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Captured Dependence 
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Abstract: 

Performance-based earthquake engineering (PBEE) is an advanced philosophy for the design, 

assessment and decision-making of structures under seismic hazards. Improving the accuracy 

and efficiency of PBEE assessment is of great importance. Traditionally, a linear relationship 

conditioned on scalar seismic intensity measure (IM) is used to predict the seismic demand. In 

addition, there exists dependence within PBEE, whereas multivariate normality of logarithmic 

values is widely assumed for modeling the dependence in previous studies. By interconnecting 

several advanced techniques, this paper proposes a hybrid and novel framework to improve the 

PBEE, and the proposed framework can reduce uncertainties while capturing more realistic 

dependence. The vector IM and surrogate models are then coupled to predict the seismic 

demand with satisfying accuracy. Vine copula could characterize complex nonlinear 

dependence structures, and it is adopted to model the dependence of demands and IMs. Seismic 

performance can be assessed confidently. The proposed framework is illustrated on a portfolio 

of bridges under seismic hazards. The results show that the proposed framework could improve 

accuracy significantly and better capture complex dependence. Additionally, the effect of 

dependence modeling on high-order moments of performance is investigated. The large 

difference of high order moments of performance is observed by using conventional 

assumption and vine copula, which further highlights the necessity of implementing the 

proposed framework. 
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1 Introduction 

After the 1994 Northbridge and 1995 Kobe earthquakes, it is found that the indirect loss (e.g., 

downtime) and direct loss (e.g., repair cost) are tremendous, even though the bridges were 

designed to satisfy safety requirements [1]. Performance-based earthquake engineering (PBEE) 

was then developed to aid the design and decision-making of structures considering 

performance objectives (e.g., economic loss, fatality, and downtime) concerned by stakeholders 

[2–4]. PBEE generally involves probabilistic hazard analysis, seismic demand prediction, and 

consequence evaluation [5]. Due to the existent of uncertainty and complex dependence, 

confident performance assessment is challenging. Improving the accuracy and confidence of 

performance assessment is an essential task. This paper aims to propose an updated seismic 

performance assessment framework by reducing uncertainty and capturing more realistic 

dependence. 

Developing a probabilistic seismic demand model (PSDM) serves as the basic step in 

PBEE and directly affects the accuracy of performance assessment. PSDM can be used to 

compute the probabilistic distribution of seismic demand under various hazard intensity levels 

[6]. Within this process, a linear relationship between logarithmic scalar intensity measure (IM) 

and the logarithmic mean of demand is widely used in previous studies for demand prediction 

[7,8]. The scalar IM is used as the only predictor. However, the linear equation may not be 

adequate to represent the complex relationship between hazard intensity and demand. 

Additionally, the single IM may not be adequate to reflect the complex characteristics of the 

ground motion time history [9] and it could result in biased estimation [10]. To address these 

limitations, an advanced surrogate model representing the relationship between input and 

response could be adopted based on a learning process. The developed surrogate model can 

then facilitate efficient and accurate reliability analysis [11]. In this way, multiple predictors 

(e.g., IMs and structural parameters) could be incorporated in surrogate models to perform a 

more accurate performance assessment. Surrogate models have been applied in engineering 

problems with satisfying accuracy [12–16]. The polynomial chaos expansion (PCE) is one type 

of surrogate model that consists of spectral representations [17]. Some terms of PCE are 
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insignificant for the prediction as the high-order interaction effect is usually negligible [18]. 

The sparse PCE (SPCE) which only contains the selected significant terms was then proposed. 

Compared with PCE, SPCE requires fewer training points under the same accuracy 

requirement [18]. Besides using the surrogate model, another way to improve the accuracy of 

performance assessment is incorporating more hazard information in demand prediction. 

Vector IM contains more information on the ground motion and could reflect multiple 

characteristics of the earthquake. Vector IM could reduce the standard deviations of logarithmic 

demand significantly [19], improve the predictive ability of structural demand [20], and 

facilitate more accurate probabilistic demand analysis of structures [21]. Considering more 

than one IM could improve the sufficiency and efficiency in seismic slope displacement 

prediction [22–24]. However, the vector IM has not been well incorporated in the surrogate 

model to improve the predictive ability within the PBEE framework. In this paper, vector IM 

and SPCE are coupled to jointly improve the accuracy of seismic performance assessment. 

Within the PBEE, there exists dependence from multiple sources (e.g., the demand side 

and IM side). The assumption of multivariate normality of logarithmic IMs is widely used for 

probabilistic seismic hazard analysis [25–27]. The assumption of multivariate normality of 

logarithmic demands is also widely adopted in PSDM [28,29]. This assumption lacks 

comprehensive validation, and it may not be the optimal dependence structure for IMs and 

demands if another dependence modeling approach is applicable. Copula is a flexible approach 

for modeling the dependence of variables. In this approach, the joint distribution is decomposed 

as marginal distributions and dependence models [30]. Compared with the assumption of 

multivariate normality, the copula could incorporate more dependence characteristics (e.g., 

central-, lower-, and upper-tail dependence) and reflect more realistic dependence features 

[24,31,32]. However, with respect to multivariate variables, the conventional copula approach 

uses the same dependence structure for modeling all pairs of random variables. This constraint 

limits the modeling of multiple structures and characteristics of dependence among 

multivariate variables. Vine copula was then proposed to address this issue [33,34]. In the vine 

copula approach, the joint distribution is decomposed into marginal distributions, and the 
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multiple dependence structures among multivariate variables are captured using a system of 

pair copulas. The widely used assumption of multivariate normality of logarithmic IMs and 

demands can be considered as a specific case in the vine copula approach, where the pair 

copulas are all Gaussian copulas [24]. To the authors’ best knowledge, the vine copula approach 

has not been adopted for the dependence modeling of both IMs and demand surrogate models 

within an integrated PBEE framework. The vine copula approach is used in this study to model 

the complex dependence from multiple sources within PBEE. 

