, . PDF Download

'.) e DIGITAL (

acmopen N 3711896.3737411.pdf
Check for Aen LIBRARY C P) }\ 05 January 2026

updates Total Citations: 0
Total Downloads: 1234

¢ Latest updates: https://dl.acm.org/doi/10.1145/3711896.3737411
Published: 03 August 2025

RESEARCH-ARTICLE
VFLAIR-LLM: A Comprehensive Framework and Benchmark for Split

Citation in BibTeX format

KDD '25: The 31st ACM SIGKDD

Learning Of LLMS Conference on Knowledge Discovery and
Data Mining
: : : H August 3 - 7, 2025
ZIXUAN GU, Tsinghua University, Beijing, China Toronto ON, Carda
QIUFENG FAN
Conference Sponsors:
LONG SUN SIGMOD

SIGKDD
YANG LIU, The Hong Kong Polytechnic University, Hong Kong, Hong Kong, Hong Kong

XIAOJUN YE, Tsinghua University, Beijing, China

Open Access Support provided by:
Tsinghua University
The Hong Kong Polytechnic University

KDD '25: Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2 (August 2025)
https://doi.org/10.1145/3711896.3737411
ISBN: 9798400714542

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3711896.3737411
https://dl.acm.org/doi/10.1145/3711896.3737411
https://dl.acm.org/doi/10.1145/contrib-99661660838
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-99661664509
https://dl.acm.org/doi/10.1145/contrib-99661666096
https://dl.acm.org/doi/10.1145/contrib-99661668537
https://dl.acm.org/doi/10.1145/institution-60008928
https://dl.acm.org/doi/10.1145/contrib-81313482346
https://dl.acm.org/doi/10.1145/institution-60025278
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/institution-60008928
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3711896.3737411&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/kdd
https://dl.acm.org/conference/kdd
https://dl.acm.org/conference/kdd
https://dl.acm.org/sig/sigmod
https://dl.acm.org/sig/sigkdd
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3711896.3737411&domain=pdf&date_stamp=2025-08-03

VFLAIR-LLM: A Comprehensive Framework and Benchmark for
Split Learning of LLMs

Zixuan Gu
School of Software, Tsinghua
University
Beijing, China
gu-zx24@mails.tsinghua.edu.cn

Yang Liu”
the Hong Kong Polytechnic
University
Hong Kong, China
yang-veronica.liu@polyu.edu.hk

Abstract

With the advancement of Large Language Models (LLMs), LLM
applications have expanded into a growing number of fields. How-
ever, users with data privacy concerns face limitations in directly
utilizing LLM APIs, while private deployments incur significant
computational demands. This creates a substantial challenge in
achieving secure LLM adaptation under constrained local resources.
To address this issue, collaborative learning methods, such as Split
Learning (SL), offer a resource-efficient and privacy-preserving
solution for adapting LLMs to private domains. In this study, we
introduce VFLAIR-LLM (available at https://github.com/FLAIR-
THU/VFLAIR-LLM), an extensible and lightweight split learning
framework for LLMs, enabling privacy-preserving LLM inference
and fine-tuning in resource-constrained environments. Our library
provides two LLM partition settings, supporting three task types
and 18 datasets. In addition, we provide standard modules for im-
plementing and evaluating attacks and defenses. We benchmark 5
attacks and 9 defenses under various Split Learning for LLM(SL-
LLM) settings, offering concrete insights and recommendations on
the choice of model partition configurations, defense strategies, and
relevant hyperparameters for real-world applications.

CCS Concepts

« Security and privacy — Distributed systems security.

Keywords

Split Learning, Large Language Models, Data Privacy, Federated
Learning

ACM Reference Format:
Zixuan Gu, Qiufeng Fan, Long Sun, Yang Liu, and Xiaojun Ye. 2025. VFLAIR-
LLM: A Comprehensive Framework and Benchmark for Split Learning of

“Corresponding author, also affiliated with the Shanghai Artificial Intelligence
Laboratory.

This work is licensed under a Creative Commons Attribution 4.0 International License.
KDD 25, Toronto, ON, Canada

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1454-2/2025/08

https://doi.org/10.1145/3711896.3737411

Qiufeng Fan

Wuxi Innovation Center of Tsinghua

AIR

Wuxi, China
fan.qiufeng@u.nus.edu

5470

Long Sun
Wuxi Innovation Center of Tsinghua
AIR
Wuxi, China
cnlonger@gmail.com

Xiaojun Ye
School of Software, Tsinghua
University
Beijing, China
yexj@tsinghua.edu.cn

LLMs. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge
Discovery and Data Mining V.2 (KDD ’25), August 3-7, 2025, Toronto, ON,
Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3711
896.3737411

1 Introduction

The recent development and success of large language models
(LLMs) have significantly reshaped the landscape of artificial intel-
ligence, showcasing exceptional capabilities across a wide range of
tasks. LLM training relies heavily on massive, high-quality data, fu-
eling growing demand for such resources. Public data sources, such
as books, web crawls, and open-access articles, have historically
served as the backbone of LLM training data. However, research [38]
indicates that the availability of public human text data is nearing
exhaustion. This growing data scarcity has emerged as a critical
bottleneck for LLM development, compelling a shift toward lever-
aging private domain data, which subsequently raises significant
privacy concerns.

Sensitive data within private domains cannot be freely shared or
processed by external LLM systems due to risks of data breaches,
regulatory violations, and potential misuse. These challenges make
the direct integration of private data into LLM training impractical.
One potential solution is the local deployment of LLMs. However,
this method requires substantial local computational resources, pos-
ing a significant barrier for smaller organizations or individuals
managing sensitive private data. To address this challenge of pri-
vate adaptation of LLMs under constrained local resources, various
methods have been proposed. Off-site tuning[42] and knowledge
distillation[13] leverage compact language models to approximate
the behavior of target LLMs. However, these methods often suf-
fer from notable performance degradation and require complex
algorithmic implementations.

An alternative approach is Split Learning (SL)[10, 37], a collab-
orative training paradigm developed based on Federated Learn-
ing(FL) [22, 43]. It introduces a cross-silo scenario where a model
is partitioned across participants, offering the benefit of minor
performance degradation and a simple yet effective algorithmic
implementation. However, this solution still faces considerable
privacy concerns[3], as the server may attempt to infer clients’

https://github.com/FLAIR-THU/VFLAIR-LLM
https://github.com/FLAIR-THU/VFLAIR-LLM
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3711896.3737411
https://doi.org/10.1145/3711896.3737411
https://doi.org/10.1145/3711896.3737411

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

local data through various privacy attacks[45]. Various defense
methods[7, 24] have also been proposed to address these risks.

In this work, we focus on leveraging SL for the private adaptation
of LLMs. Aiming to support relevant research and applications, we
design a lightweight and highly extensible Split Learning LLM
framework, named VFLAIR-LLM.

VFLAIR-LLM incorporates basic modules for customizable SL-
LLM inference and fine-tuning, including user-defined LLM parti-
tion, defense strategies, and other relevant functions. It supports
3 types of LLM architect and 3 corresponding task types, each
with relevant datasets available for direct usage, and is open to
users to add new datasets. To enable flexible privacy assessment
and algorithm development, VFLAIR-LLM also offers multiple attack
and defense methods in a modular style, ensuring easy usage and
extension. In summary, our contributions are listed below:

e We develop a lightweight framework named VFLAIR-LLM
for split learning of LLMs. This framework incorporates an
easily adaptable model partition method for a wide variety
of LLMs. Additionally, it addresses possible privacy concerns
featuring 3 model inversion attacks(MIA), 2 label inference
attacks(LIA), and 9 defenses.

e We conduct a comprehensive benchmark on attacks and
defenses within the SL-LLM setting using VFLAIR-LLM. The
benchmark provides various recommendations and insights
on model partition configuration, defense strategies, and
relevant hyperparameter selection to facilitate easy usage.

2 Related Works

2.1 Private adaptation of LLMs under limited
local resources

Various methods have been proposed to address the challenges
of private adaptation of LLMs under constrained local resources.
Offsite-Tuning[42, 44] and knowledge distillationHsieh et al. [13]
focus on training smaller, task-specific models locally to emulate
the traditional LLM adaptation process. However, they often face
trade-offs in model performance due to the inherent limitations of
smaller models. Another possible solution to this concern is Split
Learning(SL)[11, 34], an evolution of Federated Learning (FL) [22]
where the model is partitioned across collaborators. In this ap-
proach, participants collaboratively train an LLM by exchanging
model intermediate and gradients, allowing the data holder to train
only a small portion of the full LLM. Various projects and frame-
works [41, 50, 52] have been developed to facilitate research and
deployment in this area. For example, VFLAIR [52] is an open-
sourced library that supports SL training with a wide range of
models, datasets, and protocols.

2.2 Split Learning of LLMs

As summarized in Table 1, several studies have explored SL for
fine-tuning and inference of LLMs. SAP[30] is a privacy-preserving
federated fine-tuning framework where a LLM is divided into 2
parts: "head" and "tail"(termed HT in the following discussion), aim-
ing to defend model inversion attacks. Also leveraging a "head-tail"
partitioning, SplitLoRA[19] introduced a fine-tuning framework

5471

Zixuan Gu, Qiufeng Fan, Long Sun, Yang Liu, and Xiaojun Ye

for SL-LLM, demonstrating superior training performance. [3] pro-
posed SplitLLM, which partitions the model into 3 parts: "head",
"body" and "tail"(termed HBT in the following discussion). It in-
troduces a novel data reconstruction attack(BiSR, tested in our
following evaluations) to invert data input, highlighting the po-
tential privacy risks in SL-LLM. While these efforts have laid the
groundwork for SL-LLM research, they primarily focus on spe-
cific methodologies, with limited attention given to comprehensive
privacy benchmarking and the development of user-friendly, ex-
tensible tools for broader adoption. This gap inspired us to develop
a framework that not only provides comprehensive privacy algo-
rithms but also prioritizes ease of use and extensibility.

