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Surrogate-assisted Seismic Performance Assessment Incorporating Vine Copula

Captured Dependence
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Abstract:

Performance-based earthquake engineering (PBEE) is an advanced philosophy for the design,
assessment and decision-making of structures under seismic hazards. Improving the accuracy
and efficiency of PBEE assessment is of great importance. Traditionally, a linear relationship
conditioned on scalar seismic intensity measure (IM) is used to predict the seismic demand. In
addition, there exists dependence within PBEE, whereas multivariate normality of logarithmic
values is widely assumed for modeling the dependence in previous studies. By interconnecting
several advanced techniques, this paper proposes a hybrid and novel framework to improve the
PBEE, and the proposed framework can reduce uncertainties while capturing more realistic
dependence. The vector IM and surrogate models are then coupled to predict the seismic
demand with satisfying accuracy. Vine copula could characterize complex nonlinear
dependence structures, and it is adopted to model the dependence of demands and IMs. Seismic
performance can be assessed confidently. The proposed framework is illustrated on a portfolio
of bridges under seismic hazards. The results show that the proposed framework could improve
accuracy significantly and better capture complex dependence. Additionally, the effect of
dependence modeling on high-order moments of performance is investigated. The large
difference of high order moments of performance is observed by using conventional
assumption and vine copula, which further highlights the necessity of implementing the

proposed framework.
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1 Introduction

After the 1994 Northbridge and 1995 Kobe earthquakes, it is found that the indirect loss (e.g.,
downtime) and direct loss (e.g., repair cost) are tremendous, even though the bridges were
designed to satisfy safety requirements [ 1]. Performance-based earthquake engineering (PBEE)
was then developed to aid the design and decision-making of structures considering
performance objectives (e.g., economic loss, fatality, and downtime) concerned by stakeholders
[2—4]. PBEE generally involves probabilistic hazard analysis, seismic demand prediction, and
consequence evaluation [5]. Due to the existent of uncertainty and complex dependence,
confident performance assessment is challenging. Improving the accuracy and confidence of
performance assessment is an essential task. This paper aims to propose an updated seismic
performance assessment framework by reducing uncertainty and capturing more realistic

dependence.

Developing a probabilistic seismic demand model (PSDM) serves as the basic step in
PBEE and directly affects the accuracy of performance assessment. PSDM can be used to
compute the probabilistic distribution of seismic demand under various hazard intensity levels
[6]. Within this process, a linear relationship between logarithmic scalar intensity measure (IM)
and the logarithmic mean of demand is widely used in previous studies for demand prediction
[7,8]. The scalar IM is used as the only predictor. However, the linear equation may not be
adequate to represent the complex relationship between hazard intensity and demand.
Additionally, the single IM may not be adequate to reflect the complex characteristics of the
ground motion time history [9] and it could result in biased estimation [10]. To address these
limitations, an advanced surrogate model representing the relationship between input and
response could be adopted based on a learning process. The developed surrogate model can
then facilitate efficient and accurate reliability analysis [11]. In this way, multiple predictors
(e.g., IMs and structural parameters) could be incorporated in surrogate models to perform a
more accurate performance assessment. Surrogate models have been applied in engineering
problems with satisfying accuracy [ 12—16]. The polynomial chaos expansion (PCE) is one type
of surrogate model that consists of spectral representations [17]. Some terms of PCE are
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insignificant for the prediction as the high-order interaction effect is usually negligible [18].
The sparse PCE (SPCE) which only contains the selected significant terms was then proposed.
Compared with PCE, SPCE requires fewer training points under the same accuracy
requirement [18]. Besides using the surrogate model, another way to improve the accuracy of
performance assessment is incorporating more hazard information in demand prediction.
Vector IM contains more information on the ground motion and could reflect multiple
characteristics of the earthquake. Vector IM could reduce the standard deviations of logarithmic
demand significantly [19], improve the predictive ability of structural demand [20], and
facilitate more accurate probabilistic demand analysis of structures [21]. Considering more
than one IM could improve the sufficiency and efficiency in seismic slope displacement
prediction [22-24]. However, the vector IM has not been well incorporated in the surrogate
model to improve the predictive ability within the PBEE framework. In this paper, vector IM

and SPCE are coupled to jointly improve the accuracy of seismic performance assessment.

Within the PBEE, there exists dependence from multiple sources (e.g., the demand side
and IM side). The assumption of multivariate normality of logarithmic IMs is widely used for
probabilistic seismic hazard analysis [25-27]. The assumption of multivariate normality of
logarithmic demands is also widely adopted in PSDM [28,29]. This assumption lacks
comprehensive validation, and it may not be the optimal dependence structure for IMs and
demands if another dependence modeling approach is applicable. Copula is a flexible approach
for modeling the dependence of variables. In this approach, the joint distribution is decomposed
as marginal distributions and dependence models [30]. Compared with the assumption of
multivariate normality, the copula could incorporate more dependence characteristics (e.g.,
central-, lower-, and upper-tail dependence) and reflect more realistic dependence features
[24,31,32]. However, with respect to multivariate variables, the conventional copula approach
uses the same dependence structure for modeling all pairs of random variables. This constraint
limits the modeling of multiple structures and characteristics of dependence among
multivariate variables. Vine copula was then proposed to address this issue [33,34]. In the vine

copula approach, the joint distribution is decomposed into marginal distributions, and the



multiple dependence structures among multivariate variables are captured using a system of
pair copulas. The widely used assumption of multivariate normality of logarithmic IMs and
demands can be considered as a specific case in the vine copula approach, where the pair
copulas are all Gaussian copulas [24]. To the authors’ best knowledge, the vine copula approach
has not been adopted for the dependence modeling of both IMs and demand surrogate models
within an integrated PBEE framework. The vine copula approach is used in this study to model

the complex dependence from multiple sources within PBEE.

The hazard analysis, structural analysis, damage analysis, and loss analysis are four
components within PBEE, and any of them could directly affect the performance assessment,
thus affect decision making. However, the advanced techniques, which can facilitate these four
components, have not been well interconnected to formulate an integrated PBEE framework.
To address these issues, a novel and updated PBEE (UPBEE) framework is proposed herein to
improve the accuracy and confidence, by interconnecting vector IM, surrogate model, and vine
copula. Specifically, the vector IM is incorporated in the surrogate model to improve the
confidence of performance assessment. The vine copula is used to model the complex
dependence of both multivariate IMs and multivariate seismic demands. An updated and
integrated PBEE framework is developed with improved accuracy and confidence. The effect
of dependence modeling on high-order moments of performance is investigated. The remainder
of this paper is organized as follows. The conventional PBEE framework is discussed in
Section 2. The methodology of UPBEE is introduced in section 3. The proposed UPBEE
framework is introduced in Section 4. An illustrative example is presented in section 5. Section

6 contains conclusions.
2 Performance-based earthquake engineering (PBEE): A review

