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Abstract 

In this paper, a novel dynamic response reconstruction method based on multi-rate Kalman 

filtering (MRKF) is presented. The proposed method starts with representing the structural 

system by the state-space equation. Then, different observation equations are defined, and that 

selection is based on the availability of sensor types at a specific time. Not only can the 

multi-type sensor data sampled at different rates be fused directly, but the presented method 

also relaxes the collocated monitoring requirement. In addition, future observations are used 

to benefit the current state estimation by the Rauch, Tung, and Striebel smoothing procedure. 

The unobserved structural dynamic responses are estimated using the MRKF virtual sensing 

technique with multi-rate sensor data. Several demonstrative numerical tests are performed to 

verify the superiority and robustness of the presented MRKF method on one benchmark shear 

frame model. The experimental test employed a computer-vision-based displacement tracking 

technique. Results show that the proposed method surmounts the obstacle to deploying 

consumer-grade cameras in Structural Health Monitoring (SHM) applications, which provide 

a low-cost sensing solution without sacrificing response estimation accuracies. 

 

Keywords: Structural health monitoring; response reconstruction; virtual sensing; multi-rate 

Kalman filtering; sensor data fusion; smoothing 
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1. Introduction 

Structural health monitoring (SHM) techniques have flourished and matured over the past 

decades; and have been successfully deployed in various structures [1-5]. One of the prime 

objectives of SHM is to record structural responses and provide useful information for 

structural health condition assessment. For example, accelerations in wide frequency and 

amplitude ranges can be recorded by accelerometers with a relatively high sampling rate. 

Dynamic displacements are related to structural deformation, providing direct information on 

structural condition assessment. Although, theoretically, displacement can be calculated by 

double integrating acceleration signals, the results are generally unreliable because of errors 

accumulated during integration. In particular, quasi-static displacement cannot be calculated 

through this method. Consequently, a comprehensive SHM sensing system is commonly 

equipped with multi-type sensors to obtain accurate structural responses. 

Sensors are typically installed on hotspots to assess structural health conditions efficiently. 

A densely distributed sensor network will increase the budget and the deployment difficulties. 

Structural response reconstruction techniques (also known as virtual sensing techniques), 

which aim to provide full-field structural response estimations through partial sensor 

observations, have been widely explored in SHM. Early-stage response reconstruction 

algorithms were performed in the frequency domain, such as the transmissibility-based [6,7]. 

Recent research efforts have been more dedicated to the time domain methods. Response 

reconstruction based on empirical mode decomposition (EMD) is one example in the time 

domain. He et al. [8] presented the EMD method with intermittency criteria and 

transformation equations derived from a finite element model. The inverse optimization-based 

method is another method in the time domain, wherein the reconstruction problem is defined 

as an inverse optimization problem subject to constraints [9]. However, representing complex 

structures using simple functions is ambiguous, and the computational cost is scarcely 

affordable for real-world civil structures. More virtual sensing algorithms have been proposed 

recently, such as the Bayesian method by Kullaa [10] and the multi-resolution analysis by 

Saltari et al. [11]. 

Meanwhile, structural response reconstruction algorithms with affordable computational 
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requirements have a promising future. Specifically, Kalman filter (KF) based methods have 

undergone extensive research. KF proposed in 1960 [12] can provide a least-square unbiased 

estimation based on noisy observations. KF estimates structural responses through partial 

observations. A multi-scale KF-based response reconstruction algorithm was presented by 

Zhu et al. in 2013 [13]. By representing the state space equation in modal coordinates, high 

vibration modes can be truncated to simplify the calculation [14] and reduce state estimation 

errors [15] for MDOF structures. Extended KF (EKF) considers the nonlinearities in 

structural systems and can be regarded as a nonlinear version of KF. Lei et al. [16] presented 

an adaptive EKF approach to track changes in structural parameters. Furthermore, structural 

identification and control through partial observation were achieved in tandem by EKF [17]. 

When the external input is unknown, most current algorithms [18-20] are based on the filters 

proposed by Gillijns and De Moor [21, 22]. The availability and number of accelerometers 

determine the rank of the feedthrough matrix in the state-space equation, and a corresponding 

response reconstruction filter shall be selected according to that ranking. 

Current response reconstruction algorithms usually need multi-type sensors to guarantee 

state estimation accuracy. The direct fusion of different types of sensors may be challenging. 

Zhang et al. [23, 24] solved the matrix illness problem encountered during multi-type sensor 

data fusion by KF iterations. Zhang and Xu [25] extended this method to response 

reconstruction under unknown input. The number and spatial arrangements of multi-type 

sensors were decided by adding the optimal sensor that minimized the estimation error of 

reconstructed responses. Li et al. [26] adopted the multi-scale attention-based neural network 

for sensor location selection, and the seismic response can be predicted. Nearly all the 

existing research regarding multi-type sensors in response reconstruction focused on 

optimizing sensor numbers and locations, assuming that all sensors have the same sampling 

frequency. 

 The measurement of structural displacement is a preordained but exigent task. As 

aforementioned, displacement could not be reliably estimated by integrating acceleration 

signals, and thus obtaining accurate displacement responses is genuinely challenging. 

Therefore, direct displacement measurement using various displacement sensors is 
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conventionally adopted in the current SHM sensing system. Depending on the sensor 

installation methods, displacement can be measured in two ways. The first is the 

direct-contact displacement measurement using linear variable differential transducers 

(LVDTs), potentiometers, etc. These types of sensors measure relative displacements between 

two ends. Measuring absolute displacements requires a fixed platform/frame installed near the 

tested structures, which could be difficult, if not impractical, in real structures. Thus, contact 

displacement sensors are more suited to small-scale testing in a laboratory environment. The 

other alternative is non-contact displacement sensing, including GPS, laser displacement 

sensors, radar interferometry systems, and the newly developed computer-vision-based 

displacement tracking techniques. These sensors can record structural displacement without 

direct contact with the structures. Therefore, the measurement is more accessible than the 

contact type. One of the major problems of the non-contact displacement sensors is their low 

sampling rate compared with accelerometers. Most of the survey-grade GPS receivers used in 

SHM operate between 1 and 10 Hz [27]. With the recent advance in computer-vision 

techniques, displacement measurement using high-speed cameras is a propitious trend. 

