (TEVP) constitutive model for the temperature and time-dependent

stress–strain behavior of soft soils is implemented in a radial finite strain thermal consolidation model, which is solved

through a numerical solver. This solving method is verified by comparing the calculated results by the numerical solver

with two existing studies. After this, a particle swarm optimization (PSO) algorithm is employed to enhance the prediction

performance of the proposed consolidation model by automatically calibrating the model parameters during the consoli-

dation process. Two physical model tests were conducted to examine the validity of the proposed model and PSO-assisted

method. The results indicate that the proposed radial consolidation model captures the viscous characteristics (including

creep) of the time-dependent settlements of soft soils, which could not be simulated by the former reported models. The

PSO-assisted method has demonstrated practical applicability when compared with physical model tests. The longer the

observation time, the better the predictive performance of our radial finite strain thermal consolidation model. It is

recommended that the observation time should not be shorter than the time required for primary consolidation.

Keywords Finite strain consolidation � Parameter calibration � Physical model test � PSO-assisted method �
Thermal elastic visco-plasticity

& Jian-Hua Yin

cejhyin@polyu.edu.hk

Yang Liu

yang205.liu@polyu.edu.hk

Peichen Wu

peicwu@polyu.edu.hk

An Li

21071413r@connect.polyu.hk

Weiqiang Feng

fengwq@sustech.edu.cn

Zejian Chen

ze-jian.chen@connect.polyu.hk

Xudong Zhao

xzhaobl@connect.ust.hk

Jun-Jie Zheng

zhengjunjie@whu.edu.cn

1 College of Civil and Transportation Engineering, Shenzhen

University, Shenzhen 518060, China

2 Department of Civil and Environmental Engineering, The

Hong Kong Polytechnic University, Hong Kong 999077,

China

3 Department of Ocean Science and Engineering, Southern

University of Science and Technology, Shenzhen, China

4 Key Laboratory of Geotechnical Mechanics and Engineering

of the Ministry of Water Resources, Changjiang River

Scientific Research Institute, Wuhan, China

5 School of Civil Engineering, Wuhan University,

Wuhan 430074, China

6 Department of Civil and Environmental Engineering,

Research Institute of Land and Space, The Hong Kong

Polytechnic University, Hong Kong 999077, China

123

Acta Geotechnica
https://doi.org/10.1007/s11440-025-02773-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-0990-4084
http://orcid.org/0000-0001-7900-3703
http://orcid.org/0009-0006-7821-0958
http://orcid.org/0000-0001-5480-9719
http://orcid.org/0000-0001-7855-6234
http://orcid.org/0000-0002-1376-0979
http://orcid.org/0000-0001-9679-4914
http://orcid.org/0000-0002-7200-3695
http://crossmark.crossref.org/dialog/?doi=10.1007/s11440-025-02773-x&amp;domain=pdf
https://doi.org/10.1007/s11440-025-02773-x


1 Introduction

Prefabricated vertical drains (PVD) combined with vacuum

preloading have been widely employed in soft ground

improvement [4, 10, 11, 14, 15]. To further accelerate the

consolidation process and enhance drainage efficiency,

heating wires have been embedded into PVDs [31, 34],

giving rise to the development of heated PVD technology,

namely PVTD technology, shown in Fig. 1. Heat

preloading reduces the viscosity of pore water and accel-

erates drainage [35], resulting in a markedly enhanced

consolidation rate [8, 13].

A variety of constitutive models

[1, 2, 6, 7, 12, 17, 21, 29, 32, 33] and theoretical investi-

gations have been proposed to study the mechanisms

involved in PVTD technology; among them, several

thermo-hydro-mechanical (THM) models have been

developed. For example, built on the thermal elastoplastic

framework developed by Laloui and Cekerevac [21],

recently, Lu et al. [28] introduced a nonlinear 1D thermal

consolidation model; Liu et al. [25] developed a fully

coupled axisymmetric large-strain thermal consolidation

model; and Zhou et al. [37] presented the RTCS1 model, a

large-strain thermal consolidation model established from

the well-known RCS1 model established by Fox et al. [14],

almost at the same time. These models effectively capture

the coupled interactions among heat transfer, fluid flow,

and mechanical deformation, as well as the temperature

dependence of soil properties. While valuable, these

models typically neglect the effect of viscous characteris-

tics, a time-dependent deformation that is intrinsic to soft

soils. Under external loading and elevated temperatures,

time-dependent viscous behavior of soft soil can contribute

significantly to long-term settlements and alter the rate of

consolidation [23, 24, 36]. The experimental data in this

paper also reveal that the soil exhibits obvious viscous

characteristics. However, above-mentioned existing THM

models neglect considering viscous characteristics of soft

soils, which may limit their long-term prediction accuracy.

