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ABSTRACT: 

In-operation construction vibration monitoring records inevitably contain various anomalies caused by 

sensor faults, system errors, or environmental influence. An accurate and efficient anomaly detection 

technique is essential for vibration impact assessment. Identifying anomalies using visualization tools 

is computationally expensive, time-consuming, and labor-intensive. In this study, an unsupervised 

approach for detecting anomalies in construction vibration monitoring data was proposed based on a 

temporal convolutional network and autoencoder. The anomalies were autonomously detected on the 

basis of the reconstruction errors between the original and reconstructed signals. Considering the false 

and missed detections caused by great variability in vibration signals, an adaptive threshold method was 

applied to achieve the best identification performance. This method used the log-likelihood of the 

reconstruction errors to search for an optimal coefficient for anomalies. A distributed training strategy 

was implemented on a cloud platform to speed up training and perform anomaly detection without 

significant time delay. Construction-induced accelerations measured by a real vibration monitoring 

system were used to evaluate the proposed method. Experimental results show that the proposed 

approach can successfully detect anomalies with high accuracy; and the distributed training can 

remarkably save training time, thereby realizing real-time anomaly detection for online monitoring 

systems with accumulated massive data. 
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1. Introduction 

Vibration-based monitoring is an effective technique for identifying structural or machine statuses 

through vibration responses. An in-operation vibration monitoring system is inevitably susceptible to 

sensor faults, system failure, and environmental influence. In this case, inaccurate values (often known 

as data anomalies) may be recorded, such as spikes, drift, and biased values. Moreover, some anomalies 

are related to emergencies, such as power and equipment failure. These anomalies can easily interfere 

with the analysis of actual vibration levels, leading to false assessment results and disturbing the alarm 

functions of vibration monitoring systems. For example, contractors are often required to suspend 

construction activities and take remedial actions, if the monitored vibration levels exceed prescribed 

control limits and alarm signals are issued. Frequent false alarms triggered by data anomalies instead 

of real vibration impact may considerably disturb the construction schedule and cause economic losses 

to construction projects. A reliable and efficient method for diagnosing data anomalies is crucial to 

ensure the serviceability of typical vibration monitoring systems so that users can respond to true alarms 

promptly and properly and prevent potential adverse impacts.  

Numerous studies on detecting anomalies in machinery and structural vibration signals have been 

conducted [1-5]. In comparison, vibrations induced by construction activities are time-variant and 

nonstationary. For example, vibration amplitudes and frequencies vary considerably during different 

construction works (including no construction conditions). Extremely harsh environments and 

electromagnetic interference on construction sites may trigger signal anomalies more frequently, which 

may substantially interfere real-time alarm functions. These issues challenge the development of an 

accurate and reliable anomaly diagnosis for construction-induced vibration monitoring data.  

The anomaly detection for time-series data has been previously realized by data visualization tools, 

wherein perceptible changes in waveform shapes or trends were considered abnormal behaviors [6]. 

The most common time-series visualization techniques include line charts, scatter plots, and maps [7]. 

Given that an appropriate overview of anomalous data requires expertise in data analysis and knowledge 

of the dynamic characteristics of vibration signals, human intervention and judgment bias are inevitable 

in this approach. Moreover, a full-scale monitoring system would produce vast amounts of data during 
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its service life. Therefore, identifying data anomalies manually in real-time through visualization 

techniques is difficult.  

The above limitation can be overcome using artificial Intelligence techniques. Various supervised 

machine learning methods have been successfully implemented for anomaly detection in vibration 

monitoring data. For example, Kerschen et al. [8] detected faulty sensor data through principal 

component analysis, and its efficiency was verified through an experimental application. Yang and 

Nagarajaiah [9] proposed a principal component pursuit algorithm to find noise outliers in the ambient 

vibration response of structural health monitoring (SHM) data. Gul and Catbas [10] used autoregressive 

models in conjunction with the Mahalanobis distance to detect outliers in the SHM data for different 

laboratory structures. Fu et al. [11] detected sensor faults by distributed similarity test based on the 

similarity of the power spectral density, and then trained an artificial neural network to classify three 

abnormal behaviors in wireless smart sensor networks.  