Common ways include optical flow methods [28], template matching methods [29], and 

feature matching techniques [30]. Some high-speed cameras can have a frame rate of up to 

1000 fps with high precision, but the price is barely affordable in civil SHM projects. The 

sampling frequency for standard consumer-grade cameras is usually 30 fps to 60 fps. These 

sampling frequencies are generally much lower than those of accelerometers. How to 

combine multi-type sensor data sampled at different frequencies is challenging. 

 Recently, some researchers have set sights on multi-rate sensor data fusion for improving 

displacement measurement accuracies. Smyth and Wu [31] presented a multi-rate KF 

approach to combine displacement and acceleration data collected simultaneously with 

different sampling frequencies to estimate structural displacement responses. Given that 

displacement signals were sampled at a lower frequency than the acceleration signals, the 

measurement update in KF would be conducted when displacement data were available. 

Otherwise, only the time update was carried out. A smoothing step was also adopted to 

improve accuracy. The laboratory test for data fusion of acceleration and 
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computer-vision-based displacement sensing was completed by Chang and Xiao in 2010 [32]. 

This algorithm was further applied by Zhu et al. [33] in 2020 to beam-like tall buildings for 

data fusion of strain and acceleration data. Kim et al. [34] presented the autonomous state 

estimation technique considering acceleration measurement bias to enhance the computation 

efficiency and facilitate online monitoring. A two-stage KF was adopted, and the convergence 

rate of the gain matrix KF was improved compared with the previous algorithm [31]. The 

method was improved by defining the state vector using acceleration bias and integration 

error [35], and dynamic displacement can be estimated accordingly. By assuming the 

acceleration bias as the input vector to be estimated, Zheng et al. [36] presented an algorithm 

for dynamic displacement estimations based on KF. Ma et al. [37] developed an asynchronous 

data fusion technique to improve displacement estimation accuracies. Notably, all the 

abovementioned studies were designed for a single-degree-of-freedom (SDOF) system, 

wherein the displacement and acceleration were measured at a single point to improve 

displacement measurement accuracy. The response reconstruction for MDOF systems by 

fusing multi-type sensors sampled at different frequencies remains unexplored. 

 Despite recent progress in multi-type sensor data fusion, combining the multiple 

sampling rate data in dynamic structural response reconstruction remains to be addressed. The 

past investigations have several limitations: (1) Existing algorithms are designed to improve 

displacement measurement accuracies for an SDOF system with both accelerometer and 

displacement sensors installed. In practical SHM, the collocated installation of multi-type 

sensors is not always available. (2) Structural dynamic response reconstruction for 

unmonitored locations by fusing multi-rate sensor data has not been the subject of previous 

research. The existing techniques can be considered a model-free method to improve 

displacement measurement accuracy without considering structural dynamic properties. 

Therefore, response reconstruction through partial sensor observations is beyond the bounds 

of the possibility of these existing techniques. 

 This paper proposes a state-of-the-art multi-rate Kalman (MRKF) filtering technique for 

multi-type multi-rate sensor data fusion in structural dynamic response reconstruction. Data 

sampled at different rates, such as acceleration and displacement, are fused via two sets of 
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observation equations. The partially observed MDOF system is allowed, and the unobserved 

responses will be estimated through the KF virtual sensing technique. The collocated 

installation requirement is relaxed in the proposed algorithm. By proposing the first structural 

response reconstruction algorithm with multi-rate sensor data fusion, this new method will 

provide a low-cost sensing solution by deploying consumer-grade cameras in real SHM 

projects. 

 The structure of this paper is organized as follows. The mathematical formulation of the 

algorithm is first presented, including the state-space equation, KF, MRKF, and Rauch, Tung, 

and Striebel (RTS) smoother. The numerical simulation of a benchmark eight-story frame is 

subsequently discussed. The experimental laboratory validation is presented on the basis of a 

cantilever beam and computer-vision-based displacement measurement using an iPhone. The 

response reconstruction performance and effectiveness are further examined. 

 

2. Mathematical formulation 

2.1 State-space equation 

For a linear structural system with DOFn  DOFs, the equation of motion is frequently 

expressed as a second-order differential equation: 

        pt t t t  Mx Cx Kx S p  , (1) 

where   DOFnt x  ,   DOFnt x  , and   DOFnt x   are the nodal acceleration, velocity, and 

displacement vectors, respectively. Structural dynamic responses depend on external loads , 

mass matrix DOF DOFn nM  , damping matrix DOF DOFn nC  , and stiffness matrix 

DOF DOFn nK  . These matrices are commonly used in structural dynamics to mathematically 

model the behavior of dynamic systems. By formulating and solving equations involving 

these matrices, it becomes possible to predict and analyze the response of the system to 

various excitations. DOF p

p
n nS   is the spatial distribution matrix for the external load  tp , 

and its nonzero entries relate to the DOFs corresponding to the load.  

 By augmenting structural nodal displacement and velocity, the state vector can be written 
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as    
 
t

t
t

    
  

x
z

x
. The equation (1) can therefore be rewritten in a first-order differential form: 

      c c tt t  pz A z B , (2) 

   c c( ) ( )t t t y C z D p . (3) 

Equation (2) is the state equation, in which DOF DOF2 2
c

n nA   is the system matrix, and 

DOF p2

c

n nB  is the input matrix. The subscript c stands for continuous time. The observation 

equation (3) is expressed by the output influence matrix y DOF2

c

n nC  , and the input 

feedthrough matrix . y p

c

n nD  .. Without loss of generality, we can consider that the 

observation vector y( ) nt y   includes structural displacement, velocity, and acceleration, 

which can be obtained on the basis of the spatial selection matrices dis DOF
dis

n nS  , 

vel DOF
v

n nS  , and acc DOF
a

n nS  , respectively. These matrices can be regarded as Boolean 

matrices represented by 0s and 1s, where 0 represents false (no sensor at this DOF) and 1 

represents true (has a sensor at this DOF). The dimensions of these selection matrices are 

determined by the sensor number and structural DOFs. 

