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Abstract 9 

The compressive behavior of fiber-reinforced polymer (FRP)-confined concrete columns 10 

with a non-circular cross-section has been investigated through extensive experimental, 11 

analytical, and numerical research, but a unified theoretical/numerical approach that can 12 

accurately predict both their section-average behavior and local concrete behavior is not yet 13 

available. In non-circular columns under axial compression, the concrete is typically under a 14 

non-uniform stress state of three-dimensional (3D) compression, with the lateral compressive 15 

stresses being the reactive stresses from the confining device (i.e., passive confinement). The 16 

authors of the present paper recently developed a plasticity constitutive model for concrete 17 

under general 3D compressive stresses, which possesses a potential surface with an 18 

evolutionary deviatoric trace that can accurately capture the results of existing compression 19 

tests of concrete cubes under non-uniform, passive confinement. This paper explores the 20 

application and capability of this evolutionary potential-surface trace (EPT) plasticity 21 

constitutive model in the finite element (FE) analysis of FRP-confined square, rectangular, and 22 

elliptical plain-concrete columns under concentric compression. The section-average behavior 23 

of all the selected non-circular columns predicted by these FE analyses is close to the existing 24 

experimental data. The numerical results obtained with the EPT plasticity constitutive model 25 

This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This 
material may be found at https://ascelibrary.org/doi/10.1061/(ASCE)CC.1943-5614.0001271.

Zheng, B.-T., & Teng, J.-G. (2023). Finite-Element Modeling of FRP-Confined Noncircular Concrete Columns Using the Evolutionary Potential-Surface 
Trace Plasticity Constitutive Model for Concrete. Journal of Composites for Construction, 27(1), 04022089.

This is the Pre-Published Version.



are then examined in detail to achieve an improved understanding of local concrete behavior 26 

in FRP-confined non-circular columns.  27 

Keywords: FRP, concrete, plasticity constitutive model, non-circular column, non-uniform 28 

confinement, axial compression, finite element modeling. 29 

Introduction 30 

To make full use of fiber-reinforced polymer (FRP) composites in the construction of new 31 

concrete columns and the strengthening of existing concrete columns, extensive experimental 32 

and analytical research has been conducted on FRP-confined concrete columns under 33 

concentric compression (e.g., Saadatmanesh et al. 1994; Mirmiran and Shahawy 1997; Pessiki 34 

et al. 2001; Lam and Teng 2003a; Jiang and Teng 2007; Wei and Wu 2012; Lim and 35 

Ozbakkaloglu 2015; Lin and Teng 2020). It has been a consensus for some time that the 36 

behavior of FRP-confined concrete columns with a circular cross-section (referred to as 37 

circular columns hereafter for brevity) is sufficiently well understood and can be accurately 38 

predicted with some of the analytical stress-strain models (e.g., Jiang and Teng 2007; Teng et 39 

al. 2007; Teng et al. 2009). However, much less has been achieved in understanding and 40 

predicting the behavior of FRP-confined concrete columns with a non-circular cross-section, 41 

including square, rectangular, and elliptical cross-sections (referred to as non-circular columns 42 

hereafter for brevity) (e.g., Mirmiran et al. 1998; Rochette and Labossière 2000; Pessiki et al. 43 

2001; Lam and Teng 2003b; Wang and Wu 2008; Ozbakkaloglu 2013; Lin and Teng 2020).  44 

In FRP-confined circular concrete columns, the concrete is deemed to be uniformly 45 

confined with FRP: that is, the concrete at all locations of the section receives the same 46 

confining stress and hence exhibits the same axial stress-strain behavior, and the 47 

experimentally measured average axial stress-axial strain behavior directly reflects the local 48 

response of concrete. By contrast, the concrete in FRP-confined non-circular columns is under 49 

non-uniform confinement: the concrete at different locations of a section receives different 50 



confining stresses and hence exhibits different axial stress-axial strain responses; the non-51 

uniformity of confinement also increases with the axial deformation. The experimentally 52 

measured section-average axial stress-axial strain behavior is a mere aggregate of, but is unable 53 

to reflect, the different local concrete behaviors across the section. Therefore, knowledge of 54 

local concrete behavior in FRP-confined non-circular columns beyond what is offered by 55 

existing experimental data is needed to better understand and more accurately predict the 56 

behavior of FRP-confined non-circular concrete columns.  57 

The ‘arching effect’ concept is widely used to conceptualize with the non-uniform 58 

confining stress distribution over the section of an FRP-confined non-circular concrete column, 59 

in which the non-circular section is partitioned into a region with effective confinement and 60 

the remainder of the section with negligible confinement (e.g., Sheikh and Uzumeri 1980; 61 

Mander et al. 1988; Teng and Lam 2002). This binary, static oversimplification is somewhat 62 

intuitive rather than being based on rigorous analysis/evidence. In order to experimentally 63 

identify the effectively confined region within the section, the local concrete stresses need to 64 

be measured across the section throughout the loading process, as attempted by Teng et al. 65 

(2015a) via the use of a pressure mapping system; more work is needed in order to achieve 66 

accurate measurements of these local stresses (see Appendix A). Moreover, some insight into 67 

the variation of local concrete confinement over the section at the final stage can be obtained 68 

by scrutinizing the failure pattern of crushed FRP-confined concrete columns, such as those 69 

reported in Ozbakkaloglu and Oehlers (2008), Wang and Wu (2008), Wu and Wei (2010), 70 

Ozbakkaloglu (2013), and Shan et al. (2019). However, more experimental data and analyses 71 

are required to establish a good understanding of the local behavior of concrete in a non-72 

uniformly confined member. Therefore, three-dimensional (3D) finite element (FE) analysis 73 

has been seen as the more reliable alternative to gain knowledge of local concrete behavior in 74 

FRP-confined non-circular columns. The accuracy of an FE simulation is mainly dependent on 75 



the accuracy of the constitutive model employed for the concrete; more specifically, for the 76 

accurate modeling of FRP-confined non-circular concrete columns, a constitutive model 77 

suitable for concrete under non-uniform, passive confinement is necessary.  78 

While many FE studies have been carried out on FRP-confined circular columns (e.g., 79 

Mirmiran et al. 2000; Shahawy et al. 2000; Yu et al. 2010a;b; Teng et al. 2015b; Lin and Teng 80 

2017; Ribeiro et al. 2019), FE studies of non-circular columns, as mentioned below, have been 81 

limited mainly due to the lack of a competent concrete constitutive model. In some of the FE 82 

analyses of FRP-confined square columns (Nisticò and Monti 2013; Nisticò 2014), the concrete 83 

was simulated as a linear-elastic material, which is obviously inaccurate. In the other studies 84 

involving FE analysis of FRP-confined square, rectangular, or elliptical columns (Doran et al. 85 

2009; Yu et al. 2010b; Hajsadeghi et al. 2011; Yeh and Chang 2012; Mostofinejad et al. 2015; 86 

Hany et al. 2016; Teng et al. 2016; Lin and Teng 2020; Fanaradelli and Rousakis 2020; Ekop 87 

and Grassl 2022), the concrete was simulated using plasticity-based constitutive models, which, 88 

though capable of depicting the full 3D incremental stress-strain relationship of confined 89 

concrete, are inaccurate for concrete under substantially non-uniform, passive confinement as 90 

discussed below.  91 

Available plasticity models for concrete have been formulated mainly on the basis of 92 

experimental data for concrete under active stresses (e.g., Han and Chen 1985; Lubliner et al. 93 

1989; Lee and Fenves 1998; Grassl et al. 2002) and are thus inaccurate for concrete under 94 

passive confinement. In order to overcome this weakness that compromises the capability of 95 

plasticity models for predicting the behavior of passively-confined concrete, the behavior of 96 

FRP-confined concrete as interpreted from experimental data was incorporated into the existing 97 

framework of, mainly the Drucker-Prager (D-P) type, plasticity models in a series of studies 98 

before 2010 (e.g., Mirmiran et al. 2000; Shahawy et al. 2000; Karabinis and Rousakis 2002; 99 

Rousakis et al. 2008).  The limitations of these modified plasticity constitutive models proposed 100 



in these studies were subsequently resolved by a more appropriate approach proposed by Yu 101 

et al. (2010a; b), which incorporated the analytical stress-strain model of Teng et al. (2007) for 102 

concrete under uniform FRP (i.e., passive) confinement into the built-in plasticity models of 103 

ABAQUS (version 6.5). Models adopting this approach, referred to as analytically-augmented 104 

(AA) plasticity models herein, are capable of close prediction of the behavior of concrete under 105 

both uniform-active and uniform-passive confinement and have also been widely employed in 106 

modeling the behavior of FRP-confined non-circular concrete columns either directly or by 107 

tuning the core analytical stress-strain model (e.g., Jiang and Wu 2012; Mostofinejad et al. 108 