The hazard analysis, structural analysis, damage analysis, and loss analysis are four 

components within PBEE, and any of them could directly affect the performance assessment, 

thus affect decision making. However, the advanced techniques, which can facilitate these four 

components, have not been well interconnected to formulate an integrated PBEE framework. 

To address these issues, a novel and updated PBEE (UPBEE) framework is proposed herein to 

improve the accuracy and confidence, by interconnecting vector IM, surrogate model, and vine 

copula. Specifically, the vector IM is incorporated in the surrogate model to improve the 

confidence of performance assessment. The vine copula is used to model the complex 

dependence of both multivariate IMs and multivariate seismic demands. An updated and 

integrated PBEE framework is developed with improved accuracy and confidence. The effect 

of dependence modeling on high-order moments of performance is investigated. The remainder 

of this paper is organized as follows. The conventional PBEE framework is discussed in 

Section 2. The methodology of UPBEE is introduced in section 3. The proposed UPBEE 

framework is introduced in Section 4. An illustrative example is presented in section 5. Section 

6 contains conclusions. 

2 Performance-based earthquake engineering (PBEE): A review 

PBEE is a new generation philosophy for the assessment and decision-making of structures. In 

this engineering philosophy, the structures are expected to satisfy performance objectives (e.g., 

direct loss, indirect loss, and fatality, etc.). The conventional procedures of the PBEE 

framework can be summarized as follows. Probabilistic seismic hazard analysis is performed 
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to identify the potential IM levels and corresponding probabilities. A linear relationship 

between logarithmic scalar IM and the logarithmic mean of demand is used to predict the 

seismic demand under different IM levels. For the dependence modeling among multiple 

demands, multivariate normality of logarithmic values is assumed. Vulnerability is computed 

based on PSDM. Then, the probabilistic performance can be computed. A general expression 

indicating the probability that a decision variable exceeding DV under a given IM can be 

written as [35] 

( | ) ( | ) ( | ) ( | )G DV IM G DV DM dG DM EDP dG EDP IM            (1) 

where G function is the complementary cumulative distribution function; DM represents 

damage measure; and EDP is engineering demand parameter. Seismic repair loss is one of the 

seismic performance indicators [2,36]. The ratio of repair loss to the construction cost of the 

structure is defined as the repair loss ratio. Herein, the repair loss ratio is considered to illustrate 

the proposed approach, the proposed approach could be updated by considering other 

performance aspects (e.g., sustainability and resilience). Each damage state is associated with 

a defined repair loss ratio [37,38]. The probability of structure being in each damage state can 

be calculated based on vulnerability. The repair loss ratio under given hazard intensity is 

calculated as the sum of weighted repair loss ratios associated with all damage states [39]. 

The conventional PBEE framework can be further updated. The linear relationship used 

for seismic demand prediction may not satisfy the accuracy requirement due to its simplicity. 

The scalar IM used as the only predictor may not provide adequate information of the 

earthquakes, resulting in a relatively large amount of prediction uncertainty. The assumption 

of multivariate normality of logarithmic values is widely used in PBEE for dependence 

modeling, and it cannot well capture nonlinear dependence characteristics. These issues could 

jointly affect the confidence and accuracy of PBEE. 
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3 Efficient uncertainty quantification and modeling of nonlinear dependence within 

PBEE 

To improve the confidence and accuracy of PBEE, this study proposes an updated PBEE 

framework by interconnecting SPCE, vine copula, and vector IM. The specific techniques are 

introduced in the following parts. 

3.1 Sparse polynomial chaos expansion (SPCE) – surrogate model 

For assessing the vulnerability of structures, it is necessary to compute the joint probabilistic 

distribution of multiple seismic demands under different IM levels. Conventionally, a linear 

relationship between logarithmic scalar IM and the logarithmic mean of demand is used [8]. In 

this study, the relationship between the input vector 𝑿 ∈ ℝ𝑀 and multiple outputs [Y1, Y2, …, 

YW] is established using surrogate model. Generally, multivariate surrogate model can be 

expressed as [28] 

ˆ ( ) ( ) SY = Y X X                            (2) 

where 𝒀̂ ∈ ℝ𝑊  is the prediction from the model; 𝒀̅ ∈ ℝ𝑊  is the estimation from a trend 

model; and 𝜺𝑺 ∈ ℝ𝑊 is the correlated model error. 

SPCE is one type of surrogate model, and it performs well in uncertainty quantification 

and data-driven prediction [40,41]. SPCE is used in this study as a surrogate model. The 

random input vector of a computational model M is represented by a joint PDF fX. The output 

of the computational model 𝑴(𝑿) is associated with finite variance, the PCE of 𝑴(𝑿) is 

written as [42] 

( ) ( )M c 
M X = X                          (3) 

where ( ) X  are the multivariate polynomials orthonormal with respect to fX; 𝛼 ∈ ℕ𝑀 is a 

set of indices mapping to the components of the ( ) X ; and 𝑐𝛼 are the coefficients. 

The multivariate polynomial is computed as 
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  is the univariate orthogonal polynomial for the ith variable in degree 𝛼𝑖. 