PBEE is a new generation philosophy for the assessment and decision-making of structures. In
this engineering philosophy, the structures are expected to satisfy performance objectives (e.g.,
direct loss, indirect loss, and fatality, etc.). The conventional procedures of the PBEE

framework can be summarized as follows. Probabilistic seismic hazard analysis is performed



to identify the potential IM levels and corresponding probabilities. A linear relationship
between logarithmic scalar IM and the logarithmic mean of demand is used to predict the
seismic demand under different IM levels. For the dependence modeling among multiple
demands, multivariate normality of logarithmic values is assumed. Vulnerability is computed
based on PSDM. Then, the probabilistic performance can be computed. A general expression
indicating the probability that a decision variable exceeding DV under a given IM can be

written as [35]
G(DV | IM) =[[G(DV | DM)dG(DM | EDP)dG(EDP | IM) )

where G function is the complementary cumulative distribution function; DM represents
damage measure; and EDP is engineering demand parameter. Seismic repair loss is one of the
seismic performance indicators [2,36]. The ratio of repair loss to the construction cost of the
structure is defined as the repair loss ratio. Herein, the repair loss ratio is considered to illustrate
the proposed approach, the proposed approach could be updated by considering other
performance aspects (e.g., sustainability and resilience). Each damage state is associated with
a defined repair loss ratio [37,38]. The probability of structure being in each damage state can
be calculated based on vulnerability. The repair loss ratio under given hazard intensity is

calculated as the sum of weighted repair loss ratios associated with all damage states [39].

The conventional PBEE framework can be further updated. The linear relationship used
for seismic demand prediction may not satisfy the accuracy requirement due to its simplicity.
The scalar IM used as the only predictor may not provide adequate information of the
earthquakes, resulting in a relatively large amount of prediction uncertainty. The assumption
of multivariate normality of logarithmic values is widely used in PBEE for dependence
modeling, and it cannot well capture nonlinear dependence characteristics. These issues could

jointly affect the confidence and accuracy of PBEE.



3 Efficient uncertainty quantification and modeling of nonlinear dependence within

PBEE

To improve the confidence and accuracy of PBEE, this study proposes an updated PBEE
framework by interconnecting SPCE, vine copula, and vector IM. The specific techniques are

introduced in the following parts.
3.1 Sparse polynomial chaos expansion (SPCE) — surrogate model

For assessing the vulnerability of structures, it is necessary to compute the joint probabilistic
distribution of multiple seismic demands under different IM levels. Conventionally, a linear
relationship between logarithmic scalar IM and the logarithmic mean of demand is used [8]. In
this study, the relationship between the input vector X € R™ and multiple outputs [Y1, Y2, ...,
Yw] is established using surrogate model. Generally, multivariate surrogate model can be

expressed as [28]
Y =Y (X)+&5(X) 2

where ¥ € R is the prediction from the model; ¥ € R is the estimation from a trend

model; and &g € RW is the correlated model error.

SPCE is one type of surrogate model, and it performs well in uncertainty quantification
and data-driven prediction [40,41]. SPCE is used in this study as a surrogate model. The
random input vector of a computational model M is represented by a joint PDF fx. The output
of the computational model M(X) is associated with finite variance, the PCE of M(X) is

written as [42]

M(X)=2.,.u ., (X) 3)
where ¥, (X) are the multivariate polynomials orthonormal with respect to fx; a € NM isa
set of indices mapping to the components of the ¥, (X); and c, are the coefficients.

The multivariate polynomial is computed as
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where ¢(E:) is the univariate orthogonal polynomial for the i variable in degree «;.

The original PCE can be truncated as
M (X)= 2, G P (X) )

where k is the truncated set of multi-indices of multivariate polynomials. The PCE can be
truncated by defining a maximum total degree p of all the polynomials associated with the input

variables as [43]
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Then, the least-square solution is used to compute the coefficients of PCE as [18,44]

\PO(X(l))
C=(@ @)'oY, 0= : (7)
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where C is the computed vector of coefficients; and ¥;, is the vector of the model

evaluations associated with i demand at N input vectors xU, ..., x®; and

¥,(),j=0,..,card kMP —1 are the basis functions.

It is found that the SPCE, which contains the selected significant terms, performs better
in some cases. Under the same accuracy requirement, SPCE requires a smaller size of training
data compared with full PCE [18]. This study utilizes an algorithm orthogonal matching pursuit
(OMP) [45] to develop SPCE. In OMP, the significant basis functions are iteratively selected
from the candidate set and added to the model. For each iteration, the algorithm selects a basis
function from the candidate set which is most correlated with the residual, this basis function

is selected by solving
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h(k) = argmax;ec, T

where Wj () is the selected basis function at iteration k; Cj is the updated dictionary at
iteration k& by excluding the basis function selected at iteration k& — 1; ; represent the
evaluations using basis function i; and r,_; represent the residual from the PCE associated

with iteration k£ — 1.

After adding the selected basis functions at each iteration, the coefficients for active basis

functions are computed using least square regression. The residual r;_; is computed as

Mo =®,C 0 -Yiy )

where @, , is the matrix containing the evaluations using the basis functions at iteration k —

1;and C, , are the coefficients obtained at iteration & — 1.

The algorithm for basis function selection is iteratively performed and stopped until ||r||,
is below the predefined value. The algorithm stopping threshold of ||r||, is computed through
the v-fold cross-validation technique. Given the data of probabilistic structural parameters,
seismic IMs, and responses from finite element models, the SPCE could be developed using

this algorithm.
3.2 Vine copula-based dependence modeling
3.2.1 Vine copula model

Copula is a powerful tool in characterizing the complex dependence associated with multiple
variables. Let d random variables Xi, ..., Xy have marginal distribution functions Fi(x;) and
joint cumulative distribution function (CDF) F(x1, ..., x4), i = 1, ..., d, the joint CDF of these

variables can be expressed as [30]
F(Xp'"’ Xd) =P[X < Xppoen Kg < Xd] = C(Fl(xl)""1 Fy (Xd) 6) :C(ul""’ud |6) (10)

where P[.] is the corresponding probability; C(u1, ..., uq40) is the copula function with copula



parameters 0; and u; = F(x;).

The joint probability density function (PDF) of X1, ..., Xa is expressed as

O'C(F(X),..., F 0 d
0 ) =SB BOO) o ), )10 [T k) (D)
X, ...OXy i1
O"C(R(¥), - Fy(%,)16)
c(F (%), F,(x,)]0) = PR 4 12
(R0, Fy (%) 16) U0, (12)
where c(u1, ..., uq0) represents the copula density function; and fi(x;) is the marginal PDF of

Xi.

Many copula families could be used to characterize the dependence of random variables
[30,46]. In the conventional copula approach, the same dependence structure is used for all
pairs of variables, which is inflexible for describing the different dependence structures among
multiple random variables. Vine copula [33] is used to address this issue. It is a more flexible
approach to model the complex dependence structures of high-dimensional random variables.
By using vine copula, the joint PDF is decomposed into the product of bivariant copula density
functions, thus various copula families could be used for dependence modeling of high-

dimensional variables.