I
| @ Data Party . Model Party !
1 @B Sensitive data holder with limited computation resources LLM provider with abundant computation resources !

- ' &
a ;
HT Model Head Mjpeqq 1 Model Tail Myq:
embedding + npeqq encoders/decoders : n¢qi encoders/decoders + head layer
Full LLM Embedding l Encoder/ § Encoder/ [N Encoder/ Encoder/ Head
. Layer Decoder Decoder Decoder Decoder Layer
I |
Model Head Myeqa | ‘) X 1 del Tail M4
HBT. Model Body Myoay
I I
= '@ ‘-
a a

Figure 1: LLM Partition

3 Framework Overview

3.1 Split Learning for LLM(SL-LLM)

VFLAIR-LLM proposes a general Split LLM framework with a Data
Party and a Model Party. Data party simulates participants equipped
with data and labels but constrained computational resources for
comprehensive LLM utilization, possessing only a few layers of a
complete LLM. Meanwhile, the Model party simulates the LLM
provider, retaining the majority segment of the LLM.

3.1.1 LLM Partition in VFLAIR-LLM. As described in Figure 1, we
propose 2 SL-LLM settings: "Head-Tail"(HT) SL-LLM and "Head-
Body-Tail"(HBT) SL-LLM, depending on how the LLM model
is partitioned among parties, For encoder-only and decoder-only
LLMs, the model is split at customizable points within the encoder
or decoder sequence for both HT and HBT settings. For encoder-
decoder LLMs, HBT splits the model at the encoder sequence and
the decoder sequence. While HT partitions only the encoder se-
quence.

3.1.2 Head-Tail(HT) SL-LLM. In HT SL-LLM, a full LLM with
N = Npeqd + Niqi encoders/decoders is separated into a Model
Head and a Model Body[19, 30]. Model Head M}, is allocated
to the Data Party, containing the embedding layer and np,,q en-
coders/decoders. Model Tail M;;; is the rest of LLM held by the
Model Party, containing n;,;; encoders/decoders and a head layer.
Typically, n;,;; is set significantly larger than n;g;;.

During forward propagation, the data party performs forward
propagation first. Intermediate Hy = Mpeq4(X) is then transmitted
to the model party for further generation of the final output Y=
M, i1 (Hy). Backward propagation is performed in a reversed order
with the model party transmitting the intermediate’s gradient G;
back to the data party. The detailed training algorithm is described
in Algorithm 1 and Figure 2a. Note that HT SL-LLM assumes the

VFLAIR-LLM: A Comprehensive Framework and Benchmark for Split Learning of LLMs

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

Table 1: Summary of SL-LLM frameworks.

SL-LLM Partition Attack .) Work Mode Evaluation Metrics
LLM Model Label Defense Fine-tuning
Types | Head-Tail Head-Body-Tail X Strategy Standalone Distributed | Performance Privacy Efficiency
Inversion Inference
SAP[30] 1 v v 0 v v v v
SplitLoRA[19] 1 v v v 0 v v v v
SplitLLM([3] 11 v v v 3 v v v
VFLAIR-LLM 16 N v v v 9 v N N N v N
Data Party Model Party

model party can access the inference results or labels. For scenarios
where label and inference results need to be further protected from
the Model party, we further introduce the HBT SL-LLM[3].

3.1.3 Head-Body-Tail(HBT) SL-LLM. The HBT SL-LLM splits a full
LLM with n = npeqq + Npody + Nrair encoders/decoders into 3 parts.
Model Head My,qq contains the embedding layer and the first
Npead encoder/decoder layers, which is allocated to the Data Party.
Model Body M4y contains np,q, encoders/decoders, the main
body part of LLM, and is allocated to the Model Party. Model Tail
M 4i1 contains n;,;; encoders/decoders and a head layer, which is
allocated to the Data Party. By allocating both the model head and
model tail to data party, this setting can hinder direct label inference
and model output infringement by the model party. Typically, npoqy
is set significantly larger than np,,q and n;;.

During the forward process, the data party first feeds input data
into its model head. Its intermediate H; = Mpq4(X) is then trans-
mitted to the model party for model body forward calculation:
Hp = Mpoay(Hi). Finally, the model body output is transmitted
back to data party to generate final predictions Y using the model
tail. During the backward propagation, data party and model party
consecutively calculate gradients G; and G, for its received interme-
diates and perform local backward calculations. Detailed training
algorithm is described in Algorithm 2 and Figure 2b.

3.2 Fine-tuning Methods for SL-LLM

To enable efficient LLM fine-tuning, various fine-tuning strategies[14,
19] have been proposed. VFLAIR-LLM enables users to customize
their own fine-tuning strategies, including Full-Tuning, where all
model parameters are trainable, and Local-Tuning, where only
the data party’s sub-model is trainable. After specifying the train-
able model segments, we also incorporate the PEFT Library[21]
into VFLAIR-LLM, enabling support for a wide range of parameter-
efficient fine-tuning (PEFT) methods, including LoRA[14], LoKr[15],
AdaLoRA[48], and LoHa[15] etc. Parties can choose to apply either
a Vanilla fine-tuning strategy or a LoRA strategy to their own
model segments.

3.3 VFLAIR-LLM Framework Design

Based on the codebase of VFLAIR [52], a general framework for
vertical federated learning, we develop VFLAIR-LLM, a framework
specific for implementing and benchmarking SL-LLM scenarios, as
illustrated in Figure 3. VFLAIR-LLM shares VFLAIR’s configuration
design, party loading module, and basic communication functions,
but focuses on LLM-centered datasets and tasks, fine-tuning strate-
gies, and attack and defense evaluations.

5472

Forward —» .
Backwarc Label Y - Loss L i .
Model Tail Mg
Nqq encoders + head layer
Model Head M,eqq

Data X' embedding + neqq encoders —:—w
______________________ ! ‘ - - - - ==
(a) HB SL-LLM
Data Party Model Party
| T mEmEmsEEEssEsssss=
Label Y Forward —» !
+ Backward
Loss L
t

Model Tail M4

Tiqip €ncoders + head layer + Intermediate H, [+
. - ‘1

Final Pred ¥ «— Model Body Mp,qy

Moy ENCOdErs

Model Head Mpeqq

DT embedding + npeqq encoders

(b) HBT SL-LLM

Figure 2: Training Process of SL-LLM

2 SL-LLM Partition Settings. VFLAIR-LLM offers two LLM par-
tition settings: Head-Body (HT) SL-LLM and Head-Body-Tail (HBT)
SL-LLM as described in Section 3.1.

2 Usage Pipelines. VFLAIR-LLM supports both LLM fine-tuning
and LLM inference. In Inference pipeline, users can load a pre-
trained LLM to conduct direct inference on a given dataset. In
Fine-tune pipeline, users can fine-tune an LLM on a downstream
task.

16 LLM Types. Currently, we support 16 LLMs as shown in Ta-
ble 2. To enable easy extension and compatibility, all model splits are
implemented based on the Transformers [36] library with detailed
guidance in our code base.

Table 2: Supported LLM Types

Structure LLM Types

Bert Roberta Albert

Encoder-only

GPT2 Llama Baichuan2 ChatGLM2 Falcon Gemma
Mamba Mistral Qwen2 Deepseek MiniCPM Qwen2-VL

T5

Decoder-only

Encoder-Decoder Qwen

3 Basic LLM Architects. VFLAIR-LLM support 3 commonly used
LLM architects as presented in Table 3, each featuring a different
head layer added to the main LLM body to suit downstream tasks.

2 Work Modes. VFLAIR-LLM support 2 work modes: standalone
simulation and distributed deployment, supporting both simulation
research and real-world applications. We provide an efficiency com-
parison between distributed and standalone mode in Appendix C.

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

Attack Module

» Model Inversion Attacks
» Label Inference Attacks

=3 VFLAIR-LLM E= g/
.

Zixuan Gu, Qiufeng Fan, Long Sun, Yang Liu, and Xiaojun Ye

Defense Module

DP/SP/SanText/

CusText/RanText

IAT/MID/TO...
—— e

At Model Head
At Model Tail
At Both Ends

> head+tail E > E
> head+body+ail || > Fine-tune !\ > Distributed !
' LLM Partition | | Usage Pipeline :: Work Mode '

Bert/GPT2/Llama2/Bai |

¥ > Classification
! chuan/ChatGLM ' » CausalLM/Generation]
E /Mistral/Mamba.... E 1 > Text-span based QA]
i LLM Types E Basic Model Architect :

» MP: Rouge, accuracy.. » Convergence Epoch

> AP: Recall, recovery rate > Convergence Time ~ IMetrics (8’)
» DCS, T-DCS,C-DCS ...
] [Taxtvon] Datasets @
Sequence 9 Task o00
Classification ;;sxg dsgi/z Generation
/Regression Types

Figure 3: VFLAIR-LLM Framework Overview

Table 3: Supported Datasets and Tasks in SL-LLM

Architect Task Type Dataset Task Description
SST-2[39] sentiment analysis
CoLA[39] acceptability
Classification (CLS) Sequence MRPC[39] paraphrase identification
Classification QQP[39] semantic equivalence
(Regression) MNLI[39] natural language inference
QNLI[39] QA entailment
RTE([39] textral entailment
WNLI[39] pronoun resolution
Yelp[49] review rating
STS-B[39] semantic similarity
Text-span based Text-span based span-based
QA QA SQuAD(27] question answering
(TQA)
Lambada [25] next .tol.(en
prediction
CausalLM/ Alpaca [33] text generation
Generation Generation Dolly [6] text generation
(CLM) CodeAlpaca [2] code generation
MATH [12] math
GSMBK[5] math
TextVOA [31] visual que_stion
answering

Attacks. VFLAIR-LLM supports 3 model inversion attacks and 2

label inference attacks as summarized in Table 4. Detailed attack
deployment is presented in Figure 4.
(1) Threat Model: In this work, we assume the model party is an
honest-but-curious attacker for both MIA and LIA. It follows the
given SL-LLM protocol and does not collude with external enti-
ties. Furthermore, we operate under a white-box attack scenario,
meaning the adversary, as the model provider, possesses complete
knowledge of all model slice parameters, representing a signifi-
cantly strong attack scenario. Unless otherwise specified, the at-
tacker does not possess any auxiliary data or information on data
parties’ data.

