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Abstract 

Vibration-based electromagnetic energy harvesters involves the apparent coupling effect 

between the dynamics of mechanical structures and electric circuit. Such a coupling effect 

complicates the optimization of energy harvesting circuit impedance in the design of energy 

harvesters. The classical impedance matching that ignores the coupling effect becomes 

inapplicable. This paper proposes an unified overall impedance optimization strategy for the 

optimization of circuit load impedance to achieve the maximum output power and power 

efficiency. By converting the mechanical structures of single-degree-of-freedom (SDOF) and 

multiple-degree-of-freedom (MDOF) energy harvesters into equivalent circuit models, the 

electro-mechanical coupling is simplified as the coupling effect insider an electric circuit. This 

conversion provides the insight into an overall impedance optimization framework from the 

pure electric circuit perspective. Different optimal impedance values of energy harvesting 

circuits under different excitation types (harmonic and random) were derived within the 

proposed overall impedance optimization framework. The optimal impedance values for the 

maximum output power depend on the circuit dynamics, structural characteristics, and 

excitation types; while the optimal impedance values for the maximum power efficiency is 

related to the inherent damping of the structure and transducer, but independent with excitation 

types. Numerical simulations of various cases were conducted, including resonant, non-

resonant and random excitation in SDOF and MDOF harvester. The simulation results 

successfully validate the effectiveness and accuracy of the proposed overall impedance 

optimization strategy for enhancing the energy performance of vibration-based electromagnetic 

energy harvesters. 
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Nomenclature 

sL  Inductor of the power source outP  Output power of the harvester 

coilL  Internal inductor of the 
electromagnetic motor inP  Input power of the harvester 

strL  Equivalent structural inductor of the 
SDOF harvester 

  Power efficiency of the harvester 

str_iL  ith equivalent structural inductor of 
the MDOF harvester 1  Conversion efficiency from the 

mechanical power to electromagnetic  

sR  Resistor of the power source  2  Conversion efficiency from the total 
electrical power to harvesting circuit 

coilR  Internal resistor of the 
electromagnetic motor 3  Conversion efficiency of the harvesting 

circuit, equals to 1 in this study 

strR
 

Equivalent structural resistor of 
SDOF harvester si  Current of the current source 

str_iR  ith equivalent structural resistor of 
the MDOF harvester strm  Mass of the SDOF harvester 

loadR  Loading resistor of the harvesting 
circuit str_im  Mass of the ith degree of freedom in 

MDOF harvester 

p+strR  Equivalent resistor of the SDOF 
harvester's and parasitic damping strc  Inherent damping coefficient of the 

SDOF harvester 

pR  Equivalent resistor of parasitic 
damping str_ic  Inherent damping coefficient of the ith 

degree of freedom in MDOF harvester 

ThR  Thévenin equivalent resistance pc  Parasitic damping of the electromagnetic 
motor 

sC  Capacitor of  the power source  strk  Stiffness of SDOF harvester 

strC  Equivalent capacitor of the primary 
structure mass str_ik  Stiffness of the ith degree of freedom in 

MDOF harvester 

str_iC  ith equivalent structural capacitor of 
the MDOF harvester eqK  Machine constant of the electromagnetic 

motor 

load  Loading reactance of the harvesting 
circuit 

  Phase angle between the current and 
voltage in harvesting circuit 

Th  Thévenin equivalent reactance IS  Average power spectral density of the 
random current source 

outZ  Impedance of the harvesting circuit oS  Average power spectral density of the 
random input 

TolZ  Impedance of the harvesting circuit 
and transducer resf  Frequency of excitation  

ThZ  Thévenin equivalent impedance res_if  ith order resonant frequency in MDOF 
harvester 

ThV  Thévenin equivalent voltage x  Relative velocity between two terminals 

sV  Voltage of the voltage source   
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1. Introduction 

Energy harvesting is known as the process of extracting energy from surrounding 

environments and converting into usable energy (Park et al. 2008). Vibration-based energy 

harvesting, as a down-to-earth renewable energy source, has evoked immerse research interest, 

because of its wide availability and suitability in many situations. The harvested energy can 

theoretically provide a sustainable power source to low-power wireless sensors, thus solving 

the power supply problems associated with wireless sensors (Shen et al. 2012; Sazonov et al. 

2009; Cahill et al. 2014; Iqbal and Khan, 2018). However, the output power of many energy 

harvesting devices usually ranges from μWs to mWs (Mitcheson, 2005), whereas the typical 

power consumption of a wireless sensor is from tens to hundreds of mWs (Priya, 2005). 

Therefore, great efforts have been made recently to optimize the design of vibration-based 

energy harvesters, from either mechanical or electrical perspectives (Saha et al. 2006; Kong et 

al. 2010; Challa et al. 2011; Yang et al. 2009; Tang et al. 2010; Zhao et al. 2018; Liao and 

Sodano, 2018; Liu et al. 2018). 

Different transduction mechanisms including piezoelectric, electromagnetic and 

electrostatic have been explored to convert vibration energy into electrical energy (Erturk, 

2009). The optimization of electromagnetic energy harvesting devices has been more frequently 

studied, considering its relatively higher output power (at least mW level) compared with other 

types of small-scale harvesters (Shen, 2014). For energy harvesting circuits, the traditional 

impedance matching (IM) has been applied to meet the maximum output power condition 

(Kasyap et al. 2002; Hambley, 2008). Zhu et al. (2012) presented a theoretical and experimental 

study of the linear electromagnetic motor connected with four representative circuits when 

excited by a constant harmonic load. The conditions for maximum output power and maximum 

efficiency were derived separately, and the corresponding result was consistent with the IM 

strategy. The constant input signal in their derivations assumes that the variation of the energy 

harvesting circuits does not influence the input signal, which may not be true in the practical 

applications when the circuit inevitably affects the dynamics of vibration-based energy 

harvesters and changes the input signal. In fact, the resistance, inductance and capacitance in 

the external circuit could be regarded as analogues to damping, stiffness and inertance, 

respectively, added to the primary structure (Firestone, 1993; Zhu et al. 2013; Li and Zhu, 2018). 

Ye et al. (2017) conducted the power analysis of a single-degree-of-freedom (SDOF) vibration-

based energy harvester and showed that the generated output power was greatly affected by the 

excitation frequency and electromagnetic damping and stiffness. These parameters influence 

both the structural dynamics of the SDOF harvesters and the efficiency of the energy harvesting 
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circuit, and thus such effects should be taken into consideration simultaneously to maximize 

the output power. 

