

Zheng, B.-T., & Teng, J.-G. (2023). Finite-Element Modeling of FRP-Confined Noncircular Concrete Columns Using the Evolutionary Potential-Surface Trace Plasticity Constitutive Model for Concrete. *Journal of Composites for Construction*, 27(1), 04022089.

This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This includes translation to other languages.

1 Finite element modeling of FRP-confined non-circular concrete columns using the 2 evolutionary potential-surface trace plasticity constitutive model for concrete 3 Bo-Tong Zheng^a and Jin-Guang Teng, F.ASCE^{b*}

*4 "Research Assistant Professor, Department of Civil and Environmental Engineering, The Hong Kong
5 Polytechnic University, Hong Kong, China, Email: btzheng@polyu.edu.hk*

⁶ *Chair Professor of Structural Engineering, Department of Civil and Environmental Engineering, The
7 Hong Kong Polytechnic University, Hong Kong, China, Email: cejgteng@polyu.edu.hk*

*Corresponding author

9 Abstract

10 The compressive behavior of fiber-reinforced polymer (FRP)-confined concrete columns
11 with a non-circular cross-section has been investigated through extensive experimental,
12 analytical, and numerical research, but a unified theoretical/numerical approach that can
13 accurately predict both their section-average behavior and local concrete behavior is not yet
14 available. In non-circular columns under axial compression, the concrete is typically under a
15 non-uniform stress state of three-dimensional (3D) compression, with the lateral compressive
16 stresses being the reactive stresses from the confining device (i.e., passive confinement). The
17 authors of the present paper recently developed a plasticity constitutive model for concrete
18 under general 3D compressive stresses, which possesses a potential surface with an
19 evolutionary deviatoric trace that can accurately capture the results of existing compression
20 tests of concrete cubes under non-uniform, passive confinement. This paper explores the
21 application and capability of this evolutionary potential-surface trace (EPT) plasticity
22 constitutive model in the finite element (FE) analysis of FRP-confined square, rectangular, and
23 elliptical plain-concrete columns under concentric compression. The section-average behavior
24 of all the selected non-circular columns predicted by these FE analyses is close to the existing
25 experimental data. The numerical results obtained with the EPT plasticity constitutive model

26 are then examined in detail to achieve an improved understanding of local concrete behavior
27 in FRP-confined non-circular columns.

28 **Keywords:** FRP, concrete, plasticity constitutive model, non-circular column, non-uniform
29 confinement, axial compression, finite element modeling.

30 **Introduction**

31 To make full use of fiber-reinforced polymer (FRP) composites in the construction of new
32 concrete columns and the strengthening of existing concrete columns, extensive experimental
33 and analytical research has been conducted on FRP-confined concrete columns under
34 concentric compression (e.g., Saadatmanesh et al. 1994; Mirmiran and Shahawy 1997; Pessiki
35 et al. 2001; Lam and Teng 2003a; Jiang and Teng 2007; Wei and Wu 2012; Lim and
36 Ozbakkaloglu 2015; Lin and Teng 2020). It has been a consensus for some time that the
37 behavior of FRP-confined concrete columns with a circular cross-section (referred to as
38 circular columns hereafter for brevity) is sufficiently well understood and can be accurately
39 predicted with some of the analytical stress-strain models (e.g., Jiang and Teng 2007; Teng et
40 al. 2007; Teng et al. 2009). However, much less has been achieved in understanding and
41 predicting the behavior of FRP-confined concrete columns with a non-circular cross-section,
42 including square, rectangular, and elliptical cross-sections (referred to as non-circular columns
43 hereafter for brevity) (e.g., Mirmiran et al. 1998; Rochette and Labossière 2000; Pessiki et al.
44 2001; Lam and Teng 2003b; Wang and Wu 2008; Ozbakkaloglu 2013; Lin and Teng 2020).

45 In FRP-confined circular concrete columns, the concrete is deemed to be uniformly
46 confined with FRP: that is, the concrete at all locations of the section receives the same
47 confining stress and hence exhibits the same axial stress-strain behavior, and the
48 experimentally measured average axial stress-axial strain behavior directly reflects the local
49 response of concrete. By contrast, the concrete in FRP-confined non-circular columns is under
50 non-uniform confinement: the concrete at different locations of a section receives different

51 confining stresses and hence exhibits different axial stress-axial strain responses; the non-
52 uniformity of confinement also increases with the axial deformation. The experimentally
53 measured section-average axial stress-axial strain behavior is a mere aggregate of, but is unable
54 to reflect, the different local concrete behaviors across the section. Therefore, knowledge of
55 local concrete behavior in FRP-confined non-circular columns beyond what is offered by
56 existing experimental data is needed to better understand and more accurately predict the
57 behavior of FRP-confined non-circular concrete columns.

58 The ‘arching effect’ concept is widely used to conceptualize with the non-uniform
59 confining stress distribution over the section of an FRP-confined non-circular concrete column,
60 in which the non-circular section is partitioned into a region with effective confinement and
61 the remainder of the section with negligible confinement (e.g., Sheikh and Uzumeri 1980;
62 Mander et al. 1988; Teng and Lam 2002). This binary, static oversimplification is somewhat
63 intuitive rather than being based on rigorous analysis/evidence. In order to experimentally
64 identify the effectively confined region within the section, the local concrete stresses need to
65 be measured across the section throughout the loading process, as attempted by Teng et al.
66 (2015a) via the use of a pressure mapping system; more work is needed in order to achieve
67 accurate measurements of these local stresses (see Appendix A). Moreover, some insight into
68 the variation of local concrete confinement over the section at the final stage can be obtained
69 by scrutinizing the failure pattern of crushed FRP-confined concrete columns, such as those
70 reported in Ozbakkaloglu and Oehlers (2008), Wang and Wu (2008), Wu and Wei (2010),
71 Ozbakkaloglu (2013), and Shan et al. (2019). However, more experimental data and analyses
72 are required to establish a good understanding of the local behavior of concrete in a non-
73 uniformly confined member. Therefore, three-dimensional (3D) finite element (FE) analysis
74 has been seen as the more reliable alternative to gain knowledge of local concrete behavior in
75 FRP-confined non-circular columns. The accuracy of an FE simulation is mainly dependent on

76 the accuracy of the constitutive model employed for the concrete; more specifically, for the
77 accurate modeling of FRP-confined non-circular concrete columns, a constitutive model
78 suitable for concrete under non-uniform, passive confinement is necessary.

79 While many FE studies have been carried out on FRP-confined circular columns (e.g.,
80 Mirmiran et al. 2000; Shahawy et al. 2000; Yu et al. 2010a;b; Teng et al. 2015b; Lin and Teng
81 2017; Ribeiro et al. 2019), FE studies of non-circular columns, as mentioned below, have been
82 limited mainly due to the lack of a competent concrete constitutive model. In some of the FE
83 analyses of FRP-confined square columns (Nisticò and Monti 2013; Nisticò 2014), the concrete
84 was simulated as a linear-elastic material, which is obviously inaccurate. In the other studies
85 involving FE analysis of FRP-confined square, rectangular, or elliptical columns (Doran et al.
86 2009; Yu et al. 2010b; Hajsadeghi et al. 2011; Yeh and Chang 2012; Mostofinejad et al. 2015;
87 Hany et al. 2016; Teng et al. 2016; Lin and Teng 2020; Fanaradelli and Rousakis 2020; Ekop
88 and Grassl 2022), the concrete was simulated using plasticity-based constitutive models, which,
89 though capable of depicting the full 3D incremental stress-strain relationship of confined
90 concrete, are inaccurate for concrete under substantially non-uniform, passive confinement as
91 discussed below.

92 Available plasticity models for concrete have been formulated mainly on the basis of
93 experimental data for concrete under active stresses (e.g., Han and Chen 1985; Lubliner et al.
94 1989; Lee and Fenves 1998; Grassl et al. 2002) and are thus inaccurate for concrete under
95 passive confinement. In order to overcome this weakness that compromises the capability of
96 plasticity models for predicting the behavior of passively-confined concrete, the behavior of
97 FRP-confined concrete as interpreted from experimental data was incorporated into the existing
98 framework of, mainly the Drucker-Prager (D-P) type, plasticity models in a series of studies
99 before 2010 (e.g., Mirmiran et al. 2000; Shahawy et al. 2000; Karabinis and Rousakis 2002;
100 Rousakis et al. 2008). The limitations of these modified plasticity constitutive models proposed

101 in these studies were subsequently resolved by a more appropriate approach proposed by Yu
102 et al. (2010a; b), which incorporated the analytical stress-strain model of Teng et al. (2007) for
103 concrete under uniform FRP (i.e., passive) confinement into the built-in plasticity models of
104 ABAQUS (version 6.5). Models adopting this approach, referred to as analytically-augmented
105 (AA) plasticity models herein, are capable of close prediction of the behavior of concrete under
106 both uniform-active and uniform-passive confinement and have also been widely employed in
107 modeling the behavior of FRP-confined non-circular concrete columns either directly or by
108 tuning the core analytical stress-strain model (e.g., Jiang and Wu 2012; Mostofinejad et al.
109 2015; Mazzucco et al. 2016; Lin and Teng 2017; Mohammadi et al. 2019).

110 However, these AA plasticity models are still inaccurate for concrete under substantially
111 non-uniform FRP confinement as the non-uniform confinement in these models is only
112 indirectly accounted for by the empirical adaptation of an analytical stress-strain model (the
113 core analytical model) developed on the basis of experimental data of concrete under uniform,
114 passive confinement (e.g., Lam and Teng 2004; Lam et al. 2006). In Yu et al. (2010b), which
115 pioneered the AA type of models, both a section level approximation (referred to as method I)
116 and a local level approximation (referred to as method II) were explored for this empirical
117 adaptation. Only the local approximation method, which relies on the conversion of non-
118 uniform confining stresses into an equivalent uniform confining pressure and the definition of
119 an equivalent lateral/hoop strain, is considered in the present study, as the section level method,
120 which assumes the same flow rule for the entire section, is less reliable (Yu et al. 2010b). Even
121 with the local approach, the empirical conversion approach explored by Yu et al. (2010b) and
122 followed by many other researchers (e.g., Mostofinejad et al. 2015; Lin and Teng 2017;
123 Mohammadi et al. 2019) fails to capture the behavioral characteristics of concrete under
124 substantially non-uniform passive confinement, as demonstrated by (Zheng and Teng 2022a).

125 The development of a more capable constitutive model for concrete subjected to
126 substantially non-uniform confinement requires relevant experimental data. The dilation
127 behavior of concrete under uniform confinement has been well established through
128 compression tests of concrete cylinders under hydrostatic pressure (Hoek cell tests) for active
129 confinement, as summarized by Samani and Attard (2014), and through those with external
130 FRP confinement for passive confinement, as summarized by (Lim and Ozbakkaloglu 2015a).
131 However, equally direct data for the deformation behavior of concrete under non-uniform
132 passive confinement has not been available until the compression tests of 100 mm or 150 mm
133 concrete cubes conducted by Jiang et al. (2017) and Mohammadi and Wu (2017), respectively,
134 where the cubes were confined with lateral confining devices of unequal stiffnesses in the two
135 directions. These tests provided valuable data germane to the local behavior of concrete in an
136 FRP-confined non-circular column, which complement the available test data for concrete
137 under uniform confinement.

138 The authors of the present paper analyzed the comprehensive dataset assembled from Jiang
139 et al. (2017), Lim and Ozbakkaloglu (2015b), Mohammadi and Wu (2017), Piscesa et al. (2016),
140 and Samani and Attard (2014), and arrived at a unified interpretation of the deformation
141 behavior of concrete (Zheng and Teng 2022a). However, it was found that the new
142 interpretation cannot be represented by the widely adopted framework of the D-P type plasticity
143 models, including that of the AA plasticity models, which employ a fundamentally unsuitable
144 potential surface incapable of accurately depicting the deformation behavior of concrete under
145 non-uniform confinement. Indeed, the authors who conducted the new category of tests have
146 proposed new AA models based on the new datasets in a series of works (Mohammadi et al.
147 2019; Mohammadi and Wu 2019; Li et al. 2021); these new AA models are still unable to
148 accurately reproduce the test results of concrete cubes under non-uniform, passive confinement,
149 as discussed in Zheng and Teng (2022a).

150 Therefore, a new plasticity model incorporating a potential surface with an evolutionary
151 deviatoric trace specifically devised to represent the unified interpretation of confined concrete
152 behavior was proposed by the authors of the present work (Zheng and Teng 2022a); the
153 accuracy of this new model for concrete under active confinement, uniform passive
154 confinement, and non-uniform passive confinement was validated at the material level in that
155 study. The purpose of the present study is twofold. The first is to further evaluate the
156 performance of the evolutionary potential-surface trace (EPT) plasticity constitutive model at
157 the structural member level by simulating FRP-confined non-circular columns and comparing
158 the predictions of section-average behavior with available experimental data. Secondly, the
159 predictions of local concrete behavior obtained with the EPT model are used to advance the
160 understanding of confinement mechanisms in FRP-confined non-circular concrete columns. It
161 should be noted that the study has previously been briefly reported elsewhere (Zheng and Teng
162 2022b).

163 **The evolutionary potential-surface trace (EPT) plasticity constitutive model**

164 *Mathematical formulation*

165 The newly proposed EPT plasticity constitutive model is expounded in Zheng and Teng
166 (2022a), and a brief summary of the critical components is presented here. The model is based
167 on rate-independent incremental elastoplasticity, with stress and strain tensors represented in
168 the Haigh–Westergaard coordinate system. The fundamental assumption of the EPT model is
169 that different concrete materials share the same qualitative descriptors for the stress and the
170 deformation behaviors, but these descriptors can be quantitatively different for each physically
171 unique concrete (as determined by a particular combination of constituent raw materials and
172 production process giving a unique set of material property values). Accordingly, the EPT
173 model employs appropriate mathematical equations for the descriptors (e.g., yield surface,
174 potential surface, and hardening rule) while using different values for the material parameters

175 embedded in these descriptors to reflect quantitative differences. It should be emphasized that
 176 for the same concrete, the values of the material parameters remain the same regardless of the
 177 nature/level of confinement; the model thus possesses the necessary robustness for the
 178 simulation of non-uniformly confined concrete members where the concrete at different
 179 locations is subjected to different confining conditions. It is therefore obvious that the values
 180 of the material parameters of the EPT model for a given concrete can be calibrated from one
 181 state (e.g., under uniform confinement) of the concrete and then used to predict its behavior in
 182 another state (e.g., under non-uniform confinement).

183 The model employs the widely used strength surface proposed by Menetrey and Willam
 184 (1995) and the associated open yield surfaces that are reduced from the strength surface
 185 (Papanikolaou and Kappos 2007), leading to the following expression for the yield surfaces:

$$f(\xi, \rho, \theta; \kappa) = \left(\sqrt{1.5} \frac{\rho}{h(\kappa) \cdot f_c} \right)^2 + m(h(\kappa)) \left(\frac{\rho}{\sqrt{6} \cdot h(\kappa) \cdot f_c} r(\theta) + \frac{\xi}{\sqrt{3} \cdot h(\kappa) \cdot f_c} \right) - c(\kappa) = 0 \quad (1)$$

186 where ξ, ρ, θ are the Haigh–Westergaard coordinates of the stress tensor σ (bold symbols are
 187 used to denote non-scalar variables), κ is the internal state variable (ISV), f_c is the uniaxial
 188 compressive strength, m is the friction parameter determined by f_c and the spurious uniaxial
 189 tensile strength \bar{f}_t , r is the deviatoric shape function, and h and c are the hardening and
 190 softening variables.

191 The evolution of the yield surface is controlled by the variations of h and c , which are in
 192 turn driven by the accumulation of the ISV, whose rate form: $\dot{\kappa} = \sqrt{\dot{\boldsymbol{\varepsilon}}_p : \dot{\boldsymbol{\varepsilon}}_p} / \chi_p(\eta)$, where (\cdot)
 193 indicates the rate of the variable, $\boldsymbol{\varepsilon}_p$ is the plastic strain tensor, and χ_p is a function of the
 194 confinement measure η which is defined to depend on the hydrostatic stress invariant and the
 195 deviatoric polar angle (or the Lode angle) and is thus capable of describing non-uniform
 196 confinement. The function of χ_p was obtained by generalizing the one-dimensional
 197 relationship between the active confining stress and the axial strain at peak axial stress

198 proposed by Teng et al. (2007) and Lim and Ozbakkaloglu (2015c) into a relationship between
 199 the confinement measure η (related to the confining stress) and the total plastic strain (related
 200 to the axial strain at peak axial stress). Therefore, χ_p is independent of the specific confinement
 201 condition of the structure being modelled and can accurately predict the ductility increase of
 202 concrete under various levels of passive confinement stiffness and active confinement stress,
 203 as is revealed through the comparison between numerical predictions and experimental data in
 204 Zheng and Teng (2022a). The EPT model can potentially be used to predict the behavior of
 205 concrete confined with a single material or a combination of materials such as mild steel, high
 206 strength steel, and various types of FRPs. When there is no confinement, the confinement
 207 measure $\eta = 0$, and $\chi_p = 1$. As a result, the accumulation of the ISV becomes $\dot{\kappa} = \sqrt{\dot{\epsilon}_p : \dot{\epsilon}_p}$.
 208 When the confinement is non-zero, the confinement measure has a positive value, i.e., $\eta > 0$,
 209 and χ_p is larger than 1, and both increase with the confinement level. Accordingly, the
 210 accumulation of the ISV is slowed down, as now $\dot{\kappa} = \sqrt{\dot{\epsilon}_p : \dot{\epsilon}_p} / \chi_p$, mathematically
 211 representing the increase of ductility due to confinement. The state at which the concrete
 212 reaches the strength surface is referred to as the transition state when the critical ISV value is
 213 attained (i.e., $\kappa = \kappa_c$). In the pre-transition stage, h increases from an initial value of $0 < h_0 <$
 214 1 to 1 (under uniaxial compression, $h \propto -\sigma_3/f_c$), and $c = 1$. In the post-transition stage, $h =$
 215 1 and c decreases from 1 and approaches 0 asymptotically (under uniaxial compression, $c \propto$
 216 $-\sigma_3/f_c$), with the decreasing rate of c determined by the softening rate parameter, κ_s (a smaller
 217 κ_s value means a faster decrease of c).

218 The plastic strain increment is governed by the flow rule $\dot{\epsilon}_p = \lambda g_\sigma$, where g_σ denotes the
 219 derivative of the potential function (g) by the stress tensor, and λ is the plastic multiplier. The
 220 newly proposed potential surface, having capped meridians and bulged-triangular deviatoric
 221 traces, is expressed as follows:

$$g(\xi, \rho, \theta; \kappa) = r(\theta, \varrho(\kappa)) \cdot \rho + A(\kappa) \cdot (B(\kappa) \cdot f_c - \xi) \cdot \ln \frac{B(\kappa) \cdot f_c - \xi}{\xi_0} = 0 \quad (2)$$

222 where $A(\kappa)$ and $B(\kappa)$ control the shape of meridians and can be determined by the plastic
 223 Poisson's ratio (the ratio between the lateral and the axial plastic strain increments when the
 224 concrete is under compression with no or uniform confinement) at the transition state, ψ_k ;
 225 $r(\theta, \varrho(\kappa))$ controls the shape of deviatoric traces by varying the value of $\varrho(\kappa)$; ξ_0 is a constant
 226 determined by $g(\sigma; \kappa) = 0$. In the pre-transition stage, $\varrho(\kappa) = \varrho_0$ and the deviatoric trace is
 227 nearly circular; a default value of $\varrho_0 \approx 0.85$ was suggested. In the post-transition stage, $\varrho(\kappa)$
 228 approaches ϱ_∞ and the deviatoric trace becomes increasingly more triangular; a default value
 229 of $\varrho_\infty \approx 0.6$ was suggested. The significant difference between the newly proposed potential
 230 surface and those of previous models is the evolutionary deviatoric trace that is essential for
 231 accurately predicting the dilation of concrete under multiaxial compression. Therefore, the new
 232 constitutive model may be referred to as the evolutionary potential-surface trace (EPT) model
 233 for clarity.

