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Abstract

With the advancement of Large Language Models (LLMs), LLM
applications have expanded into a growing number of fields. How-
ever, users with data privacy concerns face limitations in directly
utilizing LLM APIs, while private deployments incur significant
computational demands. This creates a substantial challenge in
achieving secure LLM adaptation under constrained local resources.
To address this issue, collaborative learning methods, such as Split
Learning (SL), offer a resource-efficient and privacy-preserving
solution for adapting LLMs to private domains. In this study, we
introduce VFLAIR-LLM (available at https://github.com/FLAIR-
THU/VFLAIR-LLM), an extensible and lightweight split learning
framework for LLMs, enabling privacy-preserving LLM inference
and fine-tuning in resource-constrained environments. Our library
provides two LLM partition settings, supporting three task types
and 18 datasets. In addition, we provide standard modules for im-
plementing and evaluating attacks and defenses. We benchmark 5
attacks and 9 defenses under various Split Learning for LLM(SL-
LLM) settings, offering concrete insights and recommendations on
the choice of model partition configurations, defense strategies, and
relevant hyperparameters for real-world applications.
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1 Introduction

The recent development and success of large language models
(LLMs) have significantly reshaped the landscape of artificial intel-
ligence, showcasing exceptional capabilities across a wide range of
tasks. LLM training relies heavily on massive, high-quality data, fu-
eling growing demand for such resources. Public data sources, such
as books, web crawls, and open-access articles, have historically
served as the backbone of LLM training data. However, research [38]
indicates that the availability of public human text data is nearing
exhaustion. This growing data scarcity has emerged as a critical
bottleneck for LLM development, compelling a shift toward lever-
aging private domain data, which subsequently raises significant
privacy concerns.

Sensitive data within private domains cannot be freely shared or
processed by external LLM systems due to risks of data breaches,
regulatory violations, and potential misuse. These challenges make
the direct integration of private data into LLM training impractical.
One potential solution is the local deployment of LLMs. However,
this method requires substantial local computational resources, pos-
ing a significant barrier for smaller organizations or individuals
managing sensitive private data. To address this challenge of pri-
vate adaptation of LLMs under constrained local resources, various
methods have been proposed. Off-site tuning[42] and knowledge
distillation[13] leverage compact language models to approximate
the behavior of target LLMs. However, these methods often suf-
fer from notable performance degradation and require complex
algorithmic implementations.

An alternative approach is Split Learning (SL)[10, 37], a collab-
orative training paradigm developed based on Federated Learn-
ing(FL) [22, 43]. It introduces a cross-silo scenario where a model
is partitioned across participants, offering the benefit of minor
performance degradation and a simple yet effective algorithmic
implementation. However, this solution still faces considerable
privacy concerns[3], as the server may attempt to infer clients’
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local data through various privacy attacks[45]. Various defense
methods[7, 24] have also been proposed to address these risks.

In this work, we focus on leveraging SL for the private adaptation
of LLMs. Aiming to support relevant research and applications, we
design a lightweight and highly extensible Split Learning LLM
framework, named VFLAIR-LLM.

VFLAIR-LLM incorporates basic modules for customizable SL-
LLM inference and fine-tuning, including user-defined LLM parti-
tion, defense strategies, and other relevant functions. It supports
3 types of LLM architect and 3 corresponding task types, each
with relevant datasets available for direct usage, and is open to
users to add new datasets. To enable flexible privacy assessment
and algorithm development, VFLAIR-LLM also offers multiple attack
and defense methods in a modular style, ensuring easy usage and
extension. In summary, our contributions are listed below:

e We develop a lightweight framework named VFLAIR-LLM
for split learning of LLMs. This framework incorporates an
easily adaptable model partition method for a wide variety
of LLMs. Additionally, it addresses possible privacy concerns
featuring 3 model inversion attacks(MIA), 2 label inference
attacks(LIA), and 9 defenses.

e We conduct a comprehensive benchmark on attacks and
defenses within the SL-LLM setting using VFLAIR-LLM. The
benchmark provides various recommendations and insights
on model partition configuration, defense strategies, and
relevant hyperparameter selection to facilitate easy usage.

2 Related Works

2.1 Private adaptation of LLMs under limited
local resources

Various methods have been proposed to address the challenges
of private adaptation of LLMs under constrained local resources.
Offsite-Tuning[42, 44] and knowledge distillationHsieh et al. [13]
focus on training smaller, task-specific models locally to emulate
the traditional LLM adaptation process. However, they often face
trade-offs in model performance due to the inherent limitations of
smaller models. Another possible solution to this concern is Split
Learning(SL)[11, 34], an evolution of Federated Learning (FL) [22]
where the model is partitioned across collaborators. In this ap-
proach, participants collaboratively train an LLM by exchanging
model intermediate and gradients, allowing the data holder to train
only a small portion of the full LLM. Various projects and frame-
works [41, 50, 52] have been developed to facilitate research and
deployment in this area. For example, VFLAIR [52] is an open-
sourced library that supports SL training with a wide range of
models, datasets, and protocols.

2.2 Split Learning of LLMs

As summarized in Table 1, several studies have explored SL for
fine-tuning and inference of LLMs. SAP[30] is a privacy-preserving
federated fine-tuning framework where a LLM is divided into 2
parts: "head" and "tail"(termed HT in the following discussion), aim-
ing to defend model inversion attacks. Also leveraging a "head-tail"
partitioning, SplitLoRA[19] introduced a fine-tuning framework
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for SL-LLM, demonstrating superior training performance. [3] pro-
posed SplitLLM, which partitions the model into 3 parts: "head",
"body" and "tail"(termed HBT in the following discussion). It in-
troduces a novel data reconstruction attack(BiSR, tested in our
following evaluations) to invert data input, highlighting the po-
tential privacy risks in SL-LLM. While these efforts have laid the
groundwork for SL-LLM research, they primarily focus on spe-
cific methodologies, with limited attention given to comprehensive
privacy benchmarking and the development of user-friendly, ex-
tensible tools for broader adoption. This gap inspired us to develop
a framework that not only provides comprehensive privacy algo-
rithms but also prioritizes ease of use and extensibility.

