

Please cite this paper as

Hu S, Zhu S, Alam M S, and Wang W (2021) Machine Learning-aided Peak and Residual Displacement-based Design Method for Enhancing Seismic Performance of Steel Moment-resisting Frames by Installing Self-centering Braces. *Engineering Structures*. 271: 114935. <https://doi.org/10.1016/j.engstruct.2022.114935>

1
2
3
4 **Machine learning-aided peak and residual displacement-based design method for**
5 **enhancing seismic performance of steel moment-resisting frames by installing self-**
6 **centering braces**

7
8 **Shuling Hu^{a,b}, Songye Zhu^{a,*}, M. Shahria Alam^b, Wei Wang^c**

9
10 ^a*Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.*

11 ^b*School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.*

12 ^c*State Key Laboratory of Disaster Reduction in Civil Engineering & Department of Structural Engineering, Tongji University, Shanghai 200092, China.*

13 **ABSTRACT:**

14 Conventional steel moment-resisting frames (SMRFs) absorb seismic energy through steel yielding
15 behavior, leading to significant residual displacement. Although steel yielding behavior can ensure the
16 seismic safety of SMRFs under strong earthquakes, excessive residual displacement may lead to post-
17 earthquake demolition decisions, causing a large amount of economic loss. This paper aims to develop a
18 peak and residual displacement-based design (PRDBD) method for controlling the peak and residual inter-
19 story drift responses of SMRFs by installing self-centering braces. The peak and residual displacements
20 are both set as the design targets in the proposed PRDBD method. To this end, the machine learning
21 prediction models of inelastic and residual displacement ratios were first developed based on the median
22 responses of single-degree-of-freedom systems under earthquakes. The detailed design steps of the
23 proposed PRDBD method were subsequently introduced. The three- and nine-story demonstration
24 buildings were retrofitted by using the PRDBD method with two different design targets. Static and
25 dynamic analyses were conducted to validate the efficiency of the proposed PRDBD method. The static
26 analysis results indicated that the self-centering braces could efficiently enhance the SMRF's stiffness and
27 strength. The retrofitted SMRFs showed no strength deterioration, whereas the original SMRFs showed
28 obvious strength deterioration at the roof drifts of 3.2% and 2.5% in the three- and nine-story buildings,
29 respectively. The dynamic analysis results confirm that the self-centering braces can efficiently reduce the
30

31 * Corresponding author: Professor, Department of Civil and Environment Engineering, The Hong Kong Polytechnic University,
32 Hung Hom, Kowloon, Hong Kong, E-mail: songye.zhu@polyu.edu.hk.

1
2
3 26 peak and residual inter-story drift responses of the existing SMRFs and the retrofitted SMRFs can achieve
4
5 27 the peak and residual inter-story performance objectives under the considered seismic intensity. Moreover,
6
7 28 the retrofitted SMRFs can be fully recoverable after maximum considered earthquakes by controlling the
8
9 29 maximum residual inter-story drift lower than 0.2%.

10
11
12
13 30 **KEYWORDS:** Peak and residual displacement; Machine learning; Residual displacement-based design
14
15 31 method; Post-earthquake repairability; Moment-resisting frames; Self-centering brace.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3 32 **Highlights:**
4
5 33 1. Machine learning prediction models of C_μ and C_r were developed for the RSMRF.
6
7 34 2. A peak and residual displacement-based design method was developed for retrofitting SMRFs.
8
9 35 3. The designed RSMRFs can achieve the desired peak and residual inter-story drift responses.
10
11 36 4. The designed RSMRFs have no repair requirements after MCE excitations.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 37 **1. INTRODUCTION**
5
6 38 Due to architectural aesthetics and versatile advantages, conventional steel moment-resisting
7
8
9 39 frames (SMRFs) are widely used in building structures. Moreover, the highly ductile behavior of SMRFs
10
11
12 40 offers a reliable capacity to withstand large plastic displacement without significant strength deterioration
13
14
15 41 and instability and thus SMRFs can ensure seismic safety under strong earthquakes, but it also leads to
16
17
18 42 significant residual inter-story drifts. The 2011 Christchurch earthquake indicates that the building
19
20
21 43 structures with large residual inter-story drifts are extremely difficult, if not impossible, to repair [1, 2].
22
23
24 44 Based on the investigation by McCormick et al. [3], it is a better and more economic choice to demolish
25
26
27 45 and rebuild than repair the buildings with a maximum residual inter-story drift larger than 0.5%.
28
29
30 46 Nevertheless, the past studies [4, 5] confirm that the residual inter-story drifts of SMRFs are usually larger
31
32
33 47 than 0.5% under design basis earthquakes (DBE) or maximum considered earthquakes (MCE). It is
34
35
36 48 noteworthy that nonstructural damage may lead to more seismic loss and business disruption than
37
38
39 49 structural damage for buildings under earthquakes [6-9]. However, the nonstructural damage control is
40
41
42 50 beyond the scope of the presented study, and this paper will be focused on structural damage mitigation by
43
44
45 51 controlling peak and residual inter-story drift responses of SMRFs.

46
47 52 Inspired by the precast concrete structural systems [10], the unbonded post-tensioning techniques
48
49
50 53 were introduced to develop self-centering steel beam-to-column connections to reduce residual inter-story
51
52
53 54 drift responses of SMRFs under strong earthquakes. Ricles et al. [11] and Garlock et al. [12] developed the
54
55
56 55 post-tensioned beam-to-column connections (denoted as PT connections) with steel angles to eliminate the
56
57
58 56 residual deformation of conventional steel beam-to-column connections. The PT strands and steel angles
59
60
61 57 were included in the PT connections to achieve self-centering behavior and energy-absorbing capacity.

1
2
3
4 58 Past experimental and numerical studies have extensively validated the efficiency of the PT connections in
5
6
7 59 controlling residual inter-story drift responses of SMRFs [11, 12]. However, the PT connections introduce
8
9
10 60 an opening/closing gap between beams and columns under earthquakes, leading to severe floor damage
11
12
13 61 [13]. The following significant efforts have been made to address the gap opening issue by introducing
14
15
16 62 different configurations of self-centering beam-to-column connections [13, 14]. In addition to the self-
17
18
19 63 centering beam-to-column connections, many other self-centering solutions, including self-centering walls
20
21
22 64 [15-17], self-centering rocking structures [4, 18-23], self-centering braces [24-30], etc., have been widely
23
24
25 65 investigated. Among these self-centering technologies, self-centering braces represent one of the efficient
26
27
28 66 solutions to reduce the residual inter-story drift responses of SMRFs. Moreover, axial deformation of self-
29
30
31 67 centering braces does not introduce damage to the floor slabs, and self-centering braces can provide
32
33
34 68 sufficient stiffness to control the lateral displacement of SMRFs. Accordingly, different types of self-
35
36
37 69 centering braces have been used to enhance the seismic performance of SMRFs [31-35]. For example,
38
39
40 70 Ozbulut et al. [34] upgraded SMRFs using self-centering viscous dampers to reduce the peak and residual
41
42
43 71 inter-story drifts and peak floor acceleration responses; Qiu et al. [35] reduced the maximum and residual
44
45
46 72 inter-story drift responses of SMRFs by installing shape memory alloy braces; Zhu et al. [32] investigated
47
48
49 73 the seismic performance of steel moment-resisting frames with self-centering viscous-hysteretic devices;
50
51
52 74 and Chou et al. [31] tested the steel buildings with self-centering braces. These past investigations have
53
54
55 75 confirmed the efficiency of self-centering braces in enhancing the seismic performance of SMRFs by
56
57
58 76 reducing the peak and residual inter-story drift responses. Nevertheless, how to rationally design the self-
59
60
61 77 centering braces to make the upgraded SMRFs achieve both desired maximum and residual inter-story
62
63
64 78 drift targets remains an unanswered question.

1
2
3
4 79 The major contribution of this paper is developing a new peak and residual displacement-based
5
6
7 80 design (PRDBD) method, which can control both the peak and residual inter-story drift responses of
8
9
10 81 SMRFs to the desired levels by installing self-centering braces. The peak and residual displacements are
11
12
13 82 both set as the design targets in the proposed PRDBD method. To this end, the machine learning prediction
14
15
16 83 models of inelastic and residual displacement ratios were first developed based on the median responses of
17
18
19 84 single-degree-of-freedom (SDOF) systems under earthquakes. The detailed design steps of the proposed
20
21
22 85 PRDBD method were subsequently introduced. The three- and nine-story demonstration buildings were
23
24
25 86 retrofitted by using the PRDBD method with two different design targets. Static and dynamic analyses
26
27
28 87 were conducted for the retrofitted SMRF (denoted as RSMRF) to validate the efficiency of the proposed
29
30
31 88 PRDBD method.

32
33 89 **2. INELASTIC AND RESIDUAL DISPLACEMENT RATIO OF RSMRF**

34
35 90 The proposed PRDBD method was developed based on the constant-ductility inelastic
36
37
38 91 displacement ratio (i.e., C_μ) and residual displacement ratio (i.e., C_r) of RSMRF. The prediction models of
39
40
41 92 C_μ and C_r were developed based on the nonlinear dynamic analysis of the SDOF system. Specifically, the
42
43
44 93 values of C_μ and C_r are usually related to the structural period T , ductility ratio μ , and hysteretic parameters
45
46
47 94 of RSMRF.

48
49
50 95 Various types of self-centering braces were developed in previous investigations [28-30, 36-39].
51
52
53 96 The self-centering brace developed by Wang et al. [40] was adopted in this paper to retrofit the existing
54
55
56 97 SMRFs for demonstration (see Fig. 1(a)). As shown in Fig. 1(a), the friction plate and the disc spring
57
58
59 98 provide the energy-dissipation and self-centering capacities, respectively, in the considered self-centering
60
61
62 99 brace. The past experimental investigations [40] confirmed that the considered self-centering brace could

1
 2
 3
 400 achieve the desired flag-shaped hysteretic behavior. Accordingly, the hysteretic responses of RSMRF can
 5
 6
 101 be obtained by placing the hysteretic responses of SMRF and the self-centering brace in parallel, as shown
 8
 9
 102 in Figs. 1(b) and 1(c). The bilinear elastoplastic hysteretic model and flag-shaped hysteretic model were
 11
 12
 1303 used in this paper to describe the hysteretic behavior of the SMRF and self-centering brace, respectively.
 14
 15
 1604 The ratio of the post-yield stiffness to the initial stiffness of SMRF is defined as α_1 , and that of the self-
 17
 18
 1905 centering brace is defined as α_2 . The energy-absorbing capacity of the self-centering brace is described
 20
 21
 2206 using the energy-dissipation factor β . As shown in Fig. 1(c), the self-centering brace with larger β values
 23
 24
 2507 will achieve better hysteretic energy-dissipation capacity. The initial stiffness ratio of SMRF to RSMRF is
 26
 27
 2808 defined as:
 29
 30
 3109

$$\eta = \frac{k_1}{k_0} \quad (1)$$

32
 33
 34
 35
 3610 where k_0 and k_1 are the initial stiffness of RSMRF and SMRF, respectively. Accordingly, the initial lateral
 37
 38
 3911 stiffness provided by self-centering brace k_2 can be obtained as:
 40
 41
 4212

$$k_2 = (1 - \eta)k_0 \quad (2)$$

43
 44
 4513 The strength ratio of the self-centering brace to SMRF is defined as:
 46
 47
 48
 4914

$$\lambda = \frac{F_{y2}}{F_{y1}} \quad (3)$$

50
 51
 52
 53
 5415 where F_{y1} and F_{y2} are the lateral yield strengths provided by SMRF and self-centering brace, respectively.
 55
 56
 5716 Fig. 2 shows the considered linear and nonlinear SDOF systems. Based on Fig. 2, the ductility ratio
 58
 59
 6017 μ is defined as:
 61
 62
 63
 64
 65

1
2
3
4 18 where u_{y1} and u_t are the yield displacement of SMRF and the maximum displacement of the nonlinear
5
6 SDOF system.
7
8
9 19
10
11
12 20

$$\mu = \frac{u_t}{u_{y1}} \quad (4)$$

13
14 21 The strength reduction factor R is defined as:
15
16
17
18 22
19
20
21
22

$$R = \frac{F_e}{F_{y1}} \quad (5)$$

23 where F_{y1} and F_e are the yield strength of SMRF and the maximum force of the linear SDOF system that
24
25
26 24 has the same period T as the nonlinear SDOF system representing the RSMRF.
27
28
29 25