Table 4: Summary of attacks in VFLAIR-LLM

Model Inversion Attack VMI [8],RMI [32],BiSR [3]
Label Inference Attack BLI [53],NS [18]

5473

(2) Attack Methodology: In Model Inversion Attacks(MIA)[3],
also known as Embedding Inversion Attacks(EIA)[16, 17, 23], the
model party will try to infer data party’s original text X from the
transferred intermediate Hy. Vanilla Model Inversion(VMI) [8] is a
learning based model inversion attack featuring a 2-step data recon-
struction process. First, the attacker infers the original input embed-
ding E(X’) through optimization by minimizing loss between the
calculated intermediate H' = M;(E(X’)) and the real intermediate
H. Secondly, it recovers tokens from the inferred embedding by
choosing the max cosine similarity between the embedding ma-
trix E and the inferred embedding E(X’), generating inferred text
X’. Relaxation-based Model Inversion(RMI) [32] follows a similar
2-phase data reconstruction, but conducts relaxation on each to-
ken vector of the input sequence with a continuous variable z for
optimization in the first phase. Bi-directional Semi-white-box Recon-
struction (BiSR) [3] incorporates a noise-aware pretraining phase
for embedding initialization before proceeding with the traditional
procedure of VMLI. It has demonstrated strong attack performance
across various LLMs, including BERT, GPT2, Llama2, ChatGLM,
and Flan-T5.

In Label Inference Attacks(LIA)[18, 53], the model party at-
tempts to infer the data party’s label data Y from the gradient G2
received during training. In Batch-level Label Inference(BLI)[53], the
adversary trains an inversion model to invert label information
from batch-level gradients. Norm-based Scoring(NS) [18] is imple-
mented by calculating sample-level gradient norm values to identify
positive/negative labels for binary classification tasks, since the
norm of gradients for positive samples are generally larger than
negative ones when data is unbalanced distributed.

While MIA can be injected at both training-time and inference-
time, LIA is a training-time attack as it requires gradient informa-
tion.

Defenses. VFLAIR-LLM supports 6 perturbation-based defenses
and 3 learning-based defenses as summarized in Table 5. Details
about specific defense methods are listed in Appendix A. As de-
picted in Figure 4, applying defenses at the model head mitigates
MIA threats, while deployment at the model tail hinders LIA.

VFLAIR-LLM: A Comprehensive Framework and Benchmark for Split Learning of LLMs

Table 5: Summary of defenses and tested hyper-parameters.

Appliable Position

Defense model head ‘ model tail Hyper-parameter Values

Dp v v € =500, 100, 70, 50

SP v Vv = 95.0%, 96.0%, 97.0%, 98.0%
SanText v €=5,1,0.1,0.01
CusText v €=15,1,0.1,0.01
RanText v € = 30, 25,20, 15, 10

SnD v n = 1e5, 1e4, 1e3, 100, 10

AT v v A=5.0,1.0,0.1,0.01,0.001

MID N v A=1le > 1e % 1¢73,0.01,0.1,0.5

TO v Retuster = 250,200, 150, 100, 50

“hyper parameter values are listed from weakest to strongest defense here.

Perturbation-based defenses such as Differential Privacy(DP) [24],
Sparsification(SP) [1, 9, 54] and Split-N-Denoise(SnD) [20] add noise
to model intermediate or gradients to prevent information leakage.
When applied at inference time, noise is directly added to model
intermediates. In contrast, when applied during training, perturba-
tion is incorporated into intermediates or gradients at each training
iteration. While SanText[47], CusText[4] and RanText [35] applies
token-level perturbation to hinder inversion. Learning-based de-
fenses, such as Mutual Information Defense(MID) [55], Adversarial
Training(AT) [24, 40] and TextObfuscator(TO) [51], generally apply
arobust training prototype, often with relevant loss regularizers and
additional defense models, aiming to divert model representations
or gradients leak less information about the privacy target. When
applied at inference time, the defense models require prior defense
training before being integrated into the SL-LLM system. While
applied during training, the defense model is jointly trained with
the SL-LLM system. Among the defenses mentioned, TO, SanText,
RanText, CusText, and SnD are only designed to defend MIA. De-
tailed defense method and relevant hyper-parameters are described
in Table 5 and Appendix A.

PR
|

Inferred Data X' ! Forward Communication —*
4 ! Backward Communication
e MIAL, Attack Model |-~~~) Defense —» Attack ---+
: R S !
] Mpoayg
! Mbody be‘-‘@ 1 o
N gy \ S TP
ModelParty 1M1} Model Party " D(H Model Party Gl
Data Party T Defense Data Party Directly Add
WMheaa | Model D Mheaa | perturbation P S
T Defense Data X Mheaas
Data X Regularizer Target
Target ® Data X
Data Party > Loss L Target

w/o Defense Learning-based Defense Perturbation-based Defense

(a) MIA with Defense at Model Head

4 — I
Forward Communication ' | P r—Y
ackward Communication B ' '
* '

+

oo e LIA 1
Defense Attack + Attack Model
: Lo H
Mpody g Mpody,,
K +P(Gy) ¥
Model Party & Model Party I Model Party v
Dapary | it Data Party Deres Data Party Directly Add
LossL — ¢ \ Mean)
Label Y Defense % 1%
Target Regularizer Lossipi-—1¥ LossL ~—¥
Label ¥ Label Y
Target Target

w/o Defense

Learning-based Defense

(b) LIA with Defense at Model Tail

Perturbation-based Defense

Figure 4: Attacks and Defenses in SL-LLM.

5474

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

Evaluation Metrics. In VFLAIR-LLM, we use various metrics
following[52] to assess LLM ability and relevant attack and defense
performance.

Main Task Performance(MP) refers to the final prediction perfor-
mance of the SL-LLM system. For Classification tasks(e.g. SST2), MP
is defined as the model prediction accuracy. For Regression tasks(e.g.
STS-B), MP is the Pearson correlation score. For Text-span based
Question Answering tasks(e.g. SQuAD), we take the exact match
score as MP. For simple next token prediction tasks(e.g. Lambada),
MP is the token prediction accuracy. For QA generation datasets(e.g.
Alpaca), we use the Rouge score as MP. For code generation(e.g.
CodeAlpaca), we use CodeBLEU[28]. For math tasks(e.g. GSM8K),
MP is the problem solving accuracy. Attack Performance(AP) refers
to the attack success rate. For MIA, AP refers to the recall rate of
the recovered texts compared with ground-truth texts. For LIA, it
refers to the label recovery accuracy.

Defense Capability Score (DCS) is a comprehensive metric for
assessing defense effectiveness against a specific attack, considering
both the MP and AP as calculated in Equation (1). By default, we
set f = 0.5 in this paper. A higher DCS value signifies a superior
privacy-utility balance attained by the defense mechanism. Type-level
Defense Capability Score (T-DCS) is the weighted average of DCS
for a specific type of attack j (i.e. LIA or MIA), measuring a defense
strategy’s effectiveness against that attack type as described in
Equation (2), where I} is all the attacks in attack type j. In this work,
we mainly use T-DCSpa/11a and attach equal weight to all attack
methods in an attack type. Comprehensive Defense Capability Score
(C-DCS) is the weighted average of T-DCS on various attack types
as described in Equation (3), representing the general performance
of a defense strategy. A is all attack types considered. We attach
equal weight to all attack types in this research. DCS Gap(ADCS),
is defined as the DCS difference between different methods. In
this paper, we mainly evaluate the Full-Vanilla and Full-LoRA fine-
tuning in Section 5.3, using ADCS = DCSpora — DCSvanilla-

1
DCS = (1)
1++/(1 - B)(AP — AP¥)2 + B(MP — MP*)2
1Y
T-DCSj = — Y DCS;. 2
=7 Z; i @
C-DCS =) w;T-DCS;, with) w; =10. (3)

jeA jeA

4 Experiment Settings

Table 7: Evaluated Attacks and Defenses Settings.

Attack Defense Evaluation
Perturbation Learning Pipeline
MIA LIA based based Deployment
DP[24],SP[1]
ll/l\r/\[/il[g?] Sg:g:):{?g TO[51],MID[55] At Model Head Inference
BiSR[3] RanText([35] AT[24] (Figure 4a) (HB SL-LLM)
SnD [20]
BLI[53] At Model Tail Fine-tune
Ns(ig] DPI4SPO] MID[SSLAT[24] (Figure 4b) (HIBT SL-LLM)
VMI[8] At Both Model .
RMI[32] iILsI[[f;]] DP[24],SP[1] MID[55],AT[24] Head and Tail (H;;“;E“ITM)
BiSR[3] (Figures 4a and 4b)

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

Zixuan Gu, Qiufeng Fan, Long Sun, Yang Liu, and Xiaojun Ye

Table 6: SL-LLM Fine-tuning Results

MP HB HBT
FL Fv LL LV FL FV LL LV
SST2-Bert 0.920+0.001 0.905+0.010 0.920+0.002 0.916+0.006 0.919+0.001 0.901+0.013 0.919+0.003 0.915+0.007
SQuAD-Bert 0.731£0.001 0.687+0.005 0.434+0.002 0.705+0.003 0.729+0.002 0.697+0.010 0.708+0.002 0.728+0.002
Lambada-GPT2 0.606+0.012 0.654+0.002 0.566+0.044 0.618+0.001 0.605+0.007 0.653+0.002 0.592+0.022 0.636+0.001

*FL: Full-LoRA FV: Full-Vanilla

In this section, we provide an overview of the experimental settings
in Section 5. Each experiment is tested and averaged on 5 seeds.
More detailed configurations are presented in Appendix B.

