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Abstract

In this paper, a novel dynamic response reconstruction method based on multi-rate Kalman
filtering (MRKF) is presented. The proposed method starts with representing the structural
system by the state-space equation. Then, different observation equations are defined, and that
selection is based on the availability of sensor types at a specific time. Not only can the
multi-type sensor data sampled at different rates be fused directly, but the presented method
also relaxes the collocated monitoring requirement. In addition, future observations are used
to benefit the current state estimation by the Rauch, Tung, and Striebel smoothing procedure.
The unobserved structural dynamic responses are estimated using the MRKF virtual sensing
technique with multi-rate sensor data. Several demonstrative numerical tests are performed to
verify the superiority and robustness of the presented MRKF method on one benchmark shear
frame model. The experimental test employed a computer-vision-based displacement tracking
technique. Results show that the proposed method surmounts the obstacle to deploying
consumer-grade cameras in Structural Health Monitoring (SHM) applications, which provide

a low-cost sensing solution without sacrificing response estimation accuracies.

Keywords: Structural health monitoring; response reconstruction; virtual sensing; multi-rate

Kalman filtering; sensor data fusion; smoothing



1. Introduction

Structural health monitoring (SHM) techniques have flourished and matured over the past
decades; and have been successfully deployed in various structures [1-5]. One of the prime
objectives of SHM is to record structural responses and provide useful information for
structural health condition assessment. For example, accelerations in wide frequency and
amplitude ranges can be recorded by accelerometers with a relatively high sampling rate.
Dynamic displacements are related to structural deformation, providing direct information on
structural condition assessment. Although, theoretically, displacement can be calculated by
double integrating acceleration signals, the results are generally unreliable because of errors
accumulated during integration. In particular, quasi-static displacement cannot be calculated
through this method. Consequently, a comprehensive SHM sensing system is commonly
equipped with multi-type sensors to obtain accurate structural responses.

Sensors are typically installed on hotspots to assess structural health conditions efficiently.
A densely distributed sensor network will increase the budget and the deployment difficulties.
Structural response reconstruction techniques (also known as virtual sensing techniques),
which aim to provide full-field structural response estimations through partial sensor
observations, have been widely explored in SHM. Early-stage response reconstruction
algorithms were performed in the frequency domain, such as the transmissibility-based [6,7].
Recent research efforts have been more dedicated to the time domain methods. Response
reconstruction based on empirical mode decomposition (EMD) is one example in the time
domain. He et al. [8] presented the EMD method with intermittency criteria and
transformation equations derived from a finite element model. The inverse optimization-based
method is another method in the time domain, wherein the reconstruction problem is defined
as an inverse optimization problem subject to constraints [9]. However, representing complex
structures using simple functions is ambiguous, and the computational cost is scarcely
affordable for real-world civil structures. More virtual sensing algorithms have been proposed
recently, such as the Bayesian method by Kullaa [10] and the multi-resolution analysis by
Saltari et al. [11].

Meanwhile, structural response reconstruction algorithms with affordable computational



requirements have a promising future. Specifically, Kalman filter (KF) based methods have
undergone extensive research. KF proposed in 1960 [12] can provide a least-square unbiased
estimation based on noisy observations. KF estimates structural responses through partial
observations. A multi-scale KF-based response reconstruction algorithm was presented by
Zhu et al. in 2013 [13]. By representing the state space equation in modal coordinates, high
vibration modes can be truncated to simplify the calculation [14] and reduce state estimation
errors [15] for MDOF structures. Extended KF (EKF) considers the nonlinearities in
structural systems and can be regarded as a nonlinear version of KF. Lei et al. [16] presented
an adaptive EKF approach to track changes in structural parameters. Furthermore, structural
identification and control through partial observation were achieved in tandem by EKF [17].
When the external input is unknown, most current algorithms [18-20] are based on the filters
proposed by Gillijns and De Moor [21, 22]. The availability and number of accelerometers
determine the rank of the feedthrough matrix in the state-space equation, and a corresponding
response reconstruction filter shall be selected according to that ranking.

Current response reconstruction algorithms usually need multi-type sensors to guarantee
state estimation accuracy. The direct fusion of different types of sensors may be challenging.
Zhang et al. [23, 24] solved the matrix illness problem encountered during multi-type sensor
data fusion by KF iterations. Zhang and Xu [25] extended this method to response
reconstruction under unknown input. The number and spatial arrangements of multi-type
sensors were decided by adding the optimal sensor that minimized the estimation error of
reconstructed responses. Li et al. [26] adopted the multi-scale attention-based neural network
for sensor location selection, and the seismic response can be predicted. Nearly all the
existing research regarding multi-type sensors in response reconstruction focused on
optimizing sensor numbers and locations, assuming that all sensors have the same sampling
frequency.

The measurement of structural displacement is a preordained but exigent task. As
aforementioned, displacement could not be reliably estimated by integrating acceleration
signals, and thus obtaining accurate displacement responses is genuinely challenging.

Therefore, direct displacement measurement using various displacement sensors is



conventionally adopted in the current SHM sensing system. Depending on the sensor
installation methods, displacement can be measured in two ways. The first is the
direct-contact displacement measurement using linear variable differential transducers
(LVDTs), potentiometers, etc. These types of sensors measure relative displacements between
two ends. Measuring absolute displacements requires a fixed platform/frame installed near the
tested structures, which could be difficult, if not impractical, in real structures. Thus, contact
displacement sensors are more suited to small-scale testing in a laboratory environment. The
other alternative is non-contact displacement sensing, including GPS, laser displacement
sensors, radar interferometry systems, and the newly developed computer-vision-based
displacement tracking techniques. These sensors can record structural displacement without
direct contact with the structures. Therefore, the measurement is more accessible than the
contact type. One of the major problems of the non-contact displacement sensors is their low
sampling rate compared with accelerometers. Most of the survey-grade GPS receivers used in
SHM operate between 1 and 10 Hz [27]. With the recent advance in computer-vision
techniques, displacement measurement using high-speed cameras is a propitious trend.
Common ways include optical flow methods [28], template matching methods [29], and
feature matching techniques [30]. Some high-speed cameras can have a frame rate of up to
1000 fps with high precision, but the price is barely affordable in civil SHM projects. The
sampling frequency for standard consumer-grade cameras is usually 30 fps to 60 fps. These
sampling frequencies are generally much lower than those of accelerometers. How to
combine multi-type sensor data sampled at different frequencies is challenging.