30
31
32 26 The nonlinear displacement ratio C_μ is defined as:
33
34
35
36
37

$$C_\mu = \frac{u_t}{u_e} \quad (6)$$

38 27 where u_e is the maximum displacement of the linear SDOF system.
39
40
41
42
43
44 28 The residual displacement ratio C_r is defined as:
45
46
47
48
49

$$C_r = \frac{u_r}{u_e} \quad (7)$$

50 30 where u_r is the residual displacement of the nonlinear SDOF system.
51
52
53
54 31 Dynamic analyses of the SDOF systems with various parameters were conducted to develop the
55
56
57
58
59 32 prediction models of C_μ and C_r . Various parameter values are considered in this paper to cover the possible
60
61
62
63
64 33 ranges of different design cases and capture the nonlinear relationships between the design parameters and
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

1
2
3
435 SMRF to RSMRF, $\eta = (0.1, 0.3, 0.5, 0.7, \text{ and } 0.9)$, five strength ratios of self-centering brace to SMRF, $\lambda =$
5
6
136 (0.1, 0.3, 0.5, 0.7, and 0.9), four ratios of post-yield stiffness to the initial stiffness of SMRF, $\alpha_1 = (0, 0.04,$
8
9
137 0.08, and 0.12), six ratios of post-yield stiffness to the initial stiffness of self-centering brace, $\alpha_2 = (0, 0.04,$
11
12
138 0.08, 0.12, 0.16, and 0.20), six energy-dissipation factors of self-centering brace, $\beta = (0, 0.2, 0.4, 0.6, 0.8,$
14
15
139 and 1.0), and four ductility ratios, $\mu = (2, 4, 6, \text{ and } 8)$, were considered in the dynamic analyses of SDOF
17
140 systems. 32 far-field ground motions recommended in FEMA P-695 [41] were adopted in the dynamic
20
21 analysis. Consequently, the values of C_μ and C_r can be calculated through the iterative dynamic analyses of
22
23
24 SDOF systems with the specific values of $T, \eta, \lambda, \alpha_1, \alpha_2, \beta$, and μ . Based on the parametric dynamic
25
26 analyses, 6,912,000 values of C_μ and C_r were obtained. This paper will focus on the median C_μ and C_r
27
28
29 responses of the SDOF system under the considered 32 ground motions. Finally, 216,000 median values of
30
31
32 C_μ and C_r were obtained with different combinations of the input parameters $T, \eta, \lambda, \alpha_1, \alpha_2, \beta$, and μ .
33
34
35

36 Benefitting from the excellent capacity in capturing the highly nonlinear relationship between the
37
38

39 inputs and outputs, machine learning techniques have been widely used in earthquake engineering in
40
41 recent research. Compared to the traditional empirical formula, the machine learning model can more
42
43 accurately predict the structural responses under earthquakes [42]. Accordingly, the artificial neural
44
45 network (ANN) algorithm was used in this paper to develop the prediction models of C_μ and C_r based on
46
47 the parametric dynamic analysis results. According to the investigation by Friedman et al. [43], to avoid
48
49 the overfitting of the developed prediction models, 70% of the database (i.e., $216,000 \times 70\% = 151,200$
50
51 samples) were used as the training sets, and 30% of the database (i.e., $216,000 \times 30\% = 64,800$ samples)
52
53 samples) were used as the testing sets. Because the training and testing sets are randomly selected, the evaluated
54
55 accuracy of the obtained prediction models based on the testing dataset can represent the untrained dataset.
56
57
58
59
60
61
62
63
64
65

1
2
3
456 The coefficient of determination (R^2) and root mean squared error (RMSE) were used to evaluate the
5
6
157 accuracy of the developed prediction models:
8
9

10
11
12
158
$$R^2 = 1 - \frac{\sum_{k=1}^{n_t} (\hat{y}_k - y_k)^2}{\sum_{k=1}^{n_t} (\hat{y}_k - \bar{y}_k)^2} \quad (8)$$

13
14
15

16
17
18
19
20
159
$$RMSE = \sqrt{\frac{\sum_{k=1}^{n_t} (\hat{y}_k - y_k)^2}{n_t}} \quad (9)$$

21
22
23

24
25 where \hat{y}_k and y_k are the prediction value and test value, respectively; \bar{y}_k is the mean value of the test data;
26
27 and n_t is the number of test data. Fig. 3 shows the performance of the ANN models for predicting C_μ and
28
29
30
31 C_r . The values of R^2 for C_μ and C_r predicted by the ANN models are 0.9936 and 0.9512, respectively, and
32
33 those of RMSE for C_μ and C_r are 0.0060 and 0.0052, respectively. The R^2 and RMSE values are close to
34
35
36 1.0 and 0, respectively, indicating the high accuracy of the developed ANN models for predicting C_μ and
37
38
39
40 C_r .

41
42 Fig. 4 shows the comparison between the predicted values by the ANN models and actual values
43
44 obtained from dynamic analyses for C_μ and C_r . As shown, the developed ANN models can efficiently
45
46 capture the dynamic analysis results. To facilitate the application of the developed ANN models to the
47
48 prediction C_μ and C_r of RSMRF, the software named ANNRSRSMRF-MEDIAN was developed based on the
49
50
51 prediction C_μ and C_r of RSMRF, the software named ANNRSRSMRF-MEDIAN was developed based on the
52
53 ANN models. The user interface of the ANNRSRSMRF-MEDIAN is shown in Fig. 5. The values of C_μ and
54
55
56
57 C_r can be obtained by simply inputting the values of T , η , λ , α_1 , α_2 , β , and μ . This software is provided as
58
59 the supplementary data of this paper.
60
61
62
63
64
65

1
2
3
473 **4. PEAK AND RESIDUAL DISPLACEMENT-BASED DESIGN METHOD**
5

674 Based on the developed prediction models of C_μ and C_r , the PRDBD method is proposed in this
7
8
975 section for enhancing the seismic performance of existing SMRFs through the installation of self-centering
10
11
1276 braces. Fig. 6 shows the flowchart of the proposed design method, and the corresponding detailed design
13
14
1577 steps are described as follows:
16
17
1878 1st step: The fundamental information of existing SMRF, including the floor mass (m_i), story
19
20
2179 elevation (h_i), structural layout, structural member size, and building location, can be obtained.
22
23
2480 2nd step: The maximum and residual inter-story drifts of the existing SMRF can be evaluated
25
26
2781 through nonlinear dynamic analysis. If the maximum or residual inter-story drift responses are
28
29
3082 unsatisfactory, the following procedure can be used to design self-centering braces for enhancing the
31
32
3383 seismic performance of the existing SMRF.
34
35
3684 3rd step: Determine the desired performance objectives by defining the target maximum inter-story
37
38
3985 drift ($\theta_{m,t}$) and target residual inter-story drift ($\theta_{r,t}$) under the considered seismic intensity (either DBE or
40
41
4286 MCE).
43
44
4587 4th step: The yield base shear $V_{y,SMRF}$, post-yield stiffness ratio α_1 , and yield inter-story drift $\theta_{y,SMRF}$
46
47
4888 of the existing SMRF can be achieved through nonlinear pushover analysis. If the SMRF cannot obtain a
49
50
5189 uniform yield inter-story drift over the building height, $\theta_{y,SMRF}$ can be obtained as the average yield inter-
52
53
5490 story drift.
55
56
5791 5th step: Based on the type and properties of the used self-centering braces, the hysteretic
58
59
6092 parameters (i.e., α_2 and β) can be determined.
61
62
6393 6th step: Calculate the ductility ratio μ :

$$\mu = \frac{\Delta_t}{\Delta_y} \quad (10)$$

where Δ_t and Δ_y are the design displacement of the retrofitted SMRF (i.e., RSMRF) and the yield

displacement of SMRF, respectively, and can be calculated as:

$$\Delta_t = \frac{\sum_{i=1}^n [m_i \Delta_{i,t}^2]}{\sum_{i=1}^n m_i \Delta_{i,t}} \quad (11)$$

$$\Delta_y = \frac{\sum_{i=1}^n [m_i \Delta_{i,y}^2]}{\sum_{i=1}^n m_i \Delta_{i,y}} \quad (12)$$

where $\Delta_{i,t}$ and $\Delta_{i,y}$ are the maximum and yield displacement of the i^{th} story. The lateral displacement profile developed by Karavasilis et al. [44] for SMRF was used in this paper. Accordingly, $\Delta_{i,t}$ and $\Delta_{i,y}$ can be calculated as:

$$\Delta_{i,t} = P_1 \theta_{m,i} h_i (1 - P_2 \frac{h_i}{H}) \quad (13)$$

$$\Delta_{i,y} = P_1 \theta_{y,SMRF} h_i (1 - P_2 \frac{h_i}{H}) \quad (14)$$

where P_1 and P_2 are related to the story number and the ratio of column's strength to beam's strength (a_{cd}).

Table 1 shows the values of P_1 and P_2 . a_{cd} can be calculated as:

$$a_{cd} = \frac{\sum M_{Rc}}{\sum M_{Rb}} \quad (15)$$

where $\sum M_{Rc}$ and $\sum M_{Rb}$ are the sum of the plastic moment of resistance of columns and beams framing the joint.

1
2
3
409 7th step: Determine the initial values of η and λ . The fundamental period of RSMRF can be
5
6

710 estimated as:

8
9
10
11
$$T_n = \frac{2\pi}{\omega_n} \quad (16)$$

12
13
14

1512
$$\omega_n = \sqrt{\eta} \times \omega_{n,SMRF} \quad (17)$$

16
17
18

19 where $\omega_{n,SMRF}$ is the natural frequency of the existing SMRF. Then corresponding C_μ can be obtained
20
21 through the developed ANN model.

22 8th step: Calculate the target inelastic displacement ratio $C_{\mu,t}$:

23
24
$$C_{\mu,t} = \frac{\Delta_t}{\Delta_e} \quad (18)$$

25
26
27

2816
$$\Delta_e = S_d(T_n) \quad (19)$$

29
30
31
32
3317 where $S_d(T_n)$ is the elastic design spectral displacement at T_n under considered seismic intensity (e.g., DBE
34
35
3618 or MCE).

37 9th step: The desired yield base shear of SMRF can be calculated as:

38
39
40
41
$$V_{SMRF,d} = \frac{WS_a(T_n)}{gR} = \frac{WS_a(T_n)}{g} \frac{C_\mu \eta}{\mu} \quad (20)$$

42
43
44

45 where $S_a(T_n)$ is the design spectral acceleration at T_n .

46
47 10th step: Calculate the difference between the desired yield base shear of SMRF $V_{SMRF,d}$ and actual
48
49
5022 yield base shear $V_{y,SMRF}$, as well as the difference between C_μ and $C_{\mu,t}$:

51
52
53
54
$$\frac{|V_{SMRF,d} - V_{y,SMRF}|}{V_{y,SMRF}} \leq tol \quad (21)$$

55
56
57
58
59
6025
61
62
63
64
65

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

$$\frac{|C_\mu - C_{\mu,t}|}{C_{\mu,t}} \leq tol \quad (22)$$

227 The values of η and λ should be changed from the 7th step until the difference is lower than the desired
10
11
1228 level (tol). tol is set as 5% in this paper. Note that while $V_{SMRF,d}$ is larger than $V_{y,SMRF}$, the values η and λ
13
14
15
16
17
18
19
1229 can be decreased and increased, respectively.

230 11th step: The values of T , η , λ , α_1 , α_2 , β , and μ can be determined through the above design steps.

231 The corresponding C_r can be obtained based on the developed ANN model.

232 12th step: Calculate the target residual displacement ratio $C_{r,t}$ based on the assumption that the

233 residual lateral displacement profile of RSMRF is the same as the maximum lateral displacement profile:

$$C_{r,t} = \frac{\Delta_r}{\Delta_e} \quad (23)$$

$$\Delta_r = \frac{\sum_{i=1}^n [m_i \Delta_{i,r}^2]}{\sum_{i=1}^n m_i \Delta_{i,r}} \quad (24)$$

$$\Delta_{i,r} = P_1 \theta_{r,i} h_i (1 - P_2 \frac{h_i}{H}) \quad (25)$$

44 237 If C_r is larger than $C_{r,t}$, the design process should be continued from the 13th step; otherwise, the

45 238 design process should be continued from the 16th step.

49 5239 13th step: Assume new values of η and λ . The fundamental period of RSMRF can be calculated

50 5340 through Eqs. (16) and (17). The relationship between C_r and μ can be obtained based on the developed
51
52
53
54
55
56
57
58
59
59
60
61
62
63
64
65

56 241 ANN model. Then the corresponding μ that is related to $C_{r,t}$ can be obtained.

58 242 14th step: Based on the new values of T , η , λ , α_1 , α_2 , β , and μ , the corresponding values of C_μ can be

60 243 updated through the developed ANN model.