2015; Mazzucco et al. 2016; Lin and Teng 2017; Mohammadi et al. 2019).  109 

However, these AA plasticity models are still inaccurate for concrete under substantially 110 

non-uniform FRP confinement as the non-uniform confinement in these models is only 111 

indirectly accounted for by the empirical adaptation of an analytical stress-strain model (the 112 

core analytical model) developed on the basis of experimental data of concrete under uniform, 113 

passive confinement (e.g., Lam and Teng 2004; Lam et al. 2006). In Yu et al. (2010b), which 114 

pioneered the AA type of models, both a section level approximation (referred to as method I) 115 

and a local level approximation (referred to as method II) were explored for this empirical 116 

adaptation. Only the local approximation method, which relies on the conversion of non-117 

uniform confining stresses into an equivalent uniform confining pressure and the definition of 118 

an equivalent lateral/hoop strain, is considered in the present study, as the section level method, 119 

which assumes the same flow rule for the entire section, is less reliable (Yu et al. 2010b). Even 120 

with the local approach, the empirical conversion approach explored by Yu et al. (2010b) and 121 

followed by many other researchers (e.g., Mostofinejad et al. 2015; Lin and Teng 2017; 122 

Mohammadi et al. 2019) fails to capture the behavioral characteristics of concrete under 123 

substantially non-uniform passive confinement, as demonstrated by (Zheng and Teng 2022a). 124 



The development of a more capable constitutive model for concrete subjected to 125 

substantially non-uniform confinement requires relevant experimental data. The dilation 126 

behavior of concrete under uniform confinement has been well established through 127 

compression tests of concrete cylinders under hydrostatic pressure (Hoek cell tests) for active 128 

confinement, as summarized by Samani and Attard (2014), and through those with external 129 

FRP confinement for passive confinement, as summarized by (Lim and Ozbakkaloglu 2015a). 130 

However, equally direct data for the deformation behavior of concrete under non-uniform 131 

passive confinement has not been available until the compression tests of 100 mm or 150 mm 132 

concrete cubes conducted by Jiang et al. (2017) and Mohammadi and Wu (2017), respectively, 133 

where the cubes were confined with lateral confining devices of unequal stiffnesses in the two 134 

directions. These tests provided valuable data germane to the local behavior of concrete in an 135 

FRP-confined non-circular column, which complement the available test data for concrete 136 

under uniform confinement. 137 

The authors of the present paper analyzed the comprehensive dataset assembled from Jiang 138 

et al. (2017), Lim and Ozbakkaloglu (2015b), Mohammadi and Wu (2017), Piscesa et al. (2016), 139 

and Samani and Attard (2014), and arrived at a unified interpretation of the deformation 140 

behavior of concrete (Zheng and Teng 2022a). However, it was found that the new 141 

interpretation cannot be represented by the widely adopted framework of the D-P type plasticity 142 

models, including that of the AA plasticity models, which employ a fundamentally unsuitable 143 

potential surface incapable of accurately depicting the deformation behavior of concrete under 144 

non-uniform confinement. Indeed, the authors who conducted the new category of tests have 145 

proposed new AA models based on the new datasets in a series of works (Mohammadi et al. 146 

2019; Mohammadi and Wu 2019; Li et al. 2021); these new AA models are still unable to 147 

accurately reproduce the test results of concrete cubes under non-uniform, passive confinement, 148 

as discussed in Zheng and Teng (2022a).  149 



Therefore, a new plasticity model incorporating a potential surface with an evolutionary 150 

deviatoric trace specifically devised to represent the unified interpretation of confined concrete 151 

behavior was proposed by the authors of the present work (Zheng and Teng 2022a); the 152 

accuracy of this new model for concrete under active confinement, uniform passive 153 

confinement, and non-uniform passive confinement was validated at the material level in that 154 

study. The purpose of the present study is twofold. The first is to further evaluate the 155 

performance of the evolutionary potential-surface trace (EPT) plasticity constitutive model at 156 

the structural member level by simulating FRP-confined non-circular columns and comparing 157 

the predictions of section-average behavior with available experimental data. Secondly, the 158 

predictions of local concrete behavior obtained with the EPT model are used to advance the 159 

understanding of confinement mechanisms in FRP-confined non-circular concrete columns. It 160 

should be noted that the study has previously been briefly reported elsewhere (Zheng and Teng 161 

2022b). 162 

The evolutionary potential-surface trace (EPT) plasticity constitutive model 163 

Mathematical formulation 164 

The newly proposed EPT plasticity constitutive model is expounded in Zheng and Teng 165 

(2022a), and a brief summary of the critical components is presented here. The model is based 166 

on rate-independent incremental elastoplasticity, with stress and strain tensors represented in 167 

the Haigh–Westergaard coordinate system. The fundamental assumption of the EPT model is 168 

that different concrete materials share the same qualitative descriptors for the stress and the 169 

deformation behaviors, but these descriptors can be quantitatively different for each physically 170 

unique concrete (as determined by a particular combination of constituent raw materials and 171 

production process giving a unique set of material property values). Accordingly, the EPT 172 

model employs appropriate mathematical equations for the descriptors (e.g., yield surface, 173 

potential surface, and hardening rule) while using different values for the material parameters 174 



embedded in these descriptors to reflect quantitative differences. It should be emphasized that 175 

for the same concrete, the values of the material parameters remain the same regardless of the 176 

nature/level of confinement; the model thus possesses the necessary robustness for the 177 

simulation of non-uniformly confined concrete members where the concrete at different 178 

locations is subjected to different confining conditions. It is therefore obvious that the values 179 

of the material parameters of the EPT model for a given concrete can be calibrated from one 180 

state (e.g., under uniform confinement) of the concrete and then used to predict its behavior in 181 

another state (e.g., under non-uniform confinement). 182 

The model employs the widely used strength surface proposed by Menetrey and Willam 183 

(1995) and the associated open yield surfaces that are reduced from the strength surface 184 

(Papanikolaou and Kappos 2007), leading to the following expression for the yield surfaces: 185 

𝑓(𝜉, 𝜌, 𝜃; 𝜅) = (√1.5
𝜌

ℎ(𝜅) ⋅ 𝑓𝑐

)
2

+ 𝑚(ℎ(𝜅)) (
𝜌

√6 ⋅ ℎ(𝜅) ⋅ 𝑓𝑐

𝑟(𝜃) +
𝜉

√3 ⋅ ℎ(𝜅) ⋅ 𝑓𝑐

) − 𝑐(𝜅) = 0 (1) 

where 𝜉, 𝜌, 𝜃 are the Haigh–Westergaard coordinates of the stress tensor 𝝈 (bold symbols are 186 

used to denote non-scalar variables), 𝜅 is the internal state variable (ISV), 𝑓𝑐 is the uniaxial 187 

compressive strength, 𝑚 is the friction parameter determined by 𝑓𝑐 and the spurious uniaxial 188 

tensile strength 𝑓𝑡̅ , 𝑟  is the deviatoric shape function, and ℎ  and 𝑐  are the hardening and 189 

softening variables.  190 

The evolution of the yield surface is controlled by the variations of ℎ and 𝑐, which are in 191 

turn driven by the accumulation of the ISV, whose rate form: 𝜅̇ = √𝜺̇𝑝: 𝜺̇𝑝/𝜒𝑝(𝜂), where ( )̇ 192 

indicates the rate of the variable, 𝜺𝑝 is the plastic strain tensor, and 𝜒𝑝 is a function of the 193 

confinement measure 𝜂 which is defined to depend on the hydrostatic stress invariant and the 194 

deviatoric polar angle (or the Lode angle) and is thus capable of describing non-uniform 195 

confinement. The function of 𝜒𝑝  was obtained by generalizing the one-dimensional 196 

relationship between the active confining stress and the axial strain at peak axial stress 197 



proposed by Teng et al. (2007) and Lim and Ozbakkaloglu (2015c) into a relationship between 198 

the confinement measure 𝜂 (related to the confining stress) and the total plastic strain (related 199 

to the axial strain at peak axial stress). Therefore, 𝜒𝑝 is independent of the specific confinement 200 

condition of the structure being modelled and can accurately predict the ductility increase of 201 

concrete under various levels of passive confinement stiffness and active confinement stress, 202 

as is revealed through the comparison between numerical predictions and experimental data in 203 

Zheng and Teng (2022a). The EPT model can potentially be used to predict the behavior of 204 

concrete confined with a single material or a combination of materials such as mild steel, high 205 

strength steel, and various types of FRPs. When there is no confinement, the confinement 206 

measure 𝜂 = 0, and 𝜒𝑝 = 1. As a result, the accumulation of the ISV becomes 𝜅̇ = √𝜺̇𝑝: 𝜺̇𝑝. 207 

When the confinement is non-zero, the confinement measure has a positive value, i.e., 𝜂 > 0, 208 

and 𝜒𝑝  is larger than 1, and both increase with the confinement level. Accordingly, the 209 

accumulation of the ISV is slowed down, as now 𝜅̇ = √𝜺̇𝑝: 𝜺̇𝑝/𝜒𝑝 , mathematically 210 

representing the increase of ductility due to confinement. The state at which the concrete 211 

reaches the strength surface is referred to as the transition state when the critical ISV value is 212 

attained (i.e., 𝜅 = 𝜅𝑐). In the pre-transition stage, ℎ increases from an initial value of 0 < ℎ0 <213 

1 to 1 (under uniaxial compression, ℎ ∝ −𝜎3/𝑓𝑐), and 𝑐 = 1. In the post-transition stage, ℎ =214 

1 and 𝑐 decreases from 1 and approaches 0 asymptotically (under uniaxial compression, 𝑐 ∝215 

−𝜎3/𝑓𝑐), with the decreasing rate of 𝑐 determined by the softening rate parameter, 𝜅𝑠 (a smaller 216 

