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ABSTRACT:

Conventional steel moment-resisting frames (SMRFs) absorb seismic energy through steel yielding
behavior, leading to significant residual displacement. Although steel yielding behavior can ensure the
seismic safety of SMRFs under strong earthquakes, excessive residual displacement may lead to post-
earthquake demolition decisions, causing a large amount of economic loss. This paper aims to develop a
peak and residual displacement-based design (PRDBD) method for controlling the peak and residual inter-
story drift responses of SMRFs by installing self-centering braces. The peak and residual displacements
are both set as the design targets in the proposed PRDBD method. To this end, the machine learning
prediction models of inelastic and residual displacement ratios were first developed based on the median
responses of single-degree-of-freedom systems under earthquakes. The detailed design steps of the
proposed PRDBD method were subsequently introduced. The three- and nine-story demonstration
buildings were retrofitted by using the PRDBD method with two different design targets. Static and
dynamic analyses were conducted to validate the efficiency of the proposed PRDBD method. The static
analysis results indicated that the self-centering braces could efficiently enhance the SMRF’s stiffness and
strength. The retrofitted SMRFs showed no strength deterioration, whereas the original SMRFs showed
obvious strength deterioration at the roof drifts of 3.2% and 2.5% in the three- and nine-story buildings,

respectively. The dynamic analysis results confirm that the self-centering braces can efficiently reduce the
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peak and residual inter-story drift responses of the existing SMRFs and the retrofitted SMRFs can achieve
the peak and residual inter-story performance objectives under the considered seismic intensity. Moreover,
the retrofitted SMRFs can be fully recoverable after maximum considered earthquakes by controlling the
maximum residual inter-story drift lower than 0.2%.

KEYWORDSs: Peak and residual displacement; Machine learning; Residual displacement-based design

method; Post-earthquake repairability; Moment-resisting frames; Self-centering brace.



Highlights:
1. Machine learning prediction models of C, and C: were developed for the RSMRF.

2. A peak and residual displacement-based design method was developed for retrofitting SMRFs.
3. The designed RSMRFs can achieve the desired peak and residual inter-story drift responses.

4. The designed RSMRFs have no repair requirements after MCE excitations.



38

O~NOUIAWN P
w
~

939
10

11
1240

14
1541

17
1842
19

20
2143
22
23
2444
25
26
5745
28
29
3046
31
3247
33
34
3548
36
37
3849

40
4150
42
43
4451
45
46
4752
48
2953

51
52
o554
54
5555
56
57
5856
59
60
6157
62
63
64
65

1. INTRODUCTION

Due to architectural aesthetics and versatile advantages, conventional steel moment-resisting
frames (SMRFs) are widely used in building structures. Moreover, the highly ductile behavior of SMRFs
offers a reliable capacity to withstand large plastic displacement without significant strength deterioration
and instability and thus SMRFs can ensure seismic safety under strong earthquakes, but it also leads to
significant residual inter-story drifts. The 2011 Christchurch earthquake indicates that the building
structures with large residual inter-story drifts are extremely difficult, if not impossible, to repair [1, 2].
Based on the investigation by McCormick et al. [3], it is a better and more economic choice to demolish
and rebuild than repair the buildings with a maximum residual inter-story drift larger than 0.5%.
Nevertheless, the past studies [4, 5] confirm that the residual inter-story drifts of SMRFs are usually larger
than 0.5% under design basis earthquakes (DBE) or maximum considered earthquakes (MCE). It is
noteworthy that nonstructural damage may lead to more seismic loss and business disruption than
structural damage for buildings under earthquakes [6-9]. However, the nonstructural damage control is
beyond the scope of the presented study, and this paper will be focused on structural damage mitigation by
controlling peak and residual inter-story drift responses of SMRFs.

Inspired by the precast concrete structural systems [10], the unbonded post-tensioning techniques
were introduced to develop self-centering steel beam-to-column connections to reduce residual inter-story
drift responses of SMRFs under strong earthquakes. Ricles et al. [11] and Garlock et al. [12] developed the
post-tensioned beam-to-column connections (denoted as PT connections) with steel angles to eliminate the
residual deformation of conventional steel beam-to-column connections. The PT strands and steel angles

were included in the PT connections to achieve self-centering behavior and energy-absorbing capacity.

-4-
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Past experimental and numerical studies have extensively validated the efficiency of the PT connections in
controlling residual inter-story drift responses of SMRFs [11, 12]. However, the PT connections introduce
an opening/closing gap between beams and columns under earthquakes, leading to severe floor damage
[13]. The following significant efforts have been made to address the gap opening issue by introducing
different configurations of self-centering beam-to-column connections [13, 14]. In addition to the self-
centering beam-to-column connections, many other self-centering solutions, including self-centering walls
[15-17], self-centering rocking structures [4, 18-23], self-centering braces [24-30], etc., have been widely
investigated. Among these self-centering technologies, self-centering braces represent one of the efficient
solutions to reduce the residual inter-story drift responses of SMRFs. Moreover, axial deformation of self-
centering braces does not introduce damage to the floor slabs, and self-centering braces can provide
sufficient stiffness to control the lateral displacement of SMRFs. Accordingly, different types of self-
centering braces have been used to enhance the seismic performance of SMRFs [31-35]. For example,
Ozbulut et al. [34] upgraded SMRFs using self-centering viscous dampers to reduce the peak and residual
inter-story drifts and peak floor acceleration responses; Qiu et al. [35] reduced the maximum and residual
inter-story drift responses of SMRFs by installing shape memory alloy braces; Zhu et al. [32] investigated
the seismic performance of steel moment-resisting frames with self-centering viscous-hysteretic devices;
and Chou et al. [31] tested the steel buildings with self-centering braces. These past investigations have
confirmed the efficiency of self-centering braces in enhancing the seismic performance of SMRFs by
reducing the peak and residual inter-story drift responses. Nevertheless, how to rationally design the self-
centering braces to make the upgraded SMRFs achieve both desired maximum and residual inter-story