1
2
3
44 15th step: The desired yield displacement of SMRF $\Delta_{y,d}$ can be estimated as:
5
6

$$245 \quad \Delta_{y,d} = \frac{\Delta_d}{\mu} \quad (26)$$

$$246 \quad \Delta_d = C_\mu S_d(T_n) \quad (27)$$

14 247 The yield inter-story drift ratio of SMRF θ_y can be estimated as:
15
16
17
18
1948

$$20 \quad \theta_y = \frac{\Delta_{y,d} \sum_{i=1}^n m_i P_1 h_i (1 - P_2 \frac{h_i}{H})}{\sum_{i=1}^n m_i \left[P_1 h_i (1 - P_2 \frac{h_i}{H}) \right]^2} \quad (28)$$

$$21$$

$$22$$

$$23$$

244 The desired yield base shear of SMRF can be calculated as:
25
26
27

$$250 \quad V_{SMRF,d} = \frac{WS_a(T_n)}{gR} = \frac{WS_a(T_n)}{g} \frac{C_\mu \eta}{\mu} \quad (29)$$

$$29$$

$$30$$

$$31$$

32 251 The difference between θ_y and $\theta_{y,SMRF}$ and that between $V_{SMRF,d}$ and $V_{y,SMRF}$ can be obtained
33
34 through Eqs. (30) and (31), respectively. The values of η and λ should be changed from the 14th step until
35 252 the difference is lower than the desired level (tol). Note that while $V_{SMRF,d}$ is larger than $V_{y,SMRF}$, the values
36
37
38 253 η and λ can be decreased and increased, respectively.
39
40
41
42
43

$$44 \quad \frac{|\theta_y - \theta_{y,SMRF}|}{\theta_{y,SMRF}} \leq tol \quad (30)$$

$$45$$

$$46$$

$$47$$

$$48$$

$$49 \quad \frac{|V_{SMRF,d} - V_{y,SMRF}|}{V_{y,SMRF}} \leq tol \quad (31)$$

$$50$$

$$51$$

$$52$$

$$53$$

54 257 16th step: The contribution of self-centering braces on the lateral story stiffness and base shear can
55
56 be obtained after obtaining the final values of η and λ :

$$57$$

$$58$$

$$59$$

$$6059 \quad K_{S,i} = \frac{1-\eta}{\eta} K_{SMRF,i} \quad (32)$$

$$61$$

$$62$$

$$63$$

$$64$$

$$65$$

$$V_{y,S} = \lambda V_{y,SMRF} \quad (33)$$

where $K_{SMRF,i}$ is the lateral stiffness of the i^{th} story of existing SMRF.

The corresponding lateral seismic forces can be calculated through distributing $V_{y,S}$ with the distribution factor $C_{V,i}$:

$$F_i = C_{V,i} V_{y,S} \quad (34)$$

$$C_{V,i} = \frac{m_i h_i}{\sum_{j=1}^n m_j h_j} \quad (35)$$

The story shear force can be obtained as:

$$V_{y,S,i} = \sum_i^n F_i \quad (36)$$

If we assume that the self-centering braces are installed in the gravity frame with an inverted V-type configuration (as shown in Fig. 7), the initial axial stiffness and yield strength of the self-centering braces can be calculated as:

$$k_{S,i} = \frac{K_{S,i}}{N \cos^2 \varphi_i} \quad (37)$$

$$F_{S,i} = \frac{V_{y,S,i}}{N \cos \varphi_i} \quad (38)$$

According to the design procedure introduced in [40], the self-centering braces can be designed based on $k_{S,i}$ and $F_{S,i}$. Stiffeners can be installed to strengthen beams and columns if they cannot resist the additional forces introduced by self-centering braces.

1
2
3
4 276 17th step: The seismic performance of the designed RSMRF should be evaluated through nonlinear
5
6

7 277 dynamic analysis. If the designed RSMRF cannot achieve the target performance objective, the design can
8
9
10 278 be adjusted by scaling the self-centering brace's capacity or changing $C_{V,i}$.
11
12 279 **5. DESIGN CASES**
13
14

15 280 Fig. 7 shows the three- and nine-story SMRF buildings considered in this section to validate the
16
17

18 281 proposed PRDBD method. The three- and nine-story SMRFs are denoted as SMRF3 and SMRF9,
19
20
21 282 respectively. The original SMRF3 and SMRF9 were designed by Brandow & Johnston Associates for the
22
23
24 283 SAC Phase II Steel Project [45]. Although these two buildings were not experimentally tested, many past
25
26
27 284 studies have investigated the properties of SMRF3 and SMRF9 numerically [4, 5, 45, 46]. These buildings
28
29
30 285 were designed as office buildings located in Los Angeles. The corresponding site classification is class D.
31
32

33 286 The corresponding design spectrum parameters, including S_{DS} , S_{D1} , and T_L , are set as 1.393 g, 0.77 g, and 8
34
35 287 s, respectively. As shown in Figs. 7(a) and 7(e), the bay width of SMRF3 and SMRF9 is 9.15 m. The
36
37
38 288 elevations of SMRF3 and SMRF9 are shown in Figs. 7(c) and 7(g), respectively. The story height of
39
40
41 289 SMRF3 is 3.96 m. SMRF9 has a basement with a height of 3.65 m. The first story height of SMRF9 is
42
43
44 290 5.49 m, while the other story height is 3.96 m. The design information of the beams and columns included
45
46
47 291 in SMRF3 and SMRF9 is shown in Figs. 7(c) and 7(g). Figs. 7(b) and 7(d) show the arrangement of the
48
49
50 292 self-centering braces in SMRF3, Figs. 7(f), and 7(h) show the arrangement of the self-centering braces in
51
52
53 293 SMRF9. The self-centering braces are installed in two bays of gravity frames in each direction of SMRF3
54
55
56 294 and SMRF9. The braced bay with self-centering braces in the retrofitted SMRF3 and SMRF9 are denoted
57
58
59 295 as SCBF3 and SCBF9, respectively. The retrofitted SMRF3 and SMRF9 are denoted as RSMRF3 and
60
61
62
63
64
65

1
 2
 3
 4 296 RSMRF9, respectively. Owing to the symmetric arrangement, only a 2-D frame was analyzed in this
 5
 6
 7 297 research.
 8
 9
 10 298 For demonstration, two different sets of performance objectives were set for RSMRF3 and
 11
 12
 13 299 RSMRF9: (a) $\theta_{m,t} = 2\%$ and $\theta_{r,t} = 0.2\%$ under MCE; and (b) $\theta_{m,t} = 2.5\%$ and $\theta_{r,t} = 0.05\%$ under MCE.
 14
 15
 16 300 Accordingly, the two different RSMRF3 systems designed with performance objectives (a) and (b) are
 17
 18 301 denoted as RSMRF3A and RSMRF3B, respectively; while the two different RSMRF9 systems designed
 19
 20
 21 302 with performance objectives (a) and (b) are denoted as RSMRF9A and RSMRF9B, respectively. The
 22
 23
 24 303 initial parameters of SMRF3 were estimated as $V_{y,SMRF} = 4,269$ kN, $\alpha_1 = 0.0657$, and $\theta_{y,SMRF} = 0.77\%$,
 25
 26
 27 304 while that of SMRF9 were estimated as $V_{y,SMRF} = 6,329$ kN, $\alpha_1 = 0.0499$, and $\theta_{y,SMRF} = 0.92\%$. The
 28
 29
 30 305 hysteretic parameters of the self-centering brace were set as $\alpha_2 = 0.16$ and $\beta = 0.5$ for a demonstration.
 31
 32
 33 306 Based on the proposed PRDBD method, the values of η and λ were obtained as 0.35 and 0.52, respectively,
 34
 35
 36 307 for RSMRF3A; 0.41 and 0.46, respectively, for RSMRF3B; 0.39 and 1.95, respectively, for RSMRF9A;
 37
 38
 39 308 and 0.58 and 1.90, respectively, for RSMRF9B. Table 2 shows the design information of the self-centering
 40
 41
 42 309 braces included in RSMRF3A, RSMRF3B, RSMRF9A, and RSMRF9B. In Table 2, D , d , H_0 , and t' are the
 43
 44
 45 310 geometries of the disc spring, as illustrated in Fig. 1(b). n_f and n_p are the set number of the disc spring
 46
 47
 48 311 stacked in series and the number of disc spring stacked in parallel in each set, respectively. The following
 49
 50
 51 312 briefly introduces the design process of RSMRF9A and RSMRF9B from the 6th step.
 52
 53
 54 313 (1) Design process of RSMRF9A
 55
 56
 57 314 6th step: Based on the ratio of column's strength to beam's strength of SMRF9, the values of P_1 and
 58
 59
 60 315 P_2 were set as 0.85 and 0.3, respectively. Accordingly, based on Eqs. (10) to (14), the ductility ratio μ is
 61
 62 316 calculated as 2.1739.
 63
 64
 65

1
2
3
4 17 7th step: The initial values of η and λ were set as 0.5 and 0.5, respectively. Note that the initial
5
6
7
8
9
10 19 values of η and λ can be chosen arbitrarily for the initial design. The natural frequency of the existing
11
12
13 20 SMRF9 $\omega_{n,SMRF}$ was obtained as 2.9451 Hz based on the eigenvalue analysis that will be introduced in
14
15
16 21 Section 6. Based on Eqs. (16) and (17), the fundamental period of RSMRF9 T_n was estimated as 1.5086 s.
17
18
19 22 The corresponding C_μ was obtained based on the developed ANN model as 0.8655.
20
21
22 23 8th step: Based on Eqs. (18) and (19), the target inelastic displacement ratio $C_{\mu,t}$ was calculated as
24
25
26 27 0.7703.
28
29
30 32 9th step: Based on Eq. (20), the desired yield base shear of SMRF was calculated as 6861.1 kN.
31
32
33 36 10th step: Based on Eqs. (21) and (22), the difference between the desired yield base shear of
34
35
36 39 SMRF $V_{SMRF,d}$ and actual yield base shear $V_{y,SMRF}$ as well as the difference between C_μ and $C_{\mu,t}$ were
37
38
39 42 calculated as 8.41% and 12.36%, respectively, that are larger than 5%. After six iterative calculations, the
40
41
42 45 values of η and λ were obtained as 0.39 and 1.95, respectively. The corresponding difference between
46
47
48 51 $V_{SMRF,d}$ and $V_{y,SMRF}$, as well as the difference between C_μ and $C_{\mu,t}$, were calculated as 3.72% and 0.21%,
52
53
54 57 respectively, which are smaller than 5%. The corresponding fundamental period was 1.3323 s.
55
56
57 60 11th step: The values of T , η , λ , α_1 , α_2 , β , and μ were obtained as 1.3323 s, 0.39, 1.95, 0.0499, 0.16,
58
59
60 63 0.5, and 0.8704, respectively. Based on the developed ANN model, the corresponding C_r can be obtained
61
62
63 66 as 0.0181.
64
65 68 12th step: Based on Eqs. (23) to (25), the target residual displacement ratio $C_{r,t}$ was obtained as
69
70
71 74 0.0872 that is larger than C_r (i.e., 0.0181), indicating that when the maximum inter-story drift of RSMRF9
72
73
74 77 is lower than 2%, the corresponding residual inter-story drift is lower than 0.2%. Then, the design step can
78
79
80 83 continue from the 16th step.
81
82
83 86

1
2
3
438 16th step: Based on Eqs. (32) to (38), the initial stiffness and strength of self-centering braces can
5
6

339 be calculated. Table 2 shows the design information of the self-centering braces included in RSMRF9A.
8
9

1640
11
12
1341 (2) Design process of RSMRF9B
14

15
1642 6th step: Based on Eqs. (10) to (14), the ductility ratio μ is calculated as 2.7174.
17

18
1943 7th step: The initial values of η and λ were set as 0.5 and 0.5, respectively. The natural frequency of
20

21
2244 the existing SMRF9 $\omega_{n,SMRF}$ was obtained as 2.9451 based on engine analysis that will be introduced in
23

24
2545 Section 6. Based on Eqs. (16) and (17), the fundamental period of RSMRF9 T_n was estimated as 1.5086 s.
26

27
2846 The corresponding C_μ was obtained based on the developed ANN model as 0.8372.
29

30
3147 8th step: Based on Eqs. (18) and (19), the target inelastic displacement ratio $C_{\mu,t}$ was calculated as
32

33
3448 0.9629.
35

36
3749 9th step: Based on Eq. (20), the desired yield base shear of SMRF was calculated as 5309.4 kN.
38

39
4050 10th step: Based on Eqs. (21) and (22), the difference between $V_{SMRF,d}$ and $V_{y,SMRF}$, as well as the
41

42
4351 difference between C_μ and $C_{\mu,t}$, were calculated as 16.11% and 13.05%, respectively, which are larger than
44

45
4652 5%. The iterative calculation was conducted by changing the values of η and λ to satisfy the error
47

48
4953 requirement. Finally, the values of η and λ were obtained as 0.68 and 1.75, respectively. The
50

51
5254 corresponding difference between $V_{SMRF,d}$ and $V_{y,SMRF}$ as well as the difference between C_μ and $C_{\mu,t}$ were
53

54
5555 calculated as 3.22% and 0.31%, respectively, which are smaller than 5%.
56