𝜅𝑠 value means a faster decrease of 𝑐 ). 217 

The plastic strain increment is governed by the flow rule 𝜺̇𝑝 = 𝜆̇𝑔𝝈, where 𝑔𝝈 denotes the 218 

derivative of the potential function (𝑔) by the stress tensor, and 𝜆̇ is the plastic multiplier. The 219 

newly proposed potential surface, having capped meridians and bulged-triangular deviatoric 220 

traces, is expressed as follows: 221 



𝑔(𝜉, 𝜌, 𝜃; 𝜅) = 𝑟(𝜃, 𝜚(𝜅)) ⋅ 𝜌 + 𝐴(𝜅) ⋅ (𝐵(𝜅) ⋅ 𝑓𝑐 − 𝜉) ⋅ ln
𝐵(𝜅) ⋅ 𝑓𝑐 − 𝜉

𝜉0

= 0 (2) 

where 𝐴(𝜅) and 𝐵(𝜅) control the shape of meridians and can be determined by the plastic 222 

Poisson’s ratio (the ratio between the lateral and the axial plastic strain increments when the 223 

concrete is under compression with no or uniform confinement) at the transition state, 𝜓𝑘; 224 

𝑟(𝜃, 𝜚(𝜅)) controls the shape of deviatoric traces by varying the value of 𝜚(𝜅); 𝜉0 is a constant 225 

determined by 𝑔(𝝈; 𝜅) = 0. In the pre-transition stage, 𝜚(𝜅) = 𝜚0 and the deviatoric trace is 226 

nearly circular; a default value of 𝜚0 ≈ 0.85 was suggested. In the post-transition stage, 𝜚(𝜅) 227 

approaches 𝜚∞ and the deviatoric trace becomes increasingly more triangular; a default value 228 

of 𝜚∞ ≈ 0.6 was suggested. The significant difference between the newly proposed potential 229 

surface and those of previous models is the evolutionary deviatoric trace that is essential for 230 

accurately predicting the dilation of concrete under multiaxial compression. Therefore, the new 231 

constitutive model may be referred to as the evolutionary potential-surface trace (EPT) model 232 

for clarity. 233 

The EPT model has 9 material constants (parameters): the uniaxial compressive strength, 234 

𝑓𝑐 ; the corresponding axial strain, 𝜀𝑐𝑜 ; the elastic modulus, 𝐸 ; the Poisson’s ratio, 𝜈 ; the 235 

softening rate parameter, 𝜅𝑠; the plastic Poisson’s ratio at the transition state, 𝜓𝑘; the fictitious 236 

uniaxial tensile strength, 𝑓𝑡̅; and the initial and final potential-surface deviatoric trace shape 237 

factors: 𝜚0 and 𝜚∞. The first group (𝑓𝑐, 𝜀𝑐𝑜, 𝐸, 𝜈, 𝜅𝑠) influences concrete behavior under all 238 

conditions and can be calibrated from uniaxial compression tests; the second group (𝜓𝑘, 𝑓𝑡̅) 239 

influences concrete behavior under confinement and can be calibrated from compression tests 240 

of concrete under either uniform or non-uniform confinement; and the last group (𝜚0, 𝜚∞) 241 

influences concrete behavior only under non-uniform confinement and has to be calibrated 242 

from compression tests on concrete under non-uniform confinement. All nine parameters are 243 

treated as being independent of each other; for instance, different concretes with the same 𝑓𝑐 244 

value can have different values of 𝜀𝑐𝑜, 𝐸, or 𝜓𝑘. Nevertheless, when experimental data for 𝜀𝑐𝑜, 245 



𝐸, 𝜈 and 𝑓𝑡̅ are unavailable, their values can be estimated from 𝑓𝑐 using empirical relationships 246 

established by previous researchers. In addition, the default values of 𝜅𝑠, 𝜓𝑘, 𝜚0, 𝜚∞, which 247 

are independent of 𝑓𝑐, are provided for use in the EPT model, as detailed in Zheng and Teng 248 

(2022a). It is reiterated that the values of the parameters are the same for the same physically 249 

unique concrete and are independent of the nature/level of confinement or specimen geometry. 250 

The values of the parameters used in the present study are discussed in detail in the respective 251 

sections below. 252 

It is well-known that concrete always exhibits strain-softening under active confinement 253 

(strain-hardening and -softening are simplified as ‘hardening’ and ‘softening’ herein, and 254 

discussed only with respect to the post-transition stage) (e.g., Samani and Attard 2014), while 255 

it can exhibit hardening, softening, and even mixed behavior under passive confinement, as 256 

shown by the existing experimental studies (e.g., Lam and Teng 2003b; Saleem et al. 2017; 257 

Shan et al. 2019). Figure 1a schematically shows a typical axial stress-strain curve of 258 

unconfined concrete as well as two typical axial stress-strain curves of the same concrete under 259 

passive confinement, one that is hardening due to a stiffer confining device and one that is 260 

softening before a rebound due to a softer confining device. It is critical to accurately predict 261 

the post-transition behavior of concrete under passive confinement, and therefore the related 262 

mathematical setup is briefly discussed, for the sake of simplicity, for concrete under uniform, 263 

passive confinement; the mathematical setup can then be readily understood for non-uniform, 264 

passive confinement. Figures 1b and 1c show the evolution of the yield surface in the pre- and 265 

post-transition stages on the Rendulic plane, where the minimum principal (axial) stress axis, 266 

the −𝜎3 axis, forms an angle of 54.7o with the −𝜉 axis, and the projections of the middle and 267 

the maximum principal (confining) stress axes coincide as the −𝜎1 = −𝜎2  axis is 268 

perpendicular to the −𝜎3  axis. The yield surface reflects the frictional and the cohesive 269 

characteristics of concrete (Rudnicki and Rice 1975; Bazant 1978), with the slope being 270 



proportional to ℎ (Figure 1b) and the intercept on the 𝜉 axis being proportional to 𝑐 (Figure 1c). 271 

Accordingly, in the pre-transition stage, the yield surface evolves from an initial yield surface 272 

to the steeper strength surface (Figure 1b), representing the increase of internal friction due to 273 

compaction while maintaining the same cohesion; in the post-transition stage, the yield surface 274 

shifts to the right along the −𝜉 axis (Figure 1c), representing the gradual loss of cohesion due 275 

to cracking while maintaining the same friction.  276 

The uniaxial compression stress path along the −𝜎3  axis and a passively-confined 277 

compression stress path that deviates from the −𝜎3 axis are both shown in Figure 1b (also see 278 

the corresponding 𝜎3 − 𝜀3  curves in Figure 1a). In the post-transition stage, the uniaxial 279 

compression stress path is softening. However, the passively-confined compression stress path 280 

starts from point 𝑜, and, if the increase of confinement and thus friction prevails over the 281 

decrease of 𝑐, will land at point 𝑝 (Figure 1c) having a higher level of axial stress than point 𝑜, 282 

leading to hardening; otherwise, the stress path 𝑜 → 𝑞 is softening (also see the corresponding 283 

𝜎3 − 𝜀3 curve in Figure 1a). Moreover, when cohesion is completely lost at the end of the post-284 

transition stage (𝑐 ≈ 0 ), the concrete is purely frictional and the level of axial stress is 285 

dependent on the confinement. Therefore, the concrete may still exhibit hardening behavior as 286 

long as the confining stress increases, as indicated by the stress path 𝑑 → 𝑒, which will appear 287 

as a ‘rebound’ of the axial stress as shown in Figure 1a. Consequently, the behavior of concrete 288 

under passive confinement is a result of the incessant competition between the increase of 289 

friction and decrease of cohesion, both deeply entangled with the dilation of concrete and the 290 

confining condition. 291 

Implementation in FE analysis 292 

The constitutive model was implemented with the widely used FE package ABAQUS 293 

version 2019 (Dassault Systemes 2020) through its user-defined material (UMAT) subroutine. 294 

An implicit Euler-backward algorithm has been developed as detailed in (Zeng et al. 1996), 295 



which is not repeated herein except for a few noteworthy issues discussed below. In the 296 

previous study (Zheng and Teng 2022a), the continuum tangent stiffness matrix was used as 297 

the material Jacobian (where 𝜕𝑔/𝜕𝝈 was calculated algebraically), since the consistent tangent 298 

stiffness matrix (Simo and Taylor 1985) requires the calculation of the Hessian matrix, H, of 299 

the potential function, 𝑔, with respect to the stress vector, 𝝈6×1, which is difficult for the EPT 300 

constitutive model with a relatively complicated potential function. In the present study, the 301 

difficulty is overcome by calculating the Hessian matrix through numerical differentiation as 302 

follows: 303 

𝐻𝑖𝑗 =
𝜕2𝑔(𝝈)

𝜕𝜎𝑖𝜕𝜎𝑗

=
𝑔(𝜎𝑖 + 𝛿𝜎, 𝜎𝑗 + 𝛿𝜎, … ) − 𝑔(𝜎𝑖 + 𝛿𝜎, 𝜎𝑗 − 𝛿𝜎, … ) − 𝑔(𝜎𝑖 − 𝛿𝜎, 𝜎𝑗 + 𝛿𝜎, … ) + 𝑔(𝜎𝑖 − 𝛿𝜎, 𝜎𝑗 − 𝛿𝜎, … )