Recently, some researchers have set sights on multi-rate sensor data fusion for improving
displacement measurement accuracies. Smyth and Wu [31] presented a multi-rate KF
approach to combine displacement and acceleration data collected simultaneously with
different sampling frequencies to estimate structural displacement responses. Given that
displacement signals were sampled at a lower frequency than the acceleration signals, the
measurement update in KF would be conducted when displacement data were available.
Otherwise, only the time update was carried out. A smoothing step was also adopted to

improve accuracy. The laboratory test for data fusion of acceleration and



computer-vision-based displacement sensing was completed by Chang and Xiao in 2010 [32].
This algorithm was further applied by Zhu et al. [33] in 2020 to beam-like tall buildings for
data fusion of strain and acceleration data. Kim et al. [34] presented the autonomous state
estimation technique considering acceleration measurement bias to enhance the computation
efficiency and facilitate online monitoring. A two-stage KF was adopted, and the convergence
rate of the gain matrix KF was improved compared with the previous algorithm [31]. The
method was improved by defining the state vector using acceleration bias and integration
error [35], and dynamic displacement can be estimated accordingly. By assuming the
acceleration bias as the input vector to be estimated, Zheng et al. [36] presented an algorithm
for dynamic displacement estimations based on KF. Ma et al. [37] developed an asynchronous
data fusion technique to improve displacement estimation accuracies. Notably, all the
abovementioned studies were designed for a single-degree-of-freedom (SDOF) system,
wherein the displacement and acceleration were measured at a single point to improve
displacement measurement accuracy. The response reconstruction for MDOF systems by
fusing multi-type sensors sampled at different frequencies remains unexplored.

Despite recent progress in multi-type sensor data fusion, combining the multiple
sampling rate data in dynamic structural response reconstruction remains to be addressed. The
past investigations have several limitations: (1) Existing algorithms are designed to improve
displacement measurement accuracies for an SDOF system with both accelerometer and
displacement sensors installed. In practical SHM, the collocated installation of multi-type
sensors is not always available. (2) Structural dynamic response reconstruction for
unmonitored locations by fusing multi-rate sensor data has not been the subject of previous
research. The existing techniques can be considered a model-free method to improve
displacement measurement accuracy without considering structural dynamic properties.
Therefore, response reconstruction through partial sensor observations is beyond the bounds
of the possibility of these existing techniques.

This paper proposes a state-of-the-art multi-rate Kalman (MRKF) filtering technique for
multi-type multi-rate sensor data fusion in structural dynamic response reconstruction. Data

sampled at different rates, such as acceleration and displacement, are fused via two sets of



observation equations. The partially observed MDOF system is allowed, and the unobserved
responses will be estimated through the KF virtual sensing technique. The collocated
installation requirement is relaxed in the proposed algorithm. By proposing the first structural
response reconstruction algorithm with multi-rate sensor data fusion, this new method will
provide a low-cost sensing solution by deploying consumer-grade cameras in real SHM
projects.

The structure of this paper is organized as follows. The mathematical formulation of the
algorithm is first presented, including the state-space equation, KF, MRKF, and Rauch, Tung,
and Striebel (RTS) smoother. The numerical simulation of a benchmark eight-story frame is
subsequently discussed. The experimental laboratory validation is presented on the basis of a
cantilever beam and computer-vision-based displacement measurement using an iPhone. The

response reconstruction performance and effectiveness are further examined.

2. Mathematical formulation

2.1 State-space equation

For a linear structural system with n,,. DOFs, the equation of motion is frequently

expressed as a second-order differential equation:

M (1) +Cx(1) +Kx(1) =S p(7), (D
where X(¢)el "™, x(¢)ell™r, and x(¢)ell™" are the nodal acceleration, velocity, and

displacement vectors, respectively. Structural dynamic responses depend on external loads ,
mass matrix M el] ™" - damping matrix Ce[] ™™  and stiffness matrix
K €[] ™o These matrices are commonly used in structural dynamics to mathematically
model the behavior of dynamic systems. By formulating and solving equations involving

these matrices, it becomes possible to predict and analyze the response of the system to

various excitations. S, €[] ™™ is the spatial distribution matrix for the external load p(z),

and its nonzero entries relate to the DOFs corresponding to the load.

By augmenting structural nodal displacement and velocity, the state vector can be written



Xx|(?
as z(t) = { ) )} . The equation (1) can therefore be rewritten in a first-order differential form:

2(t)=Az(t)+Bp(1), @)
y(t)=C.z(t)+D.p(?) . (3)
Equation (2) is the state equation, in which A el 2mor*2Mor i the system matrix, and

B el *™" is the input matrix. The subscript ¢ stands for continuous time. The observation

C

1y X2 o

equation (3) is expressed by the output influence matrix C_ el , and the input

nyxn

feedthrough matrix . D el] »"* .. Without loss of generality, we can consider that the
observation vector y(f)el]™ includes structural displacement, velocity, and acceleration,
which can be obtained on the basis of the spatial selection matrices S, el "=™vr

S, e meor “and S, el] "= | respectively. These matrices can be regarded as Boolean

matrices represented by Os and 1s, where 0 represents false (no sensor at this DOF) and 1
represents true (has a sensor at this DOF). The dimensions of these selection matrices are

determined by the sensor number and structural DOFs.

Sa. 0 07]x(¢) 4)
y(£)=| 0 S, 0| x(¢)],
0 0 S, | x(¢)

Therefore, the state-space matrices can be written as

0, L, 0, (5)
Ac — DOF DOF s Bc — DOF ,

|-M"K -M'C M'S,

[ Su 0 0 (6)
C = 0 S, [, D= 0 |

|-SM'K -SM'C SM’'S,

where the input feedthrough matrix D, in the observation equation is nonzero only if

accelerations are measured.
In SHM applications, structure responses are digitalized by a data acquisition system with

prespecified sampling frequencies. The continuous state-space model in equations (2) and (3)

8



should be transferred into discrete difference equations to facilitate numerical calculation.