57
5856 11th step: The values of T , η , λ , α_1 , α_2 , β , and μ were obtained as 1.7593 s, 0.68, 1.75, 0.0499, 0.16,
59

60
6157 0.5, and 0.8283, respectively. Based on the developed ANN model, the corresponding C_r can be obtained
62

63
6458 as 0.0203.
65

1
2
3
459 12th step: Based on Eqs. (23) to (25), the target residual displacement ratio $C_{r,t}$ was obtained as
5
6

360 0.0165 that is smaller than C_r (i.e., 0.0203), indicating that when the maximum inter-story drift of
8
9

1361 RSMRF9 is lower than 2.5%, the corresponding residual inter-story drift is still much larger than 0.05%.
11
12

1362 Then, the design step can continue from the 13th step.
14

15
1663 13th step: The values of η and λ obtained in the 10th step (i.e., 0.68 and 1.75, respectively) were
17

18
1964 used in this step. The corresponding μ that is related to $C_{r,t}$ can be obtained as 3.3601.
20

21
2265 14th step: The values of T , η , λ , α_1 , α_2 , β , and μ were obtained as 1.7593 s, 0.68, 1.75, 0.0499, 0.16,
23

24
2566 0.5, and 3.3601, respectively. The corresponding values of C_μ can be obtained through the developed ANN
26

27
2867 model as 0.8002.
29

30
3168 15th step: The desired yield inter-story drift ratio of SMRF θ_y can be estimated based on Eqs. (26)
32

33
3469 to (28) as 0.72%. The desired yield base shear of SMRF can be calculated based on Eq. (29) as 4786.1 kN.
35

36
3770 The difference between θ_y and $\theta_{y,SMRF}$ and that between $V_{SMRF,d}$ and $V_{y,SMRF}$ can be obtained through Eqs.
38

39
4071 (30) and (31) as 21.62% and 24.38%, respectively, which are much larger than 5%. The iterative
41

42
4372 calculation was conducted by changing the values of η and λ to satisfy the error requirement. Finally, the
44

45
4673 values of η and λ were obtained as 0.58 and 1.9, respectively. The difference between θ_y and $\theta_{y,SMRF}$ and
47

48
4974 that between $V_{SMRF,d}$ and $V_{y,SMRF}$ can be obtained through Eqs. (30) and (31) as 3.24% and 3.9%,
50

51
5275 respectively, which are much smaller than 5%. The corresponding fundamental period was 1.6248 s.
53

54
5576 16th step: Based on Eqs. (32) to (38), the initial stiffness and strength of self-centering braces can
56

57
5877 be calculated. Table 2 shows the design information of the self-centering braces included in RSMRF9B.
59

60
6178 Based on the presented design processes of RSMRF9A and RSMRF9B, it can be found that the
62

63
6479 design of RSMRF9A is governed by the maximum inter-story drift, wherein the residual inter-story drift is
65

1
2
3
480 lower than the target value when the RSMRF9A achieves the target maximum inter-story drift; and the
5
6
381 design of RSMRF9B is governed by the residual inter-story drift, wherein the maximum inter-story drift is
8
9
1682 lower than the target value when the RSMRF9A achieves the target residual inter-story drift.
11
12
383 **6. PERFORMANCE EVALUATION**
13
14
384 **6.1. NUMERICAL MODELING**
15
16
1385 *OpenSees* [47] was used to develop the numerical models of the considered systems and perform
18
19
2086 the nonlinear static and dynamic analyses. Fig. 8(a) sketches the numerical model of RSMRF9A. The
21
22
2387 beam-to-column connections in SCBF9 and the exterior beam-to-column connections on the right side of
24
25
2688 SMRF9 were modeled as pinned connections. Assume sufficient stiffeners were installed in the beams and
27
28
2989 columns of the gravity frame to resist the additional forces introduced by self-centering braces and ensure
30
31
3289 the beams and columns of the gravity frame maintain elastic during earthquakes. For simplicity, *Elastic*
33
34
3591 *Beam-Column* elements were used to model the beams and columns of the gravity frame. The hysteretic
36
37
3892 behavior of the self-centering braces was simulated using *Two-Node-Link* elements with the *SelfCentering*
39
40
4193 material model. Fig. 8(b) compares the test results of the considered self-centering brace in [40] and the
42
43
4494 numerical results obtained through the proposed modeling method. As shown, the numerical results agree
45
46
4795 well with the test results, confirming the accuracy of the proposed modeling method for the self-centering
48
49
5096 brace. The modified Ibarra-Medina-Krawinkler model [48, 49] was adopted to model the hysteretic
51
52
5397 behavior of the beam-to-column connections in SMRF9 in consideration of strength deterioration. The
54
55
5698 panel zone's deformation was considered based on the investigation of Gupta [50]. The detailed modeling
57
58
5999 information of the beam-to-column connections included in SMRF9 can be found in Fig. 8(a). The *Force-*
60
61
6200 *Based Beam-Column* elements were used to model the beams and columns included in SMRF9. *Equal*
63
64
65

1
2
3
401 *DOF* commands were used to make SCBF9 and RSMRF9 achieve the same horizontal and vertical
5
6
402 displacement at each story. The P- Δ effects were considered through the leaning column connected to the
8
9
103 adjacent column of SMRF9 through rigid truss elements. The numerical models of SMRF3, RSMRF3A,
11
12
1404 RSMRF3B, SMRF9, and RSMRF9B were also developed by following the same methodology.
14
15

16 The modal properties of the designed frames were investigated through eigenvalue analyses. The
17
18 fundamental periods of SMRF3, RSMRF3A, RSMRF3B, are 0.919 s, 0.527 s, and 0.564 s, respectively;
19
20
21 those of SMRF9, RSMRF9A, and RSMRF9B are 2.133 s, 1.359 s, and 1.556 s, respectively. It can be
22
23
24 found that the fundamental periods of RSMRF9A and RSMRF9B obtained from the numerical analysis
25
26
27 were close to the estimated values in Section 5 (i.e., 1.3323 s and 1.6248 s for RSMRF9A and RSMRF9B,
28
29
30 respectively). Moreover, the fundamental periods of SMRF3 and SMRF9 are close to those obtained in
31
32
33 Ohtori et al. [45] (i.e., 1.010 s and 2.257 s, respectively), confirming the accuracy of the developed
34
35
36 numerical models of SMRF3 and SMRF9.
37
38
39 **6.2. NONLINEAR STATIC ANALYSIS**
40

41 Pushover analyses were conducted to investigate the static nonlinear behavior of SMRF3,
42
43
44 RSMRF3A, RSMRF3B, SMRF9, RSMRF9A, and RSMRF9B. The monotonous pushover curves are
45
46
47 shown in Fig. 9. The pushover analysis ended at the roof drift of 5%. The base shear of the considered
48
49
50 systems was normalized by building weight. As shown in Fig. 9, the installation of self-centering braces
51
52
53 can efficiently increase the stiffness and strength of SMRF3 and SMRF9. Because of the damage of beam-
54
55
56 to-column connections, SMRF3 and SMRF9 show obvious strength deterioration at about 3.2% and 2.5%
57
58
59 roof drifts, respectively. However, no strength deterioration can be found in RSMRF3A, RSMRF3B,
60
61
62
63
64

1
2
3
421 RSMRF9A, and RSMRF9B when the roof drift is loaded up to 5%. These observations confirm that the
5
6
422 self-centering braces can effectively improve the seismic performance of the existing SMRF9.
8
9
10 **6.3. NONLINEAR DYNAMIC ANALYSIS**
11
1244 20 ground motions were selected from the NGA Database [51] and scaled to make the median
13
14
1425 acceleration spectrum of the selected ground motions capture the MCE design spectrum defined in ASCE
16
17
1426 7-16 [52] for the dynamic analyses under MCE. Note that the 20 ground motions are chosen intentionally
19
20
2427 different from the ground motion sets used in Section 2, aiming to evaluate the efficacy of the developed
22
23
2428 C_μ and C_r prediction models and the proposed design procedure when different ground motions are used.
25
26
429 Table 3 shows the detailed information and scale factors of the selected ground motions. The comparison
27
28
29
30 between the design spectrum and the spectral accelerations of the selected ground motion is shown in Fig.
31
32
33
34
35
36
37
3833 10. The selected ground motions can match well with the MCE design spectrum. To obtain the residual
39
40
4134 inter-story drift responses of the considered frames, 20 s free vibration was added to the end of each
42
43
4435 dynamic analysis.
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65 Fig. 11 shows the peak inter-story drifts of the considered systems under the selected ground
motions with the MCE intensity. The designed frames show variable responses under different ground
motion excitations. The inter-story drift concentration mechanism can be observed in the considered
systems. Improving the inter-story drift distribution of steel moment-resisting frames is beyond the scope
of the present paper. The related research work can be found in [4, 53]. This paper is focused on mitigating
the peak and residual inter-story drift responses of the existing steel moment-resisting frames to the desired
level by installing self-centering braces. The maximum median peak inter-story drifts of SMRF3 and
SMRF9 are 3.44% and 2.93%, respectively, whereas those of RSMRF3A, RSMRF3B, RSMRF9A, and

1
2
3
442 RSMRF9B are only 1.92%, 2.27%, 1.99%, and 2.02%, respectively, indicating that self-centering braces
5
6
443 can efficiently reduce the peak inter-story drift responses of the original SMRF3 and SMRF9. Fig. 12
7
8
9
144 shows the residual inter-story drifts of the considered systems under MCE. The maximum median residual
11
12
145 inter-story drifts of SMRF3 and SMRF9 are 0.64% and 0.86%, respectively, whereas those of RSMRF3A,
14
15
146 RSMRF3B, RSMRF9A, and RSMRF9B are 0.038%, 0.047%, 0.043%, and 0.055%, respectively,
17
18
147 indicating that self-centering braces can efficiently reduce the residual inter-story drift responses of the
19
20
2148 original SMRF3 and SMRF9. The RSMRF3A and RSMRF9A show better performance than RSMRF3B
22
23
2449 and RSMRF9B in controlling residual inter-story drifts. The reason for this phenomenon is that self-
25
26
27450 centering braces included in RSMRF3A and RSMRF9A have higher stiffness and strength than that
28
29
30451 included in RSMRF3B and RSMRF9B, making the RSMRF3A and RSMRF9A achieve better self-
31
32
33452 centering capacities. According to FEMA P-58 [54], no structural realignment is necessary after
34
35
36453 earthquakes when the residual inter-story drift (θ_r) is lower than 0.2%, the structural members can be
37
38
39454 repaired with low economic loss when θ_r is lower than 0.5%, and the structural members can be repaired
40
41
42455 with great economic loss when θ_r is larger than 0.5% and lower than 1.0%. Based on the investigation by
43
44
45456 McCormick et al. [3], it is a better and more economic choice to demolish and rebuild rather than repair
46
47
48457 the buildings with θ_r larger than 0.5%. Accordingly, the SMRF3 and SMRF9 will be demolished due to
49
50
51458 great repair costs, whereas RSMRF3A, RSMRF3B, RSMRF9A, and RSMRF9B can continue to provide
52
53
54459 service without repair requirements after earthquakes with MCE intensity. By following the design process
55
56
57460 presented in Section 5, the designs of RSMRF3A and RSMRF9A are governed by the maximum inter-
58
59
60461 story drift; consequently, the maximum median peak inter-story drifts of RSMRF3A and RSMRF9A are
61
62
63462 close to the target (i.e., 2.0%), whereas the maximum median residual inter-story drifts of RSMRF3A and
64
65

1
2
3
463 RSMRF9A are much lower than the target (i.e., 0.2%). In contrast, the designs of RSMRF3B and
5
6
464 RSMRF9B are governed by the residual inter-story drift; the maximum median peak inter-story drifts of
8
9
1465 RSMRF3B and RSMRF9B are much lower than the target (i.e., 2.5%), whereas the maximum median
11
12
1466 residual inter-story drifts of RSMRF3B and RSMRF9B are close to the target (i.e., 0.05%). These
14
15
1467 phenomena confirm that the RSMRFs designed through the proposed PRDBD method can achieve the
17
18
1468 desired performance objectives that are defined by the maximum and residual inter-story drifts.
20

2469 7. CONCLUSIONS

22

23
24 This paper developed a peak and residual displacement-based design (PRDBD) method for
25
26 controlling the peak and residual inter-story drift responses of SMRF by installing self-centering braces.
27
28
29 The three- and nine-story SMRFs were upgraded using the proposed PRDBD method to meet two different
30
31 sets of performance objectives. Static and dynamic analyses were conducted to investigate the seismic
32
33 performance of the designed buildings. Based on the analysis results, the following conclusions can be
34
35 obtained:
36
37
38

39
40 • The developed ANN models can accurately predict the median values of C_μ and C_r of RSMRF with R^2
41
42 values of 0.9936 and 0.9512, respectively. A software named ANNRSRMRF-MEDIAN was developed
43
44 and provided to facilitate the prediction of C_μ and C_r with the inputs of T , η , λ , α_1 , α_2 , β , and μ .
45
46
47 • SMRF3 and SMRF9 show obvious deterioration of strength at about 3.2% and 2.5% roof drifts,
48
49 respectively; whereas no strength deterioration can be found in RSMRF3A, RSMRF3B, RSMRF9A,
50
51 and RSMRF9B when the roof drift is loaded up to 5%, confirming the efficiency of self-centering
52
53 braces in enhancing the lateral force-resisting capacity of the existing SMRFs.
54
55
56
57
58
59
60
61
62
63
64
65

- The maximum inter-story drifts of RSMRF3A and RSMRF9A are close to 2.0% while the residual inter-story drifts are lower than 0.2%, and the residual inter-story drifts of RSMRF3B and RSMRF9B are close to 0.05% while the maximum inter-story drifts are lower than 2.5% under MCE. These results confirm that the proposed PRDBD method can efficiently make the designed RSMRFs achieve the desired maximum and residual inter-story drift responses under the concerned seismic intensity.
- The SMRF3 and SMRF9 will be demolished because the residual inter-story drift is larger than 0.5%, whereas RSMRF3A, RSMRF3B, RSMRF9A, and RSMRF9B can continue to provide service without repair requirements after MCE earthquakes by achieving residual inter-story drifts lower than 0.2%.