4𝛿𝜎2
 

(3) 

where ‘…’ denotes the other four elements of the stress vector and 𝛿𝜎  is a small stress 304 

increment. A parametric study indicated that 𝛿𝜎 = 1 × 10−5 MPa is a reasonable choice to 305 

achieve a sufficiently accurate H with an error below 0.001%. Therefore, the consistent tangent 306 

stiffness matrix, 𝑫𝑒𝑝 , is used in the current study and the convergence performance and 307 

computational efficiency are much improved compared to the continuum tangent stiffness 308 

matrix approach of the previous study. To be compatible with the ABAQUS setup, the stress, 309 

strain, and stiffness tensors are represented by their Voigt form. Therefore, the consistent 310 

tangent stiffness matrix (𝑫6×6
𝑒𝑝

) is calculated as follows: 311 

𝑫6×6
𝑒𝑝

= 𝑹6×6 −
𝑹6×6(𝑔𝝈)6×1(𝑓𝝈)6×1

𝑇 𝑹6×6

(𝑓𝝈)6×1
𝑇 𝑹6×6(𝑔𝝈)6×1 − 𝑓𝜆

 (4) 

where 𝑓𝝈 = 𝜕𝑓/𝜕𝝈 is the derivative of the yield (scalar) function by the stress vector, 𝝈6×1, 312 

𝑓𝜆 = 𝜕𝑓/𝜕𝜆 is the derivative of the yield function by the plastic multiplier, 𝜆, and R is a matrix 313 

calculated as follows: 314 

𝑹6×6 = (𝑰6×6 + 𝜆̇𝑫6×6𝑯6×6)
−1

𝑫6×6 (5) 



where I is the identity matrix, D is the elastic rigidity matrix. It is noted that H is a symmetric 315 

matrix, while 𝑫𝑒𝑝 is non-symmetric for the present constitutive model. Finally, the minimum 316 

value of the softening variable 𝑐 is limited to 𝑐𝑚𝑖𝑛 = 0.01, which has only a trivial influence 317 

on the prediction while increasing the computational efficiency. 318 

FE analysis of FRP-confined non-circular concrete columns 319 

Selected column specimens 320 

Since experimental data of local stress-strain behavior of concrete in FRP-confined 321 

columns are not available, the assumption is made here that the constitutive model is deemed 322 

to be reliable as long as the predicted section-average axial stress-axial strain behavior is close 323 

to the experimental data. Therefore, a comprehensive specimen pool consisting of FRP-324 

confined square, rectangular, and elliptical plain-concrete column specimens reported by three 325 

different research groups was used to evaluate the newly developed EPT model. Additionally, 326 

to demonstrate the difference between the EPT model and the widely used AA plasticity 327 

models, a representative AA model developed by Yu et al. (2010b) incorporating the more 328 

accurate Jiang and Teng (2007) analytical model instead of the Teng et al. (2007) analytical 329 

model and using the local approximation method (i.e., method II in Yu et al. (2010b)) for 330 

confinement was also used to simulate the selected column specimens. All the concrete 331 

columns selected for FE simulation were only confined with an outer FRP jacket and tested 332 

under monotonic concentric axial compression.  333 

Wang and Wu (2008) systematically investigated the effect of corner radius on the behavior 334 

of FRP-confined square normal-strength concrete columns by testing a large number of 335 

specimens, all of which were simulated in the present study and close agreement in the section-336 

average axial stress-axial strain curve was found between the predictions and the experimental 337 

data. The predictions for six representative specimens covering concrete uniaxial compressive 338 

strengths of 31.0 and 53.0 MPa and four corner radii are presented herein to evaluate the EPT 339 



model and investigate the effect of corner radius on the local concrete behavior in square 340 

columns.  341 

In a study conducted by Ozbakkaloglu (2013), the behavior of FRP-confined rectangular 342 

high-strength concrete columns, covering the two corner radii of 15 and 30 mm, was 343 

investigated. Since the effect of corner radius was the focus of the simulations of the square 344 

columns, the simulations of the rectangular columns were placed on the effect of section aspect 345 

ratio. Only columns with a 15 mm corner radius were thus selected for the simulations, and 346 

these columns were chosen instead of those with a 30 mm corner radius as the former exhibit 347 

more significant non-uniformity than the latter. Therefore, a total of six specimen 348 

configurations (each having two nominally identical specimens) covering aspect ratios of 1, 349 

1.5, and 2 and two levels of FRP confinement were simulated to evaluate the EPT model and 350 

investigate the effect of aspect ratio on the local concrete behavior in rectangular columns.  351 

Elliptical sections were the third non-circular section form considered in the numerical 352 

simulations. Available experimental results of FRP-confined elliptical concrete columns are 353 

rather limited (Teng and Lam 2002; Teng et al. 2016;), and the experimental work recently 354 

reported by the authors’ research group (Liu et al. 2022) provided the most comprehensive 355 

experimental data for FRP-confined elliptical columns. A total of 16 columns with filament-356 

wound FRP tubes having fibers close to the hoop direction (so that their axial stiffness can be 357 

neglected in the numerical simulations) were tested, covering two levels of FRP confinement, 358 

three concrete strengths, and four section aspect ratios. Since the selected square columns 359 

included two concrete strengths and the selected rectangular columns included two FRP 360 

confinement levels, only four elliptical normal-strength concrete columns covering the aspect 361 

ratios of 1, 1.5, 2, and 2.5 were simulated to evaluate the EPT model and investigate the local 362 

behavior of concrete in elliptical columns. For convenient reference to the specimens, they are 363 

assigned new names indicating sequentially their cross-sectional shape (‘S’ for square, ‘R’ for 364 



rectangular, and ‘E’ for elliptical), aspect ratio, corner radius (denoted by ‘r’), number of FRP 365 

layers (denoted by ‘L’), and uniaxial compressive strength of concrete; identical features within 366 

the group are not reflected in the names. The details of the specimens, including their original 367 

names, are summarized in Table 1. 368 

FE models 369 

A slice model was used to simulate the selected columns based on the assumption that the 370 

effect of the column-end constraints on the section-average behavior at the mid-height section 371 

(or the mid-height region) is negligible (Teng et al. 2015b); the thickness of the slice was taken 372 

as 10 mm. Since all specimens had a doubly-symmetric cross-section, a quarter model was 373 

adopted. The monotonic concentric compression imposed on the column was simulated by 374 

applying a uniform axial displacement over the section. The concrete was simulated using 8-375 

node brick elements with reduced integration and enhanced hourglass control, the FRP jacket 376 

was simulated using 4-node membrane elements with reduced integration, and the FRP-to-377 

concrete interface was simulated as a perfect bond. A mesh convergence study indicated that 378 

an element size of 5 mm within the section was sufficient as reducing the element size further 379 

was found to lead to indistinguishable changes to the predicted section-average axial stress-380 

axial strain responses. 381 

The material behavior of concrete was simulated using both the newly developed EPT 382 

model (Zheng and Teng 2022a) and the AA model (Yu et al. 2010a) that incorporates the more 383 

accurate core analytical model developed by Jiang and Teng (2007) instead of the Teng et al. 384 

(2007) model. The AA model requires tabulated input data generated using four input 385 

parameters: 𝑓𝑐 , 𝜀𝑐𝑜 , 𝐸 , and 𝜈 . The determination of parameter values is detailed in the 386 

discussions below for each group of specimens. The FRP jacket was simulated as an orthotropic 387 

linear elastic material with the major principal stress direction being the hoop direction of the 388 

column section, while the modulus in the axial direction of the column was assigned the small 389 



value of 0.1 GPa. The rupture strain of the FRP jacket was taken as 1.5%, which is around the 390 

measured maximum FRP hoop strain in Wang and Wu (2008) and Liu et al. (2022) and the 391 

ultimate tensile strain from FRP coupon tests in Ozbakkaloglu (2013), to allow for the 392 

development of sufficient concrete dilation as the focus of the present study is to understand 393 

the local behavior of concrete over a realistically wide range of deformation levels.  394 

Square columns 395 

For the selected square columns, Wang and Wu (2008) reported the axial stress-axial strain 396 

and axial stress-hoop strain curves of six columns, with each of these columns being selected 397 

from three nominally identical columns for one of the six column configurations. They also 398 

reported the results of six corresponding unconfined concrete columns, with each of these six 399 

unconfined columns being also selected from three normally identical specimens.  The values 400 

of 𝐸, 𝑓𝑐, and 𝜀𝑐𝑜 were obtained as their averages of the six axial stress-axial strain curves of the 401 

unconfined columns. Moreover, the value of 𝜅𝑠 was calibrated by matching the descending 402 

branches of the predicted axial stress-axial strain curves with the descending branches of the 403 

six experimental axial stress-axial strain curves. Parameters 𝜓𝑘  and 𝑓𝑡̅  were calibrated by 404 

matching the predicted axial stress-axial strain curve of the FRP-confined circular column (i.e., 405 

the square column with a maximum corner radius of 75 mm) with the reported curve. As 406 

discussed above, these two parameters can be calibrated using the test data of any confined 407 

concrete column (in this case the circular column) and then used for predicting the behavior of 408 

the square columns. Therefore, the values of the parameters are specific to the concrete material, 409 

but the EPT model is not limited to any specific condition of FRP confinement. The default 410 

values of 𝜚0 = 0.85 and 𝜚∞ = 0.6 were used, and a typical value for 𝜈, namely 0.18, was 411 

assumed. The values of the parameters for the EPT model are summarized in Table 2. The 412 

values of 𝐸, 𝑓𝑐, 𝜈, and 𝜀𝑐𝑜 used in the AA model are the same as those in the EPT model. The 413 



values of elastic modulus and nominal layer thickness of the FRP jacket as reported by the 414 

authors, being 220 GPa and 0.165 mm respectively, were adopted in the simulations.  415 