Supervised deep learning (DL) methods, such as convolutional neural network (CNN) and long 

short-term memory (LSTM), have recently been proved effective for anomaly detection in vibration-

based monitoring. Ni et al. [12] used a one-dimensional (1D) CNN to detect anomalies in SHM data. 

Zhang and Lei [13] proposed a CNN-based data anomaly detection method for vibration signals 

collected on a bridge. Li et al. [14] established a two-stage CNN model to identify anomaly patterns for 

a long-term SHM system. Liu et al. [15] used the LSTM network to identify sensor faults based on 

statistical features of the monitoring data. Lindemann et al. [16] employed LSTM and discrete wavelet 

transform to detect anomalies in vibration singles of various pumps. In addition to studies using time-

series data, studies based on computer vision and DL have been reported in the latest publications [17, 

18]. In particular, acceleration signals were converted into images in the data preprocessing stage and 

then used to train CNN for anomaly detection.  

However, supervised learning approaches require a large amount of labeled data, and labeling all 

anomalous patterns for massive data is impractical, if not impossible [19]. Moreover, abundant normal 

data and limited anomalous data are often available from vibration monitoring systems. The imbalance 

in training data may result in the poor performance of various supervised learning approaches [20]. 
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Alternatively, unsupervised learning methods, which typically train on abundant data without labels and 

use hidden feature representations to detect data anomalies, represent more useful and promising 

solutions. 

The existing unsupervised methods for anomaly detection can be classified into one-class 

approaches, clustering analysis, and reconstruction-based methods [21]. One-class approaches, such as 

one-class support vector machine (SVM) [14, 22], assume that all training data belong to one class and 

distinguish anomalous data from normal data. However, one-class SVM performs poorly in cases when 

anomalies form clusters by themselves. It is also unsuitable for multi-class anomaly detection in large 

datasets. Clustering algorithms aim to separate data based on inner similarity. They assume that normal 

data belong to one specific cluster, whereas anomalous data should not belong to any cluster. The 

underlying mechanism of a clustering technique is to identify clusters instead of anomalies [23]. This 

technique does not perform well when data belong to one or more clusters (e.g., overlapping clusters or 

fuzzy boundaries). The main idea of reconstruction-based methods is that networks learn from normal 

data with few anomalies and make reliable predictions. Anomalous sequences deviating from normal 

data cannot be reconstructed identically because of the lack of training. Hence, anomalies can be 

identified through great discrepancies between input and output. The reconstruction errors are usually 

represented by distances or densities [21]. The commonly used indices include Euclidean distance [24], 

Mahalanobis distance [25], and maximum likelihood estimation [26]. A predetermined threshold is 

often applied to determine whether data are anomalous. Incorrect or unreliable anomaly threshold may 

cause false positive (i.e., the model indicates normal data as anomalous data) or false negative cases 

(i.e., the anomalous data are neglected by the model). Determining an appropriate threshold to identify 

anomalies remains an outstanding concern.  

Autoencoder (AE) is a generally used DL method that can reconstruct data sequences in an 

unsupervised manner. Tremendous efforts have been devoted to adopting AE in damage detection [27-

29] and defect detection [30, 31]. Mao et al. [32] proposed a combination of the generative adversarial 

network and AE to detect and eliminate anomalies in accelerations by encoding time series into images 

in advance. Nevertheless, outliers with very short durations are often visible in the time domain but may 
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disappear in other domains [33], and thus it is difficult to select appropriate encoding methods suitable 

for different types of outliers in practical applications. Such time-to-image transformation requires extra 

operation and specialized knowledge and brings more operation complexity.  

Moreover, high sampling-frequency data captured by in-operation monitoring systems are expected 

to be processed in real time. Increasing sensor numbers also lead to larger data streams. Such large data 

streams and complex DL models with many hyperparameters require high computational efficiency [34, 

35], which is barely achievable by a single computing machine with limited hardware support. Besides, 

new anomalies that are unexpected in the training phase may be generated in practical situations, and 

thus the anomaly detection model should be continuously updated. There is a strong demand to deploy 

DL models to multiple machines for simultaneous training and computation. Research about distributed 

training has made remarkable achievements over the past decades. Xing et al. [36] presented a 

comprehensive summary of deployment, communication mode, and design principles of distributed 

learning platforms and algorithms. Zhang et al. [37] compared the scale and availability of three popular 

distributed learning platforms. Their performances were evaluated by an image classification task on 

the MNIST dataset. Verbraeken et al. [38] reviewed advanced machine learning algorithms and 

emphasized the current situation, application, and future development of distributed machine learning. 

