Applied Mathematics & Optimization (2026) 93:3
https://doi.org/10.1007/500245-025-10358-z

®

Check for
updates

Constrained Stochastic Linear Quadratic Control Under
Regime Switching with Controlled Jump Size

Xiaomin Shi' - Zuo Quan Xu?

Received: 11 January 2025 / Accepted: 2 November 2025
© The Author(s) 2025

Abstract

In this paper, we examine a stochastic linear-quadratic control problem character-
ized by regime switching and Poisson jumps. All the coefficients in the problem are
random processes adapted to the filtration generated by Brownian motion and Pois-
son random measure for each given regime. The model incorporates two distinct
types of controls: the first is a conventional control that appears in the continuous
diffusion component, while the second is an unconventional control, dependent on
the variable z, which influences the jump size in the jump diffusion component.
Both controls are constrained within general closed cones. By employing the Mey-
er-It6 formula in conjunction with a generalized squares completion technique, we
rigorously and explicitly derive the optimal value and optimal feedback control.
These depend on solutions to certain multi-dimensional fully coupled stochastic
Riccati equations, which are essentially backward stochastic differential equations
with jumps (BSDEJs). We establish the existence of a unique nonnegative solution
to the BSDEJs. One of the major tools used in the proof is the newly established
comparison theorems for multi-dimensional BSDEJs.
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1 Introduction

Since the pioneering work of Wonham [22], stochastic linear-quadratic (LQ) theory
has been extensively studied by numerous researchers. For instance, Bismut [2] was
the first one who studied stochastic LQ problems with random coefficients. In order
to obtain the optimal random feedback control, he formally derived a stochastic Ric-
cati equation (SRE). But he could not solve the SRE in the general case. It is Kohl-
mann and Tang [12], for the first time, that established the existence and uniqueness
of the one-dimensional SRE. Tang [18, 19] made another breakthrough and proved
the existence and uniqueness of the matrix valued SRE with uniformly positive con-
trol weighting matrix using two different approaches. Sun, Xiong and Yong [17] stud-
ied the indefinite stochastic LQ problem with random coefficients. Hu and Zhou [10]
solved the stochastic LQ problem with cone control constraint. Zhang, Dong and
Meng [25] made a great progress in solving stochastic LQ control and related SRE
with jumps with uniformly positive definite control weight by inverse flow technique.
Li, Wu and Yu [13] considered the stochastic LQ problem with jumps in the indefinite
case. Please refer to Chapter 6 in Yong and Zhou [24] for a systematic account on
this subject.

Stochastic LQ problems for Markovian regime switching system were studied in
Wen, Li and Xiong [21] and Zhang, Li and Xiong [26] where weak closed-loop solv-
ability, open-loop solvability and closed-loop solvability were established. But the
coefficients are assumed to be deterministic functions of time ¢ for each given regime
i in the above papers, so their SREs are indeed deterministic ordinary differential
equations (ODEs). Hu, Shi and Xu [6, 7] formulated cone-constrained stochastic
LQ problems with regime switching on finite time horizon and infinite time horizon
respectively, in which the coefficients are stochastic processes adapted to the filtra-
tion generated by the Brownian motion for each give regime i. Due to the randomness
of the coefficients, the corresponding SREs in [6, 7] are actually backward stochastic
differential equations (BSDEs). Hu, Shi and Xu [8] extended the model [6] to include
non-homogeneous terms, but without control constraints. Please note that finding
feedback controls for non-homogeneous LQ problems with control constraints seems
a formidable challenge, even if all the coefficients are deterministic. In addition to the
SREs in [6], a system of linear BSDEs with unbounded coefficients is employed to
construct the optimal feedback control in [8]. The main contribution of [8] is to prove
the existence of unique solution to this system of linear BSDEs with unbounded coef-
ficients by means of BMO martingales and contraction mapping method.

In this paper, we generalize the LQ problem in [6] to a model in which the coef-
ficients are stochastic processes adapted to the filtration generated by a Brownian
motion and a Poisson random measure for each give regime i. In addition to a usual
control w1, we introduce a second control us(z) depending on the jump size z. The
motivations to incorporating the second control are, in insurance area, the optimal
reinsurance strategies may depend on the claim size in general, see, e.g., Liu and Ma
[14] and Wu, Shen, Zhang and Ding [23]; and in controllability issues for stochastic
systems with jump diffusions, a control depending on the jump size is necessary as a
consequence of martingale representation theorem of Poisson random measures, see,
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e.g., Goreac [5] and Song [16]. The application of this kind of stochastic LQ model in
a optimal liquidation problem with dark pools can be found in our working paper [3].

The first main contribution of this paper is to provide a pure analysis method
(using tools like approximation technique, comparison theorem for multi-dimen-
sional BSDE with jumps (BSDEIJs), log transformation, etc) of the existence of a
unique solution to the corresponding system of SREs, which is a 2¢-dimensional
coupled BSDEJs. This is interesting in its own right from the point of view of BSDE
theory. Note that although the SREs in [6] are 2/-dimensional, they are partially
coupled, that is, the first £ equations for {P}};c ¢ and the second ¢ equations for
{Pi};em are totally decoupled. But in our new model, the equation for P} also
depends on (P4, T'%), rendering the 2/-dimensional SREs in our new model are fully
coupled. This more complicated phenomenon comes from the fact that, to the best of
our knowledge, the optimal state process will probably change its sign at the jump
time of the underlying Poisson random measure. Compared with the 2-dimensional
SREs in Hu, Shi and Xu [9], here we need to study 2¢-dimensional SREs because of

the new coupling terms >, ¢*/ P/ and ;a7 PJ. Please note that the uniqueness of

the solution to SREs in [9] is obtained by verification arguments which is an indirect
approach. The second main contribution is to give a rigorous verification theorem of
the optimal value and optimal control, using the unique solution to the corresponding
system of SREs, Meyer-1t6’s formula, a generalized squares completion technique
and some delicate analysis.

The rest part of this paper is organized as follows. In Section 2, we formulate a
constrained stochastic LQ control problem with regime switching, controlled jump
size and random coefficients. Section 3 is devoted to proving the existence of a
unique nonnegative solution to the related 2¢-dimensional fully coupled SREs in
standard and singular cases. In Section 4, we solve the LQ problem by establishing a
rigorous verification theorem.

2 Problem Formulation

Let (2, F,F,P) be a fixed complete filtered probability space. The filtration
F = {F;,t > 0} is generated by the following three independent random sources
augmented by all the P-null sets.

e The first random source is a standard n-dimensional Brownian motion
Wi = (Wl,t7 ceey Wn,l,t)T

e The second one is an no-dimensional Poisson random measure
N = (Ny,...,N,,)" defined on R, x Z, where Z C R\ {0} is a nonempty
Borel subset of some Euclidean space. For each k = 1,...,ny, Ni posses the
same stationary compensator (intensity measure) v(dz)dt satisfying v(Z) < oo.
The compensated Poisson random measure is denoted by N (dt, dz).

e The third one is a continuous-time stationary Markov chain «; valued in a finite
state space M = {1,2,...,¢} with ¢ > 1. The Markov chain has a generator
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@ = (gij)exe with g;; > 0 for i # j and Z§=1 gi; = 0 for every i € M.