 

 
 
 
 

dis

v

a

t

t t

t

  
     
     

S 0 0 x

y 0 S 0 x

0 0 S x





, 

(4) 

Therefore, the state-space matrices can be written as 

 
DOF DOF

c 1 1

n n

 

 
  

  

0 I
A

M K M C
, DOF

c 1
p

n



 
  
  

0
B

M S
, 

(5) 

 
dis

c v
1 1

a a
 

 
   
   

S 0

C 0 S

S M K S M C

, c
1

a p


 
   
  

0

D 0

S M S

, 

(6) 

where the input feedthrough matrix cD  in the observation equation is nonzero only if 

accelerations are measured. 

In SHM applications, structure responses are digitalized by a data acquisition system with 

prespecified sampling frequencies. The continuous state-space model in equations (2) and (3) 
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should be transferred into discrete difference equations to facilitate numerical calculation. 

Given a sampling interval t , the discrete state-space model reads as follows: 

 
1k k k k k k   z A z B p w , (7) 

 
k k k k k k  y C z D p υ . (8) 

The discrete system matrix kA  and input matrix kB  are calculated by the following: 

 c t
k

 AA e , (9) 

   1
c ck k
 B A I A B . (10) 

Assuming zero-order-hold (ZOH) for external input kp , the discrete output influence 

matrix ck C C , and the discrete input feedthrough matrix ck D D . System error kw  and 

measurement noises kυ  are assumed as independent normally distributed white noises. The 

noise matrices are defined by the system error covariance matrix E T
k k   w w Q  and 

measurement noise error covariance matrix E T
k k   υ υ R . 

 
2.2 Kalman filtering 

 KF is an unbiased estimator based on the least-square technique considering system and 

measurement uncertainties. The KF calculation includes two steps: the time update and the 

measurement update of the state vector. Through these two-step recursive iterations, the 

minimum-variance-unbiased state estimation /ˆ k kz  could be obtained.  

 Time update of state vector 

 
/ 1 1 1/ 1 1 1ˆ ˆk k k k k k k      z A z B p , (11) 

 T
/ 1 1 1/ 1 1 1k k k k k k k      P A P A Q . (12) 

 Measurement update of state vector 

   1T T
/ 1 / 1k k k k k k k k k



  K P C C P C R , (13) 

  / / 1 / 1ˆ ˆ ˆk k k k k k k k k k k    z z K y C z D p , (14) 

    T T
/ / 1k k k k k k k k k k k   P I K C P I K C K R K , (15) 
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where   E
T

| | |ˆ ˆk k k k k k k k
     

P z z z z  refers to the covariance matrix of the state estimation 

error, and kK  is the Kalman gain matrix.  

 

2.3 MRKF with RTS smoother 

 Considering a representative case in SHM, the observation vector includes displacement 

and acceleration measurements, and their sampling frequencies are SF_acc and SF_dis, 

respectively. Usually, the sampling frequency of the accelerometers is several times that of the 

displacement sensors. Therefore, we define N = SF_acc / SF_dis. That is, at a certain time 

point k, only acceleration measurement a
acc

ny   is available. Based on the availability of 

displacement measurement, two sets of observation vectors are defined as follows: 

 
acc a ( )ty S x , (16) 

 
dis

com
a

( )

( )

t

t

   
    

  

S 0 x
y

0 S x
, 

(17) 

where dis a
com

n ny   includes both displacement and acceleration measurements, and disS  

and aS  are the selection matrices for displacement and acceleration measurements, 

respectively. 

 The observation equation in equation (8) can be rewritten as follows: 

 
acc, acc, acc, acc,k k k k k k  y C z D p υ , (18) 

 
com, com, com, com,k k k k k k  y C z D p υ , (19) 

where 1 1
acc, a ak

     C S M K S M C , 1
acc, a pk

D S M S , dis
com, 1 1

a a
k  

 
    

S 0
C

S M K S M C
, 

and 1com,
a p

k 

 
  
 

0
D

S M S
.  

 The time update of state vector equations (11)–(12) will be conducted for each time step 

k. If only acceleration observation is available, the measurement update of the state vector 

will be conducted on the basis of equation (18). Otherwise, equation (19) will be adopted. 

 The smoothing process is generally used in offline calculations, where future 
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measurements beyond the current time point are used to generate better state estimation. The 

RTS smoother was proposed by Rauch, Tung, and Striebel in 1965 [38] and is a commonly 

used fixed-interval smoother. The interval for RTS smoothing RTSc  shall be pre-defined. 

When RTSc  is small, the RTS smoother is nearly online. However, RTSc  shall be long 

enough for the smoother to obtain stable results. Thus, RTSc  should be determined in 

consideration of computational accuracy and time delay. Given the state estimation up to time 

tt, for k = tt- RTSc  to tt-1, the smoothing process is accomplished by first initializing the state 

vector b, b, 1 f , 1/ 1ˆ ˆ ˆtt k k k   z z z  and covariance matrix b, b, 1 f , 1tt k k  P P P , where the 

subscript f refers to the forward KF calculated using equations (11)–(19). The optimized state 

estimation after the RTS smoothing b,ˆ kz  can be obtained by conducting another backward 

KF iteration from k = tt-1 to k = tt- RTSc . The calculation steps for RTS smoothing are 

presented in equations (20)–(23).  

   1

b, 1/ f , 1/k k k k



 Ι P , 
(20) 

 
. T

b, f , / b, 1/k k k k k kK P A Ι ., 
(21) 

   T
b, f , / b, f , 1/ b, 1 b,k k k k k k k k   P P K P P K , 

(22) 

  b, f , / b, b, 1 f , 1/ˆ ˆ ˆ ˆ
k k k k k k k   z z K z z . 

(23) 

 Table 1 summarizes the detailed iteration steps. 