Cloud computing with distributed training has been developed to increase data scalability and 

reduce computational time. Cloud computing refers to a group of on-demand computing resources 

(typically storage and computing power) deployed on networked machines at different locations [39]. 

Both hardware and services require minor operation from an individual user. Users can access the cloud 

computing platform through the Internet by paying for the resources they use only, which can help 

reduce unnecessary hardware expenses. Early in 2005, Apache developed the Hadoop distributed 

system, wherein Hadoop distributed file system (HDFS) can provide expandable storage space for 

massive data and MapReduce realizes distributed computing. Recently, cloud computing has been 

implemented in several SHM applications. Yu and Lin [40] proposed a structural damage detection 

method based on MapReduce. Similarly, Cai and Mahadevan [41] improved the computation efficiency 

of SHM diagnosis through MapReduce and Apache Spark. 
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To the best of the authors’ knowledge, real-time anomaly detection using unsupervised DL for 

practical vibration monitoring systems has never been reported in the previous literature. In light of this 

gap, the present study proposed a novel anomaly detection method for construction vibration monitoring 

signals by combining a temporal convolutional network (TCN) and AE. Compared with those existing 

methods in the literature, the TCN-AE model was trained in an unsupervised manner without any need 

for labeled training data, thereby alleviating data preparation requirements and eliminating human 

intervention. An adaptive threshold method for anomalies was adopted, and the optimal coefficient 

corresponding to the best performance was determined.  

This paper is organized as follows. Section 2 introduces the background theory of AE, TCN, 

adaptive threshold with adjustment coefficient, and distributed training implemented in this study. 

Section 3 briefly introduces the vibration data source collected by a vibration monitoring system 

operated in a construction project in Hong Kong, the anomalous patterns in the training dataset, and the 

algorithmic setup. In Section 4, the anomaly detection results and the performance of distributed 

training are presented. Section 5 summarizes the major contributions of this study and directions for 

future work.  

2. Anomaly Detection using Unsupervised Deep Learning and Cloud 

Computing 

2.1. Overview of TCN-AE 

2.1.1. Basic Framework of AE 

AE has been widely used for dimension reduction [42] and denoising [43]. Fig. 1 shows the 

schematic framework of AE, consisting of an encoder network and a decoder network. The encoder 

transforms input 𝑥 into a hidden representation ℎ(𝑥), and the decoder maps the hidden vector to a 

reconstruction of input, denoted as 𝑦ො. AE aims to minimize the reconstruction error between input and 

output vectors. This objective can be described as  

 
arg min ෍‖𝑥௜ − 𝑦ො௜‖ଶ

௡

௜ୀଵ

, 
(1) 

where 𝑛 is the number of samples. In this study, logcosh is used as a loss function to estimate the 
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reconstruction error. The mathematical expression of logcosh is written as 

 
logcosh = ෍ log(cosh(𝑦ො௜ − 𝑥௜))

௡

௜ୀଵ

. 
(2) 

The logcosh is the logarithm of the hyperbolic cosine of the prediction error, which is insusceptible to 

occasional outliers and has the advantages of robustness, no tunable hyperparameter, and fast 

convergence [44]. The previous literature [45] demonstrated that the logcosh loss function not only 

outperformed two typical loss functions, i.e., mean square error (MSE) and mean absolute error (MAE), 

but also improved the performance of the network. 

 

Fig. 1. Basic framework of AE. 

2.1.2. Architecture of TCN 

TCN was developed by Bai et al. [46] and successfully applied to anomaly detection in time-series 

data later [47]. Conceptually, TCN is based on a convolutional network with numerous advantages, 

such as few hyperparameters, strong adaptability, and computational efficiency. Unlike CNN, TCN uses 

casual convolution, dilated convolution, and residual blocks. Given an input time-series signal 𝑥 =