The original PCE can be truncated as 

( ) ( )c 
 k

PC
M X = X                          (5) 

where k  is the truncated set of multi-indices of multivariate polynomials. The PCE can be 

truncated by defining a maximum total degree p of all the polynomials associated with the input 

variables as [43] 
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   

   

,

,

1 1

1

,

1

0

1

0

( ) ( )

ˆ ( ) ,

( ) ( )

M p

M p

card
T T

i

N

v

c d

N

ar






 
 

  
  




  

x x

Φ Φ Φ Φ

x x

k

k

C = Y               (7) 

where Ĉ   is the computed vector of coefficients; and Yi,v is the vector of the model 

evaluations associated with ith demand at N input vectors x(1), …, x(N); and 

,(.), 0,..., 1M p

j j card  k  are the basis functions. 

It is found that the SPCE, which contains the selected significant terms, performs better 

in some cases. Under the same accuracy requirement, SPCE requires a smaller size of training 

data compared with full PCE [18]. This study utilizes an algorithm orthogonal matching pursuit 

(OMP) [45] to develop SPCE. In OMP, the significant basis functions are iteratively selected 

from the candidate set and added to the model. For each iteration, the algorithm selects a basis 

function from the candidate set which is most correlated with the residual, this basis function 

is selected by solving 
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ℎ(𝑘) = argmax𝑖∈ℂ𝑘

|〈𝝍𝒊,𝐫𝑘−1 〉|

‖𝝍𝑖‖2
                        (8) 

where Ψℎ(𝑘)  is the selected basis function at iteration k; ℂ𝑘  is the updated dictionary at 

iteration k by excluding the basis function selected at iteration k – 1; 𝝍𝒊  represent the 

evaluations using basis function i; and 𝐫𝑘−1 represent the residual from the PCE associated 

with iteration k – 1. 

After adding the selected basis functions at each iteration, the coefficients for active basis 

functions are computed using least square regression. The residual 𝐫𝑘−1 is computed as 

1 1 1 ,-k k k i v  r Φ= C Y                            (9) 

where 1kΦ  is the matrix containing the evaluations using the basis functions at iteration k – 

1; and 1kC  are the coefficients obtained at iteration k – 1. 

The algorithm for basis function selection is iteratively performed and stopped until ‖𝐫‖2 

is below the predefined value. The algorithm stopping threshold of ‖𝐫‖2 is computed through 

the v-fold cross-validation technique. Given the data of probabilistic structural parameters, 

seismic IMs, and responses from finite element models, the SPCE could be developed using 

this algorithm. 

3.2 Vine copula-based dependence modeling 

3.2.1 Vine copula model 

Copula is a powerful tool in characterizing the complex dependence associated with multiple 

variables. Let d random variables X1, …, Xd have marginal distribution functions Fi(xi) and 

joint cumulative distribution function (CDF) F(x1, …, xd), i = 1, …, d, the joint CDF of these 

variables can be expressed as [30] 

1 1 1 1 1( ,..., ) [ ,..., ] ( ( ),..., ( ) | ) ( ,..., | )d d d d d dF x x P X x X x C F x F x C u u    θ θ      (10) 

where P[.] is the corresponding probability; C(u1, …, ud|θ) is the copula function with copula 
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parameters θ; and ui = F(xi). 

The joint probability density function (PDF) of X1, …, Xd is expressed as 

1 1
1 1 1

11
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d d
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C F x F x
c F x F x

u u




 

θ
θ                (12) 

where c(u1, …, ud|θ) represents the copula density function; and fi(xi) is the marginal PDF of 

xi. 

Many copula families could be used to characterize the dependence of random variables 

[30,46]. In the conventional copula approach, the same dependence structure is used for all 

pairs of variables, which is inflexible for describing the different dependence structures among 

multiple random variables. Vine copula [33] is used to address this issue. It is a more flexible 

approach to model the complex dependence structures of high-dimensional random variables. 

By using vine copula, the joint PDF is decomposed into the product of bivariant copula density 

functions, thus various copula families could be used for dependence modeling of high-

dimensional variables.  

The joint PDF of X1, …, Xd can be expressed as 

1 1 1 2|1 2 1 |1,..., 1 1 1( ,..., ) ( ) ( | )... ( | ,..., )d d d d df x x f x f x x f x x x               (13) 

where f(x|v) is the conditional PDF and can be expressed as the product of pair copulas and 

conditional PDF as 

, | , |( | ) ( ( | ), ( | ); ) ( | )
j j j jx v j j j x v jf x c F x F v f x

    v vv v v v            (14) 

where vj is one variable of v; v-j is the vector excluding vj; and cx,vj|v-j(.) is the copula density 

function. The conditional CDF can be expressed as 

, | , |( ( | ), ( | ); )
( | )

( | )

j j j jx v j j j x v

j j

C F x F v
F x

F v


  




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

v vv v
v

v
               (15) 
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where Cx,vj|v-j(.) is the copula function. Eq. (13) could be decomposed as the product of copula 

density functions and marginal PDFs by using Eq. (14). The conditional CDF of x on univariant 

v can be expressed as 

, ,( ( ), ( ); )
( | )

( )

x v x v x v

v

C F x F v
F x v

F v





                     (16) 

The F(x|v) can be written as h-function 

, ,

,

( , ; )
( | ) ( , ; )

x v x j x v

x v x v

v

C u u
F x v h u u

u





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
                 (17) 

The copula functions and h-functions for various copula families are provided in the 

literature [30]. A drawable vine (D-vine) copula consists of a set of trees, each tree consists of 

several nodes and edges. Each edge is represented by a pair copula function. The PDF of a D-

vine copula is expressed as 

1

1 , | 1,..., 1 1 1 1 1 , | 1,..., 1

1 1 1

( ,..., ) ( ( | ,..., ), ( | ,..., ); ) ( )
d jd d

d i i j i i j i i i j i j i i j i i j i i j k

j i k

f x x c F x x x F x x x f x


              

  

   

(18) 

3.2.2 Inference of vine copula from data 

Given the vine copula structure and a set of samples 𝐱(1), … , 𝐱(𝑁) , 𝐱(𝑖) = (𝑥1
𝑖 , … , 𝑥𝑑

𝑖 ) , the 

parameters of vine copula can be computed using joint maximum likelihood estimation [33]. 