The joint PDF of Xi, ..., X4 can be expressed as

PO Xg) = F00) B (6 X0 B (K X000 X4 1) (13)

.....

where f(x|v) is the conditional PDF and can be expressed as the product of pair copulas and

conditional PDF as

V) =€,y (FOV_ ) PO V)6, ) F(XI V) (14)

where v; is one variable of v; v is the vector excluding v;; and cx,jv(.) is the copula density

function. The conditional CDF can be expressed as
Cy (F(x]v_;), F(v; |V—j);9x,vj|v,l) (15)
oF(v;|v_;)

i

F(x|v) =
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where Cy |v-(.) is the copula function. Eq. (13) could be decomposed as the product of copula
density functions and marginal PDFs by using Eq. (14). The conditional CDF of x on univariant

v can be expressed as

oC, ,(F.(x),F,(v);6,,)

F(x|v)= 16
(x]v) W) (16)
The F(x|v) can be written as A-function
oC,,(u,u.;6,,)
F(x|v)=—2= == =hu,u,;0.,) (17)

ou T

v

The copula functions and /A-functions for various copula families are provided in the
literature [30]. A drawable vine (D-vine) copula consists of a set of trees, each tree consists of
several nodes and edges. Each edge is represented by a pair copula function. The PDF of a D-

vine copula is expressed as

d-1 d-j d
f(xl""’xd):HHCi,i+j|i+l ..... g (FOG T X Xy )y F O [ X X503 B, i+j—1)Hf(Xk)
j=1 i=1 k=1

(18)
3.2.2 Inference of vine copula from data

Given the vine copula structure and a set of samples x, ...,x™  x® = (xi, ., x5), the
parameters of vine copula can be computed using joint maximum likelihood estimation [33].
The joint maximum likelihood estimation simultaneously computes all the parameters of a vine
copula by maximizing the log-likelihood. The parameters of a given vine copula structure under

a set of samples can be estimated as
0 = arg max LL(x*;0) (19)
(©]
where 0 is the estimated vector of vine copula parameters; @ is the range of copula parameters;
and LL(x*;@) is the log-likelihood for a given sample set.

The different conditioning order and copula families result in different structures of vine
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copulas. It is necessary to determine the optimal vine copula within the candidates. The Akaike
Information Criterion (AIC) could be used to select the optimal copula [47,48]. For a given

vine copula and sample set, the AIC is computed as
AIC = —2LL(x*;0)+2np (20)

where LL(x¥;0) is the log-likelihood of the fitted vine copula; and np is the number of

parameters in a vine copula.

Bayesian Information Criterion (BIC) is the other criterion to determine the optimal vine

copula, it can be expressed as
BIC =—2LL(x*;0)+npInN, (21)

where N, is the number of samples used for developing vine copula. The optimal vine copula
is determined as the one associated with minimum AIC and BIC values. Once the optimal vine
copula is inferred, the joint distribution of multivariant variables considering dependence could

be determined [49].
3.3 Dependence modeling PBEE

There exists dependence associated with multiple sources within PBEE. For instance, a
complex system usually consists of multivariant demands, the dependence among multiple
demands could affect the system vulnerability. When vector IM is used, the dependence among
multiple IMs could affect the joint exceeding frequency. In this study, the dependence from
two sides (e.g., IMs and demands) is considered. Joint normality of logarithmic values is widely
assumed in previous studies for dependence modeling within PBEE. However, the multivariate
normal distribution could not reflect the complex nonlinear dependence characteristics. This
simple assumption may result in inaccurate assessment and mislead decision-making of
structures. Vine copula, which could capture complex nonlinear dependence characteristics, is

adopted in this study to model more realistic dependence structures.
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3.3.1 Probabilistic seismic hazard analysis for vector IM considering the dependence

Conventionally, scalar seismic IM is used in performance assessment [8]. Scalar IM can only
reflect part of the information regarding amplitude, spectrum characteristics, and duration of
ground motion. Due to the complexity of the ground motion, the demands predicted using a
single seismic IM usually involve a relatively large amount of uncertainty. Compared with
scalar IM, vector IM contains more information on ground motion, thus it could reduce the
uncertainty of seismic demand prediction [10]. To further improve the accuracy of seismic

demand prediction, the vector IM is used in this study.

To quantify the probabilistic performance, the joint probabilistic distribution of seismic
intensities should be identified, and it is achieved by probabilistic seismic hazard analysis. For
given magnitude and distance, the seismic intensity is uncertain. The ground motion prediction
model (GMPM) is used to predict probabilistic seismic intensity [50]. The GMPM can be

generally expressed as
INIM = 24,y (R, M, Q) + £, 011 (22)

where In /M is the natural logarithm of an earthquake intensity; M is magnitude; R is the source
to site distance; Q are other parameters used to describe an earthquake scenario (e.g., region of
the earthquake and shear wave velocity averaged over top 30 m, etc.); umm(R, M, Q) is the
mean of In /M for given R, M, and Q; o 1s the standard deviation of In IM; and & is

normalized residual term.

There is dependence among IMs. The ens represents the record-to-record aleatory
variability [20] and is considered to follow a standard normal distribution (Baker et al., 2007).
By using e, the correlation models were developed to account for the dependence among IMs
[25]. The logarithmic IMs are assumed to follow a multivariate normal distribution in previous
studies and the Pearson correlation coefficient is widely used [27]. As indicated previously,
vine copula is a flexible approach and could capture complex dependence characteristics. This

study utilizes the vine copula approach to model the dependence of IMs. By using the approach
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mentioned in section 3.2, the vine copula model can be inferred based on ez, and historical data.
Once the vine copula model is established, the joint PDF of vector IM for given earthquake
magnitude and distance f(IM1, IM>, IM3|m, r) can be computed based on GMPM and Eq. (18).
The probability of IM1, IM>, IM3 exceeding im1, im2, and im3 for a given earthquake scenario

can be expressed as

P

(IM>imy, IM,>im, , IM3>img|m,r)

mel-m _f(IM, IM,, IM | m, r)dimdim,dim,  (23)

Considering uncertain scenarios, the joint mean rate of the three IMs exceeding im1, imo,

and im3 is computed based on the total probability theorem as [24,27]

A0,y im,) = A ([ P i iy iy F (M) T (F)dmelr (24)

where Ammin is the annual rate of occurrence of earthquakes exceeding considered minimum

magnitude; and fi/(m) and fz(r) are the PDFs of the magnitude and distance, respectively.
3.3.2 Joint probabilistic seismic demands considering the dependence

For an engineering system, multiple seismic demands are usually of interest. It is necessary to
compute the joint probabilistic demands considering dependence for system vulnerability
analysis. The dependence among multiple structural demands can be described by the
dependence of &g [28]. Modeling of &g plays an important role in uncertainty propagation
and reliability analysis. It incorporates the consideration of the difference between finite
element model evaluations and trend model predictions, as well as the uncertainty associated
with ground motion. Normal distribution with a mean of zero is a widely acceptable
consideration for modeling the marginal distribution of &g [28,40]. The multivariate normal
distribution is widely assumed for the dependence modeling of &g [28]. In this study, the vine
copula is used to model the dependence of &g, as it could capture more complex dependence
characteristics. After establishing the SPCE, the residual of the structural demands could be
computed. Then, the residual from multiple demands is used to infer the vine copula based on
the method mentioned in section 3.2. The joint distribution of multivariant demands

incorporating dependence could be generated from the established vine copula model. The
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process of dependence modeling within PBEE is presented in Figure 1.