 

Table 1 

MRKF with RTS smoothing 

Calculation steps 

1. Initialization at time t0: 

 

2. MRKF Iteration with RTS smoothing 

for i = 1: SF_dis×t (total displacement measurements) 

m = (i-1) × N 

for k = 1: N 

 time update of state vector 
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f , / 1 1 f , 1/ 1 1 1

T
f , / 1 1 f , 1/ 1 1 1

ˆ ˆm k m k m k m k m k m k m k

m k m k m k m k m k m k m k

            

            

 

 

z A z B p

P A P A Q
 

if (k < N) 

 measurement update by acceleration observation 

 
 

   

1T T
f , f , / 1 acc, acc, f , / 1 acc, acc,

f , / f , / 1 f , acc, acc, f , / 1 acc,

T

f , / f , acc, f , / 1 f , acc,

ˆ ˆ ˆ

m k m k m k m k m k m k m k m k m k

m k m k m k m k m k m k m k m k m k m k m k

m k m k m k m k m k m k m k m k



          

            

        

 

   

   

K P C C P C R

z z K y C z D p

P I K C P I K C T
f , acc, f ,m k m k m k  K R K

 

      else (k = N) 

 measurement update by displacement and acceleration observation 

 
 

   

1T T
f , f , / 1 com, com, f , / 1 com, com,

f , / f , / 1 f , com, com, f , / 1 com,

T

f , / f , com, f , / 1 f , com,

ˆ ˆ ˆ

m k m k m k m k m k m k m k m k m k

m k m k m k m k m k m k m k m k m k m k m k

m k m k m k m k m k m k m k m k



          

            

        

 

   

   

K P C C P C R

z z K y C z D p

P I K C P I K C T
f , com, f ,m k m k m k  K R K

 

       end 

  end  

 RTS smoothing at pre-defined interval 
RTSc  

  if remainder(i,
RTSc ) = 0 

b, f , /

b, f , /

ˆ ˆi N i N i N

i N i N i N

  

  





z z

P P
 

for j = 1:
RTSc × N - 1 

 

 

1

b, 1/ f , 1/

T
b, f , / , 1/

T
b, f , / b, f , 1/ b, 1 b,

b, f , / b, b, 1 f ,ˆ ˆ ˆ ˆ

i N j i N j i N j i N j

i N j i N j i N j i N j b i N j i N j

i N j i N j i N j i N j i N j i N j i N j i N j

i N j i N j i N j i N j i N j i



         

            

                 

          





  

  

Ι P

K P A Ι

P P K P P K

z z K z z 1/N j i N j    

 

  end 

end 

end 

 

 

3. Numerical examples 

3.1. Eight-story shear frame model 
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 This section adopts the eight-story shear frame presented by Callafon et al. [39] and 

Azam et al. [40] to verify the capability and robustness of the proposed algorithm. As shown 

in Fig. 1, the 2-D frame has a uniform floor mass of 625,000 kg. The lateral story stiffness 

provided by two columns is 106 kN/m. The damping ratio is 2% for all modes. Table 2 

presents the undamped natural frequencies of this frame. 

 

Table 2 

Undamped natural frequencies of the eight-story frame 

Mode No. 1 2 3 4 5 6 7 8 

Frequency (Hz) 1.17 3.48 5.67 7.67 9.41 10.83 11.87 12.52 

 

 

Fig. 1. Overview of the eight-story 2D shear frame 

 

3.2 Baseline analysis 

 As aforementioned, accelerometers in SHM usually operate at high frequencies to 

capture the structure’s high-order modes, and thus the sampling frequencies shall be 

determined according to the tested structure’s natural frequencies; whereas displacements are 

commonly measured at relatively lower sampling frequencies (1-10 Hz for traditional GPS 

and 30-60 Hz for consumer-grade cameras). Therefore, in the baseline numerical case, data 

fusion for 100 Hz acceleration and 5 Hz displacement measurement is conducted. Three 

displacement sensors and three accelerometers are installed along the frame height, as shown 
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in Fig. 1. 

 Table 3 presents six different fusion schemes adopted to verify the filter performance. 

Schemes 1 and 2 are designed to reconstruct structural responses by only one sensor type. 

Schemes 3 and 4 are traditional data fusion techniques based on a single sampling frequency, 

wherein Scheme 3 uses the low sampling frequency of the displacement measurements. 

Scheme 5 presents the proposed MRKF algorithm without the RTS smoother, whereas 

Scheme 6 presents the performance of the MRKF with the RTS smoother. Notably, Schemes 

1 to 4 are not designed for multi-rate data fusion; thus, the traditional KF can be applied. 

MRKF algorithm have to be adopted in Schemes 5 and 6. 

 

Table 3 

Detailed information of comparison schemes 

Scheme 
Sampling frequency (Hz) 

Acceleration Displacement 

1 Acceleration only 100 N/A 

2 Displacement only N/A 5 

3 Single rate (low) 5 5 

4 Single rate (high) 100 100 

5 MRKF 100 5 

6 MRKF+RTS 100 5 

 

In this baseline case, the excitation applied on DOF2 has a frequency range of 0.01–20 Hz, 

whereas that on DOF8 has 20–50 Hz. The amplitude is 2000 kN for both excitations. The 

excitation frequency range is designed to cover the natural frequencies of the shear frame. 

Collocated monitoring is adopted in this baseline numerical case. Accelerations and 

displacements are monitored on DOF2, DOF5, and DOF8. In this simulation, the 

measurement noise and system noise are calculated in consideration of the variance of the 

structural responses. Random measurement noise, whose standard deviation   is calculated 

as 5% of the response standard deviation, is added to the theoretical responses to obtain 
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noise-corrupted observations. The measurement noise covariance matrix kR  is obtained on 

the basis of 2 . Similarly, the system noise covariance matrix kQ  is also calculated on the 

basis of 5% of the standard deviation of state vectors. The RTS interval RTSc  is assumed as 5 

in this baseline analysis, which means RTS smoothing is conducted for every 5 displacement 

observations. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 
Fig. 2. Displacement reconstruction results at verification DOFs in numerical baseline case (a) DOF1, 

(b) DOF3, (c) DOF4, (d) DOF6, and (e) DOF7 

 

Fig. 2 compares the time histories of the reconstructed displacement responses using 

different schemes. At DOF1, DOF3, DOF4, DOF6, and DOF7, neither displacement nor 

acceleration is monitored, and the responses are estimated from response reconstruction. 

