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9  Abstract
10 The compressive behavior of fiber-reinforced polymer (FRP)-confined concrete columns

11 with a non-circular cross-section has been investigated through extensive experimental,
12 analytical, and numerical research, but a unified theoretical/numerical approach that can
13 accurately predict both their section-average behavior and local concrete behavior is not yet
14  available. In non-circular columns under axial compression, the concrete is typically under a
15  non-uniform stress state of three-dimensional (3D) compression, with the lateral compressive
16  stresses being the reactive stresses from the confining device (i.e., passive confinement). The
17  authors of the present paper recently developed a plasticity constitutive model for concrete
18 under general 3D compressive stresses, which possesses a potential surface with an
19  evolutionary deviatoric trace that can accurately capture the results of existing compression
20  tests of concrete cubes under non-uniform, passive confinement. This paper explores the
21  application and capability of this evolutionary potential-surface trace (EPT) plasticity
22 constitutive model in the finite element (FE) analysis of FRP-confined square, rectangular, and
23 elliptical plain-concrete columns under concentric compression. The section-average behavior
24 of all the selected non-circular columns predicted by these FE analyses is close to the existing

25  experimental data. The numerical results obtained with the EPT plasticity constitutive model
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are then examined in detail to achieve an improved understanding of local concrete behavior
in FRP-confined non-circular columns.

Keywords: FRP, concrete, plasticity constitutive model, non-circular column, non-uniform
confinement, axial compression, finite element modeling.
Introduction

To make full use of fiber-reinforced polymer (FRP) composites in the construction of new
concrete columns and the strengthening of existing concrete columns, extensive experimental
and analytical research has been conducted on FRP-confined concrete columns under
concentric compression (e.g., Saadatmanesh et al. 1994; Mirmiran and Shahawy 1997; Pessiki
et al. 2001; Lam and Teng 2003a; Jiang and Teng 2007; Wei and Wu 2012; Lim and
Ozbakkaloglu 2015; Lin and Teng 2020). It has been a consensus for some time that the
behavior of FRP-confined concrete columns with a circular cross-section (referred to as
circular columns hereafter for brevity) is sufficiently well understood and can be accurately
predicted with some of the analytical stress-strain models (e.g., Jiang and Teng 2007; Teng et
al. 2007; Teng et al. 2009). However, much less has been achieved in understanding and
predicting the behavior of FRP-confined concrete columns with a non-circular cross-section,
including square, rectangular, and elliptical cross-sections (referred to as non-circular columns
hereafter for brevity) (e.g., Mirmiran et al. 1998; Rochette and Labossiere 2000; Pessiki et al.
2001; Lam and Teng 2003b; Wang and Wu 2008; Ozbakkaloglu 2013; Lin and Teng 2020).

In FRP-confined circular concrete columns, the concrete is deemed to be uniformly
confined with FRP: that is, the concrete at all locations of the section receives the same
confining stress and hence exhibits the same axial stress-strain behavior, and the
experimentally measured average axial stress-axial strain behavior directly reflects the local
response of concrete. By contrast, the concrete in FRP-confined non-circular columns is under

non-uniform confinement: the concrete at different locations of a section receives different
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confining stresses and hence exhibits different axial stress-axial strain responses; the non-
uniformity of confinement also increases with the axial deformation. The experimentally
measured section-average axial stress-axial strain behavior is a mere aggregate of, but is unable
to reflect, the different local concrete behaviors across the section. Therefore, knowledge of
local concrete behavior in FRP-confined non-circular columns beyond what is offered by
existing experimental data is needed to better understand and more accurately predict the
behavior of FRP-confined non-circular concrete columns.

The ‘arching effect’ concept is widely used to conceptualize with the non-uniform
confining stress distribution over the section of an FRP-confined non-circular concrete column,
in which the non-circular section is partitioned into a region with effective confinement and
the remainder of the section with negligible confinement (e.g., Sheikh and Uzumeri 1980;
Mander et al. 1988; Teng and Lam 2002). This binary, static oversimplification is somewhat
intuitive rather than being based on rigorous analysis/evidence. In order to experimentally
identify the effectively confined region within the section, the local concrete stresses need to
be measured across the section throughout the loading process, as attempted by Teng et al.
(2015a) via the use of a pressure mapping system; more work is needed in order to achieve
accurate measurements of these local stresses (see Appendix A). Moreover, some insight into
the variation of local concrete confinement over the section at the final stage can be obtained
by scrutinizing the failure pattern of crushed FRP-confined concrete columns, such as those
reported in Ozbakkaloglu and Oehlers (2008), Wang and Wu (2008), Wu and Wei (2010),
Ozbakkaloglu (2013), and Shan et al. (2019). However, more experimental data and analyses
are required to establish a good understanding of the local behavior of concrete in a non-
uniformly confined member. Therefore, three-dimensional (3D) finite element (FE) analysis
has been seen as the more reliable alternative to gain knowledge of local concrete behavior in

FRP-confined non-circular columns. The accuracy of an FE simulation is mainly dependent on
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the accuracy of the constitutive model employed for the concrete; more specifically, for the
accurate modeling of FRP-confined non-circular concrete columns, a constitutive model
suitable for concrete under non-uniform, passive confinement is necessary.

While many FE studies have been carried out on FRP-confined circular columns (e.g.,
Mirmiran et al. 2000; Shahawy et al. 2000; Yu et al. 2010a;b; Teng et al. 2015b; Lin and Teng
2017; Ribeiro et al. 2019), FE studies of non-circular columns, as mentioned below, have been
limited mainly due to the lack of a competent concrete constitutive model. In some of the FE
analyses of FRP-confined square columns (Nistico and Monti 2013; Nistico 2014), the concrete
was simulated as a linear-elastic material, which is obviously inaccurate. In the other studies
involving FE analysis of FRP-confined square, rectangular, or elliptical columns (Doran et al.
2009; Yu et al. 2010b; Hajsadeghi et al. 2011; Yeh and Chang 2012; Mostofinejad et al. 2015;
Hany et al. 2016; Teng et al. 2016; Lin and Teng 2020; Fanaradelli and Rousakis 2020; Ekop
and Grassl 2022), the concrete was simulated using plasticity-based constitutive models, which,
though capable of depicting the full 3D incremental stress-strain relationship of confined
concrete, are inaccurate for concrete under substantially non-uniform, passive confinement as
discussed below.

Available plasticity models for concrete have been formulated mainly on the basis of
experimental data for concrete under active stresses (e.g., Han and Chen 1985; Lubliner et al.
1989; Lee and Fenves 1998; Grassl et al. 2002) and are thus inaccurate for concrete under
passive confinement. In order to overcome this weakness that compromises the capability of
plasticity models for predicting the behavior of passively-confined concrete, the behavior of
FRP-confined concrete as interpreted from experimental data was incorporated into the existing
framework of, mainly the Drucker-Prager (D-P) type, plasticity models in a series of studies
before 2010 (e.g., Mirmiran et al. 2000; Shahawy et al. 2000; Karabinis and Rousakis 2002;

Rousakis et al. 2008). The limitations of these modified plasticity constitutive models proposed
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in these studies were subsequently resolved by a more appropriate approach proposed by Yu
et al. (2010a; b), which incorporated the analytical stress-strain model of Teng et al. (2007) for
concrete under uniform FRP (i.e., passive) confinement into the built-in plasticity models of
ABAQUS (version 6.5). Models adopting this approach, referred to as analytically-augmented
(AA) plasticity models herein, are capable of close prediction of the behavior of concrete under
both uniform-active and uniform-passive confinement and have also been widely employed in
modeling the behavior of FRP-confined non-circular concrete columns either directly or by
tuning the core analytical stress-strain model (e.g., Jiang and Wu 2012; Mostofinejad et al.
2015; Mazzucco et al. 2016; Lin and Teng 2017; Mohammadi et al. 2019).

