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Abstract—Accurate prediction of ocean factors (e.g., tem-
perature and salinity) is crucial for plenty of applications,
including weather forecasting, storm tracking, and ecosystem
protection. Meanwhile, it is well-known that the ocean is a
unified system and various ocean factors usually influence each
other. For example, the changes in temperature would affect
the distribution of salinity in ocean. However, existing studies
for ocean factor prediction mainly focus on designing individual
models for predicting specific factors and ignore the correlations
between different factors, thus having potentials to be further
improved. Therefore, we propose a unified framework UniOcean
to predict multiple ocean factors simultaneously, and capture the
correlations between them to improve the prediction accuracy.
First, considering that ocean factors are usually collected with
different temporal scales, we develop the fine-grained multi-
scale data fusion module to integrate multiple ocean factors with
different temporal scales, and effectively learn their hierarchical
patterns at different levels. Then, since the correlations between
ocean factors may vary across different time periods, the multi-
factor correlation learning module is constructed to adaptively
learn the dynamic correlations between different factors. Finally,
we utilize the factor-specific towers to predict multiple ocean
factors simultaneously. Experimental results on five real-world
remote-sensing datasets demonstrate that UniOcean significantly
improves the prediction accuracy by 11%-53% in terms of MSE
for different ocean factors.

Index Terms—Multiple ocean factors, different temporal scales,
spatial-temporal prediction, unified model.

1. INTRODUCTION

CEAN covers more than two-thirds of the Earth, and
plays a crucial role in regulating the global climate.
Various ocean factors, e.g., sea surface temperature (SST),
sea surface salinity (SSS), and ocean heat content (OHC),
have been studied for decades to identify extreme climate
events (e.g., El Nin"o phenomena and typhoons), understand
ocean circulation, and protect the ocean ecosystem [1]. With
the development of sensing technology, more and more remote
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Fig. 1: The ocean system has various factors (a), and different
factors are usually collected with different temporal scales
(b). The existing methods predict the specific ocean factors
with separate models (c). In contrast, our work (d) explores a
unified model to predict multiple ocean factors simultaneously.

sensors have been deployed to monitor the changes of ocean
factors [2], [3]. Various ocean datasets are thus collected and
published by different organizations (e.g., National Aeronau-
tics and Space Administration (NASA), European Centre for
Medium-Range Weather Forecasts (ECMWF), and the Chinese
Academy of Sciences (CAS)), which lays the solid foundation
for analyzing the changing patterns and regularity of the ocean.
For example, since 1979, NASA has launched a series of
satellites [4], [5] to continually monitor the SST and SSS
globally. Over the past few decades, there have been numerous
studies utilizing the collected data for predicting various ocean
factors, which hold great significance for a lot of applications,
e.g., weather forecasting [6], fishing detection [7], and storm
tracking [8].

Recently, with the development of deep learning techniques,
more and more data-driven methods [1], [9], [10] have drawn
increasing attention in ocean factor prediction and shown
significant improvement compared with traditional physical
methods [11]-[13]. However, a major limitation of existing
data-driven methods is that they mainly focus on designing
separate models for predicting specific ocean factors. As
shown in Fig. 1, existing methods often focus on predicting
specific ocean factors, e.g., SST, SSS, and OHC, independently
rather than predicting multiple factors simultaneously. In fact,
the ocean is a unified system and different ocean factors
record different aspects of the ocean system. These factors thus
could provide complementary information for each other [14].
For example, SSS and SST are closely interconnected by
solubility, precipitation, and evaporation. With the increase
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of SST, the movement of water molecules is accelerating,
resulting in the separation of salt molecules and the reduction
of SSS. Meanwhile, different ocean factors are recorded in
the same spatial-temporal context and usually have similar
temporal dependencies, e.g., tendencies, periodicity, and sea-
sonality. Capturing such dependencies is essential for accurate
prediction of ocean factors. Therefore, designing a unified
framework to jointly model the changes of different ocean
factors and their correlations is meaningful and promising to
further improve the prediction accuracy.

Incorporating different ocean factor prediction tasks (e.g.,
SST prediction [6], SSS prediction [15], OHC prediction [16])
can be regarded as a typical multi-task learning (MTL) prob-
lem. MTL is a popular machine learning approach that trains a
single model to perform multiple tasks simultaneously [17]. It
has demonstrated superior performance in various fields, e.g.,
computer vision (CV) and natural language processing (NLP).
MTL can learn robust and universal data representations to
capture the shared knowledge among multiple tasks to improve
their performance. Currently, there are already some studies
on MTL methods in the ocean [18]-[21]. For example, MTL
method was introduced to jointly predict the sea ice concentra-
tion and sea ice extent in the Arctic ocean [19]. Liu et al. [22]
proposed a multi-task neural network model to simultaneously
recognize abnormal signals and locate abnormal regions in
the East China Sea. Despite the improvement, developing the
aforementioned unified ocean factors prediction model remains
technically non-trivial due to the following two challenges.

On the one hand, most existing MTL methods often
operate on the data with the same temporal scales but
are unable to model multi-scale remote sensing data [18],
[19]. Due to the variations in sensing technology and data
processing standards, the data of different ocean factors are
usually of varying temporal scales, e.g., daily scale, weekly
scale, and monthly scale. As shown in Fig. 2, three ocean
factors are collected in the same period but with different tem-
poral scales. When the MTL methods receive the multi-scale
data as input, the temporal dependencies of different scales
may exhibit diverse seasonality and tendencies, introducing
significant complexity for the model to learn the consistent
temporal dependencies. The existing MTL methods typically
utilize the manually selected data with the same temporal
scale, or employ specific techniques such as data interpolation,
data resampling, and feature extraction to calibrate the data
into the same temporal scale [23]. For instance, Eliot et
al. [19] converted the daily sea ice concentration data into
monthly averages to align it with the monthly sea ice extent
data. However, such transformations may introduce additional
noise and result in the loss of data details. As a result,
the model may mistakenly learn the temporal dependencies
across different temporal scales and exhibit poor prediction
performance. Therefore, it is crucial to develop an end-to-end
architecture that can directly capture fine-grained patterns in
the multi-scale data.