The joint maximum likelihood estimation simultaneously computes all the parameters of a vine 

copula by maximizing the log-likelihood. The parameters of a given vine copula structure under 

a set of samples can be estimated as 

ˆ arg max ( ; )kLL


θ x θ                           (19) 

where 𝛉̂ is the estimated vector of vine copula parameters; Θ is the range of copula parameters; 

and 𝐿𝐿(𝐱𝑘; 𝛉) is the log-likelihood for a given sample set. 

The different conditioning order and copula families result in different structures of vine 
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copulas. It is necessary to determine the optimal vine copula within the candidates. The Akaike 

Information Criterion (AIC) could be used to select the optimal copula [47,48]. For a given 

vine copula and sample set, the AIC is computed as 

ˆ2 ( ; ) 2kAIC LL np  x θ                         (20) 

where 𝐿𝐿(𝐱𝑘; 𝛉̂)  is the log-likelihood of the fitted vine copula; and np is the number of 

parameters in a vine copula. 

Bayesian Information Criterion (BIC) is the other criterion to determine the optimal vine 

copula, it can be expressed as 

ˆ2 ( ; ) lnk

vBIC LL np N  x θ                        (21) 

where Nv is the number of samples used for developing vine copula. The optimal vine copula 

is determined as the one associated with minimum AIC and BIC values. Once the optimal vine 

copula is inferred, the joint distribution of multivariant variables considering dependence could 

be determined [49]. 

3.3 Dependence modeling PBEE 

There exists dependence associated with multiple sources within PBEE. For instance, a 

complex system usually consists of multivariant demands, the dependence among multiple 

demands could affect the system vulnerability. When vector IM is used, the dependence among 

multiple IMs could affect the joint exceeding frequency. In this study, the dependence from 

two sides (e.g., IMs and demands) is considered. Joint normality of logarithmic values is widely 

assumed in previous studies for dependence modeling within PBEE. However, the multivariate 

normal distribution could not reflect the complex nonlinear dependence characteristics. This 

simple assumption may result in inaccurate assessment and mislead decision-making of 

structures. Vine copula, which could capture complex nonlinear dependence characteristics, is 

adopted in this study to model more realistic dependence structures. 
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3.3.1 Probabilistic seismic hazard analysis for vector IM considering the dependence 

Conventionally, scalar seismic IM is used in performance assessment [8]. Scalar IM can only 

reflect part of the information regarding amplitude, spectrum characteristics, and duration of 

ground motion. Due to the complexity of the ground motion, the demands predicted using a 

single seismic IM usually involve a relatively large amount of uncertainty. Compared with 

scalar IM, vector IM contains more information on ground motion, thus it could reduce the 

uncertainty of seismic demand prediction [10]. To further improve the accuracy of seismic 

demand prediction, the vector IM is used in this study. 

To quantify the probabilistic performance, the joint probabilistic distribution of seismic 

intensities should be identified, and it is achieved by probabilistic seismic hazard analysis. For 

given magnitude and distance, the seismic intensity is uncertain. The ground motion prediction 

model (GMPM) is used to predict probabilistic seismic intensity [50]. The GMPM can be 

generally expressed as 

ln lnln ( , , )IM IM IMIM R M                        (22) 

where ln IM is the natural logarithm of an earthquake intensity; M is magnitude; R is the source 

to site distance; Ω are other parameters used to describe an earthquake scenario (e.g., region of 

the earthquake and shear wave velocity averaged over top 30 m, etc.); μlnIM(R, M, Ω) is the 

mean of ln IM for given R, M, and Ω; σlnIM is the standard deviation of ln IM; and εIM is 

normalized residual term. 

There is dependence among IMs. The εIM represents the record-to-record aleatory 

variability [20] and is considered to follow a standard normal distribution (Baker et al., 2007). 

By using εIM, the correlation models were developed to account for the dependence among IMs 

[25]. The logarithmic IMs are assumed to follow a multivariate normal distribution in previous 

studies and the Pearson correlation coefficient is widely used [27]. As indicated previously, 

vine copula is a flexible approach and could capture complex dependence characteristics. This 

study utilizes the vine copula approach to model the dependence of IMs. By using the approach 
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mentioned in section 3.2, the vine copula model can be inferred based on εIM and historical data. 

Once the vine copula model is established, the joint PDF of vector IM for given earthquake 

magnitude and distance f(IM1, IM2, IM3|m, r) can be computed based on GMPM and Eq. (18). 

The probability of IM1, IM2, IM3 exceeding im1, im2, and im3 for a given earthquake scenario 

can be expressed as 

1 1 2 2 3 3
1 2 3

( , , | , ) 1 2 3 1 2 3
, ,

( , , | , )IM im IM im IM im m r
im im im

P f IM IM IM m r dim dim dim         (23) 

Considering uncertain scenarios, the joint mean rate of the three IMs exceeding im1, im2, 

and im3 is computed based on the total probability theorem as [24,27] 

min 1 1 2 2 3 31 2 3 ( , , | , )( , , ) ( ) ( )m IM im IM im IM im m r M Rim im im P f m f r dmdr               (24) 

where mmin is the annual rate of occurrence of earthquakes exceeding considered minimum 

magnitude; and fM(m) and fR(r) are the PDFs of the magnitude and distance, respectively. 