The average axial stress-axial strain and axial stress-hoop FRP strain (averaged from two 416 

opposite mid-side locations in the experiment) curves of the six specimens predicted with the 417 

EPT and the AA models are compared with the experimental data extracted from the study of 418 

Wang and Wu (2008) in Figure 2. To make the discussions simpler and consistent with the 419 

conventional definition that compressive stresses are taken as positive stresses in concrete, 420 

compressive stresses are presented as positive values (i.e., referring to stresses using the −𝜎 421 

values) from here onwards. Specimens Sr0L1C31, Sr0L2C53, and Sr15L1C31with sharp 422 

corners or a relatively small corner radius, as shown in Figures 2a, 2b, and 2c, respectively, 423 

exhibit a softening behavior. For specimens Sr15L2C53 and Sr30L2C53 with a larger corner 424 

radius, as shown in Figures 2d and 2e, respectively, a hardening response following the 425 

softening branch can be seen. The predictions for these five specimens obtained with the EPT 426 

model successfully capture the behavior and are close to the experimental data, but those 427 

obtained with the AA model are incapable of predicting the strongly softening behavior for 428 

these square sections. For specimen S1r60L2C53 with a nearly circular section, both models 429 

predict a hardening second branch that closely matches the experimental data, as shown in 430 

Figure 2f. Figure 2 therefore demonstrates that the EPT model is accurate for FRP-confined 431 

square concrete columns with any corner radius, while the AA model is only suitable for those 432 

with a large corner radius. In addition, the default parameter values based only on 𝑓𝑐  are 433 

summarized in Table 5. Although it is unnecessary to use the default values of 𝜀𝑐𝑜 and 𝐸 when 434 

they are available, the use of the default values for all parameters is considered herein for 435 

comparison purposes; predictions using these default values were obtained for Sr15L1C31 and 436 

Sr15L2C53. The results are shown as the dashed blue curves in Figures 2c and 2d. It is seen 437 



that the post-peak softening nature of the behavior of the specimens can still be predicted, 438 

although the predictions are much less accurate due to the use of less accurate parameter values. 439 

Four states along the loading process representing the pre-damage (the concrete over the 440 

entire section is in the pre-transition stage), early damage (the concrete somewhere in the 441 

section has entered the post-transition stage and is considered ‘damaged’), moderate damage 442 

(more concrete has entered the post-transition stage), and severe damage (the concrete 443 

somewhere in the section has lost its cohesion and is considered ‘completely damaged’) states 444 

of the concrete are indicated by the four points A, B, C, and D on the stress-strain curves 445 

predicted with the EPT model; the severely damaged state D is also indicated for the AA 446 

predictions. The local concrete stresses at these states predicted by the models are examined 447 

below. 448 

The axial stress distributions predicted with the EPT constitutive model from a quarter FE 449 

model for the four C53 columns with corner radii of 0, 15, 30, and 60 mm are visualized over 450 

the entire section as 3D surfaces as shown in Figures 3, 4, 5, and 6 for the four states, 451 

respectively. In each plot, the two horizontal axes define the location within the section, and 452 

the vertical axis indicates the magnitude of axial compressive stress. To clearly identify the 453 

distribution of effectively-confined concrete within the section, the level of 𝑓𝑐 is indicated in 454 

each plot as the grey plane, and the level of 5% higher than 𝑓𝑐, i.e., 1.05 𝑓𝑐, is indicated as the 455 

dashed contour on the 3D stress-distribution surface. The corresponding boundaries of the 456 

regions above these two stress levels are projected as solid (𝑓𝑐) and dashed (1.05 𝑓𝑐) curves on 457 

the cross-section shown below the 3D stress distribution. In the present study, the regions 458 

where the concrete stress is above the 1.05 𝑓𝑐 level is referred to as the effective-confinement 459 

areas (ECAs), and the remaining regions are referred to as the under-confinement areas (UCAs). 460 

At the pre-damage state A (Figure 3), in all four sections, the axial stress over the whole 461 

section is slightly above the 𝑓𝑐 level and barely non-uniform since the confinement provided 462 



by FRP is small. At the early damage state B (Figure 4), in the sharp-corner section (r = 0), 463 

high stresses are observed in the central region, forming a central plateau, and low stresses are 464 

seen in the corner regions; the ECA is a square-shaped central region. By contrast, in the other 465 

three sections which have rounded corners, the highest stresses are found near the corners while 466 

the lowest stresses are seen near the edges; the ECA exhibits the typical arching-effect pattern 467 

and its size is larger for a larger corner radius. Compared with the stress distribution at state A, 468 

the axial stress at state B becomes higher in the ECA but much lower in the UCA/UCAs 469 

(referred to only as UCAs in general for simplicity), resulting in a sharp increase of non-470 

uniformity. With further loading to state C (Figure 5), the total area of ECA/ECAs (referred to 471 

only as ECAs in general for simplicity), decreases in all sections. Meanwhile, the stress 472 

continues to increase in the ECAs and decrease in the UCAs.   473 

Finally, at state D (Figure 6), the ECAs in all sections are similar to those at state C, 474 

indicating that a somewhat stable ECA distribution has been reached at state C. The axial stress 475 

distributions predicted with the AA model at state D are compared with the EPT predictions in 476 

Figure 6; they are very different from each other except for the 60-mm corner radius section. 477 

The AA model predicts a much larger total ECA size and a much higher stress level in the 478 

UCAs than the EPT model. Hence, the AA model was unable to predict the strongly softening 479 

behavior seen in the experimental data. Indeed, the patterns of the state-D AA predictions are 480 

generally close to those of the state-B EPT predictions (Figure 4) for round-corner sections, 481 

implying that a considerable evolution process of local concrete stresses was missed by the AA 482 

model. The EPT predictions indicate that the total size of ECAs continuously decreases along 483 

the loading process until reaching stabilization at a late stage, as can be seen by comparing 484 

Figures 3-6. This is because the EPT model predicts strain-softening behavior for concrete 485 

under highly non-uniform confinement, and therefore the total size of ECAs decreases as the 486 

axial stress of concrete in the ECAs drops below the 1.05𝑓𝑐  level. This is contrary to the 487 



findings in Lin and Teng (2020) based on the FE predictions made with the same AA model, 488 

which indicate that the total ECA size continuously increases along the loading process. As a 489 

result, the present study based on the predictions with the EPT model depicts a much smaller 490 

total ECA size than that observed by Lin and Teng (2020). 491 

The results of local principal confining stresses (i.e., 𝜎1 and 𝜎2) indicate that their directions 492 

are basically unchanged throughout the loading process for square columns. Figure 7a shows 493 

the typical directions and relative magnitudes of 𝜎1 and 𝜎2 for the 0- and the 15-mm corner 494 

radius sections. Obviously, the concrete at the center is under equal lateral stresses (i.e., 495 

uniform confinement), and the concrete in a small area around the center is under nearly equal 496 

principal confining stresses (𝜎2/𝜎1 ≈ 1), i.e., nearly uniform confinement; the confining-stress 497 

non-uniformity (𝜎2/𝜎1) increases as the location moves away from the center, as can be seen 498 

that 𝜎1 ≈ 0 near the edges and −𝜎2 ≫ −𝜎1 in the corner regions. Namely, the concrete in most 499 

parts of the section is subjected to highly non-uniform confinement. Similar observations of 500 

the local principal confining stress directions and the distribution of confining-stress non-501 

uniformity were made by Lin and Teng (2020). The local axial stress-axial strain curves for 502 

concrete along the center-to-corner, center-to-edge, and corner-to-edge paths are shown in 503 

Figure 7b for the two sections; a higher axial stress level indicates more effective confinement. 504 

Therefore, for the sharp-corner section, the levels of confinement are ranked from high to low 505 

as: center, edge, corner; for the rounded corner section: corner, center, edge. Obviously, the 506 

FRP provides very high confinement to concrete in the rounded corner regions, but the 507 

confinement is very low in the vicinities of the sharp corners. It is noted that, although the 508 

confinement in the rounded corner regions is the highest, it is highly non-uniform with a very 509 

high level of 𝜎2. Moreover, the local axial stress-strain curves in all UCAs exhibit an initial 510 

rapidly softening behavior until complete damage (corresponding to point d in Figures 1a and 511 

1c, where 𝑐 = 0), which is followed by a rebound of the axial stress (corresponding to point e 512 



in Figures 1a and 1c, where confinement is slightly increased). It should be noted that as a 513 

quarter model was used in all the simulations and the stresses and strains at the Gauss 514 

integration points are used, the ‘center’, ‘edge’ and ‘corner’ locations indicated in the figure 515 

are not exactly the geometric center, mid-edge point, and corner point but are the Gauss 516 

integration points nearest to them respectively. The same applies to the results for the 517 

rectangular and the elliptical columns, as discussed in Figures 11 and 14. This location 518 

approximation does not compromise the observations and discussions of local stress-strain 519 

behavior in the sections. 520 

By considering the details presented above, the behavior of a square concrete column 521 

confined with FRP and subjected to monotonic concentric compression can be explained as 522 

follows. Before the concrete enters the post-transition stage, the entire section can be 523 

considered as an ECA, with relatively low levels of confinement near the flat sides. With 524 

further loading, the concrete near the flat sides is damaged rapidly and exhibits softening 525 

behavior due to the low levels of confinement there; therefore, these regions become UCAs. 526 