On the other hand, the dynamic correlations between
different ocean factors have not been well-captured. Cur-
rent MTL methods basically employ a static module (e.g.,
linear layer and attention layer) or a combined training loss
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Fig. 2: The SST, SSS, and OHC data with different temporal
scales, i.e., daily scale, scale of four days, and monthly scale,
are collected by NOAA in 2022.

Correlations between SST and SSS in different months

2023-01
2022-11
z 2022-09
=]
=
=
=
@ 2022:07

2022-05

202203

Fig. 3: The Pearson correlations between SST and SSS over
different months, where blue and pink colors represent positive
and negative correlations, respectively.

to integrate different ocean data analytic tasks [20]. However,
the correlations between various ocean factors are complicated
and may change over time. As shown in Fig. 3, we utilize the
Pearson correlation coefficient [24] to measure the correlations
between SST and SSS. It is clear that the correlations are
dynamically changing over different months. Therefore, it is
necessary to effectively capture the spatial-temporal variability
in the correlations between ocean factors.

To solve the above challenging issues, we proposed a unified
prediction framework, UniOcean, to predict multiple ocean
factors of varying temporal scales simultaneously. First, we
develop the Fine-grained Multi-scale Data Fusion module
to fuse multiple ocean factors of different temporal scales
through the hierarchical residual network. Then, the Multi-
factor Correlation Learning module is constructed to adap-
tively learn the dynamic correlations between different ocean
factors over time. Finally, we design the Factor-specific Tower



module to produce the prediction results for each ocean factor.
Specifically, our main contributions include:

« We propose a novel unified framework UniOcean to
achieve multiple ocean factors prediction simultaneously.
UniOcean can efficiently align the different temporal
scales of multiple ocean factors, capture the unified pat-
terns, and learn the dynamic correlations between ocean
factors to boost the prediction performance.

« Wedevelop a Fine-grained Multi-scale Data Fusion mod-
ule to capture the temporal dependencies of ocean factors
at different scales and then introduce the hierarchical
residual network to fuse these dependencies.

o We design a Multi-factor Correlation Learning module to
capture the dynamic correlations between different ocean
factors, in which the correlations are fully self-adaptive.

« Experimental results on five remote-sensing datasets
demonstrate that UniOcean is a universal framework to
enhance various models to achieve significant prediction
performance on multiple ocean factors.

II. DATA

A. Datasets

In this study, we utilize five real-world datasets, i.e., Daily
SST, D4 SSS, Weekly SST, Monthly SSS, and Monthly OHC,
to evaluate the performance of our method. They are all
reanalysis remote sensing datasets of high quality and have
been processed to fill the missing values by their publishers.
We summarize these datasets in Table 1.

TABLE I: Summary of datasets.

Dataset #Scale #Period #Spatial Coverage
Daily SST Daily 1981-now Global
D4 SSS 4 Day 2011-now Global
Weekly SST Weekly 1981-now Global
Monthly SSS Monthly  1960-now Global
Monthly OHC  Monthly 1940-now Global

« Daily SST. A high-resolution sea surface temperature
dataset from Physical Sciences Laboratory (PSL)'. The
data is processed using Optimum Interpolation to achieve
daily scale. The temporal coverage is from 1981 to the
present.

« D4 SSS. A public dataset that is produced by the Earth
and Space Research (ESR) in collaboration with the
Remote Sensing Systems (RSS)?, and is derived from
satellite L-band radiometer measurements from 2011 to
now. The data is collected every four days.

« Weekly SST. A dataset that collects the weekly global sea
surface temperature from NOAAS3. The temporal coverage
is from 1981 to now.

« Monthly SSS. A monthly ocean salinity dataset that is
provided by the Institute of Atmospheric Physics, Chinese

Dataset available at: https://www.ncei.noaa.gov/products
Dataset available at: https://podaac.jpl.nasa.gov
3Dataset available at: https://www.esrl.noaa.gov/psd
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Fig. 4: Study area (blue): global ocean data (180° E-180° W,
90° S-90° N) with the spatial resolution of 1°X1°.
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Academy of Sciences*. The temporal coverage is from
1960 to now.

« Monthly OHC. A monthly ocean heat content dataset
that is also provided by the Institute of Atmospheric
Physics, Chinese Academy of Sciences. The temporal
coverage is from 1940 to now.

B. Study Area

In this work, as shown in Fig. 4, we conduct the study on the
global ocean (180° E-180° W, 90° S-90° N) with the spatial
resolution of 1° x1°. Thus, the total number of grid regions is
180 360 = 64800. The values on the land a, i.e., the white
areas in Fig. 4, are set to 0.. Thus, the total number of grid
regions for the ocean is about 46000.

III. RELATED WORKS

In this section, we overview the existing methods for ocean
factor prediction and multi-task learning, and give a discussion
about the advantages and limitations of these methods.

A. Ocean Factor Prediction

Prediction of ocean factors (e.g., SST, SSS, and OHC)
is an important research topic in ocean science. It aims to
understand the regularity of past observations and accurately
predict future observations, benefiting a lot of applications
such as weather forecasting, disaster warning, and ocean
environment protection [2], [3]. Various methods have been
developed to predict ocean factors, and these methods can be
roughly divided into two categories, i.e., physical models and
data-driven models.

