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Abstract—Accurate prediction of ocean factors (e.g., tem-
perature and salinity) is crucial for plenty of applications, 
including weather forecasting, storm tracking, and ecosystem 
protection. Meanwhile, it is well-known that the ocean is a 
unified system and various ocean factors usually influence each 
other. For example, the changes in temperature would affect 
the distribution of salinity in ocean. However, existing studies 
for ocean factor prediction mainly focus on designing individual 
models for predicting specific factors and ignore the correlations 
between different factors, thus having potentials to be further 
improved. Therefore, we propose a unified framework UniOcean 

⋮ 

(a) Various Ocean Factors (b) Ocean Factors with Different Temporal Scales 

… 

to predict multiple ocean factors simultaneously, and capture the 
correlations between them to improve the prediction accuracy. (d) One Unified Model for Various Factors  (c) Separate Prediction Models for Different Factors 

First, considering that ocean factors are usually collected with 
different temporal scales, we develop the fine-grained multi-
scale data fusion module to integrate multiple ocean factors with 
different temporal scales, and effectively learn their hierarchical 
patterns at different levels. Then, since the correlations between 
ocean factors may vary across different time periods, the multi-
factor correlation learning module is constructed to adaptively 
learn the dynamic correlations between different factors. Finally, 
we utilize the factor-specific towers to predict multiple ocean 
factors simultaneously. Experimental results on five real-world 
remote-sensing datasets demonstrate that UniOcean significantly 
improves the prediction accuracy by 11%-53% in terms of MSE 
for different ocean factors. 

Index Terms—Multiple ocean factors, different temporal scales, 
spatial-temporal prediction, unified model. 

I. INTRODUCTION

CEAN covers more than two-thirds of the Earth, and 
plays a crucial role in regulating the global climate. 

Various ocean factors, e.g., sea surface temperature (SST), 
sea surface salinity (SSS), and ocean heat content (OHC), 
have been studied for decades to identify extreme climate 

events (e.g., El Nin˜o phenomena and typhoons), understand 
ocean circulation, and protect the ocean ecosystem [1]. With 

the development of sensing technology, more and more remote 

Hanchen Yang is with the Department of Computer Science and Technol-
ogy, Tongji University, Shanghai, China, and also the Department of Com-
puting, The Hong Kong Polytechnic University, Hong Kong, China (email: 
neoyang@tongji.edu.cn). 

Jiannong Cao and Yu Yang are with the Department of Computing, The 
Hong Kong Polytechnic University, Hong Kong, China (email: {jiannong.cao, 
cs-yu.yang, 2203}@polyu.edu.hk). 

Yuwei Chen, Wengen Li, Shuyu Wang, and Jihong Guan are with the De-
partment of Computer Science and Technology, Tongji University, Shanghai, 
China (email: {2051505, lwengen, tj sywang, jhguan}@tongji.edu.cn). 

Rufu Qin is with the School of Ocean and Earth Science, Tongji University, 
Shanghai, China (email: qinrufu@tongji.edu.cn). 

Shuigeng Zhou is with the School of Computer Science, Fudan University, 
Shanghai, China (email: sgzhou@fudan.edu.cn). 

* Wengen Li is the corresponding author. 

Fig. 1: The ocean system has various factors (a), and different 
factors are usually collected with different temporal scales 
(b). The existing methods predict the specific ocean factors 
with separate models (c). In contrast, our work (d) explores a 
unified model to predict multiple ocean factors simultaneously. 

 
sensors have been deployed to monitor the changes of ocean 
factors [2], [3]. Various ocean datasets are thus collected and 
published by different organizations (e.g., National Aeronau-
tics and Space Administration (NASA), European Centre for 
Medium-Range Weather Forecasts (ECMWF), and the Chinese 
Academy of Sciences (CAS)), which lays the solid foundation 
for analyzing the changing patterns and regularity of the ocean. 
For example, since 1979, NASA has launched a series of 
satellites [4], [5] to continually monitor the SST and SSS 
globally. Over the past few decades, there have been numerous 
studies utilizing the collected data for predicting various ocean 
factors, which hold great significance for a lot of applications, 
e.g., weather forecasting [6], fishing detection [7], and storm
tracking [8].

Recently, with the development of deep learning techniques, 
more and more data-driven methods [1], [9], [10] have drawn 
increasing attention in ocean factor prediction and shown 
significant improvement compared with traditional physical 
methods [11]–[13]. However, a major limitation of existing 
data-driven methods is that they mainly focus on designing 
separate models for predicting specific ocean factors. As 
shown in Fig. 1, existing methods often focus on predicting 
specific ocean factors, e.g., SST, SSS, and OHC, independently 
rather than predicting multiple factors simultaneously. In fact, 
the ocean is a unified system and different ocean factors 
record different aspects of the ocean system. These factors thus 
could provide complementary information for each other [14]. 
For example, SSS and SST are closely interconnected by 
solubility, precipitation, and evaporation. With the increase 
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of SST, the movement of water molecules is accelerating, 
resulting in the separation of salt molecules and the reduction 
of SSS. Meanwhile, different ocean factors are recorded in 
the same spatial-temporal context and usually have similar 
temporal dependencies, e.g., tendencies, periodicity, and sea-
sonality. Capturing such dependencies is essential for accurate 
prediction of ocean factors. Therefore, designing a unified 
framework to jointly model the changes of different ocean 
factors and their correlations is meaningful and promising to 
further improve the prediction accuracy. 

Incorporating different ocean factor prediction tasks (e.g., 
SST prediction [6], SSS prediction [15], OHC prediction [16]) 
can be regarded as a typical multi-task learning (MTL) prob-
lem. MTL is a popular machine learning approach that trains a 
single model to perform multiple tasks simultaneously [17]. It 
has demonstrated superior performance in various fields, e.g., 
computer vision (CV) and natural language processing (NLP). 
MTL can learn robust and universal data representations to 
capture the shared knowledge among multiple tasks to improve 
their performance. Currently, there are already some studies 
on MTL methods in the ocean [18]–[21]. For example, MTL 
method was introduced to jointly predict the sea ice concentra-
tion and sea ice extent in the Arctic ocean [19]. Liu et al. [22] 
proposed a multi-task neural network model to simultaneously 
recognize abnormal signals and locate abnormal regions in 
the East China Sea. Despite the improvement, developing the 
aforementioned unified ocean factors prediction model remains 
technically non-trivial due to the following two challenges. 