Williams and Yates (2001) reached the essentially conclusion that the maximum output 

power of an SDOF harvester corresponds to the following two conditions: (1) the excitation 

frequency is equal to the natural frequency of the energy harvester, which generates the 

resonance of the harvester; (2) the electrical impedance of the load equals the equivalent 

impedance of the mechanical damping. By considering the coil characteristic of an 

electromagnetic harvester, Stephen (2006) reached a modified conclusion that the maximum 

out power in a resonance state could be achieved when the loading resistance of the circuit was 

equal to the sum of the coil resistance and the electrical analogue of the mechanical damping 

coefficient. 

These aforementioned optimization in the literature mainly focused on the ideally resonant 

state. In a more general non-resonant situation, Cheng et al. (2007) determined the maximum 

power generation delivered into the electrical load through the complex conjugate of the source 

impedance, and proposed an overall impedance optimization with consideration of the primary 

structure characteristic under harmonic excitation. Cammarano et al. (2010) derived a similar 

optimal result and tried to re-tune a resonant state of the energy harvester through this theory. 

More recently, Cammarano et al. (2014) derived an optimum resistance for a nonlinear energy 

harvester for a fixed sinusoidal excitation considering the influence of the structure by ignoring 

the internal resistor and inductor of the coil. The analysis results indicated that the optimal 

resistance was related to several parameters, such as structural frequency, excitation frequency 

and mechanical damping. 

Surprisingly, rare attention has been directed to the optimal conditions of vibration-based 

harvester under random excitations, an arguably more common types of environmental 

vibrations. Another apparent deficiency is that the majority of the previous optimization studies 

focused on SDOF harvesters, despite the fact that the harvesters may sometimes be multi-

degree-of-freedom (MDOF) structures (e.g., Yang et al. 2009; Aldraihem and Baz, 2011; 

Magdy et al. 2014; Tang and Yang, 2012; Xiao et al. 2016). Hence, the optimizations presented 

in the previous studies only provide the incomplete answer to individual cases. This paper aims 

to propose a unified solution for vibration-based energy harvesters based on the overall 

impedance optimization strategy, which is applicable to either SDOF or MDOF energy 

harvesters under different excitations. The paper is organized as follows: after the introduction, 

the classical IM strategy is introduced first in Section 2. Then, based on the dynamic analogy 

between mechanical and electrical systems, the vibration-based electromagnetic energy 
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harvester is represented by an alternative equivalent circuit entirely in the electrical domain. 

With such an equivalent circuit model, the optimal conditions for output power and efficiency 

are derived mathematically under various excitation types in Section 3. Subsequently, 

numerical models are established to simulate six different scenarios (SDOF and MDOF 

harvesters under resonant, non-resonant and random excitations) and validate the proposed 

overall impedance optimization strategy in Section 4. Finally, the conclusion of this paper are 

drawn in Section 5. 

2. Classical IM 

2.1 Voltage Source 

The traditional IM in electronics refers to the practice of designing the loading impedance 

to maximize the power transfer. Fig. 1 shows a representative electrical model with a voltage 

source Vs and internal impedance (Capacitance Cs, Inductance Ls and Resistance Rs). The 

corresponding source impedance Zs is given as, 

 s s s
s

1
Z R L j

C




 
    

   
(1)

where   is the frequency of the voltage source. To maximize the average power transfer to the 

load, the loading impedance Zload should be the complex conjugate of the source impedance, 

which is commonly known as the classical IM, 

 load load loadZ R j   (2)

where 

  load s sReR Z R   (2.1)

  load s s
s

1
Im Z L

C
 


   

 
(2.2)

where Re (  ) and Im (  ) denote the real and imaginary parts of the concerned impedance, and 

loadR  and load  are the loading resistant and reactance, respectively. 
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Fig. 1 Classical IM with voltage source 

2.2 Current Source 

For a circuit with a current source or more complex electric network, the Thévenin’s 

theorem presents a standard technique to convert a complex circuit into an equivalent simplified 

circuit with a voltage source in a series connection with an internal impedance, 

 The Thévenin equivalent voltage ThV is the open circuit voltage at the output terminals of 

the original circuit; 

 The Thévenin equivalent impedance ThZ  can be calculated across the terminals using the 

formulae for series and parallel circuits after replacing the current and voltage sources 

with open and short circuits, respectively. 

Fig. 2 shows a classical electrical circuit with a current source. The corresponding 

Thévenin parameters are, 

 Th s ThV i Z  (3)

 Th Th ThZ R j   (4)

where si  is the source current, ThR and Th  are the Thévenin equivalent resistance and 

reactance, respectively. Accordingly, the optimal output impedance for the maximum power 

transfer can be calculated as, 

 

s
load Th 2

2
s s

s

1
1

R
R R

R C
L




 
 

   
   

(5.1)

Source
Capacitor

Source
Inductor

Source
Resistor

sC sL sR
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2
s s

s
load Th 2

2
s s

s

1

1
1

C R
L

R C
L




 




 
   
   

 
   

   

(5.2)

Eqs. (2) and (5) contain the frequency  , implying the optimal impedance is only for the 

maximum output power with the known frequency of a harmonic input. In addition, Eqs. (2) 

and (5) assume a constant voltage or current source that is independent with the selected loading 

impedance. In vibration-based energy harvesting, however, random inputs (excitation sources) 

with a broad frequency bandwidth are very common. The circuit dynamics is coupled with 

structural dynamics. Therefore, the variation of the loading impedance in the circuit may affect 

the power input into the circuit, and the coupling effect of mechanical and electrical systems 

must be properly considered. In this regard, this classical IM theory provides an insufficient 

solution that cannot be directly applied to the optimization of vibration-based energy harvester. 

Therefore, an overall impedance optimization method is presented in the next section. 

 

Fig. 2 Classical impedance matching with current source 

3. Overall Impedance Optimization in SDOF Harvester 

3.1 Structural and Electrical System 

Fig. 3 shows a classical configuration of a vibration-based electromagnetic energy 

harvester, which comprises a SDOF primary structure and an electromagnetic transducer 

connected to a harvesting circuit. Herein, SDOF describes the dynamics of the mechanical 

structure. However, if the dynamics of the circuit is taken into account, the degrees of freedom 

of the whole system might be more than one. 

Source
Capacitor

Source
Inductor

Source
Resistor

sRsLsC
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The SDOF structure consists of a mass strm , a stiffness strk  and an inherent damping strc . 

The electromagnetic transducer typically consists of permanent magnets and coils that moves 

relative to each other, which could translate the structural oscillations into electricity generation. 

