

Please cite this paper as

Li J and Zhu S (2021) Advanced Vibration Isolation Technique using Versatile Electromagnetic Shunt Damper with Tunable Behavior. *Engineering Structures*. 242: 112053. <https://doi.org/10.1016/j.engstruct.2021.112053>

Advanced Vibration Isolation Technique using Versatile Electromagnetic Shunt Damper with Tunable Behavior

Jin-Yang LI¹, Songye ZHU^{1*},

¹ Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

* Corresponding author: Dr Songye Zhu, Email: songye.zhu@polyu.edu.hk

Abstract:

Electromagnetic shunt damper (EMSD) is an emerging damper type capable of mimicking conventional mechanical dampers using their electrical circuit counterparts. Damping, stiffness, and inertance within mechanical domain can be emulated by resistance, inductance, and capacitance from electrical domain, respectively. In particular, four representative conventional damper types, namely, viscous fluid damper (VFD), viscoelastic damper (VED), inerter damper (ID), and tuned inerter damper (TID), are emulated by an EMSD in this paper, thereby forming EMSD-VFD, EMSD-VED, EMSD-ID and EMSD-TID, respectively. Their control performances when installed in a vibration isolation system are subsequently studied both analytically and experimentally. The behavior of EMSD can be easily tuned by changing the external circuits connected to the electromagnetic damper. Moreover, these four types of EMSDs possess complementary isolation performances across the frequency spectrum, which implies that different optimal circuits should be selected in different frequency bands to achieve the best isolation performance. A broadband vibration isolation technique by automatically switching among sub-circuits integrated in a single circuit board, which has not been realized in the current study, will be a promising future research direction.

Keywords: electromagnetic shunt damper, isolation, inerter damper, tuned inerter damper, tunable

List of Nomenclature

<i>Symbol</i>	<i>Description</i>	<i>Symbol</i>	<i>Description</i>
c_d	Equivalent damping coefficient emulated by EMSD	L_0	Motor inner inductance
c_h	Damping coefficient of the host structure	L_{opt}	optimal inductance
C	Capacitance	m_d	Equivalent inertance emulated by EMSD
C_{opt}	optimal capacitance	M_h	Mass of the host structure
c_p	Parasitic damping coefficient	OP-AMP	Operational amplifier
c_t	total damping coefficient	r	Frequency ratio
c_v	viscous damping from the	R_0	Motor inner resistance
DAQ	Data acquisition	R_1	Resistor 1 in VNIC module

DC	Direct current	R_2	Resistor 2 in VNIC module
EM	Electromagnetic	R_3	Variable resistor 3 (Rheostat) in VNIC module
emf	electromotive force	R_{opt}	Optimal resistance
EMSD	Electromagnetic Shunt Damper	R_t	Total circuit resistance
EMSD-ID	Inerter Damper emulated by Electromagnetic Shunt Damper	R_{VNIC}	Equivalent resistance by VNIC
EMSD-TID	Tuned Inerter Damper emulated by Electromagnetic Shunt Damper	s	Laplace variable
EMSD-VED	Viscoelastic Damper emulated by Electromagnetic Shunt Damper	$S_{1,2}$	Power supply in VNIC module
EMSD-VFD	Viscous Fluid Damper emulated by Electromagnetic Shunt Damper	SDOF	Single Degree of Freedom
F_k	Friction coefficient	TID	Tuned inerter damper
f_v	vibration frequency	VED	Viscoelastic damper
H	transmissibility value (X/Y)	VFD	Viscous Fluid Damper
ID	Inerter damper	VNIC	Negative Impedance Converter with Voltage Inversion
j	Imaginary unit	X	Mass displacement after Laplace transformation
k_2	Damping coefficient	Y	Ground displacement after Laplace transformation
k_d	Equivalent stiffness emulated by EMSD	ζ	damping ratio
K_{em}	Motor constant	λ	Stiffness ratio
K_h	Spring stiffness of the host structure	μ	mass ratio
L	Inductance	ω_n	Natural frequency (rad)

32 **1. Introduction**

33 Excessive ground vibrations may adversely affect the safety and functionality of civil
34 and mechanical structures, as well as the comfort level of occupants. Common ground
35 vibration sources include, but are not limited to, earthquake, construction, traffic and
36 machinery induced vibrations. In this regard, various vibration isolation techniques have
37 been implemented to mitigate the negative impact associated with the ground-induced
38 vibrations. Vibration isolation systems are commonly categorized into active, semi-active
39 and passive types, which correspond to the use of passive, semi-active and active dampers
40 or devices. Soong [1] provided a detailed review of active isolation techniques in civil
41 engineering. Datta [2] later updated the review and extend the scope to cover some semi-
42 active control techniques for seismic isolations. Karnopp [3] carried out a brief review on
43 active and semi-active vibration suspension techniques in platforms and vehicles. Symans
44 and Constantinou [4] gave a review on semi-active control systems for seismic protection.
45 Jalili [5] conducted a comparative study and analysis of semi-active vibration control on
46 vehicles suspensions. Buckle [6] and Parulekar and Reddy [7] reviewed passive control
47 design of structures for seismic response reduction. Housner *et al* [8] gave a thorough
48 review on structural control techniques covering all three types.

49 Among the aforementioned three types, the isolation techniques using passive dampers
50 have seen the widest applications owing to their inherent control stability and zero power
51 consumption. A variety of passive mechanical dampers, including viscous fluid damper
52 (VFD), viscoelastic damper (VED), inerter damper (ID) and tuned inerter damper (TID),
53 have been investigated in passive isolation systems. Recently, an emerging damper type –
54 electromagnetic shunt damper (EMSD) – has drawn research attention due to its potential
55 to emulate conventional mechanical passive dampers using their electrical counterparts
56 based on the analogue relations between the mechanical and electric systems. Actually, the
57 first reveal of the analogy between the two systems dated back to year 1933 by Firestone
58 [9], in which the capacitance was linked to mass. Until recently, Smith [10] pointed out
59 that a more accurate analogue of capacitance shall be inertance, considering both are two-
60 node elements whereas mass is a typical one-node element. So far, the mechanical elements
61 comprising of damping, stiffness, and inertance can be emulated by their electrical
62 counterparts – resistance, inductance, and capacitance, which lays the foundation of
63 mimicking conventional mechanical dampers using EMSD. Besides, some of the major
64 merits of EMSD over conventional passive dampers are:

65 a. Compared with mechanical elements, their electrical counterparts are generally more
66 compact in size by orders of magnitude; and this enables the integration of versatile
67 circuit designs into a single board to realize advanced damper behaviors that can barely
68 be achieved by conventional mechanical dampers.

69 b. Electrical elements are generally cheap owing to the mass production. In addition,
70 unlike mechanical dampers of which the mechanical elements (e.g., spring or damper)
71 are normally specially designed and tailor made, there is no specific end-use
72 requirements on the electrical elements adopted in EMSD as long as they fit the
73 purpose. Thus, abundant options are market available to choose from.

74 c. The maintenance cost of EMSD is low, given the electric elements can be replaced in
75 the shunt circuit only without interfering the whole damper. For instance, the

76 electromagnetic (EM) transduce do not need to be detached from the primary structure
77 to have the electrical elements replaced. Meanwhile, EMSD can be updated anytime
78 by adjusting its shunt circuit only, that is barely applicable to mechanical dampers.

79 d. In conventional viscous fluid dampers (VFDs) or magnetorheological dampers
80 (MRDs), local over-heating problem remains a challenge, which will accelerate rubber
81 seal aging and consequently lead to oil leakage problem [11]. In contrast, unwanted
82 kinetic energy will be transformed into electricity in EMSD and then shunted out to
83 its external circuit. Thus, the over-heating of the damper is no longer a concern.

84 e. Given EMSD converts kinetic energy into electrical energy instead of heat dissipation,
85 potential energy harvesting capability [12-14] is available.

86 Given the above unique advantages of EMSD, a group of researchers have investigated
87 its applications in base isolation problem. Karnopp [15] discussed the feasibility of
88 implementing EMSD in vehicle suspensions as variable mechanical dampers. Graves *et al*
89 [16] adopted a similar idea by further proposing paralleled resistance to reduce large
90 existing resistance to small one to enhance energy outflow to the external circuit for better
91 isolation performance. Gonzalez-Buelga *et al* [17] coupled an energy harvesting module
92 that is equivalent to a variable resistance (R) or damping coefficient with a TMD in
93 realization of simultaneous base isolation and vibration control performance. Likewise,
94 Ding *et al* [18] showed the energy regeneration circuit of EMSD is equivalent to a pure
95 damping (or equivalent R) and was subsequently applied to the vehicle suspension design.
96 Marneffe *et al* [19] used the series RL circuit to emulate a relaxation isolator and achieved
97 enhanced vibration isolation performance. Yan *et al* [20] introduced negative resistance to
98 the EMSD isolation system and achieved enhanced vibration isolation through RL circuit
99 with enlarged equivalent damping coefficient and auxiliary stiffness. Sasaki *et al* [21]
100 adopted a series RLC resonant shunt circuit to suppress the vibration amplitude of a
101 superconducting levitated body. Liu *et al* [22] coupled EMSD with TMD and subsequently
102 derived optimal series RLC parameters under both forced and ground excitations under H_2
103 control algorithm. Nakamura *et al* [23] used EMSD and flywheel to provide damping and
104 inertance, respectively. Feasibility of the device was subsequently verified through the
105 control of a framework subjected to seismic input. Later, Gonzalez-Buelga *et al* [24]
106 studied base isolation performance of a single degree-of-freedom (SDOF) system using
107 EMSD (paralleled R and L in series connection to C) in emulation of tuned inerter damper
108 (TID). The authors concluded that such topology provides better control performance than
109 series RLC circuit. Pei *et al* [25] discovered base isolation performance of two multi-
110 resonance circuits configurations (i.e., multi-parallel and multi-series) with both vibration
111 control and energy harvesting abilities under the H_2 optimization of the relative
112 displacement. In particular, the multi-parallel circuit is a paralleled series RLC circuits, and
113 the multi-series circuit is an RLC circuit in series with a paralleled L and series RC . It is
114 claimed better damping performances can be achieved by the multi-mode circuits than the
115 traditional single mode with enhanced broadband control.

116 However, some deficiencies have also been identified in the existing studies. First,
117 although all the above examples belong the EMSD category, they exhibit different control
118 mechanisms and effects, and should be more accurately distinguished. Second, the
119 existence of the inner resistance of the EM device may considerably jeopardize their
120 control performance. Very recently, Li and Zhu [26] demonstrated successful realization

121 of versatile mechanical damper behaviors, including VFD, VED, ID and TID, using a
 122 single EMSD with the facilitation of negative impedance converter with voltage inversion
 123 (VNIC). By connecting a single EM transducer to the corresponding shunt circuits, the
 124 EMSD can function as EMSD-VFD, EMSD-VED, EMSD-ID, and EMSD-TID. In addition,
 125 the feasibility of EMSDs to large-scale applications was validated [27]; and superior
 126 vibration mitigation performance has been achieved experimentally by an EMSD-ID to the
 127 control a 135m full-scale cable [28].