Scheme 2 (i.e., response reconstruction by displacement only) fails to produce reasonable 

results. This failure happens because the discretization of the system matrix kA  and the 

input matrix kB  are based on the sampling interval t , as presented in equations (9) and 

(10). Low sampling frequency leads to inaccuracies in the discretization process (e.g., in kA

and kB  matrices) and losses the ability to track high-frequency structural responses. The 

same explanation holds for the results of response reconstruction in Scheme 3 using a single 

low sampling rate. Scheme 1 uses acceleration observations only, and thus the displacement 

estimation obtained has relatively large errors. The remaining three schemes (Schemes 4-6) 

have competitive performances. Scheme 4 has the best performance among different schemes 

because of its high sampling rates in both acceleration and displacement measurements. Since 

Scheme 5 uses much less available displacement measurements in MRKF than Scheme 4, the 

former exhibits larger estimation errors than the latter. However, after the RTS smoothing 

procedure, the reconstruction errors are reduced effectively in Scheme 6 because more future 

observations are used in the current estimations. Fig. 3 illustrates the reconstructed time 

histories of the acceleration and velocity responses at DOF7 using different schemes, wherein 

only 2-s duration is presented to illustrate the comparison clearly. Fig. 4 shows the 

corresponding reconstruction errors compared with the real value. The proposed MRKF 

algorithm with RTS smoothing (i.e., Scheme 6) can achieve satisfactory response 

reconstruction results and substantially reduce the errors, compared with the results based on 

one sensor type (i.e., Schemes 1 and 2) and single low sampling frequency data fusion 

(Scheme 3). The MRKF algorithm alone (Scheme 5) can estimate acceleration responses 

accurately; however, its reconstructed displacements exhibit apparently larger errors than 

Scheme 4, because of the low sampling rate in displacement observations in Scheme 5. After 
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RTS smoothing, the response reconstruction accuracy has been considerably improved in 

Scheme 6, especially for the displacement reconstruction. The performance of MRKF+RTS 

(Scheme 6) is nearly the same as the traditional data fusion with high sampling frequencies 

for both acceleration and displacement (i.e., Scheme 4).  

Fig. 5 presents the acceleration reconstruction results in the frequency domain at DOF7. 

Except Scheme 2 (i.e., displacement only) and Scheme 3 (i.e., single rate low), all other 

schemes can successfully capture the first two natural frequencies of the frame. However, 

more oscillations are observed in the reconstructed spectra by Scheme 1 (i.e., acceleration 

only) and Scheme 5 (MRKF algorithm), especially in the range of 0 to 10 Hz. After RTS 

smoothing, the proposed Scheme 6 show comparable performance with Scheme 4, both of 

which agree well with the true value. The multi-rate sensor data fusion technique in structural 

response reconstruction deserves further research efforts.  

 

 

(a) 

 

(b) 

Fig. 3. Response reconstruction results at DOF7 in numerical baseline case: (a) acceleration and (b) 

velocity 

 

Normalized root mean square error (NRMSE) is adopted as the performance indicator in 

the quantitative comparison of the filter performance. Root mean square error (RMSE) is first 
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calculated to assess the accuracy of state estimation ˆkx  compared with real response kx .  
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NRMSE is further defined to facilitate comparing different DOFs and scenarios. The 

RMSE is normalized by the difference between maximum and minimum values to obtain 

NRMSE in this paper. A smaller NRMSE indicates higher precision. 
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Table 4 shows the steady-state NRMSE for displacement obtained by different schemes (as 

described in Table 3) in this baseline analysis. Response reconstruction by displacement only 

(Scheme 2) has the worst performance because of the discretization problem. The failure of 

response reconstruction by a single rate (low) (Scheme 3) proves that the 

down-sampling-based data fusion technique is problematic, though it is a common practice 

when signals are sampled at different frequencies. It is unsurprising that the single rate (high) 

(Scheme 4) generally has the best accuracy because both accelerations and displacements are 

sampled at 100 Hz. In comparison, the proposed MRKF algorithm with RTS (Scheme 6) has 

extremely competitive performances for most of the DOFs, which implies that a high 

sampling frequency of displacement observation is unnecessary given the proposed MRKF. 

Notably, the responses at DOF2, DOF5, and DOF8, are directly measured by displacement 

sensors and accelerometers. The NRMSEs for the displacements at these three DOFs are 

1.323%, 1.168%, and 0.841%, respectively, which are even lower than measurement noise. 

Thus, the estimated displacements at three DOFs are more accurate than the direct 

measurements by sensors. 
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(a) 

 
(b) 

 
(c) 

Fig. 4. Comparison of reconstruction errors at DOF7 in numerical baseline case: (a) acceleration, (b) 

velocity, and (c) displacement 

 

The comparison between Scheme 1 and Scheme 5 indicates that given the MRKF 

algorithm, even adding low-sampling-rate displacement measurements to acceleration 

measurements can considerably improve the estimation accuracy by 13% to 43%. The 

comparison between Scheme 5 and Scheme 6 indicates that the RTS smoothing process can 

further reduce the estimation error by approximately 20% to 50%. The NRMSE for velocity is 

similar to the displacement results and therefore omitted for the sake of brevity.  
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Fig. 5. Comparison of the reconstructed acceleration results in the frequency domain at DOF7 in 

numerical baseline case: (a) 0–30 Hz and (b) 0–2.5 Hz 

 

Table 4 

Steady-state NRMSE for displacement obtained by different schemes in the numerical baseline case 

Scheme 
NRMSE for displacement (%) 

DOF1 DOF2a DOF3 DOF4 DOF5a DOF6 DOF7 DOF8a 

1 Acc only 2.863 2.190 2.843 3.303 3.468 3.639 3.499 3.135 

2 Dis only 22.60 23.94 28.13 31.39 30.37 33.30 32.67 29.01 

3 Single rate (low) 18.77 17.70 22.37 23.36 23.17 24.92 24.76 21.62 

4 Single rate (high) 2.012 0.761 1.199 1.092 0.605 0.914 0.586 0.492 

5 MRKF 2.500 1.530 1.987 2.081 1.979 2.143 2.044 1.837 

6 MRKF+RTS 1.837 0.933 1.258 1.211 0.900 1.039 0.974 0.868 

a: These DOFs are directly measured by sensors. 

 

Table 5 presents the acceleration estimation results. The NRMSEs at the three DOFs with 

accelerometers are 0.612%, 0.993%, and 0.702% in Scheme 1, which are slightly smaller than 

sensor measurement noise. The good performance of Scheme 1 indicates that reconstructing 

acceleration by using accelerometer measurements only can produce reasonable results. 

MRKF has a comparable performance with Scheme 1. However, the reconstruction errors can 

be considerably reduced after the RTS smoothing. The estimation errors in Scheme 6 are even 

smaller than those obtained through high-frequency data fusion (Scheme 4). Acceleration 

reconstructions in Schemes 2 and 3 are unsatisfactory because capturing high-order structural 

vibrations through low-frequency observations is difficult.  