The coils inevitably own resistance coilR and inductance features coilL . Meanwhile, the 

electromagnetic transducer provides the parasitic damping cp owing to various mechanical 

losses, such as friction and iron loss. As shown in Fig. 3, during the energy transformation, 

structural vibration generates an electromotive force (EMF) in the electromagnetic transducer, 

and the EMF further generates a current flowing through the attached harvesting circuit and 

internal impedance of transducer. In the meantime, an electromagnetic force proportional to the 

current would be generated and acting against the oscillation of the primary structure. Hence, 

the electromagnetic transducer contributes both the parasitic damping and electromagnetic 

forces to the mechanical structures, which may affect the structural vibrations as mentioned 

above. 

 

Fig. 3 SDOF structure with harvesting circuit 

3.2 Equivalent Circuit Representation 

Fig. 3 shows a coupled electro-mechanical system. Based on the analogy between 

electrical component and mechanical structures (Firestone, 1933; Zhu et al., 2013; Li and Zhu, 

2018), 

 2
eq

F
i

K
  (6.1)

 
2
eqV K x   (6.2)

R

Resistor

L

Inductor

coil

coil

x

pc

strm

strc
strk

F
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eq

str
str

K
L

k


 

(6.3)

 
str

str 2
eq

m
C

K


 

(6.4)

 

2
eq

p
p

K
R

c
 ,  

2
eq

str
str

K
R

c


 

(6.5)

where F denotes the excitation force, x  is the relative velocity between two terminals, and eqK  

is the machine constant of electromagnetic device, strL , strC  and strR  are structural equivalent 

inductance, capacitance and resistance, respectively, and pR  represents the equivalent 

resistance corresponding to parasitic damping. Then the coupled system shown in Fig. 3 could 

be represented by an alternative equivalent circuit (as shown in Fig. 4) that is entirely in the 

electrical domain. In this dynamic analogy, the dynamic force on the SDOF structure 

corresponds to an electrical current generator, and the vibration velocity corresponds to the 

voltage across the electrical elements. Notably, this topology is also applicable to the energy 

harvester subjected to a ground motion. In Fig. 4, the left blue block represents the equivalent 

part of the mechanical structure; and the red block represents the electromagnetic transducer. 

In this equivalent circuit, most of the electrical elements are connected in parallel with each 

other. 

 

Fig. 4 Equivalent circuit for SDOF coupling system 

3.3 Weakly Coupled System 

In some cases with very small eqK and pc , the electromagnetic transducer produces small 

forces and thus the influence of the electromagnetic transducer connected to the energy 

R

Resistor

L

Inductor

c
Resistor

mmm
Capacitor

k
Inductor

c
Resistor

str str str p

coil

coil

str

2
eq

k

K
2
eq

str

K

m

p

2
eq

c

K

str

2
eq

c

K
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harvesting circuit on the overall dynamics is nearly negligible. Consequently, the whole system 

becomes weakly coupled, i.e., the input voltage to the electromagnetic transducer is mainly 

determined by the mechanical dynamics of the SDOF structure and remains nearly constant if 

the major mechanical and excitation parameters are fixed. In this case, the equivalent circuit 

can be simplified as Fig. 5 with an independent voltage source input to the electromagnetic 

transducer. 

 

Fig. 5 Equivalent circuit for weakly coupled system 

If the voltage source represents a harmonic input, the optimal impedance for the maximum 

output power can be easily obtained through the aforementioned Thévenin equivalent circuit 

analysis, 

 load Th coilR R R   (7.1)

 load Th coilL       (7.2)

This condition is consistent with the result in Eq. (2) for the classical IM, which demonstrates 

that the classical IM is applicable to the case of weakly coupled system. This conclusion is also 

extended to the weakly coupled MDOF energy harvester later on. 

However, the above IM does not correspond to the optimal power efficiency in the circuit 

shown in Fig. 5. The optimal power efficiency condition will be discussed in detail in 

Subsection 3.4.2, which will be different from the IM condition. It is also noteworthy that Eq. 

(7) is only suitable for the optimal output power with a harmonic input/excitation. If the voltage 

source is replaced by a constant power source in Fig. 5, the optimal power efficiency condition, 

instead of the IM condition, will lead to the maximum output power. This conclusion will be 

relevant to the optimization under random excitation in the following section. 

R

Resistor

L

Inductor

c
Resistor

coil

p

coil

Voltage
Source

Zload Circuit

Electromagnetic 
Transducer

Electrical System 

p

2
eq

c

K
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3.4 Strongly Coupled System 

3.4.1 Overall IM under Harmonic Excitation 

Given a strong electro-mechanical coupling system, the SDOF energy harvester can be 

described by the equivalent circuit shown in Fig. 4. Given a harmonic excitation (a harmonic 

force or ground motion), i.e. a harmonic current source with a frequency  , the Thévenin 

equivalent impedance can be obtained by analyzing the circuit topology in Fig. 4: 

 

Th coil coil

str
str p str

Th Th

1

1 1
Z R L j

j
C j

R R L

R j








  
  

   

(8)

If the entire energy harvesting system is treated as a single circuit, the maximum output 

power under a harmonic excitation can be obtained by applying the overall IM. The optimal 

loading impedance should be the complex conjugate of the Thévenin equivalent impedance: 

 

 
   

p+str
load Th coil22

p+str str str

2 2
eq str cp

coil222 2
str p str str

1 1

R
R R R

R C L

K c c
R

c c m k

 



 

  
 


 

  

 (9.1)

 
 

 
   

2
p+str str str

load Th coil22
p+str str str

2 2
eq str str

coil222 2
str p str str

1

1 1

R L C
L

R C L

K k m
L

c c m k

 
  

 

 


 

 
   

 

 
 

  

 (9.2)

where 
p str

p+str
p str

R R
R

R R



 is the total resistance considering pR  and strR  in parallel connection. 

This optimal condition, which is excitation frequency dependent, is actually consistent with the 

conclusions reported by Cheng et al. (2007) and Cammarano et al. (2010) who derived in 

electric and mechanical domains, respectively. 

Eq. (9) indicates that the optimal loading impedance in the strongly coupled system 

depends not only on the transducer characteristics (i.e., pR , coilR and coilL ), but also on the 

structural characteristics, such as the equivalent resistor strR , capacitor strC  and inductor strL . 

The result theoretically demonstrates that the impedance optimization of electromagnetic 

Mechanical Domain 

Electrical Domain 

Mechanical Domain 

Electrical Domain 
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energy harvester should take the structural mechanical characteristics into consideration. With 

the consideration of the overall (mechanical and structural) impedance, the classical IM method 

can be extended to the optimization of energy harvesting circuit in the vibration-based 

electromagnetic energy harvester. 