Processing of historical Dependence modeling using Surrogate models of seismic
hazard data vine copula demands
Historical seismic hazard : Estimate parameters of i : Experimental design: input
' data : ' vine copula i samples i
: Ground motion prediction | Select optimal vine copula : ] Compute responses using ;
model : 1 based on selection criteria . FEM
Normalized residuals of o Sample demands/IMs i 1 | Establish surrogate models |
i vector IMs : : incorporating dependence i and compute residual

Figure 1. Process of dependence modeling within PBEE
4 Framework of updated performance-based earthquake engineering (UPBEE)

By integrating the above-mentioned techniques, this study proposes a framework of improved
PBEE, which could aid more accurate and confident seismic performance assessment
considering complex dependence. Vector IM is adopted within PBEE as it reflects more
information on the hazard characteristics compared with conventional scalar IM. The
probabilistic seismic hazard analysis is performed for vector IM. The Vine copula is used to
capture the complex dependence among multiple IMs. The seismic demand surrogate models
incorporating vector IM are established using a learning algorithm. The vine copula is used for
the second time to model the dependence among multiple demands. The system vulnerability
considering dependence can be computed using the surrogate model and vine copula. Then, the

performance indicators can be computed.

Compared with conventional PBEE, the proposed UPBEE framework has several
advantages. The assumption of multivariate normality of logarithmic values, which is widely
used in PBEE for dependence modeling, can only capture one of many possible solutions and
may produce severely biased results [52]. In the proposed framework, two vine copula models
are established for demands and IMs, respectively. More realistic dependence structures
associated with both IMs and demands are captured by vine copula models. In addition, the

uncertainty associated with seismic demand prediction is reduced by using a learning algorithm
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and vector IM. The necessity and superiority of the proposed approach are illustrated in the
case study. The computational process of the proposed approach is illustrated in Table 1. A
comparison of the conventional PBEE framework and the UPBEE framework is presented in

Figure 2.

The major contribution of this paper is to develop an updated and integrated PBEE
framework by interconnecting several novel techniques. As indicated in Figure 2, the
improvement is achieved within hazard analysis, structural analysis, damage analysis, and loss
analysis. Confident seismic performance assessment can be accomplished by using the

developed UPBEE framework.

Table 1. Computational procedures of the UPBEE framework

Procedures of UPBEE framework

Probabilistic hazard analysis for vector IM considering vine copula captured
dependence

1. Process historical earthquake data to obtain normalized residuals of considered
IMs

2. Determine copula families

3. Pair copula selection

4. Compute copula parameters by performing joint maximum likelihood estimation,
subjected to residual data

5. Compute AIC and BIC

6. Obtain best-fit vine copula

7. ldentify seismic hazard source

8. Sample dependent residuals using established vine copula

9. Compute umm (R, M, Q) and omm for the corresponding scenarios using the
ground motion prediction model

10. Obtain joint distribution of vector IM considering the dependence
Surrogate-assisted vulnerability assessment considering vine copula captured
dependence

11. Determine probabilistic structural parameters from inventory

12. Obtain a set of structure samples

13. Perform nonlinear time history analysis for the sampled structures

14. Record the demands of interest

15. Perform leaning algorithm to establish surrogate models of all demands using
structure samples, vector IMs, and recorded demands

16. Compute residuals from surrogate models

15



17. Establish vine copula for demands using the residuals (invoke line 2-6)

18. Compute vulnerability using surrogate model and vine copula
Performance assessment

19. Compute the probabilities of structures being in each damage state

20. Determine consequences associated with each damage state

21. Compute probabilistic performance

Hazard analysis | Structural analysis { Damage analysis | Loss analysis

= Hazard source | Nonlinear ¥ Fragility model .| decision variable
T 2 ! ; e | -1
= 2 model i | dynamic analysis ¥ (scalar IM) H model (e.g., l0ss)
= H i e o oo B i
S8 v R i R \
é i Probabilistic ! PSDM:linear | Probability: "' Probabilistic !

Q scalar IM e regression damage states | i i decision variable !
”””””””””” Updated | Updated | Updated | Updated
§ < + Joint distribution ,_* Learning process: ._,,| System fragility ,_* Confident
oS! of vector IMs ! i surrogate model ::: usingvector IM ! : performance |
T B e | S N "\ capturingmore !
_cg % "_._._._._4_t ........... y e +_ __________ . 3 : realistic i
S 7 ! Dependence: vine : ! Dependence: vine ; : 4 dependence '5

i copula P copula P | R s

Figure 2. Conventional PBEE framework and updated PBEE framework
5 Hlustrative example

For regional seismic performance assessment, the performance of portfolios of bridges is of
concern. The proposed framework is applied to a portfolio of bridges subjected to seismic
hazards. Probabilistic seismic hazard analysis for vector IM is performed and vine copula is
used to capture dependence. Bridge samples are generated from corresponding distributions
(e.g., bridge inventory). Nonlinear time history analysis of the bridge samples is performed in
OpenSees to obtain the training data. Seismic demand surrogate models are established, and
vine copula is used to model the dependence among multiple demands. Finally, system
vulnerability and probabilistic performance are computed. The illustration of the computational

process is shown in Figure 3.
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Hazard analysis for vector Surrogate and dependence

IMs considering dependence models of demands
’ p N \ 1 p N A
Identify seismic hazard Probabilistic distribution
source of bridge parameters
- J J
( L A e L ~N

Ground motion prediction
model and vine copula

!

Joint distribution of vector
IMs

Obtain training data from
time history analysis

:

Develop surrogate model
and vine copula model

________________________________________________________________

____________________________________________________________

Confident probabilistic performance assessment
considering dependence

____________________________________________________________

-

Figure 3. Illustration of the computational process

5.1 Probabilistic seismic hazard for vector IM incorporating vine copula captured

dependence

The peak ground acceleration (PGA), spectral acceleration at the period of 0.2s (Sa0.2), and
spectral acceleration at the period of 1.5s (Sal.5) are used as vector IM in this example. There
is dependence among multiple seismic IMs. Dependence modeling is necessary for
probabilistic seismic hazard analysis for multiple IMs. Conventionally, the dependence is
modeled based on the assumption of multivariate normality of logarithmic values. In this study,
the dependence modeling of IMs is accomplished by using vine copula as it could capture
nonlinear and complex dependence characteristics. The historical ground motion data [50] is
used to establish the vine copula model. The normalized residuals are computed using the
ground motion prediction model [50]. The marginal distribution of IM residual is considered
to follow the standard normal distribution [51]. Then, a vine copula model capturing the

dependence of IMs is established using IM residuals, as indicated in section 3.3.