Fig. 6 plots the data presented in Tables 4 and 5 to provide a clear comparison of estimation 

accuracies. The proposed algorithm with RTS smoothing achieves superior reconstruction 

accuracy even without high-frequency displacement measurements. The comparison confirms 
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that, given the proposed MRKF+RTS algorithm, a high sampling frequency of displacement 

observation is unnecessary.  

 

Table 5 

Steady-state NRMSE for acceleration obtained by different schemes in the numerical baseline case  

Sensing scheme 
NRMSE for acceleration (%) 

DOF1 DOF2a DOF3 DOF4 DOF5a DOF6 DOF7 DOF8a 

1 Acc only 3.231 0.612 4.092 4.524 0.993 4.194 3.577 0.702 

2 Dis only 15.42 16.31 19.34 21.02 22.87 18.46 21.91 14.73 

3 Single rate (low) 12.42 2.401 14.50 15.20 3.191 14.00 18.62 3.626 

4 Single rate (high) 3.036 0.603 3.814 4.219 0.979 4.034 3.057 0.681 

5 MRKF 3.237 1.707 4.163 4.538 1.271 4.197 3.566 1.441 

6 MRKF+RTS 2.557 0.561 3.320 3.707 0.934 3.241 2.668 0.622 

a: These DOFs are directly measured by sensors. 

 

 

 

(a) 

 

(b) 

Fig.6. NRMSE in the numerical baseline case: (a) displacement, (b) acceleration 

 

3.3 Parametric analysis 
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 Seven cases (Cases 2–8) are designed and compared with the baseline analysis (Case 1) 

to examine the filter robustness and performance under different scenarios. Different 

influencing factors are considered in the simulations. Considering that the displacement 

sampling frequency varies with different sensor types, Case 2 is designed to check filter 

performance with displacement observations sampled at a relatively higher frequency (i.e., 50 

Hz). In Case 3, two random loadings are replaced by a harmonic excitation of 10 Hz plus a 

combination of harmonic excitations of 0.1 Hz and 50 Hz. The comparison between Cases 1 

and 4 aims to examine the influence of the number of excitations. Case 5 considers the 

non-collocated sensor arrangement (i.e., the accelerometer and displacement sensor are 

installed at different DOFs). The different levels of measurement noise (Case 1 vs. Case 6) 

and system noise (Case 1 vs. Case 7) are studied. In Case 8, RTSc  is set to 1, which means 

RTS smoothing is conducted for every displacement measurement. 

 

Table 6. Simulation cases in verification analysis 

Case 
Input 

location 
Input type 

Sampling 

frequency 

(Hz) RTSc  

Sensor 

location 
Measurement 

noise 

System 

noise 

acc dis acc dis 

1 2 8 random 100 5 5 2 5 8 2 5 8 5% 5% 

2 2 8 random 100 50 5 2 5 8 2 5 8 5% 5% 

3 2 8 harmonic 100 5 5 2 5 8 2 5 8 5% 5% 

4 2 5 8 random 100 5 5 2 5 8 2 5 8 5% 5% 

5 2 8 random 100 5 5 8 2 5% 5% 

6 2 8 random 100 5 5 2 5 8 2 5 8 20% 5% 

7 2 8 random 100 5 5 2 5 8 2 5 8 5% 20% 

8 2 8 random 100 5 1 2 5 8 2 5 8 5% 5% 

 

Table 7 shows the steady-state reconstruction NRMSEs for DOF7 by using different 

schemes in eight simulation cases. The NRMSEs for the displacement, velocity, and 

acceleration estimations at this unobserved DOF are listed. The comparison shows that the 

proposed MRKF algorithm with RTS smoothing (Scheme 6) achieves satisfactory accuracies 

in various cases; it is constantly better than the traditional down-sampled single rate (low) 

method (Scheme 3). For displacement reconstruction, the proposed method (Scheme 6) has 
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comparable performance with the single rate (high) method (Scheme 4). Comparing Cases 1 

and 2 indicates when the displacement sampling frequency is much lower than that of 

acceleration, the traditional down-sampling data fusion method could be problematic because 

most acceleration data are disregarded. Cases 3 to 5 verify the good performance of the 

proposed MRKF+RTS algorithm under various excitation conditions. In real SHM 

applications, the sensor noises may be high, and the structural model may be inaccurate. To 

facilitate the applications in real practice, Cases 6 and 7 are designed to examine the 

influences of measurement and system noise levels. The proposed MRKF algorithm is quite 

robust even under relatively high noise levels. In Case 8, RTSc  is reduced to 1, and RTS 

smoothing is conducted more frequently. Compared with the baseline Case 1, Case 8 has a 

faster computing speed and smaller time delay. The algorithm can be regarded as nearly 

online. However, the state estimation error is increased slightly compared with Case 1. The 

selection of the RTS interval RTSc  should be determined according to specific requirements 

in consideration of a tradeoff between computational real-timing and accuracies. Through this 

parametric analysis, the robustness and superiority of the proposed algorithm are well 

verified. 

 

Table 7 

Steady-state NRMSE for DOF7 obtained by different schemes under eight simulation cases 

Reco

nstruc

ted 

respo

nse 

Sensing scheme 

NRMSE for DOF 7 (%) 

Case 

 1 

Case 

2 

Case  

3 

Case 

4 

Case 

5 

Case 

6 

Case 

7 

Case 

8 

dis 

1 Acc only 3.50 3.50 7.32 1.90 3.91 5.16 7.69 3.50 

2 Dis only 32.7 28.4 25.8 20.1 70.8 63.0 23.7 32.7 

3 Single rate (low) 24.8 2.45 16.9 13.4 68.0 60.8 5.06 24.8 

4 Single rate (high) 0.59 0.59 0.73 0.35 2.00 1.29 0.74 0.59 

5 MRKF 2.04 0.74 4.02 1.16 3.11 3.23 4.36 2.04 

6 MRKF+RTS 0.97 0.57 1.55 0.58 2.26 2.25 1.74 1.07 

vel 

1 Acc only 3.14 3.14 5.07 2.65 3.47 4.26 6.65 3.14 

2 Dis only 33.5 21.9 36.7 27.6 40.1 48.2 22.7 33.5 

3 Single rate (low) 29.5 6.53 34.5 22.4 37.2 46.8 17.3 29.5 

4 Single rate (high) 2.34 2.34 3.20 2.01 2.88 3.24 4.46 2.34 
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5 MRKF 2.84 2.43 4.25 2.42 3.29 3.65 5.94 2.84 