Moreover, most existing theoretical models are con-

strained to Class C level prediction, meaning that they are

primarily interpretative and rely on fitting known data

without predictive capacity beyond the observation period

[22]. Heins and Grabe [16] and Losacco and Viggiani [27]

indicated that Class C prediction needs artificially adjusted

model parameters of a new proposed model or simulation

to fit the known data. That is, this approach is carried out

after the data are available, aiming to reproduce the data

rather than forward prediction; hence, it is more accurately

characterized as back analysis. This limitation hinders their

practical utility in construction monitoring and post-treat-

ment performance evaluation. To bridge the gap between

academic modeling and engineering application, it is

essential to develop a theoretical framework that not only

Fig. 1 Schematic diagram of heating PVD improved soft soils under embankment: a plane layout (triangular arrangement of PVTD), b cross

section, and c unit cell
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incorporates realistic soil behavior but also enables real-

time forward prediction based on limited data.

In this study, a novel thermo-hydro-mechanical (THM)

coupled consolidation model is proposed by incorporating

viscous behaviors of soft soils into the existing THM

framework [25]. A particle swarm optimization (PSO)

algorithm proposed by Kennedy and Eberhart [20] is

employed to enable the automatic identification of model

parameters from limited experimental data. This approach

allows the model not only to interpret past observations but

also to reliably predict future consolidation behavior. To

validate the proposed model and identification method, a

carefully designed laboratory test was conducted. The

results demonstrate the model’s capability to capture the

essential features of heat-assisted consolidation with vis-

cous characteristics of soft soils and highlight its potential

for practical engineering applications.

2 Evaluated model

2.1 Model establishment

To consider the temperature and time-dependent stress–

strain behavior of soft soils, Chen and Yin [6] developed a

one-dimensional constitutive model. The total strain rate

can be expressed by Eq. (1), and more details can be

referred to Chen and Yin [6] and are not repeated here.

_ez ¼
jT
V

1

T

dT

dt
þ j
V

1

r0
dr0

dt
þ w
Vt0

exp �V

w
e� ezp0
� �� �

� r0

r0zp0

 !k
w

� T

T0

� �kT
w

ð1Þ

in which T and T0 denote the current and reference ther-

modynamic temperatures; r0 and r0zp0 are the present

effective stress and the soil’s preconsolidation pressure,

respectively, with ezp0 being the corresponding strain on the
reference time line at r0zp0. t0 and te refer to the reference

and equivalent times, while V is the specific volume. The

normal compression and recompression behaviors are

quantified by indices k and j, respectively, wT is the creep

coefficient accounting for temperature effects. jT captures

the elastic response during cooling-reheating; and kT rep-

resents the virgin heating compression index.

By introducing the Terzaghi effective stress principle

and transferring the thermodynamic temperature to degrees

Celsius, Eq. (1) can be rewritten as

oe
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V
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where uw is total pore pressure and r is total stress.

Liu et al. [25] derived a radial finite strain consolidation

model incorporating the thermal elastoplastic constitutive

model proposed by Laloui and Cekerevac [21], and the

strain rate of soil can be written as follows:

1
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and

knðe; TÞ ¼ knT0 � 10
e�ezp0
Ckn � qwTlðT0Þ

qwT0lðTÞ
; krðe; TÞ

¼ krT0 � 10
e�ezp0
Ckr � qwTlðT0Þ

qwT0lðTÞ
lðTÞ ¼ �0:454� 10�3 ln Tþ2.349� 10�3

ð4Þ

in which kn and kr are the hydraulic conductivities in the n-
and r-directions, with their initial values of knT0 and krT0,

and Ckr and Ckn are the corresponding permeability indices.

qwT and qwT0 denote pore water density at the current and

reference temperatures, respectively; l Tð Þ is the water

viscosity; and c
w
its unit weight. The remaining symbols

are total soil strain e, the thermal expansion coefficient of

saturated soft clay av(¼ ð1� nÞas þ naw), and porosity n.

To further consider the viscous characteristics of soft

soils, this paper extends the previous model [25] and

incorporates the 1D TEVP model proposed by Chen and

Yin [6]. The basic assumptions can be referenced from the

previous study by Liu et al. [25]. Flow in fully saturated

clay obeys to Darcy’s law; pore water experiences no phase

transition during consolidation; thermal equilibrium is

maintained within the representative volume element,

resulting in equal temperatures for pore water and particles;

deformation is only occur in vertical direction (i.e., a-di-

rection); and temperature changes have an insignificant

impact on the density of soil particles. Based on these

assumptions, and combining Eqs.(2) and (3), the governing

equation can be expressed as
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By introducing a variable rah, the Eq. (5) can be

expressed as:
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with

rah ¼ r� uh;
orah
oa

¼ Gs � 1

1þ e0
cw ð7Þ

where rah is the total stress above hydrostatic pressure; uh
is hydrostatic pore pressure; ue is excess pore pressure, e is

void ratio; and e0 is initial void ratio.