I
| @ Data Party . Model Party !
1 @B Sensitive data holder with limited computation resources LLM provider with abundant computation resources !
_____________________________________________________________________________________
- ' &
a ;
HT Model Head Mjpeqq 1 Model Tail Myq:
embedding + npeqq encoders/decoders : n¢qi encoders/decoders + head layer
Full LLM Embedding l Encoder/ § Encoder/ [N Encoder/ Encoder/ Head
. Layer Decoder Decoder Decoder Decoder Layer
I |
Model Head Myeqa | ‘ ) X 1 del Tail M4
HBT.  Model Body Myoay
I I
= '@ ‘-
a a

Figure 1: LLM Partition

3 Framework Overview

3.1 Split Learning for LLM(SL-LLM)

VFLAIR-LLM proposes a general Split LLM framework with a Data
Party and a Model Party. Data party simulates participants equipped
with data and labels but constrained computational resources for
comprehensive LLM utilization, possessing only a few layers of a
complete LLM. Meanwhile, the Model party simulates the LLM
provider, retaining the majority segment of the LLM.

3.1.1 LLM Partition in VFLAIR-LLM. As described in Figure 1, we
propose 2 SL-LLM settings: "Head-Tail"(HT) SL-LLM and "Head-
Body-Tail"(HBT) SL-LLM, depending on how the LLM model
is partitioned among parties, For encoder-only and decoder-only
LLMs, the model is split at customizable points within the encoder
or decoder sequence for both HT and HBT settings. For encoder-
decoder LLMs, HBT splits the model at the encoder sequence and
the decoder sequence. While HT partitions only the encoder se-
quence.

3.1.2 Head-Tail(HT) SL-LLM. In HT SL-LLM, a full LLM with
N = Npeqd + Niqi encoders/decoders is separated into a Model
Head and a Model Body[19, 30]. Model Head M}, is allocated
to the Data Party, containing the embedding layer and np,,q en-
coders/decoders. Model Tail M;;; is the rest of LLM held by the
Model Party, containing n;,;; encoders/decoders and a head layer.
Typically, n;,;; is set significantly larger than n;g;;.

During forward propagation, the data party performs forward
propagation first. Intermediate Hy = Mpeq4(X) is then transmitted
to the model party for further generation of the final output Y=
M, i1 (Hy). Backward propagation is performed in a reversed order
with the model party transmitting the intermediate’s gradient G;
back to the data party. The detailed training algorithm is described
in Algorithm 1 and Figure 2a. Note that HT SL-LLM assumes the
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Table 1: Summary of SL-LLM frameworks.

SL-LLM Partition Attack . ) Work Mode Evaluation Metrics
LLM Model Label Defense Fine-tuning
Types | Head-Tail Head-Body-Tail X Strategy Standalone Distributed | Performance Privacy Efficiency
Inversion Inference
SAP[30] 1 v v 0 v v v v
SplitLoRA[19] 1 v v v 0 v v v v
SplitLLM([3] 11 v v v 3 v v v
VFLAIR-LLM 16 N v v v 9 v N N N v N
Data Party Model Party

model party can access the inference results or labels. For scenarios
where label and inference results need to be further protected from
the Model party, we further introduce the HBT SL-LLM[3].

3.1.3  Head-Body-Tail(HBT) SL-LLM. The HBT SL-LLM splits a full
LLM with n = npeqq + Npody + Nrair encoders/decoders into 3 parts.
Model Head My,qq contains the embedding layer and the first
Npead encoder/decoder layers, which is allocated to the Data Party.
Model Body M4y contains np,q, encoders/decoders, the main
body part of LLM, and is allocated to the Model Party. Model Tail
M 4i1 contains n;,;; encoders/decoders and a head layer, which is
allocated to the Data Party. By allocating both the model head and
model tail to data party, this setting can hinder direct label inference
and model output infringement by the model party. Typically, npoqy
is set significantly larger than np,,q and n;;.

During the forward process, the data party first feeds input data
into its model head. Its intermediate H; = Mpq4(X) is then trans-
mitted to the model party for model body forward calculation:
Hp = Mpoay(Hi). Finally, the model body output is transmitted
back to data party to generate final predictions Y using the model
tail. During the backward propagation, data party and model party
consecutively calculate gradients G; and G, for its received interme-
diates and perform local backward calculations. Detailed training
algorithm is described in Algorithm 2 and Figure 2b.

3.2 Fine-tuning Methods for SL-LLM

To enable efficient LLM fine-tuning, various fine-tuning strategies[14,
19] have been proposed. VFLAIR-LLM enables users to customize
their own fine-tuning strategies, including Full-Tuning, where all
model parameters are trainable, and Local-Tuning, where only
the data party’s sub-model is trainable. After specifying the train-
able model segments, we also incorporate the PEFT Library[21]
into VFLAIR-LLM, enabling support for a wide range of parameter-
efficient fine-tuning (PEFT) methods, including LoRA[14], LoKr[15],
AdaLoRA[48], and LoHa[15] etc. Parties can choose to apply either
a Vanilla fine-tuning strategy or a LoRA strategy to their own
model segments.

3.3 VFLAIR-LLM Framework Design

Based on the codebase of VFLAIR [52], a general framework for
vertical federated learning, we develop VFLAIR-LLM, a framework
specific for implementing and benchmarking SL-LLM scenarios, as
illustrated in Figure 3. VFLAIR-LLM shares VFLAIR’s configuration
design, party loading module, and basic communication functions,
but focuses on LLM-centered datasets and tasks, fine-tuning strate-
gies, and attack and defense evaluations.
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Figure 2: Training Process of SL-LLM

2 SL-LLM Partition Settings. VFLAIR-LLM offers two LLM par-
tition settings: Head-Body (HT) SL-LLM and Head-Body-Tail (HBT)
SL-LLM as described in Section 3.1.