3.3.2 Joint probabilistic seismic demands considering the dependence 

For an engineering system, multiple seismic demands are usually of interest. It is necessary to 

compute the joint probabilistic demands considering dependence for system vulnerability 

analysis. The dependence among multiple structural demands can be described by the 

dependence of 𝜺𝑺 [28]. Modeling of 𝜺𝑺 plays an important role in uncertainty propagation 

and reliability analysis. It incorporates the consideration of the difference between finite 

element model evaluations and trend model predictions, as well as the uncertainty associated 

with ground motion. Normal distribution with a mean of zero is a widely acceptable 

consideration for modeling the marginal distribution of 𝜺𝑺 [28,40]. The multivariate normal 

distribution is widely assumed for the dependence modeling of 𝜺𝑺 [28]. In this study, the vine 

copula is used to model the dependence of 𝜺𝑺, as it could capture more complex dependence 

characteristics. After establishing the SPCE, the residual of the structural demands could be 

computed. Then, the residual from multiple demands is used to infer the vine copula based on 

the method mentioned in section 3.2. The joint distribution of multivariant demands 

incorporating dependence could be generated from the established vine copula model. The 
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process of dependence modeling within PBEE is presented in Figure 1. 

 

Figure 1. Process of dependence modeling within PBEE 

4 Framework of updated performance-based earthquake engineering (UPBEE) 

By integrating the above-mentioned techniques, this study proposes a framework of improved 

PBEE, which could aid more accurate and confident seismic performance assessment 

considering complex dependence. Vector IM is adopted within PBEE as it reflects more 

information on the hazard characteristics compared with conventional scalar IM. The 

probabilistic seismic hazard analysis is performed for vector IM. The Vine copula is used to 

capture the complex dependence among multiple IMs. The seismic demand surrogate models 

incorporating vector IM are established using a learning algorithm. The vine copula is used for 

the second time to model the dependence among multiple demands. The system vulnerability 

considering dependence can be computed using the surrogate model and vine copula. Then, the 

performance indicators can be computed. 

Compared with conventional PBEE, the proposed UPBEE framework has several 

advantages. The assumption of multivariate normality of logarithmic values, which is widely 

used in PBEE for dependence modeling, can only capture one of many possible solutions and 

may produce severely biased results [52]. In the proposed framework, two vine copula models 

are established for demands and IMs, respectively. More realistic dependence structures 

associated with both IMs and demands are captured by vine copula models. In addition, the 

uncertainty associated with seismic demand prediction is reduced by using a learning algorithm 
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and vector IM. The necessity and superiority of the proposed approach are illustrated in the 

case study. The computational process of the proposed approach is illustrated in Table 1. A 

comparison of the conventional PBEE framework and the UPBEE framework is presented in 

Figure 2. 

The major contribution of this paper is to develop an updated and integrated PBEE 

framework by interconnecting several novel techniques. As indicated in Figure 2, the 

improvement is achieved within hazard analysis, structural analysis, damage analysis, and loss 

analysis. Confident seismic performance assessment can be accomplished by using the 

developed UPBEE framework. 

Table 1. Computational procedures of the UPBEE framework 

Procedures of UPBEE framework 

Probabilistic hazard analysis for vector IM considering vine copula captured 

dependence 

1. Process historical earthquake data to obtain normalized residuals of considered 

IMs 

2. Determine copula families 

3. Pair copula selection 

4. Compute copula parameters by performing joint maximum likelihood estimation, 

subjected to residual data 

5. Compute AIC and BIC 

6. Obtain best-fit vine copula 

7. Identify seismic hazard source 

8. Sample dependent residuals using established vine copula 

9. Compute μlnIM (R, M, Ω) and σlnIM for the corresponding scenarios using the 

ground motion prediction model 

10. Obtain joint distribution of vector IM considering the dependence 

Surrogate-assisted vulnerability assessment considering vine copula captured 

dependence 

11. Determine probabilistic structural parameters from inventory 

12. Obtain a set of structure samples 

13. Perform nonlinear time history analysis for the sampled structures 

14. Record the demands of interest 

15. Perform leaning algorithm to establish surrogate models of all demands using 

structure samples, vector IMs, and recorded demands 

16. Compute residuals from surrogate models 
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17. Establish vine copula for demands using the residuals (invoke line 2-6) 

18. Compute vulnerability using surrogate model and vine copula 

Performance assessment 

19. Compute the probabilities of structures being in each damage state 

20. Determine consequences associated with each damage state 

21. Compute probabilistic performance 

 

 

Figure 2. Conventional PBEE framework and updated PBEE framework 

5 Illustrative example 

For regional seismic performance assessment, the performance of portfolios of bridges is of 

concern. The proposed framework is applied to a portfolio of bridges subjected to seismic 

hazards. Probabilistic seismic hazard analysis for vector IM is performed and vine copula is 

used to capture dependence. Bridge samples are generated from corresponding distributions 

(e.g., bridge inventory). Nonlinear time history analysis of the bridge samples is performed in 

OpenSees to obtain the training data. Seismic demand surrogate models are established, and 

vine copula is used to model the dependence among multiple demands. Finally, system 

vulnerability and probabilistic performance are computed. The illustration of the computational 

process is shown in Figure 3. 
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Figure 3. Illustration of the computational process 