It is noteworthy that although the modeling methods of SMRF and self-centering braces have been verified separately through the past investigations or test results, further tests of RSMRF need to be conducted in the future to investigate the seismic performance of RSMRF and the efficacy of the proposed design method before the RSMRF is used in practical applications.

ACKNOWLEDGMENT

The financial support from the Research Grants Council of Hong Kong (Grant Nos. PolyU 152246/18E, C7038-20G, T22-502/18-R), and the Hong Kong Polytechnic University (Grant Nos. ZE2L, ZVX6, and P0038795).

APPENDIX A. SUPPLEMENTARY DATA

The software installer of ANNRSRMRF-MEDIAN.

REFERENCES

[1] Cole GL, Dhakal RP, Turner FM. Building pounding damage observed in the 2011 Christchurch earthquake. *Earthquake Engineering & Structural Dynamics*. 2012;41:893-913.

1
2
3 [2] Howes T, Cheesebrough T. Infrastructure impact and recovery following the 2010–2011 earthquakes in
4 Christchurch, New Zealand. Proceedings of the Institution of Civil Engineers-Civil Engineering: Thomas
5 Telford Ltd; 2013. p. 57-64.
6 [3] McCormick J, Aburano H, Ikenaga M, Nakashima M. Permissible residual deformation levels for
7 building structures considering both safety and human elements. Proceedings of the 14th world
8 conference on earthquake engineering2008. p. 12-7.
9 [4] Hu S, Wang W, Alam MS. Performance-based seismic design method for retrofitting steel moment-
10 resisting frames with self-centering energy-absorbing dual rocking core system. Journal of Constructional
11 Steel Research. 2022;188:106986.
12 [5] Hu S, Wang W, Qu B. Seismic economic losses in mid-rise steel buildings with conventional and
13 emerging lateral force resisting systems. Engineering Structures. 2020;204:110021.
14 [6] Achour N, Miyajima M, Kitaura M, Price A. Earthquake-induced structural and nonstructural damage
15 in hospitals. Earthquake spectra. 2011;27:617-34.
16 [7] Miranda E, Mosqueda G, Retamales R, Pekcan G. Performance of nonstructural components during the
17 27 February 2010 Chile earthquake. Earthquake Spectra. 2012;28:453-71.
18 [8] Hu S, Wang W, Alam MS. Hybrid self-centering rocking core system with fiction spring and viscous
19 dampers for seismic resilience. Engineering Structures. 2022;257:114102.
20 [9] Hu S, Zhu S, Wang W. Hybrid self-centering companion spines for structural and nonstructural
21 damage control. Engineering Structures. 2022;266:114603.
22 [10] Priestley MN, Sriharan S, Conley JR, Pampanin S. Preliminary results and conclusions from the
23 PRESSS five-story precast concrete test building. PCI journal. 1999;44:42-67.
24 [11] Ricles JM, Sause R, Garlock MM, Zhao C. Posttensioned seismic-resistant connections for steel
25 frames. Journal of Structural Engineering. 2001;127:113-21.
26 [12] Garlock MM, Ricles JM, Sause R. Experimental studies of full-scale posttensioned steel connections.
27 Journal of Structural Engineering. 2005;131:438-48.
28 [13] Garlock MM, Ricles JM, Sause R. Influence of design parameters on seismic response of post-
29 tensioned steel MRF systems. Engineering Structures. 2008;30:1037-47.
30 [14] Chou C-C, Chen J-H. Development of floor slab for steel post-tensioned self-centering moment
31 frames. Journal of Constructional Steel Research. 2011;67:1621-35.
32 [15] Zhang Y, Xu L. Cyclic response of a self-centering RC wall with tension-compression-coupled disc
33 spring devices. Engineering Structures. 2022;250:113404.
34 [16] Liu J, Xu L, Li Z. Development and experimental validation of a steel plate shear wall with self-
35 centering energy dissipation braces. Thin-Walled Structures. 2020;148:106598.
36 [17] Xu L, Xiao S, Li Z. Experimental investigation on the seismic behavior of a new self-centering shear
37 wall with additional friction. Journal of Structural Engineering. 2021;147:04021056.
38 [18] Eatherton MR, Ma X, Krawinkler H, Deierlein GG, Hajjar JF. Quasi-static cyclic behavior of
39 controlled rocking steel frames. Journal of Structural Engineering. 2014;140:04014083.
40 [19] Eatherton MR, Ma X, Krawinkler H, Mar D, Billington S, Hajjar JF et al. Design concepts for
41 controlled rocking of self-centering steel-braced frames. Journal of Structural Engineering.
42 2014;140:04014082.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3 [44] [20] Hu S, Wang W, Qu B. Seismic evaluation of low-rise steel building frames with self-centering
4 energy-absorbing rigid cores designed using a force-based approach. *Engineering Structures*.
5 2020;204:110038.
6 [47] [21] Hu S, Wang W, Qu B. Self-centering companion spines with friction spring dampers: Validation test
7 and direct displacement-based design. *Engineering Structures*. 2021;238:112191.
8 [49] [22] Hu S, Wang W, Qu B, Alam MS. Development and validation test of a novel Self-centering Energy-
9 absorbing Dual Rocking Core (SEDRC) system for seismic resilience. *Engineering Structures*.
10 2020;211:110424.
11 [52] [23] Hu S, Wang W, Qu B, Alam MS. Self-centering energy-absorbing rocking core system with friction
12 spring damper: Experiments, modeling and design. *Engineering Structures* (under review). 2020.
13 [54] [24] Zhang G, Xu L-H, Li Z-X. Development and seismic retrofit of an innovative modular steel structure
14 connection using symmetrical self-centering haunch braces. *Engineering Structures*. 2021;229:111671.
15 [56] [25] Xu L, Chen P, Li Z. Development and validation of a versatile hysteretic model for pre-compressed
16 self-centering buckling-restrained brace. *Journal of Constructional Steel Research*. 2021;177:106473.
17 [58] [26] Xu L, Lin Z, Xie X. Assembled self-centering energy dissipation braces and a force method-based
18 model. *Journal of Constructional Steel Research*. 2022;190:107121.
19 [60] [27] Xu LH, Fan XW, Li ZX. Cyclic behavior and failure mechanism of self - centering energy dissipation
20 braces with pre - pressed combination disc springs. *Earthquake Engineering & Structural Dynamics*.
21 2017;46:1065-80.
22 [63] [28] Wang W, Fang C, Zhao Y, Sause R, Hu S, Ricles J. Self - centering friction spring dampers for
23 seismic resilience. *Earthquake Engineering and Structural Dynamics*. 2019;48:1045-65.
24 [65] [29] Zhu S, Zhang Y. Seismic analysis of concentrically braced frame systems with self-centering friction
25 damping braces. *Journal of Structural Engineering*. 2008;134:121-31.
26 [67] [30] Chou C-C, Chung P-T. Development of cross-anchored dual-core self-centering braces for seismic
27 resistance. *Journal of Constructional Steel Research*. 2014;101:19-32.
28 [69] [31] Chou C-C, Hsiao C-H, Chen Z-B, Chung P-T, Pham D-H. Seismic loading tests of full-scale two-
29 story steel building frames with self-centering braces and buckling-restrained braces. *Thin-Walled
30 Structures*. 2019;140:168-81.
31 [72] [32] Zhu R, Guo T, Mwangilwa F, Han D. Seismic design of self-centering viscous-hysteretic devices used
32 for steel moment-resisting frames. *Engineering Structures*. 2021;239:112369.
33 [74] [33] Shi F, Ozbulut OE, Zhou Y. Influence of shape memory alloy brace design parameters on seismic
34 performance of self - centering steel frame buildings. *Structural Control and Health Monitoring*.
35 2020;27:e2462.
36 [77] [34] Ozbulut OE, Michael RJ, Silwal B. Seismic Performance Assessment of Steel Frames Upgraded with
37 Self-Centering Viscous Dampers. *Dynamics of Civil Structures, Volume 2*: Springer; 2015. p. 421-32.
38 [79] [35] Qiu C, Zhao X, Zhu S. Seismic upgrading of multistory steel moment - resisting frames by installing
39 shape memory alloy braces: Design method and performance evaluation. *Structural Control and Health
40 Monitoring*. 2020;27:e2596.
41 [82] [36] Fang C, Ping Y, Chen Y, Yam M, Chen J, Wang W. Seismic Performance of Self-centering Steel
42 Frames with SMA-viscoelastic Hybrid Braces. *Journal of Earthquake Engineering*. 2020;1-28.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3 [37] Longhe, Xu, Xiaowei, Fan, Zhongxian, Li. Experimental behavior and analysis of self-centering steel
4 brace with pre-pressed disc springs - ScienceDirect. Journal of Constructional Steel Research.139:363-73.
5 [38] Qiu C, Zhu S. Shake table test and numerical study of self - centering steel frame with SMA braces.
6 Earthquake Engineering & Structural Dynamics. 2017;46:117-37.
7 [39] Tremblay R, Lacerte M, Christopoulos C. Seismic response of multistory buildings with self-
8 centering energy dissipative steel braces. Journal of structural engineering. 2008;134:108-20.
9 [40] Wang W, Fang C, Shen D, Zhang R, Ding J, Wu H. Performance assessment of disc spring-based
10 self-centering braces for seismic hazard mitigation. Engineering Structures. 2021;242:112527.
11 [41] FEMA. FEMA P695. Quantification of building seismic performance factors. Washington, DC:
12 Federal Emergency Management Agency; 2009.
13 [42] Hu S, Wang W, Alam MS. Probabilistic Nonlinear Displacement Ratio Prediction of Self-centering
14 Energy-absorbing Dual Rocking Core System under Near-fault Ground Motions Using Machine Learning.
15 Journal of Earthquake Engineering. 2021:1-32.
16 [43] Friedman J, Hastie T, Tibshirani R. The elements of statistical learning: Springer series in statistics
17 New York; 2001.
18 [44] Karavasilis T, Bazeos N, Beskos D. Maximum displacement profiles for the performance based
19 seismic design of plane steel moment resisting frames. Engineering Structures. 2006;28:9-22.
20 [45] Ohtori Y, Christenson R, Spencer B, Dyke S. Benchmark control problems for seismically excited
21 nonlinear buildings. Journal of engineering mechanics. 2004;130:366-85.
22 [46] Fang C, Zhong Q, Wang W, Hu S, Qiu C. Peak and residual responses of steel moment-resisting and
23 braced frames under pulse-like near-fault earthquakes. Engineering Structures. 2018;177:579-97.
24 [47] Mazzoni S, McKenna F, Scott MH, Fenves GL. OpenSees command language manual. Pacific
25 Earthquake Engineering Research (PEER) Center.2006.
26 [48] Lignos DG, Krawinkler H. A database in support of modeling of component deterioration for collapse
27 prediction of steel frame structures. Structural Engineering Research Frontiers2007. p. 1-12.
28 [49] Lignos DG, Krawinkler H. Deterioration modeling of steel components in support of collapse
29 prediction of steel moment frames under earthquake loading. Journal of Structural Engineering.
30 2011;137:1291-302.
31 [50] Gupta A. Seismic demands for performance evaluation of steel moment resisting frame structures:
32 Stanford University; 1999.
33 [51] Chiou B, Darragh R, Gregor N, Silva W. NGA project strong-motion database. Earthquake Spectra.
34 2008;24:23-44.
35 [52] ASCE. ASCE/SEI 7-16. Minimum design loads for buildings and other structures. Reston VA:
36 American Society of Civil Engineers; 2016.
37 [53] Qu B, Sanchez JC, Hou H, Pollino M. Improving inter-story drift distribution of steel moment
38 resisting frames through stiff rocking cores. International Journal of Steel Structures. 2016;16:547-57.
39 [54] FEMA. FEMA P58. Seismic performance assessment of buildings. Federal Emergency Management
40 Agency; 2012.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 1. Values of P_1 and P_2 .