Besides the filtration F, we will often use the filtration FW-N = {FV'Y ¢ > 0}
which is generated by the Brownian motion W and the Poisson random measures
N and augmented by all the P-null sets. Throughout the paper, let T denote a fixed
positive constant, P (resp. P":IV) denote the F (resp. F":N)-predictable o-field on
2 x [0, 7], and B(Z) denote the Borelian o-field on Z.

We denote by R the set of (-dimensional column vectors, by R% the set of vectors

in R¢ whose components are nonnegative, by R*" the set of £ x n real matrices,
by S™ the set of n X n symmetric real matrices, by S’} the set of n X n nonnegative
definite real matrices, and by 1,, the n-dimensional identity matrix. For any vector
Y, we denote Y; as its i-th component. For any matrix M = (m;;), we denote its

transpose by M T, and its norm by |M| = />, ; m3;. If M € S™ is positive definite

(resp. positive semidefinite), we write M > (resp. >) 0. We write A > (resp. >) B
if A,B€S"™ and A— B > (resp. >) 0. We write the positive and negative parts
of z € R as x* = max{z,0} and = = max{—z, 0} respectively. The elementary

2
inequality |a'b| < c|a|? + % for any a,b € R", ¢ > 0, will be used frequently
without claim. Throughout the paper, we use ¢ to denote a suitable positive constant,
which is independent of (¢, w, i) and can be different from line to line.

2.1 Notation
We use the following notation throughout the paper:

LE (GR) = {f :Q—>R ‘ & is Fr-measurable, and essentially bounded },
T
L2(0,T;R) = {6: 0,7 x Q@ > R ‘ ¢ is F-predictable and IE/ |6e|2dt < oo},
0
¢:[0,T]xQ2—R ‘ ¢ is F-predictable and essentially bounded },

L*"(R) = {cfﬁ : Z = Ris measurable with [¢(-)|2 := /Zo‘(z)zlz(dz) < oo},
{Q“) : Z = Ris measurable and ¢ is bounded dl/—aAe.}7

L%”(O,T;R) =20:[0,T]xQAx Z =R ‘ ¢ is P ® B(Z)-measurable

.
and E/ / |p:(2)]2v(d2)dt < oo},
0o Jz
LZ(0,T;R) = {cb 0, T xOQx Z2—=R ‘ ¢ is P ® B(Z)-measurable and essentially bounded },

S0, T;R) = {(/5 QO x[0,7T] = R ‘ ¢ is cad-lag, F-adapted and essentially bounded }

These definitions are generalized in the obvious way to the cases that F is replaced
by FWN F by FV:N P by PW:V and R by R, R"*™ or S™. In our argument, #, w,
“almost surely” and “almost everywhere”, will be suppressed for simplicity in many
circumstances, when no confusion occurs. All the processes and maps considered in
this paper, unless otherwise stated, are stochastic, so, for notation simplicity, we will
not write their dependence on w explicitly. Equations and inequalities shall be under-
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stood to hold true dP ® dt ® dr-a.e. For a random variable or stochastic process X,
we write X > 1 (resp. X < 1) if there exists a constant ¢ > 0 such that X > ¢ (resp.
|X] < o).
Consider the following real-valued linear stochastic differential equation (SDE)
with jumps:
dX; = [A] X 4+ (BYy ) Tune + [ Byy (2) Tugy(2)v(dz)] dt
+[CF Xy 4+ D] AW, @1

Qp QU — T 5
+ /2 (B (2) X + F{" " (2)ugu(z)] N(dt,dz), te[0,T),
Xo =1z, agp= i,

where A, Bi, C%, D?areall F"-N -predictable processes, and B(-), E(-), Fi(-)
are PN ® B(Z)-measure processes of suitable sizes, (u1,uz) is the control and
r € R, ig € M are the known initial values.

Let I, II; be two given closed cones (not necessarily convex) in R™* and R"2,
respectively. The class of admissible controls is defined as the set

U .= {(ulau2) ‘ u; € L%(O,T,le), Uy c Hl, d]P@dt—a,e,7

and wug € L?,’”(O,T; R™2), ugy €I, dP®@ dt ® dy—a.e.}.

If u = (u1,usz) € U, then the SDE (2.1) admits a unique strong solution X, and we
refer to (X, u) as an admissible pair.
Let us now state our stochastic linear quadratic optimal control problem as follows:

{ Minimize — J(u;z,io) (2.2)

subject to u €U,
where the cost functional J is given as the following quadratic form
T
J(u; x,i9) := IE{GO‘TX% +/ [ULR?}UH + QM X2+ /Zug,t(z)TR?“t(z)um(z)u(dz)] dt}. 2.3)
0

The optimal value of the problem is defined as

Vix,ig) = in{{ J(u; x, ip).

ue

Problem (2.2) is said to be solvable, if there exists a control ©* € U such that

—oo < J(u*;x,ig) < J(uyx,ip), Yu€el,

in which case, u* is called an optimal control for problem (2.2) and one has

V<xai0) = J(U*anZO)
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Remark 2.1 By choosing IT; = {0} (resp. IIs = {0}), our model covers the case of
Ri =0,D"=0, Bt =0 (resp. R, =0, F* =0, B = 0). In particular, our model
covers the pure jump (i.e. (B, C% D R}) = 0) and pure continuous diffusion (i.e.,
(B, B, F', RY) = 0) models.

Throughout this paper, we put the following assumption on the coefficients.

Assumption 2.1 It holds, for every i € M, that

A’ € L n (0, T;R), B} € L5n (0, T;R™), By € L%~ (0,T;R™),
C' € Lun (0,T;R™), D' € Ly, (0, T;R™ ™),
E' € LSwx (0,T;R™), F' € L%y (0, T;R™*™2),
R} € LiS.x (0,T;ST), R € L3S, (0,T;S72),
Q'€ L n (0, T5Ry), GUE L v (4 Ry).
T

Under Assumption 2.1, the cost functional (2.3) is nonnegative, hence problem (2.2)
is well-posed.
Besides Assumption 2.1, we need the following hypotheses:

1. R} >61,,.
2. (DY D! > 61,,,.
3. Ry > 01,,,.
4. (F)TF! > 61,,,.

We will consider the problem under one of following two assumptions.

Assumption 2.2 (Standard case) There exists a constant § > 0 such that both hypoth-
esizes 1 and 3 hold.