2 Usage Pipelines. VFLAIR-LLM supports both LLM fine-tuning
and LLM inference. In Inference pipeline, users can load a pre-
trained LLM to conduct direct inference on a given dataset. In
Fine-tune pipeline, users can fine-tune an LLM on a downstream
task.

16 LLM Types. Currently, we support 16 LLMs as shown in Ta-
ble 2. To enable easy extension and compatibility, all model splits are
implemented based on the Transformers [36] library with detailed
guidance in our code base.

Table 2: Supported LLM Types

Structure LLM Types

Bert Roberta Albert

Encoder-only

GPT2 Llama Baichuan2 ChatGLM2 Falcon Gemma
Mamba Mistral Qwen2 Deepseek MiniCPM Qwen2-VL

T5

Decoder-only

Encoder-Decoder Qwen

3 Basic LLM Architects. VFLAIR-LLM support 3 commonly used
LLM architects as presented in Table 3, each featuring a different
head layer added to the main LLM body to suit downstream tasks.

2 Work Modes. VFLAIR-LLM support 2 work modes: standalone
simulation and distributed deployment, supporting both simulation
research and real-world applications. We provide an efficiency com-
parison between distributed and standalone mode in Appendix C.



KDD ’25, August 3-7, 2025, Toronto, ON, Canada

Attack Module

» Model Inversion Attacks
»  Label Inference Attacks

=3 VFLAIR-LLM E= g/
.

Zixuan Gu, Qiufeng Fan, Long Sun, Yang Liu, and Xiaojun Ye

Defense Module

DP/SP/SanText/

CusText/RanText

IAT/MID/TO...
—— e

At Model Head
At Model Tail
At Both Ends

> head+tail E > E
> head+body+ail || > Fine-tune !\ > Distributed !
' LLM Partition | | Usage Pipeline :: Work Mode '

Bert/GPT2/Llama2/Bai |

¥ > Classification
! chuan/ChatGLM ' » CausalLM/Generation ]
E /Mistral/Mamba.... E 1 > Text-span based QA ]
i LLM Types E Basic Model Architect :

» MP: Rouge, accuracy.. » Convergence Epoch

> AP: Recall, recovery rate > Convergence Time ~ IMetrics (8’ )
» DCS, T-DCS,C-DCS ...
] [ Taxtvon ] Datasets @
Sequence 9 Task o00
Classification ;;sxg dsgi/z Generation
/Regression Types

Figure 3: VFLAIR-LLM Framework Overview

Table 3: Supported Datasets and Tasks in SL-LLM

Architect Task Type Dataset Task Description
SST-2[39] sentiment analysis
CoLA[39] acceptability
Classification (CLS) Sequence MRPC[39] paraphrase identification
Classification QQP[39] semantic equivalence
(Regression) MNLI[39] natural language inference
QNLI[39] QA entailment
RTE([39] textral entailment
WNLI[39] pronoun resolution
Yelp[49] review rating
STS-B[39] semantic similarity
Text-span based Text-span based span-based
QA QA SQuAD(27] question answering
(TQA)
Lambada [25] next .tol.(en
prediction
CausalLM/ Alpaca [33] text generation
Generation Generation Dolly [6] text generation
(CLM) CodeAlpaca [2] code generation
MATH [12] math
GSMBK[5] math
TextVOA [31] visual que_stion
answering

Attacks. VFLAIR-LLM supports 3 model inversion attacks and 2

label inference attacks as summarized in Table 4. Detailed attack
deployment is presented in Figure 4.
(1) Threat Model: In this work, we assume the model party is an
honest-but-curious attacker for both MIA and LIA. It follows the
given SL-LLM protocol and does not collude with external enti-
ties. Furthermore, we operate under a white-box attack scenario,
meaning the adversary, as the model provider, possesses complete
knowledge of all model slice parameters, representing a signifi-
cantly strong attack scenario. Unless otherwise specified, the at-
tacker does not possess any auxiliary data or information on data
parties’ data.

Table 4: Summary of attacks in VFLAIR-LLM

Model Inversion Attack VMI [8],RMI [32],BiSR [3]
Label Inference Attack BLI [53],NS [18]
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(2) Attack Methodology: In Model Inversion Attacks(MIA)[3],
also known as Embedding Inversion Attacks(EIA)[16, 17, 23], the
model party will try to infer data party’s original text X from the
transferred intermediate Hy. Vanilla Model Inversion(VMI) [8] is a
learning based model inversion attack featuring a 2-step data recon-
struction process. First, the attacker infers the original input embed-
ding E(X’) through optimization by minimizing loss between the
calculated intermediate H' = M;(E(X’)) and the real intermediate
H. Secondly, it recovers tokens from the inferred embedding by
choosing the max cosine similarity between the embedding ma-
trix E and the inferred embedding E(X’), generating inferred text
X’. Relaxation-based Model Inversion(RMI) [32] follows a similar
2-phase data reconstruction, but conducts relaxation on each to-
ken vector of the input sequence with a continuous variable z for
optimization in the first phase. Bi-directional Semi-white-box Recon-
struction (BiSR) [3] incorporates a noise-aware pretraining phase
for embedding initialization before proceeding with the traditional
procedure of VMLI. It has demonstrated strong attack performance
across various LLMs, including BERT, GPT2, Llama2, ChatGLM,
and Flan-T5.

In Label Inference Attacks(LIA)[18, 53], the model party at-
tempts to infer the data party’s label data Y from the gradient G2
received during training. In Batch-level Label Inference(BLI)[53], the
adversary trains an inversion model to invert label information
from batch-level gradients. Norm-based Scoring(NS) [18] is imple-
mented by calculating sample-level gradient norm values to identify
positive/negative labels for binary classification tasks, since the
norm of gradients for positive samples are generally larger than
negative ones when data is unbalanced distributed.

While MIA can be injected at both training-time and inference-
time, LIA is a training-time attack as it requires gradient informa-
tion.