However, these AA plasticity models are still inaccurate for concrete under substantially
non-uniform FRP confinement as the non-uniform confinement in these models is only
indirectly accounted for by the empirical adaptation of an analytical stress-strain model (the
core analytical model) developed on the basis of experimental data of concrete under uniform,
passive confinement (e.g., Lam and Teng 2004; Lam et al. 2006). In Yu et al. (2010b), which
pioneered the AA type of models, both a section level approximation (referred to as method I)
and a local level approximation (referred to as method II) were explored for this empirical
adaptation. Only the local approximation method, which relies on the conversion of non-
uniform confining stresses into an equivalent uniform confining pressure and the definition of
an equivalent lateral/hoop strain, is considered in the present study, as the section level method,
which assumes the same flow rule for the entire section, is less reliable (Yu et al. 2010b). Even
with the local approach, the empirical conversion approach explored by Yu et al. (2010b) and
followed by many other researchers (e.g., Mostofinejad et al. 2015; Lin and Teng 2017;
Mohammadi et al. 2019) fails to capture the behavioral characteristics of concrete under

substantially non-uniform passive confinement, as demonstrated by (Zheng and Teng 2022a).
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The development of a more capable constitutive model for concrete subjected to
substantially non-uniform confinement requires relevant experimental data. The dilation
behavior of concrete under uniform confinement has been well established through
compression tests of concrete cylinders under hydrostatic pressure (Hoek cell tests) for active
confinement, as summarized by Samani and Attard (2014), and through those with external
FRP confinement for passive confinement, as summarized by (Lim and Ozbakkaloglu 2015a).
However, equally direct data for the deformation behavior of concrete under non-uniform
passive confinement has not been available until the compression tests of 100 mm or 150 mm
concrete cubes conducted by Jiang et al. (2017) and Mohammadi and Wu (2017), respectively,
where the cubes were confined with lateral confining devices of unequal stiffnesses in the two
directions. These tests provided valuable data germane to the local behavior of concrete in an
FRP-confined non-circular column, which complement the available test data for concrete
under uniform confinement.

The authors of the present paper analyzed the comprehensive dataset assembled from Jiang
etal. (2017), Lim and Ozbakkaloglu (2015b), Mohammadi and Wu (2017), Piscesa et al. (2016),
and Samani and Attard (2014), and arrived at a unified interpretation of the deformation
behavior of concrete (Zheng and Teng 2022a). However, it was found that the new
interpretation cannot be represented by the widely adopted framework of the D-P type plasticity
models, including that of the AA plasticity models, which employ a fundamentally unsuitable
potential surface incapable of accurately depicting the deformation behavior of concrete under
non-uniform confinement. Indeed, the authors who conducted the new category of tests have
proposed new AA models based on the new datasets in a series of works (Mohammadi et al.
2019; Mohammadi and Wu 2019; Li et al. 2021); these new AA models are still unable to
accurately reproduce the test results of concrete cubes under non-uniform, passive confinement,

as discussed in Zheng and Teng (2022a).
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Therefore, a new plasticity model incorporating a potential surface with an evolutionary
deviatoric trace specifically devised to represent the unified interpretation of confined concrete
behavior was proposed by the authors of the present work (Zheng and Teng 2022a); the
accuracy of this new model for concrete under active confinement, uniform passive
confinement, and non-uniform passive confinement was validated at the material level in that
study. The purpose of the present study is twofold. The first is to further evaluate the
performance of the evolutionary potential-surface trace (EPT) plasticity constitutive model at
the structural member level by simulating FRP-confined non-circular columns and comparing
the predictions of section-average behavior with available experimental data. Secondly, the
predictions of local concrete behavior obtained with the EPT model are used to advance the
understanding of confinement mechanisms in FRP-confined non-circular concrete columns. It
should be noted that the study has previously been briefly reported elsewhere (Zheng and Teng
2022b).

The evolutionary potential-surface trace (EPT) plasticity constitutive model
Mathematical formulation

The newly proposed EPT plasticity constitutive model is expounded in Zheng and Teng
(2022a), and a brief summary of the critical components is presented here. The model is based
on rate-independent incremental elastoplasticity, with stress and strain tensors represented in
the Haigh—Westergaard coordinate system. The fundamental assumption of the EPT model is
that different concrete materials share the same qualitative descriptors for the stress and the
deformation behaviors, but these descriptors can be quantitatively different for each physically
unique concrete (as determined by a particular combination of constituent raw materials and
production process giving a unique set of material property values). Accordingly, the EPT
model employs appropriate mathematical equations for the descriptors (e.g., yield surface,

potential surface, and hardening rule) while using different values for the material parameters
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embedded in these descriptors to reflect quantitative differences. It should be emphasized that
for the same concrete, the values of the material parameters remain the same regardless of the
nature/level of confinement; the model thus possesses the necessary robustness for the
simulation of non-uniformly confined concrete members where the concrete at different
locations is subjected to different confining conditions. It is therefore obvious that the values
of the material parameters of the EPT model for a given concrete can be calibrated from one
state (e.g., under uniform confinement) of the concrete and then used to predict its behavior in
another state (e.g., under non-uniform confinement).

The model employs the widely used strength surface proposed by Menetrey and Willam
(1995) and the associated open yield surfaces that are reduced from the strength surface
(Papanikolaou and Kappos 2007), leading to the following expression for the yield surfaces:

§

@+ FE o 1.

£p,0:0) = (VI3

p 2

P _
e )‘C(“) =0 M

where ¢, p, 8 are the Haigh—Westergaard coordinates of the stress tensor o (bold symbols are
used to denote non-scalar variables), k is the internal state variable (ISV), f. is the uniaxial
compressive strength, m is the friction parameter determined by f,. and the spurious uniaxial
tensile strength f;, r is the deviatoric shape function, and h and c are the hardening and
softening variables.

The evolution of the yield surface is controlled by the variations of h and ¢, which are in
turn driven by the accumulation of the ISV, whose rate form: k = \/ﬁ /Xp(M), where ()
indicates the rate of the variable, &, is the plastic strain tensor, and y,, is a function of the
confinement measure 77 which is defined to depend on the hydrostatic stress invariant and the
deviatoric polar angle (or the Lode angle) and is thus capable of describing non-uniform
confinement. The function of y, was obtained by generalizing the one-dimensional

relationship between the active confining stress and the axial strain at peak axial stress
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proposed by Teng et al. (2007) and Lim and Ozbakkaloglu (2015c) into a relationship between
the confinement measure 7 (related to the confining stress) and the total plastic strain (related
to the axial strain at peak axial stress). Therefore, y,, is independent of the specific confinement
condition of the structure being modelled and can accurately predict the ductility increase of
concrete under various levels of passive confinement stiffness and active confinement stress,
as 1s revealed through the comparison between numerical predictions and experimental data in
Zheng and Teng (2022a). The EPT model can potentially be used to predict the behavior of
concrete confined with a single material or a combination of materials such as mild steel, high
strength steel, and various types of FRPs. When there is no confinement, the confinement
measure 7 = 0, and y,, = 1. As a result, the accumulation of the ISV becomes k = \/ﬁ .
When the confinement is non-zero, the confinement measure has a positive value, i.e., n > 0,

and y, is larger than 1, and both increase with the confinement level. Accordingly, the

accumulation of the ISV is slowed down, as now Kk = \/ﬁ /Xp , mathematically
representing the increase of ductility due to confinement. The state at which the concrete
reaches the strength surface is referred to as the transition state when the critical ISV value is
attained (i.e., k = k). In the pre-transition stage, h increases from an initial value of 0 < hy <
1 to 1 (under uniaxial compression, h < —a3/f.), and ¢ = 1. In the post-transition stage, h =
1 and ¢ decreases from 1 and approaches 0 asymptotically (under uniaxial compression, ¢ X
—o3/f.), with the decreasing rate of ¢ determined by the softening rate parameter, k (a smaller
K¢ value means a faster decrease of ¢ ).