Assumption 2.3 (Singular case) There exists a constant § > 0 such that G* > ¢ and
one of the following holds:

Case I. Both hypothesizes 2 and 3 hold;
Case II. Both hypothesizes 2 and 4 hold;
Case II1. Both hypothesizes 1 and 4 hold.

Remark 2.2 As is well-known, there is no essential difficulty to consider a more gen-
eral cost functional comprising cross terms:

T
J(u; ,i0) = IE{G“TX% + /0 [u{tRi;ul,t + 2uy ST X + QP X7
(2.4)
+ / <u2,t(z)TRg;(z)u2,t(z) + 2u2,t(z)T5;;(z)Xt)u(dz)] dt}.
zZ

Let us explain this point in the Standard case. Under Assumption 2.2, by regarding
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(ﬂq, ﬂg) = (u1 — Rl_lle, Ug — RQ_ISQX)

as the new control, LQ problem under the state process (2.1), and cost functional
(2.4) could be reduced to one without cross terms:

T
J(@3,i0) = B{ G X3 + / [ R+ Qe X7 + /
0

i ﬁz.t(z)TRg;(z)aQ,,,(z)y(dz)] dt}.

subject to the state
A%, = [A7 Ko+ (BY) T + [, Boy (2) Tz a(2)v(dz) | ae
- - T
+{Cf"’*Xt, n Df"ﬂlyt} aw,
- - T .
+ / B ()% + M (2)iza(2)| N(dtdz), teo,T],
~ zZ
Xo =1z, ag= 1o,
where
At A= (BT (RS - [ (BT () Sip(de), €= - DR S
zZ

Bii= B - FURY) 'S O = QF — ()T (R)1Si /Z ()T (RY) 1 Siv(dz)

provided Q > 0.

3 Solvability of the Riccati Equations

Foranyi € M, j = 1,2, let us denote by Ej, the k-th component of E*, T, the k-th
component of I'y and F}/ the k-th row of F’, k =1, ..., na. To solve problem (2.2),

we need to study the following 2¢-dimensional SRE with jumps (the arguments ¢ and
w are suppressed):

APf = —[(24"+ |C1) P} + 2(C) A + Q' + HY (P, AY)
+ [ Hi3 (2 P, P, T, Th)w(d2) + 5, ¢ Pt
+(A)TAW + [, Ti(z) T N(dt,dz),
AP = = [(24° 4 |CT) P + 2(C) T A + Q1 + Hy (P, AY) (€RY
[ H35 (2, P P TS Th)w(dz) + 325 ¥ Pt
+(AYTAW + [, Th(z) T N(dt, dz),
Pl =G P, =G R +P{(D) D' >0, Ri +Pj(D")'D" >0, ieM,

where, for any
(t,v,2, P, Py, A,T1,T2) € [0,T] x II;(or TIp) x Z x RY x R"™ x (L>¥(R"2)3
we define
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Hi (tw, P, A) = 0" (R} + P (DY) T D)+ 2(P(B: + (D) TCH + (D) TA) T,

n2
Hiy(tw,z P, Py, T',Ty) := v Rbv + Z(Pl + D) [(1 + Ef, + Fiv)t)? — 1]
k=1
n2

— 2Py (Ej + Fjv) +2Pi(Bj) v
k=1

+ > (Pa+To)(1+ B} + Fiv)™)?,
k=1
Hy,y (tv, Py, A) i= 0 (R} + Po(D") " D" — 2(P(Bi + (D) 'C) + (D) TA) Tw,

n2
Hiy(tw, 2, P1, Py, T1,To) i= v Ryv + Y (Py+Tox) (=1 = Ej, + Fiv)™)* — 1]
k=1
ng

—2P, Y (Ej — Fjv) —2Py(Bj) v

k=1
n2
+ > (PL+Tw)((~1— Ej + Fio))?,

k=1

and

Hir (6P, A) = inf Hi (tw, P, A),
velly

Hi (t,z, Py, Py, Ty, Ty) := inf Hiy(tw,z, Pi, Py, T1,T),

velly
Hy (t.Py, A) := inf Hiy(t0, Py, A),
vellq
HS (tz, Py, Py, T, Ty) = inl_f[’ Hiy(tw,z, Py, Py, T, Ty).
vells

To shorten notation, we omit the arguments ¢ of B%, B}, C*, D', E*, F*, R} R} in
the definitions of Hj, >k, =1,2. Because the generators in (3.1) depend on all Pjs,
hence (3.1) is a system of fully coupled BSDEJs.

Definition 3.1 A vector of stochastic process (P}, A%,T%)iea, j=1,2 is called a
solution to the BSDEJ (3.1) if it satisfies all the equations and constraints in (3.1),
and (P;,A;-,F;-) € Sg5vn (0, T3 R) x L2y, (0, T; R™) x L%OV"ZN (0, T; R™2)
for all i € M, j=1,2. Furthermore, the solution is called nonnegative if
P} >0, P/ +T% >0, and called uniformly positive if P/ >> 1 and P} 4+ '} > 1,
foralli e M, j=1,2.

Before giving the proof of main theorem in this section, let us recall the definition
of bounded mean oscillation martingales, briefly called BMO martingales. Please
refer to Kazamaki [11] for a systematic account on continuous BMO martingales. A

process fot ¢ dW, is called a BMO martingale if and only if there exists a constant
¢ > 0 such that
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E{/T |65|2ds ’ ]—'TW’N} <c

for all FW-V stopping times 7 < 7T'. In the uniqueness part of the Theorem 3.1, we
will use the following property of BMO martingales: If fot 1 dW, is a BMO mar-

tingale on [0, 7], then the Doléans-Dade stochastic exponential £( [ ¢ dW,) is a

uniformly integrable martingale on [0, 7]. We have finer estimates for solutions to
(3.1) under Assumption 2.1 shown as below.

Lemma 3.1 Let Assumption 2.1 hold. If(P;, /1;:7 Fj)ieM’ j=1.2 is a solution to (3.1),

then [, ATdW is a BMO martingale, i € M, j =1, 2.

Proof Applying It6’s formula to |Pf’t 2, we get, for any F"*"V stopping time 7 < T,

E[/T A% |%ds ‘ Fr]

T
< |Gi\2+1E{/ 2P} [(QAi+|Ci\2)Pf+2(Ci)TA§+Qi

T

4
FHI(PLAD + [ HE5 (PL P Tv(ds) + Y g Pfds | 7
zZ

j=1

1 T
<c+ iE[/ |AY|2ds ‘ }"XV’N},

where we used Assumption 2.1,
Hir <0, Hi(Pi,PiT%Th) < Hiy(0,P} Pi,T% T4), and the solution
(P}, A%, T%)ieam, j=1,2 is uniformly bounded. Note both sides in the above esti-
mate are finite since A} € L?FW,N (0, T;R™ ). After rearrangement, we conclude that
Jo A1dW is a BMO martingale. Likewise, [; A5dW is also a BMO martingale. [J

The following comparison theorem for multi-dimensional BSDEJs was firstly
established in [9, Theorem 2.2]. We list it here as it plays crucial role in the solvabil-
ity of the BSDEJ (3.1).