The governing equation for energy conservation does

not change when considering the 1D TEVP constitutive

model; hence, this equation can be referred to Liu et al.

[25] and presented as
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with

vwn ¼ � kv
qwTg

1þ e0
1þ e

oue
oa

;

vwr ¼ � kr
qwTg

oue
or

ð9Þ

where Cw and Cs are the specific heat capacity of pore

water and soil particles, respectively, and kw and ks are the

thermal conductivity of pore water and soil particles,

respectively.

Based on the characteristics of the proposed consolida-

tion model, the initial and boundary conditions can also

refer to the previous research of Liu et al. [25] as fol-

lows or based on actual boundary conditions.

initial conditions : ueða; r; 0Þ ¼
Gs � 1

1þ e0
c
w
a

ðconsidering self - weight consolidation processÞ
or ueða; r; 0Þ ¼ Q

ðloading after self - weight consolidationÞ;
Tða; r; 0Þ ¼ T0

boundary conditions for:

excess pore pressure :

ue a; rw; tð Þ ¼ �P tð Þ

oue a; re; tð Þ
or

¼ 0

ue H; r; tð Þ ¼ 0

oue 0; rw; tð Þ
oa

¼ 0

8
>>>>>>>>><

>>>>>>>>>:

temperature :

T a; rw; tð Þ ¼ A tð Þ

T a; re; tð Þ þ h
oT a; re; tð Þ

or
¼ T0

T H; r; tð Þ þ h1
oT H; r; tð Þ

oa
¼ T0

T 0; rw; tð Þ þ h2
oT 0; rw; tð Þ

oa
¼ T0

8
>>>>>>>>>><

>>>>>>>>>>:

ð10Þ

where Q is external loading, h, h1, and h2 are heat-related

boundary parameters, and P(t), A(t) are external time-de-

pendent vacuum and heat preloadings, respectively, which

have been introduced by Liu et al. [25].

2.2 Numerical implementation

The governing equations (i.e., Eqs. (6) and (8)) are highly

nonlinear in space and time domains. It is therefore a

challenge to give a reliable and robust analytical solution to

the proposed governing equations. Considering this com-

plexity, numerical solving tools are employed to calculate

these equations. Several numerical solving tools are

available for this task, and the COMSOL Multiphysics

software is chosen to perform calculations. The soil domain

is constructed within the COMSOL Multiphysics software

utilizing the 2D axisymmetric modeling module, and the

mesh is generated using the software’s extra fine mesh

setting. The governing equations are implemented using

three coefficient form partial differential equation modules.

This includes one module for the mass conservation

equation (i.e., Eq. (6)), another for the energy conservation
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equation (i.e., Eq. (8)), and a third module that implements

the ordinary differential equation defined by the TEVP

constitutive model in Eq. (2). Initial and boundary condi-

tions are established in the coefficient form partial differ-

ential equation module in accordance with the actual

boundary and initial conditions, followed by defining the

simulation time span. The equations are subsequently

solved utilizing the default solver (MUMPS solver) along

with the standard solver parameters to achieve the simu-

lations. All the calculation data are exported in the form of

CSV or TXT format to conduct further analysis.

2.3 Verification of the numerical method

To verify the correctness and reliability of the numerical

method, this section presents two verification examples

comparing the proposed consolidation model with two

existing consolidation models.

2.3.1 Verification with the RCS1 model

Fox et al. [14] once proposed a piecewise-linear model for

a large-strain radial consolidation model, namely RCS1

model. This subsection employed the same parameters

used in the RCS1 model to evaluate the numerical algo-

rithm proposed in this paper. In order to compare with

RCS1 model, the proposed consolidation model is degra-

ded into a radial large-strain consolidation model under

room temperature by setting the temperature of the heating

PVD to room temperature and neglecting viscous charac-

teristics of soft soils. The parameters for comparison are

summarized by Fox et al. [14] and listed in Table 1.

The average degree of consolidation defined by the

settlement is shown as follows:

Us ¼
St

S1
ð11Þ

in which St is average settlement at a given time t and S1 is

average settlement at the end of consolidation.