128 Inspired by the compact sizes of electrical elements allowing for potential complex
 129 circuit design (i.e., advantage point (a)), as well as the unique isolation performances of
 130 various EMSDs from previous literatures, an EMSD-VNIC-based isolator with tunable
 131 behaviors is proposed in this paper and subsequently studied. Herein, the tunable behaviors
 132 are achieved by the combination of various sub-circuits, each of which emulates a typical
 133 passive damper type, and the flexible switch among these sub-circuits. In this paper, the
 134 four EMSD isolator types (i.e., EMSD-VFD, EMSD-VED, EMSD-ID, and EMSD-TID)
 135 are analyzed quantitatively first to suggest their individual characteristics observed in
 136 transmissibility functions. Next, experimental verification is carried out to validate the
 137 isolation performances of each type to reassure that the discovered characteristic can be
 138 physically achieved. By accurately categorizing the EMSD isolator into four types, the
 139 following new insights can be obtained in this study: (1) their base isolation mechanisms
 140 and performances can be accurately differentiated; (2) the analogy to the mechanical
 141 dampers (such as VFD, VED, ID, and TID) can facilitate the understanding of the EMSD
 142 isolation performance, as well as their comparison with the traditional passive isolators
 143 with these mechanical dampers; and (3) the direct performance comparison of the
 144 transmissibility functions not only enables to identify the locally optimal cases among
 145 different EMSD types, but also projects another intelligent strategy to switch among
 146 various sub-circuits with the lowest transmissibility profile in different frequency bands.
 147 Consequently, an advanced vibration isolation strategy using tunable EMSD **will be able**
 148 **to be** achieved with a broadband isolation performance in the future.

149

150 2. EMSD with VNIC

151 An EMSD refers to an EM transducer (i.e., EM motor) connected to an external shunt
 152 circuit, the configuration of which determines the damper behaviors. Given a representative
 153 linear EM transducer (e.g., a linear non-commutated direct current (DC) EM motor as
 154 adopted in this paper), the relative motion between its two nodes generates back
 155 electromotive force (*emf*) at two ends of the coil; and the current passing through the motor
 156 coil produces a reactive EM force as

$$\begin{cases} u = K_{\text{em}}(\dot{x} - \dot{y}), \\ f = K_{\text{em}}i \end{cases}, \quad (1)$$

157 where u is the *emf* (i.e., open circuit voltage) generated in the EM transducer; $\dot{x} - \dot{y}$ stands
 158 for the relative velocity between its two nodes; i is the motor current; f is the EM force
 159 induced by the current; and K_{em} is the motor constant determined solely by the physical
 160 parameters of the EM motor itself, and is independent from connected shunt circuit (i.e.,
 161 K_{em} is fixed once EM transducer was manufactured).

162 Consequently, the fundamental of EMSD is to manipulate the force-velocity
 163 relationship of the EM device via an external shunt circuit that regulates the current-voltage
 164 relationship. The above electro-mechanical coupling effect of the EM device offers an
 165 appealing one-to-one analogue relations between mechanical elements and their electrical
 166 counterparts ([28]) as

$$\begin{cases} m_d = K_{\text{em}}^2 C \\ c_d = K_{\text{em}}^2 / R \\ k_d = K_{\text{em}}^2 / L \end{cases}, \quad (2)$$

167 where R , L and C stand for the resistance, inductance, and capacitance from the electrical
 168 domain, respectively; m_d , c_d and k_d are their equivalent mechanical counterparts emulated
 169 by EMSD – inertance, damping, and stiffness, respectively.

170 Eq. (2) serves as the foundation for EMSD to emulate any desired mechanical
 171 components using their electrical counterparts. Consequently, Table I provides the
 172 mechanical topologies of the selected four damper types (i.e., VFD, VED, ID, and TID)
 173 along with their corresponding electrical circuits that enable the EMSD to provide
 174 comparable damper behaviors. Nonetheless, due to the existence of inherent resistance (R_0)
 175 arising from the coil materials in the motor and other electrical elements (e.g. inductor and
 176 connections wires), the actual damper performances of the EMSD will deviate from those
 177 of ideal analogies. Thus, Table I includes two parts, namely, ideal and actual analogies that
 178 are differentiated by the influence of the inherent resistances. Compared with the ideal
 179 analogy, the actual analogy scenarios demonstrate the existence of the series connected R_0
 180 and R . Herein, R_0 refers to the inner resistance of EM motor that cannot be removed; and
 181 R stands for the overall resistance arising from the external circuit, which may include (1)
 182 adjustable resistance (i.e., rheostat), (2) inductor inner resistance, (3) equivalent “negative
 183 resistance” granted by the VNIC etc., whichever apply. To avoid complication and
 184 highlight the key effects of the inductor and capacitor element in the topologies of EMSD-
 185 VED and EMSD-ID, respectively, no parallel R is adopted in the actual circuits, although
 186 it is seen in the ideal analogy cases. Thus, the actual EMSD-VED and EMSD-ID cannot
 187 perfectly mimic the ideal VED and ID due to the existence of R_0 , although they produce
 188 very similar mechanical behaviours. The transfer functions in Table I reveals the adverse
 189 impact of a large series resistance R_0 that may camouflage the effects of inductance and
 190 capacitance in EMSD.

191 This also highlights the important role of VNIC in all four cases. VNIC provides an
 192 equivalent “negative resistance” (i.e., R can take a negative value when VNIC is connected)
 193 that can partially cancel the adverse impact of R_0 . Consequently, VNIC enlarges the
 194 adjustable resistance range. System topology of VNIC module is shown in Fig. 1 as Module
 195 B. The other two modules (Module A and Module C) in Fig. 1, represent an EM transducer,
 196 and a tunable shunt circuit with four sub-circuits, respectively.

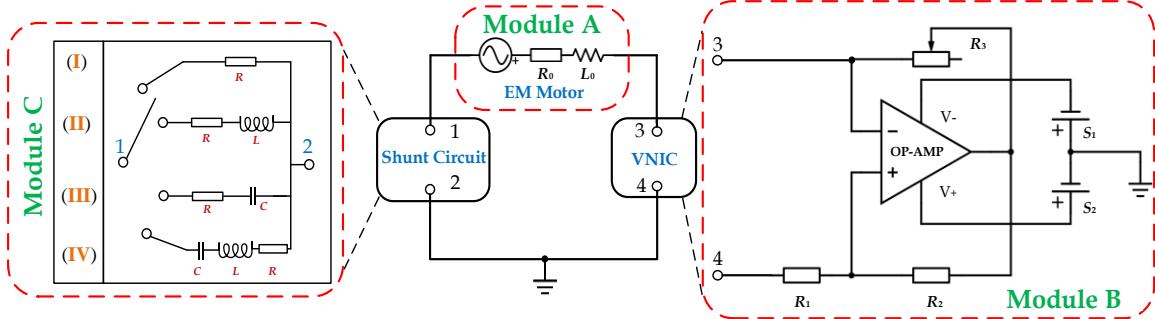


Fig. 1 EMSD with VNIC system (Circuits I-IV coincide with four cases shown in Table I)

In specific, Module A represents an EM transducer that can be equivalently treated as a series connection of an ideal *emf* source, a motor inherent resistance (R_0) and a motor inductance (L_0). Given the low vibration frequency range covered in this paper, the inherent inductance (L_0) can be generally ignored. Module B includes the VNIC circuit comprising one power operational amplifier (OP-AMP), three resistors (i.e., $R_1 - R_3$), and two power sources (i.e., S_1, S_2) supplying the OP-AMP. The equivalent negative resistance (R_{VNIC}) generated by VNIC circuit is

$$R_{\text{VNIC}} = -\frac{R_1 R_3}{R_2}, \quad (3)$$

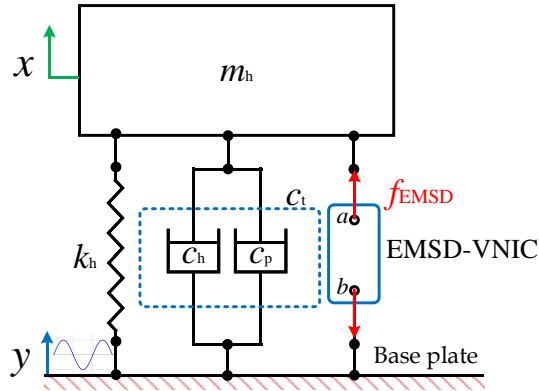
where R_1 and R_2 function as the voltage divider. Large resistances R_1 and R_2 (e.g., $1 \text{ M}\Omega$ each) are often taken to minimize power consumption. If we choose $R_1 = R_2$, the equivalent resistance (R_{VNIC}) becomes

$$R_{\text{VNIC}} = -R_3, \quad (4)$$

This equivalent negative resistance can partially offset (i.e., equivalently “cancel”) the inherent resistance, and minimize the total circuit resistance to $R_t = R_0 + R = R_0 - |R_{\text{VNIC}}|$. If R_0 is fully cancelled, the EMSD can theoretically achieve the ideal analogy in Table I. However, this can hardly be achieved due to the power issues in VNIC. More detailed analysis regarding the working mechanism and power issues of VNIC can be found in [28].

Module C of Fig. 1 shows the tunable circuit containing four sub-circuits capable of mimicking the behaviors of the four representative damper types (i.e., VFD, VED, ID, and TID from top to bottom), which are termed EMSD-VFD, EMSD-VED, EMSD-ID, and EMSD-TID in this paper to match those from Table I.

The series combination of Modules A to C depicts the proposed EMSD system with tunable behaviors. Since the series R seen in the branch may be either positive or negative, the total circuit resistance R_t can be either larger or smaller than R_0 in the application.


Table I Analogies between the mechanical and electrical systems of the four representative types

Case #	Mechanical Dampers*	Electromagnetic Shunt Dampers (EMSDs)	$TF_{EMSD} = \frac{F}{(X - Y)}$	
IDEAL ANALOGY				
I	VFD		EMSD-VFD	$\frac{K_{em}^2 s}{R}$ (5)
II	VED		EMSD-VED	$\frac{K_{em}^2 (Ls + R)}{RL}$ (6)
III	ID		EMSD-ID	$\frac{K_{em}^2 (RCS^2 + s)}{R}$ (7)
IV	TID (series)		EMSD-TID	$\frac{K_{em}^2 s}{Ls + R + \frac{1}{Cs}}$ (8)
ACTUAL ANALOGY				
I	VFD		EMSD-VFD	$\frac{K_{em}^2 s}{R + R_0}$ (9)
II	VED		EMSD-VED	$\frac{K_{em}^2 s}{Ls + (R + R_0)}$ (10)
III	ID		EMSD-ID	$\frac{K_{em}^2 s}{(R + R_0) + \frac{1}{Cs}}$ (11)
IV	TID (series)		EMSD-TID	$\frac{K_{em}^2 s}{Ls + (R + R_0) + \frac{1}{Cs}}$ (12)

* m_d , k_d , and c_d represent the inertance, stiffness, and damping coefficients of conventional mechanical dampers, respectively.