(𝑥଴, 𝑥ଵ, … , 𝑥்) , an output sequence 𝑦 = (𝑦଴, 𝑦ଵ, … , 𝑦்)  is predicted at each time step. The casual 

convolution at time 𝑡 (𝑡 < 𝑇) is conducted based on the elements from time 𝑡 and before, thereby 

preserving the order of sequential input data [46]. The convolution works as a sliding window that 

covers the input sequence and summarizes the weighted average of 𝑥  in each time step. It can be 

defined as 
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𝑦(𝑛) = ෍ 𝑥(𝑛 − 𝑖)𝑤(𝑖),

௞ିଵ

௜ୀ଴

 
(3) 

where 𝑦 is the output of convolution, 𝑤(𝑖) represents convolutional filter weights, and 𝑘 specifies 

the filter length. Zero padding is applied only on the left side of the input vector to realize casual 

convolution. As a result, the output signal has the same length as the input.  

The dilated convolution adds a parameter called dilation rate 𝑑 [48], where dilation rate d refers 

to the interval between elements in the input signal used for output sequence computation. For a network 

with 𝑀 layers, the dilation rate is generally set to 𝑑 = 2ெିଵ. The dilated convolution can be written 

as 

 
𝑦(𝑛) = ෍ 𝑥(𝑛 − 𝑑𝑖)𝑤(𝑖)

௞ିଵ

௜ୀ଴

. 
(4) 

Fig. 2 shows an example of dilated casual convolution with a dilation rate 𝑑 = (1, 2, 4) and a 

kernel size of 𝑘 = 3 . If 𝑑 = 1 , the regular convolution operation is obtained. In the stacked 

architecture, long-term temporal information is learned by the network with the increasing dilation rate.  

 

Fig. 2. Dilated casual convolution with dilated rates 𝑑 = (1, 2, 4) and kernel size 𝑘 = 3. 

As presented in Fig. 3, the structure of the baseline TCN is a stack of residual blocks. A residual 

block contains two subblocks, each comprising a dilated convolution layer, a weight normalization layer, 

an activation layer, and a dropout layer sequentially. Furthermore, an additional 1 × 1 convolution 

layer, known as a skip connection, is applied to ensure the same input and output dimension of each 
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residual block. 

 

Fig. 3. TCN residual blocks. 

2.1.3. Architecture of TCN-AE 

Thill et al. [49] developed TCN-AE, which combines an AE and a novel TCN model. Fig. 4 

demonstrates the architecture of TCN-AE with dilated rates 𝑑 = (1, 2, 4) . The input time series of 

length 𝑇 passes through a TCN-encoder with three dilated convolutional layers. The red box represents 

the kernel of the dilated convolution. Each dilated convolutional layer is followed by a skip connection 

of a 1 × 1 convolution. The outputs of the skip connections are concatenated and then compressed as 

an encoded representation. Afterward, the encoded representation is downsampled by a pooling layer, 

generating the final output of the TCN-encoder. In the TCN-decoder, the input is upsampled to the 

original length 𝑇. Similar to the TCN-encoder, a stack of three dilated convolutional layers followed 

by skip connections is applied to the data sequence after upsampling. The reversed dilated rates 𝑑 =

(4, 2, 1)  are used for the TCN-decoder. Finally, the output convolutional layer with an activation 

function reconstructs the representation sequence to a decoded time series.  
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Fig. 4. Architecture of TCN-AE with dilated rates 𝑑 = (1, 2, 4). 

2.2. Adaptive Threshold with Adjustment 

After the TCN-AE is trained, reconstruction error is used as an indicator for judging data anomalies. 

As mentioned, the TCN-AE aims to minimize the difference between the input and output signals. The 

TCN-AE is trained on normal data sequence with few anomalies in this study. Consequently, high 

reconstruction errors are expected when anomalies exist in the data sequence. Minor differences 

correspond to normal data, whereas huge differences indicate abnormal events. The learning and 

reconstruction processes operate in unsupervised manners.  

The reconstruction errors do not have a constant baseline. Thus, an adaptive threshold was applied 

to find the optimal threshold for anomalies automatically. An anomaly is usually a temporal pattern 

rather than one exact point of the signal; therefore, a rolling window of length 𝑙 slides over the error 

sequence to generate an error matrix 𝐸 = (𝑒଴, 𝑒ଵ, … , 𝑒்ି௟ାଵ). The reconstruction error between input 

𝑥 and output 𝑦ො is calculated by the Euclidean distance  
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𝑒 = ඩ෍(𝑥௜ − 𝑦ො௜)
ଶ

௡

௜ୀ଴

. 

