

Evaluating the Environmental Impact of Contaminated Sediment

Column Stabilized by Deep Cement Mixing

Tsz-On Ho ^a, Daniel C.W. Tsang ^{a,*}, Wen-Bo Chen ^a, and Jian-Hua Yin ^a

⁴ ^aDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University,

5 Hung Hom, Kowloon, Hong Kong, China

6 * Corresponding author: dan.tsang@polyu.edu.hk

8 Abstract

9 Deep cement mixing (DCM) method is a widely used geotechnical technique for increasing
10 ground stabilization before construction works. However, the environmental influence of
11 stabilized ground on the surrounding area remains a concern. A physical model experiment of
12 DCM-treated sediment column was conducted to investigate both geotechnical and
13 environmental effects on the surrounding sediment. The DCM column contained the cement-
14 stabilized contaminated sediment and surrounded by uncontaminated sediment. The physical
15 behaviour, including settlement, pore water pressure, and total pressure were measured under
16 different loadings. Simultaneously, the migration of the major ions into seawater, and leaching
17 of potentially toxic elements into the surrounding sediment were evaluated. The results
18 revealed that the leaching of major ions from the DCM column followed the dissipation of

19 excess pore water and migrated to the seawater above the sediment surface. Nevertheless, the
20 leaching behaviour of potentially toxic elements into the surrounding sediment and variation
21 of pH value after the DCM treatment were within an acceptable level. Therefore, the
22 contaminated marine sediment could be effectively stabilized and solidified by *in-situ*
23 remediation with minimal secondary pollution to the surrounding environment.

24 **Keywords:** contaminated sediment; *in-situ* remediation; stabilization/solidification; long-term
25 consolidation; metal/metalloid leaching; environmental pollution.

26

27 **Introduction**

28 Due to the increasing demand of the land for urban development and metropolitan area, it is
29 difficult to find an appropriate ground in densely populated cities such as Hong Kong.
30 Reclamation on marine sediment, which is often contaminated, is an effective way to solve this
31 problem, which has been adopted in the third runway establishment of the Hong Kong
32 International Airport (HKIA). In the reclamation, the soft and contaminated sediment requires
33 proper *in-situ* improvement techniques to minimize the contaminant leaching, increase the
34 mechanical strength, and reduce the long-term settlement. Among commercially available
35 techniques, deep cement mixing (DCM) method is considered as the most effective technique
36 (Yin, 2001). [This method has been developed and widely used in Japan and Nordic countries](#)

37 (Kitazume and Terashi, 2013; Long *et al.*, 2019) because the strength of the
38 stabilized/solidified (S/S) sediment can be significantly increased within a **short period of time**
39 **compare other ground improvement techniques** (Chiu *et al.*, 2019; Li *et al.*, 2019; Reddy *et al.*,
40 2019; Wang *et al.*, 2019a; Xia *et al.*, 2019). In addition, the contaminated marine sediment can
41 **be simultaneously remediated by mixing with binders such as cement, lime, or lime-base**
42 **materials.** (Wang *et al.*, 2015b; Li *et al.*, 2017; Wang *et al.*, 2020b).

43

44 Marine Sediment contamination is a global problem (Birch, 2017; Niu *et al.*, 2020; Wang *et*
45 *al.*, 2020a). Due to the historical pollution by industrial and domestic sewage discharges,
46 various levels of potentially toxic elements (PTEs) in the marine sediments were found in many
47 regions across Hong Kong (HK EPD, 2013). The dredged sediments were classified based on
48 the level of pollution, and the contaminated sediments were dumped in the designated open sea
49 disposal areas or contaminated mud pits (CMPs) depending on the contamination levels, and
50 continuous monitoring program was required (HK ETWB 2002). To reduce the environmental
51 impacts of dredged/excavated sediment, non-dredging *in-situ* reclamation method of former
52 CMPs marine area is needed for reclamation and future development, which is an imperative
53 and cross-disciplinary challenge to geotechnical and environmental researchers. Recent studies
54 have advanced the *ex-situ* S/S technique for recycling of the contaminated sediment into
55 sediment-based **products** including non-load-bearing blocks (Wang *et al.*, 2015), high-strength

56 pedestrian blocks (Wang *et al.*, 2017), and eco-paving blocks (Wang *et al.*, 2018a). Economic
57 applicability of different sediment-**derived blocks** showed further support for the development
58 of novel and sustainable management of contaminated sediment (Wang *et al.*, 2018b). *In-situ*
59 and *ex-situ* S/S treatment of hazardous materials became mature after appropriate curing
60 methods (Cui and Jing, 2019; Wang *et al.*, 2019b; Wang *et al.*, 2019c) and presented low risk
61 in the long-term performance ([Gomes *et al.*, 2019](#); Oustriere *et al.*, 2016; Shen *et al.*, 2018),
62 therefore the S/S technique is widely accepted and utilized.

63

64 DCM method can be considered as an *in-situ* S/S process which can stabilize the contaminated
65 sediment under the water column (i.e., without prior dredging) and minimize the marine
66 environmental impacts during and after the construction process (Wang *et al.*, 2014a; Libralato
67 *et al.*, 2018; Ma *et al.*, 2020). It has become popular in various projects, e.g., such as
68 reclamation for Tung Chung New Town Extension and the third-runway system projects in
69 Hong Kong. Most of the previous studies focused on mechanical **and transport** properties of
70 the soft sediment treated by DCM, such as strength, stiffness, and permeability (He *et al.*, 2018;
71 [Gomes *et al.*, 2020](#); Horpibulsuk *et al.*, 2005; Quang and Chai, 2015; Yin, 2004). For example,
72 Yin and Fang (2006) prepared a small-scale experiment and evaluated the relative permeability
73 of the DCM with regard to the surrounding sediment, which suggested that the DCM column
74 could be regarded as a partial or full vertical drainage. Fang and Yin (2007) investigated the

75 dissipation of excess pore water pressure and development of stress concentration in a
76 composite foundation under multi-staged loading revealed that the presence of DCM column
77 increased the speed of dissipation of excess pore water pressure in the compositing foundation.
78 Horpibulsuk *et al.* (2012) revealed that the rates of dissipation of excess pore water pressure in
79 both DCM column and the surrounding environment were almost the same at different depths
80 of the composite ground. DCM columns are known to establish their setting and gain strength
81 through chemical reactions, including hydration of binders, ion exchange reaction, and
82 formation of cement hydration products and pozzolanic reaction products (Kitazume and
83 Terashi, 2013). CaO as the major ingredient of cement reacts with water and produces calcium
84 (Ca^{2+}) and hydroxide (OH^-) that may migrate into the surrounding environment in the curing
85 period (Larsson *et al.*, 2009). Ikegami *et al.* (2005) indicated that the Ca^{2+} leaching from treated
86 soil was one of the major factors that caused the deterioration of the circumstantial environment
87 and ecological system, as a result of the concentration gradient between DCM column and
88 surrounding area. In particular, the time-dependent performance and effectiveness for the
89 environmental risk mitigation remain a concern (Rađenović *et al.*, 2019; Xia *et al.*, 2019).
90 There is a legitimate need to understand the change of physicochemical properties of DCM
91 column and the surrounding environment.

92

93 There is a knowledge gap in the existing literature regarding the coupling of consolidation

94 behaviour and the extent of ion migration into the surrounding environment after the *in-situ*
95 sediment remediation using DCM column technology, which may lead to the second pollution
96 risk. In this study, an axisymmetric physical model test was designed and conducted to
97 particularly assess the ion migration between the DCM column and surrounding sediment.
98 Sediment and pore water samples at different radial distances and different depths were
99 analyzed during the DCM column consolidation. The pH values and chemical concentrations
100 were monitored for understanding the migration mechanism of major cations and PTEs in the
101 *in-situ* sediment remediation process. The results in this study can serve as a reference for better
102 understanding of the environmental issue in reclamation design.

103

104 **Experimental Methods**

105 **Materials**

106 *Hong Kong Marine Sediment (HKMS) and Contaminated Hong Kong Marine Sediment*
107 *(CHKMS)*

108 The HKMS used in this study was obtained from Lantau Island in Hong Kong. The total metal
109 concentrations in the HKMS were 16 mg/kg of Cu, 71 mg/kg of Zn, 36 mg/kg of Cr, 21 mg/kg
110 of Ni, and 6 mg/kg of As. The CHKMS was taken from the deep seabed about 5 m underwater
111 in the CMPs to the South of Brothers in Hong Kong. The total metal concentrations in the

112 CHKMS were 15 mg/kg of Cu, 87 mg/kg of Zn, 38 mg/kg of Cr, 23 mg/kg of Ni, and 9.5
113 mg/kg of As. The physical properties [and total metal concentrations](#) of HKMS and CHKMS
114 are listed in [Tables 1 and 2](#).

115

116 *Cement material*

117 The cement used in the test to form the DCM column is [Type I](#) Ordinary Portland Cement
118 ([OPC](#)) [locally produced by Green Island group, Hong Kong](#). To ensure a consistent
119 composition, the cement from the same batch of production was used. The chemical
120 [composition](#) of the cement used in this study [is](#) shown in [Table 3](#).

121

122 *Physical Model Test*

123 A cylindrical stainless-steel mould of 300 mm in inner diameter and 400 mm in height was
124 used for the experimental study. The physical model was built to simulate the unit element of
125 the HKMS improved by a DCM column. The DCM column was surrounded by the pre-
126 consolidated HKMS. A rigid plate was put on the top of the model applying the vertical
127 displacement for both DCM column and HKMS. The lateral displacement is not permitted. The
128 vertical load was applied by a pneumatic jack system, which could maintain a stable loading.

129 The detailed arrangement of the equipment is shown in Fig. 1.

130

131 *Sediment Preparation*

132 HKMS used in this study was firstly mixed with a specified quantity of seawater thoroughly
133 by a motorized mixer with a water content of 1.9 times the liquid limit of the clayey sediment
134 (*i.e.* 102% water content) (Yin and Fang 2010). Then the HKMS slurry was reconstituted in
135 the cylindrical model and was pre-consolidated uniaxially under 15 kPa by dead weights. To
136 accelerate the consolidation process, the drainages from the top and bottom surfaces were
137 allowed in the pre-consolidation stage. The initial height of slurry was estimated to be 350 mm.
138 The final height of the HKMS after pre-consolidation was about 280 mm. The pre-
139 consolidation stage lasted for 33 days, and the measured excess pore water pressure is less than
140 1 kPa. The height of HKMS was trimmed to 230 mm as a designed height, and a sampling port
141 with a diameter of 50 mm was drilled for inserting a DCM column.