On the one hand, most existing MTL methods often 
operate on the data with the same temporal scales but 
are unable to model multi-scale remote sensing data [18], 
[19]. Due to the variations in sensing technology and data 
processing standards, the data of different ocean factors are 
usually of varying temporal scales, e.g., daily scale, weekly 
scale, and monthly scale. As shown in Fig. 2, three ocean 
factors are collected in the same period but with different tem-
poral scales. When the MTL methods receive the multi-scale 
data as input, the temporal dependencies of different scales 
may exhibit diverse seasonality and tendencies, introducing 
significant complexity for the model to learn the consistent 
temporal dependencies. The existing MTL methods typically 
utilize the manually selected data with the same temporal 
scale, or employ specific techniques such as data interpolation, 
data resampling, and feature extraction to calibrate the data 
into the same temporal scale [23]. For instance, Eliot et 
al. [19] converted the daily sea ice concentration data into 
monthly averages to align it with the monthly sea ice extent 
data. However, such transformations may introduce additional 
noise and result in the loss of data details. As a result, 
the model may mistakenly learn the temporal dependencies 
across different temporal scales and exhibit poor prediction 
performance. Therefore, it is crucial to develop an end-to-end 
architecture that can directly capture fine-grained patterns in 
the multi-scale data. 

On the other hand, the dynamic correlations between 
different ocean factors have not been well-captured. Cur-
rent MTL methods basically employ a static module (e.g., 
linear layer and attention layer) or a combined training loss 

Three ocean factors with different temporal scales 

Fig. 2: The SST, SSS, and OHC data with different temporal 
scales, i.e., daily scale, scale of four days, and monthly scale, 
are collected by NOAA in 2022. 

 
Correlations between SST and SSS in different months 

Fig. 3: The Pearson correlations between SST and SSS over 
different months, where blue and pink colors represent positive 
and negative correlations, respectively. 

to integrate different ocean data analytic tasks [20]. However, 
the correlations between various ocean factors are complicated 
and may change over time. As shown in Fig. 3, we utilize the 
Pearson correlation coefficient [24] to measure the correlations 
between SST and SSS. It is clear that the correlations are 
dynamically changing over different months. Therefore, it is 
necessary to effectively capture the spatial-temporal variability 
in the correlations between ocean factors. 

To solve the above challenging issues, we proposed a unified 
prediction framework, UniOcean, to predict multiple ocean 
factors of varying temporal scales simultaneously. First, we 
develop the Fine-grained Multi-scale Data Fusion module 
to fuse multiple ocean factors of different temporal scales 
through the hierarchical residual network. Then, the Multi-
factor Correlation Learning module is constructed to adap-
tively learn the dynamic correlations between different ocean 
factors over time. Finally, we design the Factor-specific Tower 
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module to produce the prediction results for each ocean factor. 
Specifically, our main contributions include: 

• We propose a novel unified framework UniOcean to 
achieve multiple ocean factors prediction simultaneously. 
UniOcean can efficiently align the different temporal 
scales of multiple ocean factors, capture the unified pat-
terns, and learn the dynamic correlations between ocean 
factors to boost the prediction performance. 

• We develop a Fine-grained Multi-scale Data Fusion mod-
ule to capture the temporal dependencies of ocean factors 
at different scales and then introduce the hierarchical 
residual network to fuse these dependencies. 

• We design a Multi-factor Correlation Learning module to 
capture the dynamic correlations between different ocean 
factors, in which the correlations are fully self-adaptive. 

• Experimental results on five remote-sensing datasets 
demonstrate that UniOcean is a universal framework to 
enhance various models to achieve significant prediction 
performance on multiple ocean factors. 

 
II. DATA 

 

 
Fig. 4: Study area (blue): global ocean data (180° E–180° W, 
90° S–90° N) with the spatial resolution of 1°×1°. 

 
Academy of Sciences4. The temporal coverage is from 
1960 to now. 

• Monthly OHC. A monthly ocean heat content dataset 
that is also provided by the Institute of Atmospheric 
Physics, Chinese Academy of Sciences. The temporal 
coverage is from 1940 to now. 

A. Datasets 
In this study, we utilize five real-world datasets, i.e., Daily 

SST, D4 SSS, Weekly SST, Monthly SSS, and Monthly OHC, 
to evaluate the performance of our method. They are all 
reanalysis remote sensing datasets of high quality and have 
been processed to fill the missing values by their publishers. 
We summarize these datasets in Table I. 

TABLE I: Summary of datasets. 
 

Dataset #Scale #Period #Spatial Coverage 
 

 

Daily SST    Daily    1981-now    Global 

D4 SSS 4 Day 2011-now Global 

Weekly SST   Weekly  1981-now  Global 

Monthly SSS  Monthly   1960-now   Global 

Monthly OHC   Monthly    1940-now    Global 

 
• Daily SST. A high-resolution sea surface temperature 

dataset from Physical Sciences Laboratory (PSL)1. The 
data is processed using Optimum Interpolation to achieve 
daily scale. The temporal coverage is from 1981 to the 
present. 

• D4 SSS. A public dataset that is produced by the Earth 
and Space Research (ESR) in collaboration with the 
Remote Sensing Systems (RSS)2, and is derived from 
satellite L-band radiometer measurements from 2011 to 
now. The data is collected every four days. 

• Weekly SST. A dataset that collects the weekly global sea 
surface temperature from NOAA3. The temporal coverage 
is from 1981 to now. 

• Monthly SSS. A monthly ocean salinity dataset that is 
provided by the Institute of Atmospheric Physics, Chinese 

1Dataset available at: https://www.ncei.noaa.gov/products 
2Dataset available at: https://podaac.jpl.nasa.gov 
3Dataset available at: https://www.esrl.noaa.gov/psd 

 
B. Study Area 

In this work, as shown in Fig. 4, we conduct the study on the 
global ocean (180° E–180° W, 90° S–90° N) with the spatial 
resolution of 1° 1°. Thus, the total number of grid regions is 
180 360 = 64800. The values on the land a, i.e., the white 
areas in Fig. 4, are set to 0.. Thus, the total number of grid 
regions for the ocean is about 46000. 

 
III. RELATED WORKS 

In this section, we overview the existing methods for ocean 
factor prediction and multi-task learning, and give a discussion 
about the advantages and limitations of these methods. 