225 **3. Vibration Isolation with EMSD**

226 **3.1. System Description and Analytical Solution**

227

228

Fig. 2 Schematic of SDOF system under seismic excitation

229 Fig. 2 shows the schematic of an SDOF system installed with EMSD subjected to
 230 ground excitation, where m_h , c_h , and k_h denote the mass, damping and stiffness coefficients
 231 of the SDOF host structure, respectively. x and y denote the displacements of the sprung
 232 mass and ground motion, respectively. Parasitic damping (c_p) accounting for various
 233 mechanical losses of the EMSD (e.g., friction loss, windage loss, magnetic loss etc.) is also
 234 taken into consideration. Despite its complex nature, parasitic damping can be estimated
 235 on the basis of an equivalent energy approach [29] in form of

$$c_p = \frac{2F_k}{\pi^2 f_v d} + c_v , \quad (13)$$

236 where F_k is the kinetic friction force, c_v is the viscous damping coefficient, f_v is the vibration
 237 frequency, and d is the moving amplitude of the EM damper. Essentially, the parasitic
 238 damping (c_p) of EMSD and the structural inherent damping (c_h) of EMSD can be treated
 239 in parallel connection with other, and can be represented using a total damping coefficient
 240 (i.e., $c_t = c_h + c_p$) for easier handling. The two nodes "a" and "b" in Fig. 2 correspond to
 241 those of EMSDs in Table I.

242 The equation of motion of the isolated SDOF system coupled with EMSD can be written
 243 as

$$m_h \ddot{x} + c_t (\dot{x} - \dot{y}) + k_h (x - y) = f_{\text{EMSD}} , \quad (14)$$

244 where the force f_{EMSD} is defined positive when pointing upward on the sprung mass.

245 Consequently, the transmissibility function (H) can be obtained in the *Laplace* domain
 246 as

$$H(s) = \frac{X}{Y} = \frac{(c_t s + k_h) + \text{TF}_{\text{EMSD}}}{(m_h s^2 + c_t s + k_h) + \text{TF}_{\text{EMSD}}} , \quad (15)$$

247 where X and Y correspond to x and y after *Laplace* transformation, respectively. TF_{EMSD}
 248 stands for the transmissibility function of the damper force over relative displacement as

249 provided in Table I. As a results, the analytical transmissibility functions of the vibration
 250 isolator with different shunt circuits (i.e., corresponding to EMSD-VFD, EMSD-VED,
 251 EMSD-ID, and EMSD-TID) can be obtained by substituting the corresponding TF_{EMSD} to
 252 Eq. (15).

253

254 **3.2. Isolation with EMSD-VFD**

255 EMSD-VFD is realized by connecting an EM motor to a pure resistance (R) as seen in
 256 Table I. With reference to Eq. (9), EMSD-VFD provides an equivalent pure damping of
 257 $K_{em}^2/(R+R_0)$. In particular, the introduction of VNIC to EMSD-VFD expands the
 258 achievable damping range, which is originally constrained at R_0 , by bringing potential
 259 “negative resistance” effect (i.e., $R = -|R_{VNIC}|$). As a result, $R+R_0$ in Eq. (9) can
 260 theoretically equal to any value from infinity to zero, corresponding to a damping value
 261 from zero to infinite. Substituting Eq. (9) into (15) derives the transmissibility function of
 262 the SDOF system with EMSD-VFD as

$$H_{EMSD-VFD}(s) = \frac{X}{Y} = \frac{k_h + (c_t + K_{em}^2/R_t)s}{(m_h s^2 + k_h) + (c_t + K_{em}^2/R_t)s}, \quad (16)$$

263 where $R_t = R_0 + R$ stands for the total circuit resistance. As discussed above, R_t can be
 264 smaller than R_0 if VNIC is included.

265 Further substituting $s = \omega j$ into Eq. (16) yields

$$H_{EMSD-VFD}(r) = \frac{1 + 2(\zeta_h + \zeta)r \cdot j}{(1 - r^2) + 2(\zeta_h + \zeta)r \cdot j}, \quad (17)$$

$$|H_{EMSD-VFD}(r)| = \sqrt{\frac{1 + 4(\zeta_h + \zeta)^2 r^2}{(1 - r^2)^2 + 4(\zeta_h + \zeta)^2 r^2}}, \quad (18)$$

266 where $j = \sqrt{-1}$ is the imaginary unit, $\zeta_h = c_t / (2\sqrt{m_h k_h})$ and $\zeta = (K_{em}^2/R_t) / (2\sqrt{m_h k_h})$
 267 represent the damping ratios contributed by structural inherent damping and EMSD,
 268 respectively; $r = \omega / \omega_n$ is the frequency ratio, in which ω is the excitation frequency, and
 269 $\omega_n = \sqrt{k_h / m_h}$ is the natural frequency of the SDOF structure. Eqs. (17) and (18) are
 270 identical to the classical transmissibility functions of a damped SDOF system, except for
 271 the replacement of ζ_h by $\zeta_h + \zeta$ reflecting the contribution of an auxiliary equivalent
 272 damping of K_{em}^2 / R_t provided by EMSD-VFD.

273 Two invariant points $(r, |H|)$, namely, $(0, 1)$ and $(\sqrt{2}, 1)$, can be identified regardless
 274 of the R_t (i.e., ζ) value based on Eq. (18). The amplitude between the two invariant points
 275 is always greater than 1, and becomes less than 1 when $r > \sqrt{2}$.

276

277 **3.3. Isolation with EMSD-VED**

278 EMSD-VED brings equivalent stiffness and damping that are realized by inductance (L)
 279 and resistance (R) in the electric circuit, respectively, to the SDOF system. Referring to
 280 Table I, the transmissibility function of the SDOF structure installed with EMSD-VED can
 281 be obtained by substituting Eq. (10) into Eq. (15) as

$$H_{\text{EMSD-VED}}(s) = \frac{X}{Y} = \frac{c_t s + k_h + K_{\text{em}}^2 s / (Ls + R_t)}{m_h s^2 + c_t s + k_h + K_{\text{em}}^2 s / (Ls + R_t)}, \quad (19)$$

282 where total resistance R_t includes inherent resistances from the EM motor, inductor,
 283 connecting wires, and the equivalent “negative resistance” from VNIC.

284 By further defining stiffness ratio as equivalent stiffness over structural stiffness (i.e.,
 285 $\lambda = (K_{\text{em}}^2 / L) / k_h$), Eq. (19) can be rewritten as

$$|H_{\text{EMSD-VED}}(r)| = \sqrt{\frac{[2\zeta(1+1/\lambda)r^2 + 2\zeta_h r^2]^2 + (r - 4\zeta\zeta_h/\lambda r^3)^2}{[2\zeta((1+1/\lambda)r^2 - 1/\lambda r^4) + 2\zeta_h r^2]^2 + (r(1-r^2) - 4\zeta\zeta_h/\lambda r^3)^2}}, \quad (20)$$

286 consisting of the damping ratio, the stiffness ratio, and the frequency ratio.

287 In particular, if the damping coefficient (c_t) of the SDOF structure can be ignored (i.e.,
 288 $\zeta_h = 0$), Eq. (20) can be simplified to

$$|H_{\text{EMSD-VED}}(r)| = \sqrt{\frac{4\zeta^2(1+1/\lambda)^2 r^4 + r^2}{4\zeta^2[(1+1/\lambda)r^2 - 1/\lambda r^4]^2 + (1-r^2)^2 r^2}}. \quad (21)$$

289

290 **3.4. Isolation with EMSD-ID**

291 EMSD-ID employs a capacitor to emulate mechanical inertance. Substituting Eq. (11)
 292 into Eq. (15) delivers the transmissibility function of the SDOF system with EMSD-ID as

$$H_{\text{EMSD-ID}}(s) = \frac{X}{Y} = \frac{(c_t s + k_h) + K_{\text{em}}^2 s / \left(R_t + \frac{1}{Cs} \right)}{(m_h s^2 + c_t s + k_h) + K_{\text{em}}^2 s / \left(R_t + \frac{1}{Cs} \right)}. \quad (22)$$

293 Similarly, Eq. (22) can be rewritten as

$$|H_{\text{EMSD-ID}}(r)| = \sqrt{\frac{[2\zeta(1-\mu r^2) - 2\zeta_h \mu r^2]^2 + (\mu r + 4\zeta \zeta_h r)^2}{[2\zeta(1-(1+\mu)r^2) - 2\zeta_h \mu r^2]^2 + (\mu r(1-r^2) + 4\zeta \zeta_h r)^2}}, \quad (23)$$

294 where $\mu = (K_{\text{em}}^2 C) / m_h$ is defined as the mass ratio (i.e., equivalent inertance to structural
 295 mass). Herein, the numerator ($K_{\text{em}}^2 C$) represents the emulated inertance that is sometimes
 296 referred to rotary mass. Nonetheless, inertance is inherently different from mass given the
 297 former is a two-node system linearly dependent to relative acceleration, while the latter
 298 responds to its absolute acceleration.

299 If system damping is negligible (i.e. $\zeta_h = 0$), Eq. (23) can be simplified to

$$|H_{\text{EMSD-ID}}(r)| = \sqrt{\frac{4(1-\mu r^2)^2 \zeta^2 + \mu^2 r^2}{4[1-(1+\mu)r^2]^2 \zeta^2 + \mu^2(1-r^2)^2 r^2}}, \quad (24)$$

300 which corresponds to the mechanical topology C2 in reference [30]. As suggested by Hu,
 301 Chen, Shu and Huang [30], the introduction of the inertance into the SDOF structure will
 302 reduce both the resonant frequency and peak amplitude of the transmissibility curve. In
 303 addition, one special feature of ID or EMSD-ID is the bounce-back (or tail-up) effect at
 304 high frequencies if the system damping is low. This is different from the curve of EMSD-
 305 VFD, in which the tail part is monotonically decreasing at high frequencies.