With continuous loading, the ECAs shrink while the UCAs propagate. Meanwhile, the 527 

confinement in the ECAs increases and the shrinking process slows down continuously because 528 

the decohesion process of concrete in the ECAs becomes slower. Eventually, a balance between 529 

the ECAs and the UCAs is achieved in this dynamic process, and by then, the concrete in the 530 

UCAs has been completely damaged. Generally, during this stable stage, a square-shaped 531 

central ECA exists regardless of the corner radius, but the size of the ECAs near the corners is 532 

proportional to the corner radius. Accordingly, the central ECA dominates the confinement 533 

behavior for small-corner-radius sections, and the ECAs in the vicinities of the center and the 534 

corners merge into the arching-effect pattern for large-corner-radius sections.  535 

Rectangular columns 536 



The rectangular high-strength concrete columns had a reported average uniaxial 537 

compressive cylinder strength of 77.9 MPa (Ozbakkaloglu 2013), which was used as 𝑓𝑐 in the 538 

FE simulations. Since 𝜀𝑐𝑜 and 𝐸 were not reported, they were taken as the averages of values 539 

measured from the axial stress-axial strain curves of the FRP-confined rectangular column 540 

specimens. The influence of confinement should be negligible on 𝐸 but could be non-trivial on 541 

𝜀𝑐𝑜. The value of 𝜀𝑐𝑜 was thus taken as the average of 𝜀𝑐𝑜 values of the two nominally identical 542 

specimens denoted by R2L3 as these were the least-confined specimens (i.e., with the highest 543 

aspect ratio and lowest FRP confinement level). Parameters 𝜓𝑘, 𝑓𝑡̅, and 𝜅𝑠 were determined by 544 

matching the FE results with the experimental data of the square column specimens R1L3 (two 545 

nominally identical specimens). The default values of 𝜚0 = 0.85 and 𝜚∞ = 0.6 were used, and 546 

a typical value of 𝜈 = 0.18 was assumed. The values of the parameters in the EPT model are 547 

summarized in Table 3. The values of 𝑓𝑐 and 𝜀𝑐𝑜 used in the AA model are the same as those 548 

in the EPT model. Unlike the EPT model, however, the AA model requires a sufficiently large 549 

value of (𝐸𝜀𝑐𝑜)/𝑓𝑐. The values of 𝐸, 𝑓𝑐 and 𝜀𝑐𝑜 obtained from the test data, (𝐸𝜀𝑐𝑜 )/𝑓𝑐 = 1.4, 550 

do not meet this requirement and lead to convergence problems with the AA model. By 551 

adopting the measured values of 𝑓𝑐 = 77.9 and 𝜀𝑐𝑜 = 0.0034, the minimum admissible value 552 

of 𝐸 by the AA model was found to be 45,900 MPa, which was used in the AA model for the 553 

predictions. This use of a revised value for the elastic modulus, together with the original values 554 

of 𝑓𝑐 and 𝜀𝑐𝑜, has only a rather small overall effect on the predicted axial stress-strain curve, 555 

with a greater effect on the ascending branch than the descending branch of the curve. The 556 

values of elastic modulus and layer thickness of the FRP jacket as reported by the authors, 557 

being 240 GPa and 0.234 mm respectively, were adopted in the simulations. 558 

The average axial stress-axial strain curves predicted with the EPT and the AA models are 559 

compared with the experimental data of 3- and 5-layer FRP-confined specimens (a total of six 560 

configurations, each having two nominally identical specimens) extracted from the study 561 



conducted by Ozbakkaloglu (2013) in Figures 8a and 8b, respectively. All specimens show a 562 

three-branch behavior including an initial pre-damage branch, then a softening branch, and 563 

finally a slowly hardening branch. Such behavior has also been reported for rectangular 564 

columns under concentric compression in other studies (e.g., Lam and Teng 2003b; 565 

Ozbakkaloglu and Oehlers 2008; Wu and Wei 2010; Saleem et al. 2017). For specimens with 566 

the same number of FRP layers, a higher aspect ratio leads to a steeper softening branch and a 567 

lower stress level for the hardening branch. The predictions obtained with the EPT model 568 

successfully capture this overall trend for all specimens and are close to the experimental data. 569 

In addition, predictions for R1L3 with the EPT model were made using the default parameter 570 

values given in Table 5. It is noted that the default value of 𝐸 is 41,700 MPa, which is much 571 

larger than the measured value of 𝐸. The results are shown as the dashed blue curve in Figure 572 

8a; it is seen that the predictions still indicate a softening behavior of the specimen during the 573 

initial post-peak stage, although the stresses are substantially over-predicted. 574 

By contrast, the AA model was unable to predict the softening behavior of the rectangular 575 

columns even for the one with an aspect ratio of 2. Indeed, the AA predictions for rectangular 576 

columns with different aspect ratios are similar, which indicates that the AA model is 577 

inaccurate for FRP-confined rectangular concrete columns. Similarly, the four states 578 

representing the increasing levels of damage for the concrete column are marked on the stress-579 

strain curves predicted with the EPT model, and the final state D for the AA predictions is also 580 

marked. The predicted local responses of concrete at these states are examined below. 581 

The 3D axial stress distributions predicted with the EPT model for the two rectangular 582 

columns confined with 3 layers of FRP are given in Figure 9 for the first three states and in 583 

Figure 10 for the last state. At the pre-damage state A, the axial stresses over the two sections 584 

are slightly higher than 𝑓𝑐 and basically uniform. At the early damage state B, the ECAs in both 585 

sections exhibit the typical arching-effect pattern. At state C, the ECAs in both sections have 586 



shrunk substantially, leaving separate ECAs around the two focal points (referred to as side-587 

centers and indicated as cs in the figure) with a nearly triangular shape and near the corners. 588 

The stresses adjacent to the long-side edge (eL) are the smallest within the section. With further 589 

loading to state D (Figure 10), for both sections, the ECAs are similar to those at state C, 590 

indicating that stable ECAs have been reached at state C.  The axial stress distributions at state 591 

D predicted with the AA model are also given in Figure 10, which are very different from those 592 

predicted with the EPT model for both sections. Similar to the predictions for the square 593 

sections, the AA model leads to a much larger total ECA size (almost the entire section in this 594 

case) and a much higher stress level in the UCAs than the EPT model. The ECA distributions 595 

at state D predicted with the AA model are somewhat similar to those at state A predicted with 596 

the EPT model, indicating the process of local concrete evolution is not well captured by the 597 

AA model. 598 

Figure 11a shows the typical directions and relative magnitudes of 𝜎1  and 𝜎2  for both 599 

rectangular sections. Generally, the concrete in a small area around each side-center is 600 

subjected to nearly equal principal confining stresses (𝜎1/𝜎2 ≈ 1), and the confinement non-601 

uniformity (𝜎2/𝜎1) increases as the location is further away from the side-centers; 𝜎1 ≈ 0 near 602 

eL and eB and −𝜎2 ≫ −𝜎1  near the corners. The concrete in most parts of the section is 603 

subjected to highly non-uniform confinement. The local axial stress-axial strain responses at 604 

the corners, the side-centers, the geometric center (cg), and the two edges are shown in Figure 605 

11b for both sections. Obviously, the confinement is the most effective near the rounded 606 

corners for both sections, and is the second most effective in small areas around the side-centers, 607 

where the concrete is nearly uniformly confined. The confinement is less effective around the 608 

geometric center than that around the two side-centers. Near the two edges, the concrete 609 

exhibits rapid softening behavior followed by a slowly softening or hardening branch, as a 610 

result of the low confinement there.  611 



By comparing the local responses of concrete in square and rectangular sections, it is 612 

evident that the concrete around the center of square sections and the concrete around the side-613 

centers of rectangular sections behave similarly; and the same can be said about the concrete 614 

adjacent to the rounded corners of square and rectangular sections as well as about the concrete 615 

in the UCAs of square and rectangular sections. The only obvious difference is that the ECAs 616 

around the side-centers of rectangular sections are triangular-shaped, while that around the 617 

center of square columns is square-shaped.  Consequently, the local behavior of concrete in a 618 

rectangular section can be understood by referring to that in a square section, as discussed 619 

above. 620 

Elliptical columns 621 

For the group of elliptical specimens considered in the present study, the values of 𝑓𝑐, 𝜀𝑐𝑜, 622 

𝐸 , and 𝜈  of the concrete were reported by Liu et al. (2022); they were obtained from 623 

compression tests of concrete cylinders with a diameter of 150 mm and a height of 300 mm. 624 

The value of 𝜅𝑠 was determined by matching the predictions of the descending branch with the 625 

test data of the cylinders. Parameters 𝜓𝑘 and 𝑓𝑡̅ were determined by matching the predictions 626 

with the test data of the FRP-confined circular column E1. The default values of 𝜚0 = 0.85 627 

and 𝜚∞ = 0.6 were used. The values of the parameters used for the EPT model are summarized 628 

in Table 4. The values of 𝑓𝑐, 𝜀𝑐𝑜, 𝐸 and 𝜈 used in the AA model are the same as those in the 629 