234 The EPT model has 9 material constants (parameters): the uniaxial compressive strength,
 235 f_c ; the corresponding axial strain, ε_{co} ; the elastic modulus, E ; the Poisson's ratio, ν ; the
 236 softening rate parameter, κ_s ; the plastic Poisson's ratio at the transition state, ψ_k ; the fictitious
 237 uniaxial tensile strength, \bar{f}_t ; and the initial and final potential-surface deviatoric trace shape
 238 factors: ϱ_0 and ϱ_∞ . The first group ($f_c, \varepsilon_{co}, E, \nu, \kappa_s$) influences concrete behavior under all
 239 conditions and can be calibrated from uniaxial compression tests; the second group (ψ_k, \bar{f}_t)
 240 influences concrete behavior under confinement and can be calibrated from compression tests
 241 of concrete under either uniform or non-uniform confinement; and the last group ($\varrho_0, \varrho_\infty$)
 242 influences concrete behavior only under non-uniform confinement and has to be calibrated
 243 from compression tests on concrete under non-uniform confinement. All nine parameters are
 244 treated as being independent of each other; for instance, different concretes with the same f_c
 245 value can have different values of ε_{co} , E , or ψ_k . Nevertheless, when experimental data for ε_{co} ,

246 E , ν and \bar{f}_t are unavailable, their values can be estimated from f_c using empirical relationships
247 established by previous researchers. In addition, the default values of κ_s , ψ_k , ϱ_0 , ϱ_∞ , which
248 are independent of f_c , are provided for use in the EPT model, as detailed in Zheng and Teng
249 (2022a). It is reiterated that the values of the parameters are the same for the same physically
250 unique concrete and are independent of the nature/level of confinement or specimen geometry.
251 The values of the parameters used in the present study are discussed in detail in the respective
252 sections below.

253 It is well-known that concrete always exhibits strain-softening under active confinement
254 (strain-hardening and -softening are simplified as ‘hardening’ and ‘softening’ herein, and
255 discussed only with respect to the post-transition stage) (e.g., Samani and Attard 2014), while
256 it can exhibit hardening, softening, and even mixed behavior under passive confinement, as
257 shown by the existing experimental studies (e.g., Lam and Teng 2003b; Saleem et al. 2017;
258 Shan et al. 2019). Figure 1a schematically shows a typical axial stress-strain curve of
259 unconfined concrete as well as two typical axial stress-strain curves of the same concrete under
260 passive confinement, one that is hardening due to a stiffer confining device and one that is
261 softening before a rebound due to a softer confining device. It is critical to accurately predict
262 the post-transition behavior of concrete under passive confinement, and therefore the related
263 mathematical setup is briefly discussed, for the sake of simplicity, for concrete under uniform,
264 passive confinement; the mathematical setup can then be readily understood for non-uniform,
265 passive confinement. Figures 1b and 1c show the evolution of the yield surface in the pre- and
266 post-transition stages on the Rendulic plane, where the minimum principal (axial) stress axis,
267 the $-\sigma_3$ axis, forms an angle of 54.7° with the $-\xi$ axis, and the projections of the middle and
268 the maximum principal (confining) stress axes coincide as the $-\sigma_1 = -\sigma_2$ axis is
269 perpendicular to the $-\sigma_3$ axis. The yield surface reflects the frictional and the cohesive
270 characteristics of concrete (Rudnicki and Rice 1975; Bazant 1978), with the slope being

271 proportional to h (Figure 1b) and the intercept on the ξ axis being proportional to c (Figure 1c).
272 Accordingly, in the pre-transition stage, the yield surface evolves from an initial yield surface
273 to the steeper strength surface (Figure 1b), representing the increase of internal friction due to
274 compaction while maintaining the same cohesion; in the post-transition stage, the yield surface
275 shifts to the right along the $-\xi$ axis (Figure 1c), representing the gradual loss of cohesion due
276 to cracking while maintaining the same friction.

277 The uniaxial compression stress path along the $-\sigma_3$ axis and a passively-confined
278 compression stress path that deviates from the $-\sigma_3$ axis are both shown in Figure 1b (also see
279 the corresponding $\sigma_3 - \varepsilon_3$ curves in Figure 1a). In the post-transition stage, the uniaxial
280 compression stress path is softening. However, the passively-confined compression stress path
281 starts from point o , and, if the increase of confinement and thus friction prevails over the
282 decrease of c , will land at point p (Figure 1c) having a higher level of axial stress than point o ,
283 leading to hardening; otherwise, the stress path $o \rightarrow q$ is softening (also see the corresponding
284 $\sigma_3 - \varepsilon_3$ curve in Figure 1a). Moreover, when cohesion is completely lost at the end of the post-
285 transition stage ($c \approx 0$), the concrete is purely frictional and the level of axial stress is
286 dependent on the confinement. Therefore, the concrete may still exhibit hardening behavior as
287 long as the confining stress increases, as indicated by the stress path $d \rightarrow e$, which will appear
288 as a ‘rebound’ of the axial stress as shown in Figure 1a. Consequently, the behavior of concrete
289 under passive confinement is a result of the incessant competition between the increase of
290 friction and decrease of cohesion, both deeply entangled with the dilation of concrete and the
291 confining condition.

292 *Implementation in FE analysis*

293 The constitutive model was implemented with the widely used FE package ABAQUS
294 version 2019 (Dassault Systemes 2020) through its user-defined material (UMAT) subroutine.
295 An implicit Euler-backward algorithm has been developed as detailed in (Zeng et al. 1996),

296 which is not repeated herein except for a few noteworthy issues discussed below. In the
 297 previous study (Zheng and Teng 2022a), the continuum tangent stiffness matrix was used as
 298 the material Jacobian (where $\partial g / \partial \sigma$ was calculated algebraically), since the consistent tangent
 299 stiffness matrix (Simo and Taylor 1985) requires the calculation of the Hessian matrix, \mathbf{H} , of
 300 the potential function, g , with respect to the stress vector, $\sigma_{6 \times 1}$, which is difficult for the EPT
 301 constitutive model with a relatively complicated potential function. In the present study, the
 302 difficulty is overcome by calculating the Hessian matrix through numerical differentiation as
 303 follows:

$$H_{ij} = \frac{\partial^2 g(\sigma)}{\partial \sigma_i \partial \sigma_j} = \frac{g(\sigma_i + \delta\sigma, \sigma_j + \delta\sigma, \dots) - g(\sigma_i + \delta\sigma, \sigma_j - \delta\sigma, \dots) - g(\sigma_i - \delta\sigma, \sigma_j + \delta\sigma, \dots) + g(\sigma_i - \delta\sigma, \sigma_j - \delta\sigma, \dots)}{4\delta\sigma^2} \quad (3)$$

304 where ‘...’ denotes the other four elements of the stress vector and $\delta\sigma$ is a small stress
 305 increment. A parametric study indicated that $\delta\sigma = 1 \times 10^{-5}$ MPa is a reasonable choice to
 306 achieve a sufficiently accurate \mathbf{H} with an error below 0.001%. Therefore, the consistent tangent
 307 stiffness matrix, \mathbf{D}^{ep} , is used in the current study and the convergence performance and
 308 computational efficiency are much improved compared to the continuum tangent stiffness
 309 matrix approach of the previous study. To be compatible with the ABAQUS setup, the stress,
 310 strain, and stiffness tensors are represented by their Voigt form. Therefore, the consistent
 311 tangent stiffness matrix ($\mathbf{D}_{6 \times 6}^{ep}$) is calculated as follows:

$$\mathbf{D}_{6 \times 6}^{ep} = \mathbf{R}_{6 \times 6} - \frac{\mathbf{R}_{6 \times 6}(g_\sigma)_{6 \times 1}(f_\sigma)_{6 \times 1}^T \mathbf{R}_{6 \times 6}}{(f_\sigma)_{6 \times 1}^T \mathbf{R}_{6 \times 6}(g_\sigma)_{6 \times 1} - f_\lambda} \quad (4)$$

312 where $f_\sigma = \partial f / \partial \sigma$ is the derivative of the yield (scalar) function by the stress vector, $\sigma_{6 \times 1}$,
 313 $f_\lambda = \partial f / \partial \lambda$ is the derivative of the yield function by the plastic multiplier, λ , and \mathbf{R} is a matrix
 314 calculated as follows:

$$\mathbf{R}_{6 \times 6} = (\mathbf{I}_{6 \times 6} + \lambda \mathbf{D}_{6 \times 6} \mathbf{H}_{6 \times 6})^{-1} \mathbf{D}_{6 \times 6} \quad (5)$$

315 where \mathbf{I} is the identity matrix, \mathbf{D} is the elastic rigidity matrix. It is noted that \mathbf{H} is a symmetric
316 matrix, while \mathbf{D}^{ep} is non-symmetric for the present constitutive model. Finally, the minimum
317 value of the softening variable c is limited to $c_{min} = 0.01$, which has only a trivial influence
318 on the prediction while increasing the computational efficiency.

319 **FE analysis of FRP-confined non-circular concrete columns**

320 *Selected column specimens*

321 Since experimental data of local stress-strain behavior of concrete in FRP-confined
322 columns are not available, the assumption is made here that the constitutive model is deemed
323 to be reliable as long as the predicted section-average axial stress-axial strain behavior is close
324 to the experimental data. Therefore, a comprehensive specimen pool consisting of FRP-
325 confined square, rectangular, and elliptical plain-concrete column specimens reported by three
326 different research groups was used to evaluate the newly developed EPT model. Additionally,
327 to demonstrate the difference between the EPT model and the widely used AA plasticity
328 models, a representative AA model developed by Yu et al. (2010b) incorporating the more
329 accurate Jiang and Teng (2007) analytical model instead of the Teng et al. (2007) analytical
330 model and using the local approximation method (i.e., method II in Yu et al. (2010b)) for
331 confinement was also used to simulate the selected column specimens. All the concrete
332 columns selected for FE simulation were only confined with an outer FRP jacket and tested
333 under monotonic concentric axial compression.

334 Wang and Wu (2008) systematically investigated the effect of corner radius on the behavior
335 of FRP-confined square normal-strength concrete columns by testing a large number of
336 specimens, all of which were simulated in the present study and close agreement in the section-
337 average axial stress-axial strain curve was found between the predictions and the experimental
338 data. The predictions for six representative specimens covering concrete uniaxial compressive
339 strengths of 31.0 and 53.0 MPa and four corner radii are presented herein to evaluate the EPT

340 model and investigate the effect of corner radius on the local concrete behavior in square
341 columns.

342 In a study conducted by Ozbakkaloglu (2013), the behavior of FRP-confined rectangular
343 high-strength concrete columns, covering the two corner radii of 15 and 30 mm, was
344 investigated. Since the effect of corner radius was the focus of the simulations of the square
345 columns, the simulations of the rectangular columns were placed on the effect of section aspect
346 ratio. Only columns with a 15 mm corner radius were thus selected for the simulations, and
347 these columns were chosen instead of those with a 30 mm corner radius as the former exhibit
348 more significant non-uniformity than the latter. Therefore, a total of six specimen
349 configurations (each having two nominally identical specimens) covering aspect ratios of 1,
350 1.5, and 2 and two levels of FRP confinement were simulated to evaluate the EPT model and
351 investigate the effect of aspect ratio on the local concrete behavior in rectangular columns.

352 Elliptical sections were the third non-circular section form considered in the numerical
353 simulations. Available experimental results of FRP-confined elliptical concrete columns are
354 rather limited (Teng and Lam 2002; Teng et al. 2016;), and the experimental work recently
355 reported by the authors' research group (Liu et al. 2022) provided the most comprehensive
356 experimental data for FRP-confined elliptical columns. A total of 16 columns with filament-
357 wound FRP tubes having fibers close to the hoop direction (so that their axial stiffness can be
358 neglected in the numerical simulations) were tested, covering two levels of FRP confinement,
359 three concrete strengths, and four section aspect ratios. Since the selected square columns
360 included two concrete strengths and the selected rectangular columns included two FRP
361 confinement levels, only four elliptical normal-strength concrete columns covering the aspect
362 ratios of 1, 1.5, 2, and 2.5 were simulated to evaluate the EPT model and investigate the local
363 behavior of concrete in elliptical columns. For convenient reference to the specimens, they are
364 assigned new names indicating sequentially their cross-sectional shape ('S' for square, 'R' for

365 rectangular, and 'E' for elliptical), aspect ratio, corner radius (denoted by 'r'), number of FRP
366 layers (denoted by 'L'), and uniaxial compressive strength of concrete; identical features within
367 the group are not reflected in the names. The details of the specimens, including their original
368 names, are summarized in Table 1.

369 *FE models*

370 A slice model was used to simulate the selected columns based on the assumption that the
371 effect of the column-end constraints on the section-average behavior at the mid-height section
372 (or the mid-height region) is negligible (Teng et al. 2015b); the thickness of the slice was taken
373 as 10 mm. Since all specimens had a doubly-symmetric cross-section, a quarter model was
374 adopted. The monotonic concentric compression imposed on the column was simulated by
375 applying a uniform axial displacement over the section. The concrete was simulated using 8-
376 node brick elements with reduced integration and enhanced hourglass control, the FRP jacket
377 was simulated using 4-node membrane elements with reduced integration, and the FRP-to-
378 concrete interface was simulated as a perfect bond. A mesh convergence study indicated that
379 an element size of 5 mm within the section was sufficient as reducing the element size further
380 was found to lead to indistinguishable changes to the predicted section-average axial stress-
381 axial strain responses.

382 The material behavior of concrete was simulated using both the newly developed EPT
383 model (Zheng and Teng 2022a) and the AA model (Yu et al. 2010a) that incorporates the more
384 accurate core analytical model developed by Jiang and Teng (2007) instead of the Teng et al.
385 (2007) model. The AA model requires tabulated input data generated using four input
386 parameters: f_c , ε_{co} , E , and ν . The determination of parameter values is detailed in the
387 discussions below for each group of specimens. The FRP jacket was simulated as an orthotropic
388 linear elastic material with the major principal stress direction being the hoop direction of the
389 column section, while the modulus in the axial direction of the column was assigned the small

390 value of 0.1 GPa. The rupture strain of the FRP jacket was taken as 1.5%, which is around the
391 measured maximum FRP hoop strain in Wang and Wu (2008) and Liu et al. (2022) and the
392 ultimate tensile strain from FRP coupon tests in Ozbakkaloglu (2013), to allow for the
393 development of sufficient concrete dilation as the focus of the present study is to understand
394 the local behavior of concrete over a realistically wide range of deformation levels.

395 *Square columns*

396 For the selected square columns, Wang and Wu (2008) reported the axial stress-axial strain
397 and axial stress-hoop strain curves of six columns, with each of these columns being selected
398 from three nominally identical columns for one of the six column configurations. They also
399 reported the results of six corresponding unconfined concrete columns, with each of these six
400 unconfined columns being also selected from three normally identical specimens. The values
401 of E , f_c , and ε_{co} were obtained as their averages of the six axial stress-axial strain curves of the
402 unconfined columns. Moreover, the value of κ_s was calibrated by matching the descending
403 branches of the predicted axial stress-axial strain curves with the descending branches of the
404 six experimental axial stress-axial strain curves. Parameters ψ_k and \tilde{f}_t were calibrated by
405 matching the predicted axial stress-axial strain curve of the FRP-confined circular column (i.e.,
406 the square column with a maximum corner radius of 75 mm) with the reported curve. As
407 discussed above, these two parameters can be calibrated using the test data of any confined
408 concrete column (in this case the circular column) and then used for predicting the behavior of
409 the square columns. Therefore, the values of the parameters are specific to the concrete material,
410 but the EPT model is not limited to any specific condition of FRP confinement. The default
411 values of $\varrho_0 = 0.85$ and $\varrho_\infty = 0.6$ were used, and a typical value for ν , namely 0.18, was
412 assumed. The values of the parameters for the EPT model are summarized in Table 2. The
413 values of E , f_c , ν , and ε_{co} used in the AA model are the same as those in the EPT model. The

414 values of elastic modulus and nominal layer thickness of the FRP jacket as reported by the
415 authors, being 220 GPa and 0.165 mm respectively, were adopted in the simulations.

416 The average axial stress-axial strain and axial stress-hoop FRP strain (averaged from two
417 opposite mid-side locations in the experiment) curves of the six specimens predicted with the
418 EPT and the AA models are compared with the experimental data extracted from the study of
419 Wang and Wu (2008) in Figure 2. To make the discussions simpler and consistent with the
420 conventional definition that compressive stresses are taken as positive stresses in concrete,
421 compressive stresses are presented as positive values (i.e., referring to stresses using the $-\sigma$
422 values) from here onwards. Specimens Sr0L1C31, Sr0L2C53, and Sr15L1C31 with sharp
423 corners or a relatively small corner radius, as shown in Figures 2a, 2b, and 2c, respectively,
424 exhibit a softening behavior. For specimens Sr15L2C53 and Sr30L2C53 with a larger corner
425 radius, as shown in Figures 2d and 2e, respectively, a hardening response following the
426 softening branch can be seen. The predictions for these five specimens obtained with the EPT
427 model successfully capture the behavior and are close to the experimental data, but those
428 obtained with the AA model are incapable of predicting the strongly softening behavior for
429 these square sections. For specimen S1r60L2C53 with a nearly circular section, both models
430 predict a hardening second branch that closely matches the experimental data, as shown in
431 Figure 2f. Figure 2 therefore demonstrates that the EPT model is accurate for FRP-confined
432 square concrete columns with any corner radius, while the AA model is only suitable for those
433 with a large corner radius. In addition, the default parameter values based only on f_c are
434 summarized in Table 5. Although it is unnecessary to use the default values of ε_{co} and E when
435 they are available, the use of the default values for all parameters is considered herein for
436 comparison purposes; predictions using these default values were obtained for Sr15L1C31 and
437 Sr15L2C53. The results are shown as the dashed blue curves in Figures 2c and 2d. It is seen

438 that the post-peak softening nature of the behavior of the specimens can still be predicted,
439 although the predictions are much less accurate due to the use of less accurate parameter values.

440 Four states along the loading process representing the pre-damage (the concrete over the
441 entire section is in the pre-transition stage), early damage (the concrete somewhere in the
442 section has entered the post-transition stage and is considered ‘damaged’), moderate damage
443 (more concrete has entered the post-transition stage), and severe damage (the concrete
444 somewhere in the section has lost its cohesion and is considered ‘completely damaged’) states
445 of the concrete are indicated by the four points A, B, C, and D on the stress-strain curves
446 predicted with the EPT model; the severely damaged state D is also indicated for the AA
447 predictions. The local concrete stresses at these states predicted by the models are examined
448 below.

449 The axial stress distributions predicted with the EPT constitutive model from a quarter FE
450 model for the four C53 columns with corner radii of 0, 15, 30, and 60 mm are visualized over
451 the entire section as 3D surfaces as shown in Figures 3, 4, 5, and 6 for the four states,
452 respectively. In each plot, the two horizontal axes define the location within the section, and
453 the vertical axis indicates the magnitude of axial compressive stress. To clearly identify the
454 distribution of effectively-confined concrete within the section, the level of f_c is indicated in
455 each plot as the grey plane, and the level of 5% higher than f_c , i.e., $1.05 f_c$, is indicated as the
456 dashed contour on the 3D stress-distribution surface. The corresponding boundaries of the
457 regions above these two stress levels are projected as solid (f_c) and dashed ($1.05 f_c$) curves on
458 the cross-section shown below the 3D stress distribution. In the present study, the regions
459 where the concrete stress is above the $1.05 f_c$ level is referred to as the effective-confinement
460 areas (ECAs), and the remaining regions are referred to as the under-confinement areas (UCAs).

461 At the pre-damage state A (Figure 3), in all four sections, the axial stress over the whole
462 section is slightly above the f_c level and barely non-uniform since the confinement provided

463 by FRP is small. At the early damage state B (Figure 4), in the sharp-corner section ($r = 0$),
464 high stresses are observed in the central region, forming a central plateau, and low stresses are
465 seen in the corner regions; the ECA is a square-shaped central region. By contrast, in the other
466 three sections which have rounded corners, the highest stresses are found near the corners while
467 the lowest stresses are seen near the edges; the ECA exhibits the typical arching-effect pattern
468 and its size is larger for a larger corner radius. Compared with the stress distribution at state A,
469 the axial stress at state B becomes higher in the ECA but much lower in the UCA/UCAs
470 (referred to only as UCAs in general for simplicity), resulting in a sharp increase of non-
471 uniformity. With further loading to state C (Figure 5), the total area of ECA/ECAs (referred to
472 only as ECAs in general for simplicity), decreases in all sections. Meanwhile, the stress
473 continues to increase in the ECAs and decrease in the UCAs.