drift targets remains an unanswered question.
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The major contribution of this paper is developing a new peak and residual displacement-based
design (PRDBD) method, which can control both the peak and residual inter-story drift responses of
SMREFs to the desired levels by installing self-centering braces. The peak and residual displacements are
both set as the design targets in the proposed PRDBD method. To this end, the machine learning prediction
models of inelastic and residual displacement ratios were first developed based on the median responses of
single-degree-of-freedom (SDOF) systems under earthquakes. The detailed design steps of the proposed
PRDBD method were subsequently introduced. The three- and nine-story demonstration buildings were
retrofitted by using the PRDBD method with two different design targets. Static and dynamic analyses
were conducted for the retrofitted SMRF (denoted as RSMRF) to validate the efficiency of the proposed

PRDBD method.
2. INELASTIC AND RESIDUAL DISPLACEMENT RATIO OF RSMRF

The proposed PRDBD method was developed based on the constant-ductility inelastic
displacement ratio (i.e., C,) and residual displacement ratio (i.e., Cr) of RSMRF. The prediction models of
C. and C; were developed based on the nonlinear dynamic analysis of the SDOF system. Specifically, the
values of C, and C; are usually related to the structural period T, ductility ratio x«, and hysteretic parameters
of RSRMF.

Various types of self-centering braces were developed in previous investigations [28-30, 36-39].
The self-centering brace developed by Wang et al. [40] was adopted in this paper to retrofit the existing
SMRFs for demonstration (see Fig. 1(a)). As shown in Fig. 1(a), the friction plate and the disc spring
provide the energy-dissipation and self-centering capacities, respectively, in the considered self-centering

brace. The past experimental investigations [40] confirmed that the considered self-centering brace could

-6-
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achieve the desired flag-shaped hysteretic behavior. Accordingly, the hysteretic responses of RSMRF can
be obtained by placing the hysteretic responses of SMRF and the self-centering brace in parallel, as shown
in Figs. 1(b) and 1(c). The bilinear elastoplastic hysteretic model and flag-shaped hysteretic model were
used in this paper to describe the hysteretic behavior of the SMRF and self-centering brace, respectively.
The ratio of the post-yield stiffness to the initial stiffness of SMRF is defined as a1, and that of the self-
centering brace is defined as a2. The energy-absorbing capacity of the self-centering brace is described
using the energy-dissipation factor . As shown in Fig. 1(c), the self-centering brace with larger 5 values
will achieve better hysteretic energy-dissipation capacity. The initial stiffness ratio of SMRF to RSMRF is

defined as:

kl

77=k—0 1)

where ko and k1 are the initial stiffness of RSMRF and SMRF, respectively. Accordingly, the initial lateral

stiffness provided by self-centering brace k2 can be obtained as:
k, = (L—1m)k, )

The strength ratio of the self-centering brace to SMRF is defined as:

A== (3)

where Fy1 and Fy> are the lateral yield strengths provided by SMRF and self-centering brace, respectively.
Fig. 2 shows the considered linear and nonlinear SDOF systems. Based on Fig. 2, the ductility ratio

w is defined as:
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H=— (4)

where uy1 and ut are the yield displacement of SMRF and the maximum displacement of the nonlinear
SDOF system.

The strength reduction factor R is defined as:

R=—* ()

where Fy1 and Fe are the yield strength of SMRF and the maximum force of the linear SDOF system that
has the same period T as the nonlinear SDOF system representing the RSMRF.

The nonlinear displacement ratio C, is defined as:

C,=— 6)

‘o,
where ue is the maximum displacement of the linear SDOF system.

The residual displacement ratio C; is defined as:

C, == )
u

where ur is the residual displacement of the nonlinear SDOF system.

Dynamic analyses of the SDOF systems with various parameters were conducted to develop the
prediction models of C, and C;. Various parameter values are considered in this paper to cover the possible
ranges of different design cases and capture the nonlinear relationships between the design parameters and

C./C.. Fifteen fundamental period T ranging from 0.2 s to 3.0 s with 0.2 s step, five stiffness ratios of
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SMRF to RSMRF, = (0.1, 0.3, 0.5, 0.7, and 0.9), five strength ratios of self-centering brace to SMRF, 1 =
(0.1,0.3,0.5,0.7, and 0.9), four ratios of post-yield stiffness to the initial stiffness of SMRF, a1 = (0, 0.04,
0.08, and 0.12), six ratios of post-yield stiffness to the initial stiffness of self-centering brace, a> = (0, 0.04,
0.08, 0.12, 0.16, and 0.20), six energy-dissipation factors of self-centering brace, g = (0, 0.2, 0.4, 0.6, 0.8,
and 1.0), and four ductility ratios, u = (2, 4, 6, and 8), were considered in the dynamic analyses of SDOF
systems. 32 far-field ground motions recommended in FEMA P-695 [41] were adopted in the dynamic
analysis. Consequently, the values of C, and C; can be calculated through the iterative dynamic analyses of
SDOF systems with the specific values of T, #, 4, a1, a2, f, and . Based on the parametric dynamic
analyses, 6,912,000 values of C, and C; were obtained. This paper will focus on the median C, and C;
responses of the SDOF system under the considered 32 ground motions. Finally, 216,000 median values of
C. and C, were obtained with different combinations of the input parameters T, #, 4, a1, a2, B, and p.
Benefiting from the excellent capacity in capturing the highly nonlinear relationship between the
inputs and outputs, machine learning techniques have been widely used in earthquake engineering in
recent research. Compared to the traditional empirical formula, the machine learning model can more
accurately predict the structural responses under earthquakes [42]. Accordingly, the artificial neural
network (ANN) algorithm was used in this paper to develop the prediction models of C, and C; based on
the parametric dynamic analysis results. According to the investigation by Friedman et al. [43], to avoid
the overfitting of the developed prediction models, 70% of the database (i.e., 216,000 x 70% = 151,200
samples) were used as the training sets, and 30% of the database (i.e., 216,000 x 30% = 64,800 samples)
were used as the testing sets. Because the training and testing sets are randomly selected, the evaluated