EPT model. The elastic modulus and thickness of the FRP jacket were 38.1 GPa and 3.3 mm 630 

respectively, as reported by the authors. 631 

The section-average axial stress-axial strain curves predicted with the EPT and the AA 632 

models are compared with the experimental data of Liu et al. (2022) in Figures 12a and 12b, 633 

respectively. Column E2.5 exhibits an initial softening behavior followed by a hardening 634 

branch similar to the behavior of rectangular columns, which is successfully captured by the 635 

EPT predictions. Column E2 shows a slowly hardening behavior, and the predictions obtained 636 



with the EPT model are close to the experimental data. For columns E1.5 and E1, the 637 

experimental data show hardening behavior that was closely predicted with the EPT model. In 638 

addition, predictions with the EPT model for column E2 were made using the default parameter 639 

values given in Table 5. The default values are close to the calibrated values of the parameters, 640 

and the predictions, shown as the dashed red curve in Figure 12a, are close to the experimental 641 

data of E2. 642 

By contrast, the AA model was unable to predict the softening behavior of E2.5 or the 643 

slightly hardening behavior of E2. Indeed, the stress-strain curves predicted with the AA model 644 

for the four elliptical columns are quite close, which indicates the unsuitability of the AA model 645 

for FRP-confined elliptical columns with large aspect ratios. The four states of interest are 646 

indicated in the charts.  647 

The axial stress distributions for the four sections at state D predicted with both models are 648 

compared in Figure 13. The stress distributions at state D of the E1 and the E1.5 sections 649 

predicted with the two models are similar; the axial stresses over the entire section exceed the 650 

1.05𝑓𝑐 level (the dashed contour line indicating the 1.05𝑓𝑐 level is absent because the entire 651 

stress surface is above the 1.05𝑓𝑐 level). However, for the E2 and the E2.5 sections, the EPT 652 

model predicts ECAs adjacent to the vertices (i.e., the ends of the major axis) separated by a 653 

UCA in the central region, while the AA model still predicts that the axial stresses over the 654 

entire section exceed the 1.05𝑓𝑐 level. As a result, the AA model was unable to predict the 655 

slowly hardening behavior of E2 and the softening behavior of E2.5. 656 

The local principal confining stresses for E1.5 and E2.5 are presented in Figure 14a. In both 657 

sections, the confinement is nearly uniform (𝜎1 ≈ 𝜎2) in a small area near each vertex, and the 658 

confinement non-uniformity (𝜎2/𝜎1) increases as the location is further away from the vertices. 659 

For column E1.5, the non-uniformity is rather moderate as 𝜎1 is non-trivial around the center 660 

and near the co-vertices (i.e., ends of the minor axis). By contrast, for column E2.5 having a 661 



much larger aspect ratio, the confinement is highly non-uniform both around the center and 662 

near the co-vertices: where 𝜎1 ≈ 0. Consequently, as shown in Figure 14b, the local axial 663 

stress-axial strain response is hardening at the vertices for both elliptical sections, but it is 664 

hardening around the center and at the co-vertices for E1.5 while softening for E2.5. Similar to 665 

the local concrete behavior in the UCAs of square and rectangular sections, the local softening 666 

behavior gradually becomes slightly hardening as concrete approaches the complete damage 667 

stage, corresponding to the stress path between points d and e in Figure 1. Accordingly, at the 668 

section level, the average axial stress-axial strain response becomes slightly hardening 669 

eventually. 670 

By comparing the local behavior of concrete in elliptical sections with that in square and 671 

rectangular sections, it can be readily seen that the behavior of concrete near the vertices of an 672 

elliptical section is akin to that around the center of a square section and the side-centers of a 673 

rectangular section, and the behavior of concrete in the UCAs in all non-circular columns is 674 

similar. Specifically, in terms of local concrete behavior, there is no region in an elliptical 675 

section that resembles the rounded corner regions in a square or rectangular section. The total 676 

size of ECAs as a proportion of an elliptical section decreases as the aspect ratio increases.  677 

Direct measurement of local axial stress 678 

The authors’ group has previously made an attempt to experimentally measure local axial 679 

stresses in a series of FRP-confined square and rectangular columns, of which one rectangular 680 

column was reported in a conference paper (Teng et al. 2015a). In that study, an FRP-confined 681 

concrete column specimen was prepared as two nominally identical halves. During the 682 

concentric compression loading process, a thin film containing a 2D array of piezoelectric 683 

sensors (referred to as the pressure mapping system) was placed between the two halves (i.e., 684 

at the mid-height section of the test specimen) to measure the local axial stresses. Considering 685 

the unevenness of the concrete surfaces sandwiching the pressure film, the random coarse 686 



aggregate distribution, and the possible calibration errors of the pressure mapping system, 687 

among other uncertainties, the accurate measurement of local stresses in these test specimens 688 

and their robust interpretation is no small challenge. Furthermore, Teng et al. (2015a) presents 689 

only the local axial stresses measured in one of the test columns and their comparisons with 690 

FE predictions obtained with the AA model. During the present study, significant discrepancies 691 

between the present AA predictions and those given in Teng et al. (2015a) were found, 692 

suggesting that the FE results in Teng et al. (2015a) have involved some important errors. Due 693 

to the above reasons, it is difficult to reach a firm conclusion on the accuracy of FE predictions 694 

through comparison with the test data in Teng et al. (2015a). Nevertheless, a new attempt of 695 

comparing the test data for the chosen column specimen reported in Teng et al. (2015a) and 696 

the newly obtained predictions with the EPT and the AA models are presented in Appendix A 697 

for additional reference. 698 

Conclusions 699 

In the present paper, an FE study of FRP-confined square, rectangular, and elliptical 700 

columns under monotonic concentric compression has been reported. The FE analysis is based 701 

on the EPT (evolutionary potential-surface trace) plasticity constitutive model for concrete 702 

recently proposed by the authors and reported in a previous paper (Zheng and Teng 2022a). 703 

The key components of the model have been briefly introduced, and its implementation with 704 

the FE package ABAQUS through an Euler-backward algorithm employing the consistent 705 

tangent matrix has been explained. It has also been demonstrated that the model provides 706 

accurate predictions of the section-average behavior for all the selected FRP-confined non-707 

circular plain-concrete columns. Therefore, the FE predictions for the local behavior of 708 

concrete were deemed to be closely reflective of the real local behavior of concrete. Based on 709 

the FE results, the following conclusions can be made for FRP-confined non-circular concrete 710 

columns under axial compression: 711 



i. In all non-circular sections, the confinement to concrete is significantly non-uniform 712 

except in the close vicinities of the center of a square section, the two side-centers of a 713 

rectangular section, and the two vertices (ends of the major axis) of an elliptical section, where 714 

the concrete is under nearly uniform confinement. In much larger areas surrounding these small 715 

areas of nearly uniform confinement, the concrete is effectively confined, as indicated by 716 

having axial stresses exceeding 1.05 𝑓𝑐 ; these larger areas are referred to as effective-717 

confinement areas (ECAs).  718 

ii. For square and rectangular sections with rounded corners, the confinement in the 719 

rounded corner regions is more effective, although highly non-uniform, than that in the other 720 

ECAs surrounding the center or side-centers. Hence, the rounded corner regions also qualify 721 

as ECAs. 722 

iii. When the concrete somewhere in the section enters the softening stage or starts to 723 

experience damage, the ECAs shrink continuously but at a reducing rate of shrinkage as the 724 

deformation level increases, with associated changes in the shapes of ECAs. Meanwhile, the 725 

level of confinement in the ECAs continuously increases. Eventually, as a result of these two 726 

dynamic processes, a nearly stable ECA distribution in the section is reached. Generally, 727 

around the center of a square section, the ECA has a square shape, and around the side-centers 728 

of a rectangular section, the ECAs have a triangular shape; their shapes and sizes are little 729 

influenced by the corner radius. Near the corners of a square or a rectangular section, the size 730 

of the ECAs is related to the corner radius, and near the vertices of an elliptical column, the 731 

size of the ECAs is adversely proportional to the section aspect ratio. 732 

iv. The concrete in the ECAs generally exhibits either a hardening or a slowly softening 733 

stress-strain response and suffers only moderate damage even at a late stage of loading. The 734 

concrete in the remaining regions (under-confinement areas or UCAs) generally exhibits a 735 



rapidly softening response until it is completely damaged, and thereafter it exhibits a slowly 736 

hardening response.  737 

v. The section-average axial stress-axial strain behavior of an FRP-confined non-circular 738 

concrete section is an outcome of the interplay between the ECAs and the UCAs. The average 739 

behavior appears as hardening if the effect of the ECAs dominates and softening otherwise. 740 

Notably, the effect of the ECAs seems to be more dependent on the geometric parameters of 741 

the section, including the section shape, aspect ratio and corner radius, than the stiffness of the 742 

FRP confining jacket/tube. 743 

The EPT plasticity constitutive model can potentially be used to gain a deeper 744 

understanding of confinement mechanisms and obtain numerical results for the establishment 745 

of more accurate analytical models for the section-average stress-strain behavior of FRP-746 

confined non-circular concrete columns. The EPT model can also be used in three-dimensional 747 