Defenses. VFLAIR-LLM supports 6 perturbation-based defenses
and 3 learning-based defenses as summarized in Table 5. Details
about specific defense methods are listed in Appendix A. As de-
picted in Figure 4, applying defenses at the model head mitigates
MIA threats, while deployment at the model tail hinders LIA.
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Table 5: Summary of defenses and tested hyper-parameters.

Appliable Position

Defense model head ‘ model tail Hyper-parameter Values

Dp v v € =500, 100, 70, 50

SP v Vv = 95.0%, 96.0%, 97.0%, 98.0%
SanText v €=5,1,0.1,0.01
CusText v €=15,1,0.1,0.01
RanText v € = 30, 25,20, 15, 10

SnD v n = 1e5, 1e4, 1e3, 100, 10

AT v v A=5.0,1.0,0.1,0.01,0.001

MID N v A=1le > 1e % 1¢73,0.01,0.1,0.5

TO v Retuster = 250,200, 150, 100, 50

“hyper parameter values are listed from weakest to strongest defense here.

Perturbation-based defenses such as Differential Privacy(DP) [24],
Sparsification(SP) [1, 9, 54] and Split-N-Denoise(SnD) [20] add noise
to model intermediate or gradients to prevent information leakage.
When applied at inference time, noise is directly added to model
intermediates. In contrast, when applied during training, perturba-
tion is incorporated into intermediates or gradients at each training
iteration. While SanText[47], CusText[4] and RanText [35] applies
token-level perturbation to hinder inversion. Learning-based de-
fenses, such as Mutual Information Defense(MID) [55], Adversarial
Training(AT) [24, 40] and TextObfuscator(TO) [51], generally apply
arobust training prototype, often with relevant loss regularizers and
additional defense models, aiming to divert model representations
or gradients leak less information about the privacy target. When
applied at inference time, the defense models require prior defense
training before being integrated into the SL-LLM system. While
applied during training, the defense model is jointly trained with
the SL-LLM system. Among the defenses mentioned, TO, SanText,
RanText, CusText, and SnD are only designed to defend MIA. De-
tailed defense method and relevant hyper-parameters are described
in Table 5 and Appendix A.
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Figure 4: Attacks and Defenses in SL-LLM.
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Evaluation Metrics. In VFLAIR-LLM, we use various metrics
following[52] to assess LLM ability and relevant attack and defense
performance.

Main Task Performance(MP) refers to the final prediction perfor-
mance of the SL-LLM system. For Classification tasks(e.g. SST2), MP
is defined as the model prediction accuracy. For Regression tasks(e.g.
STS-B), MP is the Pearson correlation score. For Text-span based
Question Answering tasks(e.g. SQuAD), we take the exact match
score as MP. For simple next token prediction tasks(e.g. Lambada),
MP is the token prediction accuracy. For QA generation datasets(e.g.
Alpaca), we use the Rouge score as MP. For code generation(e.g.
CodeAlpaca), we use CodeBLEU[28]. For math tasks(e.g. GSM8K),
MP is the problem solving accuracy. Attack Performance(AP) refers
to the attack success rate. For MIA, AP refers to the recall rate of
the recovered texts compared with ground-truth texts. For LIA, it
refers to the label recovery accuracy.

Defense Capability Score (DCS) is a comprehensive metric for
assessing defense effectiveness against a specific attack, considering
both the MP and AP as calculated in Equation (1). By default, we
set f = 0.5 in this paper. A higher DCS value signifies a superior
privacy-utility balance attained by the defense mechanism. Type-level
Defense Capability Score (T-DCS) is the weighted average of DCS
for a specific type of attack j (i.e. LIA or MIA), measuring a defense
strategy’s effectiveness against that attack type as described in
Equation (2), where I} is all the attacks in attack type j. In this work,
we mainly use T-DCSpa/11a and attach equal weight to all attack
methods in an attack type. Comprehensive Defense Capability Score
(C-DCS) is the weighted average of T-DCS on various attack types
as described in Equation (3), representing the general performance
of a defense strategy. A is all attack types considered. We attach
equal weight to all attack types in this research. DCS Gap(ADCS),
is defined as the DCS difference between different methods. In
this paper, we mainly evaluate the Full-Vanilla and Full-LoRA fine-
tuning in Section 5.3, using ADCS = DCSpora — DCSvanilla-

1
DCS = (1)
1++/(1 - B)(AP — AP¥)2 + B(MP — MP*)2
1Y
T-DCSj = — Y DCS;. 2
=7 Z; i @
C-DCS = ) w;T-DCS;, with ) w; =10. (3)

jeA jeA

4 Experiment Settings

Table 7: Evaluated Attacks and Defenses Settings.

Attack Defense Evaluation
Perturbation Learning Pipeline
MIA LIA based based Deployment
DP[24],SP[1]
ll/l\r/\[/il[g?] Sg:g:):{?g TO[51],MID[55] At Model Head Inference
BiSR[3] RanText([35] AT[24] (Figure 4a) (HB SL-LLM)
SnD [20]
BLI[53] At Model Tail Fine-tune
Ns(ig]  DPI4SPO] MID[SSLAT[24] (Figure 4b)  (HIBT SL-LLM)
VMI[8] At Both Model .
RMI[32] iILsI[[f;]] DP[24],SP[1] MID[55],AT[24]  Head and Tail (H;;“;E“ITM)
BiSR[3] (Figures 4a and 4b)
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Table 6: SL-LLM Fine-tuning Results

MP HB HBT
FL Fv LL LV FL FV LL LV
SST2-Bert 0.920+0.001  0.905+0.010  0.920+0.002  0.916+0.006 0.919+0.001 0.901+0.013  0.919+0.003  0.915+0.007
SQuAD-Bert 0.731£0.001  0.687+0.005 0.434+0.002 0.705+0.003  0.729+0.002  0.697+0.010 0.708+0.002 0.728+0.002
Lambada-GPT2 0.606+0.012  0.654+0.002 0.566+0.044 0.618+0.001 0.605+0.007 0.653+0.002 0.592+0.022  0.636+0.001

*FL: Full-LoRA  FV: Full-Vanilla

In this section, we provide an overview of the experimental settings
in Section 5. Each experiment is tested and averaged on 5 seeds.
More detailed configurations are presented in Appendix B.