474 Finally, at state D (Figure 6), the ECAs in all sections are similar to those at state C,
475 indicating that a somewhat stable ECA distribution has been reached at state C. The axial stress
476 distributions predicted with the AA model at state D are compared with the EPT predictions in
477 Figure 6; they are very different from each other except for the 60-mm corner radius section.
478 The AA model predicts a much larger total ECA size and a much higher stress level in the
479 UCAs than the EPT model. Hence, the AA model was unable to predict the strongly softening
480 behavior seen in the experimental data. Indeed, the patterns of the state-D AA predictions are
481 generally close to those of the state-B EPT predictions (Figure 4) for round-corner sections,
482 implying that a considerable evolution process of local concrete stresses was missed by the AA
483 model. The EPT predictions indicate that the total size of ECAs continuously decreases along
484 the loading process until reaching stabilization at a late stage, as can be seen by comparing
485 Figures 3-6. This is because the EPT model predicts strain-softening behavior for concrete
486 under highly non-uniform confinement, and therefore the total size of ECAs decreases as the
487 axial stress of concrete in the ECAs drops below the $1.05f_c$ level. This is contrary to the

488 findings in Lin and Teng (2020) based on the FE predictions made with the same AA model,
489 which indicate that the total ECA size continuously increases along the loading process. As a
490 result, the present study based on the predictions with the EPT model depicts a much smaller
491 total ECA size than that observed by Lin and Teng (2020).

492 The results of local principal confining stresses (i.e., σ_1 and σ_2) indicate that their directions
493 are basically unchanged throughout the loading process for square columns. Figure 7a shows
494 the typical directions and relative magnitudes of σ_1 and σ_2 for the 0- and the 15-mm corner
495 radius sections. Obviously, the concrete at the center is under equal lateral stresses (i.e.,
496 uniform confinement), and the concrete in a small area around the center is under nearly equal
497 principal confining stresses ($\sigma_2/\sigma_1 \approx 1$), i.e., nearly uniform confinement; the confining-stress
498 non-uniformity (σ_2/σ_1) increases as the location moves away from the center, as can be seen
499 that $\sigma_1 \approx 0$ near the edges and $-\sigma_2 \gg -\sigma_1$ in the corner regions. Namely, the concrete in most
500 parts of the section is subjected to highly non-uniform confinement. Similar observations of
501 the local principal confining stress directions and the distribution of confining-stress non-
502 uniformity were made by Lin and Teng (2020). The local axial stress-axial strain curves for
503 concrete along the center-to-corner, center-to-edge, and corner-to-edge paths are shown in
504 Figure 7b for the two sections; a higher axial stress level indicates more effective confinement.
505 Therefore, for the sharp-corner section, the levels of confinement are ranked from high to low
506 as: center, edge, corner; for the rounded corner section: corner, center, edge. Obviously, the
507 FRP provides very high confinement to concrete in the rounded corner regions, but the
508 confinement is very low in the vicinities of the sharp corners. It is noted that, although the
509 confinement in the rounded corner regions is the highest, it is highly non-uniform with a very
510 high level of σ_2 . Moreover, the local axial stress-strain curves in all UCAs exhibit an initial
511 rapidly softening behavior until complete damage (corresponding to point *d* in Figures 1a and
512 1c, where $c = 0$), which is followed by a rebound of the axial stress (corresponding to point *e*

513 in Figures 1a and 1c, where confinement is slightly increased). It should be noted that as a
514 quarter model was used in all the simulations and the stresses and strains at the Gauss
515 integration points are used, the ‘center’, ‘edge’ and ‘corner’ locations indicated in the figure
516 are not exactly the geometric center, mid-edge point, and corner point but are the Gauss
517 integration points nearest to them respectively. The same applies to the results for the
518 rectangular and the elliptical columns, as discussed in Figures 11 and 14. This location
519 approximation does not compromise the observations and discussions of local stress-strain
520 behavior in the sections.

521 By considering the details presented above, the behavior of a square concrete column
522 confined with FRP and subjected to monotonic concentric compression can be explained as
523 follows. Before the concrete enters the post-transition stage, the entire section can be
524 considered as an ECA, with relatively low levels of confinement near the flat sides. With
525 further loading, the concrete near the flat sides is damaged rapidly and exhibits softening
526 behavior due to the low levels of confinement there; therefore, these regions become UCAs.
527 With continuous loading, the ECAs shrink while the UCAs propagate. Meanwhile, the
528 confinement in the ECAs increases and the shrinking process slows down continuously because
529 the decohesion process of concrete in the ECAs becomes slower. Eventually, a balance between
530 the ECAs and the UCAs is achieved in this dynamic process, and by then, the concrete in the
531 UCAs has been completely damaged. Generally, during this stable stage, a square-shaped
532 central ECA exists regardless of the corner radius, but the size of the ECAs near the corners is
533 proportional to the corner radius. Accordingly, the central ECA dominates the confinement
534 behavior for small-corner-radius sections, and the ECAs in the vicinities of the center and the
535 corners merge into the arching-effect pattern for large-corner-radius sections.

536 *Rectangular columns*

537 The rectangular high-strength concrete columns had a reported average uniaxial
538 compressive cylinder strength of 77.9 MPa (Ozbakkaloglu 2013), which was used as f_c in the
539 FE simulations. Since ε_{co} and E were not reported, they were taken as the averages of values
540 measured from the axial stress-axial strain curves of the FRP-confined rectangular column
541 specimens. The influence of confinement should be negligible on E but could be non-trivial on
542 ε_{co} . The value of ε_{co} was thus taken as the average of ε_{co} values of the two nominally identical
543 specimens denoted by R2L3 as these were the least-confined specimens (i.e., with the highest
544 aspect ratio and lowest FRP confinement level). Parameters ψ_k , \bar{f}_t , and κ_s were determined by
545 matching the FE results with the experimental data of the square column specimens R1L3 (two
546 nominally identical specimens). The default values of $\varrho_0 = 0.85$ and $\varrho_\infty = 0.6$ were used, and
547 a typical value of $\nu = 0.18$ was assumed. The values of the parameters in the EPT model are
548 summarized in Table 3. The values of f_c and ε_{co} used in the AA model are the same as those
549 in the EPT model. Unlike the EPT model, however, the AA model requires a sufficiently large
550 value of $(E\varepsilon_{co})/f_c$. The values of E , f_c and ε_{co} obtained from the test data, $(E\varepsilon_{co})/f_c = 1.4$,
551 do not meet this requirement and lead to convergence problems with the AA model. By
552 adopting the measured values of $f_c = 77.9$ and $\varepsilon_{co} = 0.0034$, the minimum admissible value
553 of E by the AA model was found to be 45,900 MPa, which was used in the AA model for the
554 predictions. This use of a revised value for the elastic modulus, together with the original values
555 of f_c and ε_{co} , has only a rather small overall effect on the predicted axial stress-strain curve,
556 with a greater effect on the ascending branch than the descending branch of the curve. The
557 values of elastic modulus and layer thickness of the FRP jacket as reported by the authors,
558 being 240 GPa and 0.234 mm respectively, were adopted in the simulations.

559 The average axial stress-axial strain curves predicted with the EPT and the AA models are
560 compared with the experimental data of 3- and 5-layer FRP-confined specimens (a total of six
561 configurations, each having two nominally identical specimens) extracted from the study

562 conducted by Ozbakkaloglu (2013) in Figures 8a and 8b, respectively. All specimens show a
563 three-branch behavior including an initial pre-damage branch, then a softening branch, and
564 finally a slowly hardening branch. Such behavior has also been reported for rectangular
565 columns under concentric compression in other studies (e.g., Lam and Teng 2003b;
566 Ozbakkaloglu and Oehlers 2008; Wu and Wei 2010; Saleem et al. 2017). For specimens with
567 the same number of FRP layers, a higher aspect ratio leads to a steeper softening branch and a
568 lower stress level for the hardening branch. The predictions obtained with the EPT model
569 successfully capture this overall trend for all specimens and are close to the experimental data.
570 In addition, predictions for R1L3 with the EPT model were made using the default parameter
571 values given in Table 5. It is noted that the default value of E is 41,700 MPa, which is much
572 larger than the measured value of E . The results are shown as the dashed blue curve in Figure
573 8a; it is seen that the predictions still indicate a softening behavior of the specimen during the
574 initial post-peak stage, although the stresses are substantially over-predicted.

575 By contrast, the AA model was unable to predict the softening behavior of the rectangular
576 columns even for the one with an aspect ratio of 2. Indeed, the AA predictions for rectangular
577 columns with different aspect ratios are similar, which indicates that the AA model is
578 inaccurate for FRP-confined rectangular concrete columns. Similarly, the four states
579 representing the increasing levels of damage for the concrete column are marked on the stress-
580 strain curves predicted with the EPT model, and the final state D for the AA predictions is also
581 marked. The predicted local responses of concrete at these states are examined below.

582 The 3D axial stress distributions predicted with the EPT model for the two rectangular
583 columns confined with 3 layers of FRP are given in Figure 9 for the first three states and in
584 Figure 10 for the last state. At the pre-damage state A, the axial stresses over the two sections
585 are slightly higher than f_c and basically uniform. At the early damage state B, the ECAs in both
586 sections exhibit the typical arching-effect pattern. At state C, the ECAs in both sections have

587 shrunk substantially, leaving separate ECAs around the two focal points (referred to as side-
588 centers and indicated as c_s in the figure) with a nearly triangular shape and near the corners.
589 The stresses adjacent to the long-side edge (e_L) are the smallest within the section. With further
590 loading to state D (Figure 10), for both sections, the ECAs are similar to those at state C,
591 indicating that stable ECAs have been reached at state C. The axial stress distributions at state
592 D predicted with the AA model are also given in Figure 10, which are very different from those
593 predicted with the EPT model for both sections. Similar to the predictions for the square
594 sections, the AA model leads to a much larger total ECA size (almost the entire section in this
595 case) and a much higher stress level in the UCAs than the EPT model. The ECA distributions
596 at state D predicted with the AA model are somewhat similar to those at state A predicted with
597 the EPT model, indicating the process of local concrete evolution is not well captured by the
598 AA model.

599 Figure 11a shows the typical directions and relative magnitudes of σ_1 and σ_2 for both
600 rectangular sections. Generally, the concrete in a small area around each side-center is
601 subjected to nearly equal principal confining stresses ($\sigma_1/\sigma_2 \approx 1$), and the confinement non-
602 uniformity (σ_2/σ_1) increases as the location is further away from the side-centers; $\sigma_1 \approx 0$ near
603 e_L and e_B and $-\sigma_2 \gg -\sigma_1$ near the corners. The concrete in most parts of the section is
604 subjected to highly non-uniform confinement. The local axial stress-axial strain responses at
605 the corners, the side-centers, the geometric center (c_g), and the two edges are shown in Figure
606 11b for both sections. Obviously, the confinement is the most effective near the rounded
607 corners for both sections, and is the second most effective in small areas around the side-centers,
608 where the concrete is nearly uniformly confined. The confinement is less effective around the
609 geometric center than that around the two side-centers. Near the two edges, the concrete
610 exhibits rapid softening behavior followed by a slowly softening or hardening branch, as a
611 result of the low confinement there.

612 By comparing the local responses of concrete in square and rectangular sections, it is
613 evident that the concrete around the center of square sections and the concrete around the side-
614 centers of rectangular sections behave similarly; and the same can be said about the concrete
615 adjacent to the rounded corners of square and rectangular sections as well as about the concrete
616 in the UCAs of square and rectangular sections. The only obvious difference is that the ECAs
617 around the side-centers of rectangular sections are triangular-shaped, while that around the
618 center of square columns is square-shaped. Consequently, the local behavior of concrete in a
619 rectangular section can be understood by referring to that in a square section, as discussed
620 above.

621 *Elliptical columns*

622 For the group of elliptical specimens considered in the present study, the values of f_c , ε_{co} ,
623 E , and ν of the concrete were reported by Liu et al. (2022); they were obtained from
624 compression tests of concrete cylinders with a diameter of 150 mm and a height of 300 mm.
625 The value of κ_s was determined by matching the predictions of the descending branch with the
626 test data of the cylinders. Parameters ψ_k and \bar{f}_t were determined by matching the predictions
627 with the test data of the FRP-confined circular column E1. The default values of $\varrho_0 = 0.85$
628 and $\varrho_\infty = 0.6$ were used. The values of the parameters used for the EPT model are summarized
629 in Table 4. The values of f_c , ε_{co} , E and ν used in the AA model are the same as those in the
630 EPT model. The elastic modulus and thickness of the FRP jacket were 38.1 GPa and 3.3 mm
631 respectively, as reported by the authors.

632 The section-average axial stress-axial strain curves predicted with the EPT and the AA
633 models are compared with the experimental data of Liu et al. (2022) in Figures 12a and 12b,
634 respectively. Column E2.5 exhibits an initial softening behavior followed by a hardening
635 branch similar to the behavior of rectangular columns, which is successfully captured by the
636 EPT predictions. Column E2 shows a slowly hardening behavior, and the predictions obtained

637 with the EPT model are close to the experimental data. For columns E1.5 and E1, the
638 experimental data show hardening behavior that was closely predicted with the EPT model. In
639 addition, predictions with the EPT model for column E2 were made using the default parameter
640 values given in Table 5. The default values are close to the calibrated values of the parameters,
641 and the predictions, shown as the dashed red curve in Figure 12a, are close to the experimental
642 data of E2.

643 By contrast, the AA model was unable to predict the softening behavior of E2.5 or the
644 slightly hardening behavior of E2. Indeed, the stress-strain curves predicted with the AA model
645 for the four elliptical columns are quite close, which indicates the unsuitability of the AA model
646 for FRP-confined elliptical columns with large aspect ratios. The four states of interest are
647 indicated in the charts.

648 The axial stress distributions for the four sections at state D predicted with both models are
649 compared in Figure 13. The stress distributions at state D of the E1 and the E1.5 sections
650 predicted with the two models are similar; the axial stresses over the entire section exceed the
651 $1.05f_c$ level (the dashed contour line indicating the $1.05f_c$ level is absent because the entire
652 stress surface is above the $1.05f_c$ level). However, for the E2 and the E2.5 sections, the EPT
653 model predicts ECAs adjacent to the vertices (i.e., the ends of the major axis) separated by a
654 UCA in the central region, while the AA model still predicts that the axial stresses over the
655 entire section exceed the $1.05f_c$ level. As a result, the AA model was unable to predict the
656 slowly hardening behavior of E2 and the softening behavior of E2.5.

657 The local principal confining stresses for E1.5 and E2.5 are presented in Figure 14a. In both
658 sections, the confinement is nearly uniform ($\sigma_1 \approx \sigma_2$) in a small area near each vertex, and the
659 confinement non-uniformity (σ_2/σ_1) increases as the location is further away from the vertices.
660 For column E1.5, the non-uniformity is rather moderate as σ_1 is non-trivial around the center
661 and near the co-vertices (i.e., ends of the minor axis). By contrast, for column E2.5 having a

662 much larger aspect ratio, the confinement is highly non-uniform both around the center and
663 near the co-vertices: where $\sigma_1 \approx 0$. Consequently, as shown in Figure 14b, the local axial
664 stress-axial strain response is hardening at the vertices for both elliptical sections, but it is
665 hardening around the center and at the co-vertices for E1.5 while softening for E2.5. Similar to
666 the local concrete behavior in the UCAs of square and rectangular sections, the local softening
667 behavior gradually becomes slightly hardening as concrete approaches the complete damage
668 stage, corresponding to the stress path between points *d* and *e* in Figure 1. Accordingly, at the
669 section level, the average axial stress-axial strain response becomes slightly hardening
670 eventually.

671 By comparing the local behavior of concrete in elliptical sections with that in square and
672 rectangular sections, it can be readily seen that the behavior of concrete near the vertices of an
673 elliptical section is akin to that around the center of a square section and the side-centers of a
674 rectangular section, and the behavior of concrete in the UCAs in all non-circular columns is
675 similar. Specifically, in terms of local concrete behavior, there is no region in an elliptical
676 section that resembles the rounded corner regions in a square or rectangular section. The total
677 size of ECAs as a proportion of an elliptical section decreases as the aspect ratio increases.

678 *Direct measurement of local axial stress*

679 The authors' group has previously made an attempt to experimentally measure local axial
680 stresses in a series of FRP-confined square and rectangular columns, of which one rectangular
681 column was reported in a conference paper (Teng et al. 2015a). In that study, an FRP-confined
682 concrete column specimen was prepared as two nominally identical halves. During the
683 concentric compression loading process, a thin film containing a 2D array of piezoelectric
684 sensors (referred to as the pressure mapping system) was placed between the two halves (i.e.,
685 at the mid-height section of the test specimen) to measure the local axial stresses. Considering
686 the unevenness of the concrete surfaces sandwiching the pressure film, the random coarse

687 aggregate distribution, and the possible calibration errors of the pressure mapping system,
688 among other uncertainties, the accurate measurement of local stresses in these test specimens
689 and their robust interpretation is no small challenge. Furthermore, Teng et al. (2015a) presents
690 only the local axial stresses measured in one of the test columns and their comparisons with
691 FE predictions obtained with the AA model. During the present study, significant discrepancies
692 between the present AA predictions and those given in Teng et al. (2015a) were found,
693 suggesting that the FE results in Teng et al. (2015a) have involved some important errors. Due
694 to the above reasons, it is difficult to reach a firm conclusion on the accuracy of FE predictions
695 through comparison with the test data in Teng et al. (2015a). Nevertheless, a new attempt of
696 comparing the test data for the chosen column specimen reported in Teng et al. (2015a) and
697 the newly obtained predictions with the EPT and the AA models are presented in Appendix A
698 for additional reference.

699 **Conclusions**

700 In the present paper, an FE study of FRP-confined square, rectangular, and elliptical
701 columns under monotonic concentric compression has been reported. The FE analysis is based
702 on the EPT (evolutionary potential-surface trace) plasticity constitutive model for concrete
703 recently proposed by the authors and reported in a previous paper (Zheng and Teng 2022a).
704 The key components of the model have been briefly introduced, and its implementation with
705 the FE package ABAQUS through an Euler-backward algorithm employing the consistent
706 tangent matrix has been explained. It has also been demonstrated that the model provides
707 accurate predictions of the section-average behavior for all the selected FRP-confined non-
708 circular plain-concrete columns. Therefore, the FE predictions for the local behavior of
709 concrete were deemed to be closely reflective of the real local behavior of concrete. Based on
710 the FE results, the following conclusions can be made for FRP-confined non-circular concrete
711 columns under axial compression:

712 i. In all non-circular sections, the confinement to concrete is significantly non-uniform
713 except in the close vicinities of the center of a square section, the two side-centers of a
714 rectangular section, and the two vertices (ends of the major axis) of an elliptical section, where
715 the concrete is under nearly uniform confinement. In much larger areas surrounding these small
716 areas of nearly uniform confinement, the concrete is effectively confined, as indicated by
717 having axial stresses exceeding $1.05 f_c$; these larger areas are referred to as effective-
718 confinement areas (ECAs).

719 ii. For square and rectangular sections with rounded corners, the confinement in the
720 rounded corner regions is more effective, although highly non-uniform, than that in the other
721 ECAs surrounding the center or side-centers. Hence, the rounded corner regions also qualify
722 as ECAs.

723 iii. When the concrete somewhere in the section enters the softening stage or starts to
724 experience damage, the ECAs shrink continuously but at a reducing rate of shrinkage as the
725 deformation level increases, with associated changes in the shapes of ECAs. Meanwhile, the
726 level of confinement in the ECAs continuously increases. Eventually, as a result of these two
727 dynamic processes, a nearly stable ECA distribution in the section is reached. Generally,
728 around the center of a square section, the ECA has a square shape, and around the side-centers
729 of a rectangular section, the ECAs have a triangular shape; their shapes and sizes are little
730 influenced by the corner radius. Near the corners of a square or a rectangular section, the size
731 of the ECAs is related to the corner radius, and near the vertices of an elliptical column, the
732 size of the ECAs is adversely proportional to the section aspect ratio.

733 iv. The concrete in the ECAs generally exhibits either a hardening or a slowly softening
734 stress-strain response and suffers only moderate damage even at a late stage of loading. The
735 concrete in the remaining regions (under-confinement areas or UCAs) generally exhibits a

736 rapidly softening response until it is completely damaged, and thereafter it exhibits a slowly
737 hardening response.

738 v. The section-average axial stress-axial strain behavior of an FRP-confined non-circular
739 concrete section is an outcome of the interplay between the ECAs and the UCAs. The average
740 behavior appears as hardening if the effect of the ECAs dominates and softening otherwise.
741 Notably, the effect of the ECAs seems to be more dependent on the geometric parameters of
742 the section, including the section shape, aspect ratio and corner radius, than the stiffness of the
743 FRP confining jacket/tube.

