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Abstract
In this paper, we examine a stochastic linear-quadratic control problem character-
ized by regime switching and Poisson jumps. All the coefficients in the problem are 
random processes adapted to the filtration generated by Brownian motion and Pois-
son random measure for each given regime. The model incorporates two distinct 
types of controls: the first is a conventional control that appears in the continuous 
diffusion component, while the second is an unconventional control, dependent on 
the variable z, which influences the jump size in the jump diffusion component. 
Both controls are constrained within general closed cones. By employing the Mey-
er-Itô formula in conjunction with a generalized squares completion technique, we 
rigorously and explicitly derive the optimal value and optimal feedback control. 
These depend on solutions to certain multi-dimensional fully coupled stochastic 
Riccati equations, which are essentially backward stochastic differential equations 
with jumps (BSDEJs). We establish the existence of a unique nonnegative solution 
to the BSDEJs. One of the major tools used in the proof is the newly established 
comparison theorems for multi-dimensional BSDEJs.
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1  Introduction

Since the pioneering work of Wonham [22], stochastic linear-quadratic (LQ) theory 
has been extensively studied by numerous researchers. For instance, Bismut [2] was 
the first one who studied stochastic LQ problems with random coefficients. In order 
to obtain the optimal random feedback control, he formally derived a stochastic Ric-
cati equation (SRE). But he could not solve the SRE in the general case. It is Kohl-
mann and Tang [12], for the first time, that established the existence and uniqueness 
of the one-dimensional SRE. Tang [18, 19] made another breakthrough and proved 
the existence and uniqueness of the matrix valued SRE with uniformly positive con-
trol weighting matrix using two different approaches. Sun, Xiong and Yong [17] stud-
ied the indefinite stochastic LQ problem with random coefficients. Hu and Zhou [10] 
solved the stochastic LQ problem with cone control constraint. Zhang, Dong and 
Meng [25] made a great progress in solving stochastic LQ control and related SRE 
with jumps with uniformly positive definite control weight by inverse flow technique. 
Li, Wu and Yu [13] considered the stochastic LQ problem with jumps in the indefinite 
case. Please refer to Chapter 6 in Yong and Zhou [24] for a systematic account on 
this subject.

Stochastic LQ problems for Markovian regime switching system were studied in 
Wen, Li and Xiong [21] and Zhang, Li and Xiong [26] where weak closed-loop solv-
ability, open-loop solvability and closed-loop solvability were established. But the 
coefficients are assumed to be deterministic functions of time t for each given regime 
i in the above papers, so their SREs are indeed deterministic ordinary differential 
equations (ODEs). Hu, Shi and Xu [6, 7] formulated cone-constrained stochastic 
LQ problems with regime switching on finite time horizon and infinite time horizon 
respectively, in which the coefficients are stochastic processes adapted to the filtra-
tion generated by the Brownian motion for each give regime i. Due to the randomness 
of the coefficients, the corresponding SREs in [6, 7] are actually backward stochastic 
differential equations (BSDEs). Hu, Shi and Xu [8] extended the model [6] to include 
non-homogeneous terms, but without control constraints. Please note that finding 
feedback controls for non-homogeneous LQ problems with control constraints seems 
a formidable challenge, even if all the coefficients are deterministic. In addition to the 
SREs in [6], a system of linear BSDEs with unbounded coefficients is employed to 
construct the optimal feedback control in [8]. The main contribution of [8] is to prove 
the existence of unique solution to this system of linear BSDEs with unbounded coef-
ficients by means of BMO martingales and contraction mapping method.

In this paper, we generalize the LQ problem in [6] to a model in which the coef-
ficients are stochastic processes adapted to the filtration generated by a Brownian 
motion and a Poisson random measure for each give regime i. In addition to a usual 
control u1, we introduce a second control u2(z) depending on the jump size z. The 
motivations to incorporating the second control are, in insurance area, the optimal 
reinsurance strategies may depend on the claim size in general, see, e.g., Liu and Ma 
[14] and Wu, Shen, Zhang and Ding [23]; and in controllability issues for stochastic 
systems with jump diffusions, a control depending on the jump size is necessary as a 
consequence of martingale representation theorem of Poisson random measures, see, 
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e.g., Goreac [5] and Song [16]. The application of this kind of stochastic LQ model in 
a optimal liquidation problem with dark pools can be found in our working paper [3].

The first main contribution of this paper is to provide a pure analysis method 
(using tools like approximation technique, comparison theorem for multi-dimen-
sional BSDE with jumps (BSDEJs), log transformation, etc) of the existence of a 
unique solution to the corresponding system of SREs, which is a 2ℓ-dimensional 
coupled BSDEJs. This is interesting in its own right from the point of view of BSDE 
theory. Note that although the SREs in [6] are 2ℓ-dimensional, they are partially 
coupled, that is, the first ℓ equations for {P i

1}i∈M and the second ℓ equations for 
{P i

2}i∈M are totally decoupled. But in our new model, the equation for P i
1 also 

depends on (P i
2, Γi

2), rendering the 2ℓ-dimensional SREs in our new model are fully 
coupled. This more complicated phenomenon comes from the fact that, to the best of 
our knowledge, the optimal state process will probably change its sign at the jump 
time of the underlying Poisson random measure. Compared with the 2-dimensional 
SREs in Hu, Shi and Xu [9], here we need to study 2ℓ-dimensional SREs because of 
the new coupling terms 

∑
j qijP j

1  and 
∑

j qijP j
2 . Please note that the uniqueness of 

the solution to SREs in [9] is obtained by verification arguments which is an indirect 
approach. The second main contribution is to give a rigorous verification theorem of 
the optimal value and optimal control, using the unique solution to the corresponding 
system of SREs, Meyer-Itô’s formula, a generalized squares completion technique 
and some delicate analysis.

The rest part of this paper is organized as follows. In Section 2, we formulate a 
constrained stochastic LQ control problem with regime switching, controlled jump 
size and random coefficients. Section  3 is devoted to proving the existence of a 
unique nonnegative solution to the related 2ℓ-dimensional fully coupled SREs in 
standard and singular cases. In Section 4, we solve the LQ problem by establishing a 
rigorous verification theorem.

2  Problem Formulation

Let (Ω, F ,F,P) be a fixed complete filtered probability space. The filtration 
F = {Ft, t ≥ 0} is generated by the following three independent random sources 
augmented by all the P-null sets.

	● The first random source is a standard n-dimensional Brownian motion 
Wt = (W1,t, . . . , Wn1,t)⊤.

	● The second one is an n2-dimensional Poisson random measure 
N = (N1, . . . , Nn2)⊤ defined on R+ × Z , where Z ⊂ Rℓ \ {0} is a nonempty 
Borel subset of some Euclidean space. For each k = 1, . . . , n2, Nk posses the 
same stationary compensator (intensity measure) ν(dz)dt satisfying ν(Z) < ∞. 
The compensated Poisson random measure is denoted by Ñ(dt, dz).

	● The third one is a continuous-time stationary Markov chain αt valued in a finite 
state space M = {1, 2, . . . , ℓ} with ℓ ≥ 1. The Markov chain has a generator 
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Q = (qij)ℓ×ℓ with qij ≥ 0 for i ̸= j and 
∑ℓ

j=1 qij = 0 for every i ∈ M.

Besides the filtration F, we will often use the filtration FW,N = {FW,N
t , t ≥ 0} 

which is generated by the Brownian motion W and the Poisson random measures 
N and augmented by all the P-null sets. Throughout the paper, let T denote a fixed 
positive constant, P  (resp. PW,N ) denote the F (resp. FW,N )-predictable σ-field on 
Ω × [0, T ], and B(Z) denote the Borelian σ-field on Z .

We denote by Rℓ the set of ℓ-dimensional column vectors, by Rℓ
+ the set of vectors 

in Rℓ whose components are nonnegative, by Rℓ×n the set of ℓ × n real matrices, 
by Sn the set of n × n symmetric real matrices, by Sn

+ the set of n × n nonnegative 
definite real matrices, and by 1n the n-dimensional identity matrix. For any vector 
Y, we denote Yi as its i-th component. For any matrix M = (mij), we denote its 
transpose by M⊤, and its norm by |M | =

√∑
ij m2

ij . If M ∈ Sn is positive definite 

(resp. positive semidefinite), we write M > (resp. ≥) 0. We write A > (resp. ≥) B 
if A, B ∈ Sn and A − B > (resp. ≥) 0. We write the positive and negative parts 
of x ∈ R as x+ = max{x, 0} and x− = max{−x, 0} respectively. The elementary 
inequality |a⊤b| ≤ c|a|2 + |b|2

2c  for any a, b ∈ Rn, c > 0, will be used frequently 
without claim. Throughout the paper, we use c to denote a suitable positive constant, 
which is independent of (t, ω, i) and can be different from line to line.