The plastic strain increment is governed by the flow rule &, = 1g,, where g, denotes the

derivative of the potential function (g) by the stress tensor, and A is the plastic multiplier. The
newly proposed potential surface, having capped meridians and bulged-triangular deviatoric

traces, is expressed as follows:
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where A(k) and B(k) control the shape of meridians and can be determined by the plastic
Poisson’s ratio (the ratio between the lateral and the axial plastic strain increments when the
concrete is under compression with no or uniform confinement) at the transition state, Yy
r(@, Q(K)) controls the shape of deviatoric traces by varying the value of g(k); &, is a constant
determined by g(o; k) = 0. In the pre-transition stage, o(k) = g, and the deviatoric trace is
nearly circular; a default value of o, = 0.85 was suggested. In the post-transition stage, o(k)
approaches g, and the deviatoric trace becomes increasingly more triangular; a default value
of 0, = 0.6 was suggested. The significant difference between the newly proposed potential
surface and those of previous models is the evolutionary deviatoric trace that is essential for
accurately predicting the dilation of concrete under multiaxial compression. Therefore, the new
constitutive model may be referred to as the evolutionary potential-surface trace (EPT) model
for clarity.

The EPT model has 9 material constants (parameters): the uniaxial compressive strength,
fc; the corresponding axial strain, €.,; the elastic modulus, E; the Poisson’s ratio, v; the
softening rate parameter, k; the plastic Poisson’s ratio at the transition state, 1y ; the fictitious
uniaxial tensile strength, f;; and the initial and final potential-surface deviatoric trace shape
factors: gy and @ ». The first group (fz, &0, E, v, k) influences concrete behavior under all
conditions and can be calibrated from uniaxial compression tests; the second group (Y, f;)
influences concrete behavior under confinement and can be calibrated from compression tests
of concrete under either uniform or non-uniform confinement; and the last group (0g, 0 »)
influences concrete behavior only under non-uniform confinement and has to be calibrated
from compression tests on concrete under non-uniform confinement. All nine parameters are

treated as being independent of each other; for instance, different concretes with the same f,

value can have different values of ¢, E, or ;. Nevertheless, when experimental data for &,
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E, v and f; are unavailable, their values can be estimated from f, using empirical relationships
established by previous researchers. In addition, the default values of kg, Yy, 09, 0 », Which
are independent of f., are provided for use in the EPT model, as detailed in Zheng and Teng
(2022a). It is reiterated that the values of the parameters are the same for the same physically
unique concrete and are independent of the nature/level of confinement or specimen geometry.
The values of the parameters used in the present study are discussed in detail in the respective
sections below.

It is well-known that concrete always exhibits strain-softening under active confinement
(strain-hardening and -softening are simplified as ‘hardening’ and ‘softening’ herein, and
discussed only with respect to the post-transition stage) (e.g., Samani and Attard 2014), while
it can exhibit hardening, softening, and even mixed behavior under passive confinement, as
shown by the existing experimental studies (e.g., Lam and Teng 2003b; Saleem et al. 2017,
Shan et al. 2019). Figure la schematically shows a typical axial stress-strain curve of
unconfined concrete as well as two typical axial stress-strain curves of the same concrete under
passive confinement, one that is hardening due to a stiffer confining device and one that is
softening before a rebound due to a softer confining device. It is critical to accurately predict
the post-transition behavior of concrete under passive confinement, and therefore the related
mathematical setup is briefly discussed, for the sake of simplicity, for concrete under uniform,
passive confinement; the mathematical setup can then be readily understood for non-uniform,
passive confinement. Figures 1b and 1c¢ show the evolution of the yield surface in the pre- and
post-transition stages on the Rendulic plane, where the minimum principal (axial) stress axis,
the —o3 axis, forms an angle of 54.7° with the —¢ axis, and the projections of the middle and
the maximum principal (confining) stress axes coincide as the —og; = —o0, axis is
perpendicular to the —o3 axis. The yield surface reflects the frictional and the cohesive

characteristics of concrete (Rudnicki and Rice 1975; Bazant 1978), with the slope being
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proportional to h (Figure 1b) and the intercept on the ¢ axis being proportional to ¢ (Figure 1c¢).
Accordingly, in the pre-transition stage, the yield surface evolves from an initial yield surface
to the steeper strength surface (Figure 1b), representing the increase of internal friction due to
compaction while maintaining the same cohesion; in the post-transition stage, the yield surface
shifts to the right along the —¢ axis (Figure 1¢), representing the gradual loss of cohesion due
to cracking while maintaining the same friction.

The uniaxial compression stress path along the —o3 axis and a passively-confined
compression stress path that deviates from the —a5 axis are both shown in Figure 1b (also see
the corresponding g; — &3 curves in Figure la). In the post-transition stage, the uniaxial
compression stress path is softening. However, the passively-confined compression stress path
starts from point o, and, if the increase of confinement and thus friction prevails over the
decrease of ¢, will land at point p (Figure 1¢) having a higher level of axial stress than point o,
leading to hardening; otherwise, the stress path 0 — q is softening (also see the corresponding
03 — &3 curve in Figure 1a). Moreover, when cohesion is completely lost at the end of the post-
transition stage (¢ = 0), the concrete is purely frictional and the level of axial stress is
dependent on the confinement. Therefore, the concrete may still exhibit hardening behavior as
long as the confining stress increases, as indicated by the stress path d — e, which will appear
as a ‘rebound’ of the axial stress as shown in Figure 1a. Consequently, the behavior of concrete
under passive confinement is a result of the incessant competition between the increase of
friction and decrease of cohesion, both deeply entangled with the dilation of concrete and the
confining condition.

Implementation in FE analysis

The constitutive model was implemented with the widely used FE package ABAQUS

version 2019 (Dassault Systemes 2020) through its user-defined material (UMAT) subroutine.

An implicit Euler-backward algorithm has been developed as detailed in (Zeng et al. 1996),
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which is not repeated herein except for a few noteworthy issues discussed below. In the
previous study (Zheng and Teng 2022a), the continuum tangent stiffness matrix was used as
the material Jacobian (where dg /0o was calculated algebraically), since the consistent tangent
stiffness matrix (Simo and Taylor 1985) requires the calculation of the Hessian matrix, H, of
the potential function, g, with respect to the stress vector, 04«4, which is difficult for the EPT
constitutive model with a relatively complicated potential function. In the present study, the

difficulty is overcome by calculating the Hessian matrix through numerical differentiation as

follows:
_0%g(0)
g d0;00;
(3)
_ g(al- + 60,0; + b0, ) — g(ai + 60,07 — b0, ) —g(ai —d0,0; + b0, ) + g(o; — 60,07 — 60, ...)
B 48502
where ‘...” denotes the other four elements of the stress vector and do is a small stress

increment. A parametric study indicated that 5 = 1 X 107> MPa is a reasonable choice to
achieve a sufficiently accurate H with an error below 0.001%. Therefore, the consistent tangent
stiffness matrix, D°P, is used in the current study and the convergence performance and
computational efficiency are much improved compared to the continuum tangent stiffness
matrix approach of the previous study. To be compatible with the ABAQUS setup, the stress,
strain, and stiffness tensors are represented by their Voigt form. Therefore, the consistent
tangent stiffness matrix (Db ) is calculated as follows:

R6X6(ga)6xl(fa)gx1R6X6
= Rgxp — 4
6x6 6% (fa)€X1R6><6(ga)6><1 —f ( )

where f, = df /00 is the derivative of the yield (scalar) function by the stress vector, G ¢y,
fa = 0f /04 is the derivative of the yield function by the plastic multiplier, A, and R is a matrix

calculated as follows:

. -1
Reye = (Iexe + AD6><6H6><6) Dgye (5)
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where 1 is the identity matrix, D is the elastic rigidity matrix. It is noted that H is a symmetric
matrix, while D®P is non-symmetric for the present constitutive model. Finally, the minimum
value of the softening variable c is limited to ¢,,;;, = 0.01, which has only a trivial influence
on the prediction while increasing the computational efficiency.