 
A. Ocean Factor Prediction 

Prediction of ocean factors (e.g., SST, SSS, and OHC) 
is an important research topic in ocean science. It aims to 
understand the regularity of past observations and accurately 
predict future observations, benefiting a lot of applications 
such as weather forecasting, disaster warning, and ocean 
environment protection [2], [3]. Various methods have been 
developed to predict ocean factors, and these methods can be 
roughly divided into two categories, i.e., physical models and 
data-driven models. 

Physical models. The basic idea of physical models is to 
combine the laws of physics, e.g., Newton’s laws of motion, 
the law of conservation of energy, and the seawater equation 
of state, to predict ocean factors. For instance, the Global 
Forecast System (GFS) [11] is a weather forecast model 
that carefully selects parameters to combine multiple physic 
laws (e.g., the Navier-Stokes equation and solar radiation) to 
predict the change of SST. Another representative method 
is the CMCC (Centro Euro-Mediterraneo sui Cambiamenti 

4Dataset available at: http://www.ocean.iap.ac.cn 

https://www.ncei.noaa.gov/products
https://podaac.jpl.nasa.gov/
https://www.esrl.noaa.gov/psd
http://www.ocean.iap.ac.cn/
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Climatici) model [12], [13] which is an ensemble model that 
integrates multiple physical models (e.g., C-GLORS, Ocean-
Var, and NEMO) [12] to achieve accurate SST prediction. 
Although physical models have been widely used in many ap-
plications, they require a good understanding of the underlying 
changing mechanisms of ocean factors to choose the critical 
parameters for physical models. However, such mechanisms 
are usually complicated, which makes it challenging to use 
only the manually settled parameters to effectively learn and 
monitor the patterns of ocean factors. 

Data-driven models. The latest data-driven models for 
ocean factor prediction can be further divided into traditional 
machine learning-based models and deep learning-based mod-
els. Traditional machine learning-based methods, e.g., vector 
autoregressive models [25], autoregressive integrated moving 
average (ARIMA) [26], hidden Markov models (HMM) [27], 
and support vector machines (SVM) [28], have been widely 
used to predict ocean factors. For example, Xue et al. [27] 
proposed a seasonally varying Markov model constructed in 
a multivariate space to predict SST. A feed forward neural 
network [29] was used to predict the Chl-a concentration in 
Lake Kasumigaura of Japan and achieved better performance 
than the physical methods. Li et al. [30] combined kernel 
Granger Causality analysis (KGC) and SVM to predict the 
daily sea ice concentration. Although these methods can 
predict the trend of ocean factors to a certain extent, their 
overall prediction accuracy is still low. When the prediction 
length is over one month, the model’s performance deteriorates 
dramatically due to the gradient vanishing issue. 

(2) Deep learning-based models, e.g., RNN, CNN, and 
transformers, have been widely used for predicting ocean 
factors because of their superior ability to model the complex 
dependencies among data [31]–[35]. For example, Yang et 
al. [36] combined the Markov random field with LSTM to 
predict the SST, achieving better results than SVM and HMM 
models. Wang et al. [37] used the fully convolutional neural 
networks (FCNN) model to predict sea ice concentration along 
the east coast of Canada and achieved high prediction accu-
racy. Self-attention-based methods such as Transformer [38] 
and its variants [39] achieve high-quality SST prediction 
by utilizing the non-autoregressive mechanism. In addition, 
some recent studies find that it is promising to combine 
physical models with data-driven methods [40]. Taking the 
SST prediction as an example, Arka et al. [41] integrated 
traditional physical laws (e.g., temperature density and energy 
conservation) and recurrent graph networks (RGN) to predict 
SST, which have achieved better results than RGN model. 
In sum, various deep learning-based methods dominate the 
prediction of ocean factors [1]. 

 
B. Multi-task learning 

Multi-task learning (MTL) is a fundamental learning 
paradigm in machine learning. MTL leverages the correlations 
among multiple related tasks to improve the performance of 
all tasks [17]. Over past decades, MTL has attracted much 
attention in various fields, e.g., computer vision (CV) [42], nat-
ural language processing (NLP) [43], [44] and spatial-temporal 

data mining (STDM) [45], [46]. Specifically, in the STDM 
field, there are numerous MTL-based studies for prediction 
problems. For example, Zhang et al. [47] proposed the multi-
task deep learning model (MDL) to utilize a convolutional 
neural network to capture the spatial dependencies and employ 
the linear fusion layer to jointly predict the traffic flow on the 
road and region level. Wang et al. [48] developed a multi-task 
adversarial spatial-temporal network (MT-ASTN) to jointly 
capture the shared patterns of human crowd inflow and outflow 
for prediction. Zhang et al. [49] proposed an LSTM-based 
MTL method to jointly consider the taxi pick-up and drop-off 
demand together for prediction. During training, the average 
loss across the two prediction tasks (pick-up and drop-off 
demand) is calculated, encouraging the model to balance the 
performance on both tasks and achieve good performance. 

Specifically, there are several multi-task learning models for 
predicting ocean factors. Ling et al. [18] designed a multi-
task machine learning framework to jointly predict short-term 
and long-term abnormal SST prediction in the Indian Ocean. 
Han et al. [50] designed a MasterGNN model utilizing the 
recurrent graph neural networks to predict the air PM2.5, 
weather temperature, pressure, humidity, wind speed, and wind 
direction together. Liu et al. [22] proposed a multi-task con-
volutional neural network (MTCNN) model to simultaneously 
recognize submarine cable magnetic anomaly (SCMA) signals 
and locate abnormal regions in the East China Sea. However, 
these models are restricted to tasks with the same temporal 
scale data, ignoring how to deal with multi-scale data, which 
is more common in remote sensing data. 

 
C. Discussion 

According to the above overview, the main limitation of 
existing studies on ocean factor prediction is that they cannot 
sufficiently capture and utilize the correlations between differ-
ent factors to enhance the prediction accuracy. Although some 
MTL methods utilize the linear fusion layer and combined loss 
to consider the correlations, they still fall short in capturing the 
dynamic correlations over time. Moreover, due to the varying 
temporal scales of different ocean factors, it is challenging to 
directly apply existing methods to learn the unified patterns 
of multiple ocean factors. To solve these issues, we proposed 
a novel approach, UniOcean, to align the multi-scale ocean 
factors and incorporate fine-grained patterns together to boost 
the prediction performance. 