Figure 2 compares the average degree of consolidation

obtained from the RCS1 model and the proposed degraded

model. It can be observed that the greater value of Ck, the

faster the consolidation speed, and the greater the average

degree of consolidation. The reason is that a greater Ck

results in greater hydraulic conductivity at a given void

ratio, thereby accelerating the consolidation rate. The

average degree of consolidation calculated from the pro-

posed numerical method shows a good agreement with the

results from the well-established RCS1 model, which

illustrates the correctness and reliability of the proposed

numerical method.

2.3.2 Verification with large-strain radial consolidation
model

Indraratna et al. [18] presented a finite element simulation

for a large-strain radial consolidation model considering

the nonlinear compressibility and permeability properties
Table 1 Parameters for model verification with Fox et al. [14]

Parameter Value Unit

H 10 m

rw 0.05 m

re 0.5 m

Gs 2.7 –

ezp0 2.1 –

knT0 2� 10�9 m/s

krT0 3� 10�9 m/s

k 0.434 –

r0zp0 50 kPa

Q 50 kPa

Fig. 2 The comparison of the average degree of consolidation and the

results of Fox et al. [14]

Table 2 Parameters for model verification with Indraratna et al. [18]

Parameter Value Unit

rw 0.1 m

re 1 m

ezp0 1.5 –

krT0 1� 10�8 m/s

k 0.217 –

Ckr 0.75 –

r0zp0 50 kPa
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of soft clays. For ease of comparison, this subsection

compares the calculation results from the proposed con-

solidation model by setting the temperature of the heating

PVD to room temperature and neglecting viscous charac-

teristics of soft soils against the results from ABAQUS

simulations by Indraratna et al. [18]. The parameters used

for comparison are summarized by Indraratna et al. [18]

and listed in Table 2. The vacuum pressure of -80 kPa was

applied at t = 0 and remained constant thereafter.

Figure 3 compares the results calculated from the pro-

posed numerical method with the finite element simula-

tions conducted by Indraratna et al. [18]. It can be found

that the calculation results obtained from the numerical

method proposed in this paper have good consistency with

the previous simulations. The good agreement further

confirmed the reliability of the proposed numerical method.

3 Methods for enhancing predictive
capacity

Some existing predictive models primarily adopt Class C

methods, where the analytical model is first developed and

subsequently fitted to complete sets of post-construction

data, such as settlement and excess pore water pressures.

Although these methods can reasonably describe observed

consolidation behaviors retrospectively, their heavy

dependence on extensive historical datasets severely limits

their predictive capability and practical utility in real-time

monitoring and post-treatment evaluation scenarios.

Moreover, certain parameters, for example, parameters Ckn

and knT0 in the relationship between void ratio and per-

meability (e-k) under very low effective stresses, cannot be

obtained through standard oedometer tests, or they require

specialized equipment beyond the reach of most practi-

tioners. To address both the data dependence of Class C

prediction and the impracticality of bespoke apparatus, this

study treats these difficult-to-measure coefficients as

unknowns and determines them by combining limited field

or laboratory observed data with a proposed consolidation

model and basic parameters (e.g., void ratio, specific

gravity, etc.) from simple bench-scale tests. The estimated

values are then being input into the analytical consolidation

model, facilitating forward predictions of future soil con-

solidation behavior. The whole process of obtaining

unknown parameters can be regarded as an optimization

task. The main goal is to achieve the global optimal solu-

tion of the fitness function (described in the following step

(2)) using the measured data with the calculated data.

Particle swarm optimization is a swarm intelligence

method that emulates the patterns and collaboration of

avian flocking behavior to identify optimal solutions. In the

application of PSO algorithm in geotechnical engineering,

Cheng et al. [9] presented enhanced discontinuous-flying

PSO variants to handle the non-circular failure surfaces

problem. Ahmadi-Nedushan and Varaee [3] utilized PSO

algorithm to minimize both cost and weight of reinforced

concrete retaining walls. Kashani et al. [19] employed the

algorithm to optimize footing dimensions for shallow

foundations. Each particle, characterized by its position

and velocity, is modified according to its current best

position and the swarm’s historical best position. In each

iteration, particles reposition themselves in pursuit of a

superior solution. The process persists until the specified

number of iterations is fulfilled or a satisfactory solution is

identified. In employing the PSO method, users need

merely to configure essential variables, including popula-

tion size, also called swarm size, and maximum iteration

number. These two variables are crucial and can influence

the optimization outcomes. The swarm size influences the

Fig. 3 The comparison of the proposed model with Indraratna et al.