Given different seismic scenarios, the mean and standard deviation of In IM can be

computed using the ground motion prediction model. The residual samples of IMs are
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generated from the established vine copula model, then the joint probabilistic distribution of
the three IMs associated with a given scenario could be computed. In structural decision-
making, the IMs at certain return periods are of interest. The structures are expected to satisfy
different performance levels under different return period earthquakes. This aspect is
considered herein. The magnitudes considered are 5.5-8, the distance is considered as 6 km.
Two million vector IM samples considering dependence are generated using the ground motion
prediction model and vine copula. For each vector IM sample, the return period can be

calculated. For a considered return period, the target vector IM samples can be determined [26].
5.2 Surrogate models of seismic demands incorporating dependence

To establish the surrogate model of seismic demand, a set of training data should be obtained.
Based on the probabilistic distributions listed in Table 2, 320 bridge samples are generated
using the Latin hypercube sampling technique [53]. Each bridge realization is paired with a
selected ground motion [54], and nonlinear time history analysis is performed in software
OpenSees [55-57]. The finite element model of the bridge is presented in Figure 4. The
demands associated with the column, bearing, and abutment are recorded. Thus, the training

data set including the probabilistic input parameters and demands is obtained.
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Figure 4. Finite element model of the bridge

Table 2. Probabilistic parameters used for the bridges

Parameters Units Distribution u o Ref.
type
Concrete
compressive MPa Normal 29.03 3.59 [58]
strength

Reinforcing steel

yield strength MPa  Lognormal 4650 37.30  [58]

Span length mm Lognormal 31775 8738 [58]
Deck width mm Lognormal 11970 2418 [58]
Column height mm Lognormal 6625 865 [58]
Abutmentbackwall = ) Conormal 2186 441 [58]
height
Beari ffici
eanng c?oe_ ‘clent - Normal 0.3 0.1 [58]
of friction
Strength of a
composite of two KN Lognormal 116 9.28 [29]
dowels
Abutment-deck gap mm Lognormal 235 125 [58]
Backfill initial
stiffness at the
benchmark N/m/cm  Lognormal 384 138 [59]

backwall height
Backfill ultimate
capacity at the
benchmark
backwall height
Damping Normal 0.045 0.0125 [58]
Foundation
translational spring  N/mm Normal 140101 105076 [58]
stiffnesses
Shear modulus of
elastomeric pad
Mass factor - Uniform 1 0.058 [29]
Longitudinal
reinforcement ratio

kKN/m  Lognormal 475 111 [59]

MPa Uniform 1.365  0.407 [29]

(%) Uniform 2.25 0.52 [58]

Note: © = mean value and ¢ = standard deviation.
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Given the training data set, the SPCE models of seismic demands are established using
the approach indicated in section 3.1. Once the SPCE is established, it could be used for
efficient seismic demand prediction. As discussed previously, the conventional approach may
result in a relatively large amount of uncertainty in engineering applications. By using SPCE,
the relationship between demand and IM is established by a learning process. Multiple bridge
parameters could be incorporated as predictors. Additionally, multiple hazard characteristics
(e.g., vector IMs), which provide a more comprehensive description of the hazard, could be
incorporated into the demand prediction process. To illustrate the prediction performance of
the SPCE and vector IM coupled approach, the mean squared errors (MSES) on a test sample
set are computed and presented in Table 3. When scalar IM is used, mean squared errors of the
six demands are reduced by implementing SPCE, compared with the conventional method. The
mean squared errors of the six demands are further reduced by using vector IM in SPCE. The
relative improvement of accuracy of the proposed approach compared with the conventional
approach (e.g., (MSE of the conventional method - MSE of proposed method)/MSE of
conventional method) is shown in Figure 5. By using the developed approach, a significant
improvement of accuracy is observed for the six demands. The reduction of error associated
with the proposed approach could be interpreted from three aspects: (1) the implementation of
SPCE for uncertainty propagation; (2) the incorporation of a more comprehensive description
of hazard intensities by vector IM; and (3) the incorporation of multiple bridge parameters

within demand prediction.

Table 3. Mean squared error on a test set

Methods C1 C2 C3 C4 C5 C6
Linear regression 0.357 0.880 0.270 6.791 6.779 0.229
SPCE 0.263 0.700 0.199 6.735 6.705 0.176

SPCE and vector IM 0.245 0467 0176 4971 4932 0.162

Note: C1 is the column curvature ductility; C2 is the bearing longitudinal displacement; C3 is
the bearing transverse displacement; C4 is the abutment active displacement; C5 is the

abutment passive displacement; and C6 is the abutment transverse displacement.
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Figure 5. The relative improvement of accuracy comparing the proposed approach and

conventional approach

The model error is used to characterize the dependence among multiple demands. The
marginal distribution of these residuals is considered as a normal distribution with a mean of
zero [28,40]. For dependence modeling, the multivariate normal distribution is widely assumed
[28]. This study uses the vine copula approach to capture the complex nonlinear dependence
characteristics of seismic demands. The residuals associated with six demands are computed
from the surrogate models. Then, the vine copula model can be established using the residual
data. To illustrate the performance of the best fit vine copula, the criterion values of AIC, BIC,
and log-likelihood are shown in Figure 6. The best fit vine copula is associated with minimum
AIC, BIC, and maximum log-likelihood, which indicates that the best fit vine copula performs
best for the dependence modeling. The assumption of multivariate normality of logarithmic
values is widely used in previous studies for both IMs and demands, it can be considered as a
specific case in the copula approach, where the dependence is modeled using Gaussian copula.
The results show that multivariate normality is not the optimal dependence structure, while
vine copula performs better due to its flexibility. To further testify the necessity of using vine
copula approach, it is necessary to know how much difference in performance calculated by
conventional multivariate normality assumption and vine copula approach would be. This

aspect is investigated in next section.
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Figure 6. Performance of the best fit vine, arbitrary order vine, and Gaussian copulas
5.3 Seismic vulnerability and probabilistic performance

The surrogate model and vine copula are used to compute the seismic vulnerability of bridges.
The probabilistic joint seismic demands are computed. The capacity samples are generated
from corresponding distributions as listed in Table 4. Then, the bridge system vulnerability can
be computed by comparing the demand and capacity samples. By repeating this process for a

set of IM vectors, the vulnerability surfaces can be generated as shown in Figure 7.

Table 4. Damage states associated with different bridge components [29]

Component Slight Moderate Extensive Complete

med. disp. med. disp. med. disp. med. disp.