142

143 *DCM Column Formation and Curing*

144 Since the physical model simulated a marine ground improvement technique, seawater was
145 used to prepare the DCM columns (instead of distilled water) to reduce experimental
146 discrepancy from the field conditions (Li et al., 2020) The initial water content of CHKMS was
147 35%. The CHKMS was mixed with additional seawater reaching the state with a water content

148 of 100%. The cement content was kept at 25%, which was defined as the ratio of the dry mass
149 of cement to that of sediment. The dry cement powder was added and mixed thoroughly by an
150 electric mixer for 5 mins.

151

152 Then the mixture was placed into a PVC tube mould with an internal diameter of 50 mm and a
153 height of 200 mm. The paste was compacted in three layers that each layer was tamped with a
154 hammer for ten times. After curing for one day inside the PVC mould, the DCM column was
155 transferred into the pre-drilled hole in the pre-consolidated HKMS. The DCM column was
156 cured in the composite foundation model.

157

158 After inserting the DCM column, a 50 mm sand layer was placed to cover both the HKMS and
159 DCM column. The curing time was 52 days. The preparation aimed to obtain a uniform DCM
160 column and ensure that curing condition under clay environment was close to the real project.

161

162 *Instrumentation*

163 In this physical model, five pore water pressures transducers (PPTs) were used to measure the
164 variations of pore water pressure inside the HKMS. The PPTs are 18 mm in diameter and 13
165 mm in thickness with a capacity of 200 kPa. Two earth pressure cells (EPCs) were used to

166 measure the loads acting on the DCM column and the HKMS, respectively. The EPCs are 28
167 mm in diameter and 10 mm in thickness. The EPCs and PPTs were carefully calibrated before
168 the physical testing, and details could be referred to Feng *et al.* (2016) and Qin *et al.* (2019).
169 Two linear variable differential transformers (LVDTs) were used to measure the settlement of
170 the composite ground. Loading was applied by a pneumatic jack system which provides
171 different vertical loadings to the physical model by adjusting the air pressure. A 30-kN capacity
172 loading cell was used for measuring the applied loading on the model. All the transducers were
173 connected to the data logger (NI PXIe-1082, National Instruments) for collecting continuous
174 data.

175

176 *Loading and Sampling Procedures*

177 After curing, a rigid plate was placed on the top of the sand layer. The multistage loading (15
178 kPa, 20 kPa, 40 kPa, and 60 kPa) was applied by steps. Under each stage of loading, the top of
179 the model was drained while the bottom valve was closed to simulate the actual drainage. The
180 loading and sampling schedule are plotted in Fig. 2

181

182 Sediment samples were collected in each stage after the consolidation completed. There was a
183 4-sampling port system (*i.e.*, 16 sampling positions) on the physical model tank, as shown in

184 Fig. 1, with each entrance point connecting a valve. Each set included four sampling ports with
185 50-mm interval (30 mm, 80 mm 130 mm and 180 mm from the bottom of the DCM column).
186 During sampling, the entrance valve was open, and the sediment was sampled by inserting a
187 125 mm length and 8 mm diameter sampling tube horizontally into the model as shown in Fig.
188 3a-c. This method could retrieve about 2 g of dry clay beam in each slot. The advantage of this
189 method was that vertical loads could be continuously applied to the system, thereby reducing
190 the interference of the consolidation process of the composition foundation. Four sediment
191 samples were extracted from the model as shown in Fig. 3. All clay samples were oven-dried
192 at 105°C for 24 h.

193

194 *Chemical Properties*

195 Chemical properties determined in this study include pH value of the seawater on the top of
196 the HKMS, major cations and PTEs concentration of the surrounding HKMS and seawater.
197 The pH values of surface seawater were measured by a portable pH meter. The pH values were
198 measured at the centre and two edges (left side and right side) of the top of the surface seawater
199 on the model experiments every time.

200

201 Sediment samples were prepared according to the following total digestion procedures. Each

202 oven-dried sediment sample was cut into three pieces as shown in Fig. 3d. A 0.25 g of ground
203 sediment sample was heat digested with a mixture of concentrated nitric acid (HNO_3) and
204 perchloric acid (HClO_4) on a hot block with a ratio of 4:1. After cooling down, 10 mL of 5%
205 HNO_3 was added into the slurry, and the slurry was filtered by the 0.45 μm microfiltration
206 membrane. The solutions were quantified by Inductively Coupled Plasma-Optical Emission
207 Spectroscopy (ICP-OES) determination of cations and PTEs concentrations.

208

209 For the sampled seawater, 5 mL of the water sample was mixed with 2 mL concentrated nitric
210 acid (HNO_3) and digested. After cooling down to room temperature, 5 mL of 5% HNO_3 was
211 mixed with specimens. The mixture was filtered by the 0.45 μm microfiltration membrane and
212 the concentrations of major cations and PTEs were determined by the ICP-OES analysis.

213

214 **Results and Discussion**

215 *Seawater pH Value*

216 During the loading stage, the consolidation process only allowed pore water to drain from the
217 top surface of the physical model. The initial pH value of seawater was 7.86. Fig. 4 shows the
218 change of pH value of seawater with time under increasing loading. The pH values of the
219 seawater were measured at the [centre](#) and two sides of the model. The pH value raised from

220 7.86 to a peak of 8.4 under 15 kPa loading. The maximum pH values were 8.4 and 8.3 under
221 20 kPa and 40 kPa, respectively. After the mechanical failure of the column, there was no
222 increase in pH value even though the loading increases to 60 kPa, pH value remained stable at
223 8.1.

224 The increase of pH value after each loading could be attributed to the dissipation of excess pore
225 water pressure, which would induce the drainage of water from the surrounding sediment to
226 the top surface. Besides, there was a certain delay for the increase in pH value after each loading
227 step, probably because of the low permeability of the HKMS such that the pore water took
228 longer time to drain to the top surface. The pH value in each loading step fell to a stable level
229 after reaching a peak value. This was probably due to the carbonation by CO₂ from the
230 atmosphere and its attainment of equilibrium condition (Wang et al., 2014a; Wang et al., 2014b).
231 Setunge et al. (2009) observed similar phenomenon and pointed out that the pH value was
232 influenced by the dosage of cement content because the pH value could be influenced by the
233 leaching of calcium hydroxide. On the other hand, the increase of cement dosage reduced the
234 porosity of DCM column, which could mitigate the leaching behaviour and delay the increase
235 in pH value, accounting for the small fluctuation of pH after a long time of loading. It can be
236 concluded that the variations of pH value due to DCM column were considered
237 environmentally acceptable in the marine environment.

238

239 *Stresses on DCM Column and the Surrounding Sediment*

240 The settlement of the composite foundation is shown in Fig. 2. The total final settlement was
241 40 mm, and the loading period was 122 days. The DCM column failed under the loading of 40
242 kPa, and then the settlement increased quickly. There was a slight influence of sediment
243 sampling on the settlement. Fig. 5 shows the total stresses on the DCM column and surrounding
244 sediment versus time with the stress concentration ratio n under four loading stages. The stress
245 concentration ratio, n , was defined as the ratio of total stress on the column to that on the
246 surrounding ground, which is an important parameter to analyze [the loading](#) distribution in the
247 column-treated sediment. However, many factors were affecting the stress concentration ratio,
248 for example, the consolidation degree of the surrounding sediment, the magnitude of the
249 loading, condition of loading, and the dimension and stiffness of the DCM column, *etc.* (Fang
250 and Yin, 2007). There were two different loading conditions which are flexible and rigid
251 loading. Stresses on DCM column and surrounding sediment were uniform if the loading was
252 flexible and the parameter n was a constant. In this physical model, the loading was considered
253 as a rigid loading as a rigid plate was placed on the top. Fig. 5 shows that the n value varies
254 with vertical loading, and it was not a constant value. In the first two loading stages, *i.e.* 15 kPa
255 and 20 kPa [loadings](#), the n value increased when the applied load increased. This indicates that
256 the stress was transferred from sediment to column until force equilibrium. [A similar](#)

257 conclusion was drawn on the increasing n value with time before the failure of column (Yin
258 and Fang, 2006). They found that local crushing occurred upon the failure of column, after
259 which n value decreased with time. A similar phenomenon is shown in Fig. 5b, when applying
260 40 kPa loading on the composite ground, the failure of column occurred and the n value
261 displayed a sudden drop. The stress on the DCM column decreased with time when the applied
262 load was increased to 60 kPa, as shown in Fig 5a. The loading started to transfer back from the
263 DCM column to the surrounding sediment. Therefore, the n value kept decreasing.

264

265 *Leaching Behaviour of Major Cations and PTEs in Seawater*

266 During the cement hydration reaction, certain amounts of cations, Ca^{2+} , Mg^{2+} , Fe^{3+} were
267 dissolved into the pore water from the DCM column. There were higher concentrations of
268 major cations in the pore water and the surrounding sediment. The concentrations of major
269 cations Mg^{2+} , Ca^{2+} , K^+ and Al^{3+} were measured. After the curing stage, the first loading 15 kPa
270 was added, and the concentration of Mg^{2+} increased as shown in Fig. 6a. The concentration of
271 Mg^{2+} kept rising when the loading increased from 790 mg/L to the maximum value of 980 mg/L
272 at 40 kPa loading, and it stabilized at about 950 mg/L. There was a similar phenomenon
273 occurring on K^+ . The continuous growth of the concentrations was observed in the loading
274 stages from about 350 mg/L to 400 mg/L. However, the concentration of Ca^{2+} increased rapidly

275 at 15 kPa loading stage from 370 mg/L to the maximum value of 460 mg/L as shown in Fig.
276 6c. Unlike Mg^{2+} and K^+ , the concentration of Ca^{2+} remained relatively stable at 390 mg/L even
277 though the applied loading further increased. In contrast, the concentration of Al^{3+} maintained
278 at a stable value at 0.55 mg/L in the seawater.