Given a sampling interval Az, the discrete state-space model reads as follows:

z,.,=Az, +Bp, +w,, (7)
y,=C,z, +D,p, +v,. (8)
The discrete system matrix A, and input matrix B, are calculated by the following:

A, =M ©)

B, =[A, -1]A.'B.. (10)
Assuming zero-order-hold (ZOH) for external input p,, the discrete output influence
matrix C, =C_, and the discrete input feedthrough matrix D, =D, . System error w, and
measurement noises v, are assumed as independent normally distributed white noises. The
noise matrices are defined by the system error covariance matrix E[WkWZ] =Q and

. . . T
measurement noise error covariance matrix E[nkv ‘ ] =R.

2.2 Kalman filtering

KF is an unbiased estimator based on the least-square technique considering system and
measurement uncertainties. The KF calculation includes two steps: the time update and the

measurement update of the state vector. Through these two-step recursive iterations, the

minimum-variance-unbiased state estimation Z,, could be obtained.
Time update of state vector
2y =AML L T BLD (1)
P, = Ak—IPk—l/k—lAz—l + Qk—l : (12)

Measurement update of state vector

-1
K, = Pk/k—lcz: (CkPk/k—ICZ + Rk) > (13)
2,,=2,,,+K, (Yk - Ckik/k—l -D,p, ) > (14)
T
P =(I_chk)Pk/k—l(I_Kka) +KkRsz’ (13)
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A ~ T . . . .
where P, = E[(z k — Ly, )(z K~ 2y k) } refers to the covariance matrix of the state estimation

error, and K, is the Kalman gain matrix.

2.3 MRKF with RTS smoother

Considering a representative case in SHM, the observation vector includes displacement
and acceleration measurements, and their sampling frequencies are SF _acc and SF dis,
respectively. Usually, the sampling frequency of the accelerometers is several times that of the

displacement sensors. Therefore, we define N = SF_acc / SF_dis. That is, at a certain time
point &, only acceleration measurement y, €[ ™ is available. Based on the availability of

displacement measurement, two sets of observation vectors are defined as follows:

Yo =S,X(0), (16)

[Se 0 ][x() (17)
Yo =) g s |5 |

where y. el includes both displacement and acceleration measurements, and S,

and S, are the selection matrices for displacement and acceleration measurements,

respectively.

The observation equation in equation (8) can be rewritten as follows:

yacc‘k = Cacc‘kzk + Dacc,kpk + 1)acc,lf > (1 8)
ycom,k = Ccom,kzk + Dcom,kpk + vcom,k H (19)
-1 -1 -1 Sdis 0
where C,,, =[-SM'K -SM'C]|, D, =SM'S . C, = g s
: : P TS MK -S,M’'C

0
and Dcom,k = |:S M—ls :|
a P

The time update of state vector equations (11)—(12) will be conducted for each time step
k. If only acceleration observation is available, the measurement update of the state vector
will be conducted on the basis of equation (18). Otherwise, equation (19) will be adopted.

The smoothing process is generally used in offline calculations, where future
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measurements beyond the current time point are used to generate better state estimation. The

RTS smoother was proposed by Rauch, Tung, and Striebel in 1965 [38] and is a commonly

used fixed-interval smoother. The interval for RTS smoothing c¢,,s shall be pre-defined.
When ¢, is small, the RTS smoother is nearly online. However, c,.s shall be long

enough for the smoother to obtain stable results. Thus, c,,; should be determined in
consideration of computational accuracy and time delay. Given the state estimation up to time
tt, for k = tt- ¢y, to tt-1, the smoothing process is accomplished by first initializing the state
vector Zy, =2y, =Z;;, 4, and covariance matrix P, =P, , =P, , where the
subscript f refers to the forward KF calculated using equations (11)—(19). The optimized state
estimation after the RTS smoothing Z,, can be obtained by conducting another backward
KF iteration from k = #-1 to k = #t-cy,. The calculation steps for RTS smoothing are

presented in equations (20)—(23).

. (20)
Ib,k+l/k = (Pf,k+1/k) >
(21)
. Kb,k = Pf,k/kAAT»Ib,kn/k -
(22)
Pb,k = Pf,k/k - Kb,k (Pf,k+1/k - Pb,k+1 ) Kz,k >
(23)

2, =2, Ky, (Zb,k+l - Zf,k+l/k) .

Table 1 summarizes the detailed iteration steps.

Table 1

MRKF with RTS smoothing

Calculation steps

1. Initialization at time #o:

2. MRKF Iteration with RTS smoothing

for i =1: SF_disxt (total displacement measurements)
m=(i-1) x N
fork=1: N

® time update of state vector

11



Zi piiimik—1 = Am+k—lzf,m+k—l/m+k—l +B, Pk

— T
Pf,m+k/m+k4 - Am+k71Pf,m+k71/m+k71Am+k71 + Qm+k71

if (k <N)
B measurement update by acceleration observation

-1
_ T T
Kf,m+k - Pf,m+k/m+kflcacc,m+k (Cacc,nHk Pf,m+k/m+k71 acc,m+k + Racc,m+k )

Zf,m+k/m+k = Zf,m+k/m+k71 + Kf,m+k (yacc,m+k - Cacc,m+sz,m+k/m+k71 - Dacc,m+kpm+k )

T
_ _ _ T
Pf,m+k/m+k - (I Kf,m+kcacc,m+k )Pf,m+k/m+k4 (I Kf,nz+kcacc,m+k ) + Kf,m+kRacc,m+ka‘m+l
else (k =N)
B measurement update by displacement and acceleration observation
K,,, =P Cr i (Con kP Cl. . . +R B
fom+k = *f,m+k/m+k—1""com,m+k com,m+k~ f,m+k/m+k—1""com,m+k com,m+k
Zf,m+k/m+k = Zf,m+k/m+k71 + Kf,m+k (ycom‘m+k - Ccom,m+sz,m+k/m+kfl - Dcom,m+kpm+k )
T
_ _ _ T
Pf,m+k/m+k - (I Kf,n1+kccom,m+k )Pf,m+k/m+k—1 (I Kf,m+kCcom,m+k) + Kf,m+chom,m+ka,n

end

end

®  RTS smoothing at pre-defined interval ¢
if remainder(i, ¢, ) = 0

Zb,ixN = Zf,ixN/ixN

Pb,ixN = Pf,ixN/ixN

forj=1l:cp X N-1

-1
Ib,ixN—j+l/i><N—j = (Pf,ixN—jH/ixN—j)
T
Kb,ixN—j = Pf,ixN—j/iXN—jAixN—ij,ixN—j+1/i><N—j
_ _ _ T
Pb,ixN—j - Pf,ixN—j/ixN—j Kb,ixN—j (Pf,ixN—j+1/i><N—j Pb,ixN—j+1 )Kb,ixN—j

Ly =L v jin-; YKy v (Zb,ixN—j+1 TZLg N jellixN—j )

end
end

end

3. Numerical examples
3.1. Eight-story shear frame model
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This section adopts the eight-story shear frame presented by Callafon et al. [39] and
Azam et al. [40] to verify the capability and robustness of the proposed algorithm. As shown
in Fig. 1, the 2-D frame has a uniform floor mass of 625,000 kg. The lateral story stiffness
provided by two columns is 10° kN/m. The damping ratio is 2% for all modes. Table 2

presents the undamped natural frequencies of this frame.