For an ideal case in which the primary structure is designed in resonance with the harmonic 

excitation with a frequency  , 

 2
str strk m   (10.1)

 str
str

1
L

C



  (10.2)

the optimal condition shown in Eq. (9) can be simplified as, 

 load str+p coilR R R   (11.1)

 load coilL  
 

(11.2)

If the coil inductance is negligible, Eq. (11.1) provides the result consistent with that 

previously reported by Stephen (2006) for a resonant state. 

The energy harvester in a resonant state certainly presents an ideal situation that maximizes 

the output power; while Eq. (9) presents a more general case in which the harmonic excitation 

frequency may deviate from the designed frequency of the energy harvester. 

3.4.2 Power Efficiency   

In the energy conversion process, various power losses and consumptions occur inevitably 

when the power flows through the whole system. Only a portion of the vibration power can be 

harvested. The power efficiency also is one index of common interest in energy harvesting 

performance evaluation. Zhu et al. (2012) and Shen et al. (2016) presents the overall power 

efficiency as the products of several sub-efficiencies, 

 out in in 1 2 3P P P          (12)

where outP  is the average output power from the energy harvester, inP  is the average input 

power to the whole system,   is the overall power efficiency in the whole system, 1  denotes 

the ratio of the power in the branch with coilR  and loadZ  to the total power consumption of the 

equivalent circuit, 2  is the ratio of the output power on the loading resistance loadR  to the 
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power consumed by this branch, and 3  represents the power conversion ratio of the energy 

harvesting circuit. In practice, various types of circuits have been proposed to realize energy 

harvesting and synthetic impedance functions, such as H-bridge and buck-boost converter 

(Mitcheson et al. 2012; Shen et al. 2016). The design of these circuit topologies is beyond the 

scope of this study. For simplicity, the power consumption by the loading resistance loadR  is 

considered as the output power in this study, 3  is equal to one and will not be discussed. It 

also noteworthy that all the power items in this paper are average power unless otherwise stated. 

Considering the equivalent circuit shown in Fig. 4, the ideal capacitor or inductor elements 

do not consume any power in a cycle, and only the resistors in the circuit are energy consuming 

or dissipating elements. Thus, the other two sub-efficiencies can be expressed as, 

 

2
p+str

1 2
load coil p+str

cos

cos

R

R R R







 
 

(13.1)

 
load

2
load coil

R

R R
 

  

(13.2)

And the corresponding overall power efficiency is 

 

2
p+str load

2
load coilload coil p+str

cos

cos

R R

R RR R R





 

 
 (14)

where   stands for the phase angle between the current and voltage in the branch containing 

coilR , coilL  and loadZ , as shown in Fig. 6. 

 

Fig. 6 Impedance vector diagram for transducer and harvesting circuit 

If 

Im

Re



loadR

load coilL  TolZ

coilR
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 load coilL    (i.e. cos 1  ) (15.1)

 2
load coil coil p+strR R R R   (15.2)

the optimal power efficiency can be achieved, 

    
2
coil coil p+str p+str

opt 2
2 2

p+str coil coil p+str coil coil coil p+str coil

R R R R

R R R R R R R R R





    

(16)

Inspection of Eq. (15) demonstrates the optimal power efficiency requires the loading 

reactance to be the opposite number of the transducer's reactance. Eqs. (9) and (15) indicate 

that the optimal impedance values for the maximum output power and power efficiency are 

obviously different under a harmonic excitation. The explanation is that the input power Pin 

under a harmonic excitation varies with the electrical load. Consequently, the maximum power 

efficiency does not lead to the maximum output power. 

Notably, given a small coil inductance of the electromagnetic transducer and low-

frequency excitation, the reactance shown in Eq. (15.1) will be nearly negligible, and thus a 

pure resistive load can be used to optimize the efficiency. In this situation, only Eq. (15.2) needs 

to be adopted to obtain the optimal efficiency shown in Eq. (16).  

In addition, Eqs. (15) and (16) do not depend on structural characteristics (such as strm  

and strk ) other than structural inherent damping ( strc  or strR ). Therefore, in the optimal power 

efficiency, the mechanical and electrical systems are coupled through the equivalent resistance 

strR  only. In real applications, we always try to minimize the inherent damping of the energy 

harvesting structures to enhance the efficiency. If the structural inherent damping becomes 

negligible ( str pc c ), the equivalent resistance strR  becomes extremely large and the system 

becomes decoupled in terms of power efficiency. Consequently, the optimal conditions in Eq. 

(15) can be simplified as 

 load coilL    (17.1)

 
2

load coil coil pR R R R 
 

(17.2)
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for the weakly-coupled system. This result is identical to that derived by Zhu et al. (2012) who 

did taken into account any coupling effect. 

3.4.3 Impedance Optimization under Random Excitation 

Since AC power sources typically have a fixed frequency, random power sources rarely 

appear in the power electronics discussions. However, random excitations are common in 

vibration-based energy harvesters. By replacing the harmonic current source in Fig. 4 with a 

white noise random source, Eqs. (9) and (11) are no longer applicable because of the 

undetermined excitation frequency. Accordingly, the optimization of vibration-based energy 

harvesters under random excitations has received rare attention.  

Shen et al. (2018) analyzed the stochastic vibrations of an SDOF energy harvester, in 

which the electromagnetic transducer is represented by a damping element. Their power 

spectrum density (PSD) analysis can give the input power with a resistive load as, 

 
str 0

in

0 str

if random gound motion

if random force excitation

m S
P

S m





 


(18)

where 0S  represents the PSD of the random ground motion or force excitation. If the equivalent 

circuit in Fig. 4 is considered, the input power of open circuit can be expressed as  

 in I strP S C

 

(19)

where the average input power only depends on the PSD of the random current source IS  and 

the structural equivalent capacitor strC  in the circuit. 

Considering the broadband characteristic of excitations, a pure resistive energy harvesting 

circuit is preferable in case of random excitations. Although the variation of the loading 

resistance may change the overall damping of the system, Eq. (19) shows that the input power 

remains constant under white noise excitations. The constant input power implies that the 

maximum output power and maximum power efficiency can be achieved simultaneously 

according to Eq. (12), which is different from the conclusion in the harmonic excitation case. 

Given a negligible coil inductance of the electromagnetic transducer, Eq. (15.2) provides a 

satisfactory solution to achieve the maximum output power and power efficiency under random 

excitations, where the power efficiency is described by Eq. (16).  



 

17 

 

A pure resistive energy harvesting circuit is assumed in the above discussion considering 

adding reactance to the output circuit may lower the power efficiency or even input power. 