Physical models. The basic idea of physical models is to
combine the laws of physics, e.g., Newton’s laws of motion,
the law of conservation of energy, and the seawater equation
of state, to predict ocean factors. For instance, the Global
Forecast System (GFS) [11] is a weather forecast model
that carefully selects parameters to combine multiple physic
laws (e.g., the Navier-Stokes equation and solar radiation) to
predict the change of SST. Another representative method
is the CMCC (Centro Euro-Mediterraneo sui Cambiamenti

“Dataset available at: http://www.ocean.iap.ac.cn
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Climatici) model [12], [13] which is an ensemble model that
integrates multiple physical models (e.g., C-GLORS, Ocean-
Var, and NEMO) [12] to achieve accurate SST prediction.
Although physical models have been widely used in many ap-
plications, they require a good understanding of the underlying
changing mechanisms of ocean factors to choose the critical
parameters for physical models. However, such mechanisms
are usually complicated, which makes it challenging to use
only the manually settled parameters to effectively learn and
monitor the patterns of ocean factors.

Data-driven models. The latest data-driven models for
ocean factor prediction can be further divided into traditional
machine learning-based models and deep learning-based mod-
els. Traditional machine learning-based methods, e.g., vector
autoregressive models [25], autoregressive integrated moving
average (ARIMA) [26], hidden Markov models (HMM) [27],
and support vector machines (SVM) [28], have been widely
used to predict ocean factors. For example, Xue et al. [27]
proposed a seasonally varying Markov model constructed in
a multivariate space to predict SST. A feed forward neural
network [29] was used to predict the Chl-a concentration in
Lake Kasumigaura of Japan and achieved better performance
than the physical methods. Li et al. [30] combined kernel
Granger Causality analysis (KGC) and SVM to predict the
daily sea ice concentration. Although these methods can
predict the trend of ocean factors to a certain extent, their
overall prediction accuracy is still low. When the prediction
length is over one month, the model’s performance deteriorates
dramatically due to the gradient vanishing issue.

(2) Deep learning-based models, e.g., RNN, CNN, and
transformers, have been widely used for predicting ocean
factors because of their superior ability to model the complex
dependencies among data [31]-[35]. For example, Yang et
al. [36] combined the Markov random field with LSTM to
predict the SST, achieving better results than SVM and HMM
models. Wang et al. [37] used the fully convolutional neural
networks (FCNN) model to predict sea ice concentration along
the east coast of Canada and achieved high prediction accu-
racy. Self-attention-based methods such as Transformer [38]
and its variants [39] achieve high-quality SST prediction
by utilizing the non-autoregressive mechanism. In addition,
some recent studies find that it is promising to combine
physical models with data-driven methods [40]. Taking the
SST prediction as an example, Arka et al. [41] integrated
traditional physical laws (e.g., temperature density and energy
conservation) and recurrent graph networks (RGN) to predict
SST, which have achieved better results than RGN model.
In sum, various deep learning-based methods dominate the
prediction of ocean factors [1].

B. Multi-task learning

Multi-task learning (MTL) is a fundamental learning
paradigm in machine learning. MTL leverages the correlations
among multiple related tasks to improve the performance of
all tasks [17]. Over past decades, MTL has attracted much
attention in various fields, e.g., computer vision (CV) [42], nat-
ural language processing (NLP) [43], [44] and spatial-temporal

data mining (STDM) [45], [46]. Specifically, in the STDM
field, there are numerous MTL-based studies for prediction
problems. For example, Zhang et al. [47] proposed the multi-
task deep learning model (MDL) to utilize a convolutional
neural network to capture the spatial dependencies and employ
the linear fusion layer to jointly predict the traffic flow on the
road and region level. Wang et al. [48] developed a multi-task
adversarial spatial-temporal network (MT-ASTN) to jointly
capture the shared patterns of human crowd inflow and outflow
for prediction. Zhang et al. [49] proposed an LSTM-based
MTL method to jointly consider the taxi pick-up and drop-off
demand together for prediction. During training, the average
loss across the two prediction tasks (pick-up and drop-off
demand) is calculated, encouraging the model to balance the
performance on both tasks and achieve good performance.

Specifically, there are several multi-task learning models for
predicting ocean factors. Ling et al. [18] designed a multi-
task machine learning framework to jointly predict short-term
and long-term abnormal SST prediction in the Indian Ocean.
Han et al. [50] designed a MasterGNN model utilizing the
recurrent graph neural networks to predict the air PM2.5,
weather temperature, pressure, humidity, wind speed, and wind
direction together. Liu et al. [22] proposed a multi-task con-
volutional neural network (MTCNN) model to simultaneously
recognize submarine cable magnetic anomaly (SCMA) signals
and locate abnormal regions in the East China Sea. However,
these models are restricted to tasks with the same temporal
scale data, ignoring how to deal with multi-scale data, which
is more common in remote sensing data.

C. Discussion

According to the above overview, the main limitation of
existing studies on ocean factor prediction is that they cannot
sufficiently capture and utilize the correlations between differ-
ent factors to enhance the prediction accuracy. Although some
MTL methods utilize the linear fusion layer and combined loss
to consider the correlations, they still fall short in capturing the
dynamic correlations over time. Moreover, due to the varying
temporal scales of different ocean factors, it is challenging to
directly apply existing methods to learn the unified patterns
of multiple ocean factors. To solve these issues, we proposed
a novel approach, UniOcean, to align the multi-scale ocean
factors and incorporate fine-grained patterns together to boost
the prediction performance.