279

280 It is shown that the concentrations of monovalent cation K^+ increased during the loading stage,
281 although K^+ was not present in the cement used. This probably resulted from cation exchange
282 because trivalent and divalent cations would have the ability to replace the monovalent cations
283 (Shen et al., 2008). After installation of the DCM column, pore seawater showed higher
284 concentrations of divalent cations such as Ca^{2+} than monovalent cations. The monovalent
285 cations such as K^+ that were initially adsorbed on the surface of surrounding sediment were
286 replaced by the divalent cations diffusing out from the DCM column. As the concentration of
287 trivalent Al^{3+} was low, the ion exchange effect was not significant. During the loading stage,
288 the excess pore water was dissipated to the ground surface, the concentration of K^+ in the
289 seawater increased accordingly. Fig. 6b shows that cation concentrations increased even before
290 the failure of the DCM column. However, more micro-cracks might be induced during the
291 increase of loading before the DCM column failure. The increasing concentrations of major
292 cations may be ascribed to the continuous increase in the number of micro-cracks in the DCM
293 column.

294

295 All the PTEs concentrations in the CHKMS were below the hazardous level according to the
296 management guidelines in Hong Kong ([HK ETWB 2002](#)). The trends of leaching **behaviour** of
297 some PTEs into seawater could be observed, [although most of the results were below 1 mg/L](#).
298 The concentrations of [As, Zn, Cu, Mn, Ni, and Cr](#) showed a rising trend. The concentration of
299 Zn showed a noticeable increase from 0.076 mg/L to a maximum value of 0.136 mg/L after 15
300 kPa loading, then reduced to a stable value of 0.107 mg/L as shown in Fig. 7. A similar result
301 was obtained for Cu, the concentration of which increased from 0.035 mg/L to a maximum
302 value of 0.065 mg/L at 15 kPa loading. When loading was further increased to 40 kPa, its
303 concentration remained stable at 0.050 mg/L. Similarly, the concentration of Mn increased
304 from 0.049 mg/L to 1.856 mg/L, and the concentration of Ni increased from 0.143 mg/L to 0.9
305 mg/L. Only the concentration of Cr remained stable at 0.09 mg/L under all loadings even after
306 the DCM column failure. The concentration of As in the seawater was less than 0.001 mg/L
307 throughout the process.

308

309 *Leaching **Behaviour** of Major Cations and PTEs in the Surrounding Sediment*

310 In order to understand the leaching **behaviour** after the DCM column-treated remediation,
311 sediment samples were collected from the physical model experiment under different depths

312 and loadings. Fig. 8a shows that the distribution of concentration of Mg^{2+} with different depths
313 and horizontal distances away from the DCM column in the physical model under various
314 loadings. At the locations with distances of 0 to 40 mm from the edge of the DCM column, the
315 concentration of Mg^{2+} increased with increasing loading. This trend could be observed at the
316 sampling port 4 from 9.5 g/kg to 12.5 g/kg. The concentration of Mg^{2+} became relatively stable
317 at approximately 9 g/kg in the surrounding sediment located 42 to 125 mm away from the
318 DCM column. The samples from the sampling ports 2 and 3 displayed the same phenomenon.
319 Similar changes were displayed by Ca^{2+} as shown in Fig. 8b. The samples from the sampling
320 ports 2, 3 and 4 showed an increasing concentration of Ca^{2+} under increment loading location
321 0 – 42 mm from the DCM column. The highest concentration of the point near to DCM column
322 occurred when 40 kPa loading was applied. It rose from 12.5 g/kg (before loading) to 16 g/kg.
323 This suggests that the ion migration was predominantly driven by the upward dissipation of
324 excess pore water and at the same time the ion diffusion into the surrounding sediment. There
325 might be some vertical fractures developed in the surrounding sediment during the installation
326 of DCM columns, which could provide a drainage boundary for excess pore water to diffuse
327 from the ground to the surface water (Shen *et al.*, 2008).

328
329 The effect of applied vertical loading was observed on PTEs leaching into the surrounding
330 sediment. In the location ranging from 0 to 42 mm, the concentration of As showed a slight

331 increase when the vertical loading increased (Fig. 8c). When the distance from the DCM
332 column increased (i.e., 42 – 125 mm from the column), the concentration of As at the same
333 location under different loading levels showed a similar trend. In comparison, the other
334 concentrations of PTEs (Zn, Cu, Mn, Ni, and Cr) were steady, and the increment concentration
335 of each PTE was less than 10% compared with the initial value. The results suggest that DCM
336 column-treated sediment could effectively stabilize the PTEs elements.

337

338 *Pore Water Pressure in the Stabilized/Solidified Sediment*

339 During the loading stage, the drainage was only permitted through the top surface. Under each
340 loading stage, excess pore water pressure was induced. The pore water pressure firstly
341 increased to the maximum value and then started to dissipate. Fig. 9 shows that the pore water
342 pressure changed with time under 15 kPa by comparing three sensors (PPT 1, PPT 2, and PPT
343 4) at the same height level. When the 15 kPa was applied, PPT 4 manifested the maximum pore
344 water pressure of 6 kPa near to the DCM column. When the distance from the column increased,
345 the maximum pore water pressures increased to 8 kPa (PPT 2) and 9 kPa (PPT 1). This is
346 possibly because the DCM column sustained the majority of the force, then the surrounding
347 sediment was subjected to a lower pressure such that the peak value was also lower. Since there
348 was a pressure difference between the outer periphery and inner core of the S/S sediment, the

349 dispersion of excess water pressure can be considered as flowing horizontally from the DCM
350 column to the surrounding environment. It may explain why the ion concentrations in the pore
351 water kept increasing. Fig. 9 indicates that the degree of consolidation of the sediment adjacent
352 to the DCM column was lower than that far away from the column. After applying the loading
353 for eight days, the degree of consolidation could reach 98% in the surrounding sediment and
354 85% for the sediment close to the DCM column. The excess pore water pressure changed with
355 time in a similar way under the loadings of 20 kPa (Fig.S1), 40 kPa (Fig.S2), and 60 kPa
356 (Fig.S3), respectively.

357

358 **Conclusions**

359 A physical model experiment was conducted to evaluate [the physicochemical properties of the](#)
360 [DCM-treated contaminated sediment column](#) and the surrounding sediment under multi-staged
361 loading. It was observed that the seawater pH value varied with the staged loading. The
362 concentrations of major cations increased and migrated into the seawater due to the dissipation
363 of pore water, possibly because of fractures caused by the installation of DCM column and
364 micro-cracks induced by the continuous loading. The concentrations of PTEs in the
365 surrounding seawater were found to be stable even under an increasing loading. There were
366 minimal amounts of major cations and PTEs diffusion into the surrounding sediment. The

367 physical model experiments showed that the ion migration to the surrounding environment was
368 mainly attributed to the consolidation **behaviour** and the upward flow of the seawater during
369 the dissipation of pore water pressure. Therefore, the risk of secondary pollution to the
370 surrounding environment was considered low when using the DCM ground improvement, even
371 with the failure of DCM columns under high pressures. This study confirmed that the marine
372 sediment of low contamination level could be effectively stabilized and solidified for the land
373 reclamation by using the *in situ* DCM method. Further research will be required for evaluating
374 the treatment effectiveness for heavily contaminated sediment.

375

376 **Acknowledgments**

377 This study was supported by Research Impact Fund (RIF) project (R5037-18), Theme-based
378 Research Scheme Fund (TRS) project (T22-502/18-R), and General Research Fund (GRF)
379 projects (PolyU 152796/16E, PolyU 152209/17E; PolyU 152179/18E) from Research Grants
380 Council (RGC) of Hong Kong Special Administrative Region Government of China. The
381 authors also acknowledge the financial support from the Research Institute for Sustainable
382 Urban Development and The Hong Kong Polytechnic University (BBAG, ZDBS, ZVNC).

383

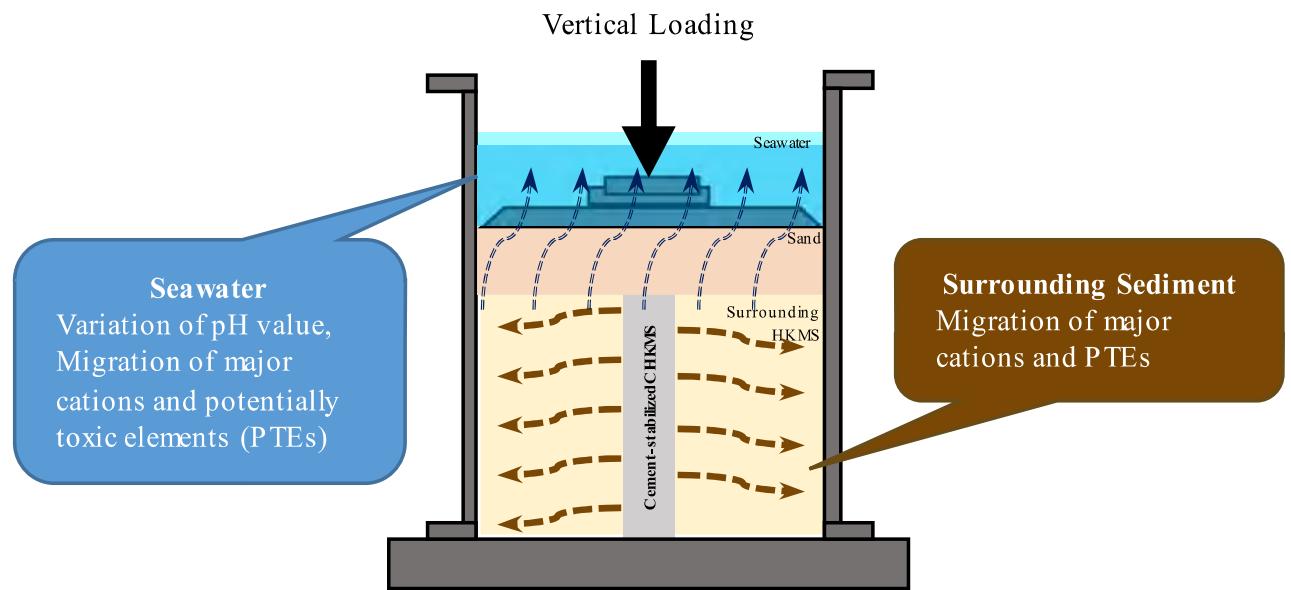
384 **References**

385 Birch, G.F., 2017. Determination of sediment metal background concentrations and enrichment
386 in marine environments - a critical review. *Sci. Total Environ.* 580, 813–831.
387 <https://doi.org/10.1016/j.scitotenv.2016.12.028>.