306

307 3.5. Isolation with EMSD-TID

308 EMSD-TID consists of a mixture of capacitance, resistance, and inductance
 309 representing inertance, damping, and stiffness effects, respectively. In fact, any
 310 combination of the mentioned three elements can be treated as an EMSD-TID. Due to
 311 simultaneous existence of capacitance and inductance (i.e., equivalent inertance and
 312 stiffness), almost all EMSD-TID patterns offer an additional DOF above the original SDOF
 313 system that leads to a two-peak transmissibility curve. In order to provide a general
 314 understanding of the characteristics of EMSD-TID, one typical series-type *RLC* resonant
 315 circuit (i.e., Case IV from Table I) is adopted in our study to demonstrate its unique features.
 316 Notably, all previous three cases (i.e., Cases I - III) can be regarded as special cases of
 317 EMSD-TID (Case IV), given the elements are connected in series (i.e., no parallel
 318 resistance is added referring to actual analogy scenario in Table I). Consequently, the
 319 transfer function for EMSD-TID can be obtained by substituting Eq. (12) into Eq. (15) as

$$H_{\text{EMSD-TID}}(s) = \frac{X}{Y} = \frac{(c_t s + k_h) + K_{\text{em}}^2 s / \left(Ls + R_t + \frac{1}{Cs} \right)}{(m_h s^2 + c_t s + k_h) + K_{\text{em}}^2 s / \left(Ls + R_t + \frac{1}{Cs} \right)}. \quad (25)$$

320 After substituting $s = \omega j$, Eq. (25) can be rewritten as

$$|H_{\text{EMSD-TID}}(r)| = \sqrt{\frac{\left[2\zeta(1-\mu(1+1/\lambda)r^2)-2\zeta_h\mu r^2\right]^2 + \left[\mu r + 4\zeta\zeta_h r(1-\mu/\lambda r^2)\right]^2}{\left[2\zeta(1-(1+\mu+\mu/\lambda)r^2 + \mu/\lambda r^4) - 2\zeta_h\mu r^2\right]^2 + \left[\mu r(1-r^2) + 4\zeta\zeta_h r(1-\mu/\lambda r^2)\right]^2}}. \quad (26)$$

321 If the system damping (c_t) is negligible (i.e., $\zeta_h = 0$), Eq. (26) can be further simplified
 322 to

$$|H_{\text{EMSD-TID}}(r)| = \sqrt{\frac{4\zeta^2(1-\mu(1+1/\lambda)r^2)^2 + \mu^2 r^2}{4\zeta^2[1-(1+\mu+\mu/\lambda)r^2 + \mu/\lambda r^4]^2 + \mu^2(1-r^2)^2 r^2}}, \quad (27)$$

323 which corresponds to the mechanical topology C4 in [30]. As suggested in [30], the optimal
 324 frequency ratio and damping ratio can be determined as

$$\lambda_{\text{opt}} = \mu, \quad (28)$$

$$\zeta_{\text{opt}} = \sqrt{\frac{\zeta_p^2 + \zeta_q^2}{2}}, \quad (29)$$

$$\text{where } \zeta_{p,q}^2 = \frac{\mu^2(1 \mp \sqrt{\mu/(\mu+2)})}{4[(1+\mu)\sqrt{\mu/(\mu+2)} \mp \mu][(3+\mu)\sqrt{\mu/(\mu+2)} \pm \mu]}, \quad (30)$$

325 μ is the equivalent mass ratio to be initially assigned by the designer, ζ_p and ζ_q seen in
 326 Eq. (29) stand for the optimal damping ratios enabling local peaks at the two invariant
 327 points (p, q) of Eq. (27), respectively. Provided the flat peaks cannot be simultaneously
 328 achieved at these two locations, the optimal damping ratio (ζ_{opt}) in Eq. (30) is eventually
 329 assigned as the root mean square of ζ_p and ζ_q (i.e., Eq. (29)).

330 Consequently, on the basis of the equivalent relationships $\mu = (K_{\text{em}}^2 C) / m_h$,
 331 $\lambda = (K_{\text{em}}^2 / L) / k_h$, and $\zeta = (K_{\text{em}}^2 / R_t) / (2\sqrt{m_h k_h})$, the optimal parameters for the electric
 332 elements are determined as

$$C_{\text{opt}} = \frac{\mu m_h}{K_{\text{em}}^2}, \quad (31)$$

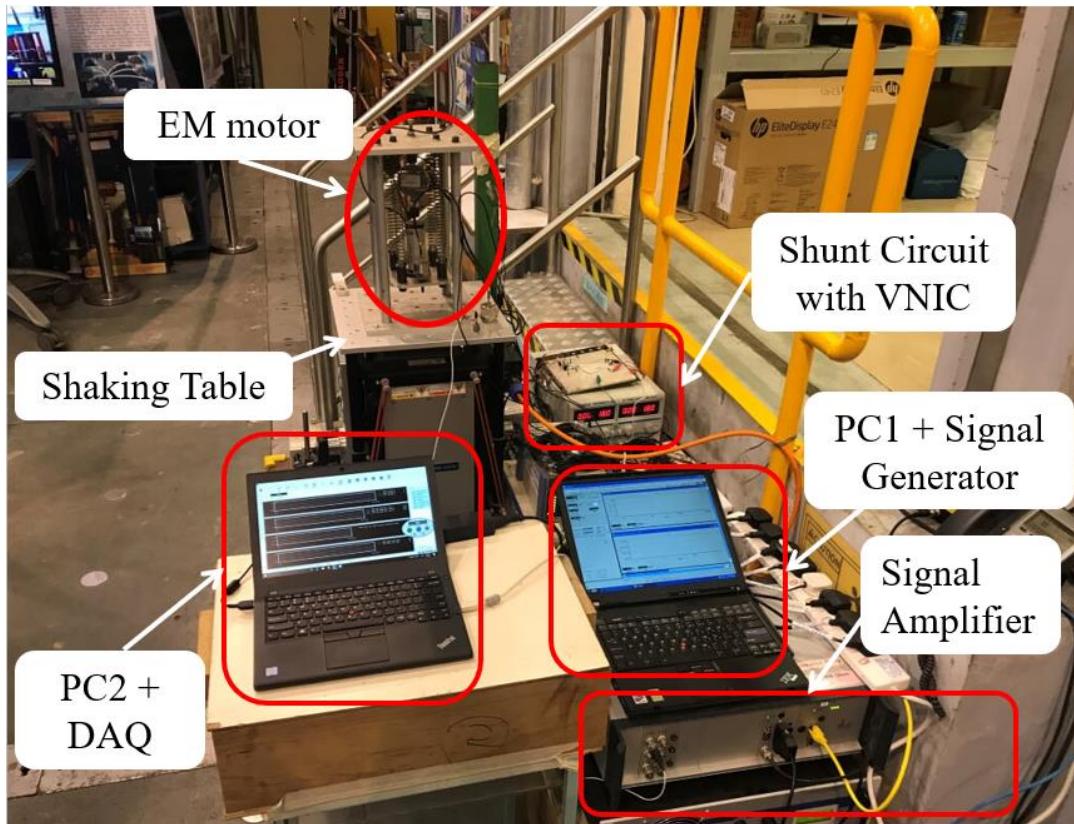
$$L_{\text{opt}} = \frac{K_{\text{em}}^2}{\mu k_h}, \quad (32)$$

$$R_{\text{opt}} = \frac{K_{\text{em}}^2}{2\zeta_{\text{opt}}\sqrt{m_h k_h}}, \quad (33)$$

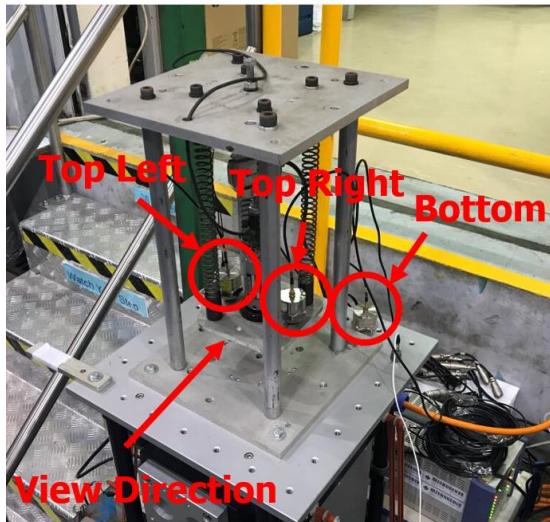
334 4. Experimental Setup

335 Experimental investigations were further conducted to verify the isolation performances
336 of the EMSD-VNIC system in emulation of the aforementioned four types of conventional
337 mechanical dampers. Fig. 3(a) shows a photo of the overall experimental setup established
338 on a shake table. Fig. 3(b) and (c) shows a detailed photo and schematic of the SDOF frame
339 installed with an EM transducer, respectively. The inverted SDOF structure consists of a
340 mass plate hung by four vertical springs to the aluminum frame that is subjected to ground
341 excitations. The design of the inverted SDOF configuration is to prevent the buckling of
342 the springs under compression that may induce excessive nonlinear behaviors.

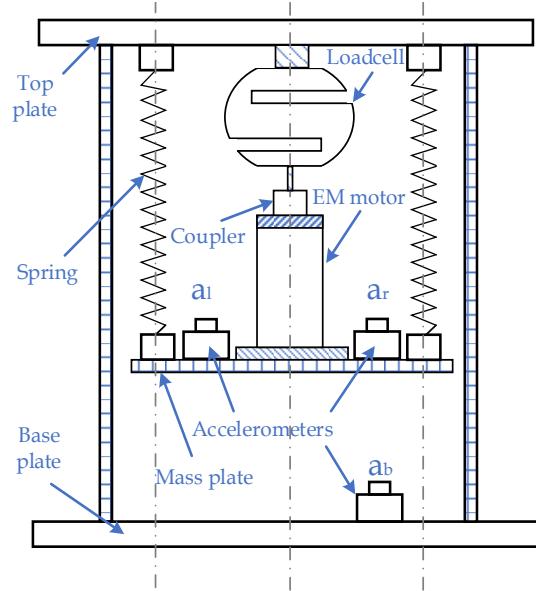
343 Fig. 4 shows a flowchart of the experimental setup consisting of three major modules,
344 namely, (a) the loading module (i.e., the shake table), (b) the SDOF structure module
345 equipped with EMSD-VNIC, and (c) the data acquisition (DAQ) module. PC1 in Fig. 3(a)
346 functioned as a signal generator and generated the desired input signals to a signal amplifier.
347 The amplified signals then drove the shake table (part #: APS 420) to produce regulated
348 ground excitations and excite the SDOF structure. The EMSD (i.e., the EM motor
349 connected to shunt circuits) provided damper forces to suppress the vibration of the SDOF
350 structure.