5.1 Probabilistic seismic hazard for vector IM incorporating vine copula captured 

dependence 

The peak ground acceleration (PGA), spectral acceleration at the period of 0.2s (Sa0.2), and 

spectral acceleration at the period of 1.5s (Sa1.5) are used as vector IM in this example. There 

is dependence among multiple seismic IMs. Dependence modeling is necessary for 

probabilistic seismic hazard analysis for multiple IMs. Conventionally, the dependence is 

modeled based on the assumption of multivariate normality of logarithmic values. In this study, 

the dependence modeling of IMs is accomplished by using vine copula as it could capture 

nonlinear and complex dependence characteristics. The historical ground motion data [50] is 

used to establish the vine copula model. The normalized residuals are computed using the 

ground motion prediction model [50]. The marginal distribution of IM residual is considered 

to follow the standard normal distribution [51]. Then, a vine copula model capturing the 

dependence of IMs is established using IM residuals, as indicated in section 3.3. 

Given different seismic scenarios, the mean and standard deviation of ln IM can be 

computed using the ground motion prediction model. The residual samples of IMs are 

Confident probabilistic performance assessment 

considering dependence

Hazard analysis for vector 
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Joint distribution of vector 
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generated from the established vine copula model, then the joint probabilistic distribution of 

the three IMs associated with a given scenario could be computed. In structural decision-

making, the IMs at certain return periods are of interest. The structures are expected to satisfy 

different performance levels under different return period earthquakes. This aspect is 

considered herein. The magnitudes considered are 5.5-8, the distance is considered as 6 km. 

Two million vector IM samples considering dependence are generated using the ground motion 

prediction model and vine copula. For each vector IM sample, the return period can be 

calculated. For a considered return period, the target vector IM samples can be determined [26]. 

5.2 Surrogate models of seismic demands incorporating dependence 

To establish the surrogate model of seismic demand, a set of training data should be obtained. 

Based on the probabilistic distributions listed in Table 2, 320 bridge samples are generated 

using the Latin hypercube sampling technique [53]. Each bridge realization is paired with a 

selected ground motion [54], and nonlinear time history analysis is performed in software 

OpenSees [55–57]. The finite element model of the bridge is presented in Figure 4. The 

demands associated with the column, bearing, and abutment are recorded. Thus, the training 

data set including the probabilistic input parameters and demands is obtained. 
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Figure 4. Finite element model of the bridge 

Table 2. Probabilistic parameters used for the bridges 

Parameters Units 
Distribution 

type 
 σ Ref. 

 

Concrete 

compressive 

strength 

MPa Normal 29.03 3.59 [58]  

 

Reinforcing steel 

yield strength 
MPa Lognormal 465.0 37.30 [58] 

 

Span length mm Lognormal 31775 8738 [58]  

Deck width mm Lognormal 11970 2418 [58]  

Column height mm Lognormal 6625 865 [58]  

Abutment backwall 

height 
mm Lognormal 2186 441 [58] 

 

Bearing coefficient 

of friction 
- Normal 0.3 0.1 [58] 

 

Strength of a 

composite of two 

dowels 

kN Lognormal 116 9.28 [29] 

 

Abutment-deck gap mm Lognormal 23.5 12.5 [58]  

Backfill initial 

stiffness at the 

benchmark 

backwall height 

N/m/cm Lognormal 384 138 [59] 

 

Backfill ultimate 

capacity at the 

benchmark 

backwall height 

kN/m Lognormal 475 111 [59] 

 

Damping  Normal 0.045 0.0125 [58]  

Foundation 

translational spring 

stiffnesses 

N/mm Normal 140101 105076 [58] 

 

Shear modulus of 

elastomeric pad 
MPa Uniform 1.365 0.407 [29] 

 

Mass factor - Uniform 1 0.058 [29]  

Longitudinal 

reinforcement ratio 
(%) Uniform 2.25 0.52 [58] 

 

Note: μ = mean value and σ = standard deviation. 
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Given the training data set, the SPCE models of seismic demands are established using 

the approach indicated in section 3.1. Once the SPCE is established, it could be used for 

efficient seismic demand prediction. As discussed previously, the conventional approach may 

result in a relatively large amount of uncertainty in engineering applications. By using SPCE, 

the relationship between demand and IM is established by a learning process. Multiple bridge 

parameters could be incorporated as predictors. Additionally, multiple hazard characteristics 

(e.g., vector IMs), which provide a more comprehensive description of the hazard, could be 

incorporated into the demand prediction process. To illustrate the prediction performance of 

the SPCE and vector IM coupled approach, the mean squared errors (MSEs) on a test sample 

set are computed and presented in Table 3. When scalar IM is used, mean squared errors of the 

six demands are reduced by implementing SPCE, compared with the conventional method. The 

mean squared errors of the six demands are further reduced by using vector IM in SPCE. The 

relative improvement of accuracy of the proposed approach compared with the conventional 

approach (e.g., (MSE of the conventional method - MSE of proposed method)/MSE of 

conventional method) is shown in Figure 5. By using the developed approach, a significant 

improvement of accuracy is observed for the six demands. The reduction of error associated 

with the proposed approach could be interpreted from three aspects: (1) the implementation of 

SPCE for uncertainty propagation; (2) the incorporation of a more comprehensive description 

of hazard intensities by vector IM; and (3) the incorporation of multiple bridge parameters 

within demand prediction. 