- 388 Chiu, A. C., Akessee, R., Moumouni, I. M., Xiao, Y. 2019. Laboratory assessment of rice husk
389 ash (RHA) in the solidification/stabilization of heavy metal contaminated slurry. *J. Hazard
390 Mater.* 371, 62-71. <https://doi.org/10.1016/j.jhazmat.2019.02.051>.
- 391 Cui, J., Jing, C., 2019. A review of arsenic interfacial geochemistry in groundwater and the role
392 of organic matter. *Ecotox. Environ. Safe.* 183, 109550.
393 <https://doi.org/10.1016/j.ecoenv.2019.109550>.
- 394 Gomes, S. D. C., Zhou, J. L., Li, W., Long, G., 2019. Progress in manufacture and properties
395 of construction materials incorporating water treatment sludge: A review. *Recour. Conserv.
396 Recy.* 145, 148-159. <https://doi.org/10.1016/j.resconrec.2019.02.032>
- 397 Gomes, S. D. C., Zhou, J. L., Li, W., Qu, F. 2020. Recycling of raw water treatment sludge in
398 cementitious composites: effects on heat evolution, compressive strength and
399 microstructure. *Recour. Conserv. Recy.* 161, 104970.
400 <https://doi.org/10.1016/j.resconrec.2020.104970>.
- 401 HK EPD, 2013. Marine Water Quality in Hong Kong in 2012. Environmental Protection
402 Department, Hong Kong SAR Government.
- 403 HK ETWB, 2002. Management of dredged/excavated sediment. Appendix A of ETWB (W)
404 No, 34, A1. Environment, Transport and Works Bureau, Hong Kong SAR Government.
- 405 Fang, Z., Yin, J.H., 2007. Responses of excess pore water pressure in soft marine clay around
406 a soil-cement column. *Int. J. Geomech.* 7(3), 167-175.
407 [https://doi.org/10.1061/\(ASCE\)1532-3641\(2007\)7:3\(167\)](https://doi.org/10.1061/(ASCE)1532-3641(2007)7:3(167)).
- 408 Feng, W.Q., Liu, Z.Y., Tam, H.Y., Yin, J.H., 2016. The pore water pressure sensor based on
409 Sagnac interferometer with polarization-maintaining photonic crystal fiber for the
410 geotechnical engineering. *Measurement,* 90, 208-214.
411 <https://doi.org/10.1016/j.measurement.2016.04.067>.
- 412 He, Y., Yang, H., Yang, J., Liu, H., Zhao, P., 2018. Research on Laboratory Mixing Trial of

- 413 Marine Deposit and Cement in Hong Kong. *Paper presented at the GeoShanghai*
414 International Conference. https://doi.org/10.1007/978-981-13-0122-3_25.
- 415 Horpibulsuk, S., Chinkulkijniwat, A., Cholphatsorn, A., Suebsuk, J., Liu, M. D., 2012.
416 Consolidation behavior of soil–cement column improved ground. *Comput. Geotech.* 43,
417 37-50. <https://doi.org/10.1016/j.compgeo.2012.02.003>.
- 418 Horpibulsuk, S., Miura, N., Nagaraj, T., 2005. Clay–water/ cement ratio identity for cement
419 admixed soft clays. *J. Geotech. Geoenviron.* 131(2), 187-192.
420 [https://doi.org/10.1061/\(ASCE\)1090-0241\(2005\)131:2\(187\)](https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(187)).
- 421 Kitazume, M., Terashi, M., 2013. The deep mixing method. CRC press.
- 422 Larsson, S., Rothhämel, M., Jacks, G., 2009. A laboratory study on strength loss in kaolin
423 surrounding lime–cement columns. *Appl. Clay Sci.* 44(1-2), 116-126.
424 <https://doi.org/10.1016/j.clay.2008.12.009>.
- 425 Libralato, G., Minetto, D., Lofrano, G., Guida, M., Carotenuto, M., Aliberti, F., Conte, B.,
426 Notarnicola, M., 2018. Toxicity assessment within the application of in situ contaminated
427 sediment remediation technologies: A review. *Sci. Total Environ.* 621, 85-94.
428 <https://doi.org/10.1016/j.scitotenv.2017.11.229>.
- 429 Li, J. S., Beiyuan, J., Tsang, D. C., Wang, L., Poon, C. S., Li, X. D., Fendorf, S., 2017. Arsenic-
430 containing soil from geogenic source in Hong Kong: leaching characteristics and
431 stabilization/solidification. *Chemosphere.* 182, 31-39.
432 <https://doi.org/10.1016/j.chemosphere.2017.05.019>.
- 433 Li, P., Li, W., Yu, T., Qu, F., Tam, V. W., 2020. Investigation on early-age hydration, mechanical
434 properties and microstructure of seawater sea sand cement mortar. *Constr. Build Mater.* 249,
435 118776.
- 436 Li, W., Ni, P., Yi, Y., 2019. Comparison of reactive magnesia, quick lime, and ordinary Portland
437 cement for stabilization/solidification of heavy metal-contaminated soils. *Sci. Total*

- 438 *Environ.* 671, 741-753. <https://doi.org/10.1016/j.scitotenv.2019.03.270>.
- 439 Long, G., Li, L., Li, W., Ma, K., Dong, W., Bai, C., Zhou, J. L. 2019. Enhanced mechanical
440 properties and durability of coal gangue reinforced cement-soil mixture for foundation
441 treatments. *J. Clean Prod.* 231, 468-482. <https://doi.org/10.1016/j.jclepro.2019.05.210>.
- 442 Ma, B., Wang, Z., Yuan, X., Cen, K., Li, J., Yang, N., Zhu, X., 2020. In situ stabilization of
443 heavy metals in a tailing pond with a new method for the addition of mineral stabilizers—
444 high-pressure rotary jet technology. *Environ. Sci. Pollut. R.* 1-13.
445 <https://doi.org/10.1007/s11356-020-07782-9>.
- 446 Mitchell, J., 1993. Fundamentals of Soil Behaviour. In: Wiley, New York.
- 447 Niu, Y., Jiang, X., Wang, K., Xia, J., Jiao, W., Niu, Y., Yu, H., 2020. Meta analysis of heavy
448 metal pollution and sources in surface sediments of Lake Taihu, China. *Sci. Total Environ.*
449 700, 134509. <https://doi.org/10.1016/j.scitotenv.2019.134509>.
- 450 Oustriere, N., Marchand, L., Lottier, N., Motelica, M., Mench, M., 2017. Long-term Cu
451 stabilization and biomass yields of Giant reed and poplar after adding a biochar, alone or
452 with iron grit, into a contaminated soil from a wood preservation site. *Sci. Total Environ.*
453 579, 620-627. <https://doi.org/10.1016/j.scitotenv.2016.11.048>.
- 454 Qin, J. Q., Feng, W. Q., Wu, P. C., Yin, J. H. 2020. Fabrication and performance evaluation of
455 a novel FBG-based effective stress cell for directly measuring effective stress in saturated
456 soils. *Measurement*, 155, 107491. <https://doi.org/10.1016/j.measurement.2020.107491>.
- 457 Quang, N. D., Chai, J. C., 2015. Permeability of lime-and cement-treated clayey soils. *Can.*
458 *Geotech. J.* 52(9), 1221-1227. <https://doi.org/10.1139/cgj-2014-0134>.
- 459 Rađenović, D., Kerkez, Đ., Pilipović, D. T., Dubovina, M., Grba, N., Krčmar, D., Dalmacija,
460 B., 2019. Long-term application of stabilization/solidification technique on highly
461 contaminated sediments with environment risk assessment. *Sci. Total Environ.* 684, 186-
462 195. <https://doi.org/10.1016/j.scitotenv.2019.05.351>.


- 463 Reddy, V. A., Solanki, C. H., Kumar, S., Reddy, K. R., Du, Y. J., 2019. New ternary blend
464 limestone calcined clay cement for solidification/stabilization of zinc contaminated soil.
465 *Chemosphere*. 235, 308-315. <https://doi.org/10.1016/j.chemosphere.2019.06.051>.
- 466 [Setunge, S., Nguyen, N., Alexander, B. L., Dutton, L., 2009. Leaching of alkali from concrete](#)
467 in contact with waterways. *Water Air Soil Poll.*, 9, 381.
- 468 Shen, Z., Hou, D., Xu, W., Zhang, J., Jin, F., Zhao, B., Pan, S., Peng, T., Alessi, D. S., 2018.
469 Assessing long-term stability of cadmium and lead in a soil washing residue amended with
470 MgO-based binders using quantitative accelerated ageing. *Sci. Total Environ.* 643, 1571-
471 1578. <https://doi.org/10.1016/j.scitotenv.2018.06.321>.
- 472 Shen, S. L., Han, J., Du, Y. J., 2008. Deep mixing induced property changes in surrounding
473 sensitive marine clays. *J. Geotech. Geoenviron.* 134, 845-854. 10.1061/(ASCE)1090-
474 0241(2008)134:6(845).
- 475 Wang, F., Al-Tabbaa, A. 2014a. Leachability of 17-Year-Old Stabilized/Solidified
476 Contaminated Site Soils. In *Geo-Congress 2014: Geo-characterization and Modeling for*
477 *Sustainability*. 1612-1624. <https://doi.org/10.1061/9780784413272.158>.
- 478 Wang, F., Wang, H., Al-Tabbaa, A. 2014b. Leachability and heavy metal speciation of 17-year
479 old stabilized/solidified contaminated site soils. *J. Hazard Mater.* 278, 144-151.
480 <https://doi.org/10.1016/j.jhazmat.2014.05.102>.
- 481 Wang, F., Shen, Z., Liu, R., Zhang, Y., Xu, J., Al-Tabbaa, A. 2020. GMCs stabilized/solidified
482 Pb/Zn contaminated soil under different curing temperature: Physical and microstructural
483 properties. *Chemosphere*. 239, 124738.
484 <https://doi.org/10.1016/j.chemosphere.2019.124738>.
- 485 Wang, F., Wang, H., Al-Tabbaa, A., 2015. Time-dependent performance of soil mix technology
486 stabilized/solidified contaminated site soil. *J. Hazard Mater.* 286, 503-508.
487 <https://doi.org/10.1016/j.jhazmat.2015.01.007>.