IV. PROBLEM DEFINITION

Definition 1: Ocean Factor Prediction. Given the historical
observations X = {X1, X2,.., Xt,.. , X1} RVT of
one ocean factor, e.g., SST, SSS or OHC, each X: ={x14,
X2, -+, xne F o RV records the ocean factor values
at IV different spatial locations at the time step t. Ocean
factor prediction aims to predict the future value = =
YATH, Y7420 , YATJf} RN*Tr for upcoming T: time
steps based on the historical data. Thus, prediction problem is
to seek a model F as follows:

Y =Fo{X} (D)
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Fig. 5: The proposed unified prediction framework (UniOcean). The multi-scale ocean factors data is input into the Fine-
grained Multi-scale Data Fusion module to learn patterns at different scales effectively and fuse them through the hierarchical
residual network. Next, the Multi-factor Correlation Learning module is constructed to adaptively learn the dynamic correlations
between different factors. Finally, we utilize the Factor-specific Prediction Towers to predict all ocean factors simultaneously.

where 6 denotes all the learnable parameters in the model.
Definition 2: Multiple Ocean Factor Prediction. Given
the historical observations of M ocean factory, MF =
% X -~ X .-, ¥ , jach Xrepresents the obser-
vations of factor i Multiple ocean factor prediction aims to
seek the model £ to learn a unified prediction framework for
all factors to improve prediction performance, i.c.,

YME = Fo{X!, X%, X% XM} @
where O denotes all the learnable parameters in the model,
Y MF represents the prediction result of all ocean factors.

In general, each ocean factor X may have different scales
s. It is necessary and important to consider the multi-scale

characteristics in predicting multiple ocean factors. Thus, we
denote this problem as:

S Vam }=FolX§, X5, X0 )

where 6 denotes all the learnable parameters in the model,
‘srepresents the prediction result of each ocean factor, and

1 2 .
sl>'s2>

si denotes the scale of each factor Xt

V. METHOD
A. Framework of UniOcean

Fig. 5 illustrates the framework of UniOcean. Specifically,
we first design the Fine-grained Multi-scale Data Fusion
module to integrate multi-scale ocean factors to capture the
temporal dependencies at different levels and fuse them via
the hierarchical residual network. Then, we propose the Multi-
factor Correlation Learning module to aggregate the data
embedding of different ocean factors using point-wise convo-
lution and adaptively capture the dynamic correlations between
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Fig. 6: Illustration of the data scales at different layers in the
fine-grained multi-scale data fusion module.

the factors. Finally, we develop the Factor-specific Prediction
Towers to predict the results for all ocean factors at the same
time. More details are elaborated as follows.

B. Fine-grained Multi-scale Data Fusion

Due to the difference in temporal scales, the temporal
dependencies of ocean factors may exhibit diverse seasonality
and tendency, which introduces significant complexity for the
model to learn such dependencies. As a result, the prediction
model may mistakenly learn patterns across different scales
of ocean factors and exhibit poor performance. To solve
this problem, we design the Fine-grained Multi-scale Pattern
Fusion module, which iteratively applies multiple transformer
blocks to learn the temporal dependencies at different scales
and utilizes hierarchical residual networks to fuse the learned



dependencies. Concretely, the Fine-grained Multi-scale Pattern
Fusion module consists of three components, i.e., multi-scale
data alignment, fine-grained pattern learning, and hierarchical
residual network.

1) Multi-scale data alignment: Given the historical data of
different ocean factorsy MF =x Tx1,...,xM , as shown
in Fig. 6(a), we first select thé highest scale among all M
factors as sh and initially utilize a simple upsamplmg%ayer to
align all the data to the highest scale by repeating the values,
ie.,

)

For example, we use the upsampling layer to align monthly
SSS and weekly SST data into weekly scale by linear data
interpolation. After that, we can get the same-scale data of all

ocean factors. Although this approach provides a simple way
to align data to the same scale, the temporal dependencies from

X %F = Upsamping(X M| Sp)

different scales remain hidden and are not learned adequately.

2) Fine-grained pattern learning: To capture the temporal
dependencies from different scales, we first introduce a set
of temporal scales S={sm,s""1, ... s!,s? to downsample
the original data to different scales,where s is the scale factor.
For example, as shown in Fig. 6(b), if we have the scale factor
s = 2, the scale set S will consist of consecutive powers of 2,
ie, S =222 20 Concretely, we downsample the X ™ by

a scale factor of s via an average pooling operation to get
the input data X "¢ as:

t+s”

. 1 L
x""¢ = AveragePoolingfe MF, sn) = o X

®)

t

where AveragePooling() calculates the mean value of the data
{X;, X % for each factor.

i1, , Xitsn

Then, we utilize the transformer blocks to learn the de-
pendencies at different temporal scales. Transformer is a
fundamental model widely used in natural language processing
(NLP) and Computer Vision (CV) and plays a crucial role
in capturing the contextual relationships and dependencies
within a sequence of input data. UniOcean is an universal
framework which could easily combine with different variation
of transformer block (e.g., Informer, Autoformer, and Fed-
former). Here, we introduce basic transformer block [51]. In
each transformer block, we encode the positional information
of data as:

PE . pos
os20 = STy’ ©
pOs
PE(pos,2i+ 1) = cos( 100002/ d )

where pos is the temporal position of a certain item of
the input data, and d is the embedding dimension. After
calculating the positional embedding, we capture the temporal
patterns at different scales. The transformer blocks calculate
self-attention using different input data, i.e.,

QKT

Attention(Q, K, V) = softmax(w’i) @)
MultiHead(Q, K, V) = Concat(heads, - - - , head, 8
heaéiiQ: Attgntion(QWg, K W’lc, \% WU) n @)

i i i

where W represents the learnable parameters of the trans-
former block, and Q, K, V represent the position encoding
of the input data.

3) Hierarchical residual network: To fuse the patterns of
different scales inspired by [52], we construct the hierarchical
residual network to model the patterns from bottom to top.

Specifically, the in ut of transformer block  consists two parts,
i.e., the encoder X "¢ and the decoder €C. The encoder

l i

XEne is the down sample data of X% with scales i The

decoder is obtained using linear interpolation to upsample the

output of transformer block i—1. Thus, it can align the encoder

and decoder data to the same scale to feed into the transformer
block.