Table 3. Mean squared error on a test set 

Methods C1 C2 C3 C4 C5 C6 

Linear regression 0.357 0.880 0.270 6.791 6.779 0.229 

SPCE 0.263 0.700 0.199 6.735 6.705 0.176 

SPCE and vector IM 0.245 0.467 0.176 4.971 4.932 0.162 

Note: C1 is the column curvature ductility; C2 is the bearing longitudinal displacement; C3 is 

the bearing transverse displacement; C4 is the abutment active displacement; C5 is the 

abutment passive displacement; and C6 is the abutment transverse displacement. 
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Figure 5. The relative improvement of accuracy comparing the proposed approach and 

conventional approach 

The model error is used to characterize the dependence among multiple demands. The 

marginal distribution of these residuals is considered as a normal distribution with a mean of 

zero [28,40]. For dependence modeling, the multivariate normal distribution is widely assumed 

[28]. This study uses the vine copula approach to capture the complex nonlinear dependence 

characteristics of seismic demands. The residuals associated with six demands are computed 

from the surrogate models. Then, the vine copula model can be established using the residual 

data. To illustrate the performance of the best fit vine copula, the criterion values of AIC, BIC, 

and log-likelihood are shown in Figure 6. The best fit vine copula is associated with minimum 

AIC, BIC, and maximum log-likelihood, which indicates that the best fit vine copula performs 

best for the dependence modeling. The assumption of multivariate normality of logarithmic 

values is widely used in previous studies for both IMs and demands, it can be considered as a 

specific case in the copula approach, where the dependence is modeled using Gaussian copula. 

The results show that multivariate normality is not the optimal dependence structure, while 

vine copula performs better due to its flexibility. To further testify the necessity of using vine 

copula approach, it is necessary to know how much difference in performance calculated by 

conventional multivariate normality assumption and vine copula approach would be. This 

aspect is investigated in next section. 
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Figure 6. Performance of the best fit vine, arbitrary order vine, and Gaussian copulas 

5.3 Seismic vulnerability and probabilistic performance 

The surrogate model and vine copula are used to compute the seismic vulnerability of bridges. 

The probabilistic joint seismic demands are computed. The capacity samples are generated 

from corresponding distributions as listed in Table 4. Then, the bridge system vulnerability can 

be computed by comparing the demand and capacity samples. By repeating this process for a 

set of IM vectors, the vulnerability surfaces can be generated as shown in Figure 7. 

Table 4. Damage states associated with different bridge components [29] 

Component Slight Moderate Extensive Complete 

med. disp. med. disp. med. disp. med. disp. 

Concrete Column 

(curvature ductility) 

1.29 0.59 2.10 0.51 3.52 0.64 5.24 0.65 

Elastomeric Bearing 

Fixed-Long (mm) 

28.9 0.60 104.2 0.55 136.1 0.59 186.6 0.65 

Elastomeric Bearing 

Fixed- 

Tran (mm) 

28.8 0.79 90.9 0.68 142.2 0.73 195.0 0.66 

Abutment-Passive 

(mm) 

37.0 0.46 146.0 0.46 N/A N/A N/A N/A 

Abutment-Active 9.8 0.70 37.9 0.90 77.2 0.85 N/A N/A 
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(mm) 

Abutment-Tran (mm) 9.8 0.70 37.9 0.90 77.2 0.85 N/A N/A 

 

  

Figure 7. Fragility surfaces computed by SPCE and vine copula under PGA = 0.1g 

Given the probabilistic distribution of the IM vector for different scenarios as computed 

in section 5.1 and vulnerability, the probabilistic loss ratio can be computed. Herein, the repair 

loss ratio for none, slight, moderate, extensive, and complete damage states are considered as 

0, 0.03, 0.25, 0.75, and 1, respectively [37,57]. Statistical moments of loss ratio using a joint 

normal distribution (widely used in previous studies) and vine copula under different scenarios 

are listed in Table 5. For the investigated scenarios, the vine copula approach and joint normal 

distribution approach produce similar results in terms of the mean, standard deviation (STD), 

and kurtosis of the loss ratio, while the significant difference is observed in skewness. By using 

the joint normal distribution approach, the skewness is underestimated from 20% to 51% 

compared with the vine copula-based approach. This difference may be caused by the 

ignorance of nonlinear dependence characteristics in the joint normal distribution. 

Table 5. Statistical moments of loss ratio using joint normal distribution and vine copula 

under different scenarios 

Scenario Method Mean STD Skewness Kurtosis 
The relative 

difference of 
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skewness 

(%) 

M=7.8, 

R=5 

Vine copula 0.655 0.190 -0.393 2.452 

20 Joint 

normality 
0.668 0.185 -0.491 2.572 

M=7.8, 

R=10 

Vine copula 0.544 0.201 -0.050 2.216 

51 Joint 

normality 
0.556 0.200 -0.103 2.234 

M=7.8, 

R=15 

Vine copula 0.465 0.200 0.190 2.272 

42 Joint 

normality 
0.473 0.197 0.134 2.282 

 

Similarly, given the distribution of the IM vector for different return periods as presented 

in section 5.1, the probabilistic loss ratio can be computed. The density of loss ratios computed 

using vine copula subjected to different return periods is presented in Figure 8. With increasing 

return periods, the peaks of density shift from small loss ratios to large loss ratios. Statistical 

moments of loss ratio using joint normal distribution and vine copula subjected to return 

periods of 75, 120, 475, 975, and 2475 years are presented in Table 6. The relative difference 

of statistical moments of loss ratio by using joint normal distribution and vine copula is 

visualized in Figure 9 (a). A significant difference is observed for STD, skewness, and kurtosis 

values. As compared previously, the vine copula captures dependence better based on the 

criteria of AIC, BIC, and log-likelihood. By using the conventional joint normal distribution, 

biased high order moments could be obtained due to the ignorance of nonlinear dependence. 