Lemma 3.2 Suppose, foreveryi € {1,2,...,m},
(Y, Zi, @), (Y4, Zi, ®;) € S2(0, T;R) x L2(0, T;R™) x L%"(0,T; R),

and they satisfy BSDEJs

T T T
Y= &+ / Fi(s, Yo, Ziy, ®,)ds — / AR / / B, ()N (ds, de),
t t t £

and
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= /f Z )ds—/t Z AW, — //” dsde)

respectively. Also suppose that, for all i € {1,2,...,m} and s € [0, T],
(1) & <&

(2) there exists a constant ¢ > 0 such that

fi(8,Yer s Zi 6y @1 gy, @pgyeor , Dpy)
fl(s YS 7Z'L€a¢1€7”' 719," q)pg)

<e / (®;.4(c) - v(de) + / 1@,.0(¢) — By(0)(de);
£
(3) there exists a constant ¢ > 0 such that

fi(&yvsfv Zi,s7 (1)1,87 e 762',57 e 7®Z,s) - fi(sv?sfaji,svgs)
= C(|Yri,sf - ?i,sf‘ + Z(Yrj,sf - ?j757)+ + |Zi,s - 7i,s|

J#i
+ X [ W+ 830) = T = Byl wla)

J#i

) f:(-,0,0,0) and f;(-,0,0,0) € LZ(0,T;R),
(5) both f; and f, are Lipschitz in (y, z, ¢),; and
(6) fi(5,Y 5=, Zis, ®s) < [i(8,Y 5, Zi s, D).
Then V;, < Y, ,Vte[0,T)=1,ie€{1,2,...,m}.

Theorem 3.1 Under Assumptions 2.1 and 2.2, the BSDEJ (3.1) admits a unique non-
negative solution (Pz /1;, ji)zeM, j=1,2-

Proof (Existence). For each natural number £, define maps

HiPR(PLA) = inf  Hi (v, P, A
( 1 ) vGHllr,lh)\Sk ll(vv 1 )7
Hip¥(z P, Py, T1,Ty) := inf  Hiy(v,z, P, Py, T1,T),
velly,|v|<k
HYF(Py, A) = inf  Hi (v, Py, A
21 (2> ) vEHlll,l|v\§k 21("0 2, )7
HyF(z, P, Py, Ty, Ty) := inf  Hiy(v,z, Py, Py, Ty, T).
vells,|v|<k

Then they are uniformly Lipschitz in (P;, P>, A,T'1,T's) and decreasingly approach
to Hyy", Hyy', Hyy", Hyy and respectively as k goes to infinity.

For each £, the following BSDE
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APLF = —[(A + [CTR)PLE +2(C) AL + QF 4+ HiTH (PR ALY
4 ii DIy i,%,k T, 7, 7, 7,
+Zj:1 q“ P} o fg Hy, k(P1 k7P2 kvrlkvr2k)’/(dz)}dt
FAPTAW + [ T7F(2) TN (dt, d2),
APyf = =41 +|CP) L+ 2AC)TASS + QT+ BERRRL AT (B2)
4 ii DJs i,%,k i, i, i, i,
+ 3 IR+ [, By (PHE, P ’“,rl’“,rf)y(dz)} at
O HASHTAW + [, TE(2)TN(dt, d2),
Py =G Py =G ieM,

is a 2/-dimensional BSDEJ with a Lipschitz generator. According to [20, Lemma
2.4], it admits a unique solution (P;’k, A;-’k, I‘;’k)ieM, j=1,2 such that

(PPF,APF TER) € S20 (0, T5R) x Liw n (0, T3R™) x Lt (0, T3R™), i € M, j=1,2.

A A

We next show that (P}, Pi**);c v, are lower and upper bounded. Actually, the fol-
lowing two linear (with bounded coefficients) BSDEJs (see, e.g., [ 1, Proposition 2.2])

dPy, = =24 + [Py, +2(C) TRy + Q' + [, Hp(0, Py, Py, T, Ty )u(d2)
+Y qiﬂ‘ﬁ{]dt + (A TAW + [, T (2)TN(dt, dz),

dP,, =~ (A" +|C'A)Py, +2(C) Ry + Q' + fz Hiy(0, P}, Py, T}, Ty)w(dz)  (3.3)
+Y qi-fﬁg']dt + (Ay)TdW + [, T5(2) TN (dt, dz),

Pip=G'\, Pyp=Gi ie M.

and

AP}, = —|(24° +|C12)P,_ +2(C)TAL + X5 ¢ P |t
+(AD) AW + [ T (2) T N(dt, dz),
APy, = —|(24° +[C'2)Py,_ +2(C) Ay + X5y 7P lat (4
| +(A3) TdW + [ Ty(2) TN (dt, dz),
Pir=0,Pyp=0,i€M

admit unique uniformly bounded solutions (?;, K;,f;)ie M, j=1,2 and
(B_Zja A; ) E; )iGM, j=1,2 respectively. Clearly9 (B; ) A; ) E;)’LEM, j=1,2 = 0 by unique_

ness. According to the definitions of H;’jf’k, H3;,, we have

Hi Py, Ay) < HL (0, P, Ay) =0,
Hipk(Py, Py, T1,Ty) < Hiy(0,Py, Py, Ty, Ty),

HiF(Py, Ay) < Hi, (0, Py, Ay) =0,
Hy " (Py, Py, T1,Ta) < Hiy(0,P1, Py, Ty, T)

Also, thanks to Assumption 2.1,
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Q'+ Hi (P, A / Hi (P, Py, Ty Ty)u(dz) = Qi > 0,
Q' + HiF(Py, A / Hi (P, Py, Ty, Dy)v(dz) = QF > 0.

We can apply the Lemma 3.2 to (3.2) and (3.3), and to (3.2) and (3.4) (actually to
~P; * and —B;), respectively, to get

0=P,<P* <P, 0="P)<P* <P,

Applying the same comparison theorem to different ks in (3.2), we get P; ** is non-
increasing in k, forany i € M, j =1,2.

A nonnegative solution to (3.1) can be constructed in much the same way as [1,
Theorem 1], [9, Theorem 3.1] and [12, Theorem 2.1] by proving the strong con-

vergence of (P]Z - A?k, F;k)ze M, j=1,2 a8 k — oco. Details are left to the interested
readers. This completes the proof of existence.

(Uniqueness). We now turn to the proof of uniqueness. Suppose
(P}, A%, T%)iem, j=1,2 and

(I:’j, A;, f‘;)ie M, j=1,2 are two nonnegative solutions of (3.1). Then there exists a
constant M > 0 such that, foralli € M, j = 1,2,

0< P, P, <M.
Estimates similar as in [9, Theorem 3.1] yields also that

0< P, +I%, P

gt F 15 < M.