Concrete Column 1.29 0.59 210 0.51 3.52 064 524 0.65
(curvature ductility)

Elastomeric Bearing 289 0.60 1042 0.55 136.1 0.59 186.6 0.65
Fixed-Long (mm)

Elastomeric Bearing 288 0.79 909 0.68 1422 0.73 195.0 0.66
Fixed-
Tran (mm)

Abutment-Passive 37.0 046 1460 046 N/A N/A NA NA
(mm)

Abutment-Active 98 070 379 090 772 085 NA NA
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(mm)

Abutment-Tran (mm) 98 070 379 090 772 085 NA NA
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Figure 7. Fragility surfaces computed by SPCE and vine copula under PGA =0.1g

Given the probabilistic distribution of the IM vector for different scenarios as computed
in section 5.1 and vulnerability, the probabilistic loss ratio can be computed. Herein, the repair
loss ratio for none, slight, moderate, extensive, and complete damage states are considered as
0, 0.03, 0.25, 0.75, and 1, respectively [37,57]. Statistical moments of loss ratio using a joint
normal distribution (widely used in previous studies) and vine copula under different scenarios
are listed in Table 5. For the investigated scenarios, the vine copula approach and joint normal
distribution approach produce similar results in terms of the mean, standard deviation (STD),
and kurtosis of the loss ratio, while the significant difference is observed in skewness. By using
the joint normal distribution approach, the skewness is underestimated from 20% to 51%
compared with the vine copula-based approach. This difference may be caused by the

ignorance of nonlinear dependence characteristics in the joint normal distribution.

Table 5. Statistical moments of loss ratio using joint normal distribution and vine copula

under different scenarios

The relati
Scenario Method Mean STD Skewness Kurtosis 'ere atve
difference of
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skewness

(%)

M=7.8, Vine copula  0.655 0.190  -0.393 2.452

= 1 2
> Joint 0.668 0.185 -0491  2.572 0

normality

M=78,  Vinccopula 0544 0201 -0.050 2216

R=10 Jomt ) a5 0200 -0.103  2.234 >
normality

M=78,  Vinccopula 0465 0200 0.190 2272

R=15 Jont 0473 0197 0.134 2282 42
normality

Similarly, given the distribution of the IM vector for different return periods as presented
in section 5.1, the probabilistic loss ratio can be computed. The density of loss ratios computed
using vine copula subjected to different return periods is presented in Figure 8. With increasing
return periods, the peaks of density shift from small loss ratios to large loss ratios. Statistical
moments of loss ratio using joint normal distribution and vine copula subjected to return
periods of 75, 120, 475, 975, and 2475 years are presented in Table 6. The relative difference
of statistical moments of loss ratio by using joint normal distribution and vine copula is
visualized in Figure 9 (a). A significant difference is observed for STD, skewness, and kurtosis
values. As compared previously, the vine copula captures dependence better based on the
criteria of AIC, BIC, and log-likelihood. By using the conventional joint normal distribution,
biased high order moments could be obtained due to the ignorance of nonlinear dependence.
The incorporation of uncertainty is necessary for the seismic performance assessment of
structures [55,60]. Using only expected cost may not be appropriate when risk aversion is
considered within the decision-making of structures [61]. The high order moments of
performance indicator (e.g., variance, skewness, and kurtosis of loss) reflecting the information
of probabilistic distribution are essential for risk-neutral decision-makers to incorporate
different decision attitudes [62]. The decision-making of structures may not be optimal if only
expected performance is considered, higher-order moments of performance should be
incorporated to aid the rational decisions [63]. Thus, the structural assessment and decision-

making may be misled by using the conventional joint normal distribution for dependence
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modeling.

The ratio of statistical moments of loss to the values associated with a return period of 75
years is presented in Figure 9 (b). An increasing trend with return periods is observed for most
of the statistical moment values. Within the four statistical moments, mean values are
associated with the most significant increasing trend. The density plots of loss ratios computed
using joint normal distribution and vine copula subjected to return periods of 75 and 475 years
are presented in Figure 10. The figures show that heavy and long tail behaviors are well
captured by vine copula, while higher peaks of density are associated with the joint normal

distribution.

0 0.2 0.4 0.6

Figure 8. The density of loss ratios computed using vine copula subjected to return

periods of 75, 120, 475, 975, and 2475 years seismic scenario

Table 6. Statistical moments of loss ratio using joint normal distribution and vine copula

subjected to different return periods

Return period Dependence Mean STD Skewness  Kurtosis
(years) model
75 Joint normality 0.2254  0.0311 -1.0966 4.2789
Vine copula 0.2217  0.0398 -1.3236 5.0262
120 Joint normality 0.3043  0.0402 -1.1686 4.3502
Vine copula 0.3030  0.0506 -1.4662 5.5370
475 Joint normality 0.5258  0.0565 -1.4637 5.2962

Vine copula 0.5233  0.0698 -1.7884 7.2429
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975 Joint normality 0.6212  0.0593 -1.6265 5.9130
Vine copula 0.6202  0.0713 -2.0841 9.0426
2475 Joint normality 0.7243  0.0549 -1.8953 7.6103
Vine copula 0.7178  0.0705 -2.4533 11.7571
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Figure 9. (a) The relative difference of statistical moments of loss ratio by using joint
normal distribution and vine copula and (b) ratio of statistical moments of loss to the

values associated with a return period of 75 years
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Figure 10. The density of loss ratios computed using the joint normal distribution and

vine copula subjected to return periods of (a) 75 years and (b) 475 years

Overall, the proposed PBEE framework updates the conventional PBEE framework from
several stages including hazard analysis, structural analysis, damage analysis, and performance
analysis. In hazard analysis, the scalar IM used in most previous studies could only reflect
limited information. The proposed approach adopts vector IM to describe the probabilistic

hazards more comprehensively. The complex dependence among multiple IMs is captured by
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vine copula without using the assumption of joint normality of logarithmic values. In structural
and damage analysis, linear regression is used in most of the previous studies to describe the
relationship between scalar IM and demand. The dependence among multiple demands is not
well considered. The proposed approach uses the surrogate model to describe this complex
relationship, and vector IM reflecting more hazard information is incorporated in the surrogate
model. Thus, the uncertainty of demand prediction can be reduced. The vine copula is used for
the second time to model the complex dependence among multiple demands. The system

vulnerability and performance can be computed more accurately and confidently.
6 Conclusions

This study proposes a hybrid framework for PBEE by interconnecting several advanced
techniques. The SPCE is used as a surrogate model for seismic demand prediction. Vector IM,
which contains more information on the hazard compared with scalar IM, is incorporated in
the surrogate model to further improve the accuracy of prediction. The dependence from both
the IM side and demand side is modelled using vine copula. The seismic performance can be
computed using the proposed hybrid framework confidently. The framework is applied to an

illustrative example. Several conclusions are drawn.

e Compared with the conventional method, SPCE and vector IM coupled approach could
improve the accuracy of seismic demand prediction significantly. By using SPCE, a
complex relationship of the input and demand can be captured, and multiple uncertain
parameters can be incorporated in uncertainty propagation. The use of vector IM
incorporates more hazard information in the analysis compared with scalar IM, thus,

the uncertainty can be further reduced.

e The multivariate normality of logarithmic values is a widely used assumption for
dependence modelling within PBEE. This study found that the multivariate normality
of logarithmic values is not the optimal dependence structure for either seismic IMs or
demands, the performance criteria show that vine copula performs better to capture

complex dependence associated with both IMs and demands.
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The difference of the high order moments of loss derived from widely used multivariate
normality assumption and the proposed vine copula-based approach is large. The
structural assessment and decision-making may be misled by using the conventionally

adopted assumption.