2.1  Notation

We use the following notation throughout the paper:

	

L∞
FT

(Ω;R) =
{

ξ : Ω → R
∣∣∣ ξ is FT -measurable, and essentially bounded

}
,

L2
F(0, T ;R) =

{
ϕ : [0, T ] × Ω → R

∣∣∣ ϕ is F-predictable and E
ˆ T

0
|ϕt|2dt < ∞

}
,

L∞
F (0, T ;R) =

{
ϕ : [0, T ] × Ω → R

∣∣∣ ϕ is F-predictable and essentially bounded
}

,

L2,ν(R) =
{

ϕ : Z → R is measurable with ∥ϕ(·)∥2
ν :=

ˆ

Z
ϕ(z)2ν(dz) < ∞

}
,

L∞,ν(R) =
{

ϕ : Z → R is measurable and ϕ is bounded dν-a.e.
}

,

L2,ν
P (0, T ;R) =

{
ϕ : [0, T ] × Ω × Z → R

∣∣∣ ϕ is P ⊗ B(Z)-measurable

and E
ˆ T

0

ˆ

Z
|ϕt(z)|2ν(dz)dt < ∞

}
,

L∞
P (0, T ;R) =

{
ϕ : [0, T ] × Ω × Z → R

∣∣∣ ϕ is P ⊗ B(Z)-measurable and essentially bounded
}

,

S∞
F (0, T ;R) =

{
ϕ : Ω × [0, T ] → R

∣∣∣ ϕ is càd-làg,F-adapted and essentially bounded
}

.

These definitions are generalized in the obvious way to the cases that F  is replaced 
by FW,N , F by FW,N , P  by PW,N  and R by Rn, Rn×m or Sn. In our argument, t, ω, 
“almost surely” and “almost everywhere”, will be suppressed for simplicity in many 
circumstances, when no confusion occurs. All the processes and maps considered in 
this paper, unless otherwise stated, are stochastic, so, for notation simplicity, we will 
not write their dependence on ω explicitly. Equations and inequalities shall be under-
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stood to hold true dP ⊗ dt ⊗ dν-a.e. For a random variable or stochastic process X, 
we write X ≫ 1 (resp. X ≪ 1) if there exists a constant c > 0 such that X ≥ c (resp. 
|X| ≤ c).

Consider the following real-valued linear stochastic differential equation (SDE) 
with jumps:

	




dXt =
[
A

αt−
t Xt− + (Bαt−

1,t )⊤u1,t +
´

Z B
αt−
2,t (z)⊤u2,t(z)ν(dz)

]
dt

+
[
C

αt−
t Xt− + D

αt−
t u1,t

]⊤ dWt

+
´

Z
[
E

αt−
t (z)Xt− + F

αt−
t (z)u2,t(z)

]⊤
Ñ(dt, dz), t ∈ [0, T ],

X0 = x, α0 = i0,

� (2.1)

where Ai, Bi
1, Ci, Di are all FW,N -predictable processes, and Bi

2(·), Ei(·), F i(·) 
are PW,N ⊗ B(Z)-measure processes of suitable sizes, (u1, u2) is the control and 
x ∈ R, i0 ∈ M are the known initial values.

Let Π1, Π2 be two given closed cones (not necessarily convex) in Rm1  and Rm2 , 
respectively. The class of admissible controls is defined as the set

	

U :=
{

(u1, u2)
∣∣∣ u1 ∈ L2

F(0, T ;Rm1), u1,t ∈ Π1, dP ⊗ dt-a.e.,

and u2 ∈ L2,ν
P (0, T ;Rm2), u2,t ∈ Π2, dP ⊗ dt ⊗ dν-a.e.

}
.

If u ≡ (u1, u2) ∈ U , then the SDE (2.1) admits a unique strong solution X, and we 
refer to (X, u) as an admissible pair.

Let us now state our stochastic linear quadratic optimal control problem as follows:

	

{
Minimize J(u; x, i0)
subject to u ∈ U , � (2.2)

where the cost functional J is given as the following quadratic form

	
J(u; x, i0) := E

{
GαT X2

T +
ˆ T

0

[
u⊤

1,tR
αt
1,tu1,t + Qαt

t X2
t +
ˆ

Z
u2,t(z)⊤Rαt

2,t(z)u2,t(z)ν(dz)
]
dt

}
. � (2.3)

The optimal value of the problem is defined as

	
V (x, i0) = inf

u∈U
J(u; x, i0).

Problem (2.2) is said to be solvable, if there exists a control u∗ ∈ U  such that

	 −∞ < J(u∗; x, i0) ≤ J(u; x, i0), ∀ u ∈ U ,

in which case, u∗ is called an optimal control for problem (2.2) and one has

	 V (x, i0) = J(u∗; x, i0).
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Remark 2.1  By choosing Π1 = {0} (resp. Π2 = {0}), our model covers the case of 
Ri

1 = 0, Di = 0, Bi
1 = 0 (resp. Ri

2 = 0, F i = 0, Bi
2 = 0). In particular, our model 

covers the pure jump (i.e. (Bi
1, Ci, Di, Ri

1) = 0) and pure continuous diffusion (i.e., 
(Bi

2, Ei, F i, Ri
2) = 0) models.

Throughout this paper, we put the following assumption on the coefficients.

Assumption 2.1  It holds, for every i ∈ M, that

	




Ai ∈ L∞
FW,N (0, T ;R), Bi

1 ∈ L∞
FW,N (0, T ;Rm1), Bi

2 ∈ L∞
PW,N (0, T ;Rm2),

Ci ∈ L∞
FW,N (0, T ;Rn1), Di ∈ L∞

FW,N (0, T ;Rn1×m1),
Ei ∈ L∞

PW,N (0, T ;Rn2), F i ∈ L∞
PW,N (0, T ;Rn2×m2),

Ri
1 ∈ L∞

FW,N (0, T ;Sm1
+ ), Ri

2 ∈ L∞
PW,N (0, T ;Sm2

+ ),
Qi ∈ L∞

FW,N (0, T ;R+), Gi ∈ L∞
FW,N

T

(Ω;R+).

Under Assumption 2.1, the cost functional (2.3) is nonnegative, hence problem (2.2) 
is well-posed.

Besides Assumption 2.1, we need the following hypotheses: 

1.	 Ri
1 ≥ δ1m1 .

2.	 (Di)⊤Di ≥ δ1m1 .
3.	 Ri

2 ≥ δ1m2 .
4.	 (F i)⊤F i ≥ δ1m2 .

We will consider the problem under one of following two assumptions.

Assumption 2.2  (Standard case) There exists a constant δ > 0 such that both hypoth-
esizes 1 and 3 hold.

Assumption 2.3  (Singular case) There exists a constant δ > 0 such that Gi ≥ δ and 
one of the following holds: 

Case I.	 Both hypothesizes 2 and 3 hold;
Case II.	 Both hypothesizes 2 and 4 hold;
Case III.	Both hypothesizes 1 and 4 hold.

Remark 2.2  As is well-known, there is no essential difficulty to consider a more gen-
eral cost functional comprising cross terms:

	

J̃(u; x, i0) := E
{

GαT X2
T +
ˆ T

0

[
u⊤

1,tR
αt
1,tu1,t + 2u⊤

1,tS
αt
1,tXt + Qαt

t X2
t

+
ˆ

Z

(
u2,t(z)⊤Rαt

2,t(z)u2,t(z) + 2u2,t(z)⊤Sαt
2,t(z)Xt

)
ν(dz)

]
dt

}
.

� (2.4)

Let us explain this point in the Standard case. Under Assumption 2.2, by regarding
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	 (ũ1, ũ2) := (u1 − R−1
1 S1X, u2 − R−1

2 S2X)

as the new control, LQ problem under the state process (2.1), and cost functional 
(2.4) could be reduced to one without cross terms:

	
J(ũ; x, i0) = E

{
GαT X̃2

T +
ˆ T

0

[
ũ⊤

1,tR
αt
1,tũ1,t + Q̃αt

t X̃2
t +
ˆ

Z
ũ2,t(z)⊤Rαt

2,t(z)ũ2,t(z)ν(dz)
]
dt

}
.

subject to the state

	




dX̃t =
[
Ã

αt−
t X̃t− + (Bαt−

1,t )⊤ũ1,t +
´

Z B
αt−
2,t (z)⊤ũ2,t(z)ν(dz)

]
dt

+
[
C̃

αt−
t X̃t− + D

αt−
t ũ1,t

]⊤
dWt

+
ˆ

Z

[
Ẽ

αt−
t (z)X̃t− + F

αt−
t (z)ũ2,t(z)

]⊤
Ñ(dt, dz), t ∈ [0, T ],

X̃0 = x, α0 = i0,

where

	

Ãi := Ai − (Bi
1)⊤(Ri

1)−1Si
1 −
ˆ

Z
(Bi

2)⊤(Ri
2)−1Si

2ν(dz), C̃i := Ci − D(Ri
1)−1Si

1,

Ẽi := Ei − F i(Ri
2)−1Si

2, Q̃i := Qi − (Si
1)⊤(Ri

1)−1Si
1 −
ˆ

Z
(Si

2)⊤(Ri
2)−1Si

2ν(dz)

provided Q̃i ≥ 0.