6 MRKF+RTS 2.12 2.02 2.79 1.83 2.52 2.93 4.35 2.33 

acc 

1 Acc only 3.58 3.58 3.75 3.77 4.37 4.76 5.95 3.58 

2 Dis only 21.9 17.0 19.5 20.7 17.4 16.8 20.1 21.9 

3 Single rate (low) 18.6 5.82 14.1 19.5 32.8 16.6 7.54 18.6 

4 Single rate (high) 3.06 3.06 2.86 3.24 3.92 4.63 4.12 3.06 

5 MRKF 3.57 3.18 3.59 3.76 4.35 4.78 5.76 3.57 

6 MRKF+RTS 2.67 2.78 2.60 2.78 3.06 4.01 4.03 2.89 

 

4. Experimental validation 
4.1 Experimental setup 

A steel cantilever beam was tested in the laboratory to examine the effectiveness of the 

proposed algorithm. As shown in Fig. 7, the cantilever beam with a cross-section of 50 mm  

3.14 mm was installed on a shake table. The total height of the beam was 1,180 mm and was 

equally divided into eight elements in its numerical model. 

 

 

Fig. 7. Layout of the sensors in the laboratory test 

 

 The APS420 long-stroke shaker generated the ground excitation. Acceleration responses 

were measured by three accelerometers (Type 4382, Brüel & Kjær, Denmark), installed at 

DOF2, DOF4, and DOF6, and denoted as Sa_E2, Sa_E4, and Sa_E6 in Fig. 7. The beam 

displacement was recorded by an iPhone 11 placed in front of the beam. Markers were 

attached to the locations where beam displacements were to be extracted. The displacement 

was extracted from the recorded video by using the Kanade-Lucas-Tomasi (KLT) tracking 

algorithm. Four laser displacement meters (IL-300, Keyence Corporation of America, USA) 
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were also installed to examine the accuracy of the KLT tracking algorithm. The iPhone 11 and 

the laser displacement meters recorded absolute displacements, which include the shake table 

displacement. The excitation time history generated by the shake table was recorded by an 

accelerometer Sa_E0. The data acquisition (DAQ) system is KYOWA EDX-100A, and the 

sampling frequency for accelerometers and laser displacement sensors was set to 1000 Hz. 

Fig. 8 shows the photos of the experimental setup in the laboratory. 

The natural frequencies of the tested beam were identified using the stochastic subspace 

identification (SSI) technique. The measured first three frequencies were 1.706 Hz, 10.834 Hz, 

and 30.260 Hz, respectively. The model updating was conducted to match the measured 

results. The steel density was assumed as 7850 kg/m3, and Young’s modulus was 210 GPa. 

The damping ratios for all modes were assumed as 2% in the calculation  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 8. Laboratory experimental setup: (a) whole picture, (b) accelerometer, (c) iPhone11, and (d) 

laser displacement sensor 
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4.2 Camera tracking results 

 Although a professional high-speed camera can provide accurate motion tracking at high 

frame rates, its application is hindered by the exorbitant price. Motion tracking by using 

consumer-grade cameras is quite propitious in SHM applications. The KLT tracking algorithm 

is one of the target-free computer-vision methods. It was successfully applied to the motion 

tracking of one six-story shear frame by Yoon et al. in 2016 [41]. Fig. 9 shows the 

vision-based displacement measurement procedure in this experimental test. An iPhone 11 

recorded the structure motions by filming videos, and the available frame rates were 30 and 

60 fps. Regions of Interest (ROIs) were selected in the first frame and were automatically 

tracked in the following video frames. The ROIs were equivalent to the sensor locations in 

traditional SHM. Although the markers are not really required by the KLT method, they were 

still used in this test to improve the tracking quality because the beam thickness was too thin. 

Once the ROIs are selected for the first frame, the KLT algorithm can track the point pixel 

locations for the entire duration of the video. By calculating the pixel distance between two 

points with known physical lengths, the pixel-to-mm convention was obtained. The structural 

displacement could be obtained thereafter. 

 

Fig. 9. Vision-based displacement measurement procedure using KLT tracking 

 

 As shown in Fig. 8, the light absorbing background was placed behind the test beam, and the 

markers were placed on each beam node and the shake table. The pixel-to-mm coefficient was 

determined as 0.37 in this test, i.e., one pixel in the video frame is 0.37 mm displacement in 

physical coordinate. Fig. 10 compares the displacements measured by the laser displacement 

meters and iPhone 11. The results obtained by the iPhone agree well with the laser displacement 

meter measurements. The RMSEs for DOF1, DOF3, DOF5, and DOF7 are only 0.245 mm, 0.477 
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mm, 0.514 mm, and 0.540 mm, respectively. More importantly, one iPhone model could track 

structural motions at many points; whereas one laser displacement meter could only measure one 

single point, and it usually has a narrow operating distance range. The tracking results in this 

experiment demonstrate the great potential for deploying the consumer-grade camera for 

displacement measurements in SHM applications. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10. Compare displacement measured by iPhone and laser displacement in laboratory test: (a) 

DOF1, (b) DOF3, (c) DOF5, and (d) DOF7 

 

4.3 Response reconstruction results 

 A random ground motion with a frequency range of 0 Hz to 50 Hz and amplitude of 8 

m/s2 was applied to the cantilever beam. The frequency was selected to cover the first three 

natural frequencies of the test beam. Out of the three installed accelerometers, only Sa_E2 
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and Sa_E4 observations were used to reconstruct structural responses. The acceleration 

recorded by Sa_E6 was used for the comparison with the reconstructed responses. 

Displacement at all eight DOFs could be extracted from the recorded videos. In this 

experimental test, only two displacements at DOF3 and DOF5 were included in the 

observation vector. Displacement measurements at other locations were used to verify filter 

accuracies. The standard deviation of measurement noise kυ  was estimated to be around 10% 

of the standard deviation of the measured responses. The variance of system noise was set as 

the square of 5% of the standard deviation of the state vector. The sampling frequency of the 

accelerometers and laser displacement meters was set as 1000 Hz. The video frame rate of the 

iPhone11 camera was 60 fps. Considering the proposed MRKF algorithm only applies to the 

case where the sampling frequency of the acceleration is integer multiples of the displacement, 

the camera-tracked displacements were down-sampled from 60 fps to 20 fps for calculation. 