 
IV. PROBLEM DEFINITION 

Definition 1: Ocean Factor Prediction. Given the historical 
observations  =  X1, X2,  , Xt,  , XT   RN×T of 
one ocean factor, e.g., SST, SSS or OHC, each Xt = x1,t, 
x2,t,  , xN,t T  RN×1 records the ocean factor values 
at N different spatial locations at the time step t. Ocean 
factor prediction aims to predict the future value ˆ = 
YˆT +1, YˆT +2,  , YˆT +T RN×Tτ for upcoming Tτ time 
steps based on the historical data. Thus, prediction problem is 
to seek a model F as follows: 

Y  ̂= Fθ{X } (1) 
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Fig. 5: The proposed unified prediction framework (UniOcean). The multi-scale ocean factors data is input into the Fine-
grained Multi-scale Data Fusion module to learn patterns at different scales effectively and fuse them through the hierarchical 
residual network. Next, the Multi-factor Correlation Learning module is constructed to adaptively learn the dynamic correlations 
between different factors. Finally, we utilize the Factor-specific Prediction Towers to predict all ocean factors simultaneously. 

 
where θ denotes all the learnable parameters in the model. 

Definition 2: Multiple Ocean Factor Prediction. Given 
the historical observations of M ocean factors, MF = 
1, 2, , i,  , M , each i represents the obser-

vations of factor i. Multiple ocean factor prediction aims to 
seek the model to learn a unified prediction framework for 
all factors to improve prediction performance, i.e., 

Ŷ M  F = Fθ{X 1, X 2, · · · , X i, · · · , X M } (2) 

where θ denotes all the learnable parameters in the model, 
Ŷ M  F represents the prediction result of all ocean factors. 

In general, each ocean factor X i may have different scales 
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(b) Data at different scales 

s. It is necessary and important to consider the multi-scale 
characteristics in predicting multiple ocean factors. Thus, we 
denote this problem as: 

{Ŷ 1 , Ŷ 2  , · · · , Ŷ M  } = Fθ{X 1 , X 2 , · · · , X M } (3) 

where θ denotes all the learnable parameters in the model, 
ˆi represents the prediction result of each ocean factor, and 
si denotes the scale of each factor X i. 

V. METHOD 
A. Framework of UniOcean 

Fig. 5 illustrates the framework of UniOcean. Specifically, 
we first design the Fine-grained Multi-scale Data Fusion 
module to integrate multi-scale ocean factors to capture the 
temporal dependencies at different levels and fuse them via 
the hierarchical residual network. Then, we propose the Multi-
factor Correlation Learning module to aggregate the data 
embedding of different ocean factors using point-wise convo-
lution and adaptively capture the dynamic correlations between 

Fig. 6: Illustration of the data scales at different layers in the 
fine-grained multi-scale data fusion module. 

 
the factors. Finally, we develop the Factor-specific Prediction 
Towers to predict the results for all ocean factors at the same 
time. More details are elaborated as follows. 

 
B. Fine-grained Multi-scale Data Fusion 

Due to the difference in temporal scales, the temporal 
dependencies of ocean factors may exhibit diverse seasonality 
and tendency, which introduces significant complexity for the 
model to learn such dependencies. As a result, the prediction 
model may mistakenly learn patterns across different scales 
of ocean factors and exhibit poor performance. To solve 
this problem, we design the Fine-grained Multi-scale Pattern 
Fusion module, which iteratively applies multiple transformer 
blocks to learn the temporal dependencies at different scales 
and utilizes hierarchical residual networks to fuse the learned 
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dependencies. Concretely, the Fine-grained Multi-scale Pattern 
Fusion module consists of three components, i.e., multi-scale 
data alignment, fine-grained pattern learning, and hierarchical 
residual network. 

1) Multi-scale data alignment: Given the historical data of 
different ocean factors  MF =  1, 1,  , M , as shown 
in Fig. 6(a), we first select the highest scale among all M 
factors as sh and initially utilize a simple upsampling layer to 

where W represents the learnable parameters of the trans-
former block, and Q, K, V represent the position encoding 
of the input data. 

3) Hierarchical residual network: To fuse the patterns of 
different scales inspired by [52], we construct the hierarchical 
residual network to model the patterns from bottom to top. 
Specifically, the input of transformer block i consists two parts, 
i.e., the encoder X Enc, and the decoder X Dec. The encoder 

align all the data to the highest scale by repeating the values, 
i 

X Enc is the down sample data of X MF 
i 
with scales i. The 

i.e., 
X MF = Upsamping(X MF , Sh) (4) 

decoder is obtained using linear interpolation to upsample the 
output of transformer block i 1. Thus, it can align the encoder 
and decoder data to the same scale to feed into the transformer 

For example, we use the upsampling layer to align monthly 
SSS and weekly SST data into weekly scale by linear data 

block.  
 Out 

 
 Enc 

 
 Dec 

interpolation. After that, we can get the same-scale data of all 
ocean factors. Although this approach provides a simple way 

Xi = TransformerBlock(Xi , Xi ) 
where : X Enc = LinearInterpolation(X Out, s) (9) 

to align data to the same scale, the temporal dependencies from i i−1 

different scales remain hidden and are not learned adequately. 
2) Fine-grained pattern learning: To capture the temporal 

dependencies from different scales, we first introduce a set 
of temporal scales S= sn, sn−1, , s1, s0 to downsample 
the original data to different scales, where s is the scale factor. 
For example, as shown in Fig. 6(b), if we have the scale factor 
s = 2, the scale set S will consist of consecutive powers of 2, 
i.e., S = 22, 21, 20. Concretely, we downsample the X MF by 

where LinearInterpolation() imputes the missing values by 
assuming a constant rate of change between the known values, 
and the X Out and X Out respectively represent the outputs of 
transformer blocks i and i − 1.  