Let a > 0 be a sufficiently small constant such that R} — a(D?) " D > 0. Write

g:ﬁ,then0<g<1.Let

(UL Vi, @) = (m(p;m),}fia,m(u%)),
J

(T2, V7, &) = (IH<PJ+G)’JJ_§}C¢’IH(H%))
3 I

for all i, j, k. Then we have the estimates

Uj+®] i Ui+®5 . i i
; o _ eY1 1L,k —@ P+F e 2T 72k —q P+ 1%,
o< eq)jk7e(b}k <o 17 =1 1k >0, . Sl 2k > ). (35)
= = Ui eUi Ui Ui =

Also,

!'Conditions (1)-(5) can be obtained in a similar way as [9, Theorem 3.1]
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AU} = = [(2A7 +[CT2)(1 = ae~U4) +2(CH) TV} + Qie™Vi + J|Vi + X3)_, gVt Ui
I (U, Vi) + [ A5 (U3, U3, @, @h)u(d2) + TRz, [ (e — @], — Du(dz)]at
+H(Vi)TdW + [, ®i(2) T N(dt,d2),
AUf = = [(2A7 +[CT2)(1 = ae~U%) +2(CT) TV + Qie™Vi + L[4 + X3, gPeVt Ui
3 (U3, V3) + [ H35 (US, US, @, @h)u(dz) + [ Sht (%5 — @), — 1w(dz)]at

v +(VH)TAW + [, ®h(2) T N(dt,dz),
Uiy =Ulp=Wn(G' +a), ieM,

where

Hiy(0,Uy, Vi) == v (Rie™" 4 (1 — ae” ") (D") T D)
+ 2((1 — ae_Ul)(Bi + (Dz)TCz) + (Di)TVl)TU’
. T U no €U1+<I>1,k —a . i
Hi2(U>U1a Uz, @1, (1)2) = R12€ ot kzzl T(((l + Elzg + F]zv) ) - 1)
n2

=21 —ae™") 3 (B} + Fio) + 201~ ae™)(B)) T
k=1
n2 €U2+q>2‘k —a . o
Y (1 + B+ Fo)7)?,
k=1
Hjy(0,Us, Vo) = 0" (Rie™"* + (1 — ae™)(D) T D)o
—2((1 = ac™")(B] + (D) TC) + (D) Va) T,
n2 6U2+q>2>k _a

Ay (0, Uy, Uz, ®1,2) := v Rhe o+ (((71 — Bl + Fjv)")? - 1)

el
k=1
—2(1— ae™U?) Y (~Bf + Fiv) — 21 —ae™V*)(BY) v
k=1
N2 Uik g ; P
+Z o0z ((-1— Ej + Fv)™)?,
k=1
and
Hii*(Uth) = lené H{I(U7U1avl)7
velly
Hyy (2,U1, Uz, ®1,®2) := inf Hip(v,2,U1,Us, &1, @),
velly
Hy (Ua, Vo) = 1€n§ Hi\ (v,Uz, Vo),
velly
g;é*(Z7U1?U27(I)17(I)2) = lné H§2(’U7Z5U17U2a(b1a¢)2)-
velly
Set

Ul=Uj-U, V=V -V}, & =0, - ! ieM, j=12
Then applying It6’s formula to (U })2, we deduce that

@ Springer



3 Page 14 of 27 Applied Mathematics & Optimization (2026) 93:3

T T
(U)? + / Vi ds + / / B4 2(dz)dt
t t Z
T , T
:/ {L;1+/ZL32(z)u(dz)}dt—/ 20 (Vi) T dW
t t

na T
=3[ [ oo @) ),
k=17t 72

and
(UL,)? + / V3 2ds + / / B2 (dz)dt
t t zZ
:/t {Lél—k/ZLZQQ(z)V(dz)]dt—/t QUL (Vi) T AW
na T o o . B
= / / (205, 8% 4 + (B},)2) Ny (A, dz),
k=17t 72
where

. — . n . . i i . — . 1 . ~ = .
L3, =207 [(Q' — 204° —alC) (e VE — e Uy 4 2(CY) TV 4+ S (Vi + V)V

4
+ Z qij (eUfiUI - eUfiUI) + ]:I{’l*(Ulla V1i7) - f{{’l*(Ulla ‘N/ll)i| )
j=1
12 i . 43 ~ .
Lin(z) s = 207 [ Y [(he — @} — 1) = (¥ — &}, —1)]
k=1

+ A5 (=,U, @, U3, @) — iy (.01, 81, 03, 83)]
. — . . . . i i . — . 1 . ~ . — .
Lyy = 203[(Q" = 20" — alC'A) (e — )+ 2(C) TV + 5 (V3 + V)V

14

+ Y (P = ) 4 A (U3, V4, — B (03, V5)]
j=1
. — . nZ i . i ~ .
Lin(2) : = 203 Y_[(e%50 — @) — 1) = (P — B~ 1)]
k=1

+ 5 (2, U}, ), U3, @) — Hy; (2,01, 84,03, 85)|.

The terms L11 and Lo can be estimated in much the same way as [6, Theorem 3.5]
to get?

2Ri - a(Di)TDi > ( is required in these estimates.
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¢
Ly <|B(01 + elUf] Y _107] + (8T U3V,
=1

— —_. Z —_ . —_. — .

by < |B°|(U3)° + c|U31 > |U3| + e(8') U3V,

=1

where Ik is some FW.N —predictable process satisfying

1B < (1 + |V + |VE| + [V3| + [V3]) so that [,(8°)TdW is a BMO martingale
noting Lemma 3.1.

On the other hand, from Assumptions 2.1, 2.2 and (3.5), there are positive con-
stants c1, co, c3 such that

Hf2(U7Z,Uf7U§ <I>llaq)l) - g{Z(Ovszfv U£7q)717 <DZ2)

L6 of? "Zz QUi o *Uf)wzz(Ei+Fi )+ 2(1 — ae=U)(B)T
— —_— — ae v — ae v
SMta" T T e LR 2
n2 U1+<I>1,€7a )
D (LEF Ve
e 1

72 oUst @ 2k_a

2(1 — ae™ ZEkJrZ

[v]2 — ca|v] — c3 > 0,

(1 + B )7
ZM+a
if |v| > ¢ with ¢ > 0 being sufficiently large. Hence,

Hiy (2,U1,U3, @1, @) := _inf  Hiy(v,2,Uf,Uj, &}, ). (3.6)

vElly,|v|<c

Furthermore, noting U?, U, Ui, Ui, &%, &%, &}, % are bounded, we have
Lia(2) < c|U|(|UF] + 21 (2)] + |Us] + |@5(2)]).-

Similar arguments applying to H2y (v, z, Ui, Ui, &}, &%) yield that
Ly (2) < c|U3|([UF] + 9 (2)] + [Us] + [@5(2)]).-

For each ¢ € M, introduce the processes

Jti = exp (/Ot \ﬁ;|ds>, Nti = exp (/Ot(ﬁi»)TdWs - ;/Ot |ﬂ;|2d5)

It6’s formula gives
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T T
.];’N;\Uf’t\?JrEt/ J§Nj|f/f\2ds+Et/ /J;IN;\éﬂ%(dz)ds
t
<Et/ JtNZ[c\UIHUﬂ+c\Ul\Z\U1\+c\U1\/ )+ Bh(2)(dz)] ds

<rEt/ JlNZ(\U1\2+\U2\2+Z|UJ Yds + Ef/ /JZN’ [ (2)]? + | (2)]?)v(dz)ds.