accuracy of the obtained prediction models based on the testing dataset can represent the untrained dataset.
-0-
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The coefficient of determination (R?) and root mean squared error (RMSE) were used to evaluate the

accuracy of the developed prediction models:

RE=1-2 ®)

9)

where ¥, and y, are the prediction value and test value, respectively; y, is the mean value of the test data;
and ntis the number of test data. Fig. 3 shows the performance of the ANN models for predicting C, and
C. The values of R? for C, and C; predicted by the ANN models are 0.9936 and 0.9512, respectively, and
those of RMSE for C,, and C; are 0.0060 and 0.0052, respectively. The R? and RMSE values are close to
1.0 and 0, respectively, indicating the high accuracy of the developed ANN models for predicting C, and
C.

Fig. 4 shows the comparison between the predicted values by the ANN models and actual values
obtained from dynamic analyses for C, and C,. As shown, the developed ANN models can efficiently
capture the dynamic analysis results. To facilitate the application of the developed ANN models to the
prediction C, and C; of RSMRF, the software named ANNRSMRF-MEDIAN was developed based on the
ANN models. The user interface of the ANNRSMRF-MEDIAN is shown in Fig. 5. The values of C, and
Cr can be obtained by simply inputting the values of T, #, 4, a1, a2, 8, and u. This software is provided as

the supplementary data of this paper.
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4. PEAK AND RESIDUAL DISPLACEMENT-BASED DESIGN METHOD

Based on the developed prediction models of C, and C,, the PRDBD method is proposed in this
section for enhancing the seismic performance of existing SMRFs through the installation of self-centering
braces. Fig. 6 shows the flowchart of the proposed design method, and the corresponding detailed design
steps are described as follows:

1% step: The fundamental information of existing SMRF, including the floor mass (m), story
elevation (hi), structural layout, structural member size, and building location, can be obtained.

2" step: The maximum and residual inter-story drifts of the existing SMRF can be evaluated
through nonlinear dynamic analysis. If the maximum or residual inter-story drift responses are
unsatisfactory, the following procedure can be used to design self-centering braces for enhancing the
seismic performance of the existing SMRF.

3" step: Determine the desired performance objectives by defining the target maximum inter-story
drift (Om:) and target residual inter-story drift (6rt) under the considered seismic intensity (either DBE or
MCE).

4" step: The yield base shear Vy,svrr, post-yield stiffness ratio a1, and yield inter-story drift 6y smrr
of the existing SMRF can be achieved through nonlinear pushover analysis. If the SMRF cannot obtain a
uniform yield inter-story drift over the building height, 6y,smrr can be obtained as the average yield inter-
story drift.

51 step: Based on the type and properties of the used self-centering braces, the hysteretic
parameters (i.e., a2 and /) can be determined.

6'" step: Calculate the ductility ratio x:

-11-
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==t (10)

where At and Ay are the design displacement of the retrofitted SMRF (i.e., RSMRF) and the yield

displacement of SMRF, respectively, and can be calculated as:

” maA,

A= M (11)
Z mA;,
n miAi,yz

A, = —Zl:[ J 12)
ZmiAiyy

where Ai,t and Ai,y are the maximum and yield displacement of the i" story. The lateral displacement
profile developed by Karavasilis et al. [44] for SMRF was used in this paper. Accordingly, Ai,: and Aj,y can

be calculated as:

A, =R, h(1-P, %) (13)

m,ithi

A, =P6, qpeh (1— Pzg) (14)

iy 1¥y,SMRF

where P1 and P> are related to the story number and the ratio of column’s strength to beam’s strength (aca).

Table 1 shows the values of P; and P». acg can be calculated as:

%:§m: (15)

where » M. and » M_, are the sum of the plastic moment of resistance of columns and beams framing
Rc Rb

the joint.

-12-
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7" step: Determine the initial values of # and 1. The fundamental period of RSMRF can be

estimated as:

T,= %% (16)
a)n
@, = \/;X @, sMRF (17)

where wn,smrr IS the natural frequency of the existing SMRF. Then corresponding C, can be obtained
through the developed ANN model.

8'" step: Calculate the target inelastic displacement ratio C,:

C, =—t (18)

A, =S, (T.) (19)

where Sq(Tn) is the elastic design spectral displacement at T under considered seismic intensity (e.g., DBE
or MCE).