FE analysis of FRP-confined non-circular concrete columns

Selected column specimens

Since experimental data of local stress-strain behavior of concrete in FRP-confined
columns are not available, the assumption is made here that the constitutive model is deemed
to be reliable as long as the predicted section-average axial stress-axial strain behavior is close
to the experimental data. Therefore, a comprehensive specimen pool consisting of FRP-
confined square, rectangular, and elliptical plain-concrete column specimens reported by three
different research groups was used to evaluate the newly developed EPT model. Additionally,
to demonstrate the difference between the EPT model and the widely used AA plasticity
models, a representative AA model developed by Yu et al. (2010b) incorporating the more
accurate Jiang and Teng (2007) analytical model instead of the Teng et al. (2007) analytical
model and using the local approximation method (i.e., method II in Yu et al. (2010b)) for
confinement was also used to simulate the selected column specimens. All the concrete
columns selected for FE simulation were only confined with an outer FRP jacket and tested
under monotonic concentric axial compression.

Wang and Wu (2008) systematically investigated the effect of corner radius on the behavior
of FRP-confined square normal-strength concrete columns by testing a large number of
specimens, all of which were simulated in the present study and close agreement in the section-
average axial stress-axial strain curve was found between the predictions and the experimental
data. The predictions for six representative specimens covering concrete uniaxial compressive

strengths of 31.0 and 53.0 MPa and four corner radii are presented herein to evaluate the EPT
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model and investigate the effect of corner radius on the local concrete behavior in square
columns.

In a study conducted by Ozbakkaloglu (2013), the behavior of FRP-confined rectangular
high-strength concrete columns, covering the two corner radii of 15 and 30 mm, was
investigated. Since the effect of corner radius was the focus of the simulations of the square
columns, the simulations of the rectangular columns were placed on the effect of section aspect
ratio. Only columns with a 15 mm corner radius were thus selected for the simulations, and
these columns were chosen instead of those with a 30 mm corner radius as the former exhibit
more significant non-uniformity than the latter. Therefore, a total of six specimen
configurations (each having two nominally identical specimens) covering aspect ratios of 1,
1.5, and 2 and two levels of FRP confinement were simulated to evaluate the EPT model and
investigate the effect of aspect ratio on the local concrete behavior in rectangular columns.

Elliptical sections were the third non-circular section form considered in the numerical
simulations. Available experimental results of FRP-confined elliptical concrete columns are
rather limited (Teng and Lam 2002; Teng et al. 2016;), and the experimental work recently
reported by the authors’ research group (Liu et al. 2022) provided the most comprehensive
experimental data for FRP-confined elliptical columns. A total of 16 columns with filament-
wound FRP tubes having fibers close to the hoop direction (so that their axial stiffness can be
neglected in the numerical simulations) were tested, covering two levels of FRP confinement,
three concrete strengths, and four section aspect ratios. Since the selected square columns
included two concrete strengths and the selected rectangular columns included two FRP
confinement levels, only four elliptical normal-strength concrete columns covering the aspect
ratios of 1, 1.5, 2, and 2.5 were simulated to evaluate the EPT model and investigate the local
behavior of concrete in elliptical columns. For convenient reference to the specimens, they are

assigned new names indicating sequentially their cross-sectional shape (‘S’ for square, ‘R’ for
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rectangular, and ‘E’ for elliptical), aspect ratio, corner radius (denoted by ‘r’), number of FRP
layers (denoted by ‘L), and uniaxial compressive strength of concrete; identical features within
the group are not reflected in the names. The details of the specimens, including their original
names, are summarized in Table 1.

FE models

A slice model was used to simulate the selected columns based on the assumption that the
effect of the column-end constraints on the section-average behavior at the mid-height section
(or the mid-height region) is negligible (Teng et al. 2015b); the thickness of the slice was taken
as 10 mm. Since all specimens had a doubly-symmetric cross-section, a quarter model was
adopted. The monotonic concentric compression imposed on the column was simulated by
applying a uniform axial displacement over the section. The concrete was simulated using 8-
node brick elements with reduced integration and enhanced hourglass control, the FRP jacket
was simulated using 4-node membrane elements with reduced integration, and the FRP-to-
concrete interface was simulated as a perfect bond. A mesh convergence study indicated that
an element size of 5 mm within the section was sufficient as reducing the element size further
was found to lead to indistinguishable changes to the predicted section-average axial stress-
axial strain responses.

The material behavior of concrete was simulated using both the newly developed EPT
model (Zheng and Teng 2022a) and the AA model (Yu et al. 2010a) that incorporates the more
accurate core analytical model developed by Jiang and Teng (2007) instead of the Teng et al.
(2007) model. The AA model requires tabulated input data generated using four input
parameters: f., €., E, and v. The determination of parameter values is detailed in the
discussions below for each group of specimens. The FRP jacket was simulated as an orthotropic
linear elastic material with the major principal stress direction being the hoop direction of the

column section, while the modulus in the axial direction of the column was assigned the small



390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

value of 0.1 GPa. The rupture strain of the FRP jacket was taken as 1.5%, which is around the
measured maximum FRP hoop strain in Wang and Wu (2008) and Liu et al. (2022) and the
ultimate tensile strain from FRP coupon tests in Ozbakkaloglu (2013), to allow for the
development of sufficient concrete dilation as the focus of the present study is to understand
the local behavior of concrete over a realistically wide range of deformation levels.
Square columns

For the selected square columns, Wang and Wu (2008) reported the axial stress-axial strain
and axial stress-hoop strain curves of six columns, with each of these columns being selected
from three nominally identical columns for one of the six column configurations. They also
reported the results of six corresponding unconfined concrete columns, with each of these six
unconfined columns being also selected from three normally identical specimens. The values
of E, f., and €., were obtained as their averages of the six axial stress-axial strain curves of the
unconfined columns. Moreover, the value of k; was calibrated by matching the descending
branches of the predicted axial stress-axial strain curves with the descending branches of the
six experimental axial stress-axial strain curves. Parameters 1, and f, were calibrated by
matching the predicted axial stress-axial strain curve of the FRP-confined circular column (i.e.,
the square column with a maximum corner radius of 75 mm) with the reported curve. As
discussed above, these two parameters can be calibrated using the test data of any confined
concrete column (in this case the circular column) and then used for predicting the behavior of
the square columns. Therefore, the values of the parameters are specific to the concrete material,
but the EPT model is not limited to any specific condition of FRP confinement. The default
values of gy = 0.85 and p,, = 0.6 were used, and a typical value for v, namely 0.18, was
assumed. The values of the parameters for the EPT model are summarized in Table 2. The

values of E, f_, v, and €., used in the AA model are the same as those in the EPT model. The
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values of elastic modulus and nominal layer thickness of the FRP jacket as reported by the
authors, being 220 GPa and 0.165 mm respectively, were adopted in the simulations.