Algorithm 1 Fine-grained Multi-scale Data Fusion  
Data: The data for different ocean factors X MF = 

{X , X , · · · , X M }, scale factor s, and a set of tem- 
a scale factor of sn via an average pooling operation to get 
the input data X Enc as: 

poral scales S={sn, sn−1, · · · , s1, s0}. 
MF = Upsampling(X MF ) 

 t+sn for layer i in 0 to n do Enc  MT i 
Enc = AveragePooling( MF , sn) = 

 1  X 
s 

t 

(5) 
Xi = AveragePooling( up , s ) 
if i equal to 0 then 

Dec Enc 

where AveragePooling() calculates the mean value of the data 
{Xi, Xi+1, · · · , Xi+sn } for each factor. 

i i 
else 

X = LinearInterpolation(X , s); 

Then, we utilize the transformer blocks to learn the de- 
i 

end 
i−1 

pendencies at different temporal scales. Transformer is a 
fundamental model widely used in natural language processing 
(NLP) and Computer Vision (CV) and plays a crucial role 
in capturing the contextual relationships and dependencies 
within a sequence of input data. UniOcean is an universal 
framework which could easily combine with different variation 
of transformer block (e.g., Informer, Autoformer, and Fed-
former). Here, we introduce basic transformer block [51]. In 
each transformer block, we encode the positional information 
of data as: 

Out Enc Dec 
i i i 

end 
Result: The fused multi-scale pattern embedding.  

 
Algorithm 1 presents the pseudocode for the whole process 

of fine-grained multi-scale data fusion module. Finally, we 
obtain the aligned embedding  Emb of multi-scale data as 
the input for the multi-factor correlation learning module. 

 
C. Multi-factor Correlation Learning 

PE(pos,2i) 
pos 

= sin( 
100002i/d ) 

pos 
 

(6) 
The multi-factor correlation learning module aims to lever-

age the shared information and dynamic correlations between 
PE(pos,2i+1) = cos( 

100002i/d ) 

where pos is the temporal position of a certain item of 
the input data, and d is the embedding dimension. After 
calculating the positional embedding, we capture the temporal 
patterns at different scales. The transformer blocks calculate 
self-attention using different input data, i.e., 

QKT 
Attention(Q, K, V ) = softmax( √

d 
) (7) 

MultiHead(Q, K, V ) = Concat(head1, · · · , headh) (8) 
headi = Attention(QWq, KWk, V Wv) 

factors to improve the overall prediction performance. To this 
end, we construct two point-wise convolution layers to capture 
the correlations between ocean factors over time. 

Point-wise convolution, also known as 1x1 convolution, is 
a type of convolutional operation commonly used in deep 
learning architectures. Point-wise convolution can operate on 
the channel dimension of the input to learn the correlations 
of ocean factors. In detail, as shown in Fig. 7, the input data 
embedding  Emb   RD×F is generated by the multi-scale 
data fusion module, and we set the two kernel dimensions of 
point-wise convolutions as F × d and d × F , respectively, 

i i i where F represents the number of ocean factors, and d 
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Point-wise Convolutions in Multi-factor Correlation Learning 

 

 

space, and d is the hidden dimension. For different ocean 
factors, the output length corresponds to their original scales. 

We choose L1 loss as the training objective and calculate 
the loss at each time step to optimize the prediction model. As 
a result, the loss function for multiple ocean factors prediction 

in UniOcean is formulated as follows: 
Lt+τ 1 1 

𝐷𝐷×𝐹𝐹 𝐹𝐹×𝑑𝑑 𝐷𝐷×𝑑𝑑 𝑑𝑑×𝐹𝐹 𝐷𝐷×𝐹𝐹 L = L(F ) = 1YMF − Ŷ M  F 1 (15) 
 

 
 

Fig. 7: Illustration of point-wise convolution to capture the where Fθ denotes all the learnable parameters, YMF and 
correlations between factors. ˆMF 

i are the ground truth and the prediction results, respec- 
tively, at time step i. 

 

denotes the data embedding dimension. For the first point-
wise convolution layer, by setting the kernel dimensions as 
F d, we ensure that only the data embedding of different 
ocean factors can interact with each other. We utilize a sliding 
window to calculate the correlations of different factors at the 
specific window (period). This allows the model to capture the 
dynamic correlations among different ocean factors and map 
such correlations to a hidden space of dimensions D × d, i.e., 

X Hid = X Inp × Kernel(F, d) (10) 
F 

where Inp represents the data input of the correlation 
learning module, and Hid is the hidden embedding of the 
correlations between different ocean factors. 

Then, we use the Gelu (Gaussian Error Linear Unit) func-
tion to activate the important correlations in X Hid, i.e., 

X Hid = Gelu(X Hid) (11) 

VI. EXPERIMENTS 

We conduct experiments on five datasets to demonstrate the 
superiority of the proposed UniOcean method against multiple 
strong baseline methods. We also evaluate the impacts of the 
hyper-parameters and the effectiveness of model components. 
Moreover, we present visualizations to showcase the outcomes 
of our method as well as the baseline approaches, providing 
clear and concise comparisons. The codes are public available 
in the online repository5. 

 
A. Datasets of Ocean Factors 

To unify the time range of all datasets, we conduct two 
sets of ocean factor prediction experiments, focusing on fine-
grained and coarse-grained prediction, respectively. First, we 
test the performance of coarse-grained ocean factor predic-
tion (30 years), i.e., SST prediction, SSS prediction, and OHC 
prediction. It includes weekly SST, monthly SSS, and monthly 

Gelu(x) = 
1 

2 
1 + erf   x

  · x (12) OHC datasets, and we chose 30 years of data from January 
1993 to December 2022. The second set of experiments is 

where the erf() is an error function defined as √2 x e−t2 dt, 
which provides smoother weights for effectively training. 

After that, we employ another point-wise convolution layer 
to transform the learned correlation of different factors into 
data embedding, thereby obtaining data embedding that are 
enhanced by factors’ correlations. 

X Out = X Hid × Kernel(d, F ) (13) 
T 

where Hid represents the learned dynamic factor correla-
tions, T denotes the total number of kernels, and  Out is 
the correlation-enhanced data embedding of different ocean 
factors. 

 
D. Factor-specific Prediction Towers 

Finally, we utilize the factor-specific prediction towers to 
generate the prediction results for all ocean factors. For each 
factor, the corresponding tower is one multi-layer perception 
(MLPs), i.e., 

Ŷ M  F = W X Out + b (14) 

where W ∈ RN×d×T represents the learnable parameters, b is 
the bias, X Out ∈ RN×d is the data representation in latent 

to test the fine-grained ocean factor prediction (10 years), 
consisting of daily SST prediction and D4 SSS ( collected 
per 4 days) prediction spanning from 2011 to 2022. In both 
datasets, 70% data is allocated for training, 10% for validation, 
and 20% for testing. 