Story	1	3	6	9	12	15	18	20
$a_{cd} = 1.1$				0.75	0.70	0.65	0.60	0.55
P_1	$a_{cd} = 1.3$	1	1	0.90	0.80	0.75	0.70	0.65
	$a_{cd} = 1.5$				0.85	0.80	0.75	0.70
P_2		0	0.1	0.2	0.3	0.35	0.4	0.4

Table 2. Design information of self-centering braces.

System	Story	Yield strength (kN)	Initial stiffness (kN/mm)	D (mm)	d (mm)	H_0 (mm)	t' (mm)	Stack pattern $n_f \times n_p$	Preload of disc spring (kN)	Friction force of the friction plates (kN)
RSMRF3A	1	1451	259	400	200	40	25.1	10 \times 4	1088	363
	2	1219	248	400	200	40	24.9	10 \times 4	914	305
	3	756	154	400	200	35	23.0	14 \times 4	567	189
RSMRF3B	1	1284	200	400	200	40	23.7	10 \times 4	963	321
	2	1079	192	400	200	40	23.5	10 \times 4	809	270
	3	669	120	400	200	35	21.0	12 \times 4	502	167
RSMRF9A	1	9342	300	450	230	50	27.9	8 \times 4	7007	2336
	2	7683	499	450	280	50	30.1	8 \times 4	5762	1921
	3	7300	428	450	280	50	29.1	8 \times 4	5475	1825
	4	6756	414	450	280	50	28.8	8 \times 4	5067	1689
	5	6052	378	450	280	50	28.2	8 \times 4	4539	1513
	6	5187	361	450	280	50	28.0	8 \times 4	3890	1297
	7	4162	247	400	200	40	24.9	10 \times 4	3122	1041
	8	2976	205	400	200	40	23.8	10 \times 4	2232	744
	9	1630	163	400	200	35	23.4	14 \times 4	1223	408
RMRF9B	1	9103	139	400	200	35	21.8	12 \times 4	6827	2276
	2	7486	231	400	200	40	24.5	10 \times 4	5615	1872
	3	7112	198	400	200	40	23.6	10 \times 4	5334	1778
	4	6583	192	400	200	40	23.5	10 \times 4	4937	1646
	5	5897	175	400	200	40	23.0	10 \times 4	4423	1474
	6	5054	167	400	200	40	21.9	8 \times 4	3791	1264
	7	4055	114	400	200	35	20.8	12 \times 4	3041	1014
	8	2900	95	400	200	35	19.4	10 \times 4	2175	725
	9	1588	75	400	200	35	18.5	10 \times 4	1191	397

Table 3. Information of selected ground motions.

No.	Earthquake			Recording Station	Site Data		Scale factor
	M	Year	Name		NEHRP Class	V_{s30} (m/s)	
1	6.5	1942	Borrego	El Centro Array #9	D	213.44	15.8729
2	7.36	1952	Kern County	LA - Hollywood Stor FF	D	316.46	13.1558
3	6.8	1956	El Alamo	El Centro Array #9	D	213.44	18.2496
4	6.61	1971	San Fernando	2516 Via Tejon PV	D	280.56	26.4831
5	6.61	1971	San Fernando	LB - Terminal Island	D	217.92	23.7531
6	6.5	1976	Friuli_ Italy-01	Conegliano	D	352.05	22.436
7	7.35	1978	Tabas_ Iran	Sedeh	D	354.37	37.6477
8	6.53	1979	Imperial Valley-06	Coachella Canal #4	D	336.49	9.608
9	6.36	1983	Coalinga-01	Parkfield - Cholame 12W	D	359.03	17.7385
10	6.5	1983	Taiwan SMART1(25)	SMART1 I01	D	275.82	26.5972
11	6.19	1984	Morgan Hill	APEEL 1E - Hayward	D	219.8	27.5365
12	6.06	1986	N. Palm Springs	Colton Interchange - Vault	D	274.98	23.7887
13	7.3	1986	Taiwan SMART1(45)	SMART1 C00	D	309.41	4.6886
14	7.3	1986	Taiwan SMART1(45)	SMART1 I01	D	275.82	4.372
15	7.3	1986	Taiwan SMART1(45)	SMART1 O01	D	267.67	5.3778
16	7.3	1986	Taiwan SMART1(45)	SMART1 O02	D	285.09	5.267
17	7.3	1986	Taiwan SMART1(45)	SMART1 O08	D	357.43	5.1407
18	6.93	1989	Loma Prieta	Bear Valley #12_ Williams Ranch	D	331.21	4.9069
19	6.93	1989	Loma Prieta	Dublin - Fire Station	D	318.31	9.4326
20	6.93	1989	Loma Prieta	Oakland - Outer Harbor Wharf	D	248.62	2.8088

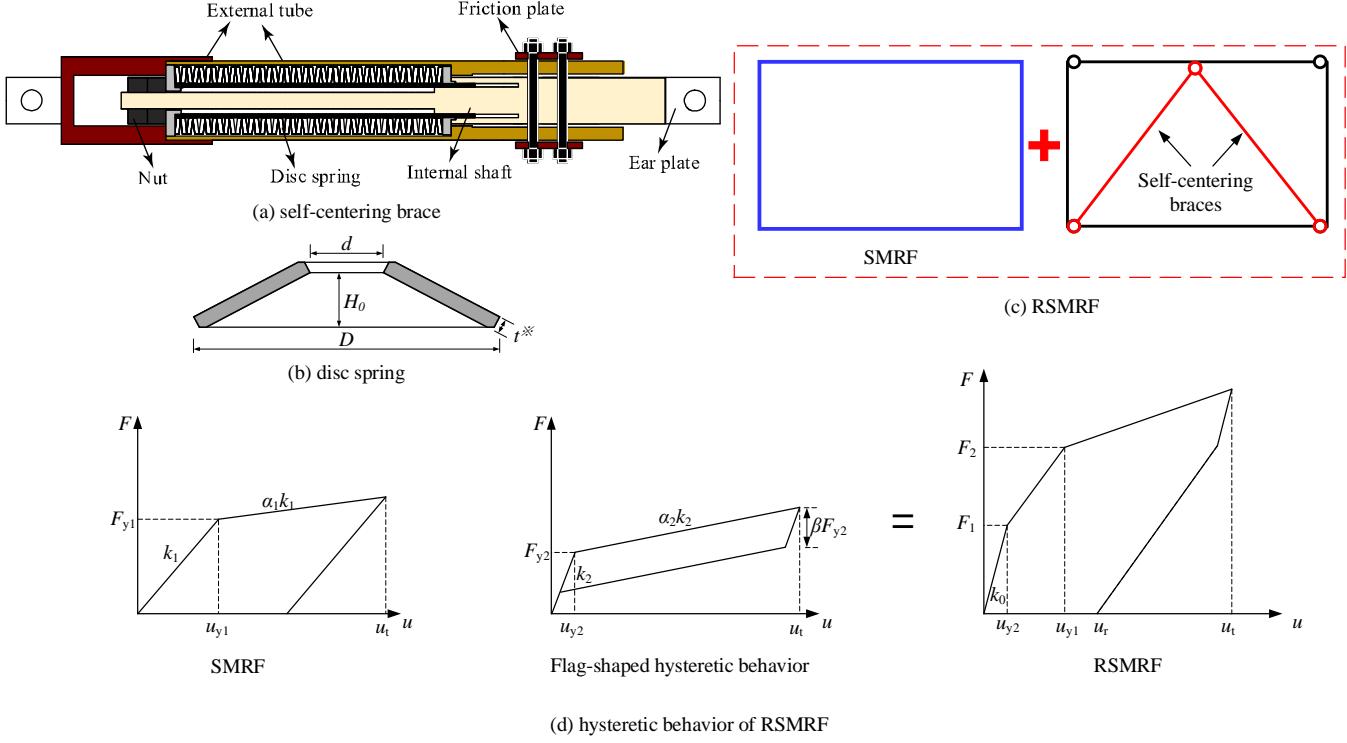


Fig. 1. Illustration of RSMRF.

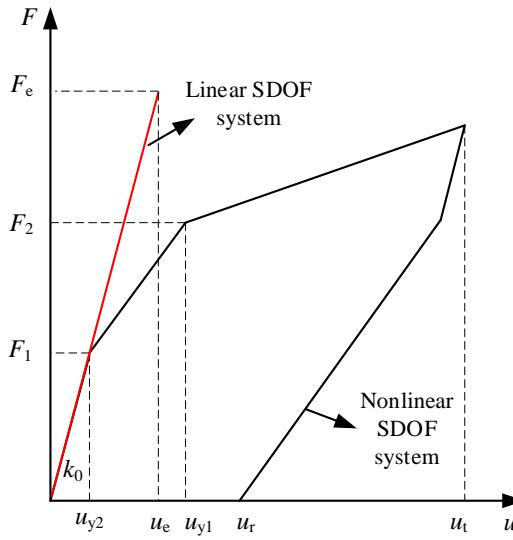


Fig. 2. Illustration of the SDOF systems.

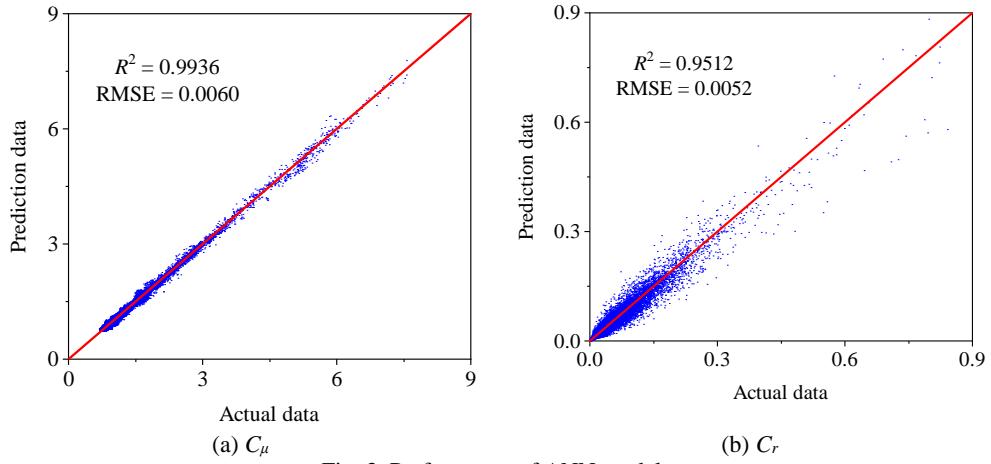


Fig. 3. Performance of ANN model.