3  Solvability of the Riccati Equations

For any i ∈ M, j = 1, 2, let us denote by Ei
k the k-th component of Ei, Γi

jk the k-th 
component of Γi

j  and F i
k the k-th row of F i, k = 1, . . . , n2. To solve problem (2.2), 

we need to study the following 2ℓ-dimensional SRE with jumps (the arguments t and 
ω are suppressed):

	




dP i
1 = −

[
(2Ai + |Ci|2)P i

1 + 2(Ci)⊤Λi
1 + Qi + Hi,∗

11 (P i
1, Λi

1)

+
´

Z Hi,∗
12 (z, P i

1, P i
2, Γi

1, Γi
2)ν(dz) +

∑ℓ
j=1 qijP j

1

]
dt

+(Λi
1)⊤dW +

´
Z Γi

1(z)⊤Ñ(dt, dz),
dP i

2 = −
[
(2Ai + |Ci|2)P i

2 + 2(Ci)⊤Λi
2 + Qi + Hi,∗

21 (P i
2, Λi

2)

+
´

Z Hi,∗
22 (z, P i

1, P i
2, Γi

1, Γi
2)ν(dz) +

∑ℓ
j=1 qijP j

2

]
dt

+(Λi
2)⊤dW +

´
Z Γi

2(z)⊤Ñ(dt, dz),
P i

1,T = Gi, P i
2,T = Gi, Ri

1 + P i
1(Di)⊤Di > 0, Ri

1 + P i
2(Di)⊤Di > 0, i ∈ M,

� (3.1)

where, for any 
(t, v, z, P1, P2, Λ, Γ1, Γ2) ∈ [0, T ] × Π1( or Π2) × Z × R2

+ × Rn × (L∞,ν(Rn2)2, 
we define
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Hi
11(t,v, P1, Λ) := v⊤(Ri

1 + P1(Di)⊤Di)v + 2(P1(Bi
1 + (Di)⊤Ci) + (Di)⊤Λ)⊤v,

Hi
12(t,v, z, P1, P2, Γ1, Γ2) := v⊤Ri

2v +
n2∑

k=1

(P1 + Γ1k)
[
((1 + Ei

k + F i
kv)+)2 − 1

]

− 2P1

n2∑
k=1

(Ei
k + F i

kv) + 2P1(Bi
2)⊤v

+
n2∑

k=1

(P2 + Γ2k)((1 + Ei
k + F i

kv)−)2,

Hi
21(t,v, P2, Λ) := v⊤(Ri

1 + P2(Di)⊤Di)v − 2(P2(Bi
1 + (Di)⊤Ci) + (Di)⊤Λ)⊤v,

Hi
22(t,v, z, P1, P2, Γ1, Γ2) := v⊤Ri

2v +
n2∑

k=1

(P2 + Γ2k)
[
((−1 − Ei

k + F i
kv)−)2 − 1

]

− 2P2

n2∑
k=1

(Ei
k − F i

kv) − 2P2(Bi
2)⊤v

+
n2∑

k=1

(P1 + Γ1k)((−1 − Ei
k + F i

kv)+)2,

and

	

Hi,∗
11 (t,P1, Λ) := inf

v∈Π1
Hi

11(t,v, P1, Λ),

Hi,∗
12 (t,z, P1, P2, Γ1, Γ2) := inf

v∈Π2
Hi

12(t,v, z, P1, P2, Γ1, Γ2),

Hi,∗
21 (t,P2, Λ) := inf

v∈Π1
Hi

21(t,v, P2, Λ),

Hi,∗
22 (t,z, P1, P2, Γ1, Γ2) := inf

v∈Π2
Hi

22(t,v, z, P1, P2, Γ1, Γ2).

To shorten notation, we omit the arguments t of Bi
1, Bi

2, Ci, Di, Ei, F i, Ri
1, Ri

2 in 
the definitions of Hi

kj , k, j = 1, 2. Because the generators in (3.1) depend on all P i
j s, 

hence (3.1) is a system of fully coupled BSDEJs.

Definition 3.1  A vector of stochastic process (P i
j , Λi

j , Γi
j)i∈M, j=1,2 is called a 

solution to the BSDEJ (3.1) if it satisfies all the equations and constraints in (3.1), 
and (P i

j , Λi
j , Γi

j) ∈ S∞
FW,N (0, T ;R) × L2

FW,N (0, T ;Rn1) × L∞,ν
PW,N (0, T ;Rn2) 

for all i ∈ M, j = 1, 2. Furthermore, the solution is called nonnegative if 
P i

j ≥ 0, P i
j + Γi

j ≥ 0, and called uniformly positive if P i
j ≫ 1 and P i

j + Γi
j ≫ 1, 

for all i ∈ M, j = 1, 2.

Before giving the proof of main theorem in this section, let us recall the definition 
of bounded mean oscillation martingales, briefly called BMO martingales. Please 
refer to Kazamaki [11] for a systematic account on continuous BMO martingales. A 
process 

´ t

0 ϕ⊤
s dWs is called a BMO martingale if and only if there exists a constant 

c > 0 such that
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E

[ˆ T

τ

|ϕs|2ds
∣∣∣ FW,N

τ

]
≤ c

for all FW,N  stopping times τ ≤ T . In the uniqueness part of the Theorem 3.1, we 
will use the following property of BMO martingales: If 

´ t

0 ϕ⊤
s dWs is a BMO mar-

tingale on [0, T], then the Doléans-Dade stochastic exponential E
( ´ t

0 ϕ⊤
s dWs

)
 is a 

uniformly integrable martingale on [0, T]. We have finer estimates for solutions to 
(3.1) under Assumption 2.1 shown as below.

Lemma 3.1  Let Assumption 2.1 hold. If (P i
j , Λi

j , Γ i
j )i∈M, j=1 ,2  is a solution to (3.1), 

then 
´ ·

0 Λi
jdW  is a BMO martingale, i ∈ M, j = 1 , 2 .

Proof  Applying Itô’s formula to |P i
1,t|2, we get, for any FW,N  stopping time τ ≤ T ,

	

E
[ ˆ T

τ

|Λi
1|2ds

∣∣∣ FW,N
τ

]

≤ |Gi|2 + E
{ˆ T

τ

2P i
1

[
(2Ai + |Ci|2)P i

1 + 2(Ci)⊤Λi
1 + Qi

+ Hi,∗
11 (P i

1, Λi
1) +

ˆ

Z
Hi,∗

12 (P i
1, P i

2, Γi
1, Γi

2)ν(dz) +
ℓ∑

j=1
qijP j

1

]
ds

∣∣∣ FW,N
τ

}

≤ c + 1
2
E

[ ˆ T

τ

|Λi
1|2ds

∣∣∣ FW,N
τ

]
,

where we used Assumption  2.1, 
Hi,∗

11 ≤ 0, Hi,∗
12 (P i

1, P i
2, Γi

1, Γi
2) ≤ Hi

12(0, P i
1, P i

2, Γi
1, Γi

2), and the solution 
(P i

j , Λi
j , Γi

j)i∈M, j=1,2 is uniformly bounded. Note both sides in the above esti-
mate are finite since Λi

1 ∈ L2
FW,N (0, T ;Rn1). After rearrangement, we conclude that ´ ·

0 Λi
1dW  is a BMO martingale. Likewise, 

´ ·
0 Λi

2dW  is also a BMO martingale. � □
The following comparison theorem for multi-dimensional BSDEJs was firstly 

established in [9, Theorem 2.2]. We list it here as it plays crucial role in the solvabil-
ity of the BSDEJ (3.1).

Lemma 3.2  Suppose, for every i ∈ {1 , 2 , . . . , m},

	 (Yi, Zi, Φi), (Y i, Zi, Φi) ∈ S2
F(0, T ;R) × L2

F(0, T ;Rn) × L2,ν
P (0, T ;R),

and they satisfy BSDEJs

	
Yi,t = ξi +

ˆ T

t

fi(s, Ys−, Zi,s, Φs)ds −
ˆ T

t

Z⊤
i,sdWs −

ˆ T

t

ˆ

E
Φi,s(e)Ñ(ds, de),

and
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Y i,t = ξi +

ˆ T

t

f i(s, Y s−, Zi,s, Φs)ds −
ˆ T

t

Z
⊤
i,sdWs −

ˆ T

t

ˆ

E
Φi,s(e)Ñ(ds, de),

respectively. Also suppose that, for all i ∈ {1 , 2 , . . . , m} and s ∈ [0 , T ], 
(1)	 ξi ≤ ξi;
(2)	 there exists a constant c > 0 such that 

	

fi(s, Ys−, Zi,s, Φ1,s, · · · , Φi,s, · · · , Φℓ,s)
− fi(s, Ys−, Zi,s, Φ1,s, · · · , Φi,s, · · · , Φℓ,s)

≤ c

ˆ

E
(Φi,s(e) − Φi,s(e))+ν(de) +

ˆ

E
|Φi,s(e) − Φi,s(e)|ν(de);

(3)	 there exists a constant c > 0 such that 

	

fi(s, Ys−, Zi,s, Φ1,s, · · · , Φi,s, · · · , Φℓ,s) − fi(s, Y s−, Zi,s, Φs)

≤ c
(

|Yi,s− − Y i,s−| +
∑
j ̸=i

(Yj,s− − Y j,s−)+ + |Zi,s − Zi,s|

+
∑
j ̸=i

ˆ

E
(Yj,s− + Φj,s(e) − Y j,s− − Φj,s(e))+ν(de)

)
;

(4)	 fi(·, 0, 0, 0) and f i(·, 0, 0, 0) ∈ L2
F(0, T ;R);

(5)	 both fi and f i are Lipschitz in (y, z, ϕ); and
(6)	 fi(s, Y s−, Zi,s, Φs) ≤ f i(s, Y s−, Zi,s, Φs).
Then Yi,t ≤ Y i,t , ∀t ∈ [0 , T ] = 1 , i ∈ {1 , 2 , . . . , m}.

Theorem 3.1  Under Assumptions 2.1 and 2.2 , the BSDEJ (3.1) admits a unique non-

negative solution (P i
j , Λi

j , Γ i
j )i∈M, j=1 ,2 .

Proof  (Existence). For each natural number k, define maps

	

Hi,∗,k
11 (P1, Λ) := inf

v∈Π1,|v|≤k
Hi

11(v, P1, Λ),

Hi,∗,k
12 (z, P1, P2, Γ1, Γ2) := inf

v∈Π2,|v|≤k
Hi

12(v, z, P1, P2, Γ1, Γ2),

Hi,∗,k
21 (P2, Λ) := inf

v∈Π1,|v|≤k
Hi

21(v, P2, Λ),

Hi,∗,k
22 (z, P1, P2, Γ1, Γ2) := inf

v∈Π2,|v|≤k
Hi

22(v, z, P1, P2, Γ1, Γ2).