(5) 

The length of the rolling window is set to 500 in this study, which corresponds to 2 s for each 

window. In order to smoothen the noise and erroneous events that may occur abruptly, a Gaussian filter 

is applied to the error matrix.  

The occurrence of anomalies is decided by an anomaly score. It is calculated according to the log-

likelihood of the error matrix, which can be expressed as 

 
𝑎௦ = 𝐿(𝜃|𝑒) = ෑ 𝑓(𝑒௜; 𝜃)

௡

௜ୀ଴

= ෍ ln

௡

௜ୀ଴

𝑓(𝑒௜; 𝜃), 
(6) 

where 𝜃 is the parameter of the probability distribution, and 𝑓 is the density. Given the complexity 

of time-series data, the kernel density estimation (KDE) is utilized to estimate the probability density 

[50], which can be expressed as  

 
𝑓መ௛(𝑒) =

1

𝑛
෍ 𝐾 ቀ

𝑒 − 𝑒௜

ℎ
ቁ ,

௡

௜ୀ଴

 
(7) 

where 𝐾 is the kernel function, and ℎ is the bandwidth. The Gaussian kernel is selected in this study 

because it can provide the density distribution with optimal smoothness [51].  

The adaptive threshold is adjusted dynamically based on the anomaly score. If the anomaly score 

is larger than the threshold, the data within the time window will be classified as anomalies. The 

threshold is set based on Harrell-Davis (HD) quantile estimator [52] and median absolute deviation 

(MAD) approach [53]. The HDMAD is defined as  

 𝐻𝐷𝑀𝐴𝐷 = c × 𝑄ு஽(𝑝 = 0.5){ห𝑎௦೔
− 𝑀ு஽ห: 1 ≤ 𝑖 ≤ 𝑛}, (8) 

where 𝑀ு஽ is the HD median of the anomaly score, and 𝑐 is a constant term of 1.4826, suggested by 

Simmons et al. [54]. With this approach, the anomaly threshold can be calculated by 

 𝑇 = 𝑀ு஽ − 𝛼 × 𝐻𝐷𝑀𝐴𝐷, (9) 
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where 𝛼 is the adjustment coefficient that usually equals 3. In this study, the value of 𝛼 is adjusted 

between 2 to 5 [53], and the adjustment step is set to 0.4 each time. The coefficient that maximized the 

𝐹ଵ-score is taken as the optimal coefficient.  

The calculation of the 𝐹ଵ-score is derived from true positive (TP), false positive (FP), and false 

negative (FN). A binary anomaly flag [0, 1] is determined for each time series point, in which flag = 1 

means anomalous data while flag = 0 means normal. Therefore, TP indicates that anomalous data are 

correctly identified by the adaptive threshold, while FP indicates that normal data are incorrectly 

detected as anomalies, and FN indicates missed detection of anomalous data. On the other hand, true 

negative (TN) indicates other normal data points are detected as normal. Noted that labels are not passed 

to the DL model at any time but are only used for calculating the 𝐹ଵ-score. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 

 𝐹ଵ =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (12) 

2.3. Distributed Training 

Distributed deep neural networks mainly focus on the process of training in parallel. Distributed 

training has two methods: data parallelism and model parallelism. Model parallelism is applied to a 

model too large to fit into a single machine, whereas data parallelism is appropriate for extremely large 

datasets to achieve fast training. Fig. 5 shows the distributed training paradigm of data parallelism. 

Before training begins, a complete model is replicated on all GPUs. The training dataset is divided into 

several pieces with the same number of GPUs. Each GPU trains a replica of the model locally and 

computes the gradient of the loss function on a portion of the training data. An efficient ring-allreduce 

strategy is used to average gradients and communicate gradients among GPUs to reduce communication 

costs [55]. Then, the model is updated synchronously until it converges. Despite the simple and 

straightforward concept of the data parallelization approach, the implementation is rather complicated. 

Distributed learning is achieved in this study by adopting an open-source toolkit, Horovod [55]. 
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Fig. 5. Data parallelism approach. 