Datasets and Models. We perform the benchmark across var-
ious tasks and LLMs, covering 3 classification tasks: SST2-Bert,
CoLA-Bert, and Yelp-Bert, and 3 generation tasks: Lamabda-GPT2,
Alpaca-GPT2, GSM8K-Mistral, and CodeAlpaca-CodeLlama. We
list the detailed configuration for each task in Appendix B.1.

Attacks and Defenses. 9 defense methods, 3 MIA and 2 LIA
are included in our benchmark as summarized in Tables 4, 5 and 7.
For each defense, we comprehensively evaluate different defense
hyperparameters described in Table 5, scanning through various
defense strengths. We list the detailed attack and defense settings
in Appendices B.3 and B.4.

MIA is tested by inverting the training data samples under the fi-
nal epoch system checkpoint during fine-tuning, while by inverting
the test data samples during inference. LIA is tested by inverting
batch labels using first epoch gradients following [52] during train-
ing. Each attack is evaluated separately, and then MIA and LIA are
jointly implemented to evaluate the impact of collaborative defense
on both attacks. (termed "MIA-LIA").

Fine-tuning Strategies. Four SL-LLM fine-tuning strategies:
Full-Vanilla, Full-LoRA, Local-Vanilla, and Local-LoRA as defined
in Section 3.2 are evaluated. Full-Vanilla refers to fine-tuning all
model segments in a vanilla fine-tuning strategy, while Full-LoRA
fine-tunes all model segments with LoRA. Local-Vanilla refers to
fine-tuning only the data party’s local model segments trainable
with vanilla fine-tuning, while Local-LoRA uses LoRA to fine-tune
the local model segments.

5 Experiment Results
5.1 SL-LLM Fine-tuning Results.

We evaluate 4 fine-tuning strategies across 3 tasks as presented in
Table 6. An early-stop strategy is employed to mark convergence.
Detailed experiment settings are listed in Appendix B.2. We notice
that, under both Full and Local tuning, using LoRA significantly
cuts training time and convergence epochs. For smaller language
models (e.g., BERT), LoRA achieves comparable results to Vanilla
fine-tuning. However, with larger models (e.g., GPT-2), it results in
reduced final accuracy. Full fine-tuning attains better MP than Local
fine-tuning across all datasets but requires longer time to reach
convergence. Under Local fine-tuning, HBT achieves higher MP
than HT, as it fine-tunes a larger set of the model parameters. Both
partition configurations yield comparable results under Full-Vanilla
strategy.

5475

LL: Local-LoRA LV: Local-Vanilla.

5.2 Attacks and Defenses Benchmark

We apply 9 defense methods deployed on the model head to defend
against 3 MIA under HT SL-LLM as presented in Figures 5 and 10.
We apply 4 defense methods on the model tail to defend against
2 LIAs under HBT SL-LLM as presented in Figures 7a and 7b. In
Figures 6a and 6b, we evaluate 4 defenses against MIA and LIA
together by deploying them on both model head and tail.

We present the MP and AP of each attack-defense pair on a 2D
MP-AP graph to demonstrate overall defense performance. X-axis
represents MP while Y-axis indicates AP. Generally, dots closer to
the bottom-right achieve higher MP and lower AP, thereby higher
DCS, offering a better privacy-utility trade-off.

Analyzing the aforementioned results, we can draw the following
conclusions:

MIA and LIA pose great threats to SL-LLM. Comparing the
black squares illustrating results without defenses in Figures 5 and 7,
BiSR, VML, BLI, and NS achieve high attack accuracy (AP) on most
tasks (e.g. > 0.6). VMI and RMI exhibit significantly lower AP on
complex tasks like Alpaca and GSM8K in Figures 5b to 5d compared
to simpler SST?2 task in Figure 5a.

Privacy-utility trade-off on MP and AP. In most AP-MP
graphs, for each defense, smaller dots, which means defenses with
weaker strength, are located to the higher right of larger ones,
indicating that as the defense gets stronger, both MP and AP become
lower, indicating a trade-off between privacy and utility.

Learning based methods generally outperform perturba-
tion based methods. In Figure 5, inference-time perturbation
methods suffer significant MP decay with stronger defense strength.
Learning-based methods achieve a better MP-AP trade-off, likely
because the learning phase can adjust model representation to avoid
excessive deviation. Among all defenses, MID showcases superior
performance against most attacks, evidenced by its position at the
lower-right corner compared to other defenses in Figures 5 to 7
and its leading DCS ranking in Table 8. Although AT performs
well in Figure 5, its MP collapses in Figure 6b, indicating potential
instability when applied at the model tail. TO matches MID and AT
on simple classification (Figure 5a) but underperforms on complex
generation tasks(Figures 5b to 5d). Unlike MID and AT, which train
a defense model with loss regularizers, TO combines a cluster loss
regularizer and random perturbation during training. This dual ap-
proach may pose greater challenges when fine-tuning larger LLMs,
likely explaining TO’s lower performance on complex generation
tasks.

Token-wise perturbation(RanText/CusText/SanText) vs
embedding-wise perturbation(DP/SP). As shown in Figure 5,
token-wise perturbation defenses(SanText, RanText, CusText) out-
perform embedding-wise perturbation(DP, SP) on simple tasks like
SST2. However, they fall behind in complex generation tasks like

VFLAIR-LLM: A Comprehensive Framework and Benchmark for Split Learning of LLMs

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

= w/odefense @ DP A MID AT SP CusText ® TO J RanText (@ SanText [l SnD|
VMI VMI o VMI VMI
. : 0.35 ° -3 o . 0.22 e =
0.8 0.30 0.30) 0.20
0.18
Y 0.25 [} 0.25 @ < Q ‘ *
0.6 * 0.16
0.20 % 0.20 ° f
% &®* E Ed %014
0.4 0.15) 015 Y 012 9
o * v R 3R
[€) 1 0.10} * oF .
o 0.10 » s . 0.10 b
i ‘ 0.05 ® A 0.05 0.08 A
00 0.00 he.d 0.00| sefallcs 0.06 A
05 06 07 08 09 ' 0.130 0.135 0.140 072 073 074 075 036 038 040 042
MP MP MP MP
RMI RMI RMI RMI
1.0 . . 0.07 - 0.045
' 0.14 ® °® v .
. 0.06 0.040 .
0.8 012 [] - .(7 . =
0.035)
*
0.6 o ** ’ 019 ¢ e * ads 0.030, . <
o o008 o % 4 o p .
< < ek < A <0.025] ® 5*
0.03 F
0.4 0.06 4 *)
talad 0.020 ¢
0.04 °. . 0.02
02 o e 0.015 A-a
i a 0.02 % 0.01] ok 0010 R
o - Be ¥
0.0 i 0.00 ‘*‘ % 0oV ®) %
05 06 07 08 09 0.130 0.135 0.140 072 073 074 075 036 038 040 042 04
MP MP M MP
0 BiSR BiSR BiSR BiSR
. # & e ... ' 039 *H . 0.8 ‘e .
0.6 08 - ®
0.25
0.5 0.7 . R 0.7
9| .
0.4 * o ® 0.6 ; 0.20| ®. ° 0.6 [)
S 03 o £ ' Ed * %05 0%
: 015 * W 04 ®
0.2 0.4 oy 2 ‘ . .
) 2 03 0.10 03
0.1
i 0.2 8 £ . » A 0.2 Q*A A
0.0 8o 0o 0.05 o ; 3 %
05 06 07 08 09 0.130 0.135 0.140 072 0.73 0.74 0.75 "036 038 040 042 04
MP MP MP MP

(a) SST2-Bert

(b) Alpaca-GPT2

(c) GSM8K-Mistral

(d) CodeAlp.-CodeLlama

Figure 5: MP-AP results for defending MIA with defense at Model Head under HT SL-LLM. Dot size represents the defense
strength, with detailed defense parameters provided in Table 5.

0.700 0.725 0.750 0.775 0.800
MP

0.700 0.725 0.750 0.775 0.800
Mp

(b) CoLA-Bert

0.700 0.725 0.750 0.775 0.800
MP

0.700 0.725 0.750 0.77
MP

VMI RMI BiSR BLI NS
= w/o defense EL 1.0 o " L = wjo defense - 0.66 o N
A ™MD ® 0.8 065 A wmD ° - °
P - P ®
, AT 0.8 v ® B 0.60 . AT 0.64] e
sp 0.6, sp
® 0.55 o 062 @
0.6 »
o o b
< < k£ 0.60
® 04 @ . ®
0.4 7 A
- = wio defense ® = w/o defense y % 0.58 = w/o defense
A ™MD 0.2 A MD i A ™MD
& 02. © op © or 0.56) © or
' E ’ %*8 A LoAT o AT S om
o sp 0ol m 'y sp 030 0.54] sp
-082 084 086 088 090 092 082 084 086 088 090 092 082 084 086 088 090 002 082 084 086 088 090 0092 082 084 086 088 090 092
MP MP MP MP MP
(a) SST2-Bert
VMI RMI BiSR BLI NS
| 10 o] o . 0675 . -
0.650 0.78, .
0.8 0.5 -
° 0.625 ©
® 0.76|
0.4 A
® 0.6 ® 0.600 ® &
0.74]
o o
< |® <o3lg <0575 g . A
0.4 0.72| ¥
0.550 A
= w/o defense = w/o defense 0‘2. = wj/o defense ‘ A w/o defense = w/o defense
A MD A ™MD A MD 0.525(3" A MID 0.70 A A v
© op 0.2 © op 01 © or 3 pP \ © op
AT AT o AT 0.500/ AT & A . AT
SP 8 SP o SP SP 0.68|4+ SP
0.700 0.725 0.750 0.775 0.800 5 0.800

Figure 6: MP-AP results for defending MIA and LIA with defense at both Model Head and Tail under HBT SL-LLM[Full-LoRA
fine-tuning strategy]. Dot size represents the defense strength, with detailed defense parameters provided in Table 5.