FE models for predicting the behavior of concrete columns with more complicated forms of 748 

confinement, but it should be noted that such FE models are likely to be subject to mesh-749 

dependence when strain-softening behavior is involved. The EPT plasticity model summarized 750 

in the present paper enriched with non-local features will be presented in a forthcoming paper 751 

to address the mesh-dependence issues.  752 
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Appendix A Local axial stress measurements of an FRP-confined rectangular column in Teng 930 

et al. (2015a) 931 

The tested column had a height of 332 mm, a cross-section of 133 mm × 166 mm, and a 932 

corner radius of 25 mm. The reported concrete properties of 𝑓𝑐 = 42.5 MPa and 𝜀𝑐𝑜 = 0.0024 933 

and the default values of 𝐸 and 𝜈 were used in both the EPT and AA models. In addition, for 934 

the EPT model, the values of parameters 𝜓𝑘 , 𝑓𝑡̅ , 𝜅𝑠  and 𝜚∞ , which were determined by 935 

matching the section-average axial stress-strain predictions of three square columns with 936 

unpublished data provided by the authors of Teng et al. (2015a), are listed in Table A1.  937 

The local axial stresses measured at a section-average stress level of 1.3 fc were extracted 938 

from the data published in Teng et al. (2015a) and are compared with the FE predictions 939 

obtained with the EPT and AA models at two states (A and B). There are good reasons for the 940 

choice of different states in the AA predictions for comparison herein, with a section-average 941 

stress level of 1.3 fc in the FE analysis being an obvious option as was adopted by Teng et al. 942 

(2015a). This obvious option was not taken for the comparisons herein as the axial stress-strain 943 

curve from the AA model was found to differ significantly from the experimental axial stress-944 

strain curve. At state A, the axial strains from both models are equal to the axial strain 945 

corresponding to the 1.3 fc stress level in the test data, which was found from unpublished 946 

section-average axial stress-strain curve of the column provided by the authors of Teng et al. 947 

(2015a). At state B, the maximum axial stresses (at the corner of the section) from both models 948 

are equal to the measured maximum axial stress over the section. Figure A1 compares the 949 

measured axial stresses with FE predictions along the three chosen paths over the section, and 950 

these paths are indicated in Figure A1. The measured axial stress distributions along the paths 951 

were directly obtained from the individual sensors along the paths as reported in Teng et al. 952 

(2015a), and the predicted axial stress distributions along the paths were obtained through 2D-953 

interpolation of the FE results using the location of the three paths.  954 



For the state A comparison for each path, the axial stresses are normalized by the maximum 955 

axial stress from the same source. The predictions from the two FE models generally agree 956 

with each other. Along path 2, the two sets of FE predictions show similar trends at state A 957 

(Figure A1b) but are very different from the measured results. However, they show a close 958 

match with the test data at state B (Figure A1e); the slight difference between the predicted and 959 

the measured peak stresses is due to the discrete load steps of the FE results. Along paths 1 and 960 

3, the predictions from both FE models do not match the measured results well for both states. 961 

Further work is obviously necessary to achieve more robust and conclusive comparisons 962 

between FE predictions and measurement results for local axial stresses in FRP-confined 963 

concrete columns. 964 

  965 



Tables 966 

Table 1. FRP-confined non-circular columns simulated in the present study 967 

Group Specimen Original name 
Depth/major 

axis [mm] 

Width/minor 

axis [mm] 

Height 

[mm] 

Corner 

radius 

[mm] 

Number 

of FRP 

layers 

Square columns 

(Wang and Wu 

2008) 

Sr0L1C31 C30-r0-1ply 

150 150 300 

0 1 

Sr15L1C31 C30-r15-1ply 15 1 

Sr0L2C53 C50-r0-2ply 0 2 

Sr15L2C53 C50-r15-2ply 15 2 

Sr30L2C53 C50-r30-2ply 30 2 

Sr60L2C53 C50-r60-2ply 60 2 

Rectangular 

columns 

(Ozbakkaloglu 

2013) 

R1L3 A10R15L3 
150 150 

300 15 

3 

R1L5 A10R15L5 5 

R1.5L3 A15R15L3 
187.5 125 

3 

R1.5L5 A15R15L5 5 

R2L3 A20R15L3 
225 112.5 

3 

R2L5 A20R15L5 5 

Elliptical 

columns (Liu et 

al. 2022) 

E1 E10A-L06-80 

300 

300 

600 ‒ 6 
E1.5 E15A-L06-80 200 

E2 E20A-L06-80 150 

E2.5 E25A-L06-80 120 

 968 
Table 2. Values of model parameters for square columns 969 

Specimen 𝑓𝑐[MPa] 𝜀𝑐𝑜 𝐸[MPa] 𝜅𝑠/𝜅𝑐 𝜓𝑘 𝑓𝑡̅/𝑓𝑐 𝜚∞ 𝜈 

Sr0L1C31 
31.0 0.0025 30900 10 0.6 0.10 0.6 0.18 

Sr15L1C31 

Sr0L2C53 

53.0 0.0026 36200 10 1.2 0.14 0.6 0.18 
Sr15L2C53 

Sr30L2C53 

Sr60L2C53 

 970 
Table 3. Values of model parameters for rectangular columns 971 

Specimen 𝑓𝑐[MPa] 𝜀𝑐𝑜 𝐸[MPa] 𝜅𝑠/𝜅𝑐 𝜓𝑘 𝑓𝑡̅/𝑓𝑐 𝜚∞ 𝜈 

R1L3 

77.9 0.0034 32600 8 0.6 0.10 0.6 0.18 

R1L5 

R1.5L3 

R1.5L5 

R2L3 

R2L5 

 972 
Table 4. Values of model parameters for elliptical columns 973 

Specimen 𝑓𝑐[MPa] 𝜀𝑐𝑜 𝐸[MPa] 𝜅𝑠/𝜅𝑐 𝜓𝑘 𝑓𝑡̅/𝑓𝑐 𝜚∞ 𝜈 

E1 

41.2 0.0021 34200 8 0.8 0.14 0.6 0.185 
E1.5 

E2 

E2.5 

 974 
Table 5. Default values of model parameters 975 

Specimen 𝑓𝑐[MPa] 𝜀𝑐𝑜 𝐸[MPa] 𝜅𝑠/𝜅𝑐 𝜓𝑘 𝑓𝑡̅/𝑓𝑐 𝜚∞ 𝜈 

Sr15L1C31 31.0 0.0019 26300 

8 1.0 0.10 0.6 0.18 
Sr15L2C53 53.0 0.0024 34400 

R1L3 77.9 0.0030 41700 

E2 41.2 0.0022 30300 

 976 
Table A1. Values of model parameters for the test column with measured local stresses 977 

𝑓𝑐[MPa] 𝜀𝑐𝑜 𝐸[MPa] 𝜅𝑠/𝜅𝑐 𝜓𝑘 𝑓𝑡̅/𝑓𝑐 𝜚∞ 𝜈 

42.5 0.0024 34200 10 1.2 0.14 0.8 0.18 



Figure captions 978 

Fig 1. Different stress paths during the pre- and post-transition stages: (a) stress-strain curves, (b) pre-transition 979 

path, (c) post-transition path. 980 

Fig 2. Stress-strain curves of FRP-confined square columns: predictions versus test data from Wang and Wu 981 

(2008): (a) Sr0L1C31, (b) Sr0L2C53, (c) Sr15L1C31, (d) Sr15L2C53, (e) Sr30L2C53, (f) Sr60L2C53. 982 

Fig 3. Axial stress distributions predicted with the EPT model for FRP-confined square columns of different 983 

corner radii: state A 984 

Fig 4. Axial stress distributions predicted with the EPT model for FRP-confined square columns of different 985 

corner radii: state B 986 

Fig 5. Axial stress distributions predicted with the EPT model for FRP-confined square columns of different 987 

corner radii: state C 988 

Fig 6. Axial stress distributions predicted with the EPT and the AA models for FRP-confined square columns of 989 

different corner radii: state D 990 

Fig 7. Confining and axial stresses in square sections with sharp and rounded corners: (a) principal confining 991 

stresses, (b) axial stress-axial strain curves. 992 

Fig 8. Stress-strain curves of FRP-confined rectangular columns: predictions versus test data of Ozbakkaloglu 993 

(2013): (a) Specimens confined with 3 layers of FRP, (b) Specimens confined with 5 layers of FRP. 994 

Fig 9. Axial stress distributions predicted with the EPT model for an FRP-confined rectangular columns of 995 

different aspect ratios at states A, B, and C 996 

Fig 10. Axial stress distributions predicted with the EPT and the AA models for FRP-confined rectangular 997 

columns of different aspect ratios at state D 998 

Fig 11. Confining and axial stresses in rectangular sections of different aspect ratios: (a) principal confining 999 

stresses, (b) axial stress-axial strain curves. 1000 

Fig 12. Stress-strain curves of FRP-confined elliptical columns: predictions versus test data of Liu et al. (2022): 1001 

(a) EPT model, (b) AA model. 1002 

Fig 13. Axial stress distributions predicted with the EPT and the AA models for FRP-confined elliptical 1003 

columns of different aspect ratios at state D 1004 

Fig 14. Confining and axial stresses in elliptical sections with different aspect ratios: (a) principal confining 1005 

stresses, (b) axial stress-axial strain curves. 1006 



Fig A1. Axial stress distributions along three paths of an FRP-confined rectangular column: predictions versus 1007 

test data of Teng et al. (2015a): (a) Path 1, state A, (b) Path 2, state A, (c) Path 3, state A, (d) Path 1, state B, (e) 1008 

Path 2, state B, (f) Path 3, state B. 1009 

 1010 
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