- 488 Wang, L., Chen, L., Tsang, D.C.W, Li, J.S., Yeung, T.L., Ding, S., Poon, C.S., 2018a. Green
489 remediation of contaminated sediment by stabilization/solidification with industrial by-
490 products and CO₂ utilization. *Sci. Total Environ.* 631, 1321-1327.
491 <https://doi.org/10.1016/j.scitotenv.2018.03.103>.
- 492 Wang, L., Chen, L., Tsang, D.C.W, Li, J.S., Baek, K., Hou, D., Poon, C.S., 2018b. Recycling
493 dredged sediment into fill materials, partition blocks, and paving blocks: Technical and
494 economic assessment. *J. Clean Prod.* 199, 69-76.
495 <https://doi.org/10.1016/j.jclepro.2018.07.165>.
- 496 Wang, L., Tsang, D.C.W, & Poon, C.S., 2015. Green remediation and recycling of
497 contaminated sediment by waste-incorporated stabilization/solidification. *Chemosphere*.
498 122, 257-264. <https://doi.org/10.1016/j.chemosphere.2014.11.071>.
- 499 Wang, L., Chen, L., Cho, D.W., Tsang, D.C.W., Yang, J., Hou, D.Y., Baek, K., Kua, H.W., Poon,
500 C.S. 2019a. Novel synergy of Si-rich minerals and reactive MgO for
501 stabilization/solidification of contaminated sediment. *J. Hazard Mater.* 365, 695-706.
502 <https://doi.org/10.1016/j.jhazmat.2018.11.067>.
- 503 Wang, L., Tsang, D.C.W, Zhou, Y.Y., Rinklebe, J., Song, H., Kown, E.E., Baek, K., Ok, Y.S.,
504 2019b. Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted
505 stabilization/solidification of arsenic-contaminated sediment. *Environ. Int.* 133, 105247.
506 <https://doi.org/10.1016/j.envint.2019.105247>.
- 507 Wang, L., Chen, L., Tsang, D.C.W., Kua, H.W., Yang, J., Ok, Y.S., Ding, S.M., Hou, D.Y., Poon,
508 C.S., 2019c. The roles of biochar as green admixture for sediment-based construction
509 products. *Cement Concrete Comp.* 104, 103348.
510 <https://doi.org/10.1016/j.cemconcomp.2019.103348>.
- 511 Wang, L., Yeung, T. L., Lau, A. Y., Tsang, D.C.W, Poon, C.S., 2017. Recycling contaminated
512 sediment into eco-friendly paving blocks by a combination of binary cement and carbon

- 513 dioxide curing. *J. Clean Prod.* 164, 1279-1288.
514 <https://doi.org/10.1016/j.jclepro.2017.07.070>.
- 515 Wang, L., Chen, L., Guo, B., Tsang, D.C.W., Huang, L., Ok, Y.S., Mechtcherine, V. 2020. Red
516 mud-enhanced magnesium phosphate cement for remediation of Pb and As contaminated
517 soil. *J. Hazard Mater.* 400, 123317. <https://doi.org/10.1016/j.jhazmat.2020.123317>.
- 518 Wang, X., Fu, R., Li, H., Zhang, Y., Lu, M., Xiao, K., Zhang, X., Zheng C., Xiong, Y. 2020b.
519 Heavy metal contamination in surface sediments: A comprehensive, large-scale evaluation
520 for the Bohai Sea, China. *Environ. Pollut.* 260, 113986.
521 <https://doi.org/10.1016/j.envpol.2020.113986>.
- 522 Xia, M., Muhammad, F., Zeng, L., Li, S., Huang, X., Jiao, B., Shiao Y., Li, D. 2019.
523 Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer. *J.*
524 *Clean Prod.* 209, 1206-1215. <https://doi.org/10.1016/j.jclepro.2018.10.265>.
- 525 Xia, W. Y., Du, Y. J., Li, F. S., Li, C. P., Yan, X. L., Arulrajah, A., Wang, F., Song, D. J., 2019.
526 In-situ solidification/stabilization of heavy metals contaminated site soil using a dry jet
527 mixing method and new hydroxyapatite based binder. *J. Hazard Mater.* 369, 353-361.
528 <https://doi.org/10.1016/j.jhazmat.2019.02.031>.
- 529 Yin, J.H., 2001. Stress-strain-strength characteristics of soft Hong Kong marine deposits
530 without or with cement treatment. *Lowl. Technol. Int.* 3(1), 1-13.
- 531 Yin, J.H., Fang, Z., 2006. Physical modelling of consolidation behaviour of a composite
532 foundation consisting of a cement-mixed soil column and untreated soft marine clay.
533 *Geotechnique.* 56(1), 63-68. <https://doi.org/10.1680/geot.2006.56.1.63>.
- 534 Yin, J.H., and Fang, Z., 2010. Physical modeling of a footing on soft soil ground with deep
535 cement mixed soil columns under vertical loading. *Mar. Georesour. Grotex.* 28(2), 173-188.
536 <https://doi.org/10.1080/10641191003780872>.
- 537 Yin, J.H., 2004. Properties and behaviour of a cement mixed Hong Kong marine clay and

538 design applications. [Proceedings](#) of a seminar on ground treatment. *Hong Kong*, pp. 97-
539 105.
540
541

Graphical Abstract

*Highlights (3 to 5 bullet points (maximum 85 characters including spaces per bullet point)

- Deep cement mixing (DCM) treatment of contaminated sediment was evaluated.
- Major cations were found to migrate into the seawater.
- Potentially toxic elements in the surrounding sediment remained stable.
- The risk of secondary pollution in the surrounding environment was low after DCM treatment.

List of Tables

Table 1. Physical properties of HKMS and CHKMS

Table 2. Total metal concentrations of HKMS and CHKMS

Table 3. Chemical compositions of the cement binder

Table 1. Physical properties of HKMS and CHKMS

	Specific Gravity	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	pH Value	Loss of Ignition	Particle Size Distribution (%)		
							Sand	Silt	Clay
HKMS	2.65	53.5	27.4	26.1	7.72	4.33	5.5	65.5	29.0
CHKMS	2.60	59.3	27.5	31.8	7.11	4.31	3.5	77.5	19.0

Table 2. Total metal concentrations of HKMS and CHKMS

mg/kg	Cu	Zn	Cr	Ni	As
HKMS	16	71	36	21	6
CHKMS	15	87	38	23	9.5

Table 3. Chemical compositions of the cement binder

Components	SiO ₂	Fe ₂ O ₃	Al ₂ O ₃	CaO	MgO	SO ₃
Unit (%)	20.00	3.04	5.53	64.30	1.28	4.49

List of Figures

Fig. 1. Schematic diagram of the physical model (a) top view and (b) section view (dimensions in mm).

Fig. 2. Loading schedule and settlement with time.

Fig. 3. Sediment sampling under 60 kPa loading: (a) from the model; (b) in sampling pipes, (c) on glass plates, and (d) in three sections for total digestion test.

Fig. 4. The pH values of seawater versus time.

Fig. 5. (a) Vertical stresses on the DCM column and the surrounding sediment versus time and (b) the corresponding stress concentration ratio, n , versus time.

Fig. 6. Variation of major cation concentrations versus time with the corresponding loading schedule: (a) Mg; (b) Ca; (c) K; and (d) Al.

Fig. 7. Variation of PTEs concentrations versus time with the corresponding loading schedule: (a) Zn; (b) Cu; (c) Mn; (d) Ni and (e) Cr.

Fig. 8. Variation of (a) Mg, (b) Ca and (c) As concentrations at different locations in the surrounding sediment under different loadings.

Fig. 9. Variation of excess pore water pressure versus time under 15 kPa of loading.

Supplementary Information

Fig. S1. Variation of excess pore water pressure *versus* time under 20 kPa of loading

Fig. S2. Variation of excess pore water pressure *versus* time under 40 kPa of loading

Fig. S3. Variation of excess pore water pressure *versus* time under 60 kPa of loading

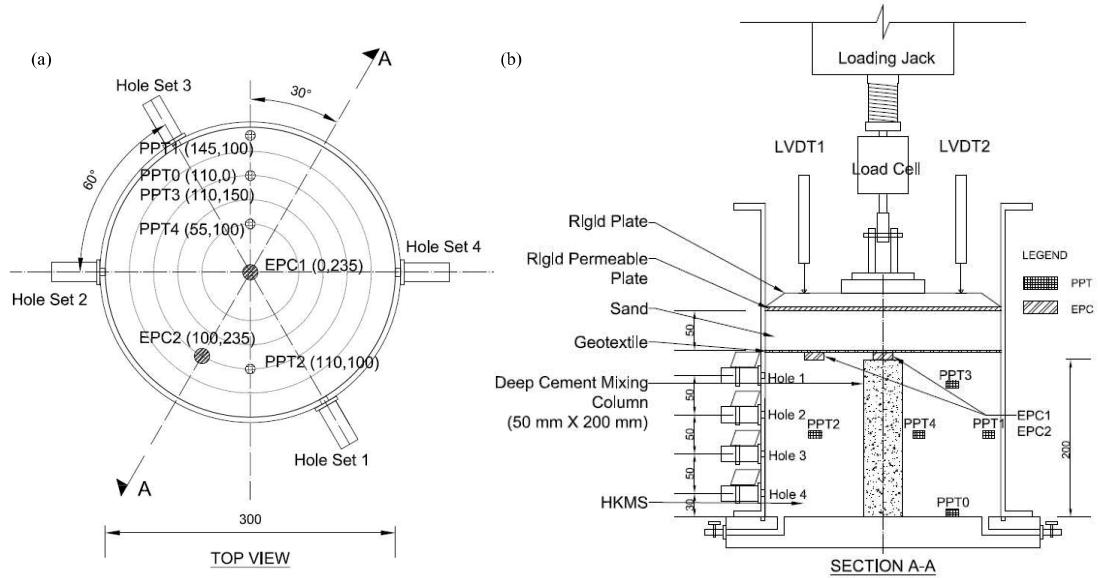


Fig. 1. Schematic diagram of the physical model (a) top view and (b) section view (dimensions in mm).