 Fig. 11 presents the reconstructed displacement time histories at verification DOFs. The 

same six different data fusion schemes were adopted for a better illustration of the algorithm 

performance and consistency with the numerical simulation. The reconstructed displacements 

are compared with the KLT tracking results. Displacement estimation by using displacement 

sensors (Scheme 2) and single rate low (Scheme 3) failed to produce satisfactory results, 

which is consistent with the conclusion reached in the numerical simulation. Response 

reconstruction by using data sampled at low frequencies will lose the ability to capture 

higher-order structural vibration modes. Given that high-frequency displacement data were 

unavailable from the vision-based tracking, displacements recorded by laser displacement 

meters were used in the single rate (high) data fusion based on 1000 Hz acceleration and 

displacement measurements (Scheme 4). Fig. 11 shows that the proposed MRKF algorithm 

with RTS smoothing process yields competitive results with data fusion by high single rate 

observations. The estimations agree fairly with the measured sensor data. If only acceleration 

observation is used in the observation, the reconstructed displacements have larger errors than 

the MRKF results. Table 8 presents the NRMSEs for the reconstructed displacements in the 

laboratory test. The MRKF errors can be further reduced by approximately 1% - 25% if the 

RTS smoothing procedure is applied. After the smoothing, the reconstruction errors in 
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Scheme 6 were reduced by around 30%-80% compared with estimation using acceleration 

only (Scheme 1) and by over 90% compared with traditional down-sampling single rate data 

fusion (Scheme 3).  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11. Displacement estimations at verification DOFs in laboratory test (a) DOF2, (b) DOF4, (c) 

DOF6, and (d) DOF8 

 

 Fig. 12 compares the reconstructed acceleration and the accelerometer measurement at DOF6. 

Except for Schemes 2 and 3, all other schemes achieve similar performance. A similar conclusion 

can be reached from the data presented in Table 9. If only structural accelerations are required to 
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be estimated under known input, response reconstruction by using acceleration only will provide 

acceptable estimations. However, if displacement and velocity responses are of interest as well, 

data fusion shall be conducted to obtain better structural state estimations. 

 

Table 8 

Steady-state NRMSE for displacement obtained by using different schemes for the tested beam 

Scheme 
NRMSE for displacement (%) 

DOF1 DOF2 DOF3 DOF4 DOF5 DOF6 DOF7 DOF8 

1 Acc only 16.85 16.63 16.32 16.77 16.30 16.99 17.86 18.72 

2 Dis only 37.34 41.58 46.52 58.54 54.23 58.45 60.54 72.78 

3 Single rate (low) 39.41 43.92 49.43 62.66 57.80 62.33 64.53 78.08 

4 Single rate (high)* 10.41 8.797 6.864 5.981 3.392 2.605 3.144 6.337 

5 MRKF 11.62 10.03 8.152 7.154 4.228 3.495 4.401 6.983 

6 MRKF+RTS 11.48 10.01 8.047 6.811 4.205 2.958 3.285 6.149 

*Laser displacement sensor is used given that high frequency camera reading is unavailable. 

 

 

 
Fig. 12. Acceleration time history at DOF6 in laboratory test 

 

Table 9 

Steady-state NRMSE for acceleration obtained by using different schemes in the test 

Scheme 
NRMSE for acceleration (%) 

DOF2 DOF4 DOF6 

1 Acc only 0.136 0.096 9.352 

2 Dis only 37.90 37.05 45.58 

3 Single rate (low) 0.972 1.024 56.47 

4 Single rate (high)* 0.136 0.096 9.685 

5 MRKF 0.592 0.463 11.89 

6 MRKF+RTS 0.163 0.115 10.18 

*Laser displacement sensor is used because high-frequency camera reading is unavailable. 

 

5. Conclusions 
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A novel MRKF data fusion algorithm combined with an RTS smoothing technique for 

structural dynamic response reconstruction, which enables the direct fusion of signals 

sampled at different frequencies, is presented in this paper for the first time. The proposed 

method adopts two sets of observation equations for the measurements. The measurement 

update using displacement and acceleration will be conducted only when the displacement 

data are available; otherwise, the acceleration observation equation will be adopted. The RTS 

smoothing procedure is further applied to enhance the estimation precisions. The proposed 

algorithm surmounts the obstacle to deploying low-cost consumer-grade cameras in SHM 

applications. Through the numerical simulations and laboratory tests of different structures in 

various scenarios, the robustness and superiority of the proposed MRKF algorithm are 

successfully verified. Below are the major conclusions of this paper: 

1. The proposed MRKF algorithm is the first response reconstruction technique for an 

MDOF structural system that considers the fusion of multi-type sensor data sampling at 

different rates.  

2. The partially observed system is allowed, and the collocated sensor monitoring 

requirement is relaxed. Unobserved responses will be estimated through the proposed MRKF 

iterations. 

3. Compared with traditional KF-based algorithms, the proposed algorithm is relatively 

robust and insensitive to noises. Satisfactory state estimations could still be obtained even 

with high measurement and system noises. 

4. The RTS smoothing process leads to time delay to some extent in response 

reconstruction. When the RTS interval RTSc  is small, the algorithm is nearly online but will 

produce larger estimation errors. The selection of the RTS interval RTSc  should be 

determined according to specific requirements by considering a tradeoff between 

computational real-timing and accuracies. 

5. MRKF solves the inherent problem of the low sampling rate of displacement monitoring 

by consumer-grade cameras. Through the proposed MRKF iterations and RTS smoothing, the 

state estimation results can be comparable to those obtained by high-frequency acceleration 

and displacement measurements. This finding can potentially reduce the SHM sensing system 
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budget by avoiding using an expensive high-speed camera. 

The presented findings illustrate the superiority and robustness of the proposed algorithm 

in various scenarios. However, the current algorithm only applies when the acceleration 

sampling frequency is integer multiples of the displacement sampling frequency. The 

excitation should also be measured. And the current algorithm is only applicable to linear 

systems within elastic range. Future studies will be carried out to extend the proposed 

algorithm to more generic cases and improve filter practicability. 
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