Jj=1

Note that IV} is a uniformly integrable martingale, thus
Wi =W, — / (BT AW,
0

is a Brownian motion under the probability P defined by

dP?
dP | g

We denote by IE% the conditional expectation with respect to the probability P?, then

T T
L + / iV 2ds + / / Ji|® Pu(dz)ds
t Z

t

~. (T _ L 1~. (T oo _. 3.7
<} [ S0P 405 + Y 01Ps + 1B [ [ 8P + @),
t = t Jz
Similarly, we have
O+ B[ RViPas+ B[ [ e Puiazas
t
(3.8)

<cIE’/ J’(\U1\2+\U2|2+Z|UJ )ds + E’/ /J’ (|42 + | @5 ?)v(dz)ds.
t

j=1

Combining the above two inequalities yields
O 4105, < B [ exa( [ 151103 / o [0, 2)ds
t t =1
~ £ T
< cEi{exp / |3%|dr) Z/ 2)ds}
j=17t

~ . T . e T
< cE; {exp(/ |85 |dr) Z/ =ids,
¢ il
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where
=7 .— r7J |2 r7J (2
El =esssup (U] (" +|Us (|7 ).
weN '

According to [8, Lemma 3.4], Iﬁi{exp( ftT |5};|dr)} < ¢, then taking essential

supreme on both sides, we deduce that
14 T £
<Y e[ YoEds
i=1 =1

We infer from Gronwall’s inequality that = = 0, so Uj = Ui = 0, for all i € M.
Consequently, it follows from (3.7) and (3.8) that Vi =V = 0 and &} = &% =0
for all ¢ € M. This completes the proof. O

Remark 3.1 In the above proof, Assumption 2.1 alone is sufficient for the existence
of a nonnegative solution to (3.1), and Assumption 2.2 is only used in the proof of
uniqueness part (will also be used in Lemma 4.2).

Theorem 3.2 Under Assumptions 2.1 and 2.3 , the BSDEJ (3.1) admits a unique uni-

formly positive solution (P}, A%, I'})ic m, j=1,2-

Proof The proof of the existence is similar to the above Theorem 3.1 and will only be
indicated briefly why the solution to (3.1) is uniformly positive.

When both 2 and 3 hold. In this case, there exists constant co > 0, such that

2A" + |C']> = 671 B] + (D) ' C')? > —c, —5_1/ |Bi|v(dz) > —ca,
Z

where § is the constant in  Assumption 2.3. Notice that

(P, A, L) = (W, 0,0) solves the following BSDEJ

{ dP = —(—coP — caP?)dt + A" dW + [, T(e)N(dt,dz), (3.9)
= 9. .
T

And we have the following inequalities
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HiyoM(P,A) > inf Hi (v, P,A) > =0 B + (D")TC)P,

vER™1

/ Hi*(z, P, P,T. T)(dz)> / inf Hiy(v, 2 P, P T, D)v(dz)
=z ZUGle

> —5*1/ B [20(d2) P2 > —cpP”.
Z

Similar results also hold for Hy;"* (P, A) and [, Ha,"" (2, P, P,T, T)v(dz). Apply-
ing Lemma 3.2 to (3.2) and (3.9), we get
1

P >P, > G T i et 1’ tel0,T], ie M, j=1,2.

Sending & — oo leads to the desired uniformly positive lower bound.
When both 2 and 4 hold. In this case, there exists constant c3 > 0, such that

2A1’+|C"\2+/ \Eﬂ%(dz)—5*1\B;’+(Di)70i|2—5*1/ [(F)TE® + Bi|*v(dz) > —c3,
zZ zZ

where 4 is the constant in Assumption 2.3. Notice (P,, A,,T;) = (de=(T=1 0,0)
solves the following BSDEJ

{dp —(—c3P)dt + ATdW + [, D(e)N(dt,dz), (3.10)

And we have the following inequalities
HiM(P,A) > inf Hi(v,P,A) > —0"'|Bi + (D")TCPP,

veER™1

Hiy*(z,P,P,T,T) > inf Hi,(z,v,P,P,T,T)>—6"|(F")"E'+ B}?P.

== veER™1 ==

Therefore,

¢
A"+ [CTHP+2(C)TA+ Q'+ > ¢ P+ Hi M (P A) + / H{y* (P, P,I,T)v(dz)
=1 z

> (2Ai+ICiI2)B—5_1\B§+(Di)TCiIQB—/ 0 (F)TE' + By*Pr(dz) > —csP.
Z

Similar results also hold for H.**(P,A) and Hi}*(z,P,P,T,T). Applying
Lemma 3.2 to (3.2) and (3.10), we get

Pif > P, =60 > 57T t€[0,T], i€ M, j=1,2.

Sending & — oo leads to the desired uniformly positive lower bound.
When both 1 and 4 hold. In this case, there exists constant ¢4 > 0, such that
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—07YB: + (D) TC? > —cy, 24° 4 |C1)? +/ |E v (dz) —5—1/ [(FOTE' + Bi*v(dz) > —c4,
z zZ

where 6 is the constant in  Assumption 2.3. Notice that

(P, A, T,) = (m, 0,0) solves the following BSDEJ

{ dP = —(—c4P? — ¢4 P)dt + ATdW + [, T(e)N(dt,dz),

P s (3.11)

And we have the following inequalities

Hyiy M (P,A) > inf Hiy(0,P,A) > ~67"Bj + (D) TC'PP? 2 —eaP?,
vER™1

Hf’z*’k(Z,EE,LD > iﬁf Hiy(v,2,P,P,I,T) > |E'?P — 6~ '|(F") " E* + Bi*P.
veER™1
Therefore

(247 + |C]?) P + / Hyy " (2, P, P.T, D)r(d2)
zZ

Y

(247410 + [ 1B v - 570 [ |F)TE 4 BiPu(a) P
z Z

> —cyP.
Similar results also hold for H;:’l*’k(ﬂ7 A) and Hé’;’k(z, P,P,T,T). Applying
Lemma 3.2 to (3.2) and (3.11), we get

; 1
i,k
P‘t 2£t2(5_1+1)ec4'r_17

£ tel0,T], ieM, j=1,2.