5476

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

BLI BLI
= wio defense L 0.600 .
0.65) DP 0.575{ 8 »
: MID - L
AT g 0.550
0.60| SP ~
0.525] = w/o defense
[DP
%055 % 0.500 MID
AT
0.475 sp
0.50 _—
0.450 s
A
0.45 0.425
e 0.400
0900 0905 0910 0915 0.920 0.824 0.826 0.828
MP
NS NS
0.66
= w/o defense - -
0.65| @ oP ® 0.88
MID
0.64 AT
0.86| o
0.63 P)
0.62
% % 0.84
0.61 vy
0.60 0.82| = wodefense A
) DP
0.59 MID
0.80 AT
0.58 sp
0.900 0.905 0910 0915 0920 0.824 0.826 0.828
MP MP
(a) SST2-Bert (b) CoLA-Bert

Figure 7: MP-AP results for defending LIA with defense at
Model Tail under HBT SL-LLM [Full-LoRA fine-tuning strat-
egy, SST2-Bert].

VMI VMI
¥ -
MID .
0.8 AT 0.8 ¥
sp ®
W wo defense
0.6 0.6/@
o o
< <
0.4 0.4
Py [DP
$ MID
0217 ® 0.2 AT
SP
[y [l w/o defense A
0.0 06 0.7 08 09 02 03 04 __05 06
MP MP
RMI RMI
L]
H B
0.8 | 08 [|
0.6{ o 5@
% | &
0.4 4 @
DP DP
MID 02 MID
0.2 AT AT
SP SP
[l wio defense RihA 0.0/ M wo defense % A
ool———— i
06 0.7 08 09 02 03 04 __05 06
3 MP
(a) SST2-Bert (b) Yelp-Bert

Figure 8: ny,,4 Ablation for MIA with defense at Model Head.
Dot size represents the scale of nj,,4, with the smallest dot
representing np.,; = 2 and the largest dot representing

Nhead = 3

Alpaca/GSM8K/CodeAlpaca, where detailed input information is
crucial for accurate outputs. Token replacement significantly dis-
rupts the input, causing substantial MP loss. In contrast, such dis-
ruptions have a less pronounced effect on simple classification tasks.
Among token-wise perturbation methods(RanText, CusText, San-
Text), RanText performs on par with the others on BERT (Figure 5a)
but outperforms them on larger language models (Figures 5b to 5d).

MIA-LIA vs LIA vs MIA. Comparing results of MIA-LIA(see
Figure 6a) and MIA (see Figure 5a), we observe that perturbation-
based defenses applied at training time(Figure 6a) exhibit milder MP
decay. Specifically, a higher MP is reached in Figure 6a than in

5477

Zixuan Gu, Qiufeng Fan, Long Sun, Yang Liu, and Xiaojun Ye

Table 8: DCS Ranking. For defending MIA and LIA with de-
fense at both Model Head and Tail under HBT SL-LLM [Full-
LoRA fine-tuning strategy].

(a) SST2-Bert

D;::l‘:e PE::;“;‘; T-DCSya T-DCSwia | C-DCS | Ranking
MID 0.5 07680 0.9347 | 0.8513 1
MID 0.1 0.7647 0.9230 0.8438 2
MID 0.01 0.7669 0.9204 0.8437 3
MID 0.001 0.7445 0.9055 | 0.8250 4
MID 0.0001 0.7402 0.9088 0.8245 5
MID le-05 0.7280 0.9175 0.8228 6
AT 0.001 0.7435 0.8873 0.8154 7
AT 0.1 0.7348 0.8922 | 0.8135 8
AT 0.01 0.7390 0.8868 0.8129 9
AT 1 0.7344 0.8892 0.8118 10
AT 5 0.7269 0.8885 | 0.8077 11
DP 50 0.7213 0.8553 0.7883 12
DP 70 0.7180 0.7829 0.7504 13

SP 97 0.7168 0.6910 0.7039 14

SP 98 0.7221 0.6797 0.7009 15

SP 96 0.7170 0.6794 0.6982 16

DP 100 0.7061 0.6666 0.6864 17

SP 95 0.7095 0.6610 | 0.6853 18

DP 500 0.6856 0.6158 0.6507 19
(b) CoLA-Bert

D;z::e Pl:::l:::;r T-DCS;;a T-DCSmia | C-DCS | Ranking
MID 0.5 0.7074 0.9460 0.8267 1
MID 0.01 0.7007 0.9431 0.8219 2
MID 0.1 0.7004 0.9403 0.8204 3
MID le-05 0.6883 0.9450 0.8167 4
MID 0.001 0.6922 0.9409 0.8166 5
MID 0.0001 0.6895 0.9382 0.8139 6
AT 0.001 0.7023 0.8852 | 0.7938 7
AT 0.01 0.6959 0.8886 0.7923 8
AT 0.1 0.6969 0.8819 0.7894 9
AT 0.6893 0.8813 | 0.7853 10
AT 5 0.6879 0.8818 0.7849 11
DP 50 0.6874 0.8134 0.7504 12
DP 70 0.6882 0.7559 0.7221 13

SP 97 0.6938 0.7155 0.7047 14
SP 98 0.7006 0.7043 0.7024 15
DP 100 0.6840 0.7161 0.7001 16
SP 9% 0.6862 0.7137 | 0.6999 17
SP 95 0.6807 0.7093 0.6950 18
DP 500 0.6664 0.6432 0.6548 19

Figure 5a) especially at lower AP range, suggesting that inject-
ing training-time perturbation for defending MIA and LIA attacks
altogether improves MP preservation. On the other hand, learning-
based defenses achieve comparable performance in both scenarios.
The comparison between MIA-LIA (Figure 6) and LIA (Figure 7)
reveals that MP deteriorates when perturbations are applied at both
the model head and tail(Figure 6) versus at the tail alone(Figure 7).
Perturbing both intermediates and gradients during training leads
to increased MP loss.

VFLAIR-LLM: A Comprehensive Framework and Benchmark for Split Learning of LLMs

=005 0.00 0.05

AC -DCS

010 015 = -0.1 02 ~-0.05 0 0.05

0.
AT — DCSj5

AT DCSa e
Figure 9: DCS Gap Distribution. For Defending MIA and LIA
with defense at both Model Head and Tail under HBT SL-
LLM [SST2-Bert]. Here, ADCS = DCSgyii-LoRA —PCSFull-Vanillas
positive ADCS indicate Full-LoRA outperform Full-Vanilla.

Table 9: Average DCS Gap. For Defending MIA and LIA with
defense at both Model Head and Tail under HBT SL-LLM
[SST2-Bert].

AC-DCS AT-DCSyga AT-DCSpia

Overall Average 0.0141 0.0140 0.0142
MID Average 0.0071 0.0016 0.0127
AT Average 0.0463 0.0501 0.0425
SP Average 0.0060 0.0109 0.0011
DP Average -0.0076 -0.0094 -0.0058

5.3 Further Ablation Studies

Larger model head achieves better privacy-utility trade-off
but demands more local resources. To understand the impact of
model head size, we evaluate 4 HT SL-LLM settings with the number
of model head decoders ny,,q ranging from 2 to 5. 4 defenses are
tested against MIA on 2 classification tasks(SST2/Yelp) as shown in
Figure 8. For each defense, we choose hyperparameters that yield
the best DCS. As shown in Figure 8, larger dots tend to position
towards the lower right, suggesting an enhanced privacy-utility
trade-off introduced by larger nj,,4. The trend is more pronounced
for perturbation-based defenses, while learning-based ones are less
affected. However, hosting a larger model head demands more
local resources, introducing another trade-off in the design and
deployment of SL-LLM systems.

SL-LLM with LoRA fine-tuning is more robust against pri-
vacy attacks. To explore the impact of fine-tuning strategies, we
evaluate Full-Vanilla and Full-LoRA fine-tuning on SST2 under
HBT SL-LLM, applying defense at both model head and tail. Let
ADCS denote the DCS Gap between Full-LoRA and Full-Vanilla
methods, where a positive value indicates better privacy-utility
performance achieved through the use of LoRA. Similarly, AC-DCS
is defined as the C-DCS Gap between Full-LoRA and Full-Vanilla
methods, while AT-DCSy1a,AT-DCSy 14 follow similar definitions.

In Figure 9, we present the histogram of ADCS for the tested
defenses. The average DCS gap of each defense type is summarized
in Table 9. As most orange histograms appear at the right of the
vertical line marking 0.0 in Figure 9 and overall average DCS gap
above 0 in Table 9, we conclude that SL-LLM with LoRA is more
resistant to privacy attacks than vanilla training.

6 Conclusions

In this work, we introduce VFLAIR-LLM, a lightweight and exten-
sible SL-LLM framework that incorporates fundamental inference

5478

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

and fine-tuning pipelines within two LLM partition settings. The
framework incorporates a broad spectrum of LLM types, working
modes, attack and defense algorithms, supporting diverse tasks
and datasets. Additionally, we provide a thorough benchmark on
SL-LLM privacy algorithms, delivering practical insights on various
attack and defense strategies, which serve as valuable guidance
for users to select appropriate strategies in real-world applications.
While VFLAIR-LLM provides a versatile framework, further research
is still needed for the acceleration of SL-LLM inference and fine-
tuning.

7 Acknowledgment

This work was supported by the National Key R&D Program of
China under Grant No0.2022ZD0160504, and Wuxi Innovation Cen-
ter of Tsinghua AIR, under Grant A20240103.

References

[1] Alham Fikri Aji and Kenneth Heafield. 2017. Sparse Communication for Dis-
tributed Gradient Descent. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. 440-445.

Sahil Chaudhary. 2023. Code Alpaca: An Instruction-following LLaMA model
for code generation. https://github.com/sahil280114/codealpaca.