Out Enc Dec

Xi = TransformerBlock(X: ,Xi )

where : X E" = LinearInterpolation(X %%, s)

i i-1

where LinearInterpolation() imputes the missing values by

assuming a constant rate of change between the known values,

and the X ©“ and X i_olut respectively represent the outputs of

transformer blocks i and i — 1.

©

Algorithm 1 Fine-grained Multi-scale Data Fusion
Data: The data for different ocean factors XMF =
{Xt, X2, , XM} scale factor s, and a set of tem-

poral scales S={'s?, s 1, .-, st, S0},
XME = Upsampling(X MF)
for layer. iin 0 to n do MT i

X; = AveragePoolingX,, ,S)
if i equal to 0 then

X - P
else »~ ] )
‘ X pec = LinearInterpolation(X out, S);
[ i—1
end
X2 = TransformerBlock(XiE "X P “)
end

Result: The fused multi-scale pattern embedding.

Algorithm 1 presents the pseudocode for the whole process
of fine-grained multi-scale data fusion module. Finally, we
obtain the aligned embedding x £m? of multi-scale data as
the input for the multi-factor correlation learning module.

C. Multi-factor Correlation Learning

The multi-factor correlation learning module aims to lever-
age the shared information and dynamic correlations between
factors to improve the overall prediction performance. To this
end, we construct two point-wise convolution layers to capture
the correlations between ocean factors over time.

Point-wise convolution, also known as 1x1 convolution, is
a type of convolutional operation commonly used in deep
learning architectures. Point-wise convolution can operate on
the channel dimension of the input to learn the correlations
of ocean factors. In detail, as shown in Fig. 7, the input data
embedding X Emb  RP*F is generated by the multi-scale
data fusion module, and we set the two kernel dimensions of
point-wise convolutions as F X d and d X F, respectively,
where F represents the number of ocean factors, and d
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Fig. 7: Illustration of point-wise convolution to capture the
correlations between factors.

denotes the data embedding dimension. For the first point-
wise convolution layer, by setting the kernel dimensions as
F yd, we ensure that only the data embedding of different
ocean factors can interact with each other. We utilize a sliding
window to calculate the correlations of different factors at the
specific window (period). This allows the model to capture the
dynamic correlations among different ocean factors and map
such correlations to a hil(fen space of dimensions D X d, i.e.,

X Hid — X P x Kernel(F, d)
F

(10)

where ¥ represents the data input of the correlation
learning module, andx# is the hidden embedding of the
correlations between different ocean factors.

Then, we use the Gelu (Gaussian Error Linear Unit) func-
tion to activate the important correlations in X Hid e

X Hid = Gelu(X Hid an
1
Gelu(x) = ) 1+ erf ;)_5 X (12)

where the erf() is an error function defined asﬂ/% Jg et dt,
which provides smoother weights for effectively training.

After that, we employ another point-wise convolution layer
to transform the learned correlation of different factors into
data embedding, thereby obtaining data embedding that are
enhanced by factors’ correlations.

I_ .
XHid x Kernel(d, F)
T

X Out — (13)
where X4 represents the learned dynamic factor correla-
tions, T denotes the total number of kernels, and x O« is
the correlation-enhanced data embedding of different ocean
factors.

D. Factor-specific Prediction Towers

Finally, we utilize the factor-specific prediction towers to
generate the prediction results for all ocean factors. For each
factor, the corresponding tower is one multi-layer perception
(MLPs), i.e.,

YME = WX% + b (14)

where W € RN*4"T represents the learnable parameters, b is
the bias, X% € RN*d is the data representation in latent

space, and d is the hidden dimension. For different ocean
factors, the output length corresponds to their original scales.
We choose L1 loss as the training objective and calculate
the loss at each time step to optimize the prediction model. As
a result, the loss function for multiple ocean factors prediction
in UniOcean is formulated as follows:

g1 1
Lprea = L(Fe)y= 1YM =Y MFq (15)
i=t
where Fo denotes all the learnable parameters, Y and

"MF are the ground truth and the prediction results, respec-

tively, at time step i

VI. EXPERIMENTS

We conduct experiments on five datasets to demonstrate the
superiority of the proposed UniOcean method against multiple
strong baseline methods. We also evaluate the impacts of the
hyper-parameters and the effectiveness of model components.
Moreover, we present visualizations to showcase the outcomes
of our method as well as the baseline approaches, providing
clear and concise comparisons. The codes are public available
in the online repository”.

A. Datasets of Ocean Factors

To unify the time range of all datasets, we conduct two
sets of ocean factor prediction experiments, focusing on fine-
grained and coarse-grained prediction, respectively. First, we
test the performance of coarse-grained ocean factor predic-
tion (30 years), i.e., SST prediction, SSS prediction, and OHC
prediction. It includes weekly SST, monthly SSS, and monthly
OHC datasets, and we chose 30 years of data from January
1993 to December 2022. The second set of experiments is

to test the fine-grained ocean factor prediction (10 years),
consisting of daily SST prediction and D4 SSS ( collected
per 4 days) prediction spanning from 2011 to 2022. In both
datasets, 70% data is allocated for training, 10% for validation,
and 20% for testing.

B. Baselines

We compare our method with the following seven baselines,
including two typical Recurrent Neural Network (RNN) based
models and five state-of-the-art Transformer models.

¢ GRU (Cho et al. 2014 [32]): a variant of recurrent neural
networks that overcomes the vanishing gradient problem
in traditional RNNs by employing gating mechanisms.

e ConvLSTM (Shi et al. 2015 [53]): A CNN-based model
that uses convolutional neural networks to extract the
spatial correlations and uses LSTM to model the temporal
dependencies.

o Informer (Zhou et al. 2020 [39]): An advanced
transformer-based model designed to address the chal-
lenges of long sequence time-series forecasting with
improved efficiency and accuracy.