4. Overall Impedance Optimization in MDOF Harvester 

4.1 MDOF Harvester 

To expand the frequency bandwidth of energy harvesters, a number of MDOF energy 

harvesters with different structures have been proposed recently. For example, Tang and Zuo 

(2011) proposed to use dual-mass systems to enhance electromagnetic vibration energy 

harvesting performance. Xiao et al. (2016) proposed an improved MDOF harvester by 

introducing piezoelectric elements between every two oscillators. However, rare attention has 

been paid to the optimization of electrical load in these MDOF energy harvesters, especially 

when subjected to a random input. This subsection introduces the impedance optimization in a 

general MDOF energy harvester under harmonic and random excitations. 

An MDOF harvester can be similarly represented by an equivalent electrical circuit, as 

shown in Fig. 7. Given a ground motion excitation, either harmonic or random, the current 

sources 1 to N are in phase and proportional; while under force excitations, these current sources 

may have different frequencies and magnitudes, if the external forces on each mass are 

independent. 

If the structural inherent damping is negligible compared with the damping contributed by 

the electromagnetic transducer, all the equivalent resistors
  str_i i 1, , NR   can be removed. 

In this situation, the Thévenin equivalent impedance can be calculated as follows, 

 
Th coil coil

str_1
str_2 p str_1

1

1 1
Z R L j

j
C j

Z R L






  
  

 
(20)

where the form str_iZ  can be obtained as  

 
 str_i

str _ i 1 str_istr_i

str_N str_N

1
i 2,3, , N 1

1

(i N)

L j
Z C jZ

j C L j




 



     
   


 (21)

Then the optimal output impedance can be calculated directly as the complex conjugate of 

ThZ . Notably, this optimal IM for output power is frequency-dependent, and is only suitable 

for a harmonic excitation. In a resonant state (i.e., the excitation frequency is equal to the natural 
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frequency), the optimal IM for the MDOF harvester becomes identical to that of SDOF scenario, 

i.e., Eq. (11). 

 

Fig. 7 MDOF energy harvester and the corresponding equivalent circuit 

Similar to the SDOF case, a pure resistive output circuit is preferred for the MDOF energy 

harvester under a random excitation. Given the fixed structural characteristics and PSD of 

random input, the input power to the MDOF harvester under a white noise excitation is nearly 

constant (Shen et al. 2018) and independent with the change of the loading resistance. 

Considering the constant input power, the maximum output power will be consistent with the 

maximum power efficiency. In case that both the structural inherent damping and coil 

inductance are minimal, Eq. (17.2) introduced in Subsection. 3.4.3 can be still applied to the 

MDOF energy harvester to obtain the optimal impedance. Notably, a low structural inherent 

damping is highly desirable in vibration-based energy harvesters to achieve a satisfactory 

energy conversion ratio. Otherwise, a high structural inherent damping ratio will dissipate the 
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majority of the input power and lead to trivial output power. The effect of the inherent damping 

will be briefly discussed in the next section. 

4.2. Summary of Overall Impedance Optimization of SDOF and MDOF harvester 

The optimal impedance for the maximum output power was theoretically derived in this 

section in consideration of different types of excitations (harmonic and random). Table 1 

summarizes the optimal electrical load that maximizes the output power in different scenarios 

and the corresponding assumptions. 

Table 1. Optimal conditions for the output power in different scenarios. 

Structural Type Excitation Load Impedance 

SDOF/MDOF (weak coupling) Harmonic Eq. (7) 

 Random1 Eq. (17.2) 

SDOF (strong coupling) Harmonic Eq. (9) 

 Random1 Eq. (15.2) 

MDOF (strong coupling) Harmonic Eq. (20) 

 Random2 Eq. (17.2) 

Notes: 1. It assumes that the coil inductance is negligible; 2 It assumes that the coil inductance 

and structural inherent damping are negligible 

5. Numerical Validation 

5.1 Simulink Model 

This section introduces the dynamic simulations of SDOF and 2DOF energy harvesters 

individually. Fig. 8 shows the simulation model of the SDOF harvester established in the   

Matlab/Simulink environment. The time step is set as 10-4 s to guarantee accurate circuit signals. 

The electromagnetic transducer is modelled by employing the measured parameters of a real 

linear-motion electromagnetic device (Moticont, model No. GVCM-095-051-01): machine 

constant eq 38 N AK  , parasitic damping coefficient p 32.4 Ns mc  , coil resistance

coil 9.3R   , and coil inductance coil 5mHL  . The influence of such a small coil inductance is 

often negligible in low-frequency vibrations. In the numerical simulations of this study, the coil 

inductance is ignored unless otherwise stated. Two different types of ground motions, namely, 

harmonic and random ground motions, are applied to the concerned energy harvesters 

separately. The inherent damping of the structure is ignored. 
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The 2DOF energy harvester is simulated in a similar way. Table 2 lists the main parameters 

of the numerical models and excitations for both the SDOF and 2DOF energy harvesters. The 

mass and stiffness are determined to be compatible with the selected machine constant. Case 1 

and Case 2 represent the resonant and non-resonant cases of the SDOF energy harvester; Case 

4 and Case 5 represent the resonant and non-resonant cases of the MDOF energy harvester, 

where the resonant case corresponds to the second frequency; Case 3 and Case 6 represent white 

noise excitations with sufficiently broad bands of frequencies. 

Table 2. Main parameters of the harvesters and excitation 

Structural Types Parameters  Value 

SDOF Structural 
parameters 

Structural mass of, strm  3 kg 

Structural stiffness of, strk  103 N/m 

Natural frequency of, resf  2.91 Hz 

Excitation 
cases 

Case 1, Harmonica, exf  2.91 Hz 

Case 2, Harmonica, exf  2.50 Hz 

Case 3, Random, exf  0-500 Hz 

2DOF Structural 
parameters 

Structural mass, str_2m  0.8 kg 

Structural stiffness, str_2k  300 N/m 

Structural mass, str_1m  8 kg 

Structural stiffness, str_1k  3 kN/m 

1st order resonant frequency, res_1f  2.63 Hz 

2nd order resonant frequency, res_2f  3.61 Hz 

Excitation 
cases 

Case 4, Harmonica, exf  3.61 Hz 

Case 5, Harmonica, exf  3.50 Hz 

Case 6, Random, exf  0-500 Hz 
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Fig. 8 Simulink model for the SDOF harvester 

5.2 Optimal Impedance Results 

Fig. 9 shows the variations of the optimal loading resistance Rload and reactance load  

according to the overall IM (i.e., Eqs. (9) and (20), respectively) for the maximum output power 

under harmonic excitations. The optimal values of the two parameters (Rload and load ) are 

functions of the excitation frequency. In Fig. 9(a), the curve shapes of the resistance and 

reactance are symmetrical and anti-symmetrical, respectively. At the resonant frequency, the 

optimal resistance is maximum, while the optimal reactance is nearly zero. In Fig. 9(b), the 

number of peaks in optimal resistance is equal to the number of DOFs. In particular, for both 

the SDOF and MDOF cases, the varying optimal resistance has a lower bound of Rcoil = 9.3 , 

which is actually the result determined according to the classical IM without considering 

structural impedance (i.e., Eq. (2.1)). The required reactance is realized in the simplest way by 

connecting either an inductor or capacitor in the output circuit.  