The proposed approach updates the existing performance assessment framework from
two aspects: improving accuracy and capturing a more realistic dependence structure.
It could advance the rational assessment and decision-making of engineering systems

under seismic hazards.

ACKNOWLEDGEMENTS:

The study has been supported by the National Natural Science Foundation of China (grant no.

51808476 and 52078448) and the Research Grant Council of Hong Kong (project no. PolyU

15221521 and PolyU 15219819). The support is gratefully acknowledged. The opinions and

conclusions presented in this paper are those of the authors and do not necessarily reflect the

views of the sponsoring organizations.

References

[1]

[2]

[3]

[4]

[5]

Lee T-H, Mosalam KM. Probabilistic seismic evaluation of reinforced concrete
structural components and systems. Pacific Earthquake Engineering Research Center;
2006.

Anwar GA, Dong Y, Li Y. Performance-based decision-making of buildings under
seismic hazard considering long-term loss, sustainability, and resilience. Struct
Infrastruct Eng 2020:1-17.

Mosalam KM, Alibrandi U, Lee H, Armengou J. Performance-based engineering and
multi-criteria decision analysis for sustainable and resilient building design. Struct Saf
2018;74:1-13.

Asadi E, Salman AM, Li Y. Multi-criteria decision-making for seismic resilience and
sustainability assessment of diagrid buildings. Eng Struct 2019;191:229-46.

Allin C. Progress and challenges in seismic performance assessment. PEER Newsl

28



2000.

[6] Mangalathu S, Jeon JS, Padgett JE, DesRoches R. ANCOVA-based grouping of bridge
classes for seismic fragility assessment. Eng Struct 2016;123:379-94.
https://doi.org/10.1016/j.engstruct.2016.05.054.

[7]  Cornell CA, Jalayer F, Hamburger RO, Foutch DA. Probabilistic basis for 2000 SAC
federal emergency management agency steel moment frame guidelines. J Struct Eng
2002;128:526-33.

[8] Padgett JE, DesRoches R. Methodology for the development of analytical fragility
curves for retrofitted bridges. Earthq Eng Struct Dyn 2008;37:1157—74.

[9] Du A, Padgett JE. Refined multivariate return period-based ground motion selection
and implications for seismic risk assessment. Struct Saf 2021;91:102079.

[10] Baker JW. Probabilistic structural response assessment using vector-valued intensity
measures. Earthg Eng Struct Dyn 2007;36:1861-83.

[11] Méller O, Foschi RO, Quiroz LM, Rubinstein M. Structural optimization for
performance-based design in earthquake engineering: applications of neural networks.
Struct Saf 2009;31:490-9.

[12] Hariri-Ardebili MA, Sudret B. Polynomial chaos expansion for uncertainty
quantification of dam engineering problems. Eng Struct 2020;203.
https://doi.org/10.1016/j.engstruct.2019.109631.

[13] Guo X, Dias D, Carvajal C, Peyras L, Breul P. Reliability analysis of embankment
dam sliding stability using the sparse polynomial chaos expansion. Eng Struct
2018;174:295-307. https://doi.org/10.1016/j.engstruct.2018.07.053.

[14] Ebad Sichani M, Padgett JE. Surrogate modelling to enable structural assessment of
collision between vertical concrete dry casks. Struct Infrastruct Eng 2019;15:1137-50.
https://doi.org/10.1080/15732479.2019.1618878.

[15] JeonJS, Mangalathu S, Song J, Desroches R. Parameterized Seismic Fragility Curves
for Curved Multi-frame Concrete Box-Girder Bridges Using Bayesian Parameter

Estimation. J Earthq Eng 2019;23:954-79.

29



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

https://doi.org/10.1080/13632469.2017.1342291.

Mangalathu S, Heo G, Jeon JS. Artificial neural network based multi-dimensional
fragility development of skewed concrete bridge classes. Eng Struct 2018;162:166—76.
https://doi.org/10.1016/j.engstruct.2018.01.053.

Spanos PD, Ghanem R. Stochastic finite element expansion for random media. J Eng
Mech 1989;115:1035-53.

Blatman G, Sudret B. An adaptive algorithm to build up sparse polynomial chaos
expansions for stochastic finite element analysis. Probabilistic Eng Mech
2010;25:183-97. https://doi.org/10.1016/j.probengmech.2009.10.003.

Modica A, Stafford PJ. Vector fragility surfaces for reinforced concrete frames in
Europe. Bull Earthq Eng 2014;12:1725-53. https://doi.org/10.1007/s10518-013-9571-
z.

Baker JW, Allin Cornell C. A vector-valued ground motion intensity measure
consisting of spectral acceleration and epsilon. Earthq Eng Struct Dyn 2005;34:1193—
217.

Faggella M, Barbosa AR, Conte JP, Spacone E, Restrepo JI. Probabilistic seismic
response analysis of a 3-D reinforced concrete building. Struct Saf 2013;44:11-27.
Du W, Wang G, Huang D. Evaluation of seismic slope displacements based on fully
coupled sliding mass analysis and NGA-West2 database. J Geotech Geoenvironmental
Eng 2018;144:6018006.

Wang G. Efficiency of scalar and vector intensity measures for seismic slope
displacements. Front Struct Civ Eng 2012;6:44-52.

Wang M-X, Huang D, Wang G, Du W, Li D-Q. Vine Copula-Based Dependence
Modeling of Multivariate Ground-Motion Intensity Measures and the Impact on
Probabilistic Seismic Slope Displacement Hazard Analysis. Bull Seismol Soc Am
2020. https://doi.org/10.1785/0120190244.

Baker JW, Jayaram N. Correlation of spectral acceleration values from NGA ground

motion models. Earthq Spectra 2008;24:299-317.

30



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Du A, Padgett JE. Multivariate return period-based ground motion selection for
improved hazard consistency over a vector of intensity measures. Earthq Eng Struct
Dyn 2020:1-21. https://doi.org/10.1002/eqe.3338.

Faouzi G, Nasser L. Scalar and vector probabilistic seismic hazard analysis:
Application for Algiers City. J Seismol 2014;18:319-30.
https://doi.org/10.1007/s10950-013-9380-5.