[18]:a vertical strain and b excess pore pressure
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computational costs, while the number of maximum iter-

ations influences both the convergence rate and the preci-

sion. The specific illustration of determing these two

variables are provided in Sect. 5. To make the whole

process clear and easier for engineers to use, detailed steps

plotted in Fig. 4 are illustrated in the following:

(1) Collect measured data from the beginning of con-

solidation to a certain time (i.e., S(t)), say 10 days or

20 days, and conduct conventional geotechnical tests

(e.g., oedometer test) to obtain basic physical and

mechanical parameters of soil. The empirical values

of soil can also be added together as another source

of given parameters. At the same time, determine the

parameters that need to be identified (usually taking

the parameters that are difficult to determine) in the

established mathematical model. Give the initial

guess of these parameters in a reasonable range (this

operation is shown in the following application case)

and calculate the settlement (i.e., Ŝ tð Þ) of soil using
given and guessed parameters during the above-

mentioned limited observed time, followed by

transferring the calculation data from COMSOL to

MATLAB software to evaluate the following fitness

function (also called total error):

f ¼
Xk

j¼1

Xl

i¼1

si Tj
� �

� ŝi Tj
� �� 
2 ð12Þ

where S and Ŝ represent the measured and calculated

soil settlement during the observation period,

respectively.

(2) Check whether the convergence criteria (reaching

maximum iteration number or minimum fitness

function value) are satisfied. If so, the calculation

terminates immediately. If not, these parameters to

be identified are automatically adjusted according to

the basic principle of the PSO algorithm. Then, a

new set of parameters (including given parameters

and optimized parameters) is sent to COMSOL for a

new round of calculation. After several rounds of

iteration, the fitness function reaches a global small

value, followed by the termination of the whole

optimization process and printing the optimized

parameters.

(3) After obtaining the optimization parameters, a

COMSOL calculation with given and optimized

parameters is then performed to calculate the subse-

quent consolidation behavior (i.e., the time after

observation).

4 Application of the proposed method
in physical model testing

Two physical model tests on Hong Kong marine deposits

(HKMD), incorporating self-weight and viscous charac-

teristics of soft soils, were conducted and labeled Test 1

and Test 2. As shown in Fig. 5, each test used a 100-cm-tall

acrylic column with a 40 cm inner diameter and a centrally

installed copper tube (100 cm long, 0.75 cm radius). The

upper end of the tube was connected via a PVC conduit

wrapped in isothermal film to a water-bath heating system

driven by a pump. Test 1 proceeded without heating (room

Fig. 4 Flowchart of PSO-assisted finite strain thermal consolidation prediction method
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temperature of 20 �C), while Test 2 was heated to 40 �C at

the start of consolidation. In the physical model tests, only

the copper pipe carrying circulating hot water was installed

along the central axis of the soil, with no horizontal drai-

nage channel (i.e., no PVD installed in the soil). Conse-

quently, when applying the theoretical model derived in

this study to simulate this experiment, the boundary at

r = rw should be treated as impermeable; only the top

boundary is set as a permeable drainage boundary. Under

the combined action of its self-weight and heat preloading,

the soil undergoes consolidation settlement. Test 1 ran for

180 days, while Test 2 lasted 122 days. During each test, a

high-resolution camera was used to track the settlement of

HKMD showing on a tape measure. Based on the recorded

settlements, time at the end of the primary consolidation

(teop) for Test 1 is approximately 38.6 days, while for Test

2 it is around 23.7 days.

Referring to Liu et al. [26], the void ratio used was

obtained indirectly through water content. According to the

temperature boundary condition, the coefficients h and h1
were set as relatively large values, say 1000, to simulate the

adiabatic boundary, while the top boundary was a constant

temperature boundary, so h2 was set as a relatively small

value (e.g., 0.001). The density of soil particles was mea-

sured at 2.63 g/cm3. The values of expansion coefficients

for soil particles and soil skeleton, specific heat capacity of

the soil, and coefficient of thermal conductivity were

sourced from Liu et al. [26]. The reference time was taken

as 1440 min (24 h). Due to the high initial water content,

the initial effective stress should be set as a very small

value. This value is in the denominator of Eq. (6), which

means it cannot be zero; hence, this value could be taken as

an identified parameter or set as a small value, such as 0.15

kPa, which is equivalent to placing a feather on a finger-

nail. Table 3 summarizes the values of the parameters used

in the proposed model. The parameters selected for opti-

mization included the hydraulic conductivity

knT0 [ [1� 10�8m/s, 1� 10�6m/s], compression index

k [ [0.5, 2], permeability index Ckn [ [0.5,

1.5] 9 k � ln 10, virgin heating compression index

kT [ [0.1, 7], and creep coefficient w [ [0.03, 0.08] 9 k.
To balance the calculation efficiency and precision, the