Shttps://github.com/Neoyanghc/Uniocean
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Fig. 8: Illustration of the multi-scale data prediction scheme.

o Autoformer (Wu et al. 2021 [54]): A transformer-based
model that employs decomposition transformer with auto-
correlation mechanisms specifically tailored for long se-
quence time-series forecasting.

« FEDformer (Zhou et al. 2022 [55]): A time series
forecasting model that learns a graph structure among
multiple time series and forecasts them simultaneously
with a GNN.

« MTformer (Wu et al. 2021 [54]): A variation of Informer
that predict all tasks together.

« Scaleformer (Mohammad et al. 2023 [52]): A time series
forecasting model that utilizes a scale-aware structure to
capture multi-scale information in one model.

C. Experimental Setups

Here, we briefly introduce the prediction scheme, experi-
mental environment, parameter setting, and evaluation metrics.
Prediction scheme. All methods predict the results (i.e.,
SST, SSS, and OHC) of the following t = 32,64, 96 time
steps from the present time, based on the historical data of the
last T = 32, 64, 96 time steps. For example, for the daily SST
dataset, the T' = 32 means that we utilize past values of 32
days to predict the next 32 days. Fig. 8 illustrates the prediction
scheme to utilize the data with different temporal scales for
prediction, where black squares mean the data samples and
different factors within the same period may have different
numbers of data samples. In our prediction task, we use the
same historical temporal period for all factors to predict future
values.

Experimental environment. All the deep-learning based
models are implemented in Python with Pytorch 1.13.1. We
use the source code and hyperparameters used in the original
papers to evaluate the baseline methods on all datasets. All
the models are run on a server with four NVIDIA 3090
GPUs. We optimize all the deep learning-based models by the

Adam optimizer with a maximum of 50 epochs, and the early
stopping is employed in validation loss to avoid over-fittings.
Parameter setting. We repeat each experiment ten times,
and the best parameters for all deep learning-based models
are chosen through a careful parameter-tuning process. The
hyperparameters for our models are chosen through experi-
ments, which are introduced in detail in Section VI-D. The
batch size is set to 32, 24, and 16 for the experiments with
prediction lengths of 32, 64, and 96, respectively. The original

0.8 1.0

»wonon
nonn
ENEWIIN]

0.7 0.8
0.6 0.6

Jlll

0.5 0.4
Monthly SSS  Weekly SST Monthly OHC  Average

MAE
MSE

0.3 Monthly SSS  Weekly SST Monthly OHC  Average

Fig. 9: The comparisons of the MSE and MAE results of
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MSE

learning rate is set to 0.0001 and halves every four epochs. The

optimization problem is solved via back-propagation.
Evaluation metrics. We use two widely used metrics, i.e.,

Mean Absolute Error (MAE) and Mean Square Error (MSE),

to measure the performance of ]iyrediction models, i.e.,
|

MAE(Y,Y) =__ 47 v;— ¥4
U ier (16)
MSE(Y, Ty =+ v
(’ >_|[| (]_Yl.)Z
i€t
where Y = Y1, ..., Yr denotes the ground truth, Y =

Y1;-, Y. represents the predicted values, and T denotes the
time steps to be predicted. In our experiments, t is set to 32,
64, and 96, respectively.

D. Parameter Study

To study the effects of hyperparameters, we conduct a
parameter study on the three core hyper-parameters of our
framework, i.e., the scale factor s in the multi-scale fusion



TABLE II: The result comparison of 7 baseline models on coarse-grained ocean factor prediction (30 years), i.e., SST prediction,
SSS prediction, and OHC prediction. Our UniOcean enhanced methods significantly improve compared with corresponding
methods, and UniOcean-Fedformer achieves the best overall performance.

Prediction length=32 Prediction length=64 Prediction length=96

Methods Monthly SSS | Weekly SST | Monthly OHC Monthly SSS | Weekly SST Monthly OHC Monthly SSS Weekly SST Monthly OHC Avg

MSE MAE MSE MAE  MSE MAE MSE MAE  MSE MAE MSE MAE MSE MAE  MSE MAE MSE MAE
GRU 1499 0888 1312 0902 0978 0.800 | 1.539 0945 1595 0977 0987 0803 | 199 1089 2077 109 1113 0854 | 1371
ConvLSTM 1244 0.839 1.739 1.015 1.241 0.829 1.165 0.788  1.648  0.953 0917 0.706 1.082 0.771 1.465 0.898 0.821 0.674 0.952
MTformer 1354 0.887  0.745 0.677  0.487 0.557 1.241 0.805  0.813 0.703 0.509  0.568 1.286 0836  0.795 0.692 0.546 0.591 0.791
Scaleformer 0.933 0.741 0.327 0435 0264 0376 | 0.883 0.693 0499  0.551 0378  0.469 0.997 0.744 0359 0.458 0.322 0.421 0.550
Informer 1.542 0955 0.876 0.613  0.602 0.350 1.571 0.953 0989  0.799  0.768  0.700 1.923 1.087  1.294 0.923 1.225 0.892 1.224
UniOcean-Informer 0.646  0.593  0.283 0.404  0.219 0.340 | 0.733 0.626 0339 0454 0306 0.424 0.873 0.694  0.388 0.485 0.328  0.431 0.533
Autoformer 0.776  0.655 0.270 0.368  0.261 0365 | 0.872 0.682 0530 0.569 0460  0.533 0.884 0.692  0.448 0.519 0.446 0.521 0.585
UniOcean-Autoformer 0.628  0.581 0.256 0.377  0.200 0.323 | 0.790 0.661 0385 0495 0313 0424 0.864 0.685  0.458 0.538 0.373 0.472 0.565
Fedformer 0.799  0.662  0.191 0.293 0238 0352 | 0.897 0.698 0263 0384 0311 0411 0.947 0.735  0.342 0.448 0.380 0.468 0.553
UniOcean-Fedformer 0.608 0571 0.270 0.394  0.202 0.329 | 0.741 0.624 0309 0430  0.261 0.380 0.804 0.670 0361 0473 0.283 0.399 0.498