Guanzhong Chen, Zhenghan Qin, Mingxin Yang, Yajie Zhou, Tao Fan, Tianyu
Du, and Zenglin Xu. 2024. Unveiling the Vulnerability of Private Fine-Tuning in
Split-Based Frameworks for Large Language Models: A Bidirectionally Enhanced
Attack. arXiv:2409.00960 [cs.CR] https://arxiv.org/abs/2409.00960

Sai Chen, Fengran Mo, Yanhao Wang, Cen Chen, Jian-Yun Nie, Chengyu Wang,
and Jamie Cui. 2023. A Customized Text Sanitization Mechanism with Differential
Privacy. In Findings of the Association for Computational Linguistics: ACL 2023,
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for
Computational Linguistics, Toronto, Canada, 5747-5758. https://doi.org/10.186
53/v1/2023 findings-acl.355

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,
Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,
Christopher Hesse, and John Schulman. 2021. Training Verifiers to Solve Math
Word Problems. arXiv:2110.14168 [cs.LG] https://arxiv.org/abs/2110.14168
Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah,
Ali Ghodsi, Patrick Wendell, Matei Zaharia, and Reynold Xin. 2023. Free Dolly:
Introducing the World’s First Truly Open Instruction-Tuned LLM. https://ww
w.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-
instruction-tuned-1lm

Minxin Du, Xiang Yue, Sherman S. M. Chow, Tianhao Wang, Chenyu Huang, and
Huan Sun. 2023. DP-Forward: Fine-tuning and Inference on Language Models
with Differential Privacy in Forward Pass. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security (CCS "23). ACM, 2665-2679.
https://doi.org/10.1145/3576915.3616592

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model Inversion
Attacks that Exploit Confidence Information and Basic Countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (Denver, Colorado, USA) (CCS ’15). Association for Computing Machin-
ery, New York, NY, USA, 1322-1333. https://doi.org/10.1145/2810103.2813677
Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing
Guo, Jun Zhou, Alex X Liu, and Ting Wang. 2022. Label Inference Attacks Against
Vertical Federated Learning. In 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, Boston, MA. https://www.usenix.org/conference/usen
ixsecurity22/presentation/fu

Otkrist Gupta and Ramesh Raskar. 2018. Distributed learning of deep neural
network over multiple agents. Journal of Network and Computer Applications 116
(2018), 1-8. https://doi.org/10.1016/].jnca.2018.05.003

Otkrist Gupta and Ramesh Raskar. 2018. Distributed learning of deep neural
network over multiple agents. arXiv:1810.06060 [cs.LG] https://arxiv.org/abs/18
10.06060

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric
Tang, Dawn Song, and Jacob Steinhardt. 2021. Measuring Mathematical Problem
Solving With the MATH Dataset. NeurIPS (2021).

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii,
Alexander Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. 2023. Distill-
ing Step-by-Step! Outperforming Larger Language Models with Less Training
Data and Smaller Model Sizes. arXiv:2305.02301 [cs.CL]

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large

[10

(1]

=
&N

ey
et

https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2409.00960
https://arxiv.org/abs/2409.00960
https://doi.org/10.18653/v1/2023.findings-acl.355
https://doi.org/10.18653/v1/2023.findings-acl.355
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://doi.org/10.1145/3576915.3616592
https://doi.org/10.1145/2810103.2813677
https://www.usenix.org/conference/usenixsecurity22/presentation/fu
https://www.usenix.org/conference/usenixsecurity22/presentation/fu
https://doi.org/10.1016/j.jnca.2018.05.003
https://arxiv.org/abs/1810.06060
https://arxiv.org/abs/1810.06060
https://arxiv.org/abs/1810.06060
https://arxiv.org/abs/2305.02301

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

[15]

[16

[17

[18

[19]

[20]

[21]

[22

[23]

[24]

[25]

[26

[27]

[28

[29

[30

(31

[32]

[33]

[34]

[35]

Language Models. arXiv:2106.09685 [cs.CL] https://arxiv.org/abs/2106.09685
Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. 2021. FedPara: Low-
Rank Hadamard Product for Communication-Efficient Federated Learning.
arXiv:2108.06098 [cs.LG]

Kai Kugler, Simon Miinker, Johannes Hohmann, and Achim Rettinger. 2024. In-
VBERT: Reconstructing Text from Contextualized Word Embeddings by inverting
the BERT pipeline. (2024). https://doi.org/10.48694/JCLS.3572

Haoran Li, Mingshi Xu, and Yangqiu Song. 2023. Sentence Embedding Leaks
More Information than You Expect: Generative Embedding Inversion Attack to
Recover the Whole Sentence. In Findings of the Association for Computational
Linguistics: ACL 2023, Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(Eds.). Association for Computational Linguistics, Toronto, Canada, 14022-14040.
https://doi.org/10.18653/v1/2023 findings-acl.881

Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Vir-
ginia Smith, and Chong Wang. 2022. Label Leakage and Protection in Two-
party Split Learning. In International Conference on Learning Representations.
https://openreview.net/forum?id=cOtBRgsf2fO

Zheng Lin, Xuanjie Hu, Yuxin Zhang, Zhe Chen, Zihan Fang, Xianhao
Chen, Ang Li, Praneeth Vepakomma, and Yue Gao. 2024. SplitLoRA: A
Split Parameter-Efficient Fine-Tuning Framework for Large Language Models.
arXiv:2407.00952 [cs.LG] https://arxiv.org/abs/2407.00952

Peihua Mai, Ran Yan, Zhe Huang, Youjia Yang, and Yan Pang. 2023. Split-and-
Denoise: Protect large language model inference with local differential privacy.
CoRR abs/2310.09130 (2023). https://doi.org/10.48550/ARXIV.2310.09130
arXiv:2310.09130

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak
Paul, and Benjamin Bossan. 2022. PEFT: State-of-the-art Parameter-Efficient
Fine-Tuning methods. https://github.com/huggingface/peft.

H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agiiera y Arcas.
2016. Federated Learning of Deep Networks using Model Averaging. CoRR
abs/1602.05629 (2016). arXiv:1602.05629 http://arxiv.org/abs/1602.05629

John Morris, Volodymyr Kuleshov, Vitaly Shmatikov, and Alexander Rush. 2023.
Text Embeddings Reveal (Almost) As Much As Text. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, Houda Bouamor,
Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics,
Singapore, 12448-12460. https://doi.org/10.18653/v1/2023.emnlp-main.765
Xudong Pan, Mi Zhang, Shouling Ji, and Min Yang. 2020. Privacy Risks of General-
Purpose Language Models. In 2020 IEEE Symposium on Security and Privacy (SP).
1314-1331. https://doi.org/10.1109/SP40000.2020.00095

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham,
Raffaella Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. 2016. The LAMBADA dataset: Word prediction requiring a broad
discourse context. arXiv:1606.06031 [cs.CL]

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).
Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
2016. SQuAD: 100,000+ Questions for Machine Comprehension of Text.
arXiv:1606.05250 [cs.CL]

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sun-
daresan, Ming Zhou, Ambrosio Blanco, and Shuai Ma. 2020. CodeBLEU: a
Method for Automatic Evaluation of Code Synthesis. arXiv:2009.10297 [cs.SE]
https://arxiv.org/abs/2009.10297

Salman Salamatian, Amy Zhang, Flavio du Pin Calmon, Sandilya Bhamidipati,
Nadia Fawaz, Branislav Kveton, Pedro Oliveira, and Nina Taft. 2015. Managing
Your Private and Public Data: Bringing Down Inference Attacks Against Your
Privacy. IEEE Journal of Selected Topics in Signal Processing 9, 7 (Oct. 2015),
1240-1255. https://doi.org/10.1109/jstsp.2015.2442227

Xicong Shen, Yang Liu, Huiqi Liu, Jue Hong, Bing Duan, Zirui Huang, Yunlong
Mao, Ye Wu, and Di Wu. 2023. A Split-and-Privatize Framework for Large
Language Model Fine-Tuning. arXiv:2312.15603 [cs.CL] https://arxiv.org/abs/23
12.15603

Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang, Xinlei Chen, Devi Parikh,
and Marcus Rohrbach. 2019. Towards VQA Models That Can Read. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 8317-8326.
Congzheng Song and Ananth Raghunathan. 2020. Information Leakage in Em-
bedding Models. Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (2020). https://api.semanticscholar.org/CorpusID:
214743021

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_alp
aca.

Chandra Thapa, M. A. P. Chamikara, Seyit Camtepe, and Lichao
Sun. 2022. SplitFed: When Federated Learning Meets Split Learning.
arXiv:2004.12088 [cs.LG] https://arxiv.org/abs/2004.12088

Meng Tong, Kejiang Chen, Jie Zhang, Yuang Qi, Weiming Zhang, Nenghai Yu,
Tianwei Zhang, and Zhikun Zhang. 2024. InferDPT: Privacy-Preserving Inference

5479

@
2

[37

[38

[39]

=
=

[41

[42]

[43

[44

=
i)

[46

[47]

=
&

[49

[50

[51

[52

[53

[54

[55

Zixuan Gu, Qiufeng Fan, Long Sun, Yang Liu, and Xiaojun Ye

for Black-box Large Language Model. arXiv:2310.12214 [cs.CR] https://arxiv.or
g/abs/2310.12214

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All
You Need. arXiv:1706.03762 [cs.CL]

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. 2018.
Split learning for health: Distributed deep learning without sharing raw patient
data. arXiv:1812.00564 [cs.LG] https://arxiv.org/abs/1812.00564

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and
Marius Hobbhahn. 2024. Will we run out of data? Limits of LLM scaling based
on human-generated data. arXiv:2211.04325 [cs.LG] https://arxiv.org/abs/2211.0
4325

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
R. Bowman. 2019. Glue: A multi-task benchmark and analysis platform for
natural language understanding.

Tianhao Wang, Yuheng Zhang, and Ruoxi Jia. 2021. Improving robustness to
model inversion attacks via mutual information regularization. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 35. 11666—-11673.