3. Experimental Setup  

3.1. Construction-induced Vibration Database 

A real-time sensory system for construction-induced vibration impact monitoring was deployed on 

a selected construction site in Hong Kong, where foundation works involving mini piling were 

conducted. As shown in Fig. 6(a), five monitoring points were installed on five columns in the existing 

adjacent building to monitor the vibration impact in the most influenced area. Three high-fidelity 

accelerometers (KD1000) were installed at each monitoring point for triaxial vibration measurement. 

The accelerometers have a sensitivity of 10 mV/g, a measurement range of 500 g, and a sampling 

frequency of up to 10 kHz. Each accelerometer was equipped with a magnetic base. As shown in Fig. 

6(b), three accelerometers were mounted on a steel block through magnetism in three orthogonal 

directions. The steel block was attached to the column through the epoxy resin. A fixed monitoring 

station was deployed inside the building, which comprised other measurement units such as a data 

logger (NI USB-6343), a charge amplifier (KD500), and a computer.  
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(a) (b)  

Fig.6. Installation of accelerometers and five measurement points. (a) Five measurement points, 

(b) Three accelerometers mounted on a steel block. 

The acceleration was recorded with a sampling frequency of 250 Hz, which can fulfil the 

requirements of measuring vibrations induced by construction activities. The monitoring system has 

15-channel of acceleration signals, corresponding to 13,500,000 data points every hour. The data in the 

vertical direction of point 1 (red circle) were used for illustration in this study. Notably, the measured 

vibrations with and without construction activities might differ by order of magnitude. Even the 

construction-induced vibrations attenuated rapidly with increasing separation distances from vibration 

sources. Therefore, the collected vibration data varied considerably in a wide range. All data were thus 

normalized by scaling into the range between zero and one before the training. The normalization of 

the data can eliminate the measurement distance effect but preserve other information and relationships 

of the original input data, enhancing model accuracy and convergence speed [56]. The equation of min-

max normalization is given as  

 𝑥′ =
𝑥 − min (𝑥)

max (x) − min (x)
 (13) 

where 𝑥 is the original data and 𝑥ᇱ is the normalized data.  

Previous studies have shown that anomaly detection can be realized with AE trained on normal 

data [57, 58]. One hour of acceleration with few anomalies was used as training data, corresponding to 

900,000 data points. The training samples were extracted using a 10 s window with 90% overlap. In 
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each training epoch, 10% of training data that was selected randomly was used as the validation set. 

The test dataset contained another set of one-hour acceleration data collected at different time, which 

was deliberately selected to ensure that it contains three types of outliers, namely, spike, shift, and trend.  

Fig. 7 demonstrates the normal monitoring data with and without ongoing construction works. 

Great amplitude changes can be observed, which indicates that the vibration data generated by 

construction activities is time-variant. Three types of anomalies exist in the monitoring data. Fig. 8(a) 

shows the spike type, a sudden change in the measurement value, corresponding to high-frequency 

large-amplitude vibration contents. It is one of the most common data anomalies in the construction-

induced vibration monitoring system. Another common anomalous pattern, namely shift, is shown in 

Fig. 8(b), which might be caused by systematic bias. Typical acceleration data should fluctuate around 

the zero amplitude of the monitored object. As shown in Fig. 8(c), the noticeable monotonic upward or 

downward changes in the time domain can be considered as a trend type, which may be attributed to 

sensor faults.  

  
(a) (b)  

Fig. 7. Examples of normal data. (a) Without construction activity, (b) With construction activity. 
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(a) (b) 

 

 

(c)  

Fig. 8. Examples of data anomaly. (a) Spike, (b) Shift, (c) Trend. 

3.2. Algorithmic Setup 

All experiments were conducted on the MatPool cloud platform instead of on a single computer 

used on-site. Each virtual machine is configured with IIl(IXeon(R) E5-2678 v3 CPU @ 2.50 GHz, 30 

GB of memory, and NVIDIA RTX A2000 GPUs. The number of GPUs varied between 1 and 4. The 

Keras [59] and TensorFlow [60] frameworks were adopted in the experiments. Fig. 9 shows an overview 

of the framework of TCN-AE with its parameters. The one-dimensional input acceleration data of length 