351 In terms of the EMSD-VNIC module, it essentially consists of an EM motor (part #:
352 Baldor LMNM2-1F5-1F1) connected between the mass plate and shake table, a VNIC
353 module, and an external shunt circuit. Fig. 5(a) shows photo of the VNIC circuit built on a
354 breadboard; and Fig. 5(b) - (d) shows the other electrical components used in the shunt
355 circuit: capacitor, inductor, and rheostat (variable resistor), respectively.

356 The ground motion incorporates two types: (1) sinusoidal sweeping excitation, and (2)
357 single-frequency sinusoidal excitation. For sinusoidal sweeping input, a slow sweeping rate
358 of 0.1 Hz/s within the range of interest was implemented to ensure a pseudo steady-state
359 response could be achieved at any given frequency (or any time). Single-frequency
360 sinusoidal excitations was later supplied to examine the performance at resonant and high
361 frequencies.


362 The signals of interest, including motor current, motor voltage, control force, and
363 accelerations of the shake table and mass plate, are measured with corresponding sensors
364 and recorded by a DAQ module (part #: Kyowa EDX-100A). In specific, three
365 accelerometers (part #: B&K 4370) are deployed to the vibration isolation system (i.e., two
366 placed symmetrically on the mass plate and one on the base plate as seen in Fig. 3(c)). The
367 average of the two top accelerations is used as the mass acceleration to avoid the side-effect
368 induced from plate fluttering. Consequently, the transmissibility curve (i.e., X/Y) can be
369 plotted as the ratio of the accelerations of the mass plate and base plate.

370 Detailed physical parameters of the overall experimental setup can be found in Table II.
371 The physical parameters of the EM motor are determined based on the measurements using
372 an *LCR* meter (part #: Hioki 3522-50). Herein, the effect of motor inner inductance L_0 is
373 negligible within the input frequency range of interest (i.e., ωL_0 can be ignored comparing
374 to R_0 and shunt circuit impedance).


375

(a) Photo of overall experimental setup

(b) Photo of vibration isolation table

(c) Schematic of vibration isolation table

Fig. 3 Experimental setup of vibration isolation table with EMSD

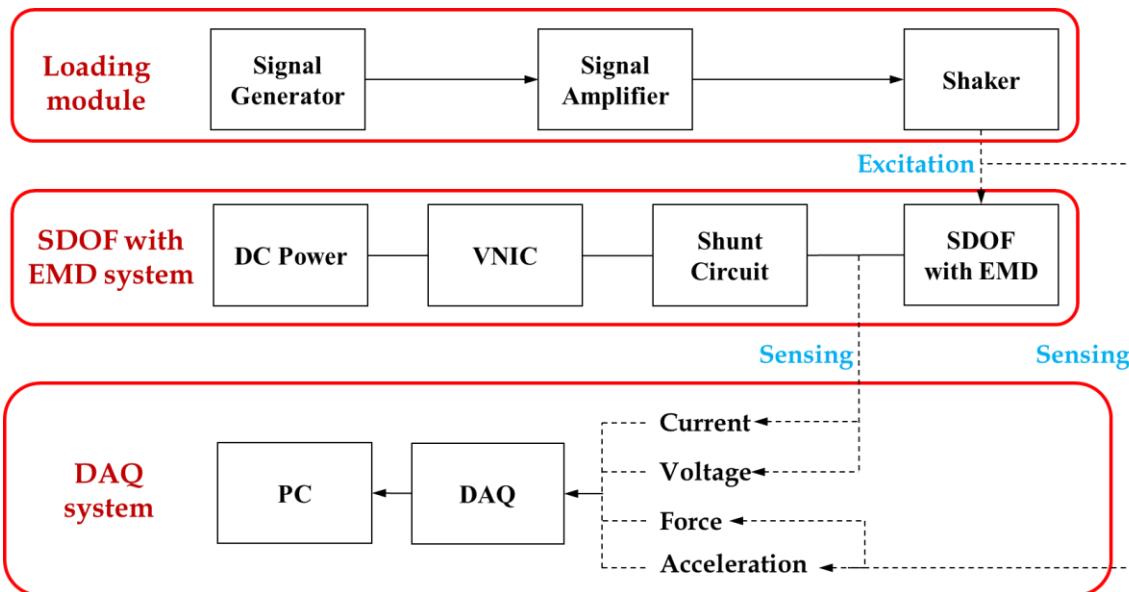
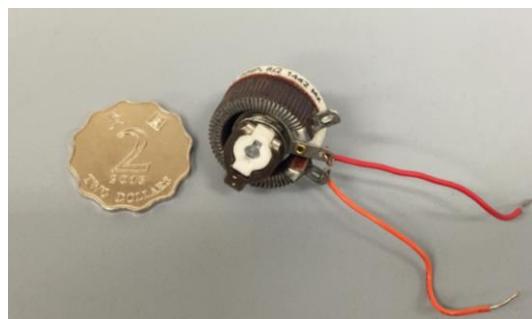


Fig. 4 The flowchart showing the experimental setup of EMSD isolation


(a) VNIC

(b) Capacitor

(c) Inductor

(d) Rheostat (variable resistor)

Fig. 5 Electric elements used in the shunt circuit of EMSD

Table II Major parameters of SDOF & EMSD-VNIC systems

Parameters		Symbol	Value (Unit) / Description
SDOF structure	Plate mass	m_h	2.2 kg
	Spring stiffness	k_h	3000 N/m
	Damping coefficient	c_h	1.24 Ns/m
	Natural frequency	ω_n	36.93 rad/s (5.88Hz)
Motor	Motor constant	K_{em}	7.474 Vs/m (or N/A)
	Motor inner resistance	R_0	3.8 Ω
	Motor inner inductance	L_0	0.003 H
	Friction coefficient	F_k	0.4994 N
	Damping coefficient	c_v	3.126 Ns/m
	Parasitic damping	c_p	8 Ns/m
VNIC	OP-AMP		Type: Apex PA75CD
	Resistor	R_1	1 M Ω
	Resistor	R_2	1 M Ω
	Rheostat	R_3	0~12 Ω

380 **5. Experimental Results and Analysis:**

381 The EMSD connects to four types of shunt circuits to emulate corresponding
 382 conventional mechanical dampers. The experimental cases for EMSD-VFD, EMSD-VED,
 383 EMSD-ID and EMSD-TID are denoted as Cases I – IV, respectively. Table III summarizes
 384 all test scenarios, including shunt circuit parameters and their equivalent mechanical
 385 parameters calculated on the basis of Eq. (2). Each case includes different circuits
 386 parameters denoted by sub-cases. The parameter selection in these sub-cases aims to reflect
 387 the effects of the major control parameters in different types of EMSDs through the
 388 comparison. As aforementioned, no paralleled R is included in Case II (EMSD-VED) and
 389 Case III (EMSD-ID) for simplicity without losing the core ideas (i.e., equivalent stiffness
 390 or inertance effects). Cases in which $R_t < R_0$ indicate the use of VNIC to partially “cancel”
 391 the inner resistance R_0 . To minimize the adverse impact of inner resistance, R_t is cancelled
 392 to be $\leq 1 \Omega$, which is adequately small in comparison with the overall impedance of the
 393 circuit. Extremely small values of R_t are not attempted because of the potential abnormal
 394 function of VNIC.

395 **Table III Experiment scenarios**

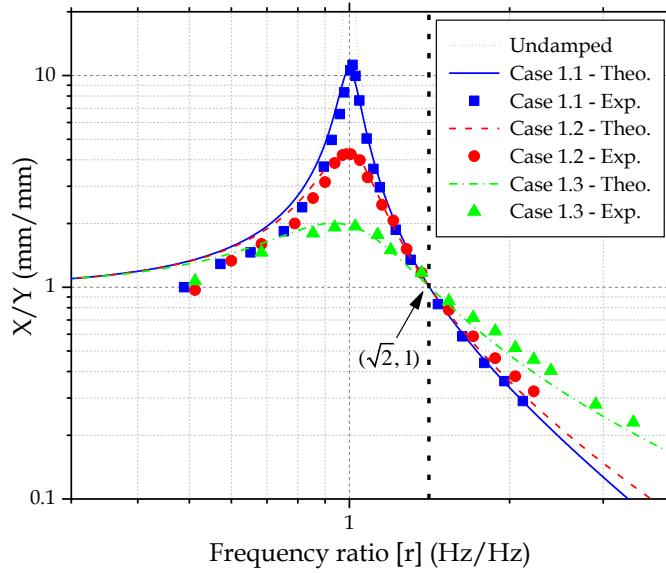
Case No.	Shunt Circuit Parameters			Equivalent Mech. Parameters		
	R_t (Ω)	L (H)	C (F)	c_d (Ns/m)	m_d (kg)	k_d (N/m)
Case I EMSD-VFD	1.1	$+\infty$		0		
	1.2	3.8		14.7		
	1.3	1.3*		43.0		
Case II EMSD-VED	2.1	0.5*	0.032	111.7		1746
	2.2	0.5*	0.02	111.7		2793
	2.3	14	0.02	3.99		2793
Case III	3.1	1*	0.03	55.9	1.7	

EMSD-	3.2	1*	0.02	55.9	1.1	
ID	3.3	1*	0.0033	55.9	0.2	
	3.4	5.8	0.03	9.6	1.7	
Case IV	4.1	0.95*	0.034	0.0244	58.8	1.4
EMSD-TID	4.2	0.5*	0.03	0.03	111.7	1.7
						1643
						1862

396 * $R_t < R_0$ indicates the use of VNIC (i.e., $R_t = R_0 - |R_{VNIC}|$).

397

398 **5.1. Case I: EMSD-VFD**


399 As shown in Table III, Case I include three sub-cases with different total resistance R_t ,
400 which correspond to different equivalent viscous damping coefficients c_d . Fig. 6 provides
401 the theoretical and experimental transmissibility curves of the EMSD-VFD isolator in
402 Cases 1.1 – 1.3 in logarithm scale, where the theoretical curves are plotted based on Eq.
403 (18). Satisfactory match is confirmed between the theoretical and experimental results. In
404 particular, the invariant points $(\sqrt{2}, 1)$ could be clearly identified. Cases 1.1 – 1.3
405 corresponds to different total circuit resistance values. The details are as follow:

406 (a) Case 1.1 corresponds to an open-circuit scenario (i.e., the equivalent resistance is
407 infinite). Consequently, EMSD only contributes the parasitic damping force (purely
408 mechanical damping). In this case, the peak transmissibility curve amplitude
409 reaches $|H|=10.6$ at the resonant frequency.