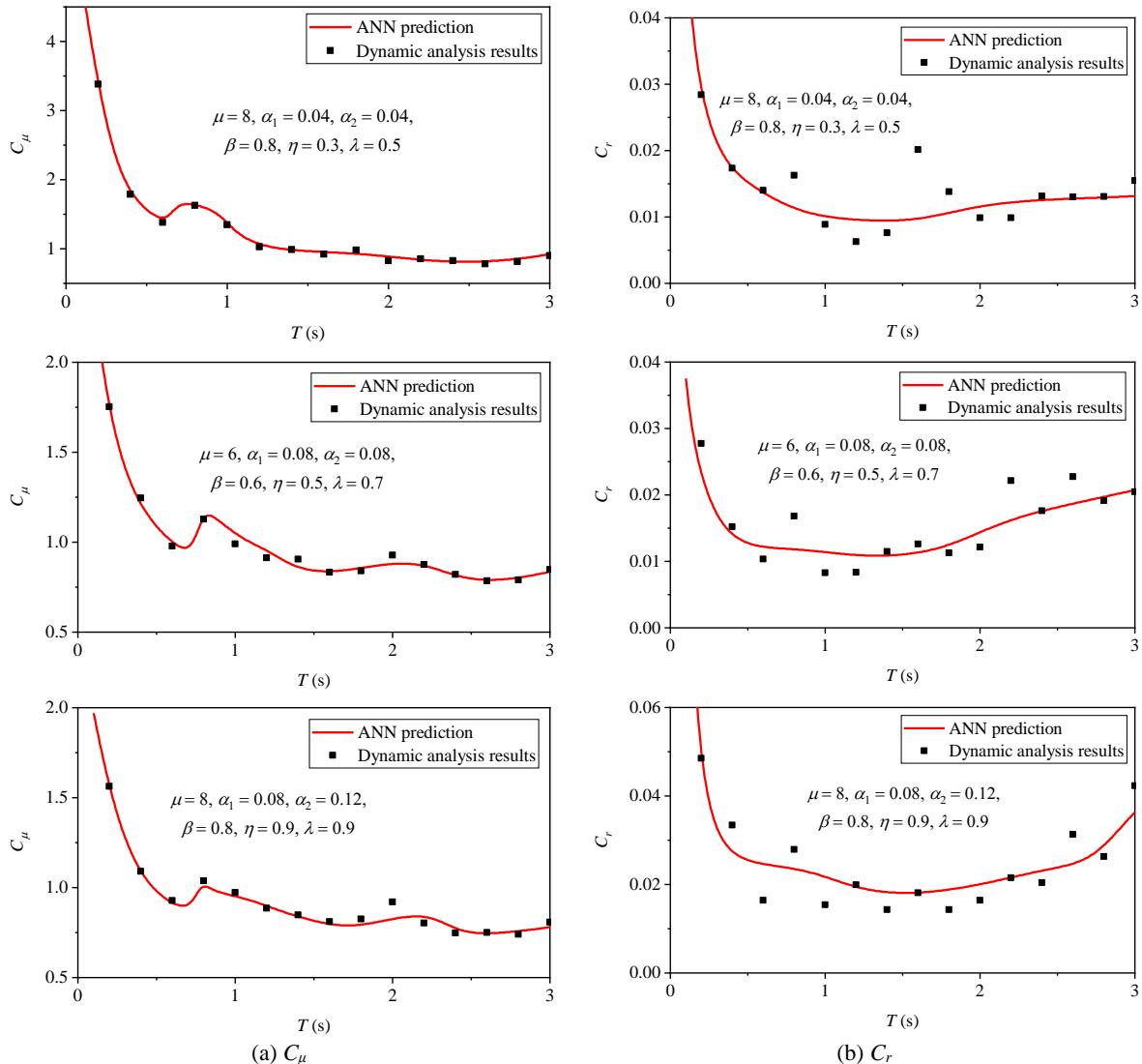


Fig. 4. Comparison between ANN prediction and dynamic analysis results of C_μ and C_r .

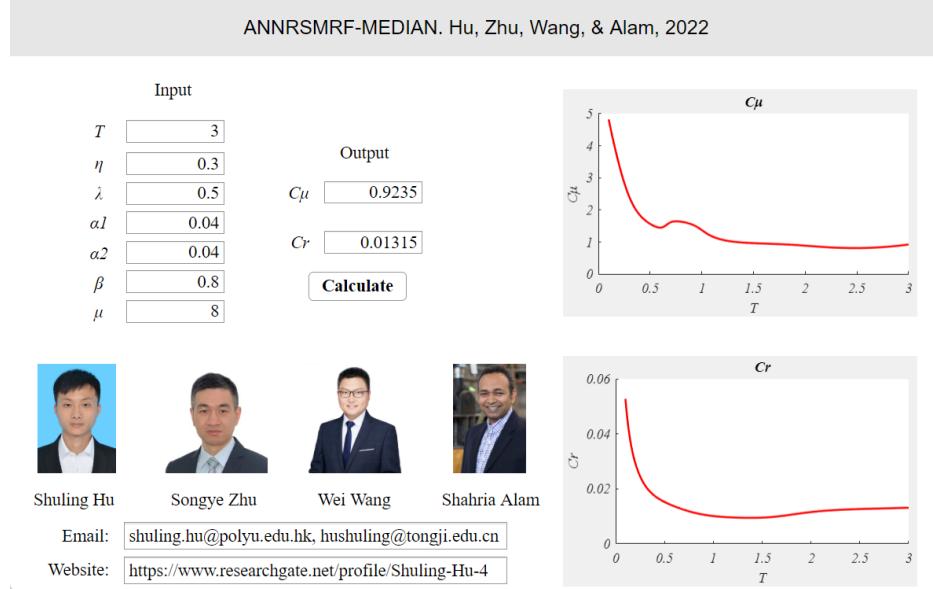


Fig. 5. User interface of ANNRSRMRF-MEDIAN.

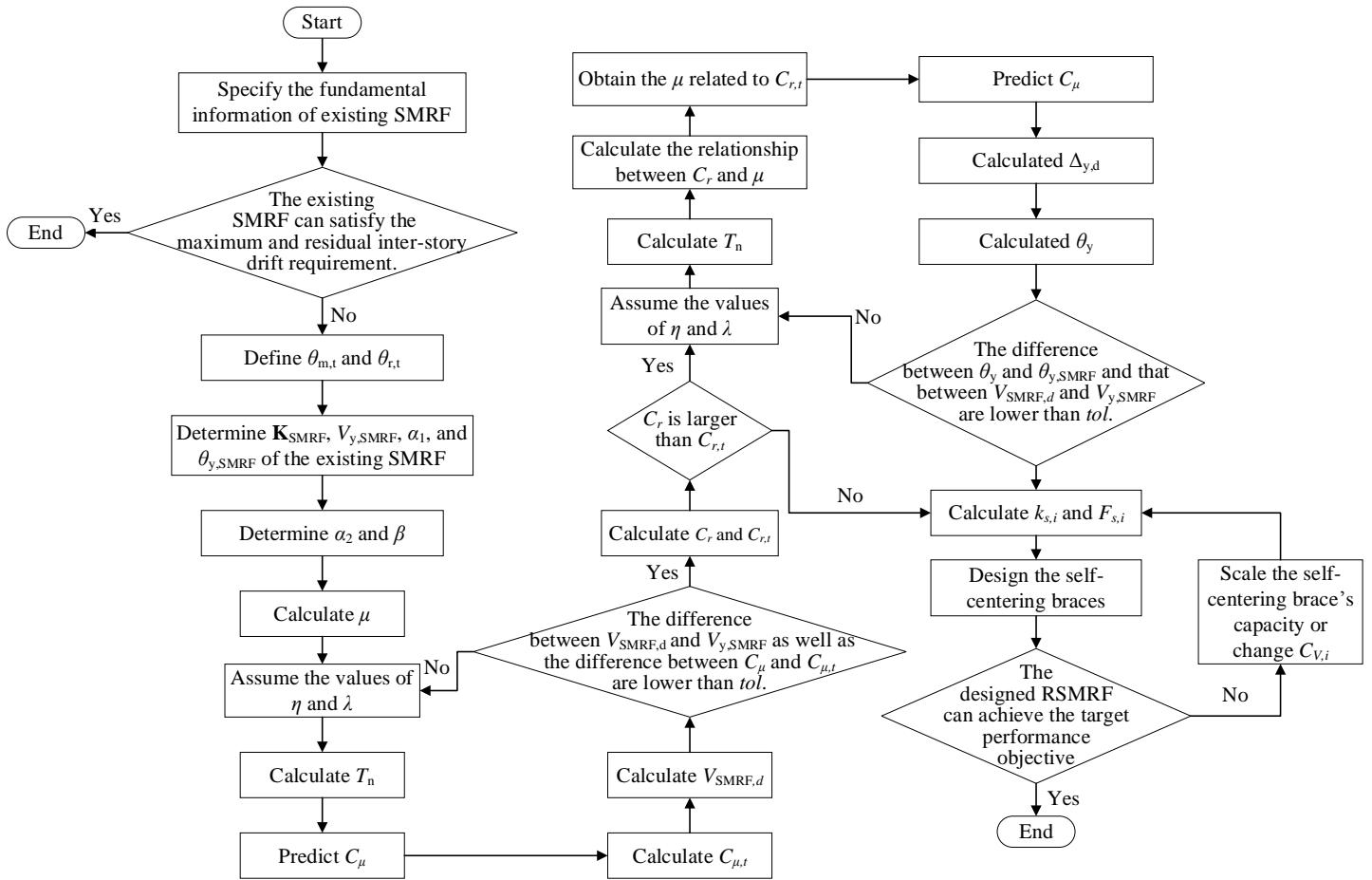


Fig. 6. Flowchart of the proposed PRDBD method.

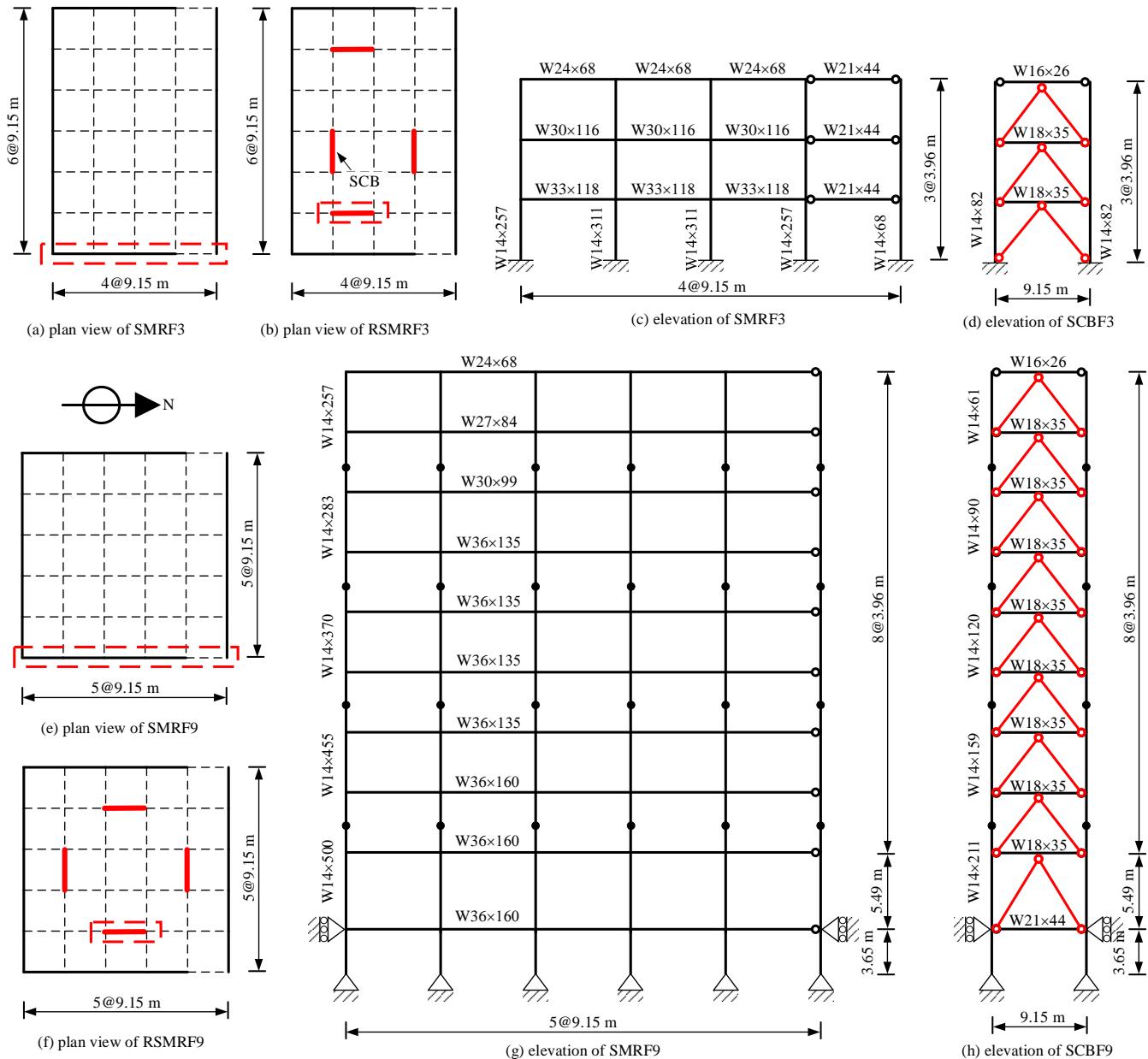


Fig. 7. Plan views and elevations of considered systems.