Table 2

Undamped natural frequencies of the eight-story frame

Mode No. 1 2 3 4 5 6 7 8
Frequency (Hz) 1.17 3.48 5.67 7.67 941 10.83 11.87 12.52
Mg
= o—
ks m;
K m, — Excitation
K e o— Acceleration for measurement
K o Displacement for measurement
5 m,
K m,
ks m,
— o—
ko m,
Ky
N ]

Fig. 1. Overview of the eight-story 2D shear frame

3.2 Baseline analysis

As aforementioned, accelerometers in SHM usually operate at high frequencies to
capture the structure’s high-order modes, and thus the sampling frequencies shall be
determined according to the tested structure’s natural frequencies; whereas displacements are
commonly measured at relatively lower sampling frequencies (1-10 Hz for traditional GPS
and 30-60 Hz for consumer-grade cameras). Therefore, in the baseline numerical case, data
fusion for 100 Hz acceleration and 5 Hz displacement measurement is conducted. Three

displacement sensors and three accelerometers are installed along the frame height, as shown

13



in Fig. 1.

Table 3 presents six different fusion schemes adopted to verify the filter performance.
Schemes 1 and 2 are designed to reconstruct structural responses by only one sensor type.
Schemes 3 and 4 are traditional data fusion techniques based on a single sampling frequency,
wherein Scheme 3 uses the low sampling frequency of the displacement measurements.
Scheme 5 presents the proposed MRKF algorithm without the RTS smoother, whereas
Scheme 6 presents the performance of the MRKF with the RTS smoother. Notably, Schemes
1 to 4 are not designed for multi-rate data fusion; thus, the traditional KF can be applied.

MRKEF algorithm have to be adopted in Schemes 5 and 6.

Table 3

Detailed information of comparison schemes

Sampling frequency (Hz)

Scheme
Acceleration Displacement

1 Acceleration only 100 N/A

2 Displacement only N/A 5

3 Single rate (low) 5 5

4 Single rate (high) 100 100

5 MRKF 100 5

6 MRKF+RTS 100 5

In this baseline case, the excitation applied on DOF2 has a frequency range of 0.01-20 Hz,
whereas that on DOF8 has 20-50 Hz. The amplitude is 2000 kN for both excitations. The
excitation frequency range is designed to cover the natural frequencies of the shear frame.
Collocated monitoring is adopted in this baseline numerical case. Accelerations and
displacements are monitored on DOF2, DOF5, and DOFS8. In this simulation, the
measurement noise and system noise are calculated in consideration of the variance of the
structural responses. Random measurement noise, whose standard deviation o is calculated

as 5% of the response standard deviation, is added to the theoretical responses to obtain

14



noise-corrupted observations. The measurement noise covariance matrix R, is obtained on

the basis of o”. Similarly, the system noise covariance matrix Q, is also calculated on the

basis of 5% of the standard deviation of state vectors. The RTS interval ¢, is assumed as 5

in this baseline analysis, which means RTS smoothing is conducted for every 5 displacement

observations.

True

Scheme 2: dis

Scheme 4: single (high)
— — —Scheme 6: MRKF+RTS

Scheme 1: acc
Scheme 3: single (low)
Scheme 5: MRKF

N

Disp (mm)
o

-2

4
€2
S
~ 0
a
7]
B2

4 I | | N | I | I |

18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20

Time (s)
(b)

5 T T T T T T T T T
€
3
a
K]
a

5 I | | I | I | I |

18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20

Time (s)
(©

50 T T T T T T T T T N
£
~ 0
a
K]
a

194 19.6 19.8 20

5
£
~ 0
o
o |
e -5
1 | | 1 | 1
18 18.2 18.4 18.6 18.8 19 19.2
Time (s)
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194 19.6 19.8 20



(e)
Fig. 2. Displacement reconstruction results at verification DOFs in numerical baseline case (a) DOF1,
(b) DOF3, (c) DOF4, (d) DOF6, and (¢) DOF7

Fig. 2 compares the time histories of the reconstructed displacement responses using
different schemes. At DOF1, DOF3, DOF4, DOF6, and DOF7, neither displacement nor
acceleration is monitored, and the responses are estimated from response reconstruction.

Scheme 2 (i.e., response reconstruction by displacement only) fails to produce reasonable

results. This failure happens because the discretization of the system matrix A, and the
input matrix B, are based on the sampling interval Af, as presented in equations (9) and
(10). Low sampling frequency leads to inaccuracies in the discretization process (e.g., in A,

and B, matrices) and losses the ability to track high-frequency structural responses. The

same explanation holds for the results of response reconstruction in Scheme 3 using a single
low sampling rate. Scheme 1 uses acceleration observations only, and thus the displacement
estimation obtained has relatively large errors. The remaining three schemes (Schemes 4-6)
have competitive performances. Scheme 4 has the best performance among different schemes
because of its high sampling rates in both acceleration and displacement measurements. Since
Scheme 5 uses much less available displacement measurements in MRKF than Scheme 4, the
former exhibits larger estimation errors than the latter. However, after the RTS smoothing
procedure, the reconstruction errors are reduced effectively in Scheme 6 because more future
observations are used in the current estimations. Fig. 3 illustrates the reconstructed time
histories of the acceleration and velocity responses at DOF7 using different schemes, wherein
only 2-s duration is presented to illustrate the comparison clearly. Fig. 4 shows the
corresponding reconstruction errors compared with the real value. The proposed MRKF
algorithm with RTS smoothing (i.e., Scheme 6) can achieve satisfactory response
reconstruction results and substantially reduce the errors, compared with the results based on
one sensor type (i.e., Schemes 1 and 2) and single low sampling frequency data fusion
(Scheme 3). The MRKF algorithm alone (Scheme 5) can estimate acceleration responses
accurately; however, its reconstructed displacements exhibit apparently larger errors than

Scheme 4, because of the low sampling rate in displacement observations in Scheme 5. After
16



RTS smoothing, the response reconstruction accuracy has been considerably improved in
Scheme 6, especially for the displacement reconstruction. The performance of MRKF+RTS
(Scheme 6) is nearly the same as the traditional data fusion with high sampling frequencies
for both acceleration and displacement (i.e., Scheme 4).