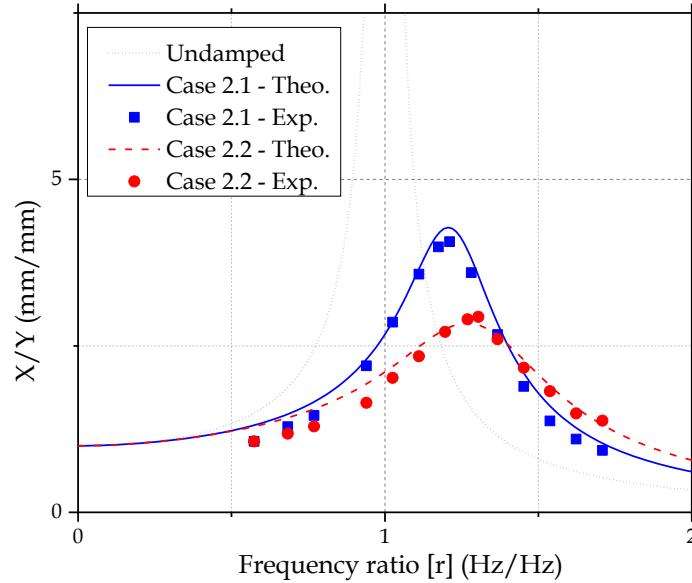
410 (b) Case 1.2 depicts the scenario where two EM motor terminals are directly shorted,
411 making the total circuit resistance equals to the motor inner resistance ($R_t = R_0 = 3.8$
412 Ω). Without the facilitation of VNIC, this scenario represents the theoretical lower
413 limit of R_t and upper limit of the achievable equivalent damping coefficient of
414 EMSD-VFD. The corresponding peak amplitude is $|H|=4.52$.

415 (c) When VNIC is introduced into the system, an equivalent negative resistance of
416 $R_{VNIC} = -2.5 \Omega$ was generated, which reduces the total resistance to $R_t = 1.3 \Omega$,
417 (equivalent to an viscous damping coefficient of 47 Ns/m). The peak curve
418 amplitude is subsequently reduced to $|H|=2$, representing a 56% decrease in
419 comparison with Case 1.2.

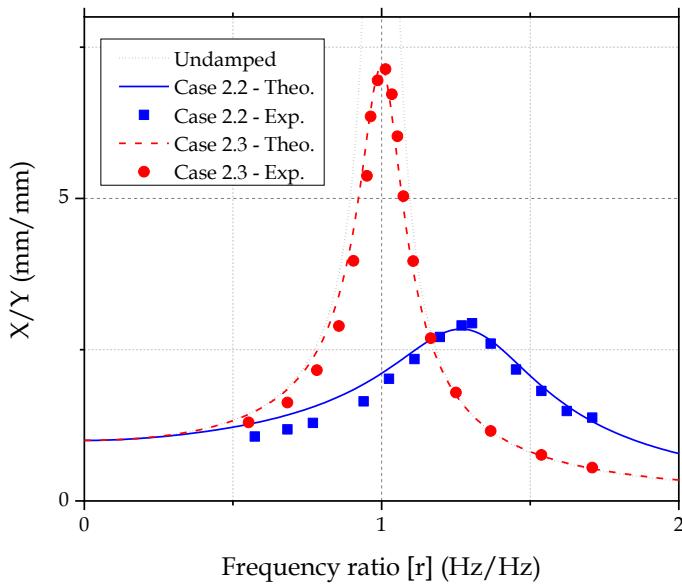
420 In general, the resonant peak magnitude is reduced with a decrease in total circuit
421 resistance R_t (i.e., an increase in equivalent viscous damping). The maximum achievable
422 equivalent damping coefficient of the traditional EMSD-VFD system used to be capped by
423 K_{em}^2 / R_0 (corresponding to Case 1.2). The introduction of VNIC proposed in this study
424 eliminates such a limitation and increases the achievable damping value considerably.
425 Theoretically, when the R_t value is canceled to be close to zero, the equivalent damping
426 coefficient approaches infinity. Nonetheless, over-cancellation may cause an abnormal
427 function of VNIC. Thus, an appropriate value should be carefully selected in real
428 applications.

429

430 Fig. 6 Transmissibility curves of EMSD-VFD isolation with varying resistance values realized by VNIC
 431


432 5.2. Case II: EMSD-VED

433 As shown in Table III, Case II includes two sub-cases (Cases 2.1 and 2.2) with the use
 434 of VNIC and one sub-case (Case 2.3) without the use of VNIC. Consequently, the
 435 corresponding total resistance values R_t are significantly different. Cases 2.1 and 2.2 with
 436 different L values aim to reflect the effect of the inductance on the isolation performance.
 437 Fig. 7 shows the transmissibility curves of the SDOF system with EMSD-VED, where the
 438 theoretical curves are plotted based on Eq. (20).


439 Fig. 7(a) compares Cases 2.1 and 2.2 that correspond to the inductance values of 0.032
 440 and 0.02 H, respectively. According to Eq. (2), the two inductance values mimic
 441 mechanical stiffness values of 1,746 and 2,793 N/m, respectively, and represent an
 442 additional 62% and 93% stiffnesses increase to the SDOF structure relative to the original
 443 stiffness of $k_h = 3,000$ N/m. Such additional equivalent stiffness will increase the resonant
 444 frequency of the SDOF structure (i.e., the resonant peak shifted to right) by 27% and 39%,
 445 respectively. This frequency shifting achieved by EMSD-VED serves as an effective way
 446 to avoid excessive resonance vibration when the seismic frequency coincides with the
 447 resonant frequency of the SDOF system.

448 The excellent match between the theoretical and experimental curves validates the
 449 functionality of EMSD-VED. Notably, the use of the physical inductors shown in Fig. 5(c)
 450 added resistance to the circuit. Consequently, a larger R_{VNIC} is required to cancel the
 451 combined resistances of both the EM motor and the inductor to an adequately small value
 452 of $R_t = 0.5 \Omega$ (i.e., Cases 2.1 and 2.2).

453 Fig. 7(b) further compares the theoretical and experimental results of Cases 2.2 and 2.3,
 454 both of which have the same inductance value of 0.02 H. However, Case 2.3 does not use
 455 VNIC module to cancel the total circuit resistance (R_t). Consequently, $R_t = 14 \Omega$ (including
 456 inner resistances from both EM motor and inductors) in Case 2.3 is considerably larger
 457 than in Case 2.2. The discrepancy between the two curves indicates the vital role of VNIC
 458 in the successful emulation of VED.

459
 460 (a)

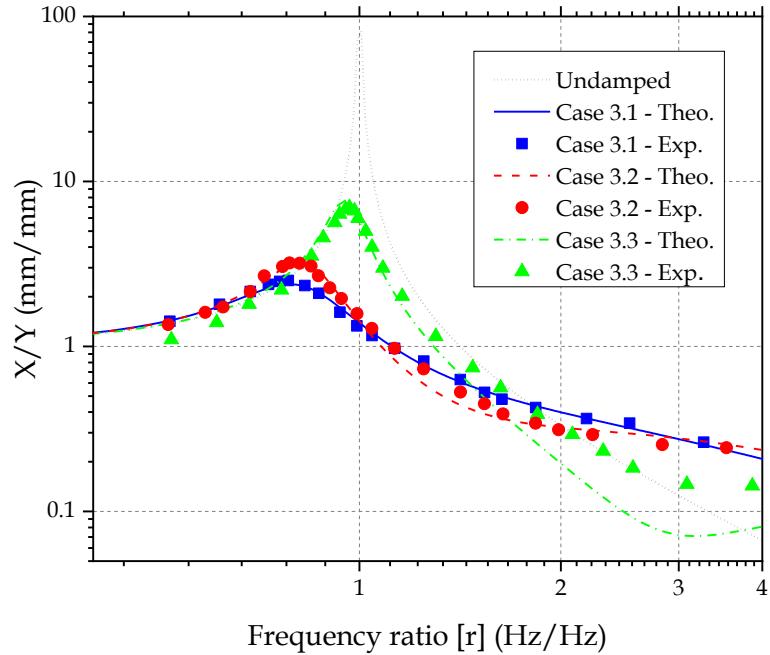
461

462 (b)

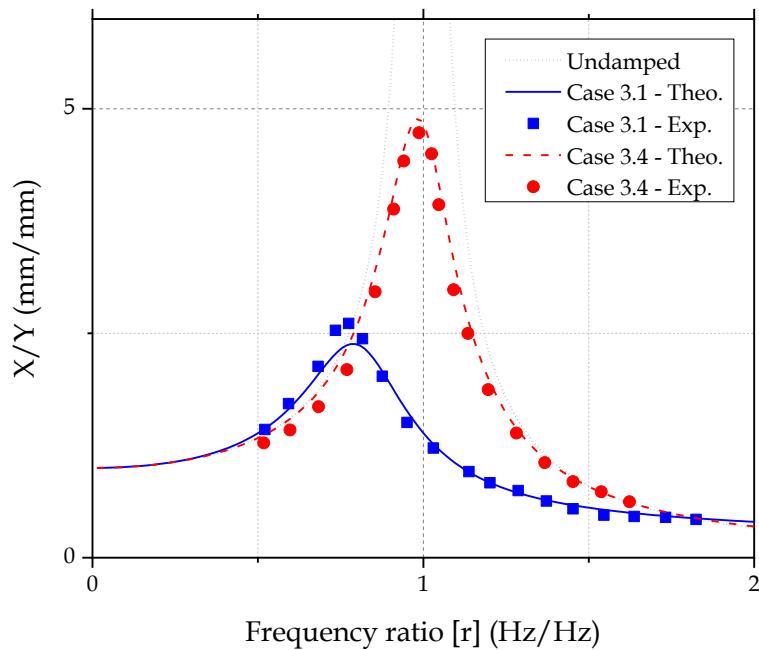
463 **Fig. 7 EMSD-VED with various inducntance values (a) vital lines of transmissibility of EMSD-VED**
464 **(b) Comparison between cases w/ and w/o VNIC**

465

466 **5.3. Case III: EMSD-ID**


467 As shown in Table III, Case III includes three sub-cases (Cases 3.1 – 3.3) with the use
468 of VNIC and one sub-case (Case 3.3) without the use of VNIC. Consequently, the former
469 total resistance R_t is significantly smaller than the latter. In addition, Cases 3.1 to 3.3 using
470 different C values aim to reflect the effect of the capacitance on the isolation performance.
471 Fig. 8 compares the theoretical and experimental transmissibility curves of the EMSD-ID
472 isolator, where the theoretical curves are based on Eq. (23). Cases 3.1 – 3.3 involved the
473 capacitance values of 0.03, 0.02, and 0.0033 F, respectively, and the use of VNIC.
474 According to Eq. (2), the capacitance values of 0.03, 0.02, and 0.0033 F are equivalent to
475 virtual inertances of 1.68, 1.1, and 0.18 kg, respectively, which corresponds to mass ratios
476 (μ) of 0.82, 0.5 and 0.08, respectively. In contrast to the situation in EMSD-VED, the
477 increase in capacitance (i.e., equivalent inertance values) in EMSD-ID shifts the resonant
478 frequency of the SDOF structure leftwards; the resonant frequencies decrease from 5.88
479 Hz to 4.47, 4.75 and 5.56 Hz (i.e., the frequency ratio is 0.76, 0.81 and 0.945)
480 corresponding to Cases 3.1 – 3.3, respectively. Meanwhile, a lower peak profile at
481 resonance can be observed indicating an improved isolation performance with the increase
482 of capacitance.