module, the number n of layers in the resid module, and
the number of hidden dimensions d in multi-factor correlation
learning module. We repeat each experiment 5 times and report
the average of MAE on the test set. In each experiment, we
only change one parameter while fixing all other parameters.
Scale factor. One key parameter in the UniOcean method is
the scale factor s for pattern fusion, which learns the patterns
of multi-scale data. Fig. 9 shows the results of different scale
factors. With the scale factor s = 2, UniOcean-Informer
obtains the best performance. The scale factors s = 3 and
S = 4 may cause the loss of detailed information thus can
not effectively capture the fine-grained patterns in the data,
leading to low performance.

The number of hierarchical layers. Another crucial pa-
rameter is the number of layers n in the hierarchical residual
network, which fuses the patterns of multi-scale data. As
shown in Fig. 10, increasing the number of layers from
3 to 4 can improve the representation ability and reduce
MSE. However, the number of 5 layers causes the over-fitting
problem, significantly degrading performance. Therefore we
set 4 layers in the hierarchical residual network.

The number of hidden dimensions. an essential parameter
in the UniOcean method is the number of hidden dimensions
d in the point-wise convolution layer to capture the correlation
of different ocean factors. The number of hidden dimensions
is determined by the hidden dimension d. Fig. 11 shows the
results of UniOcean-Informer while setting different hidden
dimension ratios. Our method obtains the best performance
with the d number of 8. But for a bigger ratio, it may cause
an over-fitting problem.

E. Experimental Results

Three experiments are conducted to examine UniOcean’s
performance and generalization ability. First, we evaluate our
framework on the coarse-grained ocean factor prediction (30
years) datasets collected from 1993 to 2022, as shown in
Table II. Second, we compare the performance of our frame-
work by feeding it with different combinations of ocean
factors to assess the method’s generalization ability, as shown
in Table II. Third, we utilize a more recent fine-grained
prediction (10 years) dataset collected from 2011-2022 to

evaluate the performance of our framework, as shown in
Table IV. The results demonstrate that our models achieve
superior performance among all the state-of-the-art methods.

Firstly, Table II shows the performance results of adding
our proposed UniOcean framework with Transformer-based
models and different baselines on coarse-grained ocean factor
prediction (SST prediction, SSS prediction, and OHC predic-
tion). We can observe that:

1) By combining our UniOcean framework with baseline
methods, the average performance significantly improved.
UniOcean-Fedformer achieved the best average performance
on all baselines. Compared with the Informer model, the
UniOcean-Informer achieved remarkable improvements rang-
ing from 53% to 73% on all ocean factors in MSE results. Sim-
ilarly, when comparing the Autoformer models, the UniOcean-
Autoformer demonstrated substantial performance improve-
ments. These results highlight that the proposed UniOcean
is an universal and effective framework to enhance various
models. 2) Using multi-scale pattern fusion, our UniOcean-
Informer model achieved better performance than the simple
multi-task model MTformer. By incorporating multi-scale pat-
terns into the fusion process, our framework can capture and
leverage information from different scales, enhancing perfor-
mance. 4) Compared to the multi-scale method, Scaleformer,
our approach has significantly improved due to the correlation
modeling between different ocean factors. By modeling the
correlation between ocean factors, our method can effectively
capture and utilize the shared information to achieve better
performance. 5) Traditional RNN-based models (GRU, Con-
vLSTM) perform much worse than most Transformer-based
methods, indicating the potential of Transformer architecture
in predicting ocean factors. 6) as the forecasting sequence
length increases, UniOcean-Fedformer demonstrates superior
performance compared to Fedformer. While it slightly lags in
SST, UniOcean-Fedformer outperforms Fedformer in SSS and
OHC. This can be attributed to the task balance issue in multi-
task learning. Nonetheless, UniOcean-Fedformer maintains a
solid overall performance.

Secondly, Table III demonstrates the result comparison of
different combinations of the ocean factors; We investigated
the impact of training our methods on various combinations
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TABLE III: The result of training our methods on different combinations of ocean factor prediction (three, two, and single
factors). The result shows that incorporating more factors help improve overall prediction results more significantly.

Trained on three factors Trained on two factors Trained on single factors
Datasets SSS+SST+OHC SSS+SST SSS+OHC SST+OHC SSS SST OHC

MSE MAE MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
Monthly SSS 32 | 0.646 0.593 0.781  0.662 | 0.835  0.700 - - 1.542  0.955 - - - -
Weekly SST 32 | 0.283 0.404 0437 0514 - - 0.338  0.450 - - 0.876  0.613 - -
Monthly OHC 32 | 0.219 0.340 - - 0294 0411 | 0291  0.39 - - - - 0.602  0.350
Monthly SSS 64 | 0.733 0.626 0.779  0.646 | 0940 0.721 - - 1.571  0.953 - - - -
Weekly SST 64 | 0339 0.454 0.357  0.467 - - 0.438  0.520 - - 0.989  0.799 - -
Monthly OHC 64 | 0.306 0.424 - - 0493  0.546 | 0334 0437 - - - - 0.768  0.700
Monthly SSS 9 | 0.873 0.694 0918 0.728 | 1.123 0816 - - 1.923  1.087 - - - -
Weekly SST 9 | 0.388 0.485 0461  0.538 - - 0427  0.511 - - 1294 0923 - -
Monthly OHC 96 | 0.328 0.431 - - 0.731  0.675 | 0355  0.448 - - - - 1.225  0.892
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Fig. 12: The comparisons of the overall MSE results between our methods Informer, UniOcean-Informer, Fedformer, and
UniOcean-Fedformer on the test sets of three datasets, SST, SSS, and OHC, using experimental data with a prediction sequence

length of 32. And the darker the color, the larger the error.