744 The EPT plasticity constitutive model can potentially be used to gain a deeper
745 understanding of confinement mechanisms and obtain numerical results for the establishment
746 of more accurate analytical models for the section-average stress-strain behavior of FRP-
747 confined non-circular concrete columns. The EPT model can also be used in three-dimensional
748 FE models for predicting the behavior of concrete columns with more complicated forms of
749 confinement, but it should be noted that such FE models are likely to be subject to mesh-
750 dependence when strain-softening behavior is involved. The EPT plasticity model summarized
751 in the present paper enriched with non-local features will be presented in a forthcoming paper
752 to address the mesh-dependence issues.

753 **Data Availability Statement**

754 Some data and the computer code that support the findings of this study are available from
755 the corresponding author upon reasonable request. The available data include the results of the
756 finite element analyses. The mathematical formulation of the adopted plasticity model for
757 concrete is available at <https://doi.org/10.1016/j.engstruct.2021.113435>, and its FORTRAN
758 code may be released by the authors in the future.

759 **Acknowledgment**

760 The authors are grateful for the financial support received from the Research Grants
761 Council (RGC) of the Hong Kong Special Administrative Region, China (Project Nos.:
762 PolyU152203/18E and T22-502/18-R).

763 **References**

764 Bazant, Z. P. 1978. "Endochronic inelasticity and incremental plasticity." *Int. J. Solids Struct.*, 14 (9): 691–714.
765 [https://doi.org/10.1016/0020-7683\(78\)90029-X](https://doi.org/10.1016/0020-7683(78)90029-X).

766 Dassault Systemes. 2020. "ABAQUS: Theory and User's manuals."

767 Doran, B., H. O. Koksal, and T. Turgay. 2009. "Nonlinear finite element modeling of rectangular/square concrete
768 columns confined with FRP." *Mater. Des.*, 30 (8): 3066–3075.
769 <https://doi.org/10.1016/j.matdes.2008.12.007>.

770 Ekop, I., and P. Grassl. 2022. "On finite element modelling of concrete columns with non-circular cross-sections
771 confined with carbon fibre reinforced polymer." In: UK Association for Computational Mechanics
772 (UKACM) Conference 2022, Nottingham, UK.

773 Fanaradelli, T. D., and T. C. Rousakis. 2020. "3D Finite Element Pseudodynamic Analysis of Deficient RC
774 Rectangular Columns Confined with Fiber Reinforced Polymers under Axial Compression." *Polymers*, 12
775 (11): 2546. <https://doi.org/10.3390/polym12112546>.

776 Grassl, P., K. Lundgren, and K. Gylltoft. 2002. "Concrete in compression: A plasticity theory with a novel
777 hardening law." *Int. J. Solids Struct.*, 39 (20): 5205–5223. [https://doi.org/10.1016/S0020-7683\(02\)00408-0](https://doi.org/10.1016/S0020-7683(02)00408-0).

778 Hajsadeghi, M., F. J. Alaee, and A. Shahmohammadi. 2011. "Investigation on behaviour of square/rectangular
779 reinforced concrete columns retrofitted with FRP jacket." *J. Civ. Eng. Manag.*, 17 (3): 400–408.
780 <https://doi.org/10.3846/13923730.2011.594155>.

781 Han, D. J., and W. F. Chen. 1985. "A nonuniform hardening plasticity model for concrete materials." *Mech.
782 Mater.*, 4 (3–4): 283–302. [https://doi.org/10.1016/0167-6636\(85\)90025-0](https://doi.org/10.1016/0167-6636(85)90025-0).

783 Hany, N. F., E. G. Hantouche, and M. H. Harajli. 2016. "Finite element modeling of FRP-confined concrete using
784 modified concrete damaged plasticity." *Eng. Struct.*, 125: 1–14. Elsevier Ltd.
785 <https://doi.org/10.1016/j.engstruct.2016.06.047>.

786 Jiang, J.F., and Y.F. Wu. 2012. "Identification of material parameters for Drucker–Prager plasticity model for
787 FRP confined circular concrete columns." *Int. J. Solids Struct.*, 49 (3–4): 445–456.
788 <https://doi.org/10.1016/j.ijsolstr.2011.10.002>.

789 Jiang, J.F., P.C. Xiao, and B.B. Li. 2017. "True-triaxial compressive behaviour of concrete under passive
790 confinement." *Constr. Build. Mater.*, 156: 584–598. <https://doi.org/10.1016/j.conbuildmat.2017.08.143>.

791 Jiang, T., and J. G. Teng. 2007. "Analysis-oriented stress-strain models for FRP-confined concrete." *Eng. Struct.*,
792 29 (11): 2968–2986. <https://doi.org/10.1016/j.engstruct.2007.01.010>.

793 Karabinis, A. I., and T. C. Rousakis. 2002. "Concrete confined by FRP material: A plasticity approach." *Eng.*
794 *Struct.*, 24 (7): 923–932. [https://doi.org/10.1016/S0141-0296\(02\)00011-1](https://doi.org/10.1016/S0141-0296(02)00011-1).

795 Lam, L., and J. G. Teng. 2003a. "Design-oriented stress–strain model for FRP-confined concrete." *Constr. Build.*
796 *Mater.*, 17 (6–7): 471–489. [https://doi.org/10.1016/S0950-0618\(03\)00045-X](https://doi.org/10.1016/S0950-0618(03)00045-X).

797 Lam, L., and J. G. Teng. 2003b. "Design-oriented Stress – Strain Model for FRP-confined Concrete in Rectangular
798 Columns." *J. Reinf. Plast. Compos.*, 22 (13). <https://doi.org/10.1177/073168403035429>.

799 Lam, L., and J. G. Teng. 2004. "Ultimate Condition of Fiber Reinforced Polymer-Confined Concrete." *J. Compos.*
800 *Constr.*, 8 (6): 539–548. [https://doi.org/10.1061/\(ASCE\)1090-0268\(2004\)8:6\(539\)](https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539)).

801 Lam, L., J. G. Teng, C. H. Cheung, and Y. Xiao. 2006. "FRP-confined concrete under axial cyclic compression."
802 *Cem. Concr. Compos.*, 28 (10): 949–958. <https://doi.org/10.1016/j.cemconcomp.2006.07.007>.

803 Lee, J., and G. L. Fenves. 1998. "Plastic-Damage Model for Cyclic Loading of Concrete Structures." *J. Eng.*
804 *Mech.*, 124 (8): 892–900. [https://doi.org/10.1061/\(ASCE\)0733-9399\(1998\)124:8\(892\)](https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)).

805 Li, B., J. Jiang, H. Xiong, Y. Zhan, Z. Wu, and L. S. Cunningham. 2021. "Improved concrete plastic-damage
806 model for FRP-confined concrete based on true tri-axial experiment." *Compos. Struct.*, 269: 114051.
807 <https://doi.org/10.1016/j.compstruct.2021.114051>.

808 Lim, J. C., and T. Ozbakkaloglu. 2015a. "Unified Stress-Strain Model for FRP and Actively Confined Normal-
809 Strength and High-Strength Concrete." *J. Compos. Constr.*, 19 (4): 04014072.
810 [https://doi.org/10.1061/\(ASCE\)CC.1943-5614.0000536](https://doi.org/10.1061/(ASCE)CC.1943-5614.0000536).

811 Lim, J. C., and T. Ozbakkaloglu. 2015b. "Investigation of the Influence of the Application Path of Confining
812 Pressure: Tests on Actively Confined and FRP-Confined Concretes." *J. Struct. Eng.*, 141 (8): 04014203.
813 [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0001177](https://doi.org/10.1061/(ASCE)ST.1943-541X.0001177).

814 Lim, J. C., and T. Ozbakkaloglu. 2015c. "Lateral Strain-to-Axial Strain Relationship of Confined Concrete." *J.*
815 *Struct. Eng.*, 141 (5): 04014141. [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0001094](https://doi.org/10.1061/(ASCE)ST.1943-541X.0001094).

816 Lin, G., and J. G. Teng. 2017. "Three-Dimensional Finite-Element Analysis of FRP-Confined Circular Concrete
817 Columns under Eccentric Loading." *J. Compos. Constr.*, 21 (4): 04017003.
818 [https://doi.org/10.1061/\(ASCE\)CC.1943-5614.0000772](https://doi.org/10.1061/(ASCE)CC.1943-5614.0000772).

819 Lin, G., and J. G. Teng. 2020. "Advanced stress-strain model for FRP-confined concrete in square columns."
820 Compos. Part B Eng., 197: 108149. <https://doi.org/10.1016/j.compositesb.2020.108149>.

821 Liu, K.C., C. Jiang, T. Yu, and J.G. Teng. 2022. "Axial compressive behavior of elliptical FRP tube-confined
822 concrete columns." (Under preparation)

823 Lubliner, J., J. Oliver, S. Oller, and E. Oñate. 1989. "A plastic-damage model for concrete." Int. J. Solids Struct.,
824 25 (3): 299–326. [https://doi.org/10.1016/0020-7683\(89\)90050-4](https://doi.org/10.1016/0020-7683(89)90050-4).

825 Mander, J. B., M. J. N. Priestley, and R. Park. 1988. "Theoretical Stress-Strain Model for Confined Concrete." J.
826 Struct. Eng., 114 (8): 1804–1826. [https://doi.org/10.1061/\(ASCE\)0733-9445\(1988\)114:8\(1804\)](https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)).

827 Mazzucco, G., V. A. Salomoni, C. E. Majorana, C. Pellegrino, and C. Ceccato. 2016. "Numerical investigation of
828 concrete columns with external FRP jackets subjected to axial loads." Constr. Build. Mater., 111: 590–599.
829 <https://doi.org/10.1016/j.conbuildmat.2016.02.050>.

830 Menetrey, P., and K. J. Willam. 1995. "Triaxial Failure Criterion for Concrete and its Generalization." ACI Struct.
831 J., 92 (3): 311–318. <https://doi.org/10.14359/1132>.

832 Mirmiran, A., and M. Shahawy. 1997. "Behavior of Concrete Columns Confined by Fiber Composites." J. Struct.
833 Eng., 123 (5): 583–590. [https://doi.org/10.1061/\(ASCE\)0733-9445\(1997\)123:5\(583\)](https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(583)).

834 Mirmiran, A., M. Shahawy, M. Samaan, H. El Echary, J. C. Mastrapa, and O. Pico. 1998. "Effect of Column
835 Parameters on FRP-Confined Concrete." J. Compos. Constr., 2 (4): 175–185.
836 [https://doi.org/10.1061/\(ASCE\)1090-0268\(1998\)2:4\(175\)](https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)).

837 Mirmiran, A., K. Zagers, and W. Yuan. 2000. "Nonlinear finite element modeling of concrete confined by fiber
838 composites." Finite Elem. Anal. Des., 35 (1): 79–96. [https://doi.org/10.1016/S0168-874X\(99\)00056-6](https://doi.org/10.1016/S0168-874X(99)00056-6).

839 Mohammadi, M., J.G. Dai, Y.F. Wu, and Y.L. Bai. 2019. "Development of extended Drucker–Prager model for
840 non-uniform FRP-confined concrete based on triaxial tests." Constr. Build. Mater., 224: 1–18.
841 <https://doi.org/10.1016/j.conbuildmat.2019.07.061>.

842 Mohammadi, M., and Y.F. Wu. 2017. "Triaxial test for concrete under non-uniform passive confinement." Constr.
843 Build. Mater., 138: 455–468. Elsevier Ltd. <https://doi.org/10.1016/j.conbuildmat.2017.02.032>.

844 Mohammadi, M., and Y.F. Wu. 2019. "Modified plastic-damage model for passively confined concrete based on
845 triaxial tests." Compos. Part B Eng., 159: 211–223. <https://doi.org/10.1016/j.compositesb.2018.09.074>.

846 Mostofinejad, D., N. Moshiri, and N. Mortazavi. 2015. "Effect of corner radius and aspect ratio on compressive
847 behavior of rectangular concrete columns confined with CFRP." Mater. Struct. Constr., 48 (1–2): 107–122.
848 <https://doi.org/10.1617/s11527-013-0171-9>.

849 Nisticò, N. 2014. "R.C. square sections confined by FRP: A numerical procedure for predicting stress-strain
850 relationships." *Compos. Part B Eng.*, 59: 238–247. <https://doi.org/10.1016/j.compositesb.2013.12.004>.

851 Nisticò, N., and G. Monti. 2013. "RC square sections confined by FRP: Analytical prediction of peak strength."
852 *Compos. Part B Eng.*, 45 (1): 127–137. <https://doi.org/10.1016/j.compositesb.2012.09.041>.

853 Ozbakkaloglu, T. 2013. "Axial Compressive Behavior of Square and Rectangular High-Strength Concrete-Filled
854 FRP Tubes." *J. Compos. Constr.*, 17 (1): 151–161. [https://doi.org/10.1061/\(ASCE\)CC.1943-5614.0000321](https://doi.org/10.1061/(ASCE)CC.1943-5614.0000321).

855 Ozbakkaloglu, T., and D. J. Oehlers. 2008. "Concrete-Filled Square and Rectangular FRP Tubes under Axial
856 Compression." *J. Compos. Constr.*, 12 (4): 469–477. [https://doi.org/10.1061/\(ASCE\)1090-0268\(2008\)12:4\(469\)](https://doi.org/10.1061/(ASCE)1090-0268(2008)12:4(469)).

858 Papanikolaou, V. K., and A. J. Kappos. 2007. "Confinement-sensitive plasticity constitutive model for concrete
859 in triaxial compression." *Int. J. Solids Struct.*, 44 (21): 7021–7048.
860 <https://doi.org/10.1016/j.ijsolstr.2007.03.022>.

861 Pessiki, S., K. A. Harries, J. T. Kestner, R. Sause, and J. M. Ricles. 2001. "Axial Behavior of Reinforced Concrete
862 Columns Confined with FRP Jackets." *J. Compos. Constr.*, 5 (4): 237–245.
863 [https://doi.org/10.1061/\(ASCE\)1090-0268\(2001\)5:4\(237\)](https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(237)).

864 Piscesa, B., M. M. Attard, and A. K. Samani. 2016. "A lateral strain plasticity model for FRP confined concrete."
865 *Compos. Struct.*, 158: 160–174. <https://doi.org/10.1016/j.compstruct.2016.09.028>.

866 Ribeiro, F., J. Sena-Cruz, F. G. Branco, and E. Júlio. 2019. "3D finite element model for hybrid FRP-confined
867 concrete in compression using modified CDPM." *Eng. Struct.*, 190: 459–479.
868 <https://doi.org/10.1016/j.engstruct.2019.04.027>.

869 Rochette, P., and P. Labossière. 2000. "Axial Testing of Rectangular Column Models Confined with Composites."
870 *J. Compos. Constr.*, 4 (3): 129–136. [https://doi.org/10.1061/\(ASCE\)1090-0268\(2000\)4:3\(129\)](https://doi.org/10.1061/(ASCE)1090-0268(2000)4:3(129)).

871 Rousakis, T. C., A. I. Karabinis, P. D. Kiousis, and R. Tepfers. 2008. "Analytical modelling of plastic behaviour
872 of uniformly FRP confined concrete members." *Compos. Part B Eng.*, 39 (7–8): 1104–1113.
873 <https://doi.org/10.1016/j.compositesb.2008.05.001>.

874 Rudnicki, J. W., and J. R. Rice. 1975. "Conditions for the localization of deformation in pressure-sensitive dilatant
875 materials." *J. Mech. Phys. Solids*, 23 (6): 371–394. [https://doi.org/10.1016/0022-5096\(75\)90001-0](https://doi.org/10.1016/0022-5096(75)90001-0).

876 Saadatmanesh, H., M. R. Ehsani, and M. W. Li. 1994. "Strength and ductility of concrete columns externally
877 reinforced with fiber composite straps." *ACI Struct. J.*, 91 (4): 434–447. <https://doi.org/10.14359/4151>.

878 Saleem, S., Q. Hussain, and A. Pimanmas. 2017. "Compressive Behavior of PET FRP-Confined Circular, Square,
879 and Rectangular Concrete Columns." *J. Compos. Constr.*, 21 (3): 04016097.
880 [https://doi.org/10.1061/\(asce\)cc.1943-5614.0000754](https://doi.org/10.1061/(asce)cc.1943-5614.0000754).

881 Samani, A. K., and M. M. Attard. 2014. "Lateral strain model for concrete under compression." *ACI Struct. J.*,
882 111 (2): 441–451. <https://doi.org/10.14359/51686532>.

883 Shahawy, M., A. Mirmiran, and T. Beitelman. 2000. "Tests and modeling of carbon-wrapped concrete columns."
884 *Compos. Part B Eng.*, 31 (6–7): 471–480. [https://doi.org/10.1016/S1359-8368\(00\)00021-4](https://doi.org/10.1016/S1359-8368(00)00021-4).

885 Shan, B., F. C. Gui, G. Monti, and Y. Xiao. 2019. "Effectiveness of CFRP Confinement and Compressive Strength
886 of Square Concrete Columns." *J. Compos. Constr.*, 23 (6): 04019043. [https://doi.org/10.1061/\(asce\)cc.1943-5614.0000967](https://doi.org/10.1061/(asce)cc.1943-
887 5614.0000967).

888 Sheikh, S. A., and S. M. Uzumeri. 1980. "Strength and Ductility of Tied Concrete Columns." *J. Struct. Div.*, 106
889 (5): 1079–1102. <https://doi.org/10.1061/JSDEAG.0005416>.

890 Simo, J. C., and R. L. Taylor. 1985. "Consistent tangent operators for rate-independent elastoplasticity." *Comput.
891 Methods Appl. Mech. Eng.*, 48 (1): 101–118. [https://doi.org/10.1016/0045-7825\(85\)90070-2](https://doi.org/10.1016/0045-7825(85)90070-2).

892 Teng, J. G., Y. L. Huang, L. Lam, and L. P. Ye. 2007. "Theoretical Model for Fiber-Reinforced Polymer-Confined
893 Concrete." *J. Compos. Constr.*, 11 (2): 201–210. [https://doi.org/10.1061/\(ASCE\)1090-0268\(2007\)11:2\(201\)](https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201)).

894 Teng, J. G., T. Jiang, L. Lam, and Y. Z. Luo. 2009. "Refinement of a Design-Oriented Stress–Strain Model for
895 FRP-Confined Concrete." *J. Compos. Constr.*, 13 (4): 269–278. [https://doi.org/10.1061/\(ASCE\)CC.1943-5614.0000012](https://doi.org/10.1061/(ASCE)CC.1943-
896 5614.0000012).

897 Teng, J. G., and L. Lam. 2002. "Compressive Behavior of Carbon Fiber Reinforced Polymer-Confined Concrete
898 in Elliptical Columns." *J. Struct. Eng.*, 128 (12): 1535–1543. [https://doi.org/10.1061/\(asce\)0733-9445\(2002\)128:12\(1535\)](https://doi.org/10.1061/(asce)0733-
899 9445(2002)128:12(1535)).

900 Teng, J. G., J. Y. Wu, S. Casalboni, Q. G. Xiao, and Y. Zhao. 2016. "Behavior and modeling of fibre-reinforced
901 polymer-confined concrete in elliptical columns." *Adv. Struct. Eng.*, 19 (9): 1359–1378.
902 <https://doi.org/10.1177/1369433216642122>.

903 Teng, J. G., J. J. Zeng, and J. F. Chen. 2015a. "Measurement of axial stress distributions in FRP-confined concrete
904 columns using TEKSCAN pressure sensors." The 12th International Symposium on Fiber Reinforced
905 Polymers for Reinforced Concrete Structures (FRPRCS-12) & The 5th Asia-Pacific Conference on Fiber
906 Reinforced Polymers in Structures (APFIS-2015) Joint Conference. Nanjing, China.

907 Teng, J. G., Q. G. Xiao, T. Yu, and L. Lam. 2015b. “Three-dimensional finite element analysis of reinforced
908 concrete columns with FRP and/or steel confinement.” Eng. Struct., 97: 15–28.
909 <https://doi.org/10.1016/j.engstruct.2015.03.030>.

910 Wang, L.M., and Y.F. Wu. 2008. “Effect of corner radius on the performance of CFRP-confined square concrete
911 columns: Test.” Eng. Struct., 30 (2): 493–505. <https://doi.org/10.1016/j.engstruct.2007.04.016>.

912 Wei, Y. Y., and Y. F. Wu. 2012. “Unified stress-strain model of concrete for FRP-confined columns.” Constr.
913 Build. Mater., 26 (1): 381–392. Elsevier Ltd. <https://doi.org/10.1016/j.conbuildmat.2011.06.037>.

914 Wu, Y. F., and Y. Y. Wei. 2010. “Effect of cross-sectional aspect ratio on the strength of CFRP-confined
915 rectangular concrete columns.” Eng. Struct., 32 (1): 32–45. <https://doi.org/10.1016/j.engstruct.2009.08.012>.