Then they are uniformly Lipschitz in (P1, P2, Λ, Γ1, Γ2) and decreasingly approach 
to Hi,∗

11 , Hi,∗
12 , Hi,∗

21 , Hi,∗
22  and respectively as k goes to infinity.

For each k, the following BSDE
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



dP i,k
1,t = −

[
(2Ai + |Ci|2)P i,k

1,t− + 2(Ci)⊤Λi,k
1 + Qi + Hi,∗,k

11 (P i,k
1 , Λi,k

1 )

+
∑ℓ

j=1 qijP j,k
1 +

´
Z Hi,∗,k

12 (P i,k
1 , P i,k

2 , Γi,k
1 , Γi,k

2 )ν(dz)
]
dt

+(Λi,k
1 )⊤dW +

´
Z Γi,k

1 (z)⊤Ñ(dt, dz),
dP i,k

2,t = −
[
(2Ai + |Ci|2)P i,k

2,t− + 2(Ci)⊤Λi,k
2 + Qi + Hi,∗,k

21 (P i,k
2 , Λi,k

2 )

+
∑ℓ

j=1 qijP j,k
2 +

´
Z Hi,∗,k

22 (P i,k
1 , P i,k

2 , Γi,k
1 , Γi,k

2 )ν(dz)
]
dt

+(Λi,k
2 )⊤dW +

´
Z Γi,k

2 (z)⊤Ñ(dt, dz),
P i,k

1,T = Gi, P i,k
2,T = Gi, i ∈ M,

� (3.2)

is a 2ℓ-dimensional BSDEJ with a Lipschitz generator. According to [20, Lemma 
2.4], it admits a unique solution (P i,k

j , Λi,k
j , Γi,k

j )i∈M, j=1,2 such that

	(P
i,k
j , Λi,k

j , Γi,k
j ) ∈ S2

FW,N (0, T ;R) × L2
FW,N (0, T ;Rn1) × L2,ν

PW,N (0, T ;Rn2), i ∈ M, j = 1, 2.

We next show that (P i,k
1 , P i,k

2 )i∈M are lower and upper bounded. Actually, the fol-
lowing two linear (with bounded coefficients) BSDEJs (see, e.g., [1, Proposition 2.2])

	




dP
i

1,t = −
[
(2Ai + |Ci|2)P i

1,t− + 2(Ci)⊤Λi

1 + Qi +
´

Z Hi
12(0, P

i

1, P
i

2, Γi

1, Γi

2)ν(dz)

+
∑ℓ

j=1 qijP
j

1

]
dt + (Λi

1)⊤dW +
´

Z Γi

1(z)⊤Ñ(dt, dz),

dP
i

2,t = −
[
(2Ai + |Ci|2)P i

2,t− + 2(Ci)⊤Λi

2 + Qi +
´

Z Hi
22(0, P

i

1, P
i

2, Γi

1, Γi

2)ν(dz)

+
∑ℓ

j=1 qijP
j

2

]
dt + (Λi

2)⊤dW +
´

Z Γi

2(z)⊤Ñ(dt, dz),

P
i

1,T = Gi, P
i

2,T = Gi, i ∈ M.

� (3.3)

and

	




dP i
1,t = −

[
(2Ai + |Ci|2)P i

1,t− + 2(Ci)⊤Λi
1 +

∑ℓ
j=1 qijP j

1

]
dt

+(Λi
1)⊤dW +

´
Z Γi

1(z)⊤Ñ(dt, dz),
dP i

2,t = −
[
(2Ai + |Ci|2)P i

2,t− + 2(Ci)⊤Λi
2 +

∑ℓ
j=1 qijP j

2

]
dt

+(Λi
2)⊤dW +

´
Z Γi

2(z)⊤Ñ(dt, dz),
P i

1,T = 0, P i
2,T = 0, i ∈ M.

� (3.4)

admit unique uniformly bounded solutions (P i

j , Λi

j , Γi

j)i∈M, j=1,2 and 
(P i

j , Λi
j , Γi

j)i∈M, j=1,2 respectively. Clearly, (P i
j , Λi

j , Γi
j)i∈M, j=1,2 = 0 by unique-

ness. According to the definitions of Hi,∗,k
jj′ , Hi

jj′ , we have

	

Hi,∗,k
11 (P 1, Λ1) ≤ Hi

11(0, P 1, Λ1) = 0,

Hi,∗,k
12 (P 1, P 2, Γ1, Γ2) ≤ Hi

12(0, P 1, P 2, Γ1, Γ2),
Hi,∗,k

21 (P 2, Λ2) ≤ Hi
21(0, P 2, Λ2) = 0,

Hi,∗,k
22 (P 1, P 2, Γ1, Γ2) ≤ Hi

22(0, P 1, P 2, Γ1, Γ2).

Also, thanks to Assumption 2.1,
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Qi + Hi,∗,k
11 (P 1, Λ1) +

ˆ

Z
Hi,∗,k

12 (P 1, P 2, Γ1, Γ2)ν(dz) = Qi ≥ 0,

Qi + Hi,∗,k
21 (P 2, Λ2) +

ˆ

Z
Hi,∗,k

22 (P 1, P 2, Γ1, Γ2)ν(dz) = Qi ≥ 0.

We can apply the Lemma 3.21 to (3.2) and (3.3), and to (3.2) and (3.4) (actually to 
−P i,k

j  and −P i
j), respectively, to get

	 0 = P i
1 ≤ P i,k

1 ≤ P
i

1, 0 = P i
2 ≤ P i,k

2 ≤ P
i

2.

Applying the same comparison theorem to different ks in (3.2), we get P i,k
j  is non-

increasing in k, for any i ∈ M, j = 1, 2.
A nonnegative solution to (3.1) can be constructed in much the same way as [1, 

Theorem 1], [9, Theorem 3.1] and [12, Theorem 2.1] by proving the strong con-
vergence of (P i,k

j , Λi,k
j , Γi,k

j )i∈M, j=1,2 as k → ∞. Details are left to the interested 
readers. This completes the proof of existence.

(Uniqueness). We now turn to the proof of uniqueness. Suppose 
(P i

j , Λi
j , Γi

j)i∈M, j=1,2 and
(P̃ i

j , Λ̃i
j , Γ̃i

j)i∈M, j=1,2 are two nonnegative solutions of (3.1). Then there exists a 
constant M > 0 such that, for all i ∈ M, j = 1, 2,

	 0 ≤ P i
j , P̃ i

j ≤ M.

Estimates similar as in [9, Theorem 3.1] yields also that

	 0 ≤ P i
j,t− + Γi

j,t, P̃ i
j,t− + Γ̃j

j,t ≤ M.

Let a > 0 be a sufficiently small constant such that Ri
1 − a(Di)⊤Di > 0. Write 

ϱ = a
a+M , then 0 < ϱ < 1. Let

	

(U i
j , V i

j , Φi
jk) =

(
ln(P i

j + a),
Λi

j

P i
j + a

, ln
(

1 +
Γi

jk

P i
j,t− + a

))
,

(Ũ i
j , Ṽ i

j , Φ̃i
jk) =

(
ln(P̃ i

j + a),
Λ̃i

j

P̃ i
j + a

, ln
(

1 +
Γ̃i

jk

P̃ i
j,t− + a

))

for all i, j, k. Then we have the estimates

	
ϱ ≤ eΦi

jk , eΦ̃i
jk ≤ ϱ−1,

eUi
1+Φi

1,k − a

eUi
1

= P i
1 + Γi

1k

eUi
1

≥ 0,
eUi

2+Φi
2,k − a

eUi
1

= P i
2 + Γi

2k

eUi
1

≥ 0.� (3.5)

Also,

1 Conditions (1)-(5) can be obtained in a similar way as [9, Theorem 3.1]
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


dU i
1 = −

[
(2Ai + |Ci|2)(1 − ae−Ui

1) + 2(Ci)⊤V i
1 + Qie−Ui

1 + 1
2 |V i

1 |2 +
∑ℓ

j=1 qijeUj
1 −Ui

1

+H̃i,∗
11 (U i

1, V i
1 ) +

´
Z H̃i,∗

12 (U i
1, U i

2, Φi
1, Φi

2)ν(dz) +
∑n2

k=1
´

Z(eΦi
1,k − Φi

1,k − 1)ν(dz)
]
dt

+(V i
1 )⊤dW +

´
Z Φi

1(z)⊤Ñ(dt, dz),
dU i

2 = −
[
(2Ai + |Ci|2)(1 − ae−Ui

2) + 2(Ci)⊤V i
2 + Qie−Ui

2 + 1
2 |V i

2 |2 +
∑ℓ

j=1 qijeUj
2 −Ui

2

+H̃i,∗
21 (U i

2, V i
2 ) +

´
Z H̃i,∗

22 (U i
1, U i

2, Φi
1, Φi

2)ν(dz) +
´

Z
∑n2

k=1(eΦi
2,k − Φi

2,k − 1)ν(dz)
]
dt

+(V i
2 )⊤dW +

´
Z Φi

2(z)⊤Ñ(dt, dz),
U i

1,T = U i
2,T = ln(Gi + a), i ∈ M,

where

	