TABLE IV: The comparisons of the result of UniOcean-
Informer and Informer on fine-grained ocean factor predic-
tion (Daily SST and D4 SSS), our method can significantly
enhance the prediction performance.

Datasets Informer UniOcean+Informer Improvement
MSE MAE | MSE MAE
D4 SSS 32 | 0.819 0.526 | 0.383 0.367 44.18%
Daily SST 32 | 0.227 0.327 | 0.095 0.202 46.31%
D4 SSS 64 | 0792  0.530 | 0.520 0.278 39.64%
Daily SST 64 | 0258 0.368 | 0.153 0.278 31.09%
D4 SSS 9 | 0.760 0.516 | 0.583 0.482 16.50%
Daily SST 96 | 0257 0373 | 0.171 0.296 25.91%

of multiple ocean factors, including three ocean factors, two
ocean factors, and a single ocean factor. We can see that the
performance improves with an increasing number of combined
ocean factors. When the UniOcean-Informer model is trained

on multiple ocean factors simultaneously, its performance
improves compared to training on a single ocean factor.
The results revealed that incorporating multiple ocean factors
leads to a more substantial improvement in overall prediction
performance.

Thirdly, as shown in Table IV, we can see that our methods
continue to demonstrate superior performance on fine-grained
ocean factor prediction, with 40% improvement on MSE and
28% improvement on MAE averagely.

In a nutshell, our framework achieves promising prediction
performance by fully fusing the multi-scale data and capturing
the correlations between different ocean factors.

F. Visualization Comparison.

To give a clear view of the advantages of our proposed
methods, we provide the visualization comparison from two
perspectives, i.e., overall comparison and location comparison.

Firstly, we compare the overall MSE performance of our
method and baseline methods, Informer and Fedformer, and
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corresponding UniOcean-Informer and UniOcean-Fedformer.
We visualize the MSE heatmaps in the spatial regions on
the test sets with the prediction length 32. As shown in
Fig. 12, each subplot independently plots the MSE for the
global ocean. The lighter color indicates a small absolute error,
whereas the deeper color means a large error. According to
the visualization, UniOcean helps the baseline models achieve
significant improvements compared to the original model.

Secondly, we provide clear temporal comparisons of results
in 8 specific locations. As shown in Fig. 13, each sub-plot
visualizes the SST value of one single location in the test
set of the weekly SST dataset. Our UniOcean-Informer model
(blue line) shows the smallest gap with the ground-truth values
(red line), and the errors of ConvLSTM and Informer are
considerably significant. Compared with baseline models, the
predicted results of our method are most similar to the ground
truth values.

In a word, all the results indicate that our model achieves
superior performance on all ocean factors.

G. Ablation Study

To evaluate the effectiveness of the key components in our
method, we conduct a detailed ablation study on the UniOcean
framework with Informer by removing different components
to get different variants, i.e.,

o w/o Fine-grained Multi-scale Data Fusion module:
removing the Hierarchical residual network designed for
fusing the patterns of multi-scale data.

« w/o Multi-factor Correlation Learning module: delet-
ing the point-wise convolution layers, which captures the
dynamic correlations for all factors.

As shown in Fig. 14, w/o Fine-grained Multi-scale data Fu-
sion module, the model has the worst performance among all
variants, which indicates that multi-scale data fusion improves
the performance significantly by utilizing the hierarchical
structures to fuse the spatial-temporal dependencies at different
scale levels. As for w/o Multi-factor Correlation Learning
module, we can observe that this mechanism largely improves
average performance, especially in SSS and OHC prediction,
with a slight decrease in SST prediction performance. This
observation aligns with the common trade-off encountered
in MTL models. The MTL model often involves a trade-
off between individual ocean factor prediction performance
and overall prediction performance across all ocean factors.
Unsurprisingly, the model may sacrifice some task-specific
performance to achieve the best overall performance.

In summary, both multi-scale data fusion and correlation
learning modules are essential for our method to get better
performance.

VII. CONCLUSION

In this study, we introduce a unified ocean factors predic-
tion framework (UniOcean) that leverages multi-scale remote
sensing data to simultaneously predict multiple ocean fac-
tors. Our approach incorporates the Fine-grained Multi-scale
data Fusion module, which effectively captures patterns at
different scales and fuses these patterns through hierarchical




structures. Additionally, we employ the Multi-factor Corre-

latio

ns Learning module, utilizing point-wise convolution, to

adaptively learn the correlations between different factors.

Fina

lly, we utilize the factor-specific towers module to predict

ocean factors simultaneously. Experimental results on five real-
world remote-sensing datasets validate the superior prediction
performance achieved by UniOcean, highlighting its potential
for enhancing predictions across all ocean factors. Our study
draws the following conclusions:

1)

2)

3)

4)

Our work UniOcean explores a new perspective on mod-
eling the multiple ocean factors with different temporal
scales and provides good performance.

Multi-factor learning is an effective way to enhance
prediction performance in remote sensing data. By cap-
turing the correlation between different factors, it can be
found that overall prediction performance is effectively
improved.

Fine-grained multi-scale data fusion is highly important
to capture the temporal patterns in all ocean factors,
when encountering the data with different scales.
UniOcean can be easily implemented into other various
transform-based methods to enhance their prediction
performance without modifying their structures.

In the future, we will further consider and align the different
spatial scales across multiple ocean factors to enhance the
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