The average axial stress-axial strain and axial stress-hoop FRP strain (averaged from two
opposite mid-side locations in the experiment) curves of the six specimens predicted with the
EPT and the AA models are compared with the experimental data extracted from the study of
Wang and Wu (2008) in Figure 2. To make the discussions simpler and consistent with the
conventional definition that compressive stresses are taken as positive stresses in concrete,
compressive stresses are presented as positive values (i.e., referring to stresses using the —o
values) from here onwards. Specimens SrOL1C31, SrOL2C53, and Sr15L1C31with sharp
corners or a relatively small corner radius, as shown in Figures 2a, 2b, and 2c, respectively,
exhibit a softening behavior. For specimens Sr15L2C53 and Sr30L2C53 with a larger corner
radius, as shown in Figures 2d and 2e, respectively, a hardening response following the
softening branch can be seen. The predictions for these five specimens obtained with the EPT
model successfully capture the behavior and are close to the experimental data, but those
obtained with the AA model are incapable of predicting the strongly softening behavior for
these square sections. For specimen S1r60L2C53 with a nearly circular section, both models
predict a hardening second branch that closely matches the experimental data, as shown in
Figure 2f. Figure 2 therefore demonstrates that the EPT model is accurate for FRP-confined
square concrete columns with any corner radius, while the AA model is only suitable for those
with a large corner radius. In addition, the default parameter values based only on f, are
summarized in Table 5. Although it is unnecessary to use the default values of €., and E when
they are available, the use of the default values for all parameters is considered herein for
comparison purposes; predictions using these default values were obtained for Sr15L1C31 and

Sr15L2C53. The results are shown as the dashed blue curves in Figures 2¢ and 2d. It is seen



438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

that the post-peak softening nature of the behavior of the specimens can still be predicted,
although the predictions are much less accurate due to the use of less accurate parameter values.

Four states along the loading process representing the pre-damage (the concrete over the
entire section is in the pre-transition stage), early damage (the concrete somewhere in the
section has entered the post-transition stage and is considered ‘damaged’), moderate damage
(more concrete has entered the post-transition stage), and severe damage (the concrete
somewhere in the section has lost its cohesion and is considered ‘completely damaged’) states
of the concrete are indicated by the four points A, B, C, and D on the stress-strain curves
predicted with the EPT model; the severely damaged state D is also indicated for the AA
predictions. The local concrete stresses at these states predicted by the models are examined
below.

The axial stress distributions predicted with the EPT constitutive model from a quarter FE
model for the four C53 columns with corner radii of 0, 15, 30, and 60 mm are visualized over
the entire section as 3D surfaces as shown in Figures 3, 4, 5, and 6 for the four states,
respectively. In each plot, the two horizontal axes define the location within the section, and
the vertical axis indicates the magnitude of axial compressive stress. To clearly identify the
distribution of effectively-confined concrete within the section, the level of f, is indicated in
each plot as the grey plane, and the level of 5% higher than f., i.e., 1.05 f., is indicated as the
dashed contour on the 3D stress-distribution surface. The corresponding boundaries of the
regions above these two stress levels are projected as solid (f) and dashed (1.05 f,) curves on
the cross-section shown below the 3D stress distribution. In the present study, the regions
where the concrete stress is above the 1.05 f_ level is referred to as the effective-confinement
areas (ECAs), and the remaining regions are referred to as the under-confinement areas (UCAsS).

At the pre-damage state A (Figure 3), in all four sections, the axial stress over the whole

section is slightly above the f, level and barely non-uniform since the confinement provided



463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

by FRP is small. At the early damage state B (Figure 4), in the sharp-corner section (r = 0),
high stresses are observed in the central region, forming a central plateau, and low stresses are
seen in the corner regions; the ECA is a square-shaped central region. By contrast, in the other
three sections which have rounded corners, the highest stresses are found near the corners while
the lowest stresses are seen near the edges; the ECA exhibits the typical arching-effect pattern
and its size is larger for a larger corner radius. Compared with the stress distribution at state A,
the axial stress at state B becomes higher in the ECA but much lower in the UCA/UCAs
(referred to only as UCAs in general for simplicity), resulting in a sharp increase of non-
uniformity. With further loading to state C (Figure 5), the total area of ECA/ECAS (referred to
only as ECAs in general for simplicity), decreases in all sections. Meanwhile, the stress
continues to increase in the ECAs and decrease in the UCAs.

Finally, at state D (Figure 6), the ECAs in all sections are similar to those at state C,
indicating that a somewhat stable ECA distribution has been reached at state C. The axial stress
distributions predicted with the AA model at state D are compared with the EPT predictions in
Figure 6; they are very different from each other except for the 60-mm corner radius section.
The AA model predicts a much larger total ECA size and a much higher stress level in the
UCAs than the EPT model. Hence, the AA model was unable to predict the strongly softening
behavior seen in the experimental data. Indeed, the patterns of the state-D AA predictions are
generally close to those of the state-B EPT predictions (Figure 4) for round-corner sections,
implying that a considerable evolution process of local concrete stresses was missed by the AA
model. The EPT predictions indicate that the total size of ECAs continuously decreases along
the loading process until reaching stabilization at a late stage, as can be seen by comparing
Figures 3-6. This is because the EPT model predicts strain-softening behavior for concrete
under highly non-uniform confinement, and therefore the total size of ECAs decreases as the

axial stress of concrete in the ECAs drops below the 1.05f_ level. This is contrary to the
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findings in Lin and Teng (2020) based on the FE predictions made with the same AA model,
which indicate that the total ECA size continuously increases along the loading process. As a
result, the present study based on the predictions with the EPT model depicts a much smaller
total ECA size than that observed by Lin and Teng (2020).

The results of local principal confining stresses (i.e., g, and 0, ) indicate that their directions
are basically unchanged throughout the loading process for square columns. Figure 7a shows
the typical directions and relative magnitudes of o; and o, for the 0- and the 15-mm corner
radius sections. Obviously, the concrete at the center is under equal lateral stresses (i.e.,
uniform confinement), and the concrete in a small area around the center is under nearly equal
principal confining stresses (0, /07 = 1), i.e., nearly uniform confinement; the confining-stress
non-uniformity (o, /0, ) increases as the location moves away from the center, as can be seen
that o; = 0 near the edges and —o, > —o; in the corner regions. Namely, the concrete in most
parts of the section is subjected to highly non-uniform confinement. Similar observations of
the local principal confining stress directions and the distribution of confining-stress non-
uniformity were made by Lin and Teng (2020). The local axial stress-axial strain curves for
concrete along the center-to-corner, center-to-edge, and corner-to-edge paths are shown in
Figure 7b for the two sections; a higher axial stress level indicates more effective confinement.
Therefore, for the sharp-corner section, the levels of confinement are ranked from high to low
as: center, edge, corner; for the rounded corner section: corner, center, edge. Obviously, the
FRP provides very high confinement to concrete in the rounded corner regions, but the
confinement is very low in the vicinities of the sharp corners. It is noted that, although the
confinement in the rounded corner regions is the highest, it is highly non-uniform with a very
high level of a,. Moreover, the local axial stress-strain curves in all UCAs exhibit an initial
rapidly softening behavior until complete damage (corresponding to point  in Figures 1a and

Ic, where ¢ = 0), which is followed by a rebound of the axial stress (corresponding to point e
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in Figures la and 1c, where confinement is slightly increased). It should be noted that as a
quarter model was used in all the simulations and the stresses and strains at the Gauss
integration points are used, the ‘center’, ‘edge’ and ‘corner’ locations indicated in the figure
are not exactly the geometric center, mid-edge point, and corner point but are the Gauss
integration points nearest to them respectively. The same applies to the results for the
rectangular and the elliptical columns, as discussed in Figures 11 and 14. This location
approximation does not compromise the observations and discussions of local stress-strain
behavior in the sections.

By considering the details presented above, the behavior of a square concrete column
confined with FRP and subjected to monotonic concentric compression can be explained as
follows. Before the concrete enters the post-transition stage, the entire section can be
considered as an ECA, with relatively low levels of confinement near the flat sides. With
further loading, the concrete near the flat sides is damaged rapidly and exhibits softening
behavior due to the low levels of confinement there; therefore, these regions become UCAs.
With continuous loading, the ECAs shrink while the UCAs propagate. Meanwhile, the
confinement in the ECAs increases and the shrinking process slows down continuously because
the decohesion process of concrete in the ECAs becomes slower. Eventually, a balance between
the ECAs and the UCAs is achieved in this dynamic process, and by then, the concrete in the
UCAs has been completely damaged. Generally, during this stable stage, a square-shaped
central ECA exists regardless of the corner radius, but the size of the ECAs near the corners is
proportional to the corner radius. Accordingly, the central ECA dominates the confinement
behavior for small-corner-radius sections, and the ECAs in the vicinities of the center and the
corners merge into the arching-effect pattern for large-corner-radius sections.