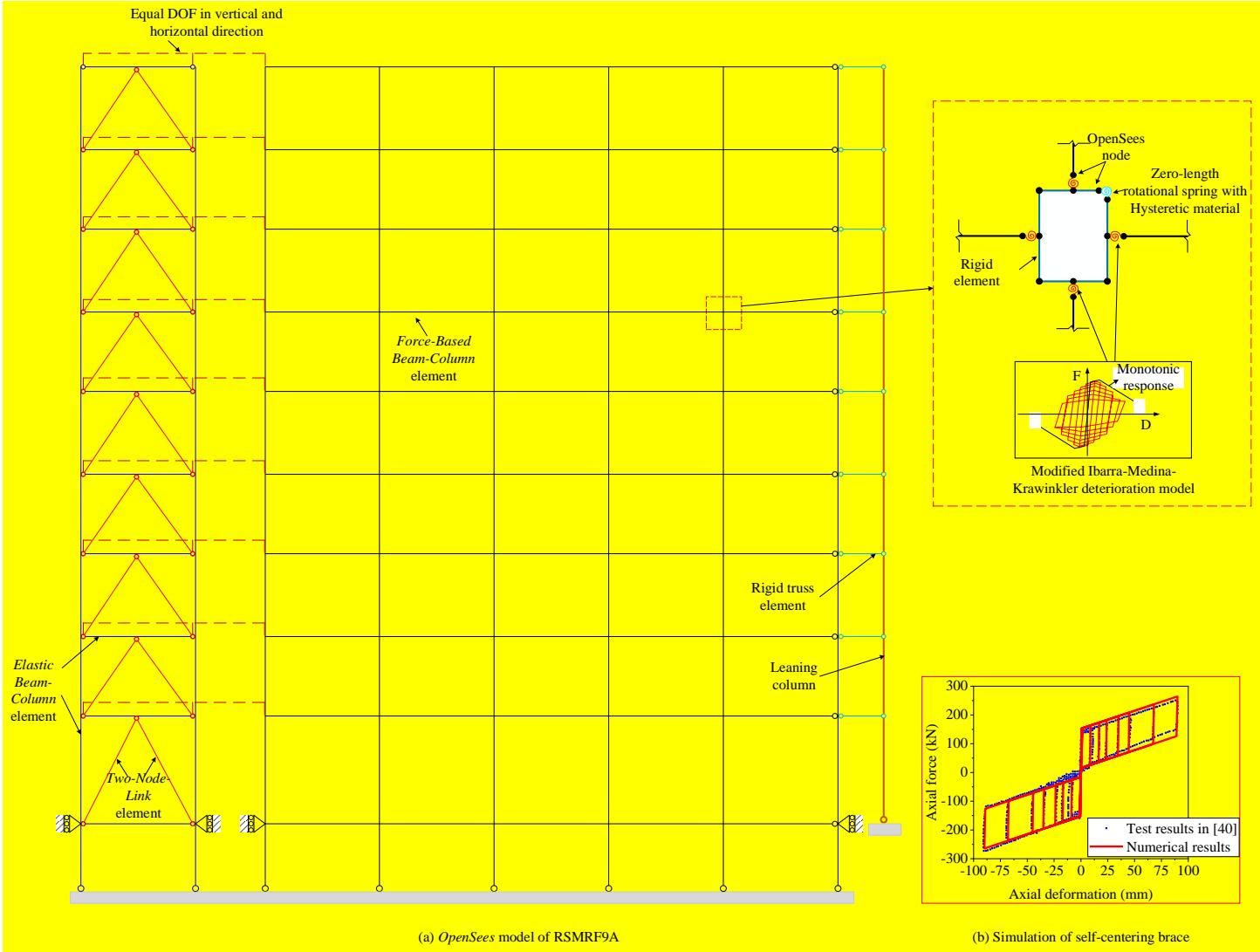
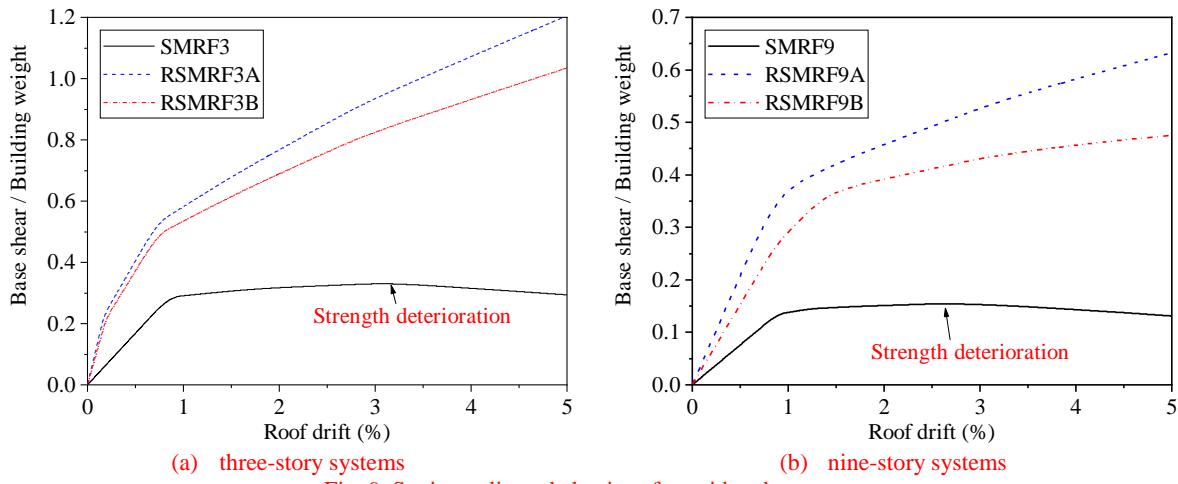



Fig. 8. OpenSees model of RSMRF9A.

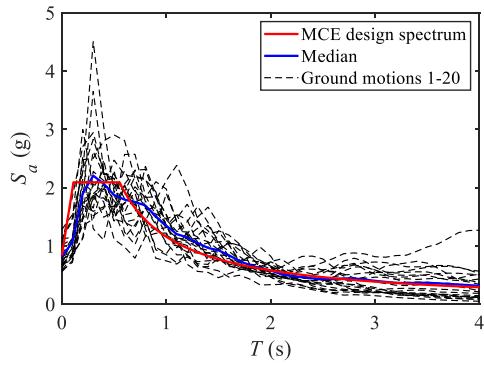


Fig. 10. Spectral accelerations of selected ground motions.

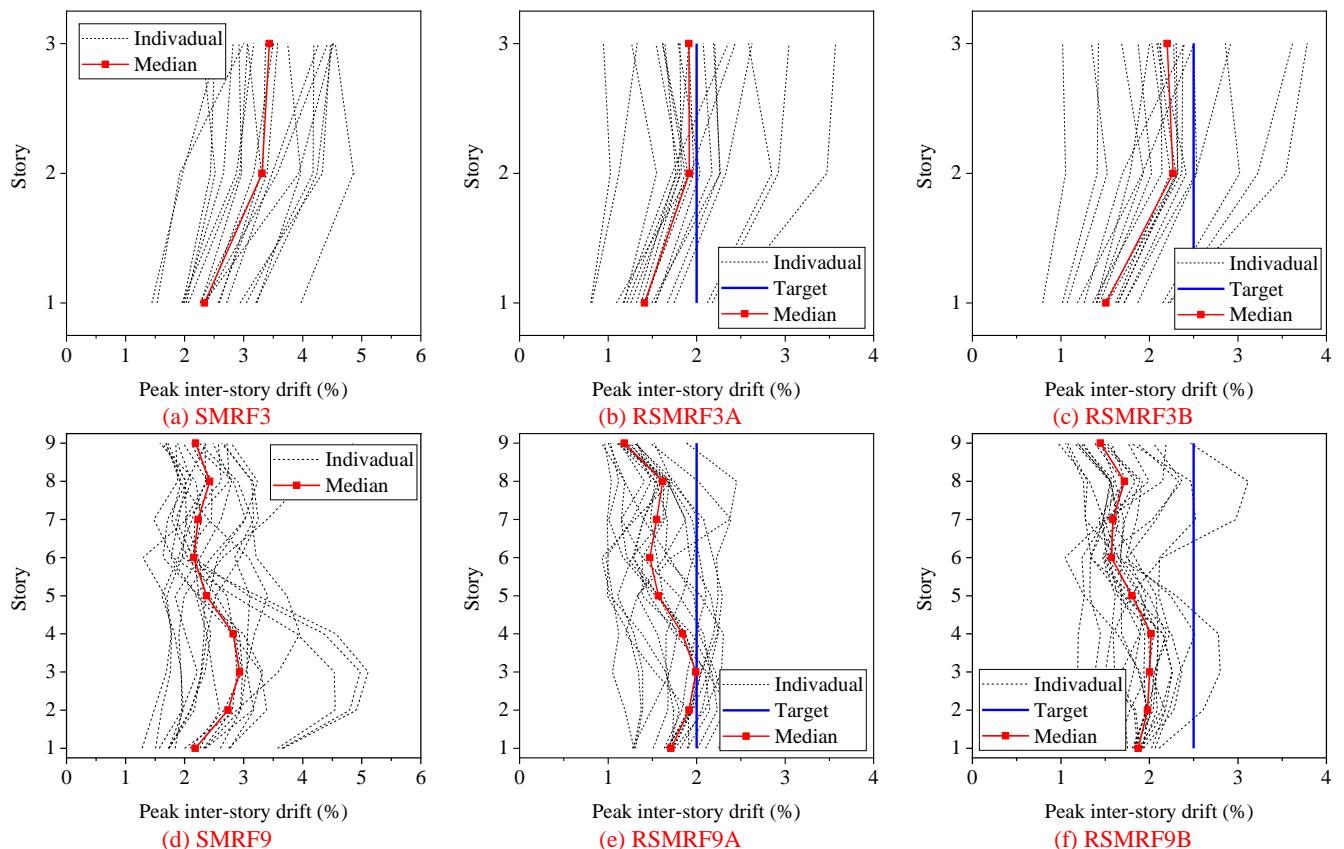


Fig. 11. Peak inter-story drift responses of the considered systems under MCE.

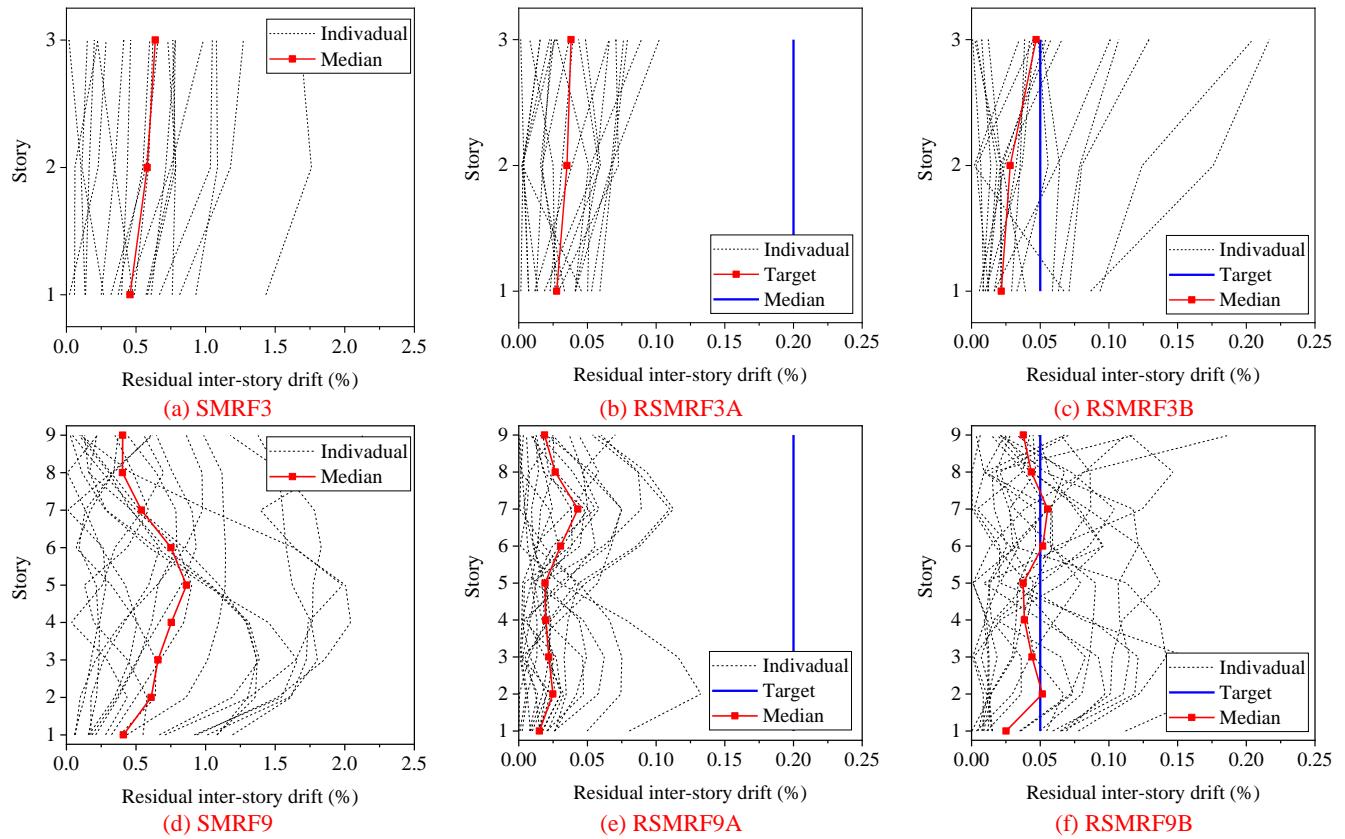


Fig. 12. Residual inter-story drift responses of the considered systems under MCE.