916 Yeh, F. Y., and K. C. Chang. 2012. “Size and shape effects on strength and ultimate strain in frp confined
917 rectangular concrete columns.” J. Mech., 28 (4): 677–690. <https://doi.org/10.1017/jmech.2012.118>.

918 Yu, T., J. G. Teng, Y. L. Wong, and S. L. Dong. 2010a. “Finite element modeling of confined concrete-I: Drucker-
919 Prager type plasticity model.” Eng. Struct., 32 (3): 665–679. <https://doi.org/10.1016/j.engstruct.2009.11.014>.

920 Yu, T., J. G. Teng, Y. L. Wong, and S. L. Dong. 2010b. “Finite element modeling of confined concrete-II: Plastic-
921 damage model.” Eng. Struct., 32 (3): 680–691. <https://doi.org/10.1016/j.engstruct.2009.11.013>.

922 Zeng, L. F., G. Horrigmoe, and R. Andersen. 1996. “Numerical implementation of constitutive integration for
923 rate-independent elastoplasticity.” Comput. Mech., 18 (5): 387–396. <https://doi.org/10.1007/BF00376135>.

924 Zheng, B. T., and J. G. Teng. 2022a. “A plasticity constitutive model for concrete under multiaxial compression.”
925 Eng. Struct., 251 (PB): 113435. <https://doi.org/10.1016/j.engstruct.2021.113435>.

926 Zheng, B. T., and J. G. Teng. 2022b. “A 3D Plasticity Model for Concrete and Its Application to Concrete Under
927 Non-uniform FRP Confinement.” In: 10th International Conference on FRP Composites in Civil Engineering
928 (CICE 2021).

929

930 **Appendix A Local axial stress measurements of an FRP-confined rectangular column in Teng
931 et al. (2015a)**

932 The tested column had a height of 332 mm, a cross-section of 133 mm \times 166 mm, and a
933 corner radius of 25 mm. The reported concrete properties of $f_c = 42.5$ MPa and $\varepsilon_{co} = 0.0024$
934 and the default values of E and ν were used in both the EPT and AA models. In addition, for
935 the EPT model, the values of parameters ψ_k , \bar{f}_t , κ_s and ϱ_∞ , which were determined by
936 matching the section-average axial stress-strain predictions of three square columns with
937 unpublished data provided by the authors of Teng et al. (2015a), are listed in Table A1.

938 The local axial stresses measured at a section-average stress level of $1.3 f_c$ were extracted
939 from the data published in Teng et al. (2015a) and are compared with the FE predictions
940 obtained with the EPT and AA models at two states (A and B). There are good reasons for the
941 choice of different states in the AA predictions for comparison herein, with a section-average
942 stress level of $1.3 f_c$ in the FE analysis being an obvious option as was adopted by Teng et al.
943 (2015a). This obvious option was not taken for the comparisons herein as the axial stress-strain
944 curve from the AA model was found to differ significantly from the experimental axial stress-
945 strain curve. At state A, the axial strains from both models are equal to the axial strain
946 corresponding to the $1.3 f_c$ stress level in the test data, which was found from unpublished
947 section-average axial stress-strain curve of the column provided by the authors of Teng et al.
948 (2015a). At state B, the maximum axial stresses (at the corner of the section) from both models
949 are equal to the measured maximum axial stress over the section. Figure A1 compares the
950 measured axial stresses with FE predictions along the three chosen paths over the section, and
951 these paths are indicated in Figure A1. The measured axial stress distributions along the paths
952 were directly obtained from the individual sensors along the paths as reported in Teng et al.
953 (2015a), and the predicted axial stress distributions along the paths were obtained through 2D-
954 interpolation of the FE results using the location of the three paths.

955 For the state A comparison for each path, the axial stresses are normalized by the maximum
956 axial stress from the same source. The predictions from the two FE models generally agree
957 with each other. Along path 2, the two sets of FE predictions show similar trends at state A
958 (Figure A1b) but are very different from the measured results. However, they show a close
959 match with the test data at state B (Figure A1e); the slight difference between the predicted and
960 the measured peak stresses is due to the discrete load steps of the FE results. Along paths 1 and
961 3, the predictions from both FE models do not match the measured results well for both states.
962 Further work is obviously necessary to achieve more robust and conclusive comparisons
963 between FE predictions and measurement results for local axial stresses in FRP-confined
964 concrete columns.

965

967 **Table 1.** FRP-confined non-circular columns simulated in the present study

Group	Specimen	Original name	Depth/major axis [mm]	Width/minor axis [mm]	Height [mm]	Corner radius [mm]	Number of FRP layers	
Square columns (Wang and Wu 2008)	Sr0L1C31	C30-r0-1ply	150	150	300	0	1	
	Sr15L1C31	C30-r15-1ply				15	1	
	Sr0L2C53	C50-r0-2ply				0	2	
	Sr15L2C53	C50-r15-2ply				15	2	
	Sr30L2C53	C50-r30-2ply				30	2	
	Sr60L2C53	C50-r60-2ply				60	2	
Rectangular columns (Ozbakkaloglu 2013)	R1L3	A10R15L3	150	150	300	15	3	
	R1L5	A10R15L5					5	
	R1.5L3	A15R15L3					3	
	R1.5L5	A15R15L5	187.5	125	300	5	5	
	R2L3	A20R15L3					3	
	R2L5	A20R15L5					5	
Elliptical columns (Liu et al. 2022)	E1	E10A-L06-80	300	200	300	600	–	6
	E1.5	E15A-L06-80			200			
	E2	E20A-L06-80			150			
	E2.5	E25A-L06-80			120			

968
969**Table 2.** Values of model parameters for square columns

Specimen	f_c [MPa]	ε_{co}	E [MPa]	κ_s/κ_c	ψ_k	\bar{f}_t/f_c	ϱ_∞	ν
Sr0L1C31	31.0	0.0025	30900	10	0.6	0.10	0.6	0.18
Sr15L1C31								
Sr0L2C53								
Sr15L2C53	53.0	0.0026	36200	10	1.2	0.14	0.6	0.18
Sr30L2C53								
Sr60L2C53								

970
971**Table 3.** Values of model parameters for rectangular columns

Specimen	f_c [MPa]	ε_{co}	E [MPa]	κ_s/κ_c	ψ_k	\bar{f}_t/f_c	ϱ_∞	ν
R1L3								
R1L5								
R1.5L3								
R1.5L5	77.9	0.0034	32600	8	0.6	0.10	0.6	0.18
R2L3								
R2L5								

972
973**Table 4.** Values of model parameters for elliptical columns

Specimen	f_c [MPa]	ε_{co}	E [MPa]	κ_s/κ_c	ψ_k	\bar{f}_t/f_c	ϱ_∞	ν
E1								
E1.5								
E2	41.2	0.0021	34200	8	0.8	0.14	0.6	0.185
E2.5								

974
975**Table 5.** Default values of model parameters

Specimen	f_c [MPa]	ε_{co}	E [MPa]	κ_s/κ_c	ψ_k	\bar{f}_t/f_c	ϱ_∞	ν
Sr15L1C31	31.0	0.0019	26300					
Sr15L2C53	53.0	0.0024	34400					
R1L3	77.9	0.0030	41700	8	1.0	0.10	0.6	0.18
E2	41.2	0.0022	30300					

976
977**Table A1.** Values of model parameters for the test column with measured local stresses

f_c [MPa]	ε_{co}	E [MPa]	κ_s/κ_c	ψ_k	\bar{f}_t/f_c	ϱ_∞	ν
42.5	0.0024	34200	10	1.2	0.14	0.8	0.18

978 **Figure captions**

979 **Fig 1.** Different stress paths during the pre- and post-transition stages: (a) stress-strain curves, (b) pre-transition
980 path, (c) post-transition path.

981 **Fig 2.** Stress-strain curves of FRP-confined square columns: predictions versus test data from Wang and Wu
982 (2008): (a) Sr0L1C31, (b) Sr0L2C53, (c) Sr15L1C31, (d) Sr15L2C53, (e) Sr30L2C53, (f) Sr60L2C53.

983 **Fig 3.** Axial stress distributions predicted with the EPT model for FRP-confined square columns of different
984 corner radii: state A

985 **Fig 4.** Axial stress distributions predicted with the EPT model for FRP-confined square columns of different
986 corner radii: state B

987 **Fig 5.** Axial stress distributions predicted with the EPT model for FRP-confined square columns of different
988 corner radii: state C

989 **Fig 6.** Axial stress distributions predicted with the EPT and the AA models for FRP-confined square columns of
990 different corner radii: state D

991 **Fig 7.** Confining and axial stresses in square sections with sharp and rounded corners: (a) principal confining
992 stresses, (b) axial stress-axial strain curves.

993 **Fig 8.** Stress-strain curves of FRP-confined rectangular columns: predictions versus test data of Ozbakkaloglu
994 (2013): (a) Specimens confined with 3 layers of FRP, (b) Specimens confined with 5 layers of FRP.

995 **Fig 9.** Axial stress distributions predicted with the EPT model for an FRP-confined rectangular columns of
996 different aspect ratios at states A, B, and C

997 **Fig 10.** Axial stress distributions predicted with the EPT and the AA models for FRP-confined rectangular
998 columns of different aspect ratios at state D

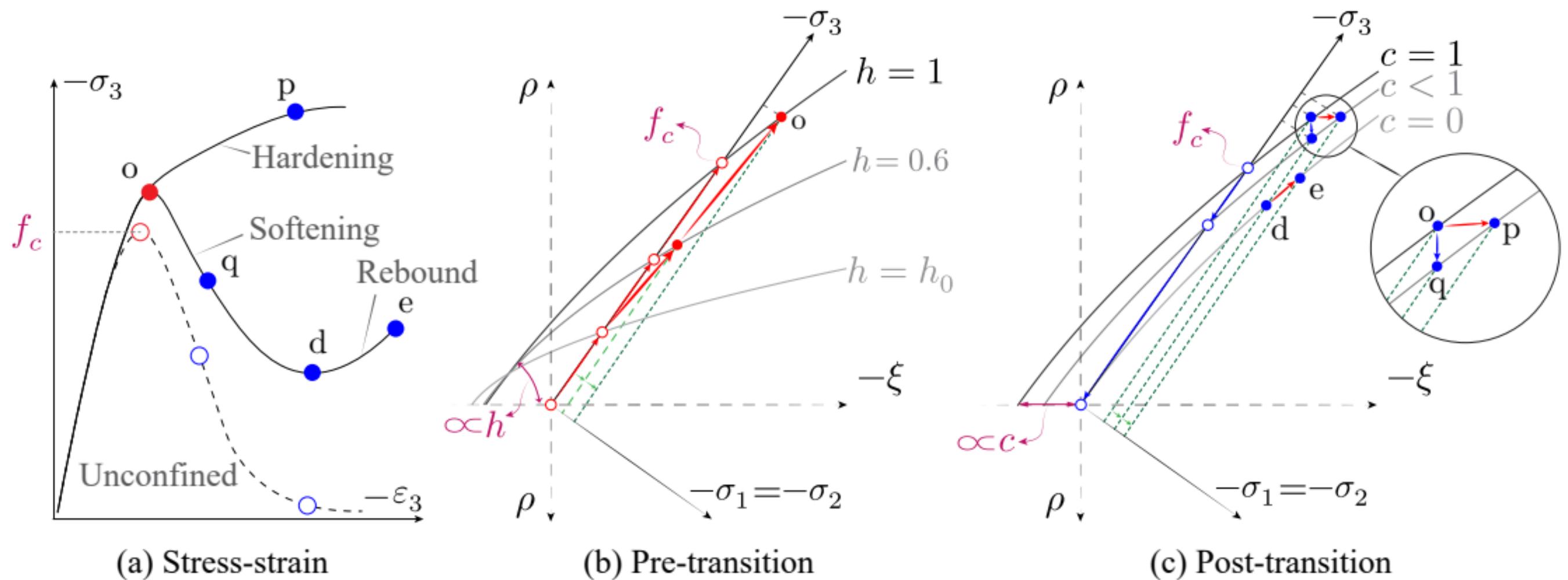
999 **Fig 11.** Confining and axial stresses in rectangular sections of different aspect ratios: (a) principal confining
1000 stresses, (b) axial stress-axial strain curves.

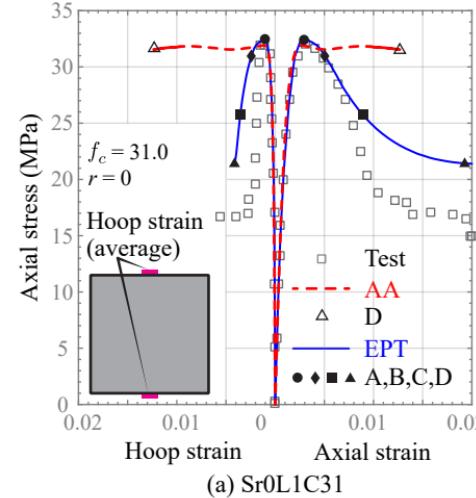
1001 **Fig 12.** Stress-strain curves of FRP-confined elliptical columns: predictions versus test data of Liu et al. (2022):
1002 (a) EPT model, (b) AA model.

1003 **Fig 13.** Axial stress distributions predicted with the EPT and the AA models for FRP-confined elliptical
1004 columns of different aspect ratios at state D

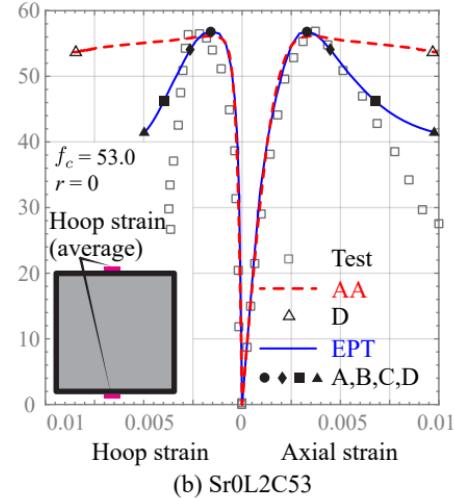
1005 **Fig 14.** Confining and axial stresses in elliptical sections with different aspect ratios: (a) principal confining
1006 stresses, (b) axial stress-axial strain curves.

1007 **Fig A1.** Axial stress distributions along three paths of an FRP-confined rectangular column: predictions versus
1008 test data of Teng et al. (2015a): (a) Path 1, state A, (b) Path 2, state A, (c) Path 3, state A, (d) Path 1, state B, (e)
1009 Path 2, state B, (f) Path 3, state B.
1010