Tengxi Xia, Yongheng Deng, Sheng Yue, Junyi He, Ju Ren, and Yaoxue Zhang.
2022. HSFL: An Efficient Split Federated Learning Framework via Hierarchi-
cal Organization. In 2022 18th International Conference on Network and Service
Management (CNSM). 1-9. https://doi.org/10.23919/CNSM55787.2022.9964646
Guangxuan Xiao, Ji Lin, and Song Han. 2023. Offsite-Tuning: Transfer Learning
without Full Model. arXiv:2302.04870 [cs.CL] https://arxiv.org/abs/2302.04870
Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated Machine
Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol. 10, 2, Article
12 (Jan. 2019), 19 pages. https://doi.org/10.1145/3298981

Kai Yao, Zhaorui Tan, Tiandi Ye, Lichun Li, Yuan Zhao, Wenyan Liu, Wei Wang,
and Jianke Zhu. 2024. ScaleOT: Privacy-utility-scalable Offsite-tuning with Dy-
namic LayerReplace and Selective Rank Compression. arXiv:2412.09812 [cs.CL]
https://arxiv.org/abs/2412.09812

Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang.
2024. A survey on large language model (LLM) security and privacy: The Good,
The Bad, and The Ugly. High-Confidence Computing 4, 2 (June 2024), 100211.
https://doi.org/10.1016/j.hcc.2024.100211

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang,
James T Kwok, Zhenguo Li, Adrian Weller, and Weiyang Liu. 2023. MetaMath:
Bootstrap Your Own Mathematical Questions for Large Language Models. arXiv
preprint arXiv:2309.12284 (2023).

Xiang Yue, Minxin Du, Tianhao Wang, Yaliang Li, Huan Sun, and Sherman S. M.
Chow. 2021. Differential Privacy for Text Analytics via Natural Text Sanitization.
In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
Chengging Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.). Association for
Computational Linguistics, Online, 3853-3866. https://doi.org/10.18653/v1/2021
findings-acl.337

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis,
Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo Zhao. 2023. AdaLoRA: Adaptive
Budget Allocation for Parameter-Efficient Fine-Tuning. arXiv:2303.10512 [cs.CL]
Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level Convolutional
Networks for Text Classification. In Advances in Neural Information Processing
Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.),
Vol. 28. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/pap
er/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

Tianchen Zhou, Zhanyi Hu, Bingzhe Wu, and Cen Chen. 2023. SLPerf: a Unified
Framework for Benchmarking Split Learning. ArXiv abs/2304.01502 (2023). https:
//api.semanticscholar.org/CorpusID:257921382

Xin Zhou, Yi Lu, Ruotian Ma, Tao Gui, Yuran Wang, Yong Ding, Yibo Zhang,
Qi Zhang, and Xuanjing Huang. 2023. TextObfuscator: Making Pre-trained
Language Model a Privacy Protector via Obfuscating Word Representations. In
Findings of the Association for Computational Linguistics: ACL 2023, Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for Computational
Linguistics, Toronto, Canada, 5459-5473. https://doi.org/10.18653/v1/2023.findi
ngs-acl.337

Tianyuan Zou, Zixuan Gu, Yu He, Hideaki Takahashi, Yang Liu, Guangnan Ye,
and Ya-Qin Zhang. 2023. VFLAIR: A Research Library and Benchmark for Vertical
Federated Learning. arXiv preprint arXiv:2310.09827 (2023).

Tianyuan Zou, Yang Liu, Yan Kang, Wenhan Liu, Yuangin He, Zhihao Yi, Qiang
Yang, and Ya-Qin Zhang. 2022. Defending Batch-Level Label Inference and
Replacement Attacks in Vertical Federated Learning. IEEE Transactions on Big
Data (2022).

Tianyuan Zou, Yang Liu, Yan Kang, Wenhan Liu, Yuangin He, Zhihao Yi, Qiang
Yang, and Ya-Qin Zhang. 2022. Defending Batch-Level Label Inference and
Replacement Attacks in Vertical Federated Learning. IEEE Transactions on Big
Data (2022).

Tianyuan Zou, Yang Liu, and Ya-Qin Zhang. 2023. Mutual Information Regular-
ization for Vertical Federated Learning. arXiv preprint arXiv:2301.01142 (2023).

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2108.06098
https://doi.org/10.48694/JCLS.3572
https://doi.org/10.18653/v1/2023.findings-acl.881
https://openreview.net/forum?id=cOtBRgsf2fO
https://arxiv.org/abs/2407.00952
https://arxiv.org/abs/2407.00952
https://doi.org/10.48550/ARXIV.2310.09130
https://arxiv.org/abs/2310.09130
https://github.com/huggingface/peft
https://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://doi.org/10.18653/v1/2023.emnlp-main.765
https://doi.org/10.1109/SP40000.2020.00095
https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://doi.org/10.1109/jstsp.2015.2442227
https://arxiv.org/abs/2312.15603
https://arxiv.org/abs/2312.15603
https://arxiv.org/abs/2312.15603
https://api.semanticscholar.org/CorpusID:214743021
https://api.semanticscholar.org/CorpusID:214743021
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2004.12088
https://arxiv.org/abs/2004.12088
https://arxiv.org/abs/2310.12214
https://arxiv.org/abs/2310.12214
https://arxiv.org/abs/2310.12214
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1812.00564
https://arxiv.org/abs/1812.00564
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2211.04325
https://doi.org/10.23919/CNSM55787.2022.9964646
https://arxiv.org/abs/2302.04870
https://arxiv.org/abs/2302.04870
https://doi.org/10.1145/3298981
https://arxiv.org/abs/2412.09812
https://arxiv.org/abs/2412.09812
https://doi.org/10.1016/j.hcc.2024.100211
https://doi.org/10.18653/v1/2021.findings-acl.337
https://doi.org/10.18653/v1/2021.findings-acl.337
https://arxiv.org/abs/2303.10512
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://api.semanticscholar.org/CorpusID:257921382
https://api.semanticscholar.org/CorpusID:257921382
https://doi.org/10.18653/v1/2023.findings-acl.337
https://doi.org/10.18653/v1/2023.findings-acl.337

VFLAIR-LLM: A Comprehensive Framework and Benchmark for Split Learning of LLMs

Algorithm 2 A Normal HBT SL-LLM Training Procedure.

Y 2 3N R

10:

11:

12:
13:

14:

15:

16:

17:
18:

AN

Input: learning rates n, LoRA strategy LoRA()
Output: M4, Mbody’ Miair-

: Model Party initialize Mp,q,; Data Party initialize Mpeqq.

Mtail~

: for i € [head, body, tail] do
if M; is trainable then
if Use LoRA Strategy then M; «— LoRA(M;)
else
Freeze M;
end if
: end for
. for each iteration j = 1,2, ... do
Randomly sample a mini-batch of samples {x,y} ¢ D of

size n;

Data Party computes Hy ;. = Mpeqq(Xx) and sends it to
model party;

Model Party computes Hy x = Mpoqy(Hy k) and sends it to
data party;

Data Party computes the prediction . = M, 4 (Hzx);
Data party computes the loss £ = %t’ (y,y) and the gradient

Gy = g—l‘_ﬁ, then sends the gradient to model party;

JHL _add oL .

Data party updates My, = My ., —m M
JHl A _ 2 .
Model party updates Mbody = Mhody n11G1 TMpady’

Model Party computes the gradient Gz = G g—gf and sends
it to data party;
JHU A oH; |
Data party updates My -, =My ;= mGag31-—:;
end for=0

Algorithm 1 A Normal HT SL-LLM Training Procedure.

Y ® N

10:

11:

12:

13:

14:

15:
16:

oo W e

Input: Learning rates n, LoRA strategy LoRA().
Output: Myeqq, M;gir-

: Model Party initialize M;,;;; Data Party initialize Mpeqq.
. for i € [head, tail] do
if M; is trainable then
if Use LoRA Strategy then M; < LoRA(M;)
else
Freeze M;
end if
: end for
. for each iteration j = 1,2,... do
Randomly sample a mini-batch of samples {x,y} ¢ D of

size n;
Data Party computes Hy = Mp,,q(Xx) and sends it to model
party;
Model Party computes the prediction y; = M,,;;(Hy) and
sends it to data party;
Data party computes the loss £ = %t’ (y,y) and the gradient
G = %,
ay . .
Model party updates Mf;.ll = Miail - 11G1 %;
Model Party computes the gradient Gy = Gy % and sends it
to data party;
Data party updates Mil:; 4= Milea
end for=0

then sends the gradient to model party;

oH .
IMhnead’

d - T]le

5480

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

A Supported Defenses

A.1 Perturbation-based Defenses

Differential Privacy(DP) [7, 24] is implemented by clipping
and adding noise to intermediate results or gradients. Larger ¢
in the added Laplace noise Lap(Af/e€) indicates stronger pertur-
bation and defense, where Af denotes the 11-sensitivity [24] of
the LLM. Sparsification(SP) [1, 9, 54] is implemented by drop-
ping elements in tensors that are close to 0. Sparsification rate r
is the percent of sparsified coordinates in tensors. Larger r indi-
cates stronger perturbation and therefore stronger defense. San-
Text [47]/CusText [4]/RanText [35] all employ token-wise per-
turbation based on an MLDP mechanism, where € controls the DP
noise level. A larger e corresponds to greater MLDP noise, indi-
cating stronger defense. Specifically, SanText replaces a portion of
tokens with one close in terms of embedding distance from a word
adjacency list. While CusText perturbs all words in a sentence and
uses a smaller word adjacency list. RanText introduces a random
adjacency list mechanism and samples perturbed words via MLDP
to perturb documents. In Split-N-Denoise(SnD) [20], the data
party first perturbs the intermediate embedding via a DP-based
privatization module. The received noised embedding from model
party is subsequently denoised using a pre-trained denoising model,
offering inference-time defense for classification tasks. Larger n cor-
responds to weaker noise in the perturbation module and therefore
weaker defense.