𝑇 was passed to a stack of 𝐿 = 5 dilated convolution layers with 𝑛௙௜௟௧௘௥௦ = 32 filters of size 𝑘 = 5, 

resulting in a feature map with dimension 𝑇 × 32. The dilation rates 𝑑 = 1, 2, 4, 8, 16 were used for 

the encoder. Each dilated convolutional layer was followed by a 1 × 1 convolution with 𝑛௙௜௟௧௘௥௦ = 5 

filters, which reduced the dimension to 𝑇 × 5. Afterward, an average pooling layer with a pool size 

𝑠 = 8 was set to downsample the output of the encoder. Subsequently, the compressed hidden vector 
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was passed to the decoder and then upsampled to the original length 𝑇. The TCN architectures of the 

encoder and decoder were the same, and the dilation rates 𝑑 = 16, 8, 4, 2, 1 were used for the decoder. 

During the training process, 10% of the training data was used for validation. The Adam optimizer 

proposed by Kingma and Ba [61] was applied with an initial learning rate of 0.002. Other parameters 

of the model include linear activation and Glorot normal weight initializer [62]. The batch size was set 

to 128 for the model. It was trained over 50 epochs. An early stopping with the patience of 5 epochs 

was applied to avoid the overfitting problem of the model.  

 

Fig.9. Framework of TCN-AE with its parameters  

4. Results and Discussion 

4.1. Anomaly Detection with Adaptive Threshold  

Fig. 10 demonstrates acceleration signals with and without construction activities reconstructed by 

the TCN-AE. In this case, TCN-AE could successfully reconstruct the normal signal. Moreover, it was 

not affected by the state of ongoing construction activity. In contrast, TCN-AE had difficulties in 

reconstructing the accelerations with anomalies, as shown in Fig. 11.  
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(a) (b)  

Fig. 10. Normal data reconstructed by the TCN-AE. (a) Without construction activity, (b) With 

construction activity. 

  
(a)I) 

 

(c)  

Fig. 11. Anomalous data reconstructed by the TCN-AE. (a) Spike, (b) Shift, (c) Trend. 

The log-likelihood value of Euclidian distance was calculated as the anomaly score. Given the 

complexity and noise in the measured acceleration, KDE was used to estimate the distribution of 

0 0.5 1 1.5 2

Time (s)

-0.008

-0.004

0

0.004

0.008

0.012

Original
Reconstruction

0 0.5 1 1.5 2

Time (s)

-0.02

-0.01

0

0.01

Original
Reconstructed



 

21 

 

anomaly scores. Fig. 12 shows the KDE estimated distribution with Gaussian kernel and different 

bandwidths. The blue curve is the histogram of anomaly scores. The comparison shows that the densities 

estimated by KDE with bandwidth ℎ = 0.2 and ℎ = 0.5 are oversmoothed by hiding much of the 

underlying structure, whereas the KDE with bandwidth ℎ = 0.05 is considered optimally smoothed 

because its density is close to the true density. Consequently, the bandwidth for the following 

experiments was set to 0.05. 

 

Fig.12. KDE estimated error distribution with different bandwidths. 

High anomaly scores are considered anomalies. The adjustment of the optimal threshold was 

performed by varying coefficient 𝛼 from 2 to 5. By setting 𝛼 = 2, the anomaly detection obtained an 

𝐹ଵ-score of 0.8798. The 𝛼 increased by 0.4 each step and stopped at 𝛼 = 5. The highest 𝐹ଵ-score 

equals 0.9427 with an optimal coefficient of 3.2. Fig. 13 depicts the anomaly score and adaptive 

thresholds when 𝛼 = 3.2. Table 1 summarizes the coefficients and model performances in terms of 

precision, recall, and 𝐹ଵ-score at each step.  
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Fig. 13. Adaptive threshold (𝛼 = 3.2) and anomaly score. 

Table 1  

Coefficient and performance for anomalies detection. 