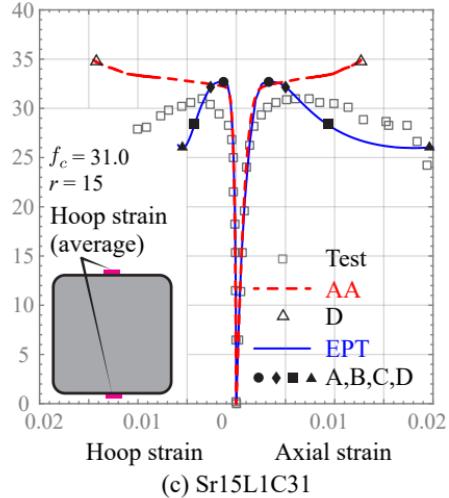




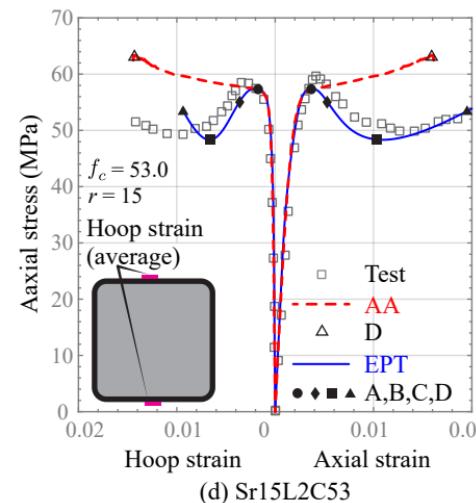
(a) Sr0L1C31



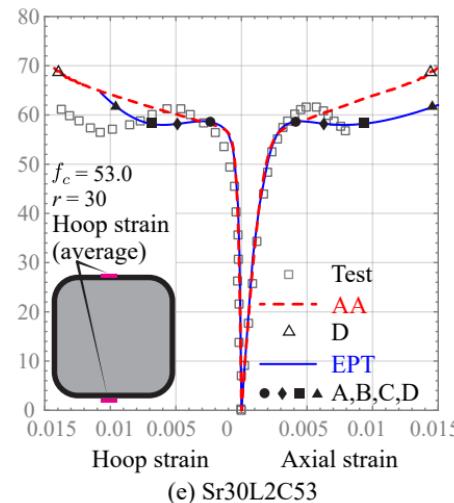
(b) Sr0L2C53



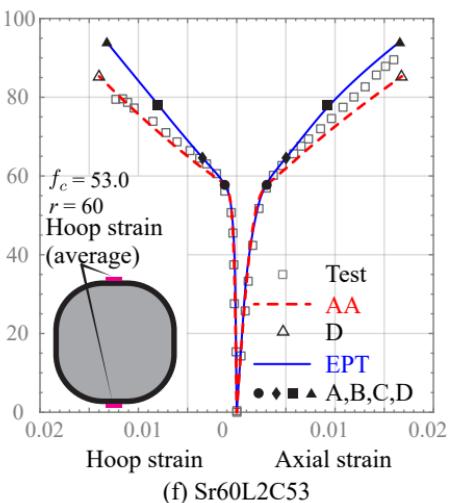
(c) Sr15L1C31



(d) Sr15L2C53



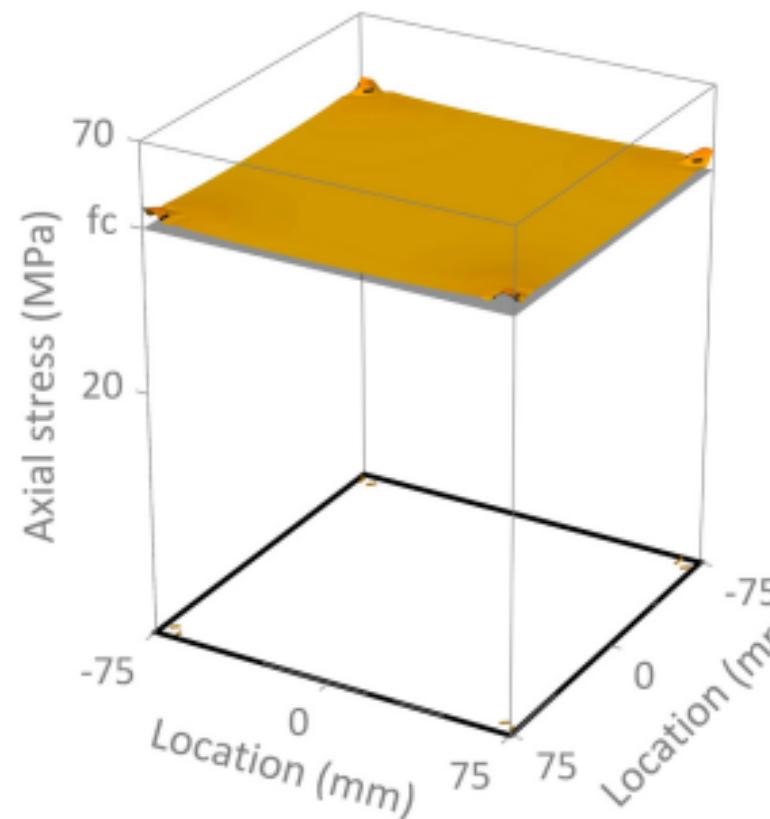
(e) Sr30L2C53



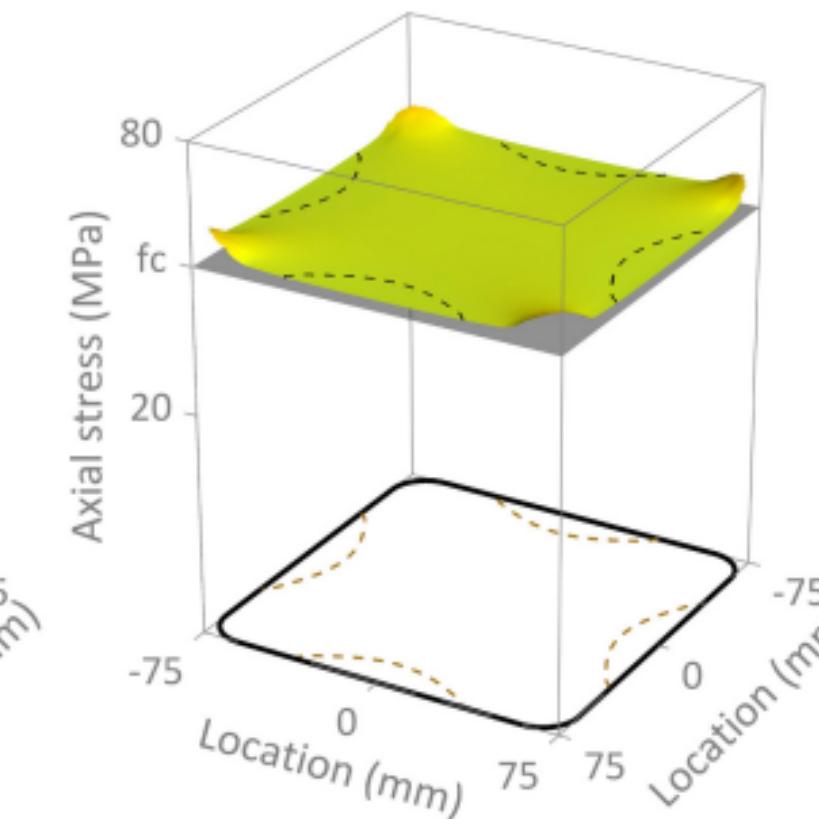
(f) Sr60L2C53

Corner radius

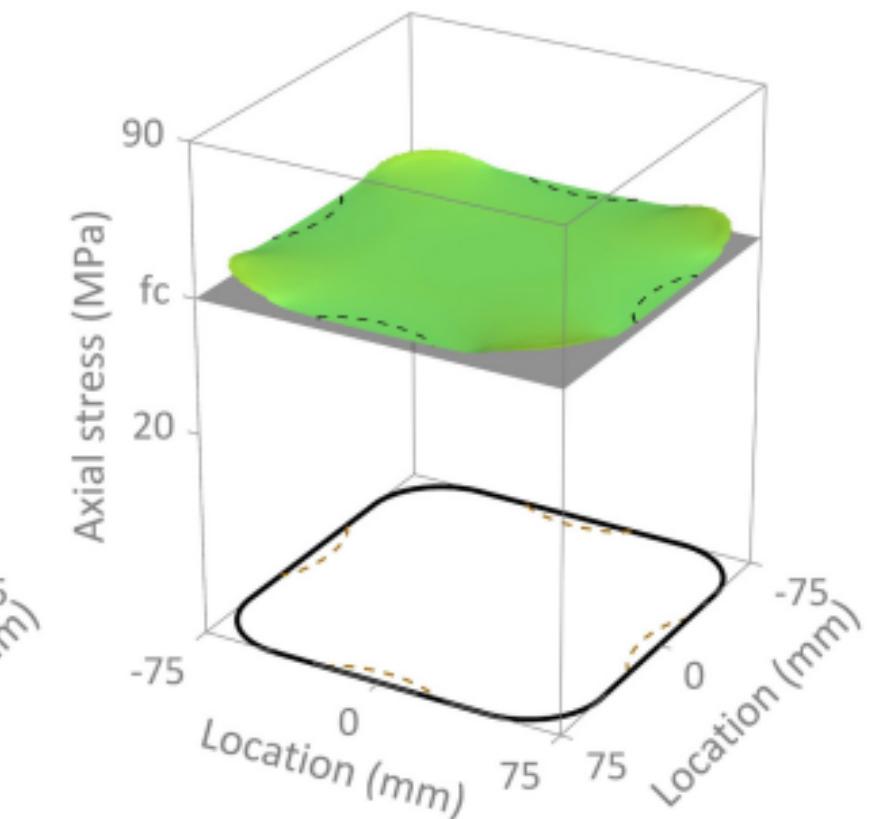
$r = 0 \text{ mm}$



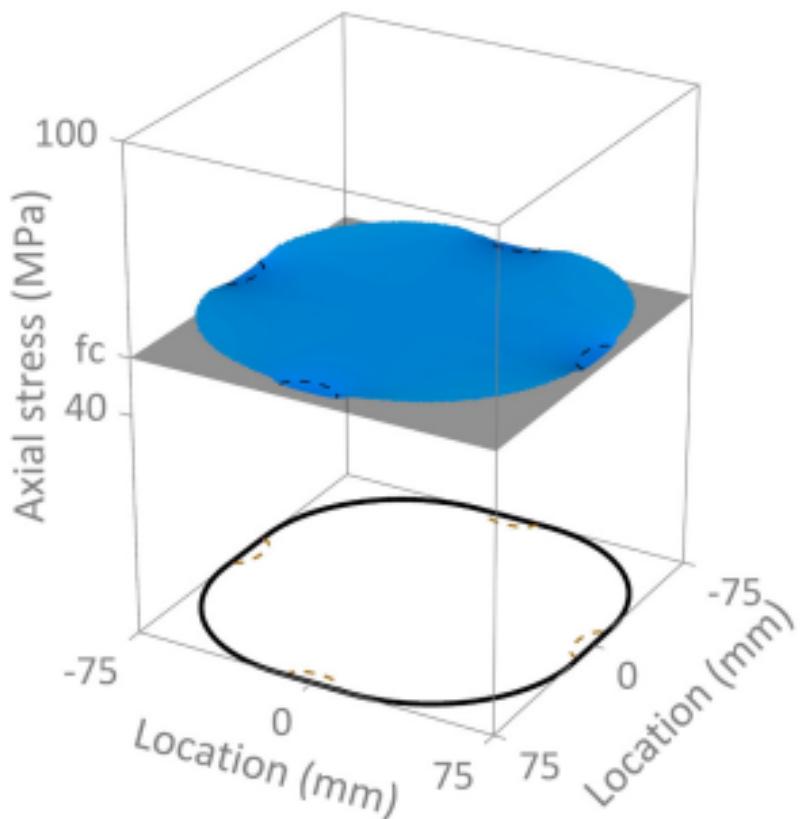
$r = 15 \text{ mm}$



$r = 30 \text{ mm}$

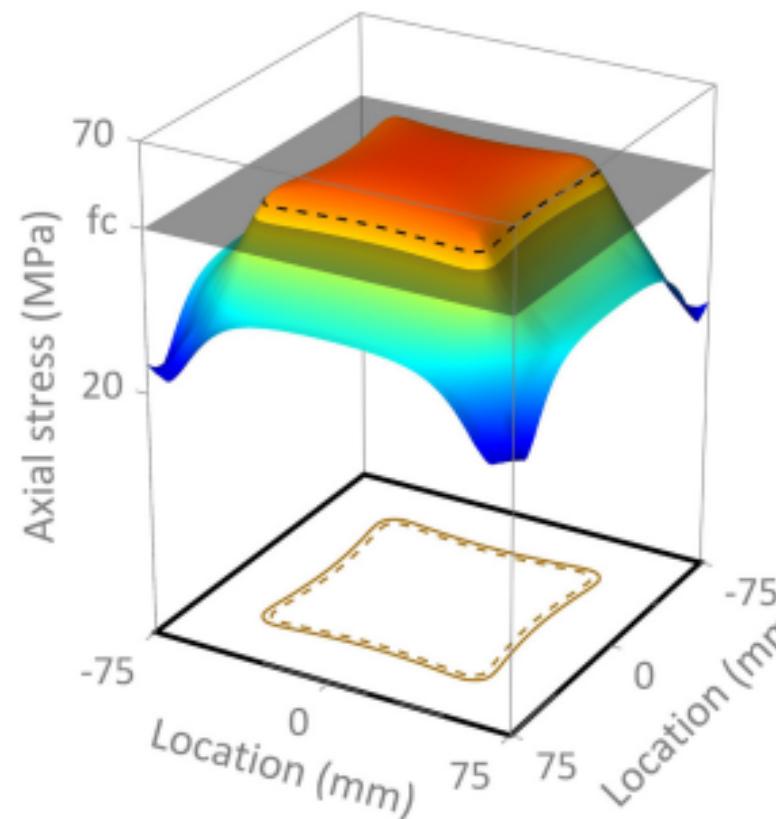


$r = 60 \text{ mm}$

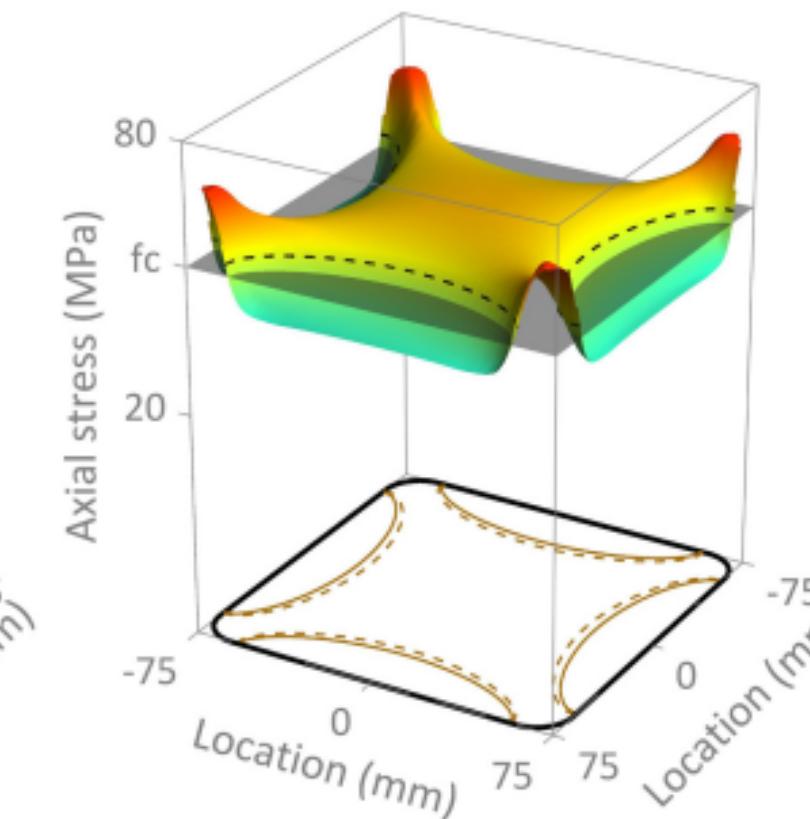


Corner radius

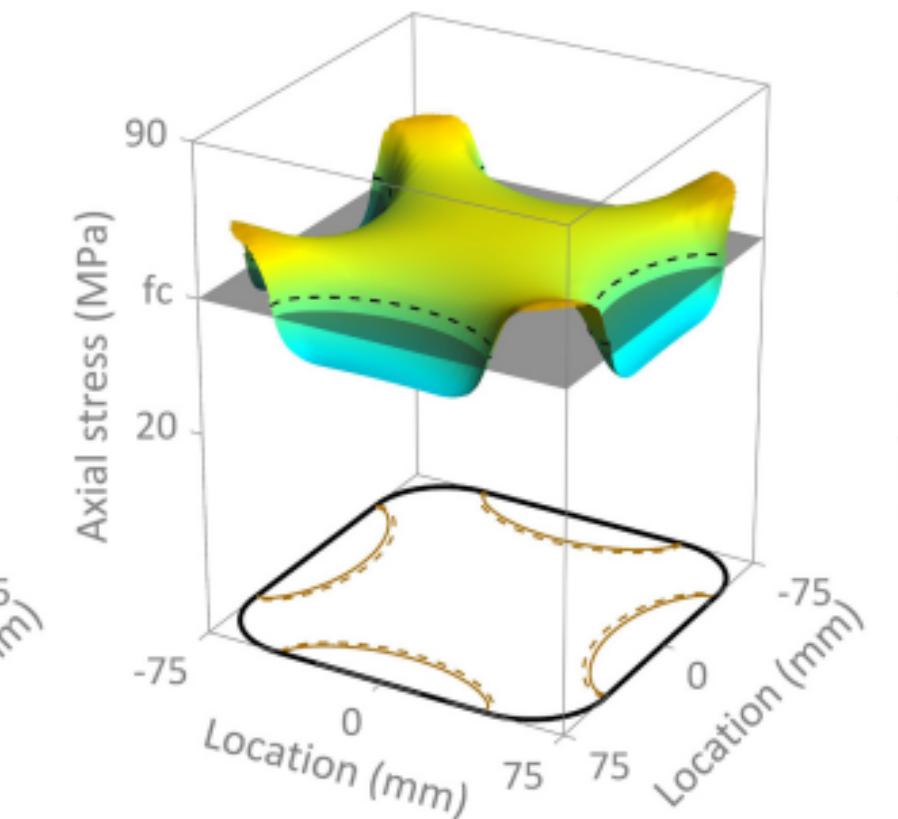
$r = 0 \text{ mm}$



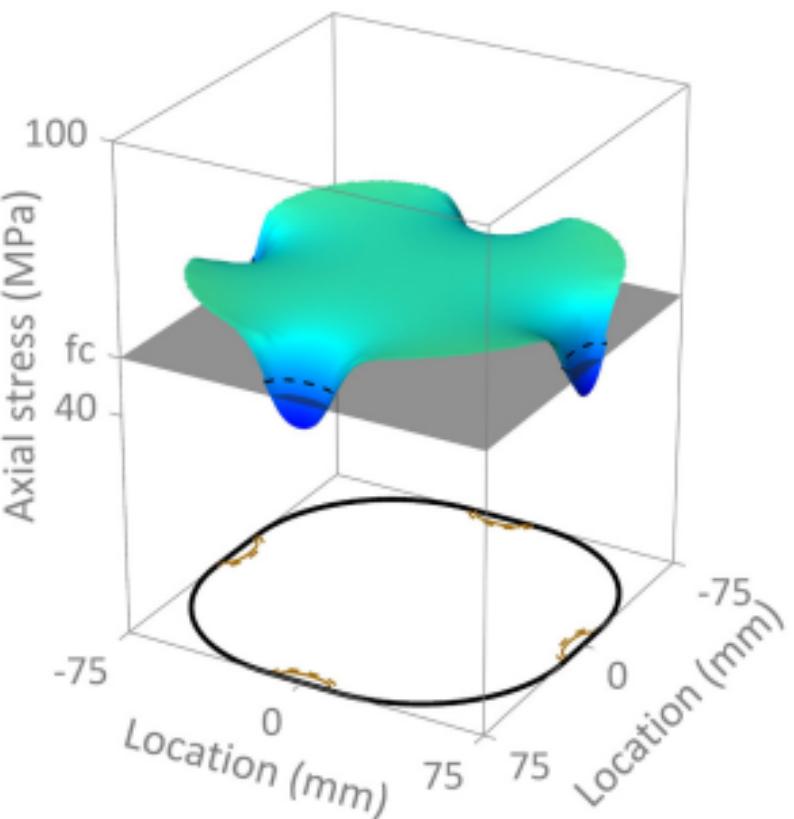
$r = 15 \text{ mm}$



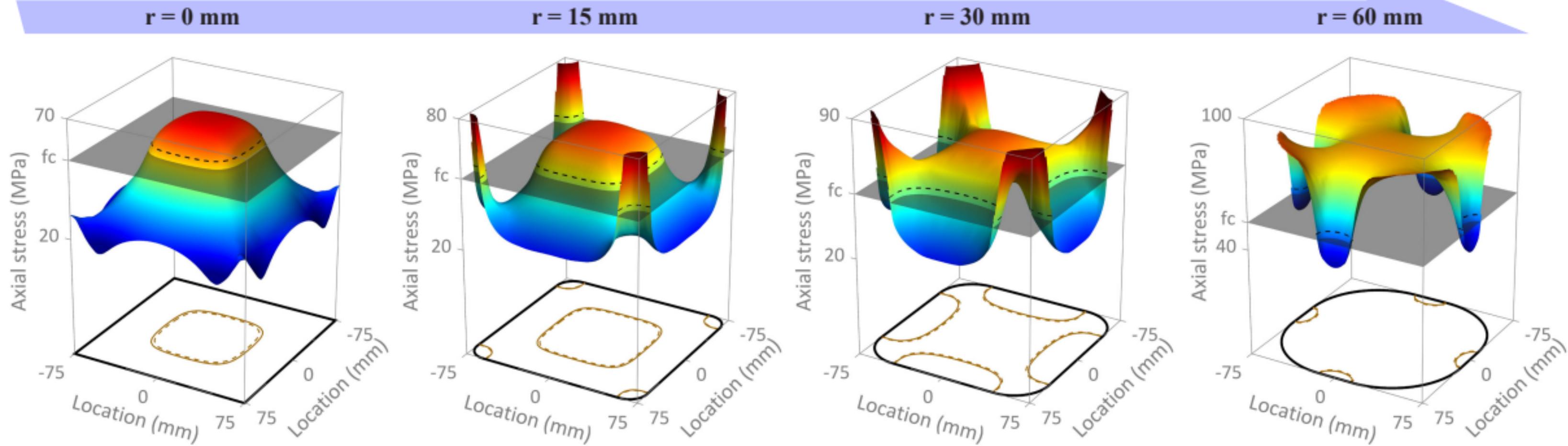
$r = 30 \text{ mm}$



$r = 60 \text{ mm}$

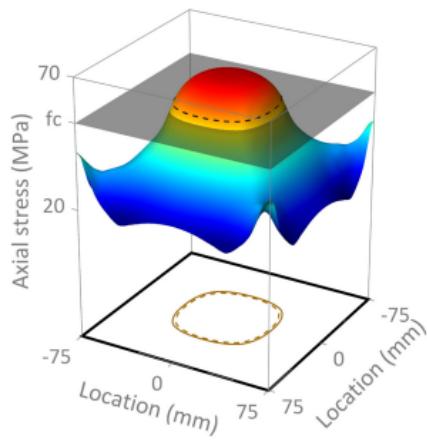


Corner radius

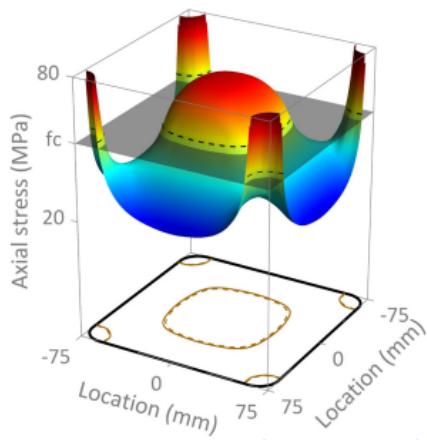


Corner radius

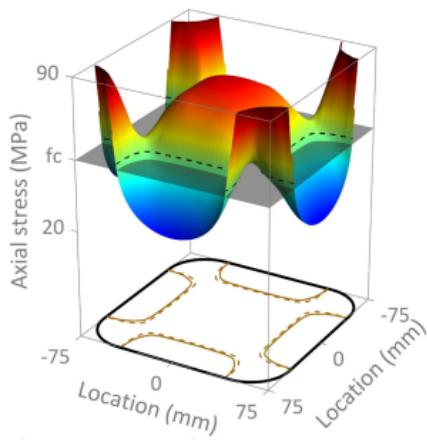
$r = 0 \text{ mm}$



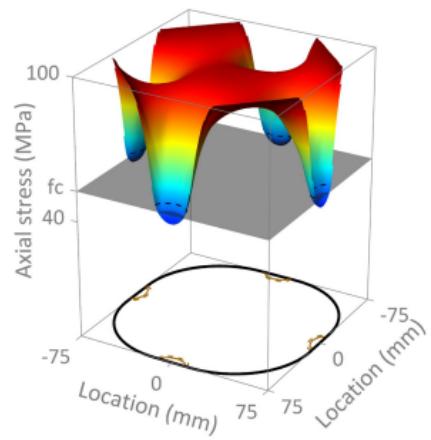
$r = 15 \text{ mm}$



$r = 30 \text{ mm}$

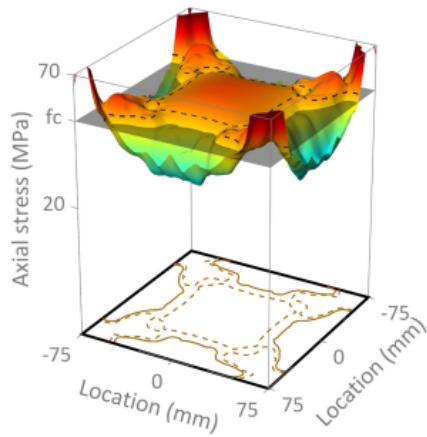
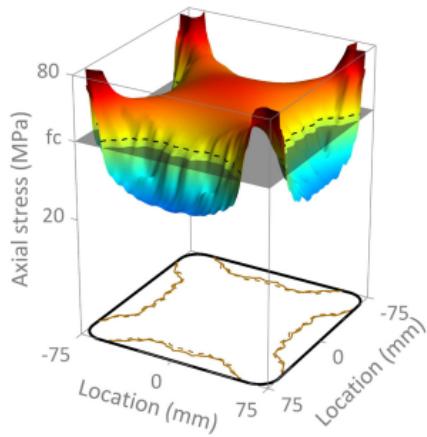
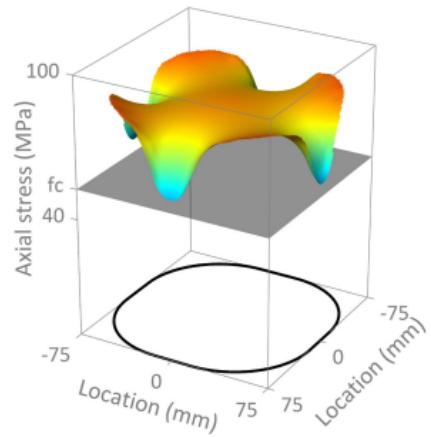