Fig. 5 presents the acceleration reconstruction results in the frequency domain at DOF7.
Except Scheme 2 (i.e., displacement only) and Scheme 3 (i.e., single rate low), all other
schemes can successfully capture the first two natural frequencies of the frame. However,
more oscillations are observed in the reconstructed spectra by Scheme 1 (i.e., acceleration
only) and Scheme 5 (MRKF algorithm), especially in the range of 0 to 10 Hz. After RTS
smoothing, the proposed Scheme 6 show comparable performance with Scheme 4, both of
which agree well with the true value. The multi-rate sensor data fusion technique in structural

response reconstruction deserves further research efforts.

True Scheme 1: acc
Scheme 2: dis Scheme 3: single (low)
Scheme 4: single (high) Scheme 5: MRKF

— — — Scheme 6: MRKF+RTS

N

Acc (m/s?)
o

18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20

Time (s)
(a)
T T T
0.05 ]
0 /R
E o %
= /
= .0.05 .
1 | 1 | | 1 | 1 |
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20
Time (s)
(b)

Fig. 3. Response reconstruction results at DOF7 in numerical baseline case: (a) acceleration and (b)

velocity

Normalized root mean square error (NRMSE) is adopted as the performance indicator in

the quantitative comparison of the filter performance. Root mean square error (RMSE) is first

17



calculated to assess the accuracy of state estimation x, compared with real response x, .

24

NRMSE is further defined to facilitate comparing different DOFs and scenarios. The
RMSE is normalized by the difference between maximum and minimum values to obtain

NRMSE in this paper. A smaller NRMSE indicates higher precision.

(25)
NRMSE =—E_

X = Xoin

Table 4 shows the steady-state NRMSE for displacement obtained by different schemes (as
described in Table 3) in this baseline analysis. Response reconstruction by displacement only
(Scheme 2) has the worst performance because of the discretization problem. The failure of
response reconstruction by a single rate (low) (Scheme 3) proves that the
down-sampling-based data fusion technique is problematic, though it is a common practice
when signals are sampled at different frequencies. It is unsurprising that the single rate (high)
(Scheme 4) generally has the best accuracy because both accelerations and displacements are
sampled at 100 Hz. In comparison, the proposed MRKF algorithm with RTS (Scheme 6) has
extremely competitive performances for most of the DOFs, which implies that a high
sampling frequency of displacement observation is unnecessary given the proposed MRKF.
Notably, the responses at DOF2, DOFS, and DOFS, are directly measured by displacement
sensors and accelerometers. The NRMSEs for the displacements at these three DOFs are
1.323%, 1.168%, and 0.841%, respectively, which are even lower than measurement noise.
Thus, the estimated displacements at three DOFs are more accurate than the direct

measurements by SENSors.

Scheme 1: acc Scheme 2: dis
Scheme 3: single (low) Scheme 4: single (high)
Scheme 5: MRKF Scheme 6: MRKF+RTS
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Fig. 4. Comparison of reconstruction errors at DOF7 in numerical baseline case: (a) acceleration, (b)

velocity, and (c) displacement

The comparison between Scheme 1 and Scheme 5 indicates that given the MRKF

algorithm, even adding low-sampling-rate displacement measurements to acceleration

measurements can considerably improve the estimation accuracy by 13% to 43%. The

comparison between Scheme 5 and Scheme 6 indicates that the RTS smoothing process can

further reduce the estimation error by approximately 20% to 50%. The NRMSE for velocity is

similar to the displacement results and therefore omitted for the sake of brevity.

True

Scheme 2: dis

Scheme 4: single (high)
Scheme 6: MRKF+RTS

Scheme 1: acc
Scheme 3: single (low)
Scheme 5: MRKF
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Fig. 5. Comparison of the reconstructed acceleration results in the frequency domain at DOF7 in
numerical baseline case: (a) 0-30 Hz and (b) 0-2.5 Hz

Table 4

Steady-state NRMSE for displacement obtained by different schemes in the numerical baseline case

NRMSE for displacement (%)

Scheme
DOF1 DOF2* DOF3 DOF4 DOF5* DOF6 DOF7 DOF8*

1 Acconly 2.863 2.190 2.843 3303 3468 3.639 3.499 3.135
2 Dis only 22.60 23.94 28.13 3139 3037 3330 32,67 29.01
3 Single rate (low) 18.77 17.70 2237 2336 23.17 2492 2476  21.62
4 Single rate (high) 2.012 0.761 1.199  1.092 0.605 0914 0.586 0.492
5 MRKF 2.500 1.530 1.987  2.081 1.979  2.143  2.044  1.837
6 MRKF+RTS 1.837 0.933 1.258  1.211 0900 1.039 0974 0.868

: These DOFs are directly measured by sensors.

Table 5 presents the acceleration estimation results. The NRMSEs at the three DOFs with
accelerometers are 0.612%, 0.993%, and 0.702% in Scheme 1, which are slightly smaller than
sensor measurement noise. The good performance of Scheme 1 indicates that reconstructing
acceleration by using accelerometer measurements only can produce reasonable results.
MRKEF has a comparable performance with Scheme 1. However, the reconstruction errors can
be considerably reduced after the RTS smoothing. The estimation errors in Scheme 6 are even
smaller than those obtained through high-frequency data fusion (Scheme 4). Acceleration
reconstructions in Schemes 2 and 3 are unsatisfactory because capturing high-order structural
vibrations through low-frequency observations is difficult.