Datasets and Models. We perform the benchmark across var-
ious tasks and LLMs, covering 3 classification tasks: SST2-Bert,
CoLA-Bert, and Yelp-Bert, and 3 generation tasks: Lamabda-GPT2,
Alpaca-GPT2, GSM8K-Mistral, and CodeAlpaca-CodeLlama. We
list the detailed configuration for each task in Appendix B.1.

Attacks and Defenses. 9 defense methods, 3 MIA and 2 LIA
are included in our benchmark as summarized in Tables 4, 5 and 7.
For each defense, we comprehensively evaluate different defense
hyperparameters described in Table 5, scanning through various
defense strengths. We list the detailed attack and defense settings
in Appendices B.3 and B.4.

MIA is tested by inverting the training data samples under the fi-
nal epoch system checkpoint during fine-tuning, while by inverting
the test data samples during inference. LIA is tested by inverting
batch labels using first epoch gradients following [52] during train-
ing. Each attack is evaluated separately, and then MIA and LIA are
jointly implemented to evaluate the impact of collaborative defense
on both attacks. (termed "MIA-LIA").

Fine-tuning Strategies. Four SL-LLM fine-tuning strategies:
Full-Vanilla, Full-LoRA, Local-Vanilla, and Local-LoRA as defined
in Section 3.2 are evaluated. Full-Vanilla refers to fine-tuning all
model segments in a vanilla fine-tuning strategy, while Full-LoRA
fine-tunes all model segments with LoRA. Local-Vanilla refers to
fine-tuning only the data party’s local model segments trainable
with vanilla fine-tuning, while Local-LoRA uses LoRA to fine-tune
the local model segments.

5 Experiment Results
5.1 SL-LLM Fine-tuning Results.

We evaluate 4 fine-tuning strategies across 3 tasks as presented in
Table 6. An early-stop strategy is employed to mark convergence.
Detailed experiment settings are listed in Appendix B.2. We notice
that, under both Full and Local tuning, using LoRA significantly
cuts training time and convergence epochs. For smaller language
models (e.g., BERT), LoRA achieves comparable results to Vanilla
fine-tuning. However, with larger models (e.g., GPT-2), it results in
reduced final accuracy. Full fine-tuning attains better MP than Local
fine-tuning across all datasets but requires longer time to reach
convergence. Under Local fine-tuning, HBT achieves higher MP
than HT, as it fine-tunes a larger set of the model parameters. Both
partition configurations yield comparable results under Full-Vanilla
strategy.
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LL: Local-LoRA  LV: Local-Vanilla.

5.2 Attacks and Defenses Benchmark

We apply 9 defense methods deployed on the model head to defend
against 3 MIA under HT SL-LLM as presented in Figures 5 and 10.
We apply 4 defense methods on the model tail to defend against
2 LIAs under HBT SL-LLM as presented in Figures 7a and 7b. In
Figures 6a and 6b, we evaluate 4 defenses against MIA and LIA
together by deploying them on both model head and tail.

We present the MP and AP of each attack-defense pair on a 2D
MP-AP graph to demonstrate overall defense performance. X-axis
represents MP while Y-axis indicates AP. Generally, dots closer to
the bottom-right achieve higher MP and lower AP, thereby higher
DCS, offering a better privacy-utility trade-off.

Analyzing the aforementioned results, we can draw the following
conclusions:

MIA and LIA pose great threats to SL-LLM. Comparing the
black squares illustrating results without defenses in Figures 5 and 7,
BiSR, VML, BLI, and NS achieve high attack accuracy (AP) on most
tasks (e.g. > 0.6). VMI and RMI exhibit significantly lower AP on
complex tasks like Alpaca and GSM8K in Figures 5b to 5d compared
to simpler SST?2 task in Figure 5a.

Privacy-utility trade-off on MP and AP. In most AP-MP
graphs, for each defense, smaller dots, which means defenses with
weaker strength, are located to the higher right of larger ones,
indicating that as the defense gets stronger, both MP and AP become
lower, indicating a trade-off between privacy and utility.

Learning based methods generally outperform perturba-
tion based methods. In Figure 5, inference-time perturbation
methods suffer significant MP decay with stronger defense strength.
Learning-based methods achieve a better MP-AP trade-off, likely
because the learning phase can adjust model representation to avoid
excessive deviation. Among all defenses, MID showcases superior
performance against most attacks, evidenced by its position at the
lower-right corner compared to other defenses in Figures 5 to 7
and its leading DCS ranking in Table 8. Although AT performs
well in Figure 5, its MP collapses in Figure 6b, indicating potential
instability when applied at the model tail. TO matches MID and AT
on simple classification (Figure 5a) but underperforms on complex
generation tasks(Figures 5b to 5d). Unlike MID and AT, which train
a defense model with loss regularizers, TO combines a cluster loss
regularizer and random perturbation during training. This dual ap-
proach may pose greater challenges when fine-tuning larger LLMs,
likely explaining TO’s lower performance on complex generation
tasks.

Token-wise perturbation(RanText/CusText/SanText) vs
embedding-wise perturbation(DP/SP). As shown in Figure 5,
token-wise perturbation defenses(SanText, RanText, CusText) out-
perform embedding-wise perturbation(DP, SP) on simple tasks like
SST2. However, they fall behind in complex generation tasks like
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Figure 5: MP-AP results for defending MIA with defense at Model Head under HT SL-LLM. Dot size represents the defense
strength, with detailed defense parameters provided in Table 5.
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Figure 8: ny,,4 Ablation for MIA with defense at Model Head.
Dot size represents the scale of nj,,4, with the smallest dot
representing np.,; = 2 and the largest dot representing

Nhead = 3

Alpaca/GSM8K/CodeAlpaca, where detailed input information is
crucial for accurate outputs. Token replacement significantly dis-
rupts the input, causing substantial MP loss. In contrast, such dis-
ruptions have a less pronounced effect on simple classification tasks.
Among token-wise perturbation methods(RanText, CusText, San-
Text), RanText performs on par with the others on BERT (Figure 5a)
but outperforms them on larger language models (Figures 5b to 5d).