483 Another notable feature of adopting EMSD-ID for isolation is the unfavorable vibration
484 amplification in high frequency range (i.e., tail-up effect) in comparison to EMSD-VFD or
485 EMSD-VED, as shown by both experimental and theoretical results in Fig. 8. A detailed
486 explanation was provided by Hu, Chen, Shu and Huang [30].


487 The theoretical and experimental results of Case 3.3 (green color) do not match well in
488 high-frequency range ($r > 2$). A possible reason is the nonlinearity of parasitic damping.
489 As suggested by Eq. (13), the equivalent parasitic damping will increase if either the
490 vibration amplitude or frequency is reduced (both in the denominator). In high frequency
491 range, although the input frequency has been proportionally increased, the vibration
492 amplitude decreases more resulting in an overall increase in parasitic damping. For instance,
493 the comparison of responses at 5.88 Hz (i.e., system resonant frequency) and 18 Hz reveals
494 that even though the frequency is approximately tripled, the displacement amplitude
495 decreases more than five times as evidenced by the readings from laser displacement
496 sensors. This condition will result in an overall increase in parasitic damping with
497 increasing input frequency. Further provided the tail-up effect is sensitive to damping, the
498 discrepancy between theoretical and experimental results are observed from Fig. 8(a).

499 Fig. 8(b) emphasizes the contribution of VNIC in the EMSD-ID isolator. The
500 capacitance values in Cases 3.1 and 3.4 are the same and equal to 0.03 H. The only
501 difference between the two owes to the total circuit resistance, given $R_t = 5.8 \Omega$ in Case
502 3.4, which is mainly due to motor inner resistance and resistance from connection wires,
503 whereas $R_t = 1 \Omega$ in Case 3.1 with the facilitation of VNIC. The results of Case 3.4 exhibit

504 neither resonant frequency shift nor amplitude reduction in comparison to Case 3.1. Hence
 505 it is concluded the capacitance effect is deterred by the large circuit resistance, which
 506 foregrounds the important function of VNIC in the proposed EMSD-ID isolator.

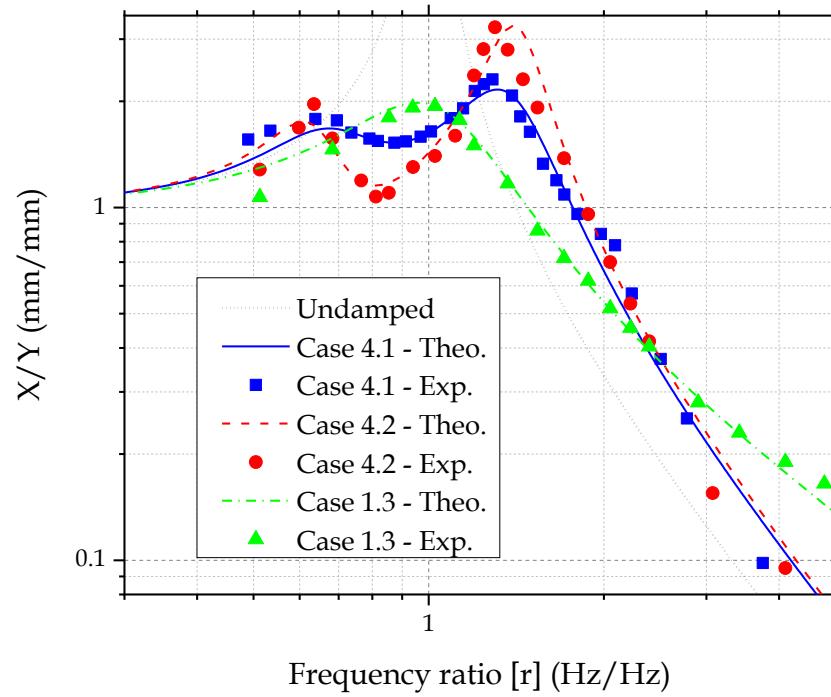
507
 508 (a)

509

510

(b)

511 **Fig. 8 EMSD-ID with various capacitance values: (a) vital lines of transmissibility of EMSD-ID, and (b)**
512 **comparison of cases w/ and w/o VNIC**

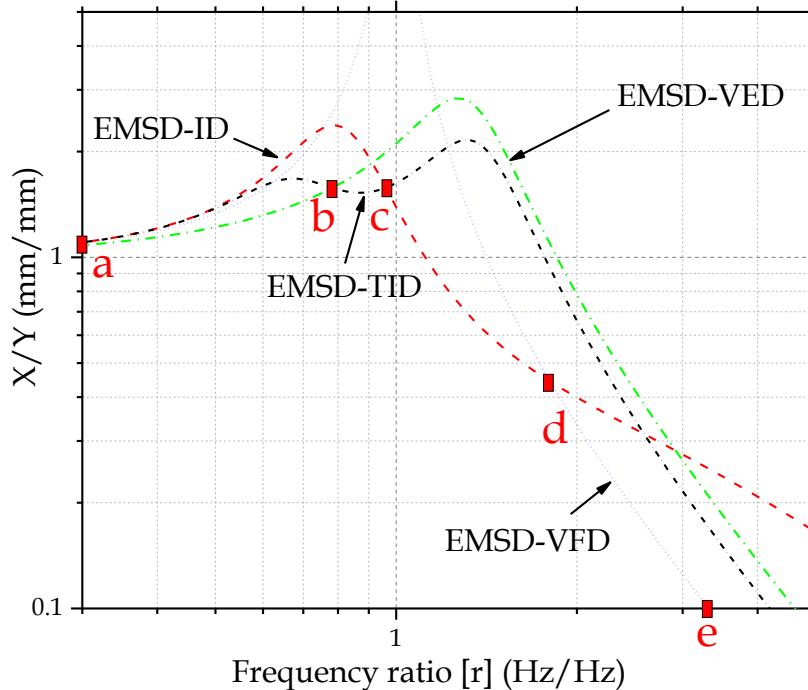

513 **5.4. Case IV: EMSD-TID**

514 EMSD-TID connects the EM motor to a series *RLC* circuit, which essentially introduces
515 an additional degree of freedom to the structural system. The optimal parameters EMSD-
516 TID are calculated from Eqs. (31) - (33). For instance, in the design of Case 4.1, the
517 equivalent mass ratio (μ) is set to 0.6 to ensure an adequate control effect. The
518 corresponding optimal capacitance is determined as $C_{\text{opt}} = 0.0236 \text{ F}$ by substituting $K_{\text{em}} =$
519 7.474 N/A and $m_h = 2.2 \text{ kg}$ into Eq. (31). Further substitution of $k_h = 3000 \text{ N/m}$ into Eq.
520 (32) yields the optimal inductance value ($L_{\text{opt}} = 0.031 \text{ H}$). Given that the calculation of
521 optimal resistance (R_{opt}) requires the ζ_{opt} value, the mass ratio ($\mu = 0.6$) is used to derive
522 ζ_{opt} using Eqs. (29) and (30), resulting in $\zeta_{\text{opt}} = 0.32$. By substituting ζ_{opt} back into Eq.
523 (33), R_{opt} is calculated as 1.073Ω .

524 A set of values ($C = 0.024 \text{ F}$, $L = 0.034 \text{ H}$, and $R = 0.95 \Omega$) close to the optimal ones is
525 adopted in Case 4.1, and the corresponding transmissibility curve is shown in Fig. 9. For a
526 comparison purpose, another non-optimal set of parameters ($C = 0.03 \text{ F}$, $L = 0.03 \text{ H}$, and R
527 = 0.5Ω) that slightly deviated from the optimal parameters is included as Case 4.2 in Fig.
528 9.

529 Fig. 9 compares the theoretical and experimental transmissibility curves of the EMSD-
530 TID isolator, where the theoretical results are plotted based on Eq. (26). In general, a good
531 match is observed between the theoretical and experimental results in Fig. 9, thereby
532 validating the accuracy of both results. Cases 4.1 and 4.2 exhibit two apparent peaks in the
533 transmissibility curves, indicating that the EMSD-TID converts the SDOF structure into
534 an equivalent 2DOF system. Case 4.1 with the optimal parameters shows two peaks with
535 similar heights and exhibits relatively flat shape between two peaks. Case 4.2 with the non-
536 optimal parameters has two higher peaks with different heights and exhibits a sharper
537 concaved shape between two peaks.

538 In particular, Fig. 9 includes EMSD-VFD Case 1.3 for comparison. The overall isolation
539 performances of Cases 1.3 and 4.1 are similar in terms of peak amplitudes. However,
540 noticeable differences are observed in the parallel comparison. The EMSD-TID isolation
541 in Case 4.1 has lower amplitude in the original resonant region ($0.7 < r < 1.1$). Moreover,
542 EMSD-TID in Case 4.1 mitigates the negative effect of high damping of EMSD-VFD in
543 the high-frequency region ($r > 2.4$).



544

545

546

Fig. 9 Comparison between EMSD-TID and EMSD-VFD (log-log scale)

548

549

Fig. 10 Transmissibility curves of EMSDs with key points marked

550 Four representative conventional isolation systems are successfully emulated using the
 551 proposed EMSD-VNIC. Different versions of the EMSD isolators possess individual
 552 characteristics with regard to transmissibility curves. A representative case from each type
 553 of EMSD isolator was selected for comparison, namely, Case 1.1 (EMSD-VFD), Case 2.1
 554 (EMSD-VED), Case 3.1 (EMSD-ID), and Case 4.1 (EMSD-TID). Fig. 10 compares their
 555 theoretical transmissibility curves; and five characteristic points (i.e., intersection points of
 556 two curves) are identified on the lowest profile of all curves, marked as points a – e. The
 557 lowest profile segment between every two adjacent points corresponds to the local optimal
 558 achievable isolation performance. The comparisons yielded the following findings about
 559 the different types of EMSD isolators.