The frequencies corresponding to Cases 1, 2, 4, and 5 are also highlighted in Fig. 9. The 

corresponding optimal values for the output power can be read as follows: 

 Case 1, Eq. (11): load 54R   , load 0    (22.1)

 Case 2, Eq. (9): load 45R   , load 18    (22.2)

 Case 4, Eq. (11): load 54R   , load 0    (22.3)

 Case 5, Eq. (20): load 40R   , load 20    (22.4)
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Under random excitations (Cases 3 and 6), the optimal resistance is determined for the 

maximum efficiency as 

 Optimal Efficiency, Eq. (15): load 22.4R   , load 0    (23)

which is frequency independent. 

Another case, the classical IM, is also considered for comparison in the following 

subsection: 

 Classical IM: load coil 9.3R R   , load 0    (24)

 

(a) SDOF energy harvester 

 

(b) 2DOF energy harvester 

Fig. 9 IM results for harmonic excitation  
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5.3 Simulation Results of SDOF Harvesters 

5.3.1 Case 1: Resonant SDOF Harvester 

In Case 1, the SDOF energy harvester is subjected to a harmonic excitation frequency 

equal to the resonant frequency of the mechanical structure. Fig. 10(a) illustrates the variations 

of inP  and outP with the loading resistance Rload in Case 1. The total input power inP  increases 

monotonically with the loading resistance, while the output power curve exhibits a peak value. 

It can be observed that the loading resistance Rload = 54  corresponds to the maximum output 

power Pmax = 28.7 mW, which validates the theoretical prediction by Eq. (22.1). Compared with 

the result for the classical IM (as shown by the dashed line), the optimal output power of the 

overall IM is significantly enhanced by 100%. This comparison demonstrates that the 

impedance optimization in vibration-based energy harvesting has to take into account the 

primary structure and transducer, rather than implementing the classical IM directly. 

Fig. 10(b) shows the variation of the power efficiency with the loading resistance. 

Apparently, the maximum power efficiency does not occur simultaneously with the maximum 

output power, owing to the varying input power. The maximum power efficiency occurs when 

the resistance Rload = 22 , which accurately agrees with the theoretical predication by Eq. (23). 

The maximum power efficiency reaches only 41%, because the relatively large parasitic 

damping and coil resistance are considered in this numerical model. 

 

(a) Output power                                                (b) Power efficiency 

Fig. 10 Energy harvesting performance vs. Rload in a resonant state: SDOF harvester 

E
q.

 (2
2.

1)
, R

op
t  




 

0 50 100 150 200
0

40

80

120

E
q.

 (2
3)

, R
op

t  




 

E
q.

 (2
2.

1)
, R

op
t  




 

E
q.

 (2
3)

, R
op

t  
 
 

 

% improvement

 Pin

 Pout

Resistance (Ohm)

 

 

P
ow

er
 (

m
W

)

Resistance (Ohm)

Classical IM

0 50 100 150 200
0.0

0.2

0.4

0.6

Eq.(16), opt 0.41
 

 

 

E
ff

ic
ie

n
cy



 

24 

 

5.3.2 Case 2: Non-resonant SDOF Harvester 

In Case 2, the SDOF energy harvester is subjected to a harmonic frequency less than the 

structural resonant frequency. As mentioned in Subsection 4.2, the optimal impedance for 

output power can be predicted as load 45R    and load 18    (C=3.5mF). Figs. 11-12 show 

the corresponding harvesting performance under the fixed optimal resistance or capacitance, 

respectively. The output power varies significantly with the increasing loading resistance, if the 

capacitance is fixed; however, after reaching its peak value, the output power is insensitive to 

the capacitance and only drops very slightly with the further increase in the capacitance. Such 

insensitivity is mainly due to the large parasitic damping and coil resistance considered for the 

electromagnetic transducer. The effect of the optimal capacitance will be more obvious if 

significantly smaller parasitic damping and coil resistance are adopted. 

 

(a) Output power                                               (b) Power efficiency 

Fig. 11 Energy harvesting performance vs. Rload in a non-resonant state: SDOF harvester 

With the adopted overall IM framework, the optimal output power shown in Fig. 11(a) is 

enhanced by approximately 95%, compared with that with classical IM. Fig. 11(b) shows the 

variation of the power efficiency with the loading resistance Rload, wherein the loading reactance 

is equal to 18  and zero individually. Both the curves indicate that the optimal loading 

resistance for the maximum output power does not correspond to the maximum power 

efficiency. The existence of the reactance in the load slightly decreases the peak power 

0 50 100 150 200
0

40

80

120

E
q.

 (2
3)

, R
op

t  

 



E
q.

 (2
2.

2)
, R

op
t  

 

% reduction

Classical IM

% improvement

Eq. (16), opt  0.41

E
q.

 (2
3)

, R
op

t 

 

 Pin

 Pout

E
q.

 (2
2.

2)
, R

op
t  


 

 

 
 

P
ow

er
 (

m
W

)

Resistance (Ohm)

0 50 100 150 200
0.0

0.2

0.4

0.6

 -     load 
 -      load 



 

 
E

ff
ic

ie
nc

y

Resistance (Ohm)





 

25 

 

efficiency, and the maximum power efficiency (i.e., 41%) occurs in a pure resistive load circuit 

when load 45R   , as predicted by Eq. (23). 

 

Fig. 12 Output power vs. Cload in a non-resonant state: SDOF harvester 

5.3.3 Case 3: Randomly-excited SDOF Harvester 
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Fig. 13 PSD of the ground acceleration 

 

(a) Output power                                                (b) Power efficiency 

Fig. 14 Energy harvesting performance vs. Rload in random excitation: SDOF harvester 

5.4 Simulation Results of 2DOF Harvester 

This subsection presents the simulation results of the 2DOF energy harvester under 
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5.4.1 Cases 4-5: Harmonically-excited 2DOF Harvester 

Case 4 presents the resonant case in which the 2DOF energy harvester is excited with a 

harmonic frequency equal to its 2nd order natural frequency. The optimal impedance for the 

output power and power efficiency are 54 and 22 , respectively. The observations in the 

energy harvesting performance are similar to those reported in Case 1 and thus are not reported 

herein. The output power determined with the overall IM is nearly twice that with classical IM. 