H̃i
11(v, U1, V1) := v⊤(Ri

1e−U1 + (1 − ae−U1)(Di)⊤Di)v
+ 2((1 − ae−U1)(Bi

1 + (Di)⊤Ci) + (Di)⊤V1)⊤v,

H̃i
12(v, U1, U2, Φ1, Φ2) := v⊤Ri

2e−U1v +
n2∑

k=1

eU1+Φ1,k − a

eU1

(
((1 + Ei

k + F i
kv)+)2 − 1

)

− 2(1 − ae−U1)
n2∑

k=1

(Ei
k + F i

kv) + 2(1 − ae−U1)(Bi
2)⊤v

+
n2∑

k=1

eU2+Φ2,k − a

eU1
((1 + Ei

k + F i
kv)−)2,

H̃i
21(v, U2, V2) := v⊤(Ri

1e−U2 + (1 − ae−U2)(Di)⊤Di)v
− 2((1 − ae−U2)(Bi

1 + (Di)⊤Ci) + (Di)⊤V2)⊤v,

H̃i
22(v, U1, U2, Φ1, Φ2) := v⊤Ri

2e−U2v +
n2∑

k=1

eU2+Φ2,k − a

eU2

(
((−1 − Ei

k + F i
kv)−)2 − 1

)

− 2(1 − ae−U2)
n2∑

k=1

(−Ei
k + F i

kv) − 2(1 − ae−U2)(Bi
2)⊤v

+
n2∑

k=1

eU1+Φ1,k − a

eU2
((−1 − Ei

k + F i
kv)−)2,

and

	

H̃i,∗
11 (U1, V1) := inf

v∈Π1
H̃i

11(v, U1, V1),

H̃i,∗
12 (z, U1, U2, Φ1, Φ2) := inf

v∈Π2
H̃i

12(v, z, U1, U2, Φ1, Φ2),

H̃i,∗
21 (U2, V2) := inf

v∈Π1
H̃i

21(v, U2, V2),

H̃i,∗
22 (z, U1, U2, Φ1, Φ2) := inf

v∈Π2
H̃i

22(v, z, U1, U2, Φ1, Φ2).

Set

	 Ū i
j = U i

j − Ũ i
j , V̄ i

j = V i
j − Ṽ i

j , Φ̄i
j = Φi

j − Φ̃i
j , i ∈ M, j = 1, 2.

Then applying Itô’s formula to (Ū i
j)2, we deduce that
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(U i
1,t)2 +

ˆ T

t

|V̄ i
1 |2ds +

ˆ T

t

ˆ

Z
|Φ̄i

1|2ν(dz)dt

=
ˆ T

t

[
Li

11 +
ˆ

Z
Li

12(z)ν(dz)
]
dt −

ˆ T

t

2Ū i
1(V̄ i

1 )⊤dW

−
n2∑

k=1

ˆ T

t

ˆ

Z
(2Ū i

1,kΦ̄i
1,k + (Φ̄i

1,k)2)Ñk(dt, dz),

and

	

(U i
2,t)2 +

ˆ T

t

|V̄ i
2 |2ds +

ˆ T

t

ˆ

Z
|Φ̄i

2|2ν(dz)dt

=
ˆ T

t

[
Li

21 +
ˆ

Z
Li

22(z)ν(dz)
]
dt −

ˆ T

t

2Ū i
2(V̄ i

2 )⊤dW

−
n2∑

k=1

ˆ T

t

ˆ

Z
(2Ū i

2,kΦ̄i
2,k + (Φ̄i

2,k)2)Ñk(dt, dz),

where

	

Li
11 : = 2Ū i

1

[
(Qi − 2aAi − a|Ci|2)(e−Ui

1 − e−Ũi
1) + 2(Ci)⊤V̄ i

1 + 1
2

(V i
1 + Ṽ i

1 )V̄ i
1

+
ℓ∑

j=1
qij

(
eUi

1−Ui
1 − eŨj

1 −Ũi
1

)
+ H̃i,∗

11 (U i
1, V i

1 , ) − H̃i,∗
11 (Ũ i

1, Ṽ i
1 )

]
,

Li
12(z) : = 2Ū i

1

[ n2∑
k=1

[(eΦi
1,k − Φi

1,k − 1) − (eΦ̃i
1,k − Φ̃i

1,k − 1)]

+ H̃i,∗
12 (z, U i

1, Φi
1, U i

2, Φi
2) − H̃i,∗

12 (z, Ũ i
1, Φ̃i

1, Ũ i
2, Φ̃i

2)
]
,

Li
21 : = 2Ū i

2

[
(Qi − 2aAi − a|Ci|2)(e−Ui

2 − e−Ũi
2) + 2(Ci)⊤V̄ i

2 + 1
2

(V i
2 + Ṽ i

2 )V̄ i
2

+
ℓ∑

j=1
qij

(
eUi

2−Ui
2 − eŨj

2 −Ũi
2

)
+ H̃i,∗

21 (U i
2, V i

2 , ) − H̃i,∗
21 (Ũ i

2, Ṽ i
2 )

]
,

Li
22(z) : = 2Ū i

2

[ n2∑
k=1

[(eΦi
2,k − Φi

2,k − 1) − (eΦ̃i
2,k − Φ̃i

2,k − 1)]

+ H̃i,∗
22 (z, U i

1, Φi
1, U i

2, Φi
2) − H̃i,∗

22 (z, Ũ i
1, Φ̃i

1, Ũ i
2, Φ̃i

2)
]
.

The terms L11 and L21 can be estimated in much the same way as [6, Theorem 3.5] 
to get2

2 Ri
1 − a(Di)⊤Di > 0 is required in these estimates.
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Li
11 ≤ |βi|(Ū i

1)2 + c|Ū i
1|

ℓ∑
j=1

|Ū j
1 | + c(βi)⊤Ū i

1V̄ i
1 ,

Li
21 ≤ |βi|(Ū i

2)2 + c|Ū i
2|

ℓ∑
j=1

|Ū j
2 | + c(βi)⊤Ū i

2V̄ i
2 ,

where βi is some FW,N -predictable process satisfying 
|βi| ≤ c(1 + |V i

1 | + |Ṽ i
1 | + |V i

2 | + |Ṽ i
2 |) so that 

´ ·
0(βi)⊤dW  is a BMO martingale 

noting Lemma 3.1.

On the other hand, from Assumptions 2.1, 2.2 and (3.5), there are positive con-
stants c1, c2, c3 such that

	

H̃i
12(v, z, U i

1, U i
2, Φi

1, Φi
2) − H̃i

12(0, z, U i
1, U i

2, Φi
1, Φi

2)

≥ δ

M + a
|v|2 −

n2∑
k=1

eUi
1+Φi

1,k − a

eU1
− 2(1 − ae−Ui

1)
n2∑

k=1

(Ei
k + F i

kv) + 2(1 − ae−Ui
1)(Bi

2)⊤v

−
[ n2∑

k=1

eUi
1+Φi

1,k − a

eU1

(
((1 + Ei

k)+)2 − 1
)

− 2(1 − ae−Ui
1)

n2∑
k=1

Ei
k +

n2∑
k=1

eUi
2+Φi

2,k − a

eUi
1

((1 + Ei
k)−)2

]

≥ δ

M + a
|v|2 − c2|v| − c3 > 0,

if |v| > c with c > 0 being sufficiently large. Hence,

	
H̃i,∗

12 (z, U i
1, U i

2, Φi
1, Φi

2) := inf
v∈Π2,|v|≤c

H̃i
12(v, z, U i

1, U i
2, Φi

1, Φi
2). � (3.6)

Furthermore, noting U i
1, Ũ i

1, U i
2, Ũ i

2, Φi
1, Φ̃i

1, Φi
2, Φ̃i

2 are bounded, we have

	 Li
12(z) ≤ c|Ū i

1|(|Ū i
1| + |Φ̄i

1(z)| + |Ū i
2| + |Φ̄i

2(z)|).

Similar arguments applying to H̃i,∗
22 (v, z, U i

1, U i
2, Φi

1, Φi
2) yield that

	 Li
22(z) ≤ c|Ū i

2|(|Ū i
1| + |Φ̄i

1(z)| + |Ū i
2| + |Φ̄i

2(z)|).

For each i ∈ M, introduce the processes

	
J i

t = exp
( ˆ t

0
|βi

s|ds
)

, N i
t = exp

( ˆ t

0
(βi

s)⊤dWs − 1
2

ˆ t

0
|βi

s|2ds
)

.

Itô’s formula gives
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J i
t N i

t |Ū i
1,t|2 + Et

ˆ T

t

J i
sN i

s|V̄ i
1 |2ds + Et

ˆ T

t

ˆ

Z
J i

sN i
s|Φ̄i

1|2ν(dz)ds

≤ Et

ˆ T

t

J i
sN i

s

[
c|Ū i

1||Ū i
2| + c|Ū i

1|
ℓ∑

j=1
|Ū j

1 | + c|U i
1|
ˆ

Z
(Φ̄i

1(z) + Φ̄i
2(z))ν(dz)

]
ds

≤ cEt

ˆ T

t

J i
sN i

s(|Ū i
1|2 + |Ū i

2|2 +
ℓ∑

j=1
|Ū j

1 |2)ds + 1
4
Et

ˆ T

t

ˆ

Z
J i

sN i
s(|Φ̄i

1(z)|2 + |Φ̄i
2(z)|2)ν(dz)ds.

Note that N i
t  is a uniformly integrable martingale, thus

	
W̃ i

t := Wt −
ˆ t

0
(βi

s)⊤dWs,

is a Brownian motion under the probability P̃i defined by

	
dP̃i

dP

∣∣∣
FW,N

T

= N i
T .