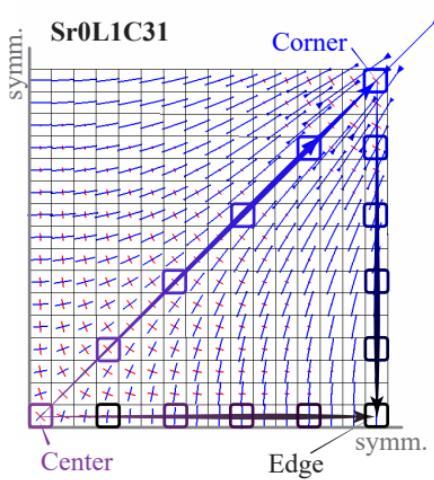
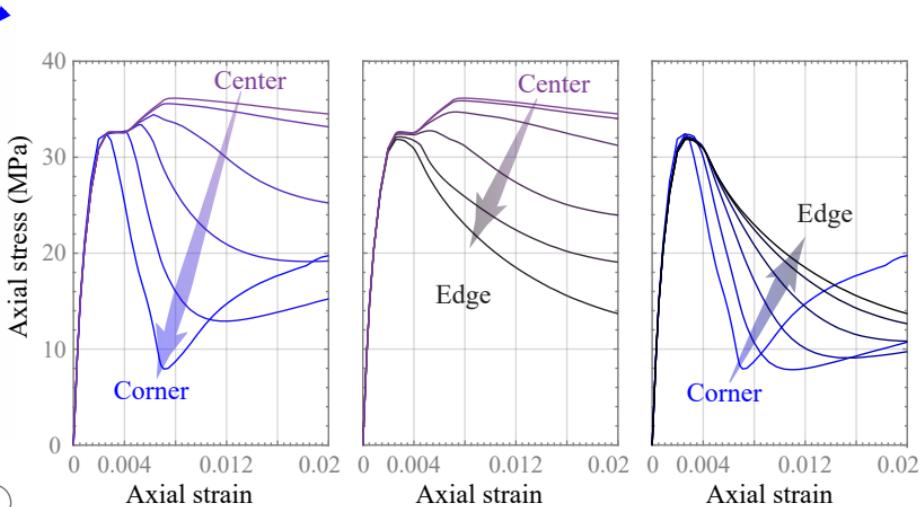
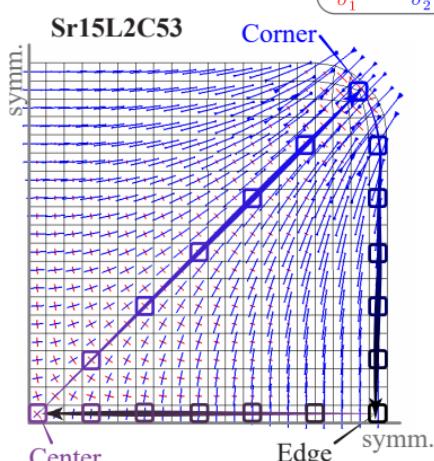
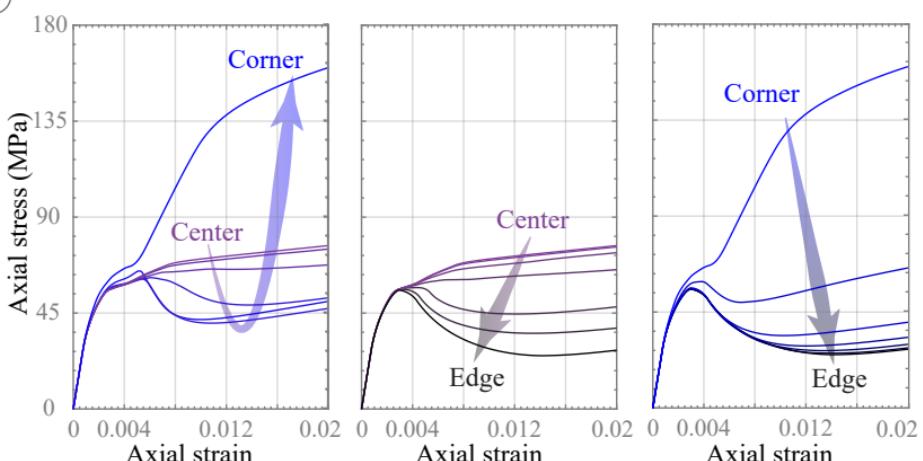
$r = 60 \text{ mm}$



↑ Predictions with the EPT model

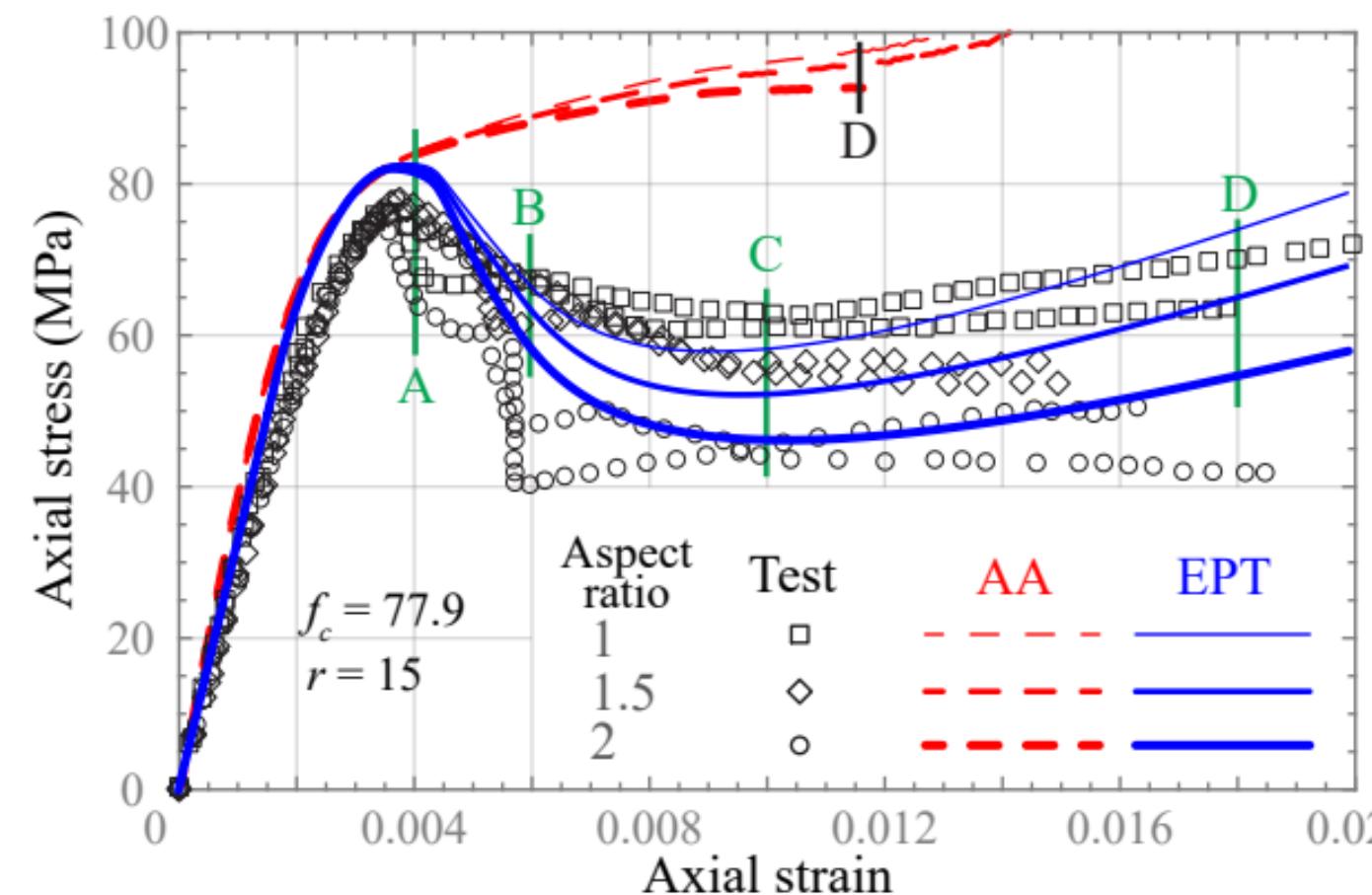
↓ Predictions with the AA model



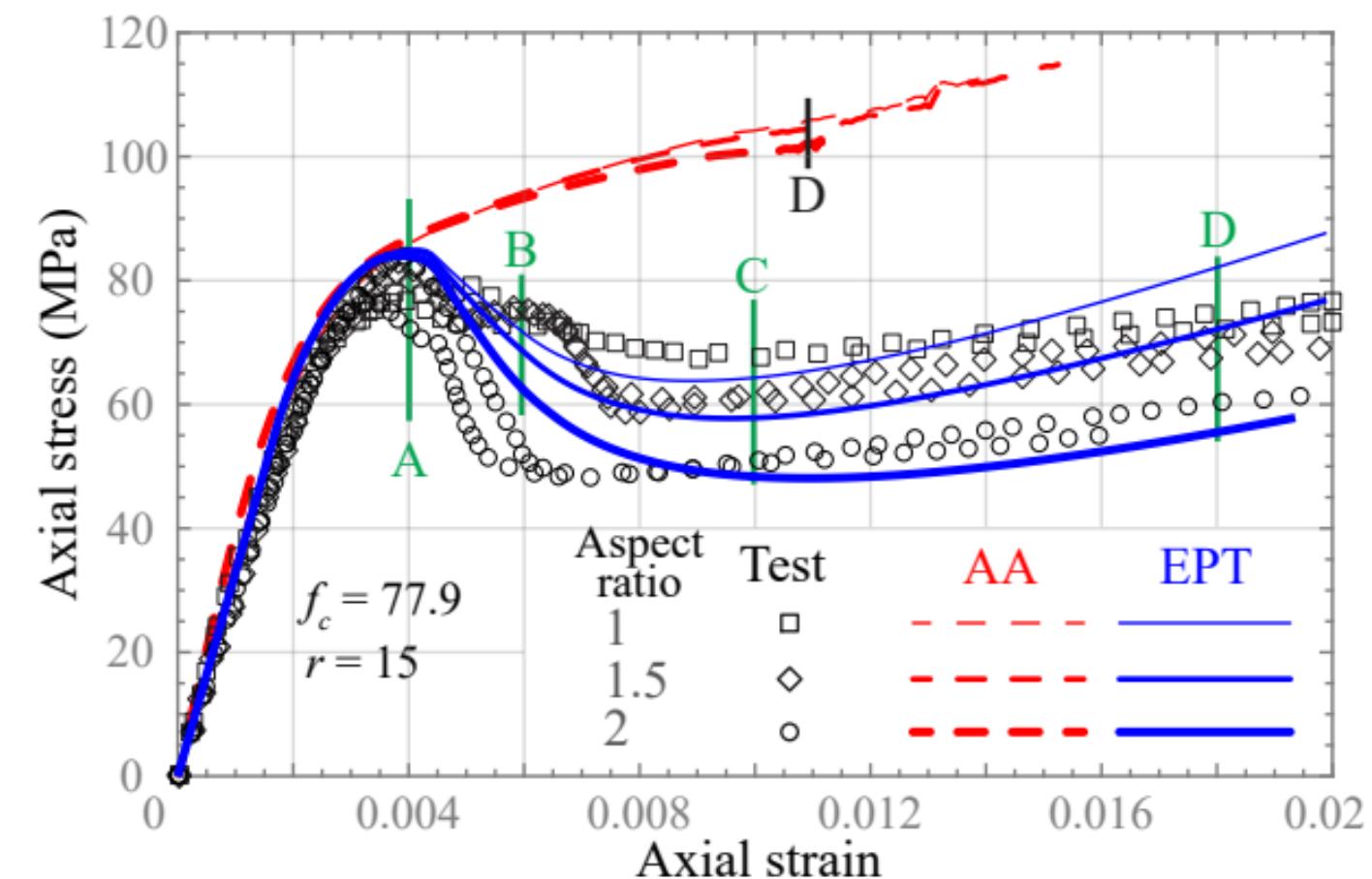


(a) Principal confining stresses

(b) Axial stress-axial strain curves



(a) L3 specimens



(b) L5 specimens

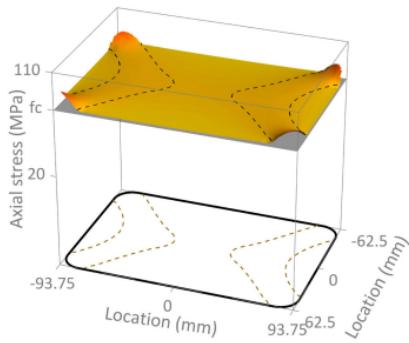
Aspect ratio

$L/B = 1.5$ (R1.5L3)

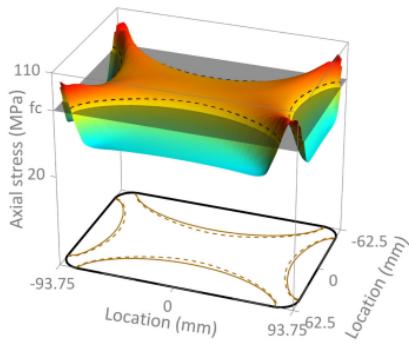
$L/B = 2.0$ (R2L3)

Loading state

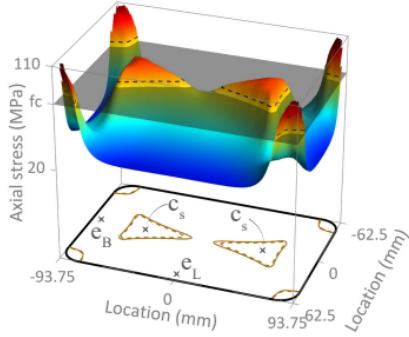
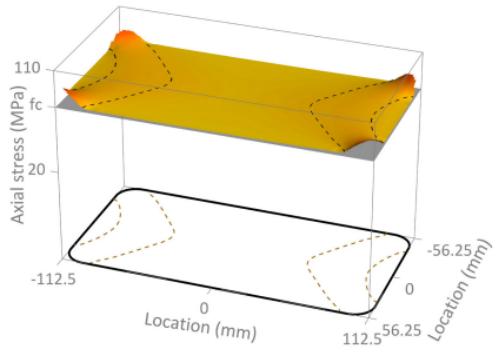
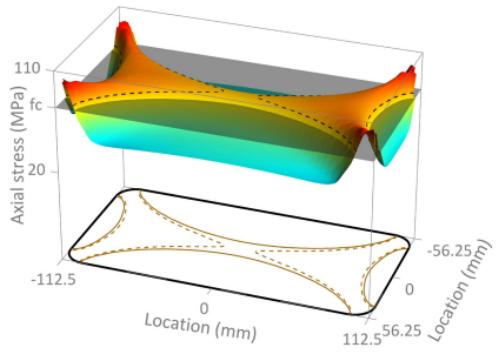
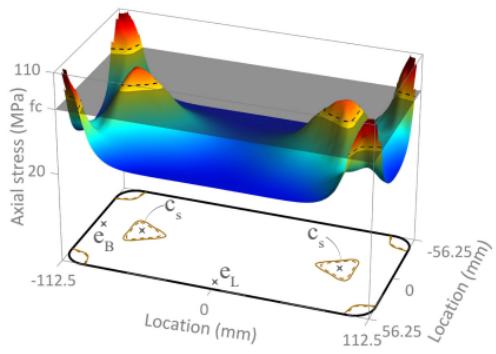
A



B



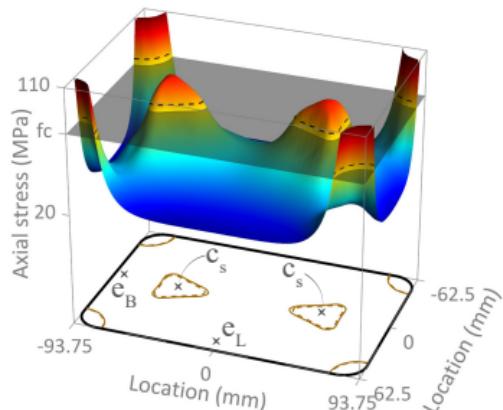
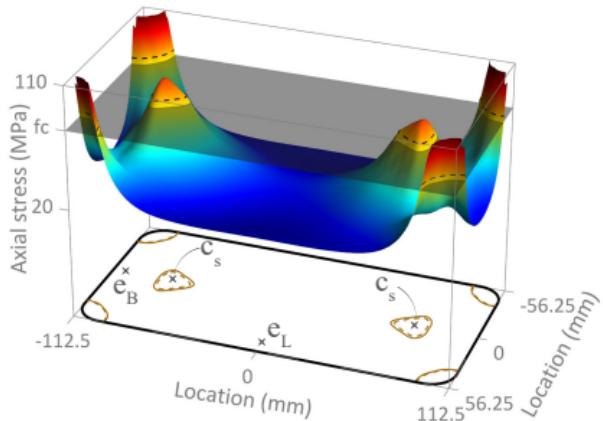
C



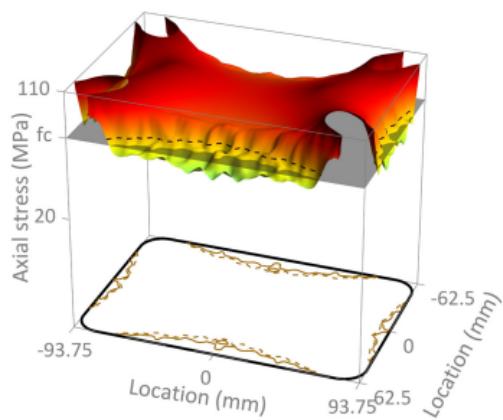
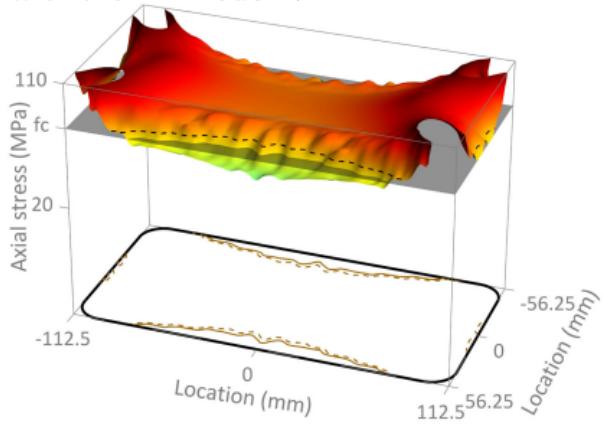
Aspect ratio