9" step: The desired yield base shear of SMRF can be calculated as:

WS WS C,
Vsure,a = Slgrn) = ag(Tn) ;Z] (20)

where Sa(Th) is the design spectral acceleration at Th.
10" step: Calculate the difference between the desired yield base shear of SMRF Vswmrrd and actual

yield base shear Vy smrr, as well as the difference between C, and C,:

’VSMRF,d _Vy,SMRF <tol (21)

Vy,SMRF

-13-
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927  The values of 5 and 4 should be changed from the 7™ step until the difference is lower than the desired
10

11
1228 level (tol). tol is set as 5% in this paper. Note that while Vswrrq is larger than Vy smrr, the values  and 4
13

14
1829  can be decreased and increased, respectively.
16

17
1830 11" step: The values of T, #, 4, a1, a2, 8, and u can be determined through the above design steps.
19

3%31 The corresponding C; can be obtained based on the developed ANN model.
22

3232 12" step: Calculate the target residual displacement ratio Cr based on the assumption that the

25

5?33 residual lateral displacement profile of RSMRF is the same as the maximum lateral displacement profile:

28
29

3 =_r
5234 Cp= (23)

32
33
34

35 ,
3835 A== (29)
37 mA.
38 21:

39

40 h
4236 A;,=P6, h(1-P,—) (25)
42 ' ’ H

43

2‘237 If Cr is larger than Cr, the design process should be continued from the 13" step; otherwise, the

46
2;238 design process should be continued from the 16" step.

49

5039 13" step: Assume new values of # and /. The fundamental period of RSMRF can be calculated
51
52
5240  through Egs. (16) and (17). The relationship between Cr and x can be obtained based on the developed
54

55
5841  ANN model. Then the corresponding u that is related to Cr; can be obtained.
57

5 :
5%42 14" step: Based on the new values of T, #, 4, a1, a2, B, and u, the corresponding values of C, can be
60

g§43 updated through the developed ANN model.

63
64
65
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15" step: The desired yield displacement of SMRF Ay,4 can be estimated as:

A, =te (26)
Y7
Ay =C,S4(T,) (27)

The yield inter-story drift ratio of SMRF 6y can be estimated as:

n h
Ays 2 MBRA-P, 1)
i=1

vy 2 (28)
n hi
iZ:l:mi |:Plhi (1_ Pz H):|
The desired yield base shear of SMRF can be calculated as:
_Wsa (Tn) :Wsa (Tn) C/tn (29)

VSMRF,d - gR g u

The difference between 6y and 6y,smrr and that between Vsmred and Vy,smrr can be obtained
through Egs. (30) and (31), respectively. The values of # and A should be changed from the 14" step until
the difference is lower than the desired level (tol). Note that while Vswmrrd is larger than Vy svrr, the values

n and A can be decreased and increased, respectively.

0,06,
m <tol (30)
y,SMRF
’VSMRF,d _Vy,SMRF‘ <tol (31)
Vy,SMRF

16" step: The contribution of self-centering braces on the lateral story stiffness and base shear can

be obtained after obtaining the final values of # and /:

1—
Ks i KSMRF,i (32)

n
-15-
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§6l where Ksmrri is the lateral stiffness of the i story of existing SMRF.

1%62 The corresponding lateral seismic forces can be calculated through distributing Vy,s with the

12

363 distribution factor Cv;:

15

1

1§64 F=C, ,iVy,s (34)
18

19

205 Cim (3)
22 2 LM,

23

24

2266  The story shear force can be obtained as:
26

27

2 n

5267 Vo =SF (36)
30

31
3268 If we assume that the self-centering braces are installed in the gravity frame with an inverted V-
33

34
3869  type configuration (as shown in Fig. 7), the initial axial stiffness and yield strength of the self-centering
36

§§7o braces can be calculated as:

39
40

4 K.
71 K, =—>3 37
j:% *' Ncos’op 37

44
45

4 Vysi
72 Fop =2 38
22 ' Ncosg, (38)

49

5Q
5273 According to the design procedure introduced in [40], the self-centering braces can be designed
52

2274 based on ks, and Fs,i. Stiffeners can be installed to strengthen beams and columns if they cannot resist the

55
2?75 additional forces introduced by self-centering braces.
58
59
60
61
62
63
64
65
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17" step: The seismic performance of the designed RSMRF should be evaluated through nonlinear
dynamic analysis. If the designed RSMRF cannot achieve the target performance objective, the design can

be adjusted by scaling the self-centering brace’s capacity or changing Cy;,i.
5. DESIGN CASES

Fig. 7 shows the three- and nine-story SMRF buildings considered in this section to validate the
proposed PRDBD method. The three- and nine-story SMRFs are denoted as SMRF3 and SMRF9,
respectively. The original SMRF3 and SMRF9 were designed by Brandow & Johnston Associates for the
SAC Phase II Steel Project [45]. Although these two buildings were not experimentally tested, many past
studies have investigated the properties of SMRF3 and SMRF9 numerically [4, 5, 45, 46]. These buildings
were designed as office buildings located in Los Angeles. The corresponding site classification is class D.
The corresponding design spectrum parameters, including Sps, Sp1, and Ty, are set as 1.393 g, 0.77 g, and 8
s, respectively. As shown in Figs. 7(a) and 7(e), the bay width of SMRF3 and SMRF9 is 9.15 m. The
elevations of SMRF3 and SMRF9 are shown in Figs. 7(c) and 7(g), respectively. The story height of
SMRF3 is 3.96 m. SMRF9 has a basement with a height of 3.65 m. The first story height of SMRF9 is
5.49 m, while the other story height is 3.96 m. The design information of the beams and columns included
in SMRF3 and SMRF9 is shown in Figs. 7(c) and 7(g). Figs. 7(b) and 7(d) show the arrangement of the
self-centering braces in SMRF3, Figs. 7(f), and 7(h) show the arrangement of the self-centering braces in
SMRF9. The self-centering braces are installed in two bays of gravity frames in each direction of SMRF3
and SMRF9. The braced bay with self-centering braces in the retrofitted SMRF3 and SMRF9 are denoted

as SCBF3 and SCBF9, respectively. The retrofitted SMRF3 and SMRF9 are denoted as RSMRF3 and
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RSMRF9, respectively. Owing to the symmetric arrangement, only a 2-D frame was analyzed in this

research.
For demonstration, two different sets of performance objectives were set for RSMRF3 and
RSMRF9: (a) Omt = 2% and 6r: = 0.2% under MCE; and (b) Om+ = 2.5% and 6+ = 0.05% under MCE.