Rectangular columns
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The rectangular high-strength concrete columns had a reported average uniaxial
compressive cylinder strength of 77.9 MPa (Ozbakkaloglu 2013), which was used as f, in the
FE simulations. Since €., and E were not reported, they were taken as the averages of values
measured from the axial stress-axial strain curves of the FRP-confined rectangular column
specimens. The influence of confinement should be negligible on E but could be non-trivial on
£c0- The value of €., was thus taken as the average of €., values of the two nominally identical
specimens denoted by R2L3 as these were the least-confined specimens (i.e., with the highest
aspect ratio and lowest FRP confinement level). Parameters 1y, f;, and k were determined by
matching the FE results with the experimental data of the square column specimens R1L3 (two
nominally identical specimens). The default values of g = 0.85 and 9 = 0.6 were used, and
a typical value of v = 0.18 was assumed. The values of the parameters in the EPT model are
summarized in Table 3. The values of f, and €., used in the AA model are the same as those
in the EPT model. Unlike the EPT model, however, the AA model requires a sufficiently large
value of (E€.,)/f.. The values of E, f. and €., obtained from the test data, (Ee., )/f. = 1.4,
do not meet this requirement and lead to convergence problems with the AA model. By
adopting the measured values of f, = 77.9 and €., = 0.0034, the minimum admissible value
of E by the AA model was found to be 45,900 MPa, which was used in the AA model for the
predictions. This use of a revised value for the elastic modulus, together with the original values
of f. and ¢&.,, has only a rather small overall effect on the predicted axial stress-strain curve,
with a greater effect on the ascending branch than the descending branch of the curve. The
values of elastic modulus and layer thickness of the FRP jacket as reported by the authors,
being 240 GPa and 0.234 mm respectively, were adopted in the simulations.

The average axial stress-axial strain curves predicted with the EPT and the AA models are
compared with the experimental data of 3- and 5-layer FRP-confined specimens (a total of six

configurations, each having two nominally identical specimens) extracted from the study
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conducted by Ozbakkaloglu (2013) in Figures 8a and 8b, respectively. All specimens show a
three-branch behavior including an initial pre-damage branch, then a softening branch, and
finally a slowly hardening branch. Such behavior has also been reported for rectangular
columns under concentric compression in other studies (e.g., Lam and Teng 2003b;
Ozbakkaloglu and Oehlers 2008; Wu and Wei 2010; Saleem et al. 2017). For specimens with
the same number of FRP layers, a higher aspect ratio leads to a steeper softening branch and a
lower stress level for the hardening branch. The predictions obtained with the EPT model
successfully capture this overall trend for all specimens and are close to the experimental data.
In addition, predictions for R1L3 with the EPT model were made using the default parameter
values given in Table 5. It is noted that the default value of E is 41,700 MPa, which is much
larger than the measured value of E. The results are shown as the dashed blue curve in Figure
8a; it is seen that the predictions still indicate a softening behavior of the specimen during the
initial post-peak stage, although the stresses are substantially over-predicted.

By contrast, the AA model was unable to predict the softening behavior of the rectangular
columns even for the one with an aspect ratio of 2. Indeed, the AA predictions for rectangular
columns with different aspect ratios are similar, which indicates that the AA model is
inaccurate for FRP-confined rectangular concrete columns. Similarly, the four states
representing the increasing levels of damage for the concrete column are marked on the stress-
strain curves predicted with the EPT model, and the final state D for the AA predictions is also
marked. The predicted local responses of concrete at these states are examined below.

The 3D axial stress distributions predicted with the EPT model for the two rectangular
columns confined with 3 layers of FRP are given in Figure 9 for the first three states and in
Figure 10 for the last state. At the pre-damage state A, the axial stresses over the two sections
are slightly higher than f, and basically uniform. At the early damage state B, the ECAs in both

sections exhibit the typical arching-effect pattern. At state C, the ECAs in both sections have
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shrunk substantially, leaving separate ECAs around the two focal points (referred to as side-
centers and indicated as ¢s in the figure) with a nearly triangular shape and near the corners.
The stresses adjacent to the long-side edge (er) are the smallest within the section. With further
loading to state D (Figure 10), for both sections, the ECAs are similar to those at state C,
indicating that stable ECAs have been reached at state C. The axial stress distributions at state
D predicted with the AA model are also given in Figure 10, which are very different from those
predicted with the EPT model for both sections. Similar to the predictions for the square
sections, the AA model leads to a much larger total ECA size (almost the entire section in this
case) and a much higher stress level in the UCAs than the EPT model. The ECA distributions
at state D predicted with the AA model are somewhat similar to those at state A predicted with
the EPT model, indicating the process of local concrete evolution is not well captured by the
AA model.

Figure 11a shows the typical directions and relative magnitudes of o; and o, for both
rectangular sections. Generally, the concrete in a small area around each side-center is
subjected to nearly equal principal confining stresses (gy /g, = 1), and the confinement non-
uniformity (o, /07) increases as the location is further away from the side-centers; g, = 0 near
eL and e and —a, > —0ay near the corners. The concrete in most parts of the section is
subjected to highly non-uniform confinement. The local axial stress-axial strain responses at
the corners, the side-centers, the geometric center (cg), and the two edges are shown in Figure
11b for both sections. Obviously, the confinement is the most effective near the rounded
corners for both sections, and is the second most effective in small areas around the side-centers,
where the concrete is nearly uniformly confined. The confinement is less effective around the
geometric center than that around the two side-centers. Near the two edges, the concrete
exhibits rapid softening behavior followed by a slowly softening or hardening branch, as a

result of the low confinement there.
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By comparing the local responses of concrete in square and rectangular sections, it is
evident that the concrete around the center of square sections and the concrete around the side-
centers of rectangular sections behave similarly; and the same can be said about the concrete
adjacent to the rounded corners of square and rectangular sections as well as about the concrete
in the UCAs of square and rectangular sections. The only obvious difference is that the ECAs
around the side-centers of rectangular sections are triangular-shaped, while that around the
center of square columns is square-shaped. Consequently, the local behavior of concrete in a
rectangular section can be understood by referring to that in a square section, as discussed
above.

Elliptical columns

For the group of elliptical specimens considered in the present study, the values of f., €.,
E, and v of the concrete were reported by Liu et al. (2022); they were obtained from
compression tests of concrete cylinders with a diameter of 150 mm and a height of 300 mm.
The value of k; was determined by matching the predictions of the descending branch with the
test data of the cylinders. Parameters 1), and f, were determined by matching the predictions
with the test data of the FRP-confined circular column El. The default values of g, = 0.85
and p,, = 0.6 were used. The values of the parameters used for the EPT model are summarized
in Table 4. The values of f., €.,, E and v used in the AA model are the same as those in the
EPT model. The elastic modulus and thickness of the FRP jacket were 38.1 GPa and 3.3 mm
respectively, as reported by the authors.

The section-average axial stress-axial strain curves predicted with the EPT and the AA
models are compared with the experimental data of Liu et al. (2022) in Figures 12a and 12b,
respectively. Column E2.5 exhibits an initial softening behavior followed by a hardening
branch similar to the behavior of rectangular columns, which is successfully captured by the

EPT predictions. Column E2 shows a slowly hardening behavior, and the predictions obtained
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with the EPT model are close to the experimental data. For columns E1.5 and El, the
experimental data show hardening behavior that was closely predicted with the EPT model. In
addition, predictions with the EPT model for column E2 were made using the default parameter
values given in Table 5. The default values are close to the calibrated values of the parameters,
and the predictions, shown as the dashed red curve in Figure 12a, are close to the experimental
data of E2.