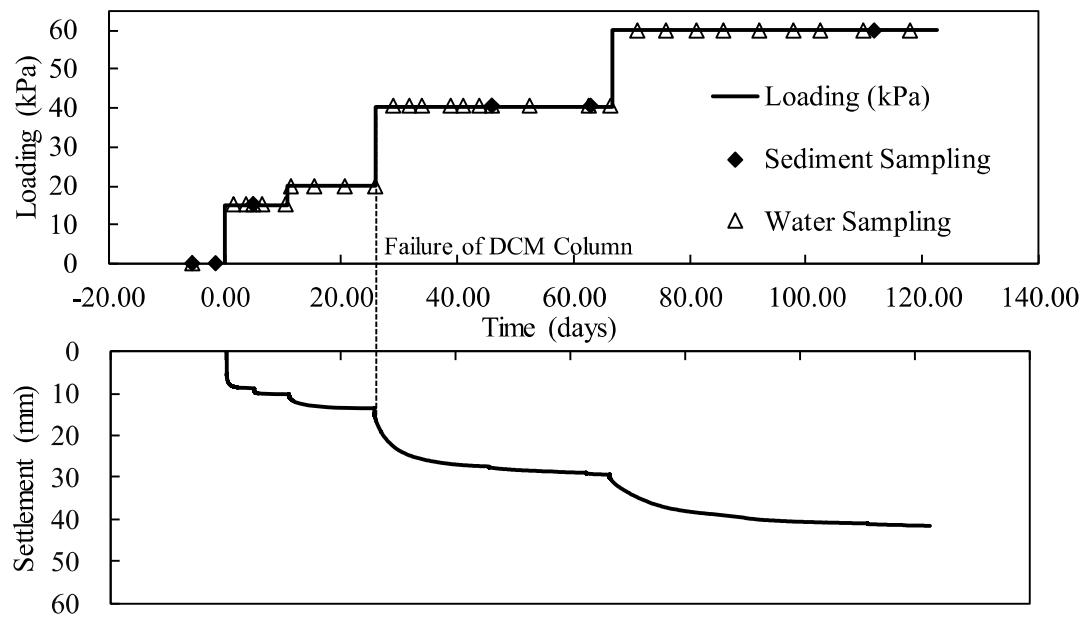


Fig. 2. Loading schedule and settlement with time.

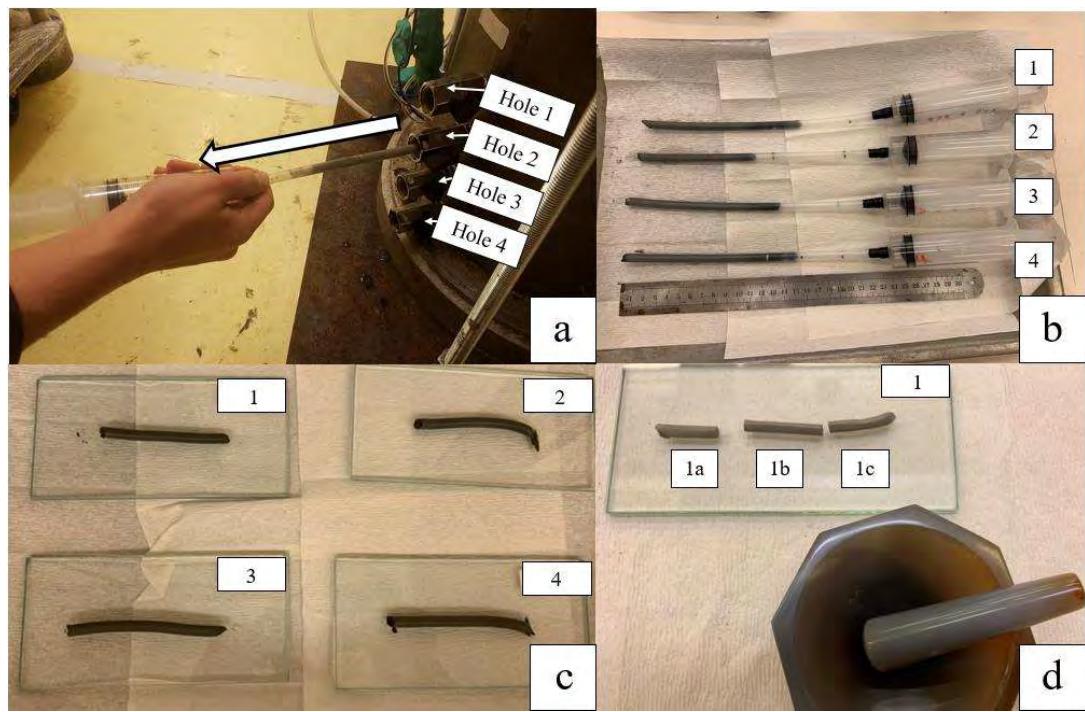


Fig. 3. Sediment sampling under 60 kPa loading: (a) from the model; (b) in sampling pipes, (c) on glass plates, and (d) in three sections for total digestion test.

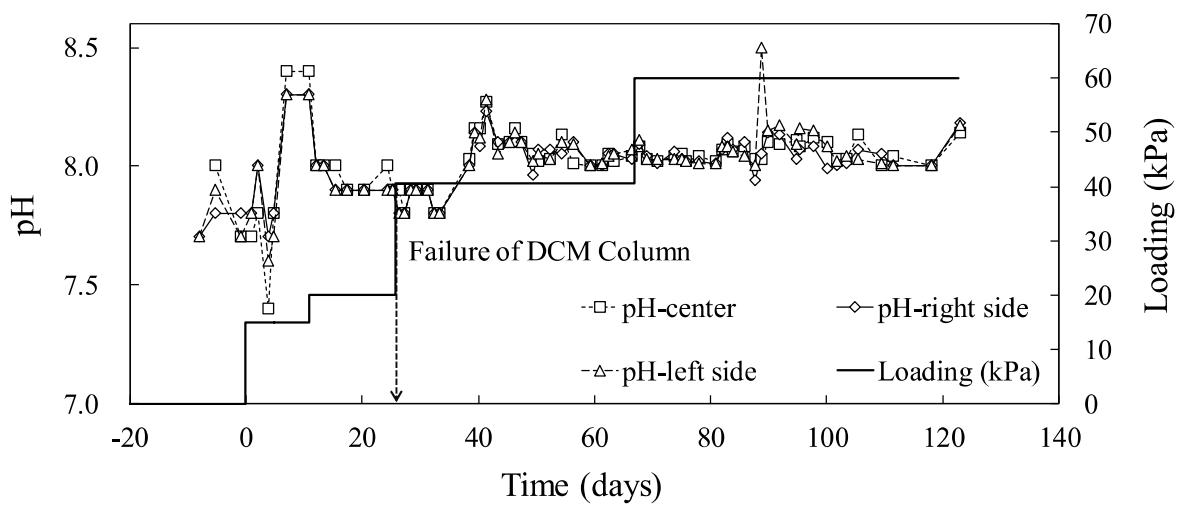


Fig. 4. The pH values of seawater *versus* time

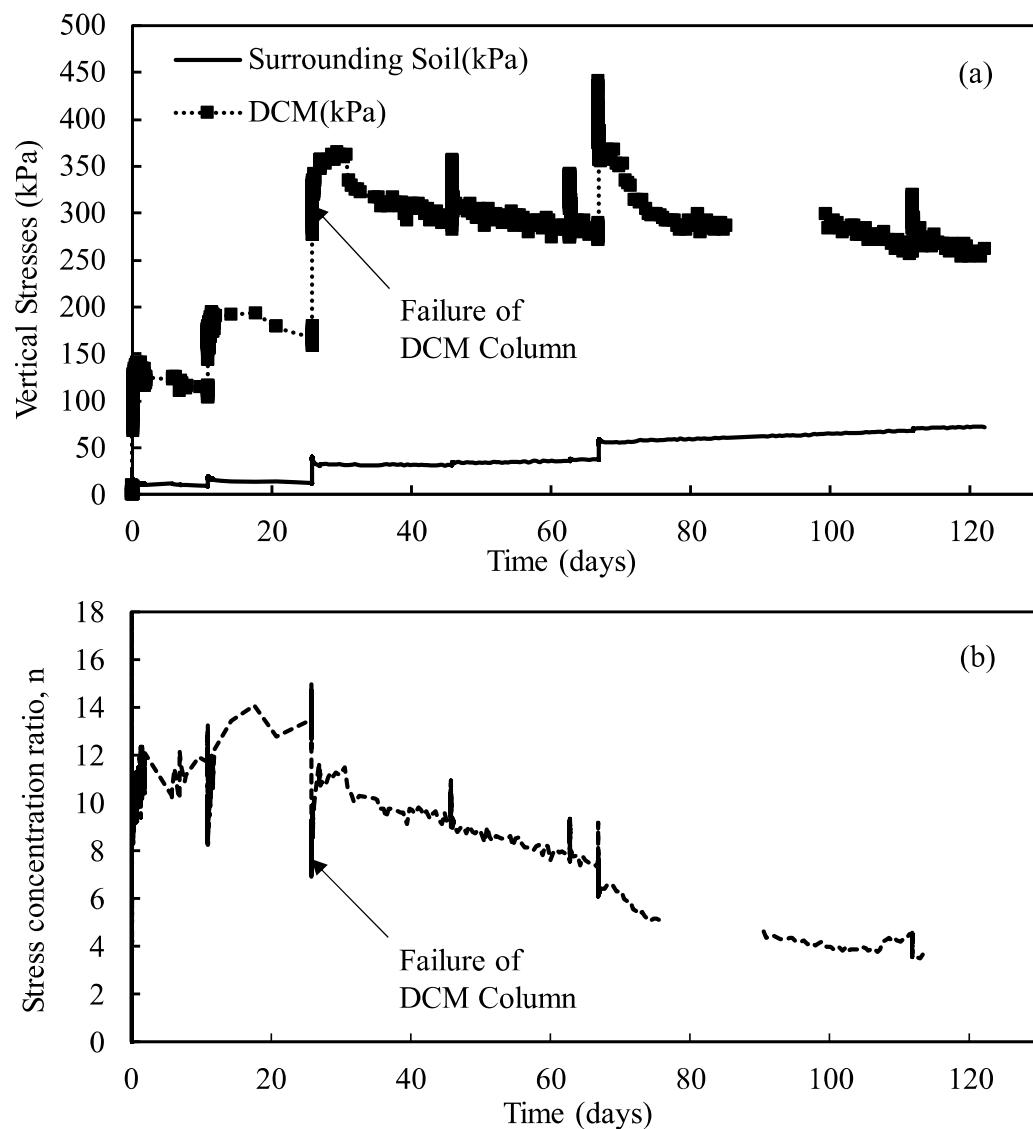


Fig. 5. (a) Vertical stresses on the DCM column and the surrounding sediment versus time and (b) the corresponding stress concentration ratio, n , versus time.