MIA-LIA vs LIA vs MIA. Comparing results of MIA-LIA(see
Figure 6a) and MIA (see Figure 5a), we observe that perturbation-
based defenses applied at training time(Figure 6a) exhibit milder MP
decay. Specifically, a higher MP is reached in Figure 6a than in
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Table 8: DCS Ranking. For defending MIA and LIA with de-
fense at both Model Head and Tail under HBT SL-LLM [Full-
LoRA fine-tuning strategy].

(a) SST2-Bert

D;::l‘:e PE::;“;‘; T-DCSya  T-DCSwia | C-DCS | Ranking
MID 0.5 07680  0.9347 | 0.8513 1
MID 0.1 0.7647 0.9230 0.8438 2
MID 0.01 0.7669 0.9204 0.8437 3
MID 0.001 0.7445 0.9055 | 0.8250 4
MID 0.0001 0.7402 0.9088 0.8245 5
MID le-05 0.7280 0.9175 0.8228 6
AT 0.001 0.7435 0.8873 0.8154 7
AT 0.1 0.7348 0.8922 | 0.8135 8
AT 0.01 0.7390 0.8868 0.8129 9
AT 1 0.7344 0.8892 0.8118 10
AT 5 0.7269 0.8885 | 0.8077 11
DP 50 0.7213 0.8553 0.7883 12
DP 70 0.7180 0.7829 0.7504 13

SP 97 0.7168 0.6910 0.7039 14

SP 98 0.7221 0.6797 0.7009 15

SP 96 0.7170 0.6794 0.6982 16

DP 100 0.7061 0.6666 0.6864 17

SP 95 0.7095 0.6610 | 0.6853 18

DP 500 0.6856 0.6158 0.6507 19
(b) CoLA-Bert

D;z::e Pl:::l:::;r T-DCS;;a  T-DCSmia | C-DCS | Ranking
MID 0.5 0.7074 0.9460 0.8267 1
MID 0.01 0.7007 0.9431 0.8219 2
MID 0.1 0.7004 0.9403 0.8204 3
MID le-05 0.6883 0.9450 0.8167 4
MID 0.001 0.6922 0.9409 0.8166 5
MID 0.0001 0.6895 0.9382 0.8139 6
AT 0.001 0.7023 0.8852 | 0.7938 7
AT 0.01 0.6959 0.8886 0.7923 8
AT 0.1 0.6969 0.8819 0.7894 9
AT 0.6893 0.8813 | 0.7853 10
AT 5 0.6879 0.8818 0.7849 11
DP 50 0.6874 0.8134 0.7504 12
DP 70 0.6882 0.7559 0.7221 13

SP 97 0.6938 0.7155 0.7047 14
SP 98 0.7006 0.7043 0.7024 15
DP 100 0.6840 0.7161 0.7001 16
SP 9% 0.6862 0.7137 | 0.6999 17
SP 95 0.6807 0.7093 0.6950 18
DP 500 0.6664 0.6432 0.6548 19

Figure 5a) especially at lower AP range, suggesting that inject-
ing training-time perturbation for defending MIA and LIA attacks
altogether improves MP preservation. On the other hand, learning-
based defenses achieve comparable performance in both scenarios.
The comparison between MIA-LIA (Figure 6) and LIA (Figure 7)
reveals that MP deteriorates when perturbations are applied at both
the model head and tail(Figure 6) versus at the tail alone(Figure 7).
Perturbing both intermediates and gradients during training leads
to increased MP loss.
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positive ADCS indicate Full-LoRA outperform Full-Vanilla.

Table 9: Average DCS Gap. For Defending MIA and LIA with
defense at both Model Head and Tail under HBT SL-LLM
[SST2-Bert].

AC-DCS AT-DCSyga  AT-DCSpia

Overall Average  0.0141 0.0140 0.0142
MID Average 0.0071 0.0016 0.0127
AT Average 0.0463 0.0501 0.0425
SP Average 0.0060 0.0109 0.0011
DP Average -0.0076 -0.0094 -0.0058

5.3 Further Ablation Studies

Larger model head achieves better privacy-utility trade-off
but demands more local resources. To understand the impact of
model head size, we evaluate 4 HT SL-LLM settings with the number
of model head decoders ny,,q ranging from 2 to 5. 4 defenses are
tested against MIA on 2 classification tasks(SST2/Yelp) as shown in
Figure 8. For each defense, we choose hyperparameters that yield
the best DCS. As shown in Figure 8, larger dots tend to position
towards the lower right, suggesting an enhanced privacy-utility
trade-off introduced by larger nj,,4. The trend is more pronounced
for perturbation-based defenses, while learning-based ones are less
affected. However, hosting a larger model head demands more
local resources, introducing another trade-off in the design and
deployment of SL-LLM systems.

SL-LLM with LoRA fine-tuning is more robust against pri-
vacy attacks. To explore the impact of fine-tuning strategies, we
evaluate Full-Vanilla and Full-LoRA fine-tuning on SST2 under
HBT SL-LLM, applying defense at both model head and tail. Let
ADCS denote the DCS Gap between Full-LoRA and Full-Vanilla
methods, where a positive value indicates better privacy-utility
performance achieved through the use of LoRA. Similarly, AC-DCS
is defined as the C-DCS Gap between Full-LoRA and Full-Vanilla
methods, while AT-DCSy1a,AT-DCSy 14 follow similar definitions.

In Figure 9, we present the histogram of ADCS for the tested
defenses. The average DCS gap of each defense type is summarized
in Table 9. As most orange histograms appear at the right of the
vertical line marking 0.0 in Figure 9 and overall average DCS gap
above 0 in Table 9, we conclude that SL-LLM with LoRA is more
resistant to privacy attacks than vanilla training.