Du A, Padgett JE. Investigation of multivariate seismic surrogate demand modeling for
multi-response structural systems. Eng Struct 2020;207.
https://doi.org/10.1016/j.engstruct.2020.110210.

Nielson BG. Analytical fragility curves for highway bridges in moderate seismic
zones. Georgia Institute of Technology, 2005.

Nelsen RB. An Introduction to Copulas. Springer, New York. MR2197664 2006.
Goda K, Tesfamariam S. Multi-variate seismic demand modelling using copulas:
Application to non-ductile reinforced concrete frame in Victoria, Canada. Struct Saf
2015;56:39-51. https://doi.org/10.1016/j.strusafe.2015.05.004.

Wang JP, Tang X-S, Wu Y-M, Li D-Q. Copula-based earthquake early warning
decision-making strategy. Soil Dyn Earthq Eng 2018;115:324-30.

Aas K, Czado C, Frigessi A, Bakken H. Pair-copula constructions of multiple
dependence. Insur Math Econ 2009;44:182-98.

Okhrin O, Ristig A, Xu Y-F. Erratum to: Copulae in High Dimensions: An
Introduction. 2017. https://doi.org/10.1007/978-3-662-54486-0_19.

Zareian F, Krawinkler H. Simplified performance-based earthquake engineering.
Stanford University Stanford, CA, 2006.

Zheng Y, Dong Y. Performance-based assessment of bridges with steel-SMA
reinforced piers in a life-cycle context by numerical approach. Bull Earthg Eng
2019;17:1667-88.

Werner SD, Taylor CE, Cho S, Lavoie J-P, Huyck CK, Eitzel C, et al. Redars 2

methodology and software for seismic risk analysis of highway systems. 2006.

31



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

Stein SM, Young GK, Trent RE, Pearson DR. Prioritizing scour vulnerable bridges
using risk. J Infrastruct Syst 1999;5:95-101.

Zheng Y, Dong Y, Li Y. Resilience and life-cycle performance of smart bridges with
shape memory alloy (SMA)-cable-based bearings. Constr Build Mater 2018;158:389—
400. https://doi.org/10.1016/j.conbuildmat.2017.10.031.

Torre E, Marelli S, Embrechts P, Sudret B. Data-driven polynomial chaos expansion
for machine learning regression. J Comput Phys 2019;388:601-23.
https://doi.org/10.1016/j.jcp.2019.03.039.

Qian J, Dong Y. Uncertainty and multi-criteria global sensitivity analysis of structural
systems using acceleration algorithm and sparse polynomial chaos expansion. Mech
Syst Signal Process 2022;163:108120.

Marelli S, Sudret B. UQLab user manual--Polynomial chaos expansions. Chair Risk,
Saf Uncertain Quantif ETH Zdirich, 09-104 Ed 2015:97-110.

Ni P, Xia Y, Li J, Hao H. Using polynomial chaos expansion for uncertainty and
sensitivity analysis of bridge structures. Mech Syst Signal Process 2019;119:293-311.
https://doi.org/10.1016/j.ymssp.2018.09.029.

Wan HP, Ren WX, Todd MD. Arbitrary polynomial chaos expansion method for
uncertainty quantification and global sensitivity analysis in structural dynamics. Mech
Syst Signal Process 2020;142:106732. https://doi.org/10.1016/j.ymssp.2020.106732.
Doostan A, Owhadi H. A non-adapted sparse approximation of PDEs with stochastic
inputs. J Comput Phys 2011;230:3015-34. https://doi.org/10.1016/j.jcp.2011.01.002.
Joe H. Multivariate models and multivariate dependence concepts. CRC Press; 1997.
Akaike H. A new look at the statistical model identification. IEEE Trans Automat
Contr 1974;19:716-23.

Tang X-S, Li D-Q, Zhou C-B, Phoon K-K. Copula-based approaches for evaluating
slope reliability under incomplete probability information. Struct Saf 2015;52:90-9.
Kurowicka D, Cooke RM. Sampling algorithms for generating joint uniform

distributions using the vine-copula method. Comput Stat Data Anal 2007;51:2889—

32



[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

906.

Boore DM, Atkinson GM. Ground-motion prediction equations for the average
horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between
0.01 s and 10.0 s. Earthg Spectra 2008;24:99-138. https://doi.org/10.1193/1.2830434.
Baker JW, others. Correlation of ground motion intensity parameters used for
predicting structural and geotechnical response. Tenth Int. Conf. Appl. Stat. Probab.
Civ. Eng., vol. 8, 2007.

Tang X-S, Li D-Q, Zhou C-B, Phoon K-K, Zhang L-M. Impact of copulas for
modeling bivariate distributions on system reliability. Struct Saf 2013;44:80—90.
Ayyub BM, Lai K-L. Structural reliability assessment using latin hypercube sampling.
Struct. Saf. Reliab., 1989, p. 1177-84.

Baker JW, Lin T, Shahi SK, Jayaram N. New ground motion selection procedures and
selected motions for the PEER transportation research program. PEER Rep 2011;3.
Dong Y, Frangopol DM. Risk and resilience assessment of bridges under mainshock
and aftershocks incorporating uncertainties. Eng Struct 2015;83:198-208.
https://doi.org/10.1016/j.engstruct.2014.10.050.

Dong Y, Frangopol DM, Saydam D. Time-variant sustainability assessment of
seismically vulnerable bridges subjected to multiple hazards. Earthq Eng Struct Dyn
2013;42:1451-67.

Qian J, Dong Y. Multi-criteria decision making for seismic intensity measure selection
considering uncertainty. Earthq Eng Struct Dyn 2020:1-20.
https://doi.org/10.1002/eqe.3280.

Mangalathu S, Jeon JS, DesRoches R. Critical uncertainty parameters influencing
seismic performance of bridges using Lasso regression. Earthq Eng Struct Dyn
2018;47:784-801. https://doi.org/10.1002/eqe.2991.

Xie Y, Zheng Q, Yang C-SW, Zhang W, DesRoches R, Padgett JE, et al. Probabilistic
models of abutment backfills for regional seismic assessment of highway bridges in

California. Eng Struct 2019;180:452-67.

33



[60]

[61]

[62]

[63]

Dong Y, Frangopol DM. Performance-based seismic assessment of conventional and
base-isolated steel buildings including environmental impact and resilience. Earthq
Eng Struct Dyn 2016;45:739-56.

Cha EJ, Ellingwood BR. Seismic risk mitigation of building structures: the role of risk
aversion. Struct Saf 2013;40:11-9.

Li Y, Dong Y, Qian J. Higher-order analysis of probabilistic long-term loss under
nonstationary hazards. Reliab Eng Syst Saf 2020;203:107092.
https://doi.org/10.1016/j.ress.2020.107092.

Goda K, Hong HP. Optimal seismic design considering risk attitude, societal tolerable

risk level, and life quality criterion. J Struct Eng 2006;132:2027-35.

34