Fig. 6 plots the data presented in Tables 4 and 5 to provide a clear comparison of estimation
accuracies. The proposed algorithm with RTS smoothing achieves superior reconstruction

accuracy even without high-frequency displacement measurements. The comparison confirms
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that, given the proposed MRKF+RTS algorithm, a high sampling frequency of displacement

observation is unnecessary.

Table 5

Steady-state NRMSE for acceleration obtained by different schemes in the numerical baseline case

NRMSE for acceleration (%)

Sensing scheme
DOF1 DOF2* DOF3 DOF4 DOF5* DOF6 DOF7 DOF8*

1 Acconly 3.231 0.612 4.092 4524 0993 4194 3577 0.702
2 Disonly 15.42 16.31 19.34  21.02  22.87 18.46 2191 14.73
3 Single rate (low) 12.42 2.401 1450 1520  3.191 14.00 18.62  3.626
4  Single rate (high) 3.036 0.603 3.814 4219 0979 4.034 3.057 0.681
5 MRKF 3.237 1.707 4163 4538 1271 4197 3566  1.441
6 MRKF+RTS 2.557 0.561 3320 3.707 0934 3241  2.668  0.622

2: These DOFs are directly measured by sensors.

I Scheme 1: acc I Scheme 2: dis
[ Scheme 3: single (low) [[__]Scheme 4: single (high)
[T Scheme 5: MRKF I Sscheme 6: MRKF+RTS

5
<4
®3
z
.
(2]
a 1
0
DOF
(a)
5 T T
<4 1
03 |
z
Z?2 7
8 1 .
<
. ] | ]
1 2 3 4 5 6 7 8
DOF
(b)

Fig.6. NRMSE in the numerical baseline case: (a) displacement, (b) acceleration

3.3 Parametric analysis
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Seven cases (Cases 2—8) are designed and compared with the baseline analysis (Case 1)
to examine the filter robustness and performance under different scenarios. Different
influencing factors are considered in the simulations. Considering that the displacement
sampling frequency varies with different sensor types, Case 2 is designed to check filter
performance with displacement observations sampled at a relatively higher frequency (i.e., 50
Hz). In Case 3, two random loadings are replaced by a harmonic excitation of 10 Hz plus a
combination of harmonic excitations of 0.1 Hz and 50 Hz. The comparison between Cases 1
and 4 aims to examine the influence of the number of excitations. Case 5 considers the
non-collocated sensor arrangement (i.e., the accelerometer and displacement sensor are

installed at different DOFs). The different levels of measurement noise (Case 1 vs. Case 6)

and system noise (Case 1 vs. Case 7) are studied. In Case 8, cy¢ is set to 1, which means

RTS smoothing is conducted for every displacement measurement.

Table 6. Simulation cases in verification analysis

Sampling
Sensor
Input frequency . Measurement  System
Case . Input type Crrs location ) ]
location (Hz) noise noise
acc dis acc dis
1 28 random 100 5 5 258 258 5% 5%
2 28 random 100 50 5 258 258 5% 5%
3 28 harmonic 100 5 5 258 258 5% 5%
4 258 random 100 5 5 258 258 5% 5%
5 28 random 100 5 5 8 2 5% 5%
6 28 random 100 5 5 258 258 20% 5%
7 28 random 100 5 5 258 258 5% 20%
8 28 random 100 5 1 258 258 5% 5%

Table 7 shows the steady-state reconstruction NRMSEs for DOF7 by using different
schemes in eight simulation cases. The NRMSEs for the displacement, velocity, and
acceleration estimations at this unobserved DOF are listed. The comparison shows that the
proposed MRKF algorithm with RTS smoothing (Scheme 6) achieves satisfactory accuracies
in various cases; it is constantly better than the traditional down-sampled single rate (low)
method (Scheme 3). For displacement reconstruction, the proposed method (Scheme 6) has
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comparable performance with the single rate (high) method (Scheme 4). Comparing Cases 1
and 2 indicates when the displacement sampling frequency is much lower than that of
acceleration, the traditional down-sampling data fusion method could be problematic because
most acceleration data are disregarded. Cases 3 to 5 verify the good performance of the
proposed MRKF+RTS algorithm under various excitation conditions. In real SHM
applications, the sensor noises may be high, and the structural model may be inaccurate. To
facilitate the applications in real practice, Cases 6 and 7 are designed to examine the

influences of measurement and system noise levels. The proposed MRKF algorithm is quite
robust even under relatively high noise levels. In Case 8, ¢, is reduced to 1, and RTS
smoothing is conducted more frequently. Compared with the baseline Case 1, Case 8 has a

faster computing speed and smaller time delay. The algorithm can be regarded as nearly

online. However, the state estimation error is increased slightly compared with Case 1. The
selection of the RTS interval ¢, should be determined according to specific requirements
in consideration of a tradeoff between computational real-timing and accuracies. Through this

parametric analysis, the robustness and superiority of the proposed algorithm are well

verified.

Table 7

Steady-state NRMSE for DOF7 obtained by different schemes under eight simulation cases

Reco NRMSE for DOF 7 (%)

nstruc

ted Sensing scheme Case Case Case Case Case Case Case  Case

respo 1 2 3 4 5 6 7 8

nse
1 Acconly 3.50 3.50 7.32 1.90 3.91 516  7.69 3.50
2 Dis only 32.7 28.4 25.8 20.1 70.8 63.0 237 32.7

dis 3 Single rate (low)  24.8 2.45 16.9 13.4 68.0 60.8 5.06 24.8
4 Single rate (high)  0.59 0.59 0.73 0.35 2.00 129 0.74 0.59
5 MRKF 2.04 0.74 4.02 1.16 3.11 3.23 436  2.04
6 MRKF+RTS 0.97 0.57 1.55 0.58 226 225 1.74 1.07
1 Acconly 3.14 3.14 5.07  2.65 347 426 6.65 3.14
2 Disonly 335 21.9 36.7  27.6 40.1 482 227 335

Vel 5 Singlerate(low) 295 653 345 224 372 468 173 295
4 Single rate (high) 2.34  2.34 320  2.01 2.88 324 446 2.34
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5 MRKF 2.84 243 4.25 242 3.29 3.65 5.94 2.84
6 MRKF+RTS 212 2.02 2.79 1.83 252 293 4.35 2.33
1 Acconly 3.58 3.58 3.75 377 437 476 5.95 3.58
2 Dis only 21.9 17.0 19.5 20.7 17.4 16.8 20.1 21.9
3 Single rate (low) 18.6 5.82 14.1 19.5 32.8 16.6 7.54 18.6
ace 4 Single rate (high)  3.06 3.06 2.86 3.24 392 463 4.12 3.06
5 MRKF 3.57 3.18 3.59 376 435 4.78 5.76 3.57
6 MRKF+RTS 2.67 278 2.60 278 3.06 4.01 4.03 2.89

4. Experimental validation
4.1 Experimental setup

A steel cantilever beam was tested in the laboratory to examine the effectiveness of the
proposed algorithm. As shown in Fig. 7, the cantilever beam with a cross-section of 50 mm x
3.14 mm was installed on a shake table. The total height of the beam was 1,180 mm and was

equally divided into eight elements in its numerical model.