We denote by Ẽi
t the conditional expectation with respect to the probability P̃i, then

	

J i
t |Ū i

1,t|2 + Ẽi
t

ˆ T

t

J i
s|V̄ i

1 |2ds + Ẽi
t

ˆ T

t

ˆ

Z
J i

s|Φ̄i
1|2ν(dz)ds

≤ cẼi
t

ˆ T

t

J i
s(|Ū i

1|2 + |Ū i
2|2 +

ℓ∑
j=1

|Ū j
1 |2)ds + 1

4
Ẽi

t

ˆ T

t

ˆ

Z
J i

s(|Φ̄i
1|2 + |Φ̄i

2|2)ν(dz)ds.

� (3.7)

Similarly, we have

	

J i
t |Ū i

2,t|2 + Ẽi
t

ˆ T

t

J i
s|V̄ i

2 |2ds + Ẽi
t

ˆ T

t

ˆ

Z
J i

s|Φ̄i
2|2ν(dz)ds

≤ cẼi
t

ˆ T

t

J i
s(|Ū i

1|2 + |Ū i
2|2 +

ℓ∑
j=1

|Ū j
2 |2)ds + 1

4
Ẽi

t

ˆ T

t

ˆ

Z
J i

s(|Φ̄i
1|2 + |Φ̄i

2|2)ν(dz)ds.

� (3.8)

Combining the above two inequalities yields

	

|Ū i
1,t|2 + |Ū i

2,t|2 ≤ cẼi
t

ˆ T

t

exp(
ˆ s

t

|βi
r|dr)(

ℓ∑
j=1

ˆ T

t

(|Ū j
1,s|2 + |Ū j

2,s|2)ds

≤ cẼi
t

[
exp(
ˆ T

t

|βi
r|dr)

ℓ∑
j=1

ˆ T

t

(|Ū j
1,s|2 + |Ū j

2,s|2)ds
]

≤ cẼi
t

[
exp(
ˆ T

t

|βi
r|dr)

] ℓ∑
j=1

ˆ T

t

Ξj
sds,
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where

	
Ξj

s := ess sup
ω∈Ω

(
|Ū j

1,s|2 + |Ū j
2,s|2

)
.

According to [8, Lemma 3.4], Ẽi
t

[
exp(
´ T

t
|βi

r|dr)
]

≤ c, then taking essential 
supreme on both sides, we deduce that

	
0 ≤

ℓ∑
i=1

Ξi
t ≤ c

ˆ T

t

ℓ∑
i=1

Ξi
sds.

We infer from Gronwall’s inequality that Ξi = 0, so Ū i
1 = Ū i

2 = 0, for all i ∈ M. 
Consequently, it follows from (3.7) and (3.8) that V̄ i

1 = V̄ i
2 = 0 and Φ̄i

1 = Φ̄i
2 = 0 

for all i ∈ M. This completes the proof. � □

Remark 3.1  In the above proof, Assumption 2.1 alone is sufficient for the existence 
of a nonnegative solution to (3.1), and Assumption 2.2 is only used in the proof of 
uniqueness part (will also be used in Lemma 4.2).

Theorem 3.2  Under Assumptions 2.1 and 2.3 , the BSDEJ (3.1) admits a unique uni-

formly positive solution (P i
j , Λi

j , Γ i
j )i∈M, j=1 ,2 .

Proof  The proof of the existence is similar to the above Theorem 3.1 and will only be 
indicated briefly why the solution to (3.1) is uniformly positive.

When both 2 and 3 hold. In this case, there exists constant c2 > 0, such that

	
2Ai + |Ci|2 − δ−1|Bi

1 + (Di)⊤Ci|2 ≥ −c2, −δ−1
ˆ

Z
|Bi

2|2ν(dz) ≥ −c2,

where δ is the constant in Assumption  2.3. Notice that 
(P t, Λt, Γt) = ( 1

(δ−1+1)ec2(T −t)−1 , 0, 0) solves the following BSDEJ

	

{
dP = −(−c2P − c2P 2)dt + Λ⊤dW +

´
E Γ(e)Ñ(dt, dz),

P T = δ.
� (3.9)

And we have the following inequalities
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Hi,∗,k
11 (P , Λ) ≥ inf

v∈Rm1
Hi

11(v, P , Λ) ≥ −δ−1|Bi
1 + (Di)⊤Ci|2P ,

ˆ

Z
Hi,∗,k

12 (z, P , P , Γ, Γ)ν(dz)≥
ˆ

Z
inf

v∈Rm1
Hi

12(v, z, P , P , Γ, Γ)ν(dz)

≥ −δ−1
ˆ

Z
|Bi

2|2ν(dz)P 2 ≥ −c2P 2.

Similar results also hold for Hi,∗,k
21 (P , Λ) and 

´
Z Hi,∗,k

22 (z, P , P , Γ, Γ)ν(dz). Apply-
ing Lemma 3.2 to (3.2) and (3.9), we get

	
P i,k

j,t ≥ P t ≥ 1
(δ−1 + 1)ec2T − 1

, t ∈ [0, T ], i ∈ M, j = 1, 2.

Sending k → ∞ leads to the desired uniformly positive lower bound.
When both 2 and 4 hold. In this case, there exists constant c3 > 0, such that

	
2Ai + |Ci|2+

ˆ

Z
|Ei|2ν(dz) − δ−1|Bi

1 + (Di)⊤Ci|2 − δ−1
ˆ

Z
|(F i)⊤Ei + Bi

2|2ν(dz) ≥ −c3,

where δ is the constant in Assumption 2.3. Notice (P t, Λt, Γt) = (δe−c3(T −t), 0, 0) 
solves the following BSDEJ

	

{
dP = −(−c3P )dt + Λ⊤dW +

´
E Γ(e)Ñ(dt, dz),

P T = δ.
� (3.10)

And we have the following inequalities

	

Hi,∗,k
11 (P , Λ) ≥ inf

v∈Rm1
Hi

11(v, P , Λ) ≥ −δ−1|Bi
1 + (Di)⊤Ci|2P ,

Hi,∗,k
12 (z, P , P , Γ, Γ) ≥ inf

v∈Rm1
Hi

12(z, v, P , P , Γ, Γ) ≥ −δ−1|(F i)⊤Ei + Bi
2|2P .

Therefore,

	

(2Ai + |Ci|2)P + 2(Ci)⊤Λ + Qi +
ℓ∑

j=1
qijP + Hi,∗,k

11 (P , Λ) +
ˆ

Z
Hi,∗,k

12 (P , P , Γ, Γ)ν(dz)

≥ (2Ai + |Ci|2)P − δ−1|Bi
1 + (Di)⊤Ci|2P −

ˆ

Z
δ−1|(F i)⊤Ei + Bi

2|2Pν(dz) ≥ −c3P .

Similar results also hold for Hi,∗,k
21 (P , Λ) and Hi,∗,k

22 (z, P , P , Γ, Γ). Applying 
Lemma 3.2 to (3.2) and (3.10), we get

	 P i,k
j,t ≥ P t = δe−c3(T −t) ≥ δe−c3T , t ∈ [0, T ], i ∈ M, j = 1, 2.

Sending k → ∞ leads to the desired uniformly positive lower bound.
When both 1 and 4 hold. In this case, there exists constant c4 > 0, such that

1 3
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−δ−1|Bi

1 + (Di)⊤Ci|2 ≥ −c4, 2Ai + |Ci|2 +
ˆ

Z
|Ei|2ν(dz) − δ−1

ˆ

Z
|(F i)⊤Ei + Bi

2|2ν(dz) ≥ −c4,

where δ is the constant in Assumption  2.3. Notice that 
(P t, Λt, Γt) = ( 1

(δ−1+1)ec4(T −t)−1 , 0, 0) solves the following BSDEJ

	

{
dP = −(−c4P 2 − c4P )dt + Λ⊤dW +

´
E Γ(e)Ñ(dt, dz),

P T = δ.
� (3.11)

And we have the following inequalities

	

Hi,∗,k
11 (P , Λ) ≥ inf

v∈Rm1
Hi

11(v, P , Λ) ≥ −δ−1|Bi
1 + (Di)⊤Ci|2P 2 ≥ −c4P 2,

Hi,∗,k
12 (z, P , P , Γ, Γ) ≥ inf

v∈Rm1
Hi

12(v, z, P , P , Γ, Γ) ≥ |Ei|2P − δ−1|(F i)⊤Ei + Bi
2|2P .

Therefore

	

(
2Ai + |Ci|2

)
P +

ˆ

Z
Hi,∗,k

12 (z, P , P , Γ, Γ)ν(dz)

≥
(

2Ai + |Ci|2 +
ˆ

Z
|Ei|2ν(dz) − δ−1

ˆ

Z
|(F i)⊤Ei + Bi

2|2ν(dz)
)

P

≥ −c4P .

Similar results also hold for Hi,∗,k
21 (P , Λ) and Hi,∗,k

22 (z, P , P , Γ, Γ). Applying 
Lemma 3.2 to (3.2) and (3.11), we get

	
P i,k

j,t ≥ P t ≥ 1
(δ−1 + 1)ec4T − 1

, t ∈ [0, T ], i ∈ M, j = 1, 2.

Sending k → ∞ leads to the desired uniformly positive lower bound.
As for the uniqueness, one just need to repeat the proof of Theorem 3.1 with a = 0 

which is allowed because the solutions are positive. � □

Remark 3.2  As one referee pointed out, it is more general if both u1  and u2  appear 
before dWt  and Ñ (dt, dz) in (2.1). In this case, we can still heuristically derive the 
corresponding SRE which will comprise the cross terms between v1  and v2 . But, it is 
difficult to establish some estimates in Page 13, thus making it challenging to prove 
the existence and uniqueness of the solution to the SRE. We will study this problem 
in our future research.