Case 5 presents the non-resonant case with the excitation frequency of 3.5Hz. The 

theoretical optimal impedance for the output power is 40  and 2.2mF , while the optimal 

impedance for the power efficiency is 22 Ω. The observations similar to those in Case 2 can be 

made, as shown in Fig. 15. The maximum output power and power efficiency do not occur 

simultaneously under harmonic excitations. Connecting a capacitor lowers the power efficiency 

compared with a pure resistor circuit. 

 

(a) Output power                                            (b) Power efficiency 

Fig. 15 Energy harvesting performance vs. Rload in a non-resonant state: 2DOF harvester 
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power, especially near the resonant range, under harmonic excitations. This comparison 

demonstrates the importance of load impedance optimization in the performance of vibration-

based energy harvesters. 

 

Fig. 16 Overall tuning performance: 2DOF harvester 

5.4.2 Cases 6: Randomly-excited 2DOF Harvester 

Under a random excitation, the optimal impedance values for the maximum output power 

and power efficiency are identical (i.e., Eq. (23)). Fig. 17 show the corresponding energy 

harvesting performance under a random ground motion, where the ground acceleration is the 

same as that described in Section 4.3.3. The variations of energy harvesting performance are 

similar to those of the SDOF harvester in Case 3. The optimal output power and power 

efficiency occur at the predicted locations. Compared with the classical IM, the power 

improvement is around 17%, demonstrating the effectiveness of the proposed optimal 

impedance for the MDOF energy harvester under random excitations. 
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improvement in the total output power compared with Eq. (22.3.). This result demonstrates the 

need and benefit of adopting different optimal impedance setting for a random case, as proposed 

in this study, instead of optimal impedance setting for resonance. 

 

(a) Output power                                            (b) Power efficiency 

Fig. 17 Energy harvesting performance vs. Rload under random excitations: 2DOF harvester 

 

Fig. 18 Output power FRF comparison: 2DOF harvester 
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5.4.3 Effect of Structural Inherent Damping 

Notably, the structural inherent damping is ignored in the aforementioned numerical case 

studies. This subsection examines the impact of structural inherent damping (i.e. strR ) on the 

optimal impedance and output power by taking Case 4 as an example. 

In Case 4 for the second order resonance, the optimal impedance is shown in Eq. (22.3) if 

structural inherent damping is neglected. With the consideration of structural inherent damping, 

both the optimal impedance values and output power changes with the increasing damping ratio 

of the mechanical structure, as shown in Fig. 19. A large damping ratio leads to a large 

discrepancy in the output power shown in Fig. 19(b). However, the structural inherent ratio 

needs to be minimized in consideration of power efficiency in real applications. Given a low 

damping ratio (e.g., the 2nd order damping ratio ζstr_2 < 4%), the difference in the output power 

is actually minimal (5% error). Similar results can be observed in the random excitation case. 

These observations justify that slight structural damping is typically ignorable in the 

aforementioned numerical simulations.  

 

(a) Impedance                                                            (b) Output power 

Fig. 19 Influence of inherent damping in harmonica excitation 
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general equivalent circuit models for SDOF or MDOF harvesters were developed, and 

subsequently, the corresponding optimal impedance for the maximum output power and power 

efficiency was derived theoretically in consideration of different types of excitations (harmonic 

and random). Numerical case studies were conducted to validate the effectiveness and accuracy 

of the proposed overall impedance optimization. Based on the results of the theoretical 

derivation and numerical simulations, the following major conclusions can be drawn in this 

study: 

(1) The classical IM in power electronics cannot guarantee a maximum output power in 

electromagnetic vibration-based energy harvesters with strong coupling effect between 

electric and mechanical systems. 

(2) The dynamic analogy between mechanical and electrical systems enables to represent an 

SDOF or MDOF energy harvester using an equivalent circuit model. This equivalent 

representation provides a convenient and straightforward tool for the optimization of load 

impedance of energy harvesting circuit.  

(3) Under harmonic excitations, the overall IM that considers the equivalent impedance of the 

primary structure and transducer can achieve the maximum output power in vibration-based 

energy harvesters. The corresponding optimal impedance values are thus frequency-

dependent. 

(4) Under harmonic excitations, the maximum output power does not correspond to the 

maximum power efficiency. The optimal solution for the maximum power efficiency is 

dependent on the structural inherent damping and transducer’s parasitic damping. 

Incorporating reactance in the harvesting circuit may have a negative impact on the power 

efficiency, and thus a pure resistive circuit is preferable from the power efficiency 

perspective. 

(5) Under random excitations, the maximum output power and power efficiency can be 

achieved simultaneously, given a relatively low damping level of the primary structure of 

an energy harvester. Therefore, the optimal impedance for the maximum power efficiency 

can be applied in a random excitation case. Such optimal impedance is frequency-

independent if the coil inductance is negligible. 

(6) If the inherent damping of an energy harvester structure is low, neglecting structural 

inherent damping in the overall impedance optimization has minimal impact on the energy 

harvesting performance under harmonica or random excitations. 
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It is noteworthy that the enhancement of energy harvesting performance can be realized 

by adjusting either electrical or mechanical systems. This study only focused on the 

optimization of the electric impedance of energy harvest circuits. However, given the 

equivalent conversion between the mechanical structures and electric circuits, the proposed 

methodology in this study will also shed light on the optimal design of mechanical parts. 

Acknowledgment 

The authors are grateful for the financial support provided by the Research Grants Council 

of Hong Kong through the Research Impact Fund (PolyU R5020-18), the NSFC/RGC Joint 

Research Scheme (N_PolyU533/17, 51761165022), and the Theme-based Research Scheme 

(T22-502/18-R). The findings and opinions expressed in this paper are from the authors alone 

and are unnecessarily the views of the sponsors. 

References 

Aldraihem O, Baz A. Energy harvester with a dynamic magnifier[J]. Journal of Intelligent 

Material Systems and Structures, 2011, 22(6): 521-530. 

Cahill P, Nuallain N A N, Jackson N, et al. Energy harvesting from train-induced response in 

bridges[J]. Journal of Bridge Engineering, 2014, 19(9): 04014034. 

Cammarano A, Burrow S G, Barton D A W, et al. Tuning a resonant energy harvester using a 

generalized electrical load[J]. Smart Materials and Structures, 2010, 19(5): 055003. 

Cammarano A, Neild S A, Burrow S G, et al. Optimum resistive loads for vibration-based 

electromagnetic energy harvesters with a stiffening nonlinearity[J]. Journal of Intelligent 

Material Systems and Structures, 2014, 25(14): 1757-1770. 