swarm size and maximum number of iterations in the PSO

algorithm were taken as 30 and 50 for different observed

Fig. 5 Schematic diagram of the setup of two physical model tests
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times, respectively. The selection process of these two

parameters will be illustrated in Sect. 5. The calculation

procedures for obtaining the optimized parameters are

performed on a personal computer equipped with a Win-

dows 11 operating system, an Intel(R) Core(TM) i9-

14900HX CPU running at 2.2 GHz, 32 GB of memory, and

a 1 TB SSD. The CPU calculation time for three different

optimized procedures listed in Table 4 is 6.5321 h, 7.8806

h, and 11.1612 h, respectively.

As mentioned above, the primary consolidation times

under the two tests were approximately 38.6 days (Test 1)

and 23.7 days (Test 2), respectively. Based on these values,

three observation windows of 10, 30, and 50 days were

selected to assess the PSO-assisted method across

increasingly complete stages of consolidation. Specifically,

a 10-day window represents a severely truncated dataset,

testing whether early-stage measurements alone can yield

meaningful parameter estimates. A 30-day window, by

contrast, allows evaluation of the PSO-assisted method

when observations approach the completion time of pri-

mary consolidation. Finally, a 50-day window that sur-

passes both primary consolidation times and subsequent

creep-driven settlements was employed to test the perfor-

mance of the PSO-assisted method. The fitness function

was calculated according to Eq. (12), and the calculation

process followed the detailed steps illustrated in Sect. 3.

Table 4 summarizes the optimized parameters calculated

using the PSO-assisted finite strain thermal consolidation

calculation procedure.

Figures 6, 7, and 8 demonstrate the parameter opti-

mization and error convergence behavior of a PSO-assisted

method under varying observation durations (10, 30, and

50 days). Each figure comprises six subplots tracking the

iteration evolution of hydraulic conductivity, normal

compression index, permeability index, creep index, and

virgin heating compression index During the iteration

process. For 10-day observation (Fig. 6), the parameters

converge to stable equilibria within 30 to 40 iterations: knT0
at 1:8466� 10�8 m/s (Fig. 6a), k at 1.4979 (Fig. 6b), Ckn

at 1.5 9 k � ln 10 (Fig. 6c), w at 0.03 k (Fig. 6d), kT at

6.9965k(Fig. 6e). Total error (Fig. 6f) decreases mono-

tonically, demonstrating rapid error suppression. For

30-day observation (Fig. 7), parameter stability improves

significantly. Extending the observation to 50 days, opti-

mization efficiency further increases. As shown in Fig. 8,

all parameters achieve convergence 20% to 30% faster than

in shorter observation time. All the optimization parame-

ters are listed in Table 4. Figures 6f, 7f, and 8f show that

for observation times of 10, 30, and 50 days, and the total

errors converge to 25.70, 159.24, and 166.00, respectively,

yielding mean squared error (MSE) values of 0.41, 1.54,

and 1.46 via Eq. (13). That is, an average prediction error

per point of less than 1.25 cm. A smaller MSE at the

shorter (10-day) observation interval arises simply because

fewer data points dilute the accumulated error. However,

this does not mean superior model performance is reached,

since dividing a small total error by a small sample size can

produce a lower per-point average.

Figure 9 shows the calculation results using the opti-

mized parameters listed in Table 4 under two temperatures

(i.e., 20 �C in Test 1 and 40 �C in Test 2) and three dif-

ferent observation times. It can be seen from the figure that

time t is divided into two parts, the first part named Stage 1

is used in the PSO-assisted method for searching the

undetermined parameters, while the second part named

Table 3 Partial parameters used in the proposed model

Parameter Value Unit

re 0.2 m

rw 0.075 m

as 3� 10�5 1/8C

aw 2:08� 10�4 1/8C

au 5:2� 10�5 1/8C

qsT0 2.63 g/cm3

qwT0 0.998 g/cm3

ks 2.5 W/m/8C

kw 0.6 W/m/8C

Cs 730 J/kg/8C

Cw 4186 J/kg/8C

Ckr Ckn –

h 1000 –

h1 1000 –

h2 0.001 –

j k=5 –

jT kT=5 –

e0 9.5 –

r0zp0 0.15 kPa

t0 1440 min

Table 4 Optimized parameters calculated from different observation

times

Parameter Observed time/days Unit

10 30 50

knT0 1:8466� 10�8 2:1087� 10�8 2:092� 10�8 m/s

k 1.4979 1.4994 1.5 –

Ckn 1.5 � k � ln 10 1.5 � k � ln 10 1.5 � k � ln 10 –

w 0.03k 0.0314k 0.03k –

kT 6.9965k 6.997k 7k –
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Stage 2 is employed to examine the predictive capacity. As

shown in Fig. 9, when the observed time is taken as 10

days, a pronounced difference (at least larger than 11%)

has been found in the subsequent prediction process, and

the larger the value of observed time, the smaller the dif-

ference in observed and measured data, the better the

predictive effects. Limited observational data may contain

inherent noise and fail to comprehensively characterize the

nonlinear finite strain thermo-consolidation behavior.