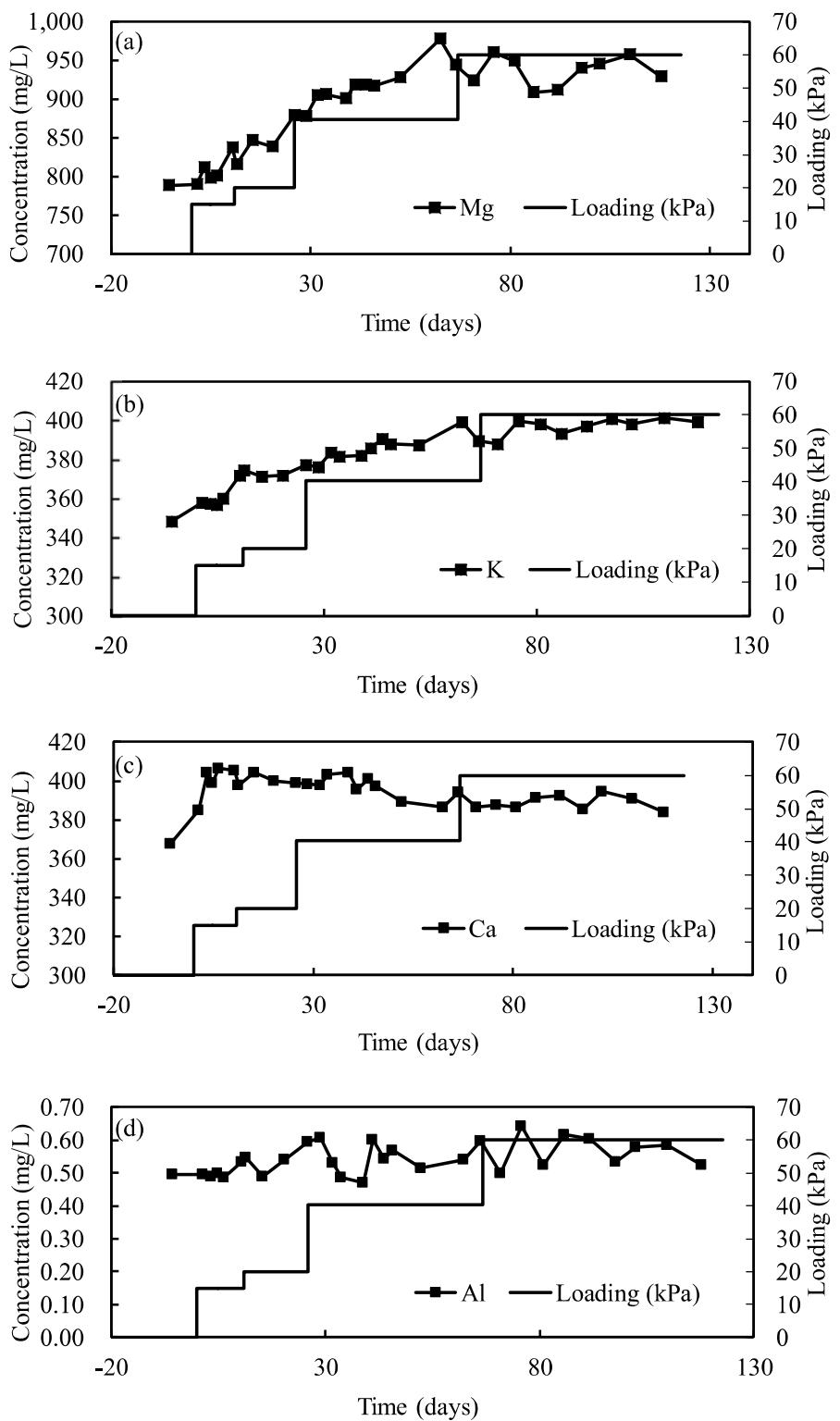


Fig. 6. Variation of major cation concentrations versus time with the corresponding loading schedule: (a) Mg; (b) Ca; (c) K; and (d) Al.

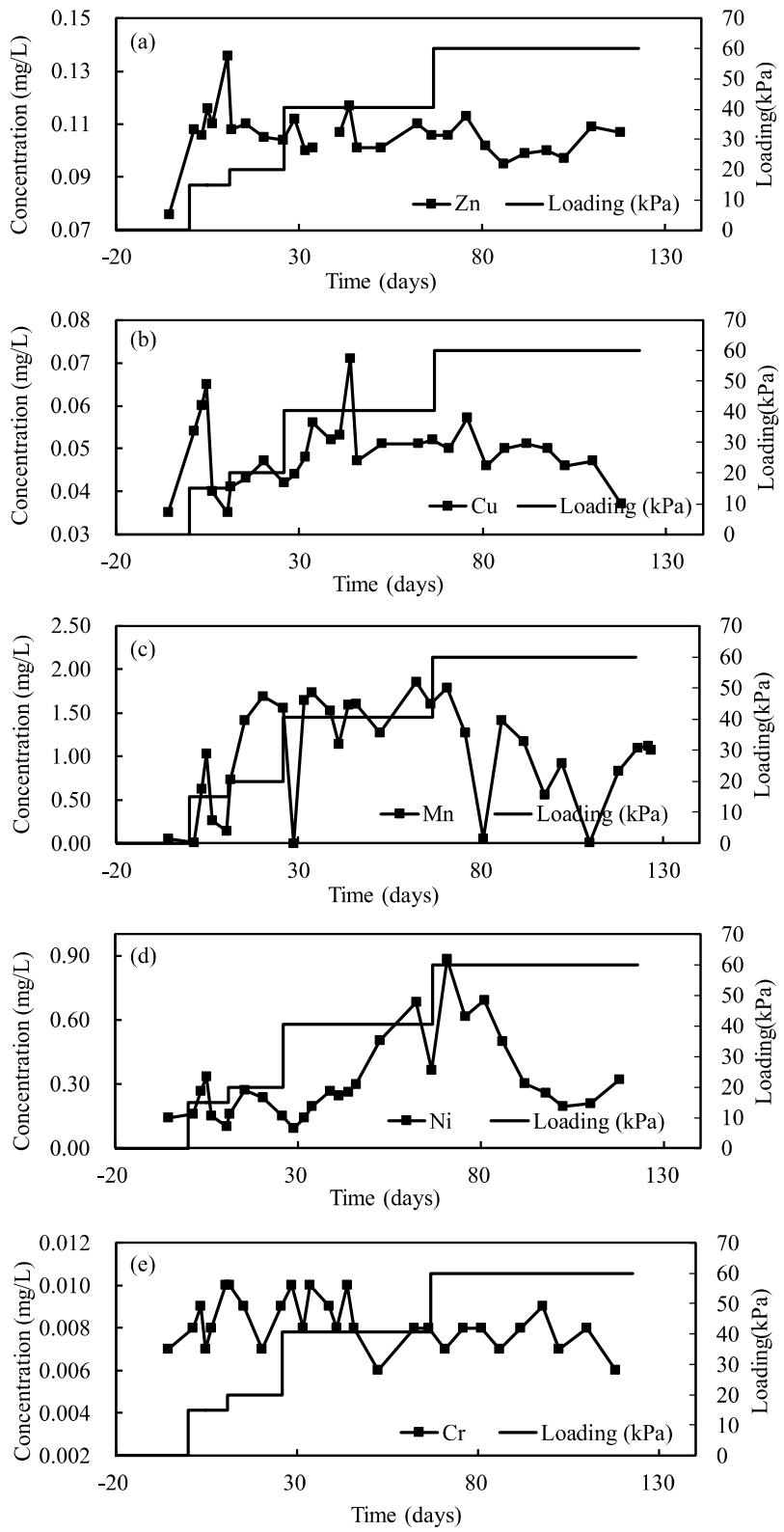


Fig. 7. Variation of PTEs concentrations versus time with the corresponding loading schedule: (a) Zn; (b) Cu; (c) Mn; (d) Ni and (e) Cr.