By contrast, the AA model was unable to predict the softening behavior of E2.5 or the
slightly hardening behavior of E2. Indeed, the stress-strain curves predicted with the AA model
for the four elliptical columns are quite close, which indicates the unsuitability of the AA model
for FRP-confined elliptical columns with large aspect ratios. The four states of interest are
indicated in the charts.

The axial stress distributions for the four sections at state D predicted with both models are
compared in Figure 13. The stress distributions at state D of the E1 and the E1.5 sections
predicted with the two models are similar; the axial stresses over the entire section exceed the
1.05f; level (the dashed contour line indicating the 1.05f, level is absent because the entire
stress surface is above the 1.05f, level). However, for the E2 and the E2.5 sections, the EPT
model predicts ECAs adjacent to the vertices (i.e., the ends of the major axis) separated by a
UCA in the central region, while the AA model still predicts that the axial stresses over the
entire section exceed the 1.05f level. As a result, the AA model was unable to predict the
slowly hardening behavior of E2 and the softening behavior of E2.5.

The local principal confining stresses for E1.5 and E2.5 are presented in Figure 14a. In both
sections, the confinement is nearly uniform (o; = g,) in a small area near each vertex, and the
confinement non-uniformity (g, /0;) increases as the location is further away from the vertices.
For column E1.5, the non-uniformity is rather moderate as oy is non-trivial around the center

and near the co-vertices (i.e., ends of the minor axis). By contrast, for column E2.5 having a
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much larger aspect ratio, the confinement is highly non-uniform both around the center and
near the co-vertices: where g; = 0. Consequently, as shown in Figure 14b, the local axial
stress-axial strain response is hardening at the vertices for both elliptical sections, but it is
hardening around the center and at the co-vertices for E1.5 while softening for E2.5. Similar to
the local concrete behavior in the UCAs of square and rectangular sections, the local softening
behavior gradually becomes slightly hardening as concrete approaches the complete damage
stage, corresponding to the stress path between points d and e in Figure 1. Accordingly, at the
section level, the average axial stress-axial strain response becomes slightly hardening
eventually.

By comparing the local behavior of concrete in elliptical sections with that in square and
rectangular sections, it can be readily seen that the behavior of concrete near the vertices of an
elliptical section is akin to that around the center of a square section and the side-centers of a
rectangular section, and the behavior of concrete in the UCAs in all non-circular columns is
similar. Specifically, in terms of local concrete behavior, there is no region in an elliptical
section that resembles the rounded corner regions in a square or rectangular section. The total
size of ECAs as a proportion of an elliptical section decreases as the aspect ratio increases.
Direct measurement of local axial stress

The authors’ group has previously made an attempt to experimentally measure local axial
stresses in a series of FRP-confined square and rectangular columns, of which one rectangular
column was reported in a conference paper (Teng et al. 2015a). In that study, an FRP-confined
concrete column specimen was prepared as two nominally identical halves. During the
concentric compression loading process, a thin film containing a 2D array of piezoelectric
sensors (referred to as the pressure mapping system) was placed between the two halves (i.e.,
at the mid-height section of the test specimen) to measure the local axial stresses. Considering

the unevenness of the concrete surfaces sandwiching the pressure film, the random coarse
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aggregate distribution, and the possible calibration errors of the pressure mapping system,
among other uncertainties, the accurate measurement of local stresses in these test specimens
and their robust interpretation is no small challenge. Furthermore, Teng et al. (2015a) presents
only the local axial stresses measured in one of the test columns and their comparisons with
FE predictions obtained with the AA model. During the present study, significant discrepancies
between the present AA predictions and those given in Teng et al. (2015a) were found,
suggesting that the FE results in Teng et al. (2015a) have involved some important errors. Due
to the above reasons, it is difficult to reach a firm conclusion on the accuracy of FE predictions
through comparison with the test data in Teng et al. (2015a). Nevertheless, a new attempt of
comparing the test data for the chosen column specimen reported in Teng et al. (2015a) and
the newly obtained predictions with the EPT and the AA models are presented in Appendix A
for additional reference.
Conclusions

In the present paper, an FE study of FRP-confined square, rectangular, and elliptical
columns under monotonic concentric compression has been reported. The FE analysis is based
on the EPT (evolutionary potential-surface trace) plasticity constitutive model for concrete
recently proposed by the authors and reported in a previous paper (Zheng and Teng 2022a).
The key components of the model have been briefly introduced, and its implementation with
the FE package ABAQUS through an Euler-backward algorithm employing the consistent
tangent matrix has been explained. It has also been demonstrated that the model provides
accurate predictions of the section-average behavior for all the selected FRP-confined non-
circular plain-concrete columns. Therefore, the FE predictions for the local behavior of
concrete were deemed to be closely reflective of the real local behavior of concrete. Based on
the FE results, the following conclusions can be made for FRP-confined non-circular concrete

columns under axial compression:
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1. In all non-circular sections, the confinement to concrete is significantly non-uniform
except in the close vicinities of the center of a square section, the two side-centers of a
rectangular section, and the two vertices (ends of the major axis) of an elliptical section, where
the concrete is under nearly uniform confinement. In much larger areas surrounding these small
areas of nearly uniform confinement, the concrete is effectively confined, as indicated by
having axial stresses exceeding 1.05 f.; these larger areas are referred to as effective-
confinement areas (ECAs).

il. For square and rectangular sections with rounded corners, the confinement in the
rounded corner regions is more effective, although highly non-uniform, than that in the other
ECAs surrounding the center or side-centers. Hence, the rounded corner regions also qualify
as ECAs.

iii. When the concrete somewhere in the section enters the softening stage or starts to
experience damage, the ECAs shrink continuously but at a reducing rate of shrinkage as the
deformation level increases, with associated changes in the shapes of ECAs. Meanwhile, the
level of confinement in the ECAs continuously increases. Eventually, as a result of these two
dynamic processes, a nearly stable ECA distribution in the section is reached. Generally,
around the center of a square section, the ECA has a square shape, and around the side-centers
of a rectangular section, the ECAs have a triangular shape; their shapes and sizes are little
influenced by the corner radius. Near the corners of a square or a rectangular section, the size
of the ECAs is related to the corner radius, and near the vertices of an elliptical column, the
size of the ECAs is adversely proportional to the section aspect ratio.

iv. The concrete in the ECAs generally exhibits either a hardening or a slowly softening
stress-strain response and suffers only moderate damage even at a late stage of loading. The

concrete in the remaining regions (under-confinement areas or UCAs) generally exhibits a
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rapidly softening response until it is completely damaged, and thereafter it exhibits a slowly
hardening response.

v. The section-average axial stress-axial strain behavior of an FRP-confined non-circular
concrete section is an outcome of the interplay between the ECAs and the UCAs. The average
behavior appears as hardening if the effect of the ECAs dominates and softening otherwise.
Notably, the effect of the ECAs seems to be more dependent on the geometric parameters of
the section, including the section shape, aspect ratio and corner radius, than the stiffness of the
FRP confining jacket/tube.

The EPT plasticity constitutive model can potentially be used to gain a deeper
understanding of confinement mechanisms and obtain numerical results for the establishment
of more accurate analytical models for the section-average stress-strain behavior of FRP-
confined non-circular concrete columns. The EPT model can also be used in three-dimensional
FE models for predicting the behavior of concrete columns with more complicated forms of
confinement, but it should be noted that such FE models are likely to be subject to mesh-
dependence when strain-softening behavior is involved. The EPT plasticity model summarized
in the present paper enriched with non-local features will be presented in a forthcoming paper
to address the mesh-dependence issues.