 
B. Baselines 

We compare our method with the following seven baselines, 
including two typical Recurrent Neural Network (RNN) based 
models and five state-of-the-art Transformer models. 

• GRU (Cho et al. 2014 [32]): a variant of recurrent neural 
networks that overcomes the vanishing gradient problem 
in traditional RNNs by employing gating mechanisms. 

• ConvLSTM (Shi et al. 2015 [53]): A CNN-based model 
that uses convolutional neural networks to extract the 
spatial correlations and uses LSTM to model the temporal 
dependencies. 

• Informer (Zhou et al. 2020 [39]): An advanced 
transformer-based model designed to address the chal-
lenges of long sequence time-series forecasting with 
improved efficiency and accuracy. 

5https://github.com/Neoyanghc/Uniocean 

i=t    

…
 

…
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Fig. 8: Illustration of the multi-scale data prediction scheme. 

 
• Autoformer (Wu et al. 2021 [54]): A transformer-based 

model that employs decomposition transformer with auto-
correlation mechanisms specifically tailored for long se-
quence time-series forecasting. 

• FEDformer (Zhou et al. 2022 [55]): A time series 
forecasting model that learns a graph structure among 
multiple time series and forecasts them simultaneously 
with a GNN. 

• MTformer (Wu et al. 2021 [54]): A variation of Informer 
that predict all tasks together. 

• Scaleformer (Mohammad et al. 2023 [52]): A time series 
forecasting model that utilizes a scale-aware structure to 
capture multi-scale information in one model. 

 
C. Experimental Setups 

Here, we briefly introduce the prediction scheme, experi-
mental environment, parameter setting, and evaluation metrics. 

Prediction scheme. All methods predict the results (i.e., 
SST, SSS, and OHC) of the following τ = 32, 64, 96 time 
steps from the present time, based on the historical data of the 
last T = 32, 64, 96 time steps. For example, for the daily SST 

dataset, the T = 32 means that we utilize past values of 32 
days to predict the next 32 days. Fig. 8 illustrates the prediction 
scheme to utilize the data with different temporal scales for 
prediction, where black squares mean the data samples and 
different factors within the same period may have different 
numbers of data samples. In our prediction task, we use the 
same historical temporal period for all factors to predict future 
values. 

Fig. 9: The comparisons of the MSE and MAE results of 
different scales in UniOcean framework, i.e., 2, 3, 4. 

 

 
Fig. 10: The comparisons of the MSE and MAE results of the 
different number of layers in the hierarchical residual network 
in UniOcean framework, i.e., 3, 4, 5. 

 

 
Fig. 11: The comparisons of the MSE and MAE results of dif-
ferent hidden dimensions of multi-factor correlation learning 
in UniOcean framework, i.e., 4, 8, 16, 32, 48. 

 
learning rate is set to 0.0001 and halves every four epochs. The 
optimization problem is solved via back-propagation. 

Evaluation metrics. We use two widely used metrics, i.e., 
Mean Absolute Error (MAE) and Mean Square Error (MSE), 
to measure the performance of prediction models, i.e., 

Experimental environment. All the deep-learning based 
models are implemented in Python with Pytorch 1.13.1. We 
use the source code and hyperparameters used in the original 

MAE(Y, Ŷ ) = 
1 

|τ | 
Yi 

i∈τ 
− Y î1  

 
(16) 

papers to evaluate the baseline methods on all datasets. All 
the models are run on a server with four NVIDIA 3090 

MSE(Y, Ŷ ) = 
 1  

(Y 
|τ | i∈τ 

− Yˆi)2 

GPUs. We optimize all the deep learning-based models by the 
Adam optimizer with a maximum of 50 epochs, and the early 
stopping is employed in validation loss to avoid over-fittings. 
Parameter setting. We repeat each experiment ten times, 

and the best parameters for all deep learning-based models 
are chosen through a careful parameter-tuning process. The 
hyperparameters for our models are chosen through experi-
ments, which are introduced in detail in Section VI-D. The 
batch size is set to 32, 24, and 16 for the experiments with 
prediction lengths of 32, 64, and 96, respectively. The original 

where Y = Y1,  , Yτ denotes the ground truth, Yˆ = 
Yˆ1, , Yˆτ represents the predicted values, and τ denotes the 
time steps to be predicted. In our experiments, τ is set to 32, 
64, and 96, respectively. 

 
D. Parameter Study 

To study the effects of hyperparameters, we conduct a 
parameter study on the three core hyper-parameters of our 
framework, i.e., the scale factor s in the multi-scale fusion 

… 

Past observation 
 

Future prediction 

i 
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TABLE II: The result comparison of 7 baseline models on coarse-grained ocean factor prediction (30 years), i.e., SST prediction, 
SSS prediction, and OHC prediction. Our UniOcean enhanced methods significantly improve compared with corresponding 
methods, and UniOcean-Fedformer achieves the best overall performance. 

 

 
Methods 

Prediction length=32 Prediction length=64 Prediction length=96  
Avg Monthly SSS Weekly SST Monthly OHC Monthly SSS Weekly SST Monthly OHC Monthly SSS Weekly SST Monthly OHC 

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

GRU 1.499 0.888 1.312 0.902 0.978 0.800 1.539 0.945 1.595 0.977 0.987 0.803 1.996 1.089 2.077 1.096 1.113 0.854 1.371 

ConvLSTM 1.244 0.839 1.739 1.015 1.241 0.829 1.165 0.788 1.648 0.953 0.917 0.706 1.082 0.771 1.465 0.898 0.821 0.674 0.952 

MTformer 1.354 0.887 0.745 0.677 0.487 0.557 1.241 0.805 0.813 0.703 0.509 0.568 1.286 0.836 0.795 0.692 0.546 0.591 0.791 

Scaleformer 0.933 0.741 0.327 0.435 0.264 0.376 0.883 0.693 0.499 0.551 0.378 0.469 0.997 0.744 0.359 0.458 0.322 0.421 0.550 

Informer 1.542 0.955 0.876 0.613 0.602 0.350 1.571 0.953 0.989 0.799 0.768 0.700 1.923 1.087 1.294 0.923 1.225 0.892 1.224 

UniOcean-Informer 0.646 0.593 0.283 0.404 0.219 0.340 0.733 0.626 0.339 0.454 0.306 0.424 0.873 0.694 0.388 0.485 0.328 0.431 0.533 