6 Conclusions

In this work, we introduce VFLAIR-LLM, a lightweight and exten-
sible SL-LLM framework that incorporates fundamental inference
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and fine-tuning pipelines within two LLM partition settings. The
framework incorporates a broad spectrum of LLM types, working
modes, attack and defense algorithms, supporting diverse tasks
and datasets. Additionally, we provide a thorough benchmark on
SL-LLM privacy algorithms, delivering practical insights on various
attack and defense strategies, which serve as valuable guidance
for users to select appropriate strategies in real-world applications.
While VFLAIR-LLM provides a versatile framework, further research
is still needed for the acceleration of SL-LLM inference and fine-
tuning.
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VFLAIR-LLM: A Comprehensive Framework and Benchmark for Split Learning of LLMs

Algorithm 2 A Normal HBT SL-LLM Training Procedure.
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Input: learning rates n, LoRA strategy LoRA()
Output: M4, Mbody’ Miair-

: Model Party initialize Mp,q,; Data Party initialize Mpeqq.

Mtail~

: for i € [head, body, tail] do
if M; is trainable then
if Use LoRA Strategy then M; «— LoRA(M;)
else
Freeze M;
end if
: end for
. for each iteration j = 1,2, ... do
Randomly sample a mini-batch of samples {x,y} ¢ D of

size n;

Data Party computes Hy ;. = Mpeqq(Xx) and sends it to
model party;

Model Party computes Hy x = Mpoqy(Hy k) and sends it to
data party;

Data Party computes the prediction . = M, 4 (Hzx);
Data party computes the loss £ = %t’ (y,y) and the gradient

Gy = g—l‘_ﬁ, then sends the gradient to model party;
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end for=0

Algorithm 1 A Normal HT SL-LLM Training Procedure.
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: end for
. for each iteration j = 1,2,... do
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size n;
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Model Party computes the prediction y; = M,,;;(Hy) and
sends it to data party;
Data party computes the loss £ = %t’ (y,y) and the gradient
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A Supported Defenses

A.1 Perturbation-based Defenses

Differential Privacy(DP) [7, 24] is implemented by clipping
and adding noise to intermediate results or gradients. Larger ¢
in the added Laplace noise Lap(Af/e€) indicates stronger pertur-
bation and defense, where Af denotes the 11-sensitivity [24] of
the LLM. Sparsification(SP) [1, 9, 54] is implemented by drop-
ping elements in tensors that are close to 0. Sparsification rate r
is the percent of sparsified coordinates in tensors. Larger r indi-
cates stronger perturbation and therefore stronger defense. San-
Text [47]/CusText [4]/RanText [35] all employ token-wise per-
turbation based on an MLDP mechanism, where € controls the DP
noise level. A larger e corresponds to greater MLDP noise, indi-
cating stronger defense. Specifically, SanText replaces a portion of
tokens with one close in terms of embedding distance from a word
adjacency list. While CusText perturbs all words in a sentence and
uses a smaller word adjacency list. RanText introduces a random
adjacency list mechanism and samples perturbed words via MLDP
to perturb documents. In Split-N-Denoise(SnD) [20], the data
party first perturbs the intermediate embedding via a DP-based
privatization module. The received noised embedding from model
party is subsequently denoised using a pre-trained denoising model,
offering inference-time defense for classification tasks. Larger n cor-
responds to weaker noise in the perturbation module and therefore
weaker defense.

A.2 Learning-based Defenses

Mutual Information Defense(MID) [40, 55] introduces a bottle-
neck known as the Mutual Information (MI) model into the data
party’s model. This MI model is trained with a mutual informa-
tion loss regularizer, which is the mutual information between
the privacy target and the intermediate tensor obtained by poten-
tial attackers, steering the intermediates away from revealing the
privacy target. This defense is primarily designed for computer
vision (CV) tasks but can be extended to LLM applications as its
mechanism is independent of the model architecture. Regularizer
Strength A controls the weight of the MI regularizer in the train-
ing loss. Larger A attaches more importance to minimizing the
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Table 10: Efficiency Evaluation for Distributed/Standalone
Deployment

Throughput Communication
(token/s) Avg.(kb/token) Total(MB)
Llama3-8B(Std.) 23.27 / /
Llama3-70B(Std.) 9.66 / /
Llama3-8B(Dist.) 15.41 16 340
Llama3-70B(Dist.) 6.97 32 1473

Std.:standalone, Dist.:distributed.

MI regularizer, indicating stronger defense. Adversarial Train-
ing(AT) [24] is a widely used learning-based defense strategy. In
AT, a simulated adversary model Ay is trained jointly with a Privacy
Preserving Mapping[29] D trying to minimize the effectiveness of
the imagined adversary. A mapping distance A||Dg(H) — H||? is
added as a utility regularizer, constraining the embedding distor-
tion. The overall training can be presented as a minmax problem:
min(Lf(Y, lA/)+Lf(A¢(D9(H)),X)+/1||D9(H) —H||2). Larger regu-
larizer Strength A indicates more emphasis on utility and weaker de-
fense. TextObfuscator(TO) [51] fine-tune the whole LLM system
with word representation obfuscation and a cluster loss regularizer.
It can only defend MIA and has proved efficient on RoBerta for
classification tasks. A larger cluster number njyster, indicates more
precise word clustering, which results in reduced perturbation and
therefore weaker defense strength.