Sd_E7 D Cantilever beam

Sa_E6 Shaking table
o—

Sd_E5
< &= =) Excitationdirection

_ Sa_E4
Length = 1180mm sa_E2

o O— Accelerometer

Sd_E3

Sd_E1
sa_E2 Laser displacement sensor

Sd_E1

=1 f —

Width = 50mm

Thickness = 3.14mm

Fig. 7. Layout of the sensors in the laboratory test

The APS420 long-stroke shaker generated the ground excitation. Acceleration responses
were measured by three accelerometers (Type 4382, Briiel & Kjer, Denmark), installed at
DOF2, DOF4, and DOF6, and denoted as Sa E2, Sa E4, and Sa E6 in Fig. 7. The beam
displacement was recorded by an iPhone 11 placed in front of the beam. Markers were
attached to the locations where beam displacements were to be extracted. The displacement
was extracted from the recorded video by using the Kanade-Lucas-Tomasi (KLT) tracking

algorithm. Four laser displacement meters (IL-300, Keyence Corporation of America, USA)
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were also installed to examine the accuracy of the KLT tracking algorithm. The iPhone 11 and
the laser displacement meters recorded absolute displacements, which include the shake table
displacement. The excitation time history generated by the shake table was recorded by an
accelerometer Sa_EO. The data acquisition (DAQ) system is KYOWA EDX-100A, and the
sampling frequency for accelerometers and laser displacement sensors was set to 1000 Hz.
Fig. 8 shows the photos of the experimental setup in the laboratory.

The natural frequencies of the tested beam were identified using the stochastic subspace
identification (SSI) technique. The measured first three frequencies were 1.706 Hz, 10.834 Hz,
and 30.260 Hz, respectively. The model updating was conducted to match the measured
results. The steel density was assumed as 7850 kg/m?, and Young’s modulus was 210 GPa.

The damping ratios for all modes were assumed as 2% in the calculation

(b) () (d)
Fig. 8. Laboratory experimental setup: (a) whole picture, (b) accelerometer, (c) iPhonell, and (d)

laser displacement sensor
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4.2 Camera tracking results

Although a professional high-speed camera can provide accurate motion tracking at high
frame rates, its application is hindered by the exorbitant price. Motion tracking by using
consumer-grade cameras is quite propitious in SHM applications. The KLT tracking algorithm
is one of the target-free computer-vision methods. It was successfully applied to the motion
tracking of one six-story shear frame by Yoon et al. in 2016 [41]. Fig. 9 shows the
vision-based displacement measurement procedure in this experimental test. An iPhone 11
recorded the structure motions by filming videos, and the available frame rates were 30 and
60 fps. Regions of Interest (ROIs) were selected in the first frame and were automatically
tracked in the following video frames. The ROIs were equivalent to the sensor locations in
traditional SHM. Although the markers are not really required by the KLT method, they were
still used in this test to improve the tracking quality because the beam thickness was too thin.
Once the ROIs are selected for the first frame, the KLT algorithm can track the point pixel
locations for the entire duration of the video. By calculating the pixel distance between two
points with known physical lengths, the pixel-to-mm convention was obtained. The structural

displacement could be obtained thereafter.

KLT Tracking

I
i
1
; ; Region of the I Detect Track feature Pixel ! ;
iPhone Video € T . R . Displacement
Interest i | feature points points locations | |
I
e e
Pixel-to-mm
convention

Fig. 9. Vision-based displacement measurement procedure using KLT tracking

As shown in Fig. 8, the light absorbing background was placed behind the test beam, and the
markers were placed on each beam node and the shake table. The pixel-to-mm coefficient was
determined as 0.37 in this test, i.e., one pixel in the video frame is 0.37 mm displacement in
physical coordinate. Fig. 10 compares the displacements measured by the laser displacement
meters and iPhone 11. The results obtained by the iPhone agree well with the laser displacement

meter measurements. The RMSEs for DOF1, DOF3, DOF5, and DOF7 are only 0.245 mm, 0.477
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mm, 0.514 mm, and 0.540 mm, respectively. More importantly, one iPhone model could track
structural motions at many points; whereas one laser displacement meter could only measure one
single point, and it usually has a narrow operating distance range. The tracking results in this
experiment demonstrate the great potential for deploying the consumer-grade camera for

displacement measurements in SHM applications.
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Fig. 10. Compare displacement measured by iPhone and laser displacement in laboratory test: (a)
DOFI, (b) DOF3, (¢) DOF5, and (d) DOF7

4.3 Response reconstruction results
A random ground motion with a frequency range of 0 Hz to 50 Hz and amplitude of 8
m/s*> was applied to the cantilever beam. The frequency was selected to cover the first three

natural frequencies of the test beam. Out of the three installed accelerometers, only Sa_E2
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and Sa_E4 observations were used to reconstruct structural responses. The acceleration
recorded by Sa E6 was used for the comparison with the reconstructed responses.
Displacement at all eight DOFs could be extracted from the recorded videos. In this
experimental test, only two displacements at DOF3 and DOFS5 were included in the

observation vector. Displacement measurements at other locations were used to verify filter

accuracies. The standard deviation of measurement noise v, was estimated to be around 10%