Extending observation periods mitigates the impact of

noise while accentuating the distinctive features of non-

linear consolidation, allowing mathematical models to

better capture these changes. Consequently, the PSO-as-

sisted method achieves higher efficiency in parameter

optimization and presents improved predictive accuracy.

Even though predicted settlements calculated by the

Fig. 6 Optimization parameters and total error calculated using PSO-assisted method with the observed time of 10 days

Fig. 7 Optimization parameters and total error calculated using PSO-assisted method with the observed time of 30 days
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optimized parameters obtained from a shorter observed

time (e.g., 10 days) may not have a good prediction of a

large time range, the subsequent few days’ predictions, say

2 or 3 days, can still provide a reasonable reference. By

obtaining and introducing more observed settlement data,

such as 30 days (see Fig. 9a) or 50 days (see Fig. 9b), the

predicted settlement curve gradually aligns with real-world

measurements. Therefore, it can be concluded that the

more monitoring data the algorithm incorporates, the

higher its accuracy becomes. Moreover, the observed data

show viscous characteristics (refer to creep deformation

here), which have been captured by the proposed model.

Therefore, considering the viscous characteristics of soft

soils is meaningful. Although there remains a deviation

between the predicted curves and measured data During

Stage 2, with the proposed model appearing to slightly

overestimate measured settlement when the observation

time is 30 days or longer, this error is minor (below 4%, see

Fig. 10c) and is expected to decrease as additional obser-

vation points are incorporated.

To quantify the predictive effects, two indices, namely

MSE and relative error (RE), are employed to evaluate the

capacity. The square mean error and relative error are

defined as:

MSE ¼ 1

n

Xn

i¼1

si � ŝið Þ2

RE ¼ si � ŝi
si

� 100%

ð13Þ

where si is the ith observed settlement value and ŝi is the ith

predicting settlement value.

Figure 10a to 10c displays scatter plots that compare

predicted and observed settlement at two temperature

conditions (i.e., 20 �C and 40 �C). Figure 10a illustrates

that the predicted settlement values at 20 �C (blue squares)

closely align with the observed data along the optimum

prediction line (dashed line), resulting in a minimal relative

error of 7.99%. Predicted settlements at 40 �C (red dots)

show increased deviations, with a maximum relative error

of 19.54%. Figure 10b illustrates enhanced precision at

both temperatures, with relative error diminished to 5%

(40 �C) and 3.88% (20 �C). The small range in Fig. 10c

reaches nearly ideal accuracy, with errors as minimal as

1.69% (20 �C) and 3.54% (40 �C). Besides, the overall

MSE (i.e., a combination of MSE in different temperatures

during Stage 2 period) during Stage 2 period, calculated

using Eq. (13) for three different observed times, is 3.0993,

0.2877, and 0.2705, respectively. The quantified error

analysis further emphasizes that when the chosen obser-

vation period is equal to or greater than the primary con-

solidation completion time, the error of Stage 2 falls below

5%. Therefore, to achieve high-accuracy predictions, the

observation window should be no shorter than the time

required for primary consolidation. Moreover, in practical

applications of the present model combined with the PSO-

assisted method, monitoring data collected continuously

after the primary consolidation period could be incorpo-

rated to further enhance prediction accuracy.

Fig. 8 Optimization parameters and total error calculated using PSO-assisted method with the observed time of 50 days
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Fig. 9 The comparison of settlement between the experimental data and predicted values with different observed times: a 10 days, b 30 days, and

c 50 days
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5 Selection of PSO algorithm parameters

The selection of PSO parameters, particularly the swarm

size and maximum iteration numbers, significantly impacts

the computation of optimized parameters and, as a result,

affects the predictive capability of a prediction model.

Optimal settings must achieve a balance between estima-

tion accuracy and computational cost. A swarm size and

maximum iteration numbers that are too small can result in

unstable searches and biased fits. Conversely, excessively

large values may enhance precision but significantly

increase the runtime.