Challa V R, Prasad M G, Fisher F T. Towards an autonomous self-tuning vibration energy 

harvesting device for wireless sensor network applications[J]. Smart Materials and 

Structures, 2011, 20(2): 025004. 

Cheng S, Wang N, Arnold D P. Modeling of magnetic vibrational energy harvesters using 

equivalent circuit representations[J]. Journal of Micromechanics and Microengineering, 

2007, 17(11): 2328. 

Erturk, A. (2009). Electromechanical modeling of piezoelectric energy harvesters (Doctoral 

dissertation, Virginia Tech). 



 

33 

 

Firestone F A. A new analogy between mechanical and electrical systems[J]. The Journal of 

the Acoustical Society of America, 1933, 4(3): 249-267. 

Hambley A R, Kumar N, Kulkarni A R. Electrical engineering: principles and applications[M]. 

Upper Saddle River, NJ: Pearson Prentice Hall, 2008. 

Iqbal M, Khan F U. Hybrid vibration and wind energy harvesting using combined piezoelectric 

and electromagnetic conversion for bridge health monitoring applications[J]. Energy 

conversion and management, 2018, 172: 611-618. 

Kasyap A, Lim J, Johnson D, et al. Energy reclamation from a vibrating piezoceramic 

composite beam[C]//Proceedings of 9th International Congress on Sound and Vibration. 

2002, 9(271): 36-43. 

Kong N A, Ha D S, Erturk A, et al. Resistive impedance matching circuit for piezoelectric 

energy harvesting[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(13): 

1293-1302. 

Li J, Zhu S. Versatile Behaviors of Electromagnetic Shunt Damper With Negative Impedance 

Converter[J]. IEEE/ASME Transactions on Mechatronics, 2018. 

Liao Y, Sodano H. Optimal power, power limit and damping of vibration based piezoelectric 

power harvesters[J]. Smart Materials and Structures, 2018, 27(7): 075057. 

Liu M, Tai W C, Zuo L. Toward broadband vibration energy harvesting via mechanical motion-

rectification induced inertia nonlinearity[J]. Smart Materials and Structures, 2018, 27(7): 

075022. 

Magdy M M, El-Bab A M R F, Assal S F M. Design methodology of a micro-scale 2-DOF 

energy harvesting device for low frequency and wide bandwidth[J]. Journal of Sensor 

Technology, 2014, 4(02): 37. 

Mitcheson P D. Analysis and optimisation of energy-harvesting micro-generator systems[D]. 

Imperial College London (University of London), 2005. 

Mitcheson P D, Toh T T, Wong K H, et al. Tuning the resonant frequency and damping of an 

electromagnetic energy harvester using power electronics[J]. IEEE Transactions on Circuits 

and Systems II: Express Briefs, 2011, 58(12): 792-796. 



 

34 

 

Park G, Rosing T, Todd M D, et al. Energy harvesting for structural health monitoring sensor 

networks[J]. Journal of Infrastructure Systems, 2008, 14(1): 64-79. 

Priya S. Modeling of electric energy harvesting using piezoelectric windmill[J]. Applied 

Physics Letters, 2005, 87(18): 184101. 

Saha C R, O'Donnell T, Loder H, et al. Optimization of an electromagnetic energy harvesting 

device[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3509-3511. 

Sazonov E, Li H, Curry D, Pillay P. Self-powered sensors for monitoring of highway bridges. 

IEEE Sens J 2009;9:1422–9. 

Shen W. Electromagnetic damping and energy harvesting devices in civil structures[D]. The 

Hong Kong Polytechnic University, 2014. 

Shen W, Zhu S, Xu Y. An experimental study on self-powered vibration control and monitoring 

system using electromagnetic TMD and wireless sensors[J]. Sensors and actuators A: 

physical, 2012, 180: 166-176. 

Shen W, Zhu S, Zhu H. Experimental study on using electromagnetic devices on bridge stay 

cables for simultaneous energy harvesting and vibration damping[J]. Smart Materials and 

Structures, 2016, 25(6): 065011.  

Shen W, Zhu S, Zhu H. Unify energy harvesting and vibration control functions in randomly 

excited structures with electromagnetic devices[J]. Journal of Engineering Mechanics, 2018, 

145(1): 04018115. 

Stephen N G. On energy harvesting from ambient vibration[J]. Journal of sound and vibration, 

2006, 293(1): 409-425. 

Tang L, Yang Y, Soh C K. Toward broadband vibration-based energy harvesting[J]. Journal of 

intelligent material systems and structures, 2010, 21(18): 1867-1897. 

Tang L, Yang Y. A multiple-degree-of-freedom piezoelectric energy harvesting model[J]. 

Journal of Intelligent Material Systems and Structures, 2012, 23(14): 1631-1647. 

Tang X, Zuo L. Enhanced vibration energy harvesting using dual-mass systems[J]. Journal of 

sound and vibration, 2011, 330(21): 5199-5209. 



 

35 

 

Williams C B, Shearwood C, Harradine M A, et al. Development of an electromagnetic micro-

generator[J]. IEE Proceedings-Circuits, Devices and Systems, 2001, 148(6): 337-342. 

Xiao H, Wang X, John S. A multi-degree of freedom piezoelectric vibration energy harvester 

with piezoelectric elements inserted between two nearby oscillators[J]. Mechanical Systems 

and Signal Processing, 2016, 68: 138-154. 

Yang B, Lee C, Xiang W, et al. Electromagnetic energy harvesting from vibrations of multiple 

frequencies[J]. Journal of Micromechanics and Microengineering, 2009, 19(3): 035001. 

Ye J, Lu Z, Chen C, et al. Power analysis of a single degree of freedom (DOF) vibration energy 

harvesting system considering controlled linear electric machines[C]//Transportation 

Electrification Conference and Expo (ITEC), 2017 IEEE. 2017: 158-163. 

Zhao B, Liang J, Zhao K. Phase-Variable Control of Parallel Synchronized Triple Bias-Flips 

Interface Circuit towards Broadband Piezoelectric Energy Harvesting[C]//2018 IEEE 

International Symposium on Circuits and Systems (ISCAS). IEEE, 2018: 1-5. 

Zhu S, Shen W, Qian X. Dynamic analogy between an electromagnetic shunt damper and a 

tuned mass damper[J]. Smart Materials and Structures, 2013, 22(11): 115018. 

Zhu S, Shen W, Xu Y. Linear electromagnetic devices for vibration damping and energy 

harvesting: modeling and testing[J]. Engineering Structures, 2012, 34: 198-212. 