- 560 • For frequency ratio $r \in (a, b)$ that corresponds to a low-frequency range,
 561 EMSD-VED possesses the lowest profile, because EMSD-VED shifts the
 562 resonant frequency to the right (i.e., increases the natural frequency) by
 563 introducing extra equivalent stiffness to the system. By contrast, EMSD-ID
 564 possesses the highest profile, because it shifts the resonant frequency leftward
 565 to be closer to the excitation frequency range by introducing extra equivalent
 566 inertance to the system.
- 567 • When $r \in (b, c)$, EMSD-TID has the lowest profile. EMSD-TID essentially
 568 introduces a second degree of freedom to the system and makes the
 569 transmissibility curve show two peaks. Consequently, the transmissibility curve

570 presents a saddle shape between two peaks and exhibits the best isolation
571 performance near the original resonant region among all the cases.

572

- 573 EMSD-ID has the lowest profile within range $r \in (c, d)$. EMSD-ID shifts the
574 resonant peak leftward by adding equivalent inertance to the system. Besides,
575 the transmissibility curve of EMSD-ID has a slightly concave shape between
576 points c and d given the tail-up effect. By contrast, EMSD-VED has the highest
577 profile in this range.
- 578 EMSD-VFD with a low damping coefficient (e.g., Case 1.1) has the lowest
579 profile between points d and e, revealing the well-known negative effect of high
580 damping on isolation performance in the high-frequency range. EMSD-ID
581 possesses the highest profile due to the “bounce back” of its tail in the high-
582 frequency range. This result is consistent with the conclusion in the literature
583 [30] that mechanical inerter-based isolators demonstrate poor isolation
584 performance at high-frequency ranges. In comparison to EMSD-ID, EMSD-TID
585 can mitigate this negative impact and improve the isolation performance in high-
586 frequency ranges.

587 Notably, any adjustment in the EMSD parameters to be different from those selected in
588 the experiment will change the transmissibility curves (i.e., the performance of each type
589 of EMSD isolators) accordingly. Nevertheless, the comparison in Fig. 10 can still provide
590 a qualitative understanding of the relative performance of various EMSD isolator types
591 within different frequency ranges.

592 Moreover, conventional mechanical dampers normally will incorporate only one
593 configuration; and designing a network of mechanical dampers enabling flexible switching
594 among them would be technically difficult, if not impossible. By contrast, the proposed
595 EMSD-VNIC isolator has a great potential to achieve this objective. Given the compact
596 size of electrical elements, different types of shunt circuits and VNIC can be efficiently
597 integrated into one circuit board, thus allowing for convenient switching among different
598 circuits. Consequently, a single EMSD can demonstrate versatile mechanical behavior and
599 thus achieve optimal isolation performance in different frequency ranges. This adaptive
600 strategy can effectively eliminate resonant behavior when the isolated structure is subjected
601 to sine sweeping ground excitations. The realization of such broadband isolation using
602 EMSD warrants further studies in the future.

603 6. Conclusions

604 This paper proposes and investigates an advanced vibration isolation technique using a
605 novel EMSD with tunable behaviors. Given conventional mechanical dampers can be
606 emulated by EMSD by altering its shunt circuit only, four representative mechanical
607 damper types namely, VFD, VED, ID, and TID are successfully mimicked by the proposed
608 EMSD-VNIC system in this paper. In particular, base isolation performance of the four
609 EMSD types (i.e., EMSD-VFD, EMSD-VED, EMSD-ID, and EMSD-TID) is studied both
610 analytically and experimentally. The proposed EMSD with tunable behaviors intrinsically
611 avoids stability concern compared with active control, given the emulated passive dampers

612 allows for only one-way energy flow (i.e., from structure to EMSD). Four types of EMSDs
613 possess complementary isolation performance within the frequency domain, i.e., each of
614 them demonstrates the best isolation performances within an individual frequency range.
615 These results will inspire the future development of a broadband vibration isolator by
616 instantly switching among multiple circuits integrated in a single printed circuit board. It
617 should also be pointed out the proposed EMSD requires energy input to the VNIC module.
618 Nevertheless, considering the advantages over their mechanical counterparts, EMSD will
619 be a competitive alternative in the future base isolation techniques.

620

621 Acknowledgement

622 The authors are grateful for the financial supports from the Research Grants Council of
623 Hong Kong (Nos.: 15214620, PolyU 152246/18E, PolyU R5020-18, and T22-502/18-R)
624 and the Postdoc Matching Fund Scheme from The Hong Kong Polytechnic University
625 (W15R). The findings and opinions expressed in this paper are from the authors alone and
626 are not necessarily the views of the sponsors.

627

628 References:

- 629 [1] Soong T T 1988 State-of-the-art review: Active structural control in civil
630 engineering *Engineering Structures* **10** 74-84
- 631 [2] Datta T 2003 A state-of-the-art review on active control of structures *ISET*
632 *Journal of earthquake technology* **40** 1-17
- 633 [3] Karnopp D 1995 Active and semi-active vibration isolation. In: *Current Advances*
634 *in Mechanical Design and Production VI*, (Cairo pp 409-23)
- 635 [4] Symans M D and Constantinou M C 1999 Semi-active control systems for
636 seismic protection of structures: a state-of-the-art review *Engineering Structures*
637 **21** 469-87
- 638 [5] Jalili N 2002 A Comparative Study and Analysis of Semi-Active Vibration-
639 Control Systems *J. Vib. Acoust.* **124** 593-605
- 640 [6] Buckle I G 2000 Passive control of structures for seismic loads *Bulletin of the*
641 *New Zealand Society for Earthquake Engineering* **33** 209-21
- 642 [7] Parulekar Y and Reddy G 2009 Passive response control systems for seismic
643 response reduction: A state-of-the-art review *International Journal of Structural*
644 *Stability and Dynamics* **9** 151-77
- 645 [8] Housner G W, Bergman L A, Caughey T K, Chassiakos A G, Claus R O, Masri S
646 F, Skelton R E, Soong T T, Spencer B F and Yao J T P 1997 Structural Control:
647 Past, Present, and Future *Journal of Engineering Mechanics* **123** 897-971
- 648 [9] Firestone F A 1933 A New Analogy between Mechanical and Electrical Systems
649 *The Journal of the Acoustical Society of America* **4** 249-67
- 650 [10] Smith M C 2002 Synthesis of mechanical networks: the inerter *IEEE*
651 *Transactions on Automatic Control* **47** 1648-62
- 652 [11] Makris N 1998 Viscous heating of fluid dampers. I: Small-amplitude motions
653 *Journal of engineering mechanics* **124** 1210-6

654 [12] Cassidy I L, Scruggs J T, Behrens S and Gavin H P 2011 Design and
655 experimental characterization of an electromagnetic transducer for large-scale
656 vibratory energy harvesting applications *Journal of Intelligent Material Systems*
657 and *Structures* **22** 2009-24

658 [13] Shen W, Zhu S and Zhu H 2016 Experimental study on using electromagnetic
659 devices on bridge stay cables for simultaneous energy harvesting and vibration
660 damping *Smart Mater. Struct.* **25** 1-17

661 [14] Zuo L and Cui W 2013 Dual-Functional Energy-Harvesting and Vibration
662 Control: Electromagnetic Resonant Shunt Series Tuned Mass Dampers *J. Vib.*
663 *Acoust.* **135** 051018-

664 [15] Karnopp D 1989 Permanent Magnet Linear Motors Used as Variable Mechanical
665 Dampers for Vehicle Suspensions *Vehicle System Dynamics* **18** 187-200

666 [16] Graves K E, Iovenitti P G and Toncich D 2000 Electromagnetic regenerative
667 damping in vehicle suspension systems *International Journal of Vehicle Design*
668 **24** 182-97

669 [17] Gonzalez-Buelga A, Clare L R, Cammarano A, Neild S A, Burrow S G and
670 Inman D J 2014 An optimised tuned mass damper/harvester device *Structural*
671 *Control and Health Monitoring* **21** 1154-69

672 [18] Ding R, Wang R, Meng X and Chen L 2016 Study on coordinated control of the
673 energy regeneration and the vibration isolation in a hybrid electromagnetic
674 suspension *Proceedings of the Institution of Mechanical Engineers, Part D:*
675 *Journal of Automobile Engineering* **231** 1530-9

676 [19] Marneffe B D, M. Avraam, A. Deraemaeker, M. Horodinca and A. Preumont
677 2009 Vibration Isolation of Precision Payloads: A Six-Axis Electromagnetic
678 Relaxation Isolator *Journal of Guidance, Control, and Dynamics* **32** 395-401

679 [20] Yan B, Zhang X and Niu H 2012 Design and test of a novel isolator with negative
680 resistance electromagnetic shunt damping *Smart Mater. Struct.* **21** 1-9

681 [21] Sasaki M, Kimura J and Sugiura T 2015 Vibration Suppression in High-
682 Superconducting Levitation System Utilizing Nonlinearly Coupled
683 Electromagnetic Shunt Damper *IEEE Transactions on Applied Superconductivity*
684 **25** 1-5

685 [22] Liu Y, Lin C-C, Parker J and Zuo L 2016 Exact H2 Optimal Tuning and
686 Experimental Verification of Energy-Harvesting Series Electromagnetic Tuned-
687 Mass Dampers *J. Vib. Acoust.* **138** 1-12

688 [23] Nakamura Y, Fukukita A, Tamura K, Yamazaki I, Matsuoka T, Hiramoto K and
689 Sunakoda K 2014 Seismic response control using electromagnetic inertial mass
690 dampers *Earthquake Engineering & Structural Dynamics* **43** 507-27

691 [24] Gonzalez-Buelga A, Clare L R, Neild S A, Jiang J Z and Inman D J 2015 An
692 electromagnetic inerter-based vibration suppression device *Smart Mater. Struct.*
693 **24** 055015

694 [25] Pei Y, Liu Y and Zuo L 2018 Multi-resonant electromagnetic shunt in base
695 isolation for vibration damping and energy harvesting *Journal of Sound and*
696 *Vibration* **423** 1-17

697 [26] Li J-Y, Zhu S and Shen J 2019 Enhance the damping density of eddy current and
698 electromagnetic dampers *Smart Structures and Systems* **24** 15-26

699 [27] Li J-Y, Zhu S, Shi X and Shen W 2020 Electromagnetic Shunt Damper for Bridge
700 Cable Vibration Mitigation: Full-Scale Experimental Study *Journal of Structural*
701 *Engineering* **146**

702 [28] Li J-Y and Zhu S 2018 Versatile Behaviors of Electromagnetic Shunt Damper
703 With a Negative Impedance Converter *IEEE/ASME Transactions on*
704 *Mechatronics* **23** 1415-24

705 [29] Zhu S, Shen W and Qian X 2013 Dynamic analogy between an electromagnetic
706 shunt damper and a tuned mass damper *Smart Mater. Struct.* **22** 1-11

707 [30] Hu Y, Chen M Z Q, Shu Z and Huang L 2015 Analysis and optimisation for
708 inerter-based isolators via fixed-point theory and algebraic solution *Journal of*
709 *Sound and Vibration* **346** 17-36

710