Autoformer 0.776 0.655 0.270 0.368 0.261 0.365 0.872 0.682 0.530 0.569 0.460 0.533 0.884 0.692 0.448 0.519 0.446 0.521 0.585 

UniOcean-Autoformer 0.628 0.581 0.256 0.377 0.200 0.323 0.790 0.661 0.385 0.495 0.313 0.424 0.864 0.685 0.458 0.538 0.373 0.472 0.565 

Fedformer 0.799 0.662 0.191 0.293 0.238 0.352 0.897 0.698 0.263 0.384 0.311 0.411 0.947 0.735 0.342 0.448 0.380 0.468 0.553 

UniOcean-Fedformer 0.608 0.571 0.270 0.394 0.202 0.329 0.741 0.624 0.309 0.430 0.261 0.380 0.804 0.670 0.361 0.473 0.283 0.399 0.498 

 
module, the number n of layers in the resid module, and 

the number of hidden dimensions d in multi-factor correlation 
learning module. We repeat each experiment 5 times and report 
the average of MAE on the test set. In each experiment, we 

only change one parameter while fixing all other parameters. 
Scale factor. One key parameter in the UniOcean method is 

the scale factor s for pattern fusion, which learns the patterns 
of multi-scale data. Fig. 9 shows the results of different scale 
factors. With the scale factor s = 2, UniOcean-Informer 

obtains the best performance. The scale factors s = 3 and 
s = 4 may cause the loss of detailed information thus can 
not effectively capture the fine-grained patterns in the data, 
leading to low performance. 

The number of hierarchical layers. Another crucial pa-
rameter is the number of layers n in the hierarchical residual 
network, which fuses the patterns of multi-scale data. As 
shown in Fig. 10, increasing the number of layers from 
3 to 4 can improve the representation ability and reduce 
MSE. However, the number of 5 layers causes the over-fitting 
problem, significantly degrading performance. Therefore we 
set 4 layers in the hierarchical residual network. 

The number of hidden dimensions. an essential parameter 
in the UniOcean method is the number of hidden dimensions 
d in the point-wise convolution layer to capture the correlation 
of different ocean factors. The number of hidden dimensions 
is determined by the hidden dimension d. Fig. 11 shows the 
results of UniOcean-Informer while setting different hidden 
dimension ratios. Our method obtains the best performance 
with the d number of 8. But for a bigger ratio, it may cause 
an over-fitting problem. 

 
E. Experimental Results 

Three experiments are conducted to examine UniOcean’s 
performance and generalization ability. First, we evaluate our 
framework on the coarse-grained ocean factor prediction (30 
years) datasets collected from 1993 to 2022, as shown in 
Table II. Second, we compare the performance of our frame-
work by feeding it with different combinations of ocean 
factors to assess the method’s generalization ability, as shown 
in Table III. Third, we utilize a more recent fine-grained 
prediction (10 years) dataset collected from 2011-2022 to 

evaluate the performance of our framework, as shown in 
Table IV. The results demonstrate that our models achieve 
superior performance among all the state-of-the-art methods. 

Firstly, Table II shows the performance results of adding 
our proposed UniOcean framework with Transformer-based 
models and different baselines on coarse-grained ocean factor 
prediction (SST prediction, SSS prediction, and OHC predic-
tion). We can observe that: 

1) By combining our UniOcean framework with baseline 
methods, the average performance significantly improved. 
UniOcean-Fedformer achieved the best average performance 
on all baselines. Compared with the Informer model, the 
UniOcean-Informer achieved remarkable improvements rang-
ing from 53% to 73% on all ocean factors in MSE results. Sim-
ilarly, when comparing the Autoformer models, the UniOcean-
Autoformer demonstrated substantial performance improve-
ments. These results highlight that the proposed UniOcean 
is an universal and effective framework to enhance various 
models. 2) Using multi-scale pattern fusion, our UniOcean-
Informer model achieved better performance than the simple 
multi-task model MTformer. By incorporating multi-scale pat-
terns into the fusion process, our framework can capture and 
leverage information from different scales, enhancing perfor-
mance. 4) Compared to the multi-scale method, Scaleformer, 
our approach has significantly improved due to the correlation 
modeling between different ocean factors. By modeling the 
correlation between ocean factors, our method can effectively 
capture and utilize the shared information to achieve better 
performance. 5) Traditional RNN-based models (GRU, Con-
vLSTM) perform much worse than most Transformer-based 
methods, indicating the potential of Transformer architecture 
in predicting ocean factors. 6) as the forecasting sequence 
length increases, UniOcean-Fedformer demonstrates superior 
performance compared to Fedformer. While it slightly lags in 
SST, UniOcean-Fedformer outperforms Fedformer in SSS and 
OHC. This can be attributed to the task balance issue in multi-
task learning. Nonetheless, UniOcean-Fedformer maintains a 
solid overall performance. 

Secondly, Table III demonstrates the result comparison of 
different combinations of the ocean factors; We investigated 
the impact of training our methods on various combinations 
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TABLE III: The result of training our methods on different combinations of ocean factor prediction (three, two, and single 
factors). The result shows that incorporating more factors help improve overall prediction results more significantly. 

 

 
Datasets 

Trained on three factors Trained on two factors Trained on single factors 

SSS+SST+OHC SSS+SST SSS+OHC SST+OHC SSS SST OHC 

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

Monthly SSS 32 0.646 0.593 0.781 0.662 0.835 0.700 - - 1.542 0.955 - - - - 

Weekly SST 32 0.283 0.404 0.437 0.514 - - 0.338 0.450 - - 0.876 0.613 - - 

Monthly OHC 32 0.219 0.340 - - 0.294 0.411 0.291 0.396 - - - - 0.602 0.350 

Monthly SSS 64 0.733 0.626 0.779 0.646 0.940 0.721 - - 1.571 0.953 - - - - 

Weekly SST 64 0.339 0.454 0.357 0.467 - - 0.438 0.520 - - 0.989 0.799 - - 

Monthly OHC 64 0.306 0.424 - - 0.493 0.546 0.334 0.437 - - - - 0.768 0.700 

Monthly SSS 96 0.873 0.694 0.918 0.728 1.123 0.816 - - 1.923 1.087 - - - - 

Weekly SST 96 0.388 0.485 0.461 0.538 - - 0.427 0.511 - - 1.294 0.923 - - 

Monthly OHC 96 0.328 0.431 - - 0.731 0.675 0.355 0.448 - - - - 1.225 0.892 

 

Fig. 12: The comparisons of the overall MSE results between our methods Informer, UniOcean-Informer, Fedformer, and 
UniOcean-Fedformer on the test sets of three datasets, SST, SSS, and OHC, using experimental data with a prediction sequence 
length of 32. And the darker the color, the larger the error. 