B Detailed Experimental Settings

B.1 Task and Model Configurations

SST-2, CoLA, Yelp and SQuAD are tested on open-sourced bert-
based models available at https://huggingface.co/textattack/bert-
base-uncased-SST-2, https://huggingface.co/Shunian/yelp_review
_classification and https://huggingface.co/google-bert/bert-large-
uncased-whole-word-masking-finetuned-squad. In HT setting,
Nhead = 3. In HBT setting,npeqq = 3 and nyy;; = 3. Lambada
is tested on GPT2 model[26]. In HT setting, npe,q = 2. In HBT
setting,npeqq = 2 and ny,; = 2. Alpaca is tested on an open-
sourced GPT2 model available at https://huggingface.co/vicgall
e/gpt2-alpaca. In HT setting, npe,q = 2. GSM8K is tested on an
open-sourced Mistral-7B model[46] available at https://huggingfac
e.co/meta-math/MetaMath-Mistral-7B. In HT setting, npeqq = 2.
CodeAlpaca is tested on the open-sourced CodeLlama-7B model
available at https://huggingface.co/codellama/CodeLlama-7b-hf.
In HT setting, npeqq = 2.

B.2 Fine-tuning Settings

In Section 5.1, we set training bs(batch-size) to 128/32/16 and Ir
(learning rate) to 1e-4/5e-5/1e-5 for SST2, SQUAD and Lambada
respectively. Convergence is marked with an early-stop strategy.
For LoRA fine-tuning, we set r = 4, & = 32, and dropout rate=0.1,
which remains the same in all other LoRA experiments.

B.3 Attack Settings

Model Inversion Attack Settings: For SST2, CoLA, Yelp, Lam-
bada, Alpaca, GSM8K, CodeAlpaca, we randomly sample 100/100/1000
/200/100/100/100 samples from the targeting dataset for evaluating
inversion attacks. In VMI, attack training epoch is set to 400/100
with a Ir of 0.001/0.01 for Lambada/other datasets. In RMI, attack
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training epoch is set to 300/500 with Ir of 0.005 for Lambada/other
datasets. We set temperature to 0.5 following [32]. In BiSR, we ran-
domly select 300/100 training samples for the first noise-aware pre-
training phase for Alpaca/other datasets, where expert epoch=20,
gate epoch=15 and full epoch=4 following [3]. In the subsequent
data reconstruction phase, attack epoch is set to 100 with 1r=0.01.

Label Inference Attack Settings: In BLI, we set attack training
epoch to 500 with a Ir of 0.05 for all tested datasets, while NS does
not require additional hyper-parameter setting.

B.4 Defense Settings

Apply Defense at Model Head in HT SL-LLM: In Figure 5, per-
turbation are injected directly into SL-LLM inference. In SanText,
percentage of perturbed sensitive words is set to 0.5. In CusText,
top-k is set to 20% for SST2, Alpaca and CodeAlpaca, 100% for
GSMBSK. In SnD, denoise model is pretrained on the training set
for 16 epochs, with Ir=0.0001 and bs=12. 1;r4in is set to 100 fol-
lowing [20]. MID and AT requires SL-LLM training to train its
defense model. For SST2/Yelp/Alpaca, we set bs=128/64/12 and
Ir=1e-4 with padding length of 70/384/256. For Lambada, we gen-
erate the training samples of length 512. bs=32 and Ir=1e-3. For
GSMB8K, we set bs=16, Ir=0.001, with padding length of 128. In TO,
for SST2, we apply a Full-Vanilla strategy and set bs=128,lr=0.0001,
Waway = 0.5,W¢ose = 0.1,€ = 1. For Alpaca, we apply a Full-Vanilla
strategy and set bs=16,Ir=0.0001, waway = 0.5,Wcjse = 0.1, = 2.
For GSM8K, we apply a Full-LoRA strategy and set bs=8,Ir=1e-8,
€ = 2. We set Waway = 0.5,Wjpse = 0.1 for all datasets.

Apply Defense at Model Tail in HBT SL-LLM: In Figures 7a
and 7b, we apply a Full-LoRA fine-tuning strategy. For SST2, we
use bs=16, and LLM Ir=0.0001. In MID and AT, the defense model
Ir is 0.0001. For CoLA, bs=32, Ir=0.0001. Defense model Ir is set to
0.0001 for MID and AT.

Apply Defense at Both Model Head and Tail in HBT SL-LLM:
In Figures 6a and 6b, we apply a Full-LoRA fine-tuning strategy.
For SST2/CoLA, main Ir=1e-4 and bs=16/32. MID and AT’s defense
model Ir is set to 0.0001. When applying Full-Vanilla in Table 9 for
SST-2, main LLM Ir is altered to 1le-5.

C Distributed Deployment Result of SL-LLM

We evaluate the efficiency of distributed vs standalone SL-LLM
inference using Llama3-8B and Llama3-70B in Table 10, tested by
conducting inference on 100 randomly selected samples from the
Alpaca dataset. For distributed deployment, we use 2 Nvidia A100
GPUs on the model party side and 1 Nvidia A10 GPU on the data
party side with a bandwidth of 300Mb for communication. For
standalone simulation, we use 2 Nvidia A100 GPUs. Both models
show significantly lower throughput in distributed mode compared
to standalone deployment, suggesting communication efficiency
is a bottleneck for distributed deployment which requires further
improvement.

D Additional Experiment Results

Due to space limit, we place additional MIA result on other datasets
in Figure 10. We also provide a detailed user guidance for VFLAIR-LLM
in our code base(see https://github.com/FLAIR-THU/VFLAIR-
LLM).


https://huggingface.co/textattack/bert-base-uncased-SST-2
https://huggingface.co/textattack/bert-base-uncased-SST-2
https://huggingface.co/Shunian/yelp_review_classification
https://huggingface.co/Shunian/yelp_review_classification
https://huggingface.co/google-bert/bert-large-uncased-whole-word-masking-finetuned-squad
https://huggingface.co/google-bert/bert-large-uncased-whole-word-masking-finetuned-squad
https://huggingface.co/vicgalle/gpt2-alpaca
https://huggingface.co/vicgalle/gpt2-alpaca
https://huggingface.co/meta-math/MetaMath-Mistral-7B
https://huggingface.co/meta-math/MetaMath-Mistral-7B
https://huggingface.co/codellama/CodeLlama-7b-hf
https://github.com/FLAIR-THU/VFLAIR-LLM
https://github.com/FLAIR-THU/VFLAIR-LLM
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