4  Solution to the LQ Problem (2.2)

In this subsection we will present an explicit solution to the LQ problem (2.2) in 
terms of solutions to the BSDEJ (3.1).

When Ri
1 + P (Di)⊤Di > 0, i ∈ M, we define
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v̂i
11(t, P, Λ) := argmin

v∈Π1

Hi
11(t, v, P, Λ),

v̂i
21(t, P, Λ) := argmin

v∈Π1

Hi
21(t, v, P, Λ).

� (4.1)

When Ri
2 > 0 or (Pj + Γjk)(F i)⊤F i > 0, i ∈ M, j = 1, 2, k = 1, 2, . . . , n2, we 

define

	

v̂i
12(t, z, P1, P2, Γ1, Γ2) := argmin

v∈Π2

Hi
12(t, v, z, P1, P2, Γ1, Γ2),

v̂i
22(t, z, P1, P2, Γ1, Γ2) := argmin

v∈Π2

Hi
22(t, v, z, P1, P2, Γ1, Γ2).

� (4.2)

Theorem 4.1  Let Assumptions  2.1, and 2.2 (resp.  2.3) hold. Let 
(P i

j , Λi
j , Γ i

j ) ∈ S∞
FW,N (0 , T ;R) × L2

FW,N (0 , T ;Rn1 ) × L∞,ν
PW,N (0 , T ;Rn2 ), i ∈ M, j = 1 , 2, 

be the nonnegative (resp. uniformly positive) solution to the BSDEJ (3.1). Then the 
state feedback control u∗ = (u∗

1 , u∗
2 ) given by

	

{
u∗

1(t, X, α) = v̂
αt−
11 (t, P

αt−
1,t−, Λαt−

1,t )X+
t− + v̂

αt−
21 (t, P

αt−
2,t−, Λαt−

2,t )X−
t−,

u∗
2(t, X, α) = v̂

αt−
12 (t, z, P

αt−
1,t−, P

αt−
2,t−, Γαt−

1,t , Γαt−
2,t )X+

t− + v̂
αt−
22 (t, z, P

αt−
1,t−, P

αt−
2,t−, Γαt−

1,t , Γαt−
2,t )X−

t−, � (4.3)

is optimal for the LQ problem (2.2). Moreover, the optimal value is

	 V (x, i0) = P i0
1,0(x+)2 + P i0

2,0(x−)2.

A proof of this theorem is contained in the following two Lemmas. In order to avoid 
as far as possible unwieldy formulas, we agree to suppress the the superscripts and 
subscripts of A, B, C, D, E, F, R, Q, G. And we will write vαt−

ij (t, P
αt−
1 , Λαt−

1 ) simply 

v̂ij , i, j = 1, 2 when no confusion can arise.

Lemma 4.1  Under the condition of Theorem 4.1, we have

	 J(u; x, i0) ≥ P i0
1,0(x+)2 + P i0

2,0(x−)2,� (4.4)

for any u ∈ U , and

	 J(u∗; x, i0) = P i0
1,0(x+)2 + P i0

2,0(x−)2.� (4.5)

Proof  Noting the convex function f(x) = (x+)2, x ∈ R, admits an absolutely contin-
uous derivative f ′(x) = 2x+ such that for any a, b ∈ R, f ′(b) − f ′(a) =

´ b

a
f ′′(s)ds, 

with f ′′(x) = 21x>0. For any u = (u1, u2) ∈ U , applying the Extant Second Deriva-
tive Meyer-Itô formula [15, Theorem 71] to (X+

t )2, we deduce that
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d (X+
t )2 =

[
2X+

t−

(
AX + B⊤

1 u1 +
ˆ

Z
B2(z)⊤u2(z)ν(dz) −

n2∑
k=1

ˆ

Z
(Ek(z)X + Fk(z)u2(z))⊤ν(dz)

)

+ 1{Xt−>0}|CX + Du1|2
]
dt + 2X+(CX + Du1)⊤dWt

+
n2∑

k=1

ˆ

Z

[
((X + Ek(z)X + Fk(e)u2(z))+)2 − (X+)2

]
Nk(dt, dz).

The integration by parts formula applied to P αt
1,t(X+

t )2 yields

	

dP αt
1,t(X+

t )2 = P
αt−
1,t−

[
2X+

t−

(
AX + B⊤

1 u1 +
ˆ

Z
B2(z)⊤u2ν(dz)

−
n2∑

k=1

ˆ

Z
(Ek(z)X + Fk(z)u2(z))ν(dz)

)
+ 1{Xt−>0}|CX + Du1|2

]
dt

+ 2X+(CX + Du1)⊤Λαt−
1 dt

− (X+)2
[
(2A + |C|2)P αt−

1,t− + 2C⊤Λαt−
1 + Q + H

αt−,∗
11 (P αt−

1 , Λαt−
1 )

+
ˆ

Z
H

αt−,∗
12 (P αt−

1 , P
αt−
2 , Γαt−

1 , Γαt−
2 )ν(dz)

]
dt

+
n2∑

k=1

ˆ

Z
(P αt−

1,t− + Γαt−
1k,t)

[(
(X + Ek(z)X + Fk(e)u2(z))+)2 − (X+)2

]
ν(dz)dt

+
[
2X+(CX + Du1) + (X+)2Λαt−

1

]⊤
dW

+
n2∑

k=1

ˆ

Z
(P αt−

1,t− + Γαt−
1k,t)

[(
(X + Ek(z)X + Fk(e)u2(z))+)2 − (X+)2

]
Ñk(dt, de)

+ (X+)2
ˆ

Z
Γαt−

1 (z)⊤Ñ(dt, dz) + (X+)2
∑

j,j′∈M
(P j

1 − P j′

1 )1{αt−=j′}dÑ j′j ,

where {N j′j}j,j′∈M are independent Poisson processes each with intensity qj′j , and 
Ñ j′j

t = N j′j
t − qj′jt, t ≥ 0 are the corresponding compensated Poisson martingale. 

Likewise,
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dP αt
2,t(X−

t )2 = P
αt−
2,t−

[
− 2X+

t−

(
AX + B⊤

1 u1 +
ˆ

Z
B2(z)⊤u2ν(dz)

−
n2∑

k=1

ˆ

Z
(Ek(z)X + Fk(z)u2(z))ν(dz)

)
+ 1{Xt−≤0}|CX + Du1|2

]
dt

− 2X−(CX + Du1)⊤Λαt−
1 dt

− (X−)2
[
(2A + |C|2)P αt−

2,t− + 2C⊤Λαt−
2 + Q + H

αt−,∗
21 (P αt−

2 , Λαt−
2 )

+
ˆ

Z
H

αt−,∗
22 (P αt−

1 , P
αt−
2 , Γαt−

1 , Γαt−
2 )ν(dz)

]
dt

+
n2∑

k=1

ˆ

Z
(P αt−

2,t− + Γαt−
2k,t)

[(
(X + Ek(z)X + Fk(e)u2(z))−)2 − (X−)2

]
ν(dz)dt

+
[

− 2X−(CX + Du1) + (X−)2Λαt−
1

]⊤
dW

+
n2∑

k=1

ˆ

Z
(P αt−

2,t− + Γαt−
2k,t)

[(
(X + Ek(z)X + Fk(e)u2(z))−)2 − (X−)2

]
Ñk(dt, dz)

+ (X−)2
ˆ

Z
Γαt−

2 (z)⊤Ñ(dt, dz) + (X−)2
∑

j,j′∈M
(P j

2 − P j′

2 )1{αt−=j′}dÑ j′j .

We define, for n ≥ 1, the following stopping time τn:

	 τn := inf{t ≥ 0 : |Xt| ≥ n} ∧ T,

with the convention that inf ∅ = ∞. Obviously, τn ↑ T  a.s. along n ↑ ∞.
Summing the two equations above, taking integration from 0 to τn, and then tak-

ing expectation, we deduce

	

E
[
P

ατn
1,τn

(X+
τn

)2 + P
ατn
2,τn

(X−
τn

)2
]

+ E
ˆ τn

0

[
u⊤

1 R1u1 + QX2 +
ˆ

Z
(u2(z)⊤R2(z)u2(z))ν(dz)

]
dt

= P i0
1,0(x+)2 + P i0

2,0(x−)2 + E
ˆ τn

0

{
u⊤

1 (R1 + 1{X>0}P1D⊤D + 1{X≤0}P2D⊤D)u1

+ 2u⊤
1 (P1B1 + D⊤(P1C + Λ1))X+ − 2u⊤

1 (P2B1 + D⊤(P2C + Λ2))X−

− H
αt−,∗
11 (P1, Λ1)(X+)2 − H

αt−,∗
21 (P2, Λ2)(X−)2

+
ˆ

Z

[
u⊤

2 R2u2 + 2P1X+
(

B2(z)⊤u2(z) −
n2∑

k=1

(Ek(z)X + Fk(z)u2(z))
)

− 2P2X−
(

B2(z)⊤u2(z) −
n2∑

k=1

(Ek(z)X + Fk(z)u2(z))
)

+
n2∑

k=1

(P1 + Γ1k)
((

(X + Ek(z)X + Fk(e)u2(z))+)2 − (X+)2
)

+
n2∑

k=1

(P2 + Γ2k)
((

(X + Ek(z)X + Fk(e)u2(z))−)2 − (X−)2
)

− H
αt−,∗
12 (P1, P2, Γ1, Γ2)(X+)2 − H

αt−,∗
22 (P1, P2, Γ1, Γ2)(X−)2

]
ν(dz)

}
dt.