of the standard deviation of the measured responses. The variance of system noise was set as
the square of 5% of the standard deviation of the state vector. The sampling frequency of the
accelerometers and laser displacement meters was set as 1000 Hz. The video frame rate of the
iPhonell camera was 60 fps. Considering the proposed MRKF algorithm only applies to the
case where the sampling frequency of the acceleration is integer multiples of the displacement,
the camera-tracked displacements were down-sampled from 60 fps to 20 fps for calculation.
Fig. 11 presents the reconstructed displacement time histories at verification DOFs. The
same six different data fusion schemes were adopted for a better illustration of the algorithm
performance and consistency with the numerical simulation. The reconstructed displacements
are compared with the KLT tracking results. Displacement estimation by using displacement
sensors (Scheme 2) and single rate low (Scheme 3) failed to produce satisfactory results,
which is consistent with the conclusion reached in the numerical simulation. Response
reconstruction by using data sampled at low frequencies will lose the ability to capture
higher-order structural vibration modes. Given that high-frequency displacement data were
unavailable from the vision-based tracking, displacements recorded by laser displacement
meters were used in the single rate (high) data fusion based on 1000 Hz acceleration and
displacement measurements (Scheme 4). Fig. 11 shows that the proposed MRKF algorithm
with RTS smoothing process yields competitive results with data fusion by high single rate
observations. The estimations agree fairly with the measured sensor data. If only acceleration
observation is used in the observation, the reconstructed displacements have larger errors than
the MRKF results. Table 8 presents the NRMSEs for the reconstructed displacements in the
laboratory test. The MRKF errors can be further reduced by approximately 1% - 25% if the

RTS smoothing procedure is applied. After the smoothing, the reconstruction errors in
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Scheme 6 were reduced by around 30%-80% compared with estimation using acceleration
only (Scheme 1) and by over 90% compared with traditional down-sampling single rate data

fusion (Scheme 3).

Scheme 1: acc
Scheme 3: single (low)
Scheme 5: MRKF

Sensor

Scheme 2: dis

Scheme 4: single (high)
— — —Scheme 6: MRKF+RTS

(b)

Time (s)
(d)
Fig. 11. Displacement estimations at verification DOFs in laboratory test (a) DOF2, (b) DOF4, (c)
DOF6, and (d) DOF8

Fig. 12 compares the reconstructed acceleration and the accelerometer measurement at DOF6.
Except for Schemes 2 and 3, all other schemes achieve similar performance. A similar conclusion

can be reached from the data presented in Table 9. If only structural accelerations are required to
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be estimated under known input, response reconstruction by using acceleration only will provide

acceptable estimations. However, if displacement and velocity responses are of interest as well,
data fusion shall be conducted to obtain better structural state estimations.
Table 8
Steady-state NRMSE for displacement obtained by using different schemes for the tested beam
NRMSE for displacement (%)
Scheme
DOF1 DOF2 DOF3 DOF4 DOF5 DOF6 DOF7 DOF8
1 Acc only 16.85 16.63 16.32 16.77 16.30 16.99 17.86 18.72
2 Dis only 3734 4158  46.52 58.54 5423 58.45 60.54  72.78
3 Single rate (low) 39.41 4392 4943 62.66 57.80 6233 64.53 78.08
4 Single rate (high)* 10.41 8.797  6.864  5.981 3392 2.605 3.144  6.337
5 MRKF 11.62 10.03 8.152  7.154 4228 3495 4401 6.983
6 MRKF+RTS 11.48 10.01 8.047 6.811 4.205 2.958  3.285 6.149

*Laser displacement sensor is used given that high frequency camera reading is unavailable.

Sensor Scheme 1: acc
Scheme 2: dis Scheme 3: single (low)
Scheme 4: single (high) Scheme 5: MRKF

— — — Scheme 6: MRKF+RTS
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Fig. 12. Acceleration time history at DOF6 in laboratory test

Table 9
Steady-state NRMSE for acceleration obtained by using different schemes in the test

NRMSE for acceleration (%)

Scheme

DOF2 DOF4 DOF6
1 Acc only 0.136 0.096 9.352
2 Dis only 37.90 37.05 45.58
3 Single rate (low) 0.972 1.024 56.47
4 Single rate (high)*  0.136 0.096 9.685
5 MRKF 0.592 0.463 11.89
6 MRKF+RTS 0.163 0.115 10.18

*Laser displacement sensor is used because high-frequency camera reading is unavailable.

5. Conclusions
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A novel MRKF data fusion algorithm combined with an RTS smoothing technique for
structural dynamic response reconstruction, which enables the direct fusion of signals
sampled at different frequencies, is presented in this paper for the first time. The proposed
method adopts two sets of observation equations for the measurements. The measurement
update using displacement and acceleration will be conducted only when the displacement
data are available; otherwise, the acceleration observation equation will be adopted. The RTS
smoothing procedure is further applied to enhance the estimation precisions. The proposed
algorithm surmounts the obstacle to deploying low-cost consumer-grade cameras in SHM
applications. Through the numerical simulations and laboratory tests of different structures in
various scenarios, the robustness and superiority of the proposed MRKF algorithm are
successfully verified. Below are the major conclusions of this paper:

1. The proposed MRKF algorithm is the first response reconstruction technique for an
MDOF structural system that considers the fusion of multi-type sensor data sampling at
different rates.

2. The partially observed system is allowed, and the collocated sensor monitoring
requirement is relaxed. Unobserved responses will be estimated through the proposed MRKF
iterations.

3. Compared with traditional KF-based algorithms, the proposed algorithm is relatively
robust and insensitive to noises. Satisfactory state estimations could still be obtained even
with high measurement and system noises.

4. The RTS smoothing process leads to time delay to some extent in response

reconstruction. When the RTS interval ¢y, is small, the algorithm is nearly online but will

produce larger estimation errors. The selection of the RTS interval cy.y should be

determined according to specific requirements by considering a tradeoff between
computational real-timing and accuracies.

5. MRKEF solves the inherent problem of the low sampling rate of displacement monitoring
by consumer-grade cameras. Through the proposed MRKEF iterations and RTS smoothing, the
state estimation results can be comparable to those obtained by high-frequency acceleration

and displacement measurements. This finding can potentially reduce the SHM sensing system
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budget by avoiding using an expensive high-speed camera.

The presented findings illustrate the superiority and robustness of the proposed algorithm
in various scenarios. However, the current algorithm only applies when the acceleration
sampling frequency is integer multiples of the displacement sampling frequency. The
excitation should also be measured. And the current algorithm is only applicable to linear
systems within elastic range. Future studies will be carried out to extend the proposed

algorithm to more generic cases and improve filter practicability.
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