Accordingly, the two different RSMRF3 systems designed with performance objectives (a) and (b) are
denoted as RSMRF3A and RSMRF3B, respectively; while the two different RSMRF9 systems designed
with performance objectives (a) and (b) are denoted as RSMRF9A and RSMRF9B, respectively. The
initial parameters of SMRF3 were estimated as Vy swrr = 4,269 kKN, a1 = 0.0657, and y,smrr = 0.77%,
while that of SMRF9 were estimated as Vy,smrr = 6,329 kKN, a1 =0.0499, and 6y,smrr = 0.92%. The
hysteretic parameters of the self-centering brace were set as a> = 0.16 and £ = 0.5 for a demonstration.
Based on the proposed PRDBD method, the values of # and A were obtained as 0.35 and 0.52, respectively,
for RSMRF3A; 0.41 and 0.46, respectively, for RSMRF3B; 0.39 and 1.95, respectively, for RSMRF9A;
and 0.58 and 1.90, respectively, for RSMRF9B. Table 2 shows the design information of the self-centering
braces included in RSMRF3A, RSMRF3B, RSMRF9A, and RSMRF9B. In Table 2, D, d, Ho, and t are the
geometries of the disc spring, as illustrated in Fig. 1(b). nf and np are the set number of the disc spring
stacked in series and the number of disc spring stacked in parallel in each set, respectively. The following
briefly introduces the design process of RSMRF9A and RSMRF9B from the 6™ step.
(1) Design process of RSMRF9A

6" step: Based on the ratio of column’s strength to beam’s strength of SMRF9, the values of P; and
P> were set as 0.85 and 0.3, respectively. Accordingly, based on Egs. (10) to (14), the ductility ratio x is

calculated as 2.1739.
_18_
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7" step: The initial values of » and 4 were set as 0.5 and 0.5, respectively. Note that the initial
values of # and A can be chosen arbitrarily for the initial design. The natural frequency of the existing
SMRF9 wn,svrr Was obtained as 2.9451 Hz based on the eigenvalue analysis that will be introduced in
Section 6. Based on Egs. (16) and (17), the fundamental period of RSMRF9 T, was estimated as 1.5086 s.
The corresponding C,, was obtained based on the developed ANN model as 0.8655.

8'" step: Based on Eqs. (18) and (19), the target inelastic displacement ratio C,, was calculated as
0.77083.

9t step: Based on Eq. (20), the desired yield base shear of SMRF was calculated as 6861.1 kN.

10" step: Based on Eqgs. (21) and (22), the difference between the desired yield base shear of
SMRF Vswrrg and actual yield base shear Vy,smrr as well as the difference between C, and C,,; were
calculated as 8.41% and 12.36%, respectively, that are larger than 5%. After six iterative calculations, the
values of # and A were obtained as 0.39 and 1.95, respectively. The corresponding difference between
Vswmrrd and Vy,svrr, as well as the difference between C, and C,;, were calculated as 3.72% and 0.21%,
respectively, which are smaller than 5%. The corresponding fundamental period was 1.3323 s.

11" step: The values of T, 5, 4, a1, a2, B, and x were obtained as 1.3323 s, 0.39, 1.95, 0.0499, 0.16,
0.5, and 0.8704, respectively. Based on the developed ANN model, the corresponding C, can be obtained
as 0.0181.

12" step: Based on Egs. (23) to (25), the target residual displacement ratio Cr was obtained as
0.0872 that is larger than C; (i.e., 0.0181), indicating that when the maximum inter-story drift of RSMRF9
is lower than 2%, the corresponding residual inter-story drift is lower than 0.2%. Then, the design step can

continue from the 16" step.
-19-
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16" step: Based on Egs. (32) to (38), the initial stiffness and strength of self-centering braces can

be calculated. Table 2 shows the design information of the self-centering braces included in RSMRF9A.

(2) Design process of RSMRF9B

6" step: Based on Egs. (10) to (14), the ductility ratio 4« is calculated as 2.7174.

7" step: The initial values of »# and 4 were set as 0.5 and 0.5, respectively. The natural frequency of
the existing SMRF9 wn,smrr Was obtained as 2.9451 based on engine analysis that will be introduced in
Section 6. Based on Eqs. (16) and (17), the fundamental period of RSMRF9 T, was estimated as 1.5086 s.
The corresponding C,, was obtained based on the developed ANN model as 0.8372.

8'" step: Based on Eqs. (18) and (19), the target inelastic displacement ratio C,, was calculated as
0.9629.

9t step: Based on Eq. (20), the desired yield base shear of SMRF was calculated as 5309.4 kN.

10" step: Based on Egs. (21) and (22), the difference between Vsmrrd and Vy,smrr, as well as the
difference between C, and C,,,, were calculated as 16.11% and 13.05%, respectively, which are larger than
5%. The iterative calculation was conducted by changing the values of # and A to satisfy the error
requirement. Finally, the values of # and 1 were obtained as 0.68 and 1.75, respectively. The
corresponding difference between Vsmrra and Vy,smrr as well as the difference between C, and C,.; were
calculated as 3.22% and 0.31%, respectively, which are smaller than 5%.