The incorporation of uncertainty is necessary for the seismic performance assessment of 

structures [55,60]. Using only expected cost may not be appropriate when risk aversion is 

considered within the decision-making of structures [61]. The high order moments of 

performance indicator (e.g., variance, skewness, and kurtosis of loss) reflecting the information 

of probabilistic distribution are essential for risk-neutral decision-makers to incorporate 

different decision attitudes [62]. The decision-making of structures may not be optimal if only 

expected performance is considered, higher-order moments of performance should be 

incorporated to aid the rational decisions [63]. Thus, the structural assessment and decision-

making may be misled by using the conventional joint normal distribution for dependence 
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modeling. 

The ratio of statistical moments of loss to the values associated with a return period of 75 

years is presented in Figure 9 (b). An increasing trend with return periods is observed for most 

of the statistical moment values. Within the four statistical moments, mean values are 

associated with the most significant increasing trend. The density plots of loss ratios computed 

using joint normal distribution and vine copula subjected to return periods of 75 and 475 years 

are presented in Figure 10. The figures show that heavy and long tail behaviors are well 

captured by vine copula, while higher peaks of density are associated with the joint normal 

distribution.  

 

Figure 8. The density of loss ratios computed using vine copula subjected to return 

periods of 75, 120, 475, 975, and 2475 years seismic scenario 

 

Table 6. Statistical moments of loss ratio using joint normal distribution and vine copula 

subjected to different return periods 

Return period 

(years) 

Dependence 

model 
Mean STD Skewness Kurtosis 

75 Joint normality 0.2254 0.0311 -1.0966 4.2789 

Vine copula 0.2217 0.0398 -1.3236 5.0262 

120 Joint normality 0.3043 0.0402 -1.1686 4.3502 

Vine copula 0.3030 0.0506 -1.4662 5.5370 

475 Joint normality 0.5258 0.0565 -1.4637 5.2962 

Vine copula 0.5233 0.0698 -1.7884 7.2429 

2475975

475

75

120
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975 Joint normality 0.6212 0.0593 -1.6265 5.9130 

Vine copula 0.6202 0.0713 -2.0841 9.0426 

2475 Joint normality 0.7243 0.0549 -1.8953 7.6103 

Vine copula 0.7178 0.0705 -2.4533 11.7571 

  

Figure 9. (a) The relative difference of statistical moments of loss ratio by using joint 

normal distribution and vine copula and (b) ratio of statistical moments of loss to the 

values associated with a return period of 75 years 

 

Figure 10. The density of loss ratios computed using the joint normal distribution and 

vine copula subjected to return periods of (a) 75 years and (b) 475 years 

Overall, the proposed PBEE framework updates the conventional PBEE framework from 

several stages including hazard analysis, structural analysis, damage analysis, and performance 

analysis. In hazard analysis, the scalar IM used in most previous studies could only reflect 

limited information. The proposed approach adopts vector IM to describe the probabilistic 

hazards more comprehensively. The complex dependence among multiple IMs is captured by 

a b

a b

Joint normal distribution
Vine copula

Return period: 

75 years

Joint normal distribution
Vine copula

Return period: 

475 years
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vine copula without using the assumption of joint normality of logarithmic values. In structural 

and damage analysis, linear regression is used in most of the previous studies to describe the 

relationship between scalar IM and demand. The dependence among multiple demands is not 

well considered. The proposed approach uses the surrogate model to describe this complex 

relationship, and vector IM reflecting more hazard information is incorporated in the surrogate 

model. Thus, the uncertainty of demand prediction can be reduced. The vine copula is used for 

the second time to model the complex dependence among multiple demands. The system 

vulnerability and performance can be computed more accurately and confidently. 

6 Conclusions 

This study proposes a hybrid framework for PBEE by interconnecting several advanced 

techniques. The SPCE is used as a surrogate model for seismic demand prediction. Vector IM, 

which contains more information on the hazard compared with scalar IM, is incorporated in 

the surrogate model to further improve the accuracy of prediction. The dependence from both 

the IM side and demand side is modelled using vine copula. The seismic performance can be 

computed using the proposed hybrid framework confidently. The framework is applied to an 

illustrative example. Several conclusions are drawn. 

 Compared with the conventional method, SPCE and vector IM coupled approach could 

improve the accuracy of seismic demand prediction significantly. By using SPCE, a 

complex relationship of the input and demand can be captured, and multiple uncertain 

parameters can be incorporated in uncertainty propagation. The use of vector IM 

incorporates more hazard information in the analysis compared with scalar IM, thus, 

the uncertainty can be further reduced. 

 The multivariate normality of logarithmic values is a widely used assumption for 

dependence modelling within PBEE. This study found that the multivariate normality 

of logarithmic values is not the optimal dependence structure for either seismic IMs or 

demands, the performance criteria show that vine copula performs better to capture 

complex dependence associated with both IMs and demands. 
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 The difference of the high order moments of loss derived from widely used multivariate 

normality assumption and the proposed vine copula-based approach is large. The 

structural assessment and decision-making may be misled by using the conventionally 

adopted assumption. 

 The proposed approach updates the existing performance assessment framework from 

two aspects: improving accuracy and capturing a more realistic dependence structure. 

It could advance the rational assessment and decision-making of engineering systems 

under seismic hazards. 
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