 
TABLE IV: The comparisons of the result of UniOcean-
Informer and Informer on fine-grained ocean factor predic-
tion (Daily SST and D4 SSS), our method can significantly 
enhance the prediction performance. 

 
 
 
 
 
 
 
 
 
 
 

 
of multiple ocean factors, including three ocean factors, two 
ocean factors, and a single ocean factor. We can see that the 
performance improves with an increasing number of combined 
ocean factors. When the UniOcean-Informer model is trained 

on multiple ocean factors simultaneously, its performance 
improves compared to training on a single ocean factor. 
The results revealed that incorporating multiple ocean factors 
leads to a more substantial improvement in overall prediction 
performance. 

Thirdly, as shown in Table IV, we can see that our methods 
continue to demonstrate superior performance on fine-grained 
ocean factor prediction, with 40% improvement on MSE and 
28% improvement on MAE averagely. 

In a nutshell, our framework achieves promising prediction 
performance by fully fusing the multi-scale data and capturing 
the correlations between different ocean factors. 

 
F. Visualization Comparison. 

To give a clear view of the advantages of our proposed 
methods, we provide the visualization comparison from two 
perspectives, i.e., overall comparison and location comparison. 

Firstly, we compare the overall MSE performance of our 
method and baseline methods, Informer and Fedformer, and 

Datasets 
Informer UniOcean+Informer 

Improvement 
MSE MAE MSE MAE 

D4 SSS 32 0.819 0.526 0.383 0.367 44.18% 

Daily SST 32 0.227 0.327 0.095 0.202 46.31% 

D4 SSS 64 0.792 0.530 0.520 0.278 39.64% 

Daily SST 64 0.258 0.368 0.153 0.278 31.09% 

D4 SSS 96 0.760 0.516 0.583 0.482 16.50% 

Daily SST 96 0.257 0.373 0.171 0.296 25.91% 
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Fig. 13: The prediction visualization of Convlstm, Informer, and UniOcean-Informer of 8 selected locations on the Weekly 
SST dataset. The ground truth is in red. Our method (Blue line) significantly outperforms others. 

 
 

 
 

Fig. 14: The ablation study on different variants of UniOcean 
on MSE and MAE metrics. 

 

 
corresponding UniOcean-Informer and UniOcean-Fedformer. 
We visualize the MSE heatmaps in the spatial regions on 
the test sets with the prediction length 32. As shown in 
Fig. 12, each subplot independently plots the MSE for the 
global ocean. The lighter color indicates a small absolute error, 
whereas the deeper color means a large error. According to 
the visualization, UniOcean helps the baseline models achieve 
significant improvements compared to the original model. 

Secondly, we provide clear temporal comparisons of results 
in 8 specific locations. As shown in Fig. 13, each sub-plot 
visualizes the SST value of one single location in the test 
set of the weekly SST dataset. Our UniOcean-Informer model 
(blue line) shows the smallest gap with the ground-truth values 
(red line), and the errors of ConvLSTM and Informer are 
considerably significant. Compared with baseline models, the 
predicted results of our method are most similar to the ground 
truth values. 

In a word, all the results indicate that our model achieves 
superior performance on all ocean factors. 

G. Ablation Study 
To evaluate the effectiveness of the key components in our 

method, we conduct a detailed ablation study on the UniOcean 
framework with Informer by removing different components 
to get different variants, i.e., 

• w/o Fine-grained Multi-scale Data Fusion module: 
removing the Hierarchical residual network designed for 
fusing the patterns of multi-scale data. 

• w/o Multi-factor Correlation Learning module: delet-
ing the point-wise convolution layers, which captures the 
dynamic correlations for all factors. 

As shown in Fig. 14, w/o Fine-grained Multi-scale data Fu-
sion module, the model has the worst performance among all 
variants, which indicates that multi-scale data fusion improves 
the performance significantly by utilizing the hierarchical 
structures to fuse the spatial-temporal dependencies at different 
scale levels. As for w/o Multi-factor Correlation Learning 
module, we can observe that this mechanism largely improves 
average performance, especially in SSS and OHC prediction, 
with a slight decrease in SST prediction performance. This 
observation aligns with the common trade-off encountered 
in MTL models. The MTL model often involves a trade-
off between individual ocean factor prediction performance 
and overall prediction performance across all ocean factors. 
Unsurprisingly, the model may sacrifice some task-specific 
performance to achieve the best overall performance. 

In summary, both multi-scale data fusion and correlation 
learning modules are essential for our method to get better 
performance. 

 
VII. CONCLUSION 

In this study, we introduce a unified ocean factors predic-
tion framework (UniOcean) that leverages multi-scale remote 
sensing data to simultaneously predict multiple ocean fac-
tors. Our approach incorporates the Fine-grained Multi-scale 
data Fusion module, which effectively captures patterns at 
different scales and fuses these patterns through hierarchical 
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structures. Additionally, we employ the Multi-factor Corre-
lations Learning module, utilizing point-wise convolution, to 
adaptively learn the correlations between different factors. 
Finally, we utilize the factor-specific towers module to predict 
ocean factors simultaneously. Experimental results on five real-
world remote-sensing datasets validate the superior prediction 
performance achieved by UniOcean, highlighting its potential 
for enhancing predictions across all ocean factors. Our study 
draws the following conclusions: 

1) Our work UniOcean explores a new perspective on mod-
eling the multiple ocean factors with different temporal 
scales and provides good performance. 

2) Multi-factor learning is an effective way to enhance 
prediction performance in remote sensing data. By cap-
turing the correlation between different factors, it can be 
found that overall prediction performance is effectively 
improved. 

3) Fine-grained multi-scale data fusion is highly important 
to capture the temporal patterns in all ocean factors, 
when encountering the data with different scales. 

4) UniOcean can be easily implemented into other various 
transform-based methods to enhance their prediction 
performance without modifying their structures. 

In the future, we will further consider and align the different 
spatial scales across multiple ocean factors to enhance the 
prediction performance. 
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