Sending & — oo leads to the desired uniformly positive lower bound.
As for the uniqueness, one just need to repeat the proof of Theorem 3.1 witha = 0
which is allowed because the solutions are positive. O

Remark 3.2 As one referee pointed out, it is more general if both w; and us appear
before AW, and N (dt, dz) in (2.1). In this case, we can still heuristically derive the
corresponding SRE which will comprise the cross terms between vy and vs. But, it is
difficult to establish some estimates in Page 13, thus making it challenging to prove
the existence and uniqueness of the solution to the SRE. We will study this problem
in our future research.

4 Solution to the LQ Problem (2.2)

In this subsection we will present an explicit solution to the LQ problem (2.2) in
terms of solutions to the BSDEJ (3.1).
When R} + P(D*)T D! > 0, i € M, we define
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011(t, P, A) := argmin Hi, (t,v, P, A),
velly

b5, (t, P,A) := argmin Hj, (t,v, P, A).
velly

(4.1)

When Ry >0 or (P +Tjp)(F)TF >0,ie M, j=1,2, k=1,2,...,n2, we
define

0iy(t, 2, P, Py, Ty, T'y) := argmin Hi,(t,v, 2, P1, Py, T'1,Ty),
velly (4 2)
632(t727P17P271—‘17P2) = argminHég(t,uZ,Pl,P%l"hl"g). .
vells

Theorem 4.1 Let Assumptions 2.1, and 2.2 (resp. 2.3) hold Let
(Pi, AL TH) € S35 (0, T5R) x Ly (0, TsR™ ) x L3 (0, T;R™), i€ M, j=1,2

VR R}
be the nonnegative (resp. uniformly positive) solution to the BSDEJ (3.1). Then the
state feedback control u* = (u}, u}) given by

wi(t, X, o) = 007 (& Py AT )X + 51 (1 Py, AS )X, (4.3)
us(t, X, a) = 0757 (8,2, Py, Pt Ty To )X, + 055 (2, Py, Poy = T T )X, :

is optimal for the LQ problem (2.2). Moreover, the optimal value is
V(z,ig) = P%(a") + Pyfy(x7)%

A proof of this theorem is contained in the following two Lemmas. In order to avoid
as far as possible unwieldy formulas, we agree to suppress the the superscripts and
subscripts of 4, B, C, D, E, F, R, O, G. And we will write v?]f’ (t, Py~ AT*") simply

045, 1, § = 1,2 when no confusion can arise.
Lemma 4.1 Under the condition of Theorem 4.1, we have

J(w;wyi0) = Piiy(a™)? + Py ™)?, (44)
forany uw € U, and

(' @,i0) = Piip(a™)? + Py (z7)”. (4.5)
Proof Noting the convex function f(z) = (z*)?, z € R, admits an absolutely contin-
uous derivative f'(z) = 22 such that forany a,b € R, f'(b) — f'(a) = ff 1" (s)ds,

with f”(x) = 21,~¢. Forany u = (u1,us) € U, applying the Extant Second Deriva-
tive Meyer-It6 formula [15, Theorem 71] to (X,")?2, we deduce that
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d(X;)? = {2Xtt (AX + Bl + LBQ(Z)Tuz(z)V(dz) - Z/Z(Ek(z)X + Fk(z)ug(z))TV(dz))
h k=1
+1ix, s0y|CX + Du1|2]dt +2XF(CX + Duy) T dW,

+ Z/Z [((X + Ee(2)X + Fu(e)ua(2)))? = (X)?] Ni(dt, ).
k=1
The integration by parts formula applied to P;"; (X, )2 yields

AP{ (X = PL [2X7 (AX + Bl + /Z Ba(2) Tusw(d)

N2

-3 /Z(Ek(z)X + Fr(2)ua(2)0(d2)) + 1(x, >0} |CX + Dur ] at
k=1"

+2XT(CX + Duy) TAS - dt
— (X [RA+ICP)PLI +20T AT +Q+ Hiy ™" (P AT

+ / Hf;’”*(Pf“,Pg“iri“*,r;“*)u(dz)]dt
zZ
+y / (P= +T9%0) [((X + Ep(2)X + Fr(e)ua(2)) ) — (X )2] v(dz)dt
k=172
.
+ [2X+(CX + Dup) + (X*)ZAT‘*] aw
na

+> /Z(P{f;: +T%0) [((X + Ep(2)X + Fi(e)uz(2))*)” — (X+)2] N (dt, de)
k=1

+(X+)2/ DY (2) T N(dt, d2) + (X)) (P} = P{) {0, —jndN7'9,
z Ji'em

o . . . . . !
where {N77}; ;se pm are independent Poisson processes each with intensity ¢’ 7, and

th i = th i_ ¢ 'it, ¢ > 0are the corresponding compensated Poisson martingale.
Likewise,
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dPgy(X[)? = Poi- [ —2x;t (AX +Blup + /Z Bo(2) Tusv(dz)

Y /Z(Ek(z)X + F(2)un(2)v(d)) + Lix, <oyl OX + D]

—2X7(CX + Duy) TAS - dt
—(x7)? [(2A+|C| JPi= +2CTAY™ + Q-+ Hyy ™" (P5~ AS")

/ Hyy= (P, Py~ Ty, T5" v (dZ)} dt
N Z/ Pgis 15 [((X + Eu(2)X + Fy(e)uz(2)7)* - (Xf)z] v(dz)dt
+ [_ 2X~(CX + Duy) + (X’)2A?“} Taw
+ Z / S+ T [(X + Br(2)X + Fi(e)ua(2)7)” = (X7)2| Ni(at, dz)

+(X*)?/Zr;t*(z)ﬁ\r(dadz)+(X*)2 > (P§ = P{)1{0,_—jydN7'7.
J.J'EM

We define, for n > 1, the following stopping time 7,,:

=inf{t >0:|X¢| >n} AT,

with the convention that inf ) = oo. Obviously, 7, T T a.s. along n 1 co.
Summing the two equations above, taking integration from 0 to 7,,, and then tak-
ing expectation, we deduce

B[Pl (X2 + Pope (X, )]

2,Tn
+IE/OTn [ulTRlul+QX2+/Z(uQ(Z)TRZ(Z)UQ(Z))V(dz) "

= P{%(a)? + Py%(z7)* + ]E/ ' {ulT(Rl + Lxs0yPAD D + 1{x <01 P2D " D)us
0

+2u] (P\B; + DT(P,C + A)X T — 2u] (PoB) + DT (PoC + A2)) X
— Hy{ (P A (X — Hy " (Pz,Az)(X )?

n /Z [u2 Rous + 2P, X+ (Bg(z) us(z) — ];(Ek(z)x +Fk(z)u2(z))) 4.6)

2P X (BQ(Z)TUQ(Z) LS (Bu(o)X + Fk(z)uQ(z))>
k=1

+ > (P4 D) (X + Br(2)X + Fi(e)ua(2)")” = (X+)?)
k=1

#3004 o) (((X 4 Bl2)X + Filepun(2))* - (X)2)
k=1

— H(Py, Py, Ty, ) (X )2 — HY " (P1, Py, Ty, PZ)(X*)Q] u(dz)}dt,
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We will denote by ¢(X, u)the integrand w.r.t. ¢ on the right-hand side of the above
equation and show ¢(X,u) > 0, dP ® dt ® dv-a.e., forany u € U.
Indeed, let us define

( Ul ¢ u2,t(z))’ if |Xt—‘ > 0;
(0,0), i X =0.