Data Availability Statement

Some data and the computer code that support the findings of this study are available from
the corresponding author upon reasonable request. The available data include the results of the
finite element analyses. The mathematical formulation of the adopted plasticity model for

concrete is available at https://doi.org/10.1016/j.engstruct.2021.113435, and its FORTRAN

code may be released by the authors in the future.
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Appendix A Local axial stress measurements of an FRP-confined rectangular column in Teng
et al. (2015a)

The tested column had a height of 332 mm, a cross-section of 133 mm x 166 mm, and a
corner radius of 25 mm. The reported concrete properties of f, = 42.5 MPa and €., = 0.0024
and the default values of E and v were used in both the EPT and AA models. In addition, for
the EPT model, the values of parameters 1y, f;, ks and 0, wWhich were determined by
matching the section-average axial stress-strain predictions of three square columns with
unpublished data provided by the authors of Teng et al. (2015a), are listed in Table A1l.

The local axial stresses measured at a section-average stress level of 1.3 fc were extracted
from the data published in Teng et al. (2015a) and are compared with the FE predictions
obtained with the EPT and AA models at two states (A and B). There are good reasons for the
choice of different states in the AA predictions for comparison herein, with a section-average
stress level of 1.3 f; in the FE analysis being an obvious option as was adopted by Teng et al.
(2015a). This obvious option was not taken for the comparisons herein as the axial stress-strain
curve from the AA model was found to differ significantly from the experimental axial stress-
strain curve. At state A, the axial strains from both models are equal to the axial strain
corresponding to the 1.3 fc stress level in the test data, which was found from unpublished
section-average axial stress-strain curve of the column provided by the authors of Teng et al.
(2015a). At state B, the maximum axial stresses (at the corner of the section) from both models
are equal to the measured maximum axial stress over the section. Figure A1 compares the
measured axial stresses with FE predictions along the three chosen paths over the section, and
these paths are indicated in Figure A1l. The measured axial stress distributions along the paths
were directly obtained from the individual sensors along the paths as reported in Teng et al.
(2015a), and the predicted axial stress distributions along the paths were obtained through 2D-

interpolation of the FE results using the location of the three paths.
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For the state A comparison for each path, the axial stresses are normalized by the maximum
axial stress from the same source. The predictions from the two FE models generally agree
with each other. Along path 2, the two sets of FE predictions show similar trends at state A
(Figure A1b) but are very different from the measured results. However, they show a close
match with the test data at state B (Figure A le); the slight difference between the predicted and
the measured peak stresses is due to the discrete load steps of the FE results. Along paths 1 and
3, the predictions from both FE models do not match the measured results well for both states.
Further work is obviously necessary to achieve more robust and conclusive comparisons
between FE predictions and measurement results for local axial stresses in FRP-confined

concrete columns.



966

967

968
969

970
971

972
973

974
975

976
977

Tables
Table 1. FRP-confined non-circular columns simulated in the present study
. . . . Corner  Number
Group Specimen Original name Dgpth/ma] or W¥dth/m1nor Height radius  of FRP
axis [mm] axis [mm)] [mm]
[mm] layers
SrOL1C31 C30-r0-1ply 0 1
S ! Sr1SL1C31  C30-r15-1ply 15 1
(\?vl;fe Sﬁd“??ﬁ SrOL2C53 -~ C30-r0-2ply 150 150 300 0 2
2008)g Sr15L2C53  C50-r15-2ply 15 2
Sr30L2C53  C50-r30-2ply 30 2
Sr60L2C53  C50-r60-2ply 60 2
RIL3 A10R15L3 3
Rectangular RILS A10RI5L5 150 150 5
columns R1.5L3 A15RI5L3 3
(Ozbakkaloglu R1.5L5 A15RI5L5 187.5 125 300 15 5
2013) R2L3 A20R15L3 3
R2L5 A20RI5L5 225 125 5
Elliptical El E10A-L06-80 300
. El.5 E15A-L06-80 200
Zlollzlgglzs) (Liu et E2 E20A-1.06-80 300 150 600 - 6
] E2.5 E25A-L06-80 120
Table 2. Values of model parameters for square columns
Specimen f:[MPa] Eco E[MPa] Ks/Kc " fi/f- [ v
SrOL1C31
Sr15L1C31 31.0 0.0025 30900 10 0.6 0.10 0.6 0.18
Sr0L2C53
Sr15L2C53
Sr30L2C53 53.0 0.0026 36200 10 1.2 0.14 0.6 0.18
Sr60L2C53
Table 3. Values of model parameters for rectangular columns
Specimen f:[MPa] Eco E[MPa] Ks/K. Y fi/fe Coo v
RIL3
RIL5
RI1.5L3
R1.5L5 77.9 0.0034 32600 8 0.6 0.10 0.6 0.18
R2L3
R2L5
Table 4. Values of model parameters for elliptical columns
Specimen fiIMPal e,  E[MPal  wkJjx, %y fi/f 0 v
El
E1.5
B2 41.2 0.0021 34200 8 0.8 0.14 0.6 0.185
E2.5
Table 5. Default values of model parameters
Specimen f-IMPa] Eco E[MPa] Kg/K " fi/fe [ v
Sr15L1C31  31.0 0.0019 26300
Sr15L2C53  53.0 0.0024 34400
RIL3 77.9 0.0030 41700 8 1.0 0.10 0.6 0.18
E2 41.2 0.0022 30300
Table Al. Values of model parameters for the test column with measured local stresses
fc[MPa] €co E[MPa] Ks/Kc Pi felfe Qo 4
42.5 0.0024 34200 10 1.2 0.14 0.8 0.18




978

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006

Figure captions

Fig 1. Different stress paths during the pre- and post-transition stages: (a) stress-strain curves, (b) pre-transition
path, (c) post-transition path.

Fig 2. Stress-strain curves of FRP-confined square columns: predictions versus test data from Wang and Wu
(2008): (a) STOL1C31, (b) SrOL2C53, (c) Sr15L1C31, (d) Sr15L2C53, (e) Sr30L2C53, (f) Srt60L2C53.

Fig 3. Axial stress distributions predicted with the EPT model for FRP-confined square columns of different
corner radii: state A

Fig 4. Axial stress distributions predicted with the EPT model for FRP-confined square columns of different
corner radii: state B

Fig 5. Axial stress distributions predicted with the EPT model for FRP-confined square columns of different
corner radii: state C

Fig 6. Axial stress distributions predicted with the EPT and the AA models for FRP-confined square columns of
different corner radii: state D

Fig 7. Confining and axial stresses in square sections with sharp and rounded corners: (a) principal confining
stresses, (b) axial stress-axial strain curves.

Fig 8. Stress-strain curves of FRP-confined rectangular columns: predictions versus test data of Ozbakkaloglu
(2013): (a) Specimens confined with 3 layers of FRP, (b) Specimens confined with 5 layers of FRP.

Fig 9. Axial stress distributions predicted with the EPT model for an FRP-confined rectangular columns of
different aspect ratios at states A, B, and C

Fig 10. Axial stress distributions predicted with the EPT and the AA models for FRP-confined rectangular
columns of different aspect ratios at state D

Fig 11. Confining and axial stresses in rectangular sections of different aspect ratios: (a) principal confining
stresses, (b) axial stress-axial strain curves.

Fig 12. Stress-strain curves of FRP-confined elliptical columns: predictions versus test data of Liu et al. (2022):
(a) EPT model, (b) AA model.

Fig 13. Axial stress distributions predicted with the EPT and the AA models for FRP-confined elliptical
columns of different aspect ratios at state D

Fig 14. Confining and axial stresses in elliptical sections with different aspect ratios: (a) principal confining

stresses, (b) axial stress-axial strain curves.
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Fig A1l. Axial stress distributions along three paths of an FRP-confined rectangular column: predictions versus
test data of Teng et al. (2015a): (a) Path 1, state A, (b) Path 2, state A, (c) Path 3, state A, (d) Path 1, state B, (e)

Path 2, state B, (f) Path 3, state B.
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