A universal combination of swarm size and maximum

iteration numbers may not exist. Two practical strategies

are commonly recommended. One approach is to ignore

calculation costs and utilize significantly large values (e.g.,

swarm size = 100 and maximum iteration numbers = 100

as referenced in [5]), which demonstrates robustness but

lacks efficiency. This study adheres to a more cost-effec-

tive protocol. The swarm size is initially selected from the

recommended range of 20–40 [30], with a fixed size of 30

in this paper. Subsequently, the maximum number of

iterations is increased until convergence is achieved for

both the total error function and the optimized parameters.

The data provide evidence that supports this choice.

Table 5 presents a comparison of three sets of PSO algo-

rithm parameter combinations, namely, combination I,

combination II, and combination III, and the corresponding

swarm sizes and maximum iteration numbers for these

combinations are (10, 30), (30, 50), and (50, 70), respec-

tively. The computation duration increases markedly from

1.6415 h for combination I to 7.8806 h for combination II

and thereafter to 20.1054 h for combination III. Notably,

the optimized parameters for combination II and combi-

nation III are almost identical. The convergence histories

presented in Fig. 11 demonstrate that the total loss and

optimized parameter estimates converged after approxi-

mately 45 iterations. Figure 12 consistently demonstrates

that the predicted settlement curves for combinations II and

III are nearly identical, while combination I exhibits a

significant deviation. Based on this analysis, we select 30

as the swarm size and 50 as the maximum number of

iterations. The selected parameter combination ensures

quick and stable convergence, avoiding the diminishing

returns associated with larger swarms or increased iteration

numbers.

Increasing the number of observation points results in a

higher cost for each fitness evaluation, as each particle

must be assessed against a greater volume of data. How-

ever, this adjustment does not change the dimensionality of

the optimized parameter space. Therefore, the swarm size

and maximum iteration numbers typically do not require
Fig. 10 Scatter plots of predicted and observed settlements with

different observed times: a 10 days, b 30 days, and c 50 days
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changing when the dataset is extended. The results from

our experiments demonstrate that, when utilizing consistent

settings (swarm size = 30, maximum iteration num-

bers = 50), the 50-day observations yielded stable parame-

ter estimates and a converged loss. This confirms the

effectiveness of our selected PSO algorithm parameters

across varying data lengths without compromising perfor-

mance (refer to Fig. 8).

6 Conclusions

Themain conclusions of this paper are summarized as follows:

(1) A radial finite strain consolidation model incorpo-

rating thermal elastic visco-plastic constitutive

model is extended to further consider the viscous

behavior of soft soils. A numerical solver has been

employed to solve the coupled governing equations.

Two verification cases have been conducted to verify

the correctness of the numerical solution method.

(2) A PSO-assisted method has been proposed to

enhance the performance of the proposed consolida-

tion model. This algorithm combines the established

consolidation model, limited observed data, and

results from conventional techniques to conduct

real-time accurate prediction of thermal consolida-

tion behavior for soft soils.

(3) Two physical model tests have been performed to

examine the validity of the proposed consolidation

model as well as the PSO-assisted analysis method.

The comparison between the test and calculation

results highlights the necessity of establishing the

newly developed consolidation model and the use-

fulness of the proposed algorithm.

Fig. 11 Optimization parameters and total error calculated from three sets of PSO algorithm parameter combinations with the observed time of

30 days

Table 5 Optimized parameters calculated from different sets of PSO algorithm parameter combinations

Parameter Different PSO algorithm parameter combinations Unit

I II III

knT0 2:4790� 10�8 2:1087� 10�8 2:1020� 10�8 m/s

k 1 1.4994 1.4999 –

Ckn 1.5 � k � ln 10 1.5 � k � ln 10 1.5 � k � ln 10 –

w 0.0314k 0.0314k 0.0315k –

kT 7k 6.997k 6:999k –
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(4) For field-scale applications of the proposed consol-

idation model, it is recommended that the observa-

tion dataset should include primary consolidation

measurements to ensure high accuracy of subsequent

predictions. Additionally, even when predictions are

based on observation times beyond primary consol-

idation, practical application of the present model

with the PSO-assisted method can incorporate mon-

itoring data collected after the primary consolidation

period to further improve forecast accuracy During

Stage 2.

(5) The determination of swarm size and maximum

iteration numbers in the PSO algorithm typically

involves two methods. One option for the swarm size

is to select a range between 20 and 40. The minimum

number, or any number above this threshold, that

ensures the convergence of optimized parameters

and the loss function can be regarded as the

maximum number of iterations. In contrast, two big

values, such as 100 and 100, can be selected for

swarm size and maximum iteration numbers without

considering computational costs.
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