11" step: The values of T, #, 4, a1, az, 8, and u were obtained as 1.7593 s, 0.68, 1.75, 0.0499, 0.16,
0.5, and 0.8283, respectively. Based on the developed ANN model, the corresponding C; can be obtained

as 0.0203.
_20_



a
©

© 0 O U W N P
>
)

PR
NRF®
o))
'_\

1
1362
14
15
1863
17
1864
20

2365

23
2
2§66
26
2867
28
29
3868
31
32

3369
34

35
3870
37

38
3371
40
572
43

4
4;%73
46

4
4§74
49
5875
51
52
5376
54
55

5@77
57

58
5878
60
61
6379
63

64
65

12" step: Based on Egs. (23) to (25), the target residual displacement ratio Cr was obtained as
0.0165 that is smaller than C; (i.e., 0.0203), indicating that when the maximum inter-story drift of
RSMRF9 is lower than 2.5%, the corresponding residual inter-story drift is still much larger than 0.05%.
Then, the design step can continue from the 13" step.

13" step: The values of # and A obtained in the 10" step (i.e., 0.68 and 1.75, respectively) were
used in this step. The corresponding u that is related to Cy can be obtained as 3.3601.

14" step: The values of T, #, A, a1, az, 8, and u were obtained as 1.7593 s, 0.68, 1.75, 0.0499, 0.16,
0.5, and 3.3601, respectively. The corresponding values of C, can be obtained through the developed ANN
model as 0.8002.

15" step: The desired yield inter-story drift ratio of SMRF 6y can be estimated based on Egs. (26)
to (28) as 0.72%. The desired yield base shear of SMRF can be calculated based on Eq. (29) as 4786.1 kN.
The difference between 6y and 6y smrr and that between Vsmrr,d and Vy,smrr can be obtained through Eqgs.
(30) and (31) as 21.62% and 24.38%, respectively, which are much larger than 5%. The iterative
calculation was conducted by changing the values of # and / to satisfy the error requirement. Finally, the
values of # and 1 were obtained as 0.58 and 1.9, respectively. The difference between 6y and 6y,smrr and
that between Vsmrr,d and Vy,smrr can be obtained through Egs. (30) and (31) as 3.24% and 3.9%,
respectively, which are much smaller than 5%. The corresponding fundamental period was 1.6248 s.

16" step: Based on Egs. (32) to (38), the initial stiffness and strength of self-centering braces can
be calculated. Table 2 shows the design information of the self-centering braces included in RSMRF9B.

Based on the presented design processes of RSMRF9A and RSMRF9B, it can be found that the

design of RSMRF9A is governed by the maximum inter-story drift, wherein the residual inter-story drift is
-21-
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lower than the target value when the RSMRF9A achieves the target maximum inter-story drift; and the
design of RSMRF9B is governed by the residual inter-story drift, wherein the maximum inter-story drift is

lower than the target value when the RSMRF9A achieves the target residual inter-story drift.

6. PERFORMANCE EVALUATION

6.1. NUMERICAL MODELING

OpenSees [47] was used to develop the numerical models of the considered systems and perform
the nonlinear static and dynamic analyses. Fig. 8(a) sketches the numerical model of RSMRF9A. The
beam-to-column connections in SCBF9 and the exterior beam-to-column connections on the right side of
SMRF9 were modeled as pinned connections. Assume sufficient stiffeners were installed in the beams and
columns of the gravity frame to resist the additional forces introduced by self-centering braces and ensure
the beams and columns of the gravity frame maintain elastic during earthquakes. For simplicity, Elastic
Beam-Column elements were used to model the beams and columns of the gravity frame. The hysteretic
behavior of the self-centering braces was simulated using Two-Node-Link elements with the SelfCentering
material model. Fig. 8(b) compares the test results of the considered self-centering brace in [40] and the
numerical results obtained through the proposed modeling method. As shown, the numerical results agree
well with the test results, confirming the accuracy of the proposed modeling method for the self-centering
brace. The modified Ibarra-Medina-Krawinkler model [48, 49] was adopted to model the hysteretic
behavior of the beam-to-column connections in SMRF9 in consideration of strength deterioration. The
panel zone’s deformation was considered based on the investigation of Gupta [50]. The detailed modeling
information of the beam-to-column connections included in SMRF9 can be found in Fig. 8(a). The Force-

Based Beam-Column elements were used to model the beams and columns included in SMRF9. Equal
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DOF commends were used to make SCBF9 and RSMRF9 achieve the same horizontal and vertical
displacement at each story. The P-A effects were considered through the leaning column connected to the
adjacent column of SMRF9 through rigid truss elements. The numerical models of SMRF3, RSMRF3A,
RSMRF3B, SMRF9, and RSMRF9B were also developed by following the same methodology.

The modal properties of the designed frames were investigated through eigenvalue analyses. The
fundamental periods of SMRF3, RSMRF3A, RSMRF3B, are 0.919 s, 0.527 s, and 0.564 s, respectively;
those of SMRF9, RSMRF9A, and RSMRF9B are 2.133 s, 1.359 s, and 1.556 s, respectively. It can be
found that the fundamental periods of RSMRF9A and RSMRF9B obtained from the numerical analysis
were close to the estimated values in Section 5 (i.e., 1.3323 s and 1.6248 s for RSMRF9A and RSMRF9B,
respectively). Moreover, the fundamental periods of SMRF3 and SMRF9 are close to those obtained in
Ohtori et al. [45] (i.e., 1.010 s and 2.257 s, respectively), confirming the accuracy of the developed

numerical models of SMRF3 and SMRF9.
6.2. NONLINEAR STATIC ANALYSIS

Pushover analyses were conducted to investigate the static nonlinear behavior of SMRF3,
RSMRF3A, RSMRF3B, SMRF9, RSMRF9A, and RSMRF9B. The monotonous pushover curves are
shown in Fig. 9. The pushover analysis ended at the roof drift of 5%. The base shear of the considered
systems was normalized by building weight. As shown in Fig. 9, the installation of self-centering braces
can efficiently increase the stiffness and strength of SMRF3 and SMRF9. Because of the damage of beam-
to-column connections, SMRF3 and SMRF9 show obvious strength deterioration at about 3.2% and 2.5%

roof drifts, respectively. However, no strength deterioration can be found in RSMRF3A, RSMRF3B,
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RSMRF9A, and RSMRF9B when the roof drift is loaded up to 5%. These observations confirm that the

self-centering braces can effectively improve the seismic performance of the existing SMRF9.
6.3. NONLINEAR DYNAMIC ANALYSIS