It is clear that the above process v is valued in I'y x I' since 'y, I's are cones. If
Xi— >0, then

O(X,u) = X2 M(R1 + PD T D)uy + 20 (PBy + DT (P,C + Ay)) — HY (P, Al)]

+ X /Z [1)2TR21)2 £ 2P, Bo(2) Tua(2) — 2P Z(Ek(z)X + Fi(2)v2(2))
k=1

F3 P+ ) (14 Eu(o) + Bloma(2))* - 1)

+ 3 (Py + Do) (1 + Ei(2) + Fiole)va(2)) ")
k=1

— {3~ (P, Py, Ty, Ta)u(dz) | v(dz) > 0,

from the definitions of H f’; H iz* Moreover, the equality holds at

ui(t, X o) = 07f~ (6 PU7 AT )X us(t, X ) = o7y (4, P Pyt T T )X

Next if X;_ < 0, then

H(X,u) = X2 M(R1 + PoD " D)vy — 2v) (PaBy + DT (PoC + Ay)) — Hyt ™" (P, Az)]

+ X2 /z [7)2TR27)2 - QPQBQ(Z)TUQ(Z) — 2P, Z(Ek(z) — Fr(2)va(2))
k=1

+ Zz(Pl + Flk)((—l — Ep(2) + Fk(e)vg(z))+)2

k=1
+ fj(P2 + rgk)(((q — Bi(2) + Fr(e)va(2))7)” = 1)
k=1
— H3 (P, Py, Ty, Ta)w(ds) [ p(d2) > 0,
from the definitions of H. 5’1*7 H ;2* Moreover, the equality holds at
ui(t, X, a) = 0507 (6 U7 AV T) X, up(t X, o) = 537 (4, P, P T TS ) X

Finally, when X;_ = 0, then
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n2

(X, u) =u, (R + PoD" D)u; + / {@Rzug +) (P + 1) ((Fru)t)?
z k=1

+ Z(P2 + F2k>((F}cu2>_)2} v(dz) > 0;
k=1

here the equality holds at uj = 0, u5 = 0.
The above analysis together with (4.6) shows that

E|Pim (X)) + Py (X_;L)Q] —HE/ ’ [UIRlul + QX2+ / MQ(Z)TRQ(Z)UQ(Z)Z/(dZ)] dt
0 z

> Py (ah)? + Py (am)?.

By noting that for any u € U, the corresponding state process X € SZ(0,T;R).
Sending n — oo, we conclude, from the dominated convergence theorem, that (4.4)
holds for any u € U, where the equality is achieved when u* is defined by (4.3). O

Lemma 4.2 Under the condition of Theorem 4.1, (v} (t, X, o), uj(t, X, ) € U.

Proof 1t is clear that (uj (¢, X, «), us(t, X, )) is valued in II; x II5. It remains to
prove

(UT (ta X, Oé), u;(tv X, a)) € L]%‘(Ov T le) X L%V(Ov T Rmz)‘
Substituting (4.3) into the state process (2.1), we have
dX; = [AX + BT (01Xt + 91X ) + [ B(2) T (012X T + 922X " )v(d2)] dt
F[OX + Do Xt + 021X 7)] " duy 4.7)

+ [ [EG)X + F(2)(012X T + 02X 7)] " N(dt,dz), t € [0,T],
Xo ==z, ap = 1o,

According to [7, Theorem 3.5], we have @11, 921 € L2(0,7;R™*). And from (3.6),
we know that 012,022 € LY (0, T;R™2). By the basic theorem of Gal’chuk [4,
p.756-757], the SDE (4.7) admits a unique solution, denoted by X*.

From the proof of Lemma 4.1, we find that, for any stopping time ¢ < T,

B[Pl m(X5,0) )2 + Py e (X5,0 )]
O AL
+E / [(u’{)TRlu}‘ +Q(X*)? + / (u;(z)TRz(z)u;(z))y(dz)} dar (4.8)
0 zZ
= Pf?o(l'+)2 + Pﬁit)o(x_)27
where

O :=inf{t >0:|X]| >n}AT.
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Suppose Assumption 2.2 holds. We have, from (4.8),

0, AT _ .
B [ [l + [ s Prid)]|de < Pyt + Blia )
0 z
Letting n — oo, it follows from the monotone convergence theorem that
(uf, u3) € LE(0, T3 R™) x L" (0, T;R™).
Suppose Assumption 2.3 holds. In this case, there exists ¢ > 0 such that
Pi>c, PI+T! >c,ie€M, j=1,2, k=1,...,ny. From (4.8), we get

CE[IX5, p, 7] < Piy(2")? + Pyy(a™)?.

Letting n — oo, it follows from Fatou’s lemma that

E[X/]’] <e,
for any stopping time ¢ < 7. This further implies

T
IE/ |X[|?dt < eT.

0

Applying It6 formula to | X |2, yields that
0, AT 0n AT
? —HE/ | Du}|?dt + IE/ / | Fub|?v(dz)dt
0 0 z
0, AT
BNl B[ [@a+ioP+ [ 1B Pa)Ix
0
na

+2X;(B1 +D"C)Tu} +2X; / (By us + Y ExFrus)v(dz)|dt.
Z k=1

When 2 and 4 hold. We have

On AT 0, AT
5IE/ |uﬂ2dt+5E/ / |uj)|?v(dz)dt
0 0 z

0, AT
< c+cIE/ (136712 + 21 ] +2|X;‘|/ juglu(dz)] ar
0 Z

9 oz 0, AT 5 0, AT 5 O AT
< c+c<1+g+ Vf; ))IE/O |X;|2dt + 5113/0 |t [2dt + 5@/0 /Z|u§\2u(dz)dt.

After rearrangement, it follows from the monotone convergence theorem that
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T T
E/ \uﬂzdt—i—E/ / luz|?v(dz)dt < c.
0 0o Jz

Hence (u},u3) € L2(0, T;R™) x L%"(0, T; R™>).
When 2 and 3 hold. We get u} € L2(0,7;R™!) exactly as above. On the other
hand, we can get uj € L%V (0, T;R™2) from (4.8).

The last case in Assumption 2.3 can be handled similarly. O
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