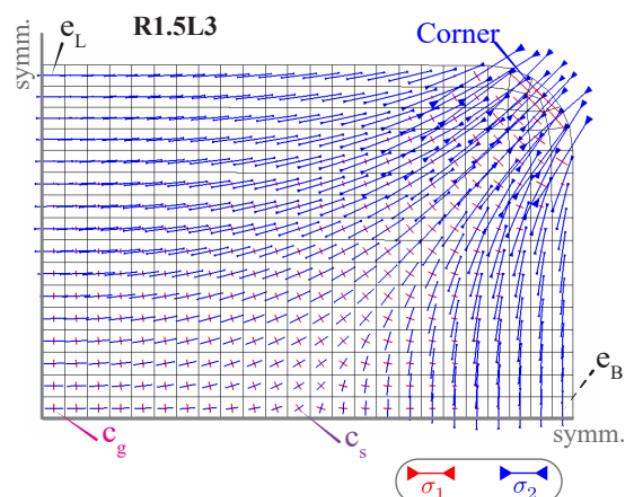
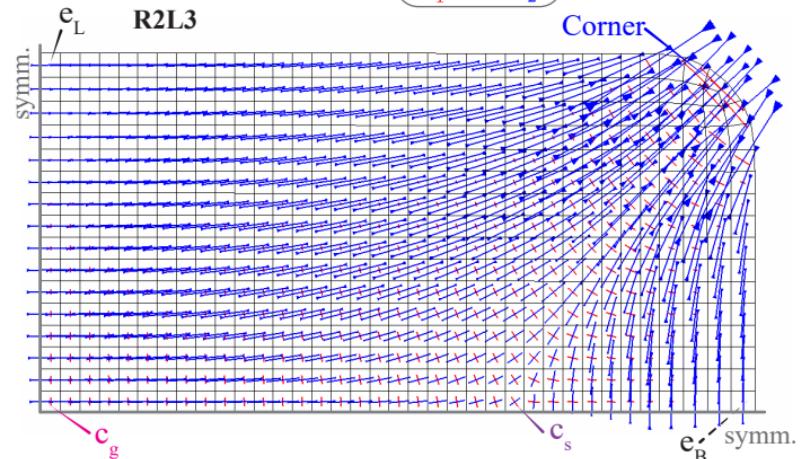
$L/B = 1.5$ (R1.5L3)

$L/B = 2.0$ (R2L3)

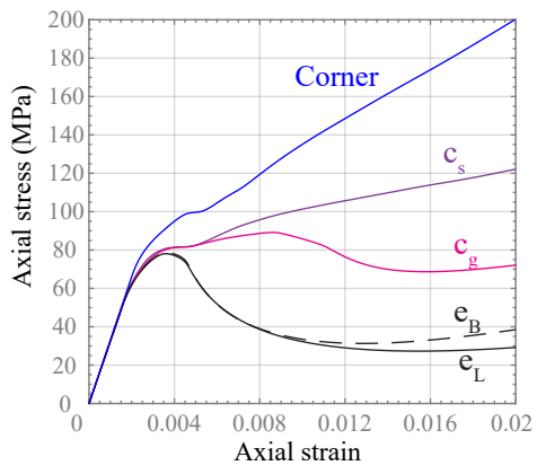
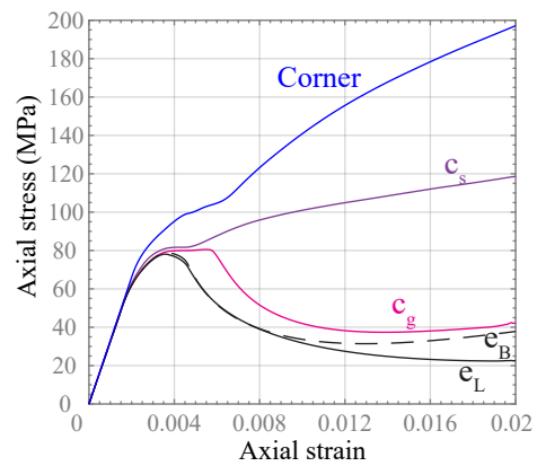


↑ Predictions with the EPT model ↑
↓ Predictions with the AA model ↓

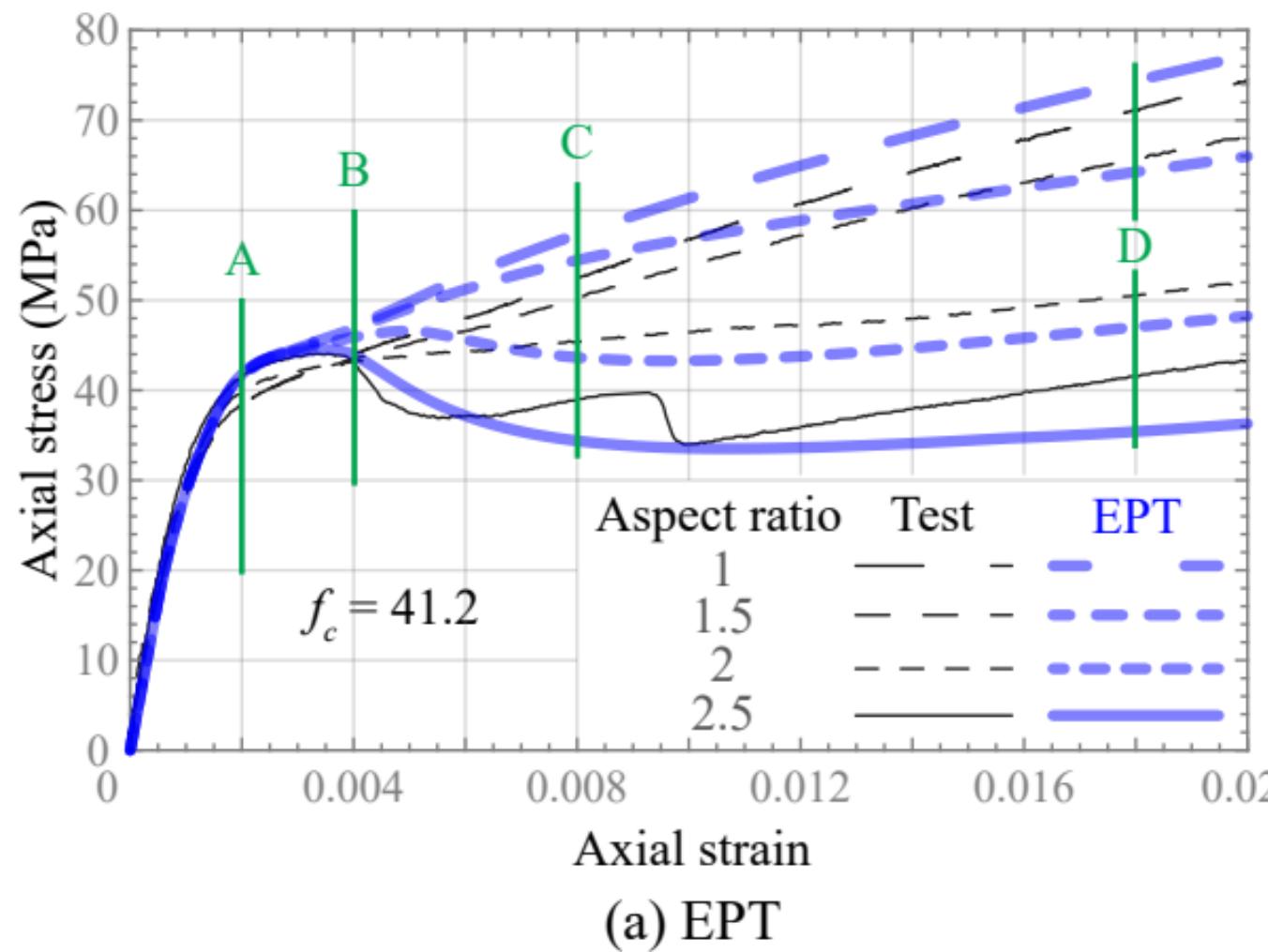
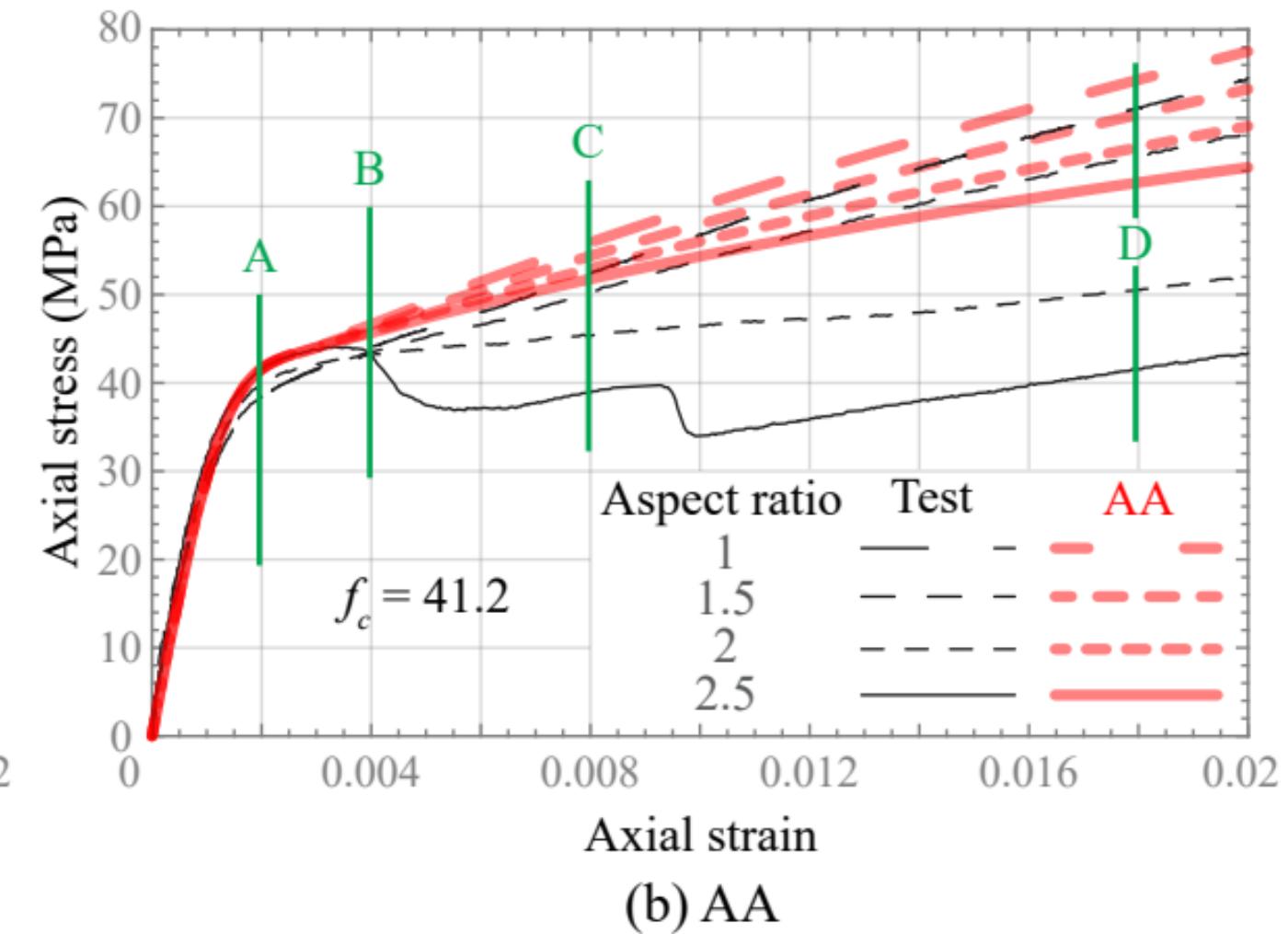




(a) Principal confining stresses

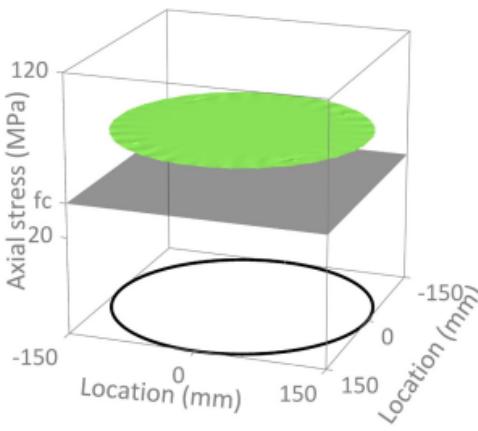


(b) Axial stress-axial strain curves

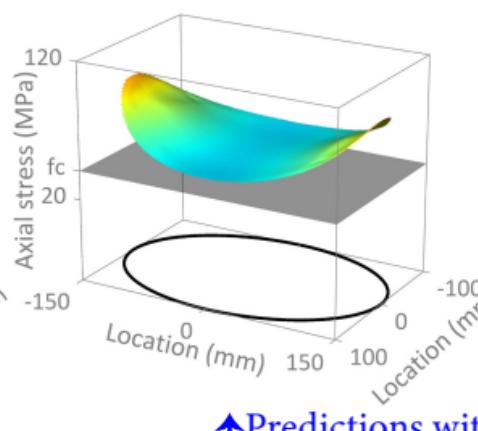


Aspect ratio

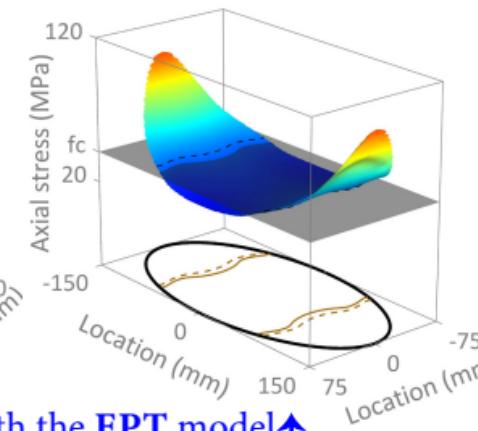
E1.0



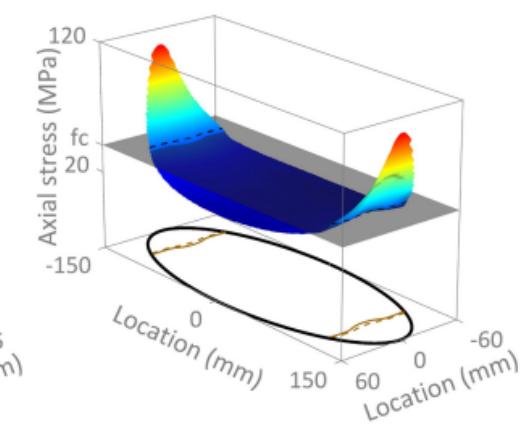
E1.5



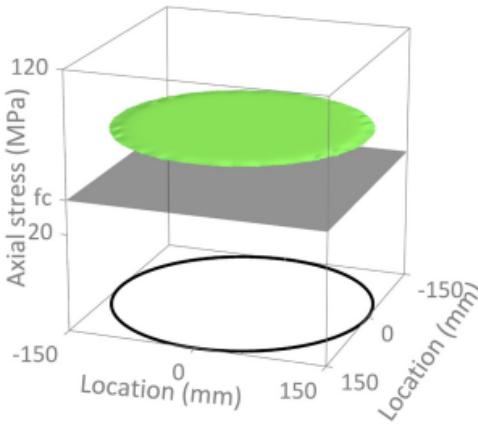
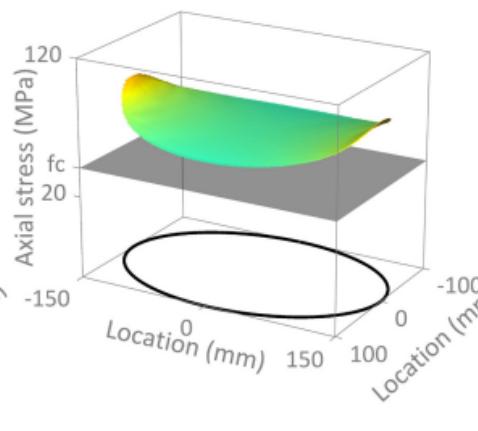
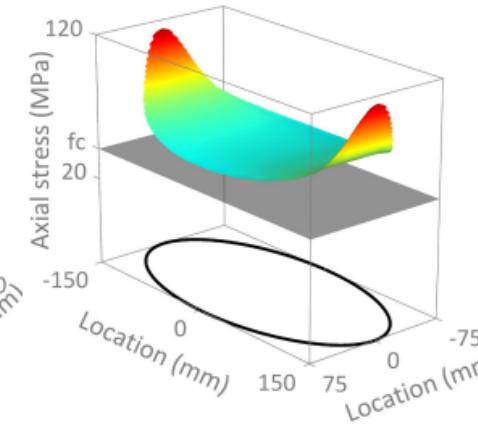
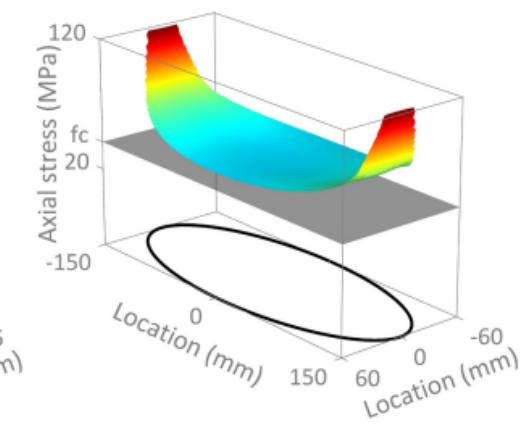
E2.0

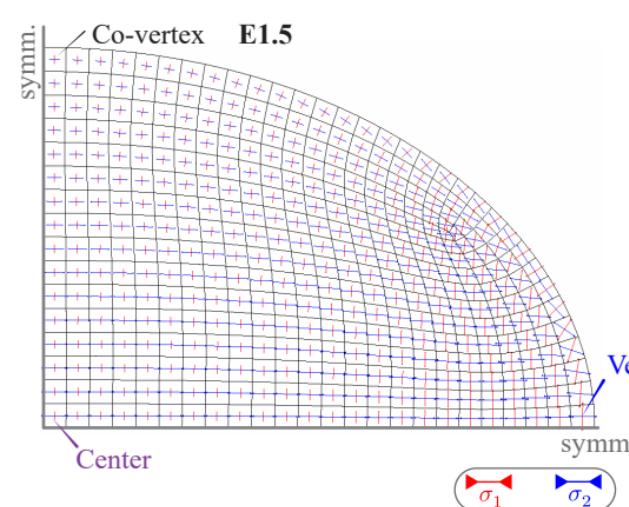
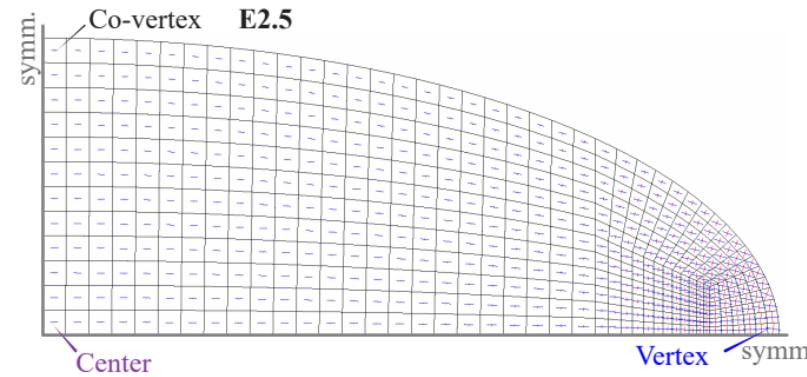


E2.5

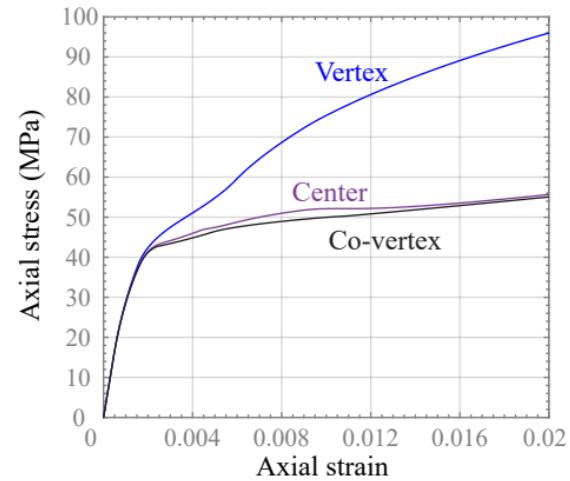
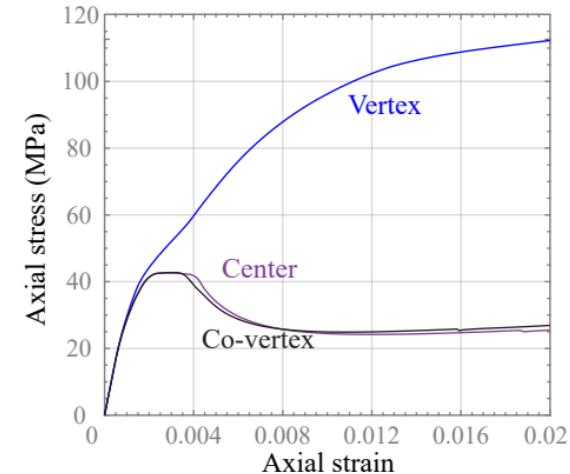


↑ Predictions with the EPT model
↓ Predictions with the AA model





(a) Principal confining stresses



(b) Axial stress-axial strain curves