20 ground motions were selected from the NGA Database [51] and scaled to make the median
acceleration spectrum of the selected ground motions capture the MCE design spectrum defined in ASCE
7-16 [52] for the dynamic analyses under MCE. Note that the 20 ground motions are chosen intentionally
different from the ground motion sets used in Section 2, aiming to evaluate the efficacy of the developed
C. and C; prediction models and the proposed design procedure when different ground motions are used.
Table 3 shows the detailed information and scale factors of the selected ground motions. The comparison
between the design spectrum and the spectral accelerations of the selected ground motion is shown in Fig.
10. The selected ground motions can match well with the MCE design spectrum. To obtain the residual
inter-story drift responses of the considered frames, 20 s free vibration was added to the end of each
dynamic analysis.

Fig. 11 shows the peak inter-story drifts of the considered systems under the selected ground
motions with the MCE intensity. The designed frames show variable responses under different ground
motion excitations. The inter-story drift concentration mechanism can be observed in the considered
systems. Improving the inter-story drift distribution of steel moment-resisting frames is beyond the scope
of the present paper. The related research work can be found in [4, 53]. This paper is focused on mitigating
the peak and residual inter-story drift responses of the existing steel moment-resisting frames to the desired
level by installing self-centering braces. The maximum median peak inter-story drifts of SMRF3 and

SMRF9 are 3.44% and 2.93%, respectively, whereas those of RSMRF3A, RSMRF3B, RSMRF9A, and
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RSMRF9B are only 1.92%, 2.27%, 1.99%, and 2.02%, respectively, indicating that self-centering braces
can efficiently reduce the peak inter-story drift responses of the original SMRF3 and SMRF9. Fig. 12
shows the residual inter-story drifts of the considered systems under MCE. The maximum median residual
inter-story drifts of SMRF3 and SMRF9 are 0.64% and 0.86%, respectively, whereas those of RSMRF3A,
RSMRF3B, RSMRF9A, and RSMRF9B are 0.038%, 0.047%, 0.043%, and 0.055%, respectively,
indicating that self-centering braces can efficiently reduce the residual inter-story drift responses of the
original SMRF3 and SMRF9. The RSMRF3A and RSMRF9A show better performance than RSMRF3B
and RSMRF9B in controlling residual inter-story drifts. The reason for this phenomenon is that self-
centering braces included in RSMRF3A and RSMRF9A have higher stiffness and strength than that
included in RSMRF3B and RSMRF9B, making the RSMRF3A and RSMRF9A achieve better self-
centering capacities. According to FEMA P-58 [54], no structural realignment is necessary after
earthquakes when the residual inter-story drift (6;) is lower than 0.2%, the structural members can be
repaired with low economic loss when 6; is lower than 0.5%, and the structural members can be repaired
with great economic loss when 6 is larger than 0.5% and lower than 1.0%. Based on the investigation by
McCormick et al. [3], it is a better and more economic choice to demolish and rebuild rather than repair
the buildings with 6 larger than 0.5%. Accordingly, the SMRF3 and SMRF9 will be demolished due to
great repair costs, whereas RSMRF3A, RSMRF3B, RSMRF9A, and RSMRF9B can continue to provide
service without repair requirements after earthquakes with MCE intensity. By following the design process
presented in Section 5, the designs of RSMRF3A and RSMRF9A are governed by the maximum inter-
story drift; consequently, the maximum median peak inter-story drifts of RSMRF3A and RSMRF9A are

close to the target (i.e., 2.0%), whereas the maximum median residual inter-story drifts of RSMRF3A and
-25-
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RSMRF9A are much lower than the target (i.e., 0.2%). In contrast, the designs of RSMRF3B and
RSMRF9B are governed by the residual inter-story drift; the maximum median peak inter-story drifts of
RSMRF3B and RSMRF9B are much lower than the target (i.e., 2.5%), whereas the maximum median
residual inter-story drifts of RSMRF3B and RSMRF9B are close to the target (i.e., 0.05%). These
phenomena confirm that the RSMRFs designed through the proposed PRDBD method can achieve the

desired performance objectives that are defined by the maximum and residual inter-story drifts.
7. CONCLUSIONS

This paper developed a peak and residual displacement-based design (PRDBD) method for
controlling the peak and residual inter-story drift responses of SMRF by installing self-centering braces.
The three- and nine-story SMRFs were upgraded using the proposed PRDBD method to meet two different
sets of performance objectives. Static and dynamic analyses were conducted to investigate the seismic
performance of the designed buildings. Based on the analysis results, the following conclusions can be
obtained:

e The developed ANN models can accurately predict the median values of C, and C of RSMRF with R?
values of 0.9936 and 0.9512, respectively. A software named ANNRSMRF-MEDIAN was developed
and provided to facilitate the prediction of C, and C, with the inputs of T, #, 4, a1, a2, f, and .