A.2 Learning-based Defenses

Mutual Information Defense(MID) [40, 55] introduces a bottle-
neck known as the Mutual Information (MI) model into the data
party’s model. This MI model is trained with a mutual informa-
tion loss regularizer, which is the mutual information between
the privacy target and the intermediate tensor obtained by poten-
tial attackers, steering the intermediates away from revealing the
privacy target. This defense is primarily designed for computer
vision (CV) tasks but can be extended to LLM applications as its
mechanism is independent of the model architecture. Regularizer
Strength A controls the weight of the MI regularizer in the train-
ing loss. Larger A attaches more importance to minimizing the

VMmI RMI

BiSR

1.0
0.8
0.8] 0.8]
0.6]
0.6 0.6
o o o
< < <0.4]
04 0.4
02 0.2]
0.2 =
A 0.0) ® A oo % A
03 0.4 0.5 0.6 0.3 0.4 0.5 0.6 2 0.3 0.4 0.5 0.6
MP mP MP
(a) Yelp-Bert
VMI RMI BiSR
0.1 0.9
0.40 .
035 012 0.8|
0.30) [0.10|@ orl
0.25| 0.08 06l
%o0.20 & 4
0.06] 05
0.15(
ool 0.04 04
2|
005 4 0.0: « ' I
% 0.00 i

0.0 02 04
MP

06 0.0 0.2 04

(b) Lamba:i;-GPTZ
Figure 10: MP-AP results for defending MIA with defense
at Model Head under HT SL-LLM. Dot size represents the
defense strength.

06 0.0 0.2

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

Table 10: Efficiency Evaluation for Distributed/Standalone
Deployment

Throughput Communication
(token/s) Avg.(kb/token) Total(MB)
Llama3-8B(Std.) 23.27 / /
Llama3-70B(Std.) 9.66 / /
Llama3-8B(Dist.) 15.41 16 340
Llama3-70B(Dist.) 6.97 32 1473

Std.:standalone, Dist.:distributed.

MI regularizer, indicating stronger defense. Adversarial Train-
ing(AT) [24] is a widely used learning-based defense strategy. In
AT, a simulated adversary model Ay is trained jointly with a Privacy
Preserving Mapping[29] D trying to minimize the effectiveness of
the imagined adversary. A mapping distance A||Dg(H) — H||? is
added as a utility regularizer, constraining the embedding distor-
tion. The overall training can be presented as a minmax problem:
min(Lf(Y, lA/)+Lf(A¢(D9(H)),X)+/1||D9(H) —H||2). Larger regu-
larizer Strength A indicates more emphasis on utility and weaker de-
fense. TextObfuscator(TO) [51] fine-tune the whole LLM system
with word representation obfuscation and a cluster loss regularizer.
It can only defend MIA and has proved efficient on RoBerta for
classification tasks. A larger cluster number njyster, indicates more
precise word clustering, which results in reduced perturbation and
therefore weaker defense strength.

B Detailed Experimental Settings

B.1 Task and Model Configurations

SST-2, CoLA, Yelp and SQuAD are tested on open-sourced bert-
based models available at https://huggingface.co/textattack/bert-
base-uncased-SST-2, https://huggingface.co/Shunian/yelp_review
_classification and https://huggingface.co/google-bert/bert-large-
uncased-whole-word-masking-finetuned-squad. In HT setting,
Nhead = 3. In HBT setting,npeqq = 3 and nyy;; = 3. Lambada
is tested on GPT2 model[26]. In HT setting, npe,q = 2. In HBT
setting,npeqq = 2 and ny,; = 2. Alpaca is tested on an open-
sourced GPT2 model available at https://huggingface.co/vicgall
e/gpt2-alpaca. In HT setting, npe,q = 2. GSM8K is tested on an
open-sourced Mistral-7B model[46] available at https://huggingfac
e.co/meta-math/MetaMath-Mistral-7B. In HT setting, npeqq = 2.
CodeAlpaca is tested on the open-sourced CodeLlama-7B model
available at https://huggingface.co/codellama/CodeLlama-7b-hf.
In HT setting, npeqq = 2.

B.2 Fine-tuning Settings

In Section 5.1, we set training bs(batch-size) to 128/32/16 and Ir
(learning rate) to 1e-4/5e-5/1e-5 for SST2, SQUAD and Lambada
respectively. Convergence is marked with an early-stop strategy.
For LoRA fine-tuning, we set r = 4, & = 32, and dropout rate=0.1,
which remains the same in all other LoRA experiments.

B.3 Attack Settings

Model Inversion Attack Settings: For SST2, CoLA, Yelp, Lam-
bada, Alpaca, GSM8K, CodeAlpaca, we randomly sample 100/100/1000
/200/100/100/100 samples from the targeting dataset for evaluating
inversion attacks. In VMI, attack training epoch is set to 400/100
with a Ir of 0.001/0.01 for Lambada/other datasets. In RMI, attack

5481

Zixuan Gu, Qiufeng Fan, Long Sun, Yang Liu, and Xiaojun Ye

training epoch is set to 300/500 with Ir of 0.005 for Lambada/other
datasets. We set temperature to 0.5 following [32]. In BiSR, we ran-
domly select 300/100 training samples for the first noise-aware pre-
training phase for Alpaca/other datasets, where expert epoch=20,
gate epoch=15 and full epoch=4 following [3]. In the subsequent
data reconstruction phase, attack epoch is set to 100 with 1r=0.01.

Label Inference Attack Settings: In BLI, we set attack training
epoch to 500 with a Ir of 0.05 for all tested datasets, while NS does
not require additional hyper-parameter setting.

B.4 Defense Settings

Apply Defense at Model Head in HT SL-LLM: In Figure 5, per-
turbation are injected directly into SL-LLM inference. In SanText,
percentage of perturbed sensitive words is set to 0.5. In CusText,
top-k is set to 20% for SST2, Alpaca and CodeAlpaca, 100% for
GSMBSK. In SnD, denoise model is pretrained on the training set
for 16 epochs, with Ir=0.0001 and bs=12. 1;r4in is set to 100 fol-
lowing [20]. MID and AT requires SL-LLM training to train its
defense model. For SST2/Yelp/Alpaca, we set bs=128/64/12 and
Ir=1e-4 with padding length of 70/384/256. For Lambada, we gen-
erate the training samples of length 512. bs=32 and Ir=1e-3. For
GSMB8K, we set bs=16, Ir=0.001, with padding length of 128. In TO,
for SST2, we apply a Full-Vanilla strategy and set bs=128,lr=0.0001,
Waway = 0.5,W¢ose = 0.1,€ = 1. For Alpaca, we apply a Full-Vanilla
strategy and set bs=16,Ir=0.0001, waway = 0.5,Wcjse = 0.1, = 2.
For GSM8K, we apply a Full-LoRA strategy and set bs=8,Ir=1e-8,
€ = 2. We set Waway = 0.5,Wjpse = 0.1 for all datasets.

Apply Defense at Model Tail in HBT SL-LLM: In Figures 7a
and 7b, we apply a Full-LoRA fine-tuning strategy. For SST2, we
use bs=16, and LLM Ir=0.0001. In MID and AT, the defense model
Ir is 0.0001. For CoLA, bs=32, Ir=0.0001. Defense model Ir is set to
0.0001 for MID and AT.

Apply Defense at Both Model Head and Tail in HBT SL-LLM:
In Figures 6a and 6b, we apply a Full-LoRA fine-tuning strategy.
For SST2/CoLA, main Ir=1e-4 and bs=16/32. MID and AT’s defense
model Ir is set to 0.0001. When applying Full-Vanilla in Table 9 for
SST-2, main LLM Ir is altered to 1le-5.

C Distributed Deployment Result of SL-LLM

We evaluate the efficiency of distributed vs standalone SL-LLM
inference using Llama3-8B and Llama3-70B in Table 10, tested by
conducting inference on 100 randomly selected samples from the
Alpaca dataset. For distributed deployment, we use 2 Nvidia A100
GPUs on the model party side and 1 Nvidia A10 GPU on the data
party side with a bandwidth of 300Mb for communication. For
standalone simulation, we use 2 Nvidia A100 GPUs. Both models
show significantly lower throughput in distributed mode compared
to standalone deployment, suggesting communication efficiency
is a bottleneck for distributed deployment which requires further
improvement.

D Additional Experiment Results

Due to space limit, we place additional MIA result on other datasets
in Figure 10. We also provide a detailed user guidance for VFLAIR-LLM
in our code base(see https://github.com/FLAIR-THU/VFLAIR-
LLM).

https://huggingface.co/textattack/bert-base-uncased-SST-2
https://huggingface.co/textattack/bert-base-uncased-SST-2
https://huggingface.co/Shunian/yelp_review_classification
https://huggingface.co/Shunian/yelp_review_classification
https://huggingface.co/google-bert/bert-large-uncased-whole-word-masking-finetuned-squad
https://huggingface.co/google-bert/bert-large-uncased-whole-word-masking-finetuned-squad
https://huggingface.co/vicgalle/gpt2-alpaca
https://huggingface.co/vicgalle/gpt2-alpaca
https://huggingface.co/meta-math/MetaMath-Mistral-7B
https://huggingface.co/meta-math/MetaMath-Mistral-7B
https://huggingface.co/codellama/CodeLlama-7b-hf
https://github.com/FLAIR-THU/VFLAIR-LLM
https://github.com/FLAIR-THU/VFLAIR-LLM

	Abstract
	1 Introduction
	2 Related Works
	2.1 Private adaptation of LLMs under limited local resources
	2.2 Split Learning of LLMs

	3 Framework Overview
	3.1 Split Learning for LLM(SL-LLM)
	3.2 Fine-tuning Methods for SL-LLM
	3.3 VFLAIR-LLM Framework Design

	4 Experiment Settings
	5 Experiment Results
	5.1 SL-LLM Fine-tuning Results.
	5.2 Attacks and Defenses Benchmark
	5.3 Further Ablation Studies

	6 Conclusions
	7 Acknowledgment
	References
	A Supported Defenses
	A.1 Perturbation-based Defenses
	A.2 Learning-based Defenses

	B Detailed Experimental Settings
	B.1 Task and Model Configurations
	B.2 Fine-tuning Settings
	B.3 Attack Settings
	B.4 Defense Settings

	C Distributed Deployment Result of SL-LLM
	D Additional Experiment Results