� (4.6)
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We will denote by ϕ(X, u)the integrand w.r.t. t on the right-hand side of the above 
equation and show ϕ(X, u) ≥ 0, dP ⊗ dt ⊗ dν-a.e., for any u ∈ U .

Indeed, let us define

	
vt = (v1,t, v2,t(z)) =

{ (
u1,t

|Xt−| ,
u2,t(z)
|Xt−|

)
, if |Xt−| > 0;

(0, 0), if |Xt−| = 0.

It is clear that the above process v is valued in Γ1 × Γ2 since Γ1, Γ2 are cones. If 
Xt− > 0, then

	

ϕ(X, u) = X2
[
v⊤

1 (R1 + P1D⊤D)v1 + 2v⊤
1 (P1B1 + D⊤(P1C + Λ1)) − H

αt−,∗
11 (P1, Λ1)

]

+ X2
ˆ

Z

[
v⊤

2 R2v2 + 2P1B2(z)⊤v2(z) − 2P1

n2∑
k=1

(Ek(z)X + Fk(z)v2(z))

+
n2∑

k=1

(P1 + Γ1k)
((

(1 + Ek(z) + Fk(e)v2(z))+)2 − 1
)

+
n2∑

k=1

(P2 + Γ2k)
(
(1 + Ek(z) + Fk(e)v2(z))−)2

− H
αt−,∗
12 (P1, P2, Γ1, Γ2)ν(dz)

]
ν(dz) ≥ 0,

from the definitions of Hi,∗
11 , Hi,∗

12 . Moreover, the equality holds at

	u
∗
1(t, X, α) = v̂

αt−
11 (t, P

αt−
1 , Λαt−

1 )X+
t−, u∗

2(t, X, α) = v̂
αt−
12 (t, P

αt−
1 , P

αt−
2 , Γαt−

1 , Γαt−
2 )X+

t−.

Next if Xt− < 0, then

	

ϕ(X, u) = X2
[
v⊤

1 (R1 + P2D⊤D)v1 − 2v⊤
1 (P2B1 + D⊤(P2C + Λ2)) − H

αt−,∗
21 (P2, Λ2)

]

+ X2
ˆ

Z

[
v⊤

2 R2v2 − 2P2B2(z)⊤v2(z) − 2P2

n2∑
k=1

(Ek(z) − Fk(z)v2(z))

+
n2∑

k=1

(P1 + Γ1k)
(
(−1 − Ek(z) + Fk(e)v2(z))+)2

+
n2∑

k=1

(P2 + Γ2k)
((

(−1 − Ek(z) + Fk(e)v2(z))−)2 − 1
)

− H
αt−,∗
22 (P1, P2, Γ1, Γ2)ν(dz)

]
ν(dz) ≥ 0,

from the definitions of Hi,∗
21 , Hi,∗

22 . Moreover, the equality holds at

	u
∗
1(t, X, α) = v̂

αt−
21 (t, P

αt−
1 , Λαt−

1 )X−
t−, u∗

2(t, X, α) = v̂
αt−
22 (t, P

αt−
1 , P

αt−
2 , Γαt−

1 , Γαt−
2 )X−

t−.

Finally, when Xt− = 0, then
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ϕ(X, u) = u⊤
1 (R1 + P2D⊤D)u1 +

ˆ

Z

[
u⊤

2 R2u2 +
n2∑

k=1

(P1 + Γ1k)
(
(Fku2)+)2

+
n2∑

k=1

(P2 + Γ2k)
(
(Fku2)−)2

]
ν(dz) ≥ 0;

here the equality holds at u∗
1 = 0, u∗

2 = 0.
The above analysis together with (4.6) shows that

	

E
[
P

ατn
1,τn

(X+
τn

)2 + P
ατn
2,τn

(X−
τn

)2
]

+ E
ˆ τn

0

[
u⊤

1 R1u1 + QX2 +
ˆ

Z
u2(z)⊤R2(z)u2(z)ν(dz)

]
dt

≥ P i0
1,0(x+)2 + P i0

2,0(x−)2.

By noting that for any u ∈ U , the corresponding state process X ∈ S2
F(0, T ;R). 

Sending n → ∞, we conclude, from the dominated convergence theorem, that (4.4) 
holds for any u ∈ U , where the equality is achieved when u∗ is defined by (4.3). � □

Lemma 4.2  Under the condition of Theorem 4.1, (u∗
1 (t, X , α), u∗

2 (t, X , α)) ∈ U .

Proof  It is clear that (u∗
1(t, X, α), u∗

2(t, X, α)) is valued in Π1 × Π2. It remains to 
prove

	 (u∗
1(t, X, α), u∗

2(t, X, α)) ∈ L2
F(0, T ;Rm1) × L2,ν

P (0, T ;Rm2).

Substituting (4.3) into the state process (2.1), we have

	




dXt =
[
AX + B⊤(v̂11X+ + v̂21X−) +

´
Z B(z)⊤(v̂12X+ + v̂22X−)ν(dz)

]
dt

+ [CX + D(v̂11X+ + v̂21X−)]⊤ dwt

+
´

Z [E(z)X + F (z)(v̂12X+ + v̂22X−)]⊤ Ñ(dt, dz), t ∈ [0, T ],
X0 = x, α0 = i0,

� (4.7)

According to [7, Theorem 3.5], we have v̂11, v̂21 ∈ L2
F(0, T ;Rm1). And from (3.6), 

we know that v̂12, v̂22 ∈ L∞
P (0, T ;Rm2). By the basic theorem of Gal’chuk [4, 

p.756-757], the SDE (4.7) admits a unique solution, denoted by X∗.
From the proof of Lemma 4.1, we find that, for any stopping time ι ≤ T ,

	

E
[
P

αθn ∧ι
1,θn∧ι((X

∗
θn∧ι)+)2 + P

αθn ∧ι
2,θn∧ι((X

∗
θn∧ι)−))2

]

+ E
ˆ θn∧ι

0

[
(u∗

1)⊤R1u∗
1 + Q(X∗)2 +

ˆ

Z
(u∗

2(z)⊤R2(z)u∗
2(z))ν(dz)

]
dt

= P i0
1,0(x+)2 + P i0

2,0(x−)2,

� (4.8)

where

	 θn := inf{t ≥ 0 : |X∗
t | > n} ∧ T.
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Suppose Assumption 2.2 holds. We have, from (4.8),

	
δE
ˆ θn∧T

0

[
|u∗

1|2 +
ˆ

Z
|u∗

2(z)|2ν(dz)
]
dt ≤ P i0

1,0(x+)2 + P i0
2,0(x−)2.

Letting n → ∞, it follows from the monotone convergence theorem that 
(u∗

1, u∗
2) ∈ L2

F(0, T ;Rm1) × L2,ν
P (0, T ;Rm2).

Suppose Assumption 2.3 holds. In this case, there exists c > 0 such that 
P i

j ≥ c, P i
j + Γi

jk ≥ c, i ∈ M, j = 1, 2, k = 1, . . . , n2. From (4.8), we get

	 cE[|X∗
θn∧ι|2] ≤ P i0

1,0(x+)2 + P i0
2,0(x−)2.

Letting n → ∞, it follows from Fatou’s lemma that

	 E[|X∗
ι |2] ≤ c,

for any stopping time ι ≤ T . This further implies

	
E
ˆ T

0
|X∗

t |2dt ≤ cT.

Applying Itô formula to |X∗
t |2, yields that

	

x2 + E
ˆ θn∧T

0
|Du∗

1|2dt + E
ˆ θn∧T

0

ˆ

Z
|Fu∗

2|2ν(dz)dt

= E[X∗
θn∧T ]2 − E

ˆ θn∧T

0

[
(2A + |C|2 +

ˆ

Z
|E(z)|2ν(dz))|X∗

t |2

+ 2X∗
t (B1 + D⊤C)⊤u∗

1 + 2X∗
t

ˆ

Z
(B⊤

2 u∗
2 +

n2∑
k=1

EkFku∗
2)ν(dz)

]
dt.

When 2 and 4 hold. We have

	

δE
ˆ θn∧T

0
|u∗

1|2dt + δE
ˆ θn∧T

0

ˆ

Z
|u∗

2|2ν(dz)dt

≤ c + cE
ˆ θn∧T

0

[
|X∗

t |2 + 2|X∗
t ||u∗

1| + 2|X∗
t |
ˆ

Z
|u∗

2|ν(dz)
]
dt

≤ c + c
(

1 + 2
δ

+ 2ν(Z)
δ

)
E
ˆ θn∧T

0
|X∗

t |2dt + δ

2
E
ˆ θn∧T

0
|u∗

1|2dt + δ

2
E
ˆ θn∧T

0

ˆ

Z
|u∗

2|2ν(dz)dt.

After rearrangement, it follows from the monotone convergence theorem that
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E
ˆ T

0
|u∗

1|2dt + E
ˆ T

0

ˆ

Z
|u∗

2|2ν(dz)dt ≤ c.

Hence (u∗
1, u∗

2) ∈ L2
F(0, T ;Rm1) × L2,ν

P (0, T ;Rm2).
When 2 and 3 hold. We get u∗

1 ∈ L2
F(0, T ;Rm1) exactly as above. On the other 

hand, we can get u∗
2 ∈ L2,ν

P (0, T ;Rm2) from (4.8).

The last case in Assumption 2.3 can be handled similarly. � □
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