¢ SMRF3 and SMRF9 show obvious deterioration of strength at about 3.2% and 2.5% roof drifts,
respectively; whereas no strength deterioration can be found in RSMRF3A, RSMRF3B, RSMRF9A,
and RSMRF9B when the roof drift is loaded up to 5%, confirming the efficiency of self-centering

braces in enhancing the lateral force-resisting capacity of the existing SMRFs.
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2
3
%83 e The maximum inter-story drifts of RSMRF3A and RSMRF9A are close to 2.0% while the residual
6
§84 inter-story drifts are lower than 0.2%, and the residual inter-story drifts of RSMRF3B and RSMRF9B
9
1485 are close to 0.05% while the maximum inter-story drifts are lower than 2.5% under MCE. These results
11
12
1486 confirm that the proposed PRDBD method can efficiently make the designed RSMRFs achieve the
14
15
1487 desired maximum and residual inter-story drift responses under the concerned seismic intensity.
17

1388 e The SMRF3 and SMRF9 will be demolished because the residual inter-story drift is larger than 0.5%,
2é89 whereas RSMRF3A, RSMRF3B, RSMRF9A, and RSMRF9B can continue to provide service without
22190 repair requirements after MCE earthquakes by achieving residual inter-story drifts lower than 0.2%.
5391 It is noteworthy that although the modeling methods of SMRF and self-centering braces have been verified
2%92 separately through the past investigations or test results, further tests of RSMRF need to be conducted in
3393 the future to investigate the seismic performance of RSMRF and the efficacy of the proposed design

35
3494  method before the RSMRF is used in practical applications.
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Table

Table 1. Values of P1 and Pa.

Story 1 3 6 9 12 15 18 20
a =11 075 0.70 065 0.60 0.55
Pi1 aw¢=13 1 1 09 080 075 070 0.65 0.60
acd =15 085 080 0.75 0.70 0.65
P2 0 01 02 03 03 04 04 04

Table 2. Design information of self-centering braces.

Click here to access/download;Table;Hu Zhu Wang Alam-Table-
Aug 18 2022.docx

Yield o D d Ho t Stack Preload of disc Friction force of
System Story strength Initial stiffness (mm) (mm) (mm) (mm) pattern ns x spring (kN) the friction plates

(KN) (KN/mm) . (kN)

1 1451 259 400 200 40 25.1 10x4 1088 363

RSMRF3A 2 1219 248 400 200 40 24.9 10x4 914 305
3 756 154 400 200 35 23.0 14 x4 567 189

1 1284 200 400 200 40 23.7 10x4 963 321

RSMRF3B 2 1079 192 400 200 40 235 10x4 809 270
3 669 120 400 200 35 21.0 12 x4 502 167

1 9342 300 450 230 50 27.9 8 x4 7007 2336

2 7683 499 450 280 50 30.1 8 x4 5762 1921

3 7300 428 450 280 50 29.1 8 x4 5475 1825

4 6756 414 450 280 50 28.8 8 x4 5067 1689

RSMRF9A 5 6052 378 450 280 50 28.2 8 x4 4539 1513
6 5187 361 450 280 50 28.0 8 x4 3890 1297

7 4162 247 400 200 40 24.9 10x4 3122 1041

8 2976 205 400 200 40 23.8 10x4 2232 744

9 1630 163 400 200 35 234 14 x4 1223 408

1 9103 139 400 200 35 21.8 12 x4 6827 2276

2 7486 231 400 200 40 24.5 10x4 5615 1872

3 7112 198 400 200 40 23.6 10x4 5334 1778

4 6583 192 400 200 40 235 10x4 4937 1646

RMRF9B 5 5897 175 400 200 40 23.0 10x4 4423 1474
6 5054 167 400 200 40 219 8 x4 3791 1264

7 4055 114 400 200 35 20.8 12 x4 3041 1014

8 2900 95 400 200 35 194 10x4 2175 725

9 1588 75 400 200 35 18.5 10x4 1191 397

*
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Table 3. Information of selected ground motions.

No. Earthquake Recording Station Site Data Scale factor
M Year Name NEHRP Class  Vs3o (m/s)
1 6.5 1942 Borrego El Centro Array #9 D 213.44 15.8729
2 736 1952 Kern County LA - Hollywood Stor FF D 316.46 13.1558
3 6.8 1956 El Alamo El Centro Array #9 D 213.44 18.2496
4 6.61 1971 San Fernando 2516 Via Tejon PV D 280.56 26.4831
5 6.61 1971 San Fernando LB - Terminal Island D 217.92 23.7531
6 6.5 1976 Friuli_ Italy-01 Conegliano D 352.05 22.436
7 735 1978 Tabas_ Iran Sedeh D 354.37 37.6477
8 6.53 1979 Imperial Valley-06 Coachella Canal #4 D 336.49 9.608
9 6.36 1983 Coalinga-01 Parkfield - Cholame 12W D 359.03 17.7385
10 6.5 1983  Taiwan SMARTL1(25) SMARTL1 101 D 275.82 26.5972
11 6.19 1984 Morgan Hill APEEL 1E - Hayward D 219.8 27.5365
12 6.06 1986 N. Palm Springs Colton Interchange - Vault D 274.98 23.7887
13 73 1986  Taiwan SMARTL1(45) SMART1 C00 D 309.41 4.6886
14 73 1986  Taiwan SMARTL1(45) SMARTL1 101 D 275.82 4.372
15 7.3 1986  Taiwan SMARTL1(45) SMART1 001 D 267.67 5.3778
16 7.3 1986  Taiwan SMARTL1(45) SMART1 002 D 285.09 5.267
17 7.3 1986  Taiwan SMARTL1(45) SMART1 008 D 357.43 5.1407
18 6.93 1989 Loma Prieta Bear Valley #12_ Williams Ranch D 331.21 4.9069
19 6.93 1989 Loma Prieta Dublin - Fire Station D 318.31 9.4326
20 6.93 1989 Loma Prieta Oakland - Outer Harbor Wharf D 248.62 2.8088
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