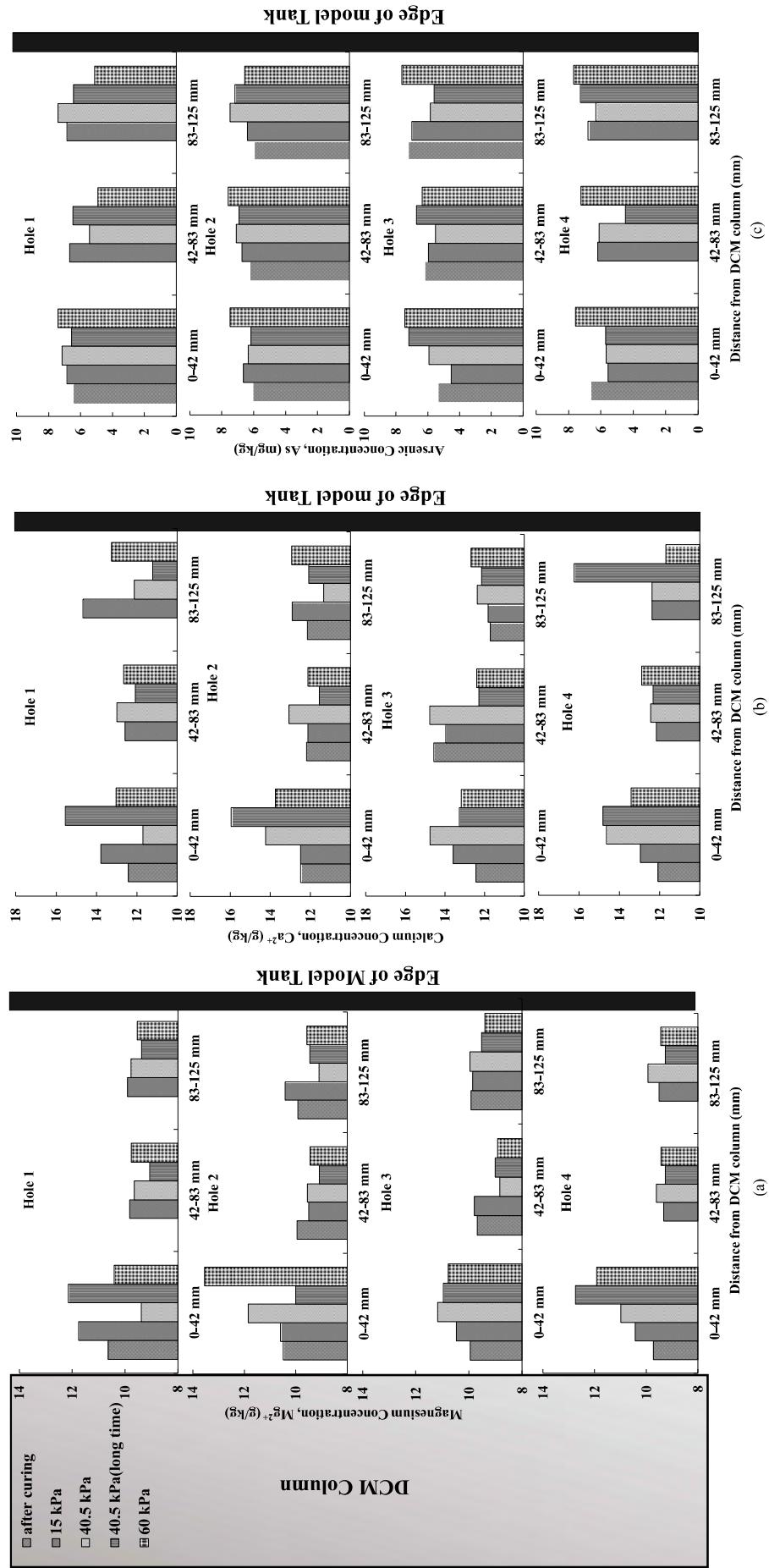


Fig. 8. Variation of (a) Mg, (b) Ca and (c) As concentrations at different locations in the surrounding sediment under different loadings.

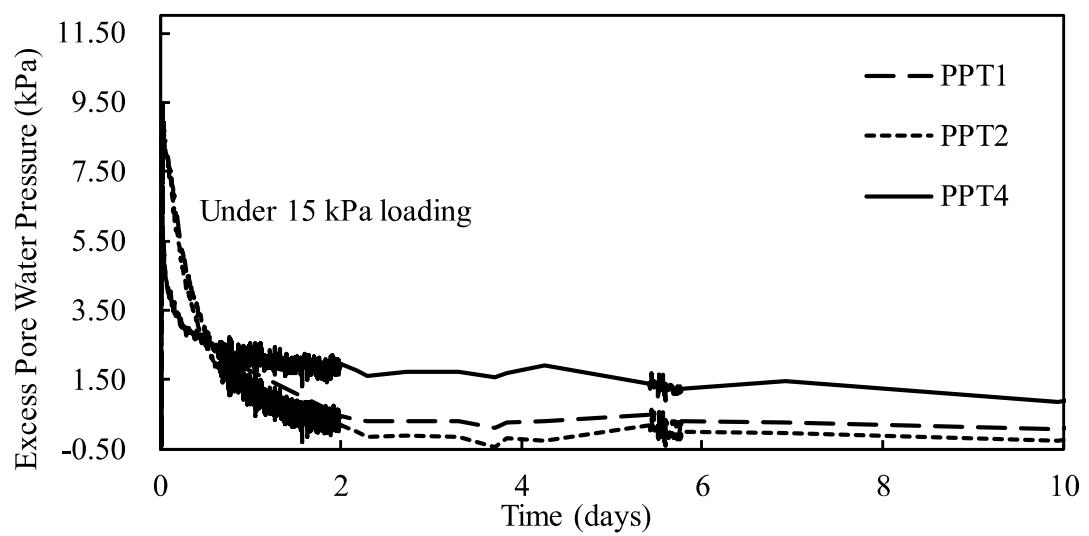


Fig. 9. Variation of excess pore water pressure versus time under 15 kPa of loading.

Supplementary Information

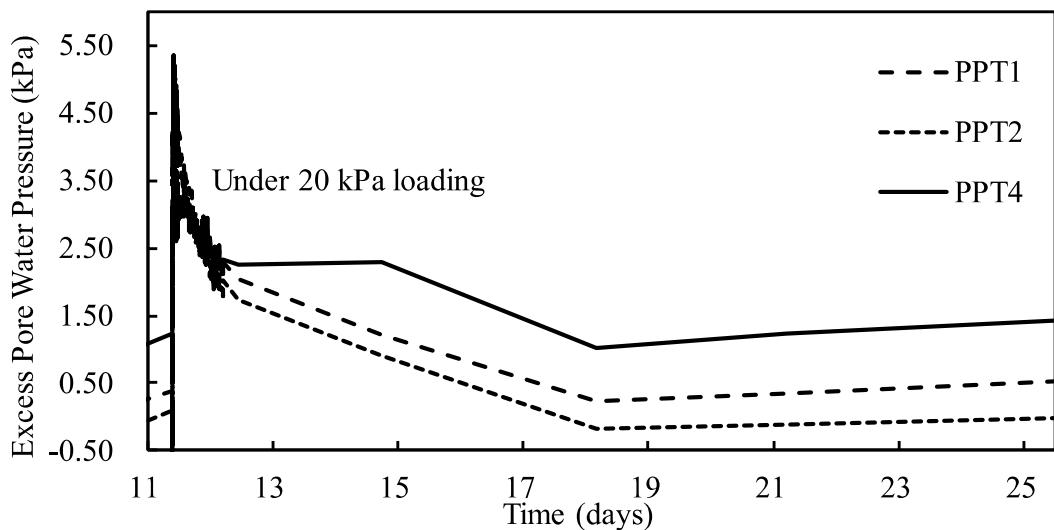


Fig. S1. Variation of excess pore water pressure *versus* time under 20 kPa of loading.

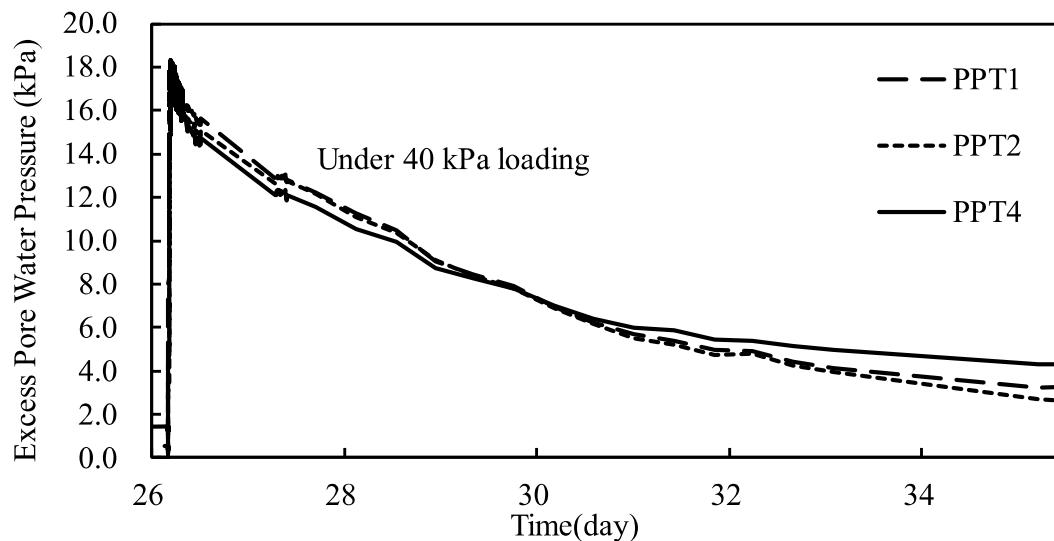


Fig. S2. Variation of excess pore water pressure *versus* time under 40 kPa of loading.

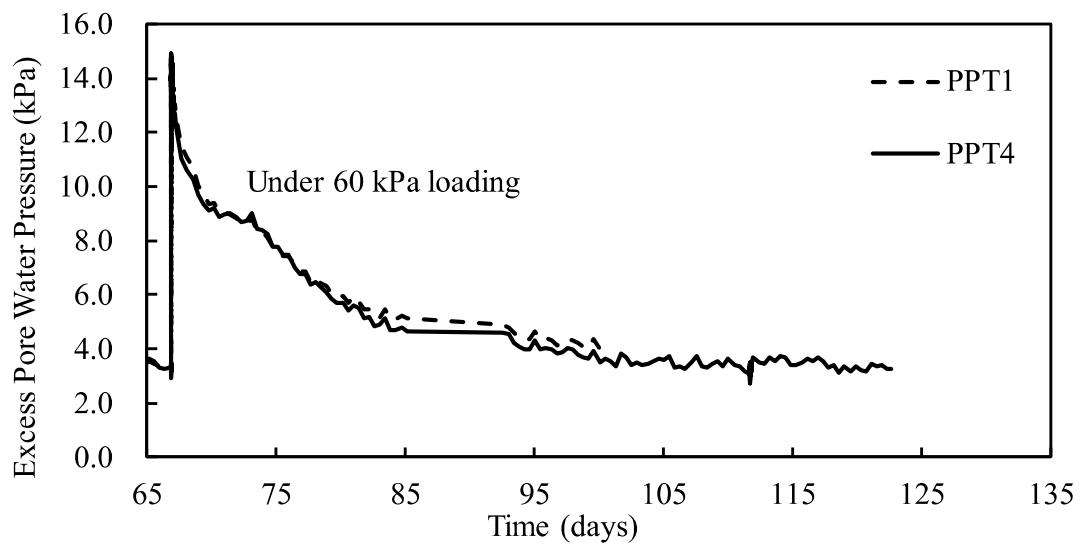


Fig. S3. Variation of excess pore water pressure *versus* time under 60 kPa of loading.