Step 𝛼 Precision Recall 𝐹ଵ-score 

1 2.0 0.8797 0.8798 0.8798 

2 2.4 0.9296 0.9403 0.9185 

3 2.8 0.9317 0.9437 0.9313 

4 3.0 0.9372 0.9437 0.9319 

5 3.2 0.9475 0.9539 0.9427 

6 3.6 0.9417 0.9478 0.9374 

7 4.0 0.9391 0.9363 0.9374 

8 4.4 0.9116 0.8933 0.9024 

9 4.8 0.8879 0.9190 0.8497 

10 5.0 0.8436 0.8467 0.8389 

 

As shown in Fig. 14, most of the anomalies were successfully identified by the adaptive threshold, 

in which red shaded areas represent anomaly windows containing anomalies. Fig. 15 demonstrates 

examples of FN and FP cases. Specifically, FN indicates missed detection of subsistent anomalies. As 

demonstrated in Fig. 15(a), the spile anomaly has not been detected. On the contrary, there is no anomaly 

in the shaded area shown in Fig. 15(b), which is counted as FP. The precision of all cases is lower than 

the recall, which indicates that for most cases, normal data are incorrectly presumed to be anomalous.  
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Fig. 14. Acceleration with the detected anomalies marked by the red shaded area. 

  
(a) (b) 

Fig. 15. Examples of FN and FP cases. (a) FN, (b) FP. 

4.2. Performance of Distributed Training 

The computation efficiency of the TCN-AE is another crucial concern directly affecting the online 

application feasibility. In this study, distributed training was conducted with Horovod on an hour of 

acceleration data from one channel (900,000 data points) for 20 epochs. The configurations of all cases 

are summarized in Table 2. In particular, the computing time was compared among four distributed 

strategies: a single GPU (case 1), a stand-alone cluster with four GPUs (cases 2 and 3), a four-node 

cluster with one GPU each (case 4), and a two-node cluster with two GPUs each (case 5). Direct training 

was performed in case 1, given that a single GPU was used.  
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Table 2  

Configurations of distributed training. 

 Machines GPUs/Machine Batch size/GPU Global batch size Learning rate 

Case 1 1 1 128 128 0.002 

Case 2 1 4 32 128 0.002 

Case 3 1 4 128 512 0.004 

Case 4 4 1 32 128 0.002 

Case 5  2 2 64 128 0.002 

 

The comparison was based on a batch size of 128, corresponding to 320,000 data points per 

iteration. Two alternatives were considered for the training on the stand-alone cluster with four GPUs. 

Case 2 had a global batch size of 128 distributed over four GPUs, which resulted in a batch size of 32 

for each GPU. The batch size of 128 was set to each GPU in case 3, thereby obtaining a global batch 

size of 512. The learning rate set in case 3 was doubled to compensate for the large batch size. The 

batch size per GPU was set to 32 and 64 in cases 4 and 5, respectively.  

Fig. 16 compares the training time of each case. The comparison between case 1 and other cases 

shows that the training progress runs faster with more GPU counts. Case 3 with a global batch size of 

512 consumes less time than case 2 with a global batch size of 128, indicating that a large batch size 

would reduce the number of iterations required to complete an epoch of training. Besides, GPUs were 

deployed on four and two machines in case 4 and case 5, respectively. Compared with training on one 

machine, the training time was not affected by cross-communication between different machines, thus 

validating the effectiveness of the adopted distributed training strategy.  
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Fig. 16. Comparison of training time. 

The experimental results indicate that processing the 1 h single-channel acceleration took 250 s by 

distributing the training on the two-node cluster with two GPUs each (case 5), which corresponded to 

4 s for training on 1 min of single-channel data. When applied to the online vibration monitoring system, 

the newly generated data would be used to keep the model up to date. For the construction-induced 

vibration system containing 15 channels (as described in Section 3.1), training the model on all data 

generated in 1 min takes approximately 60 s, which realizes the real-time training on data of multiple 

channels. Furthermore, a well-trained model took a very short time to make predictions; thus, the 

anomaly detection was almost synchronous with model training. If the number of sensors (i.e., channels) 

is further increased, the training time can be further reduced by employing an increased number of 

GPUs or machines to satisfy real-time anomaly detection. 

Fig.17 compares the training and validation losses measured by logcosh for all cases. Both the 

training and validation losses greatly depended on batch size. For a fixed number of epochs, case 3 with 

the largest global batch size of 512 converged at the highest training and validation losses, whereas 

other cases trained on the same global batch size converged toward a similar minimum. This finding 

indicates that case 3 required more epochs to converge to an optimal minimum value. Overlarge batch 

size would reduce the generalization capability of the model [63]. Even though increasing the learning 

rate can compensate for large batch sizes, the effect of the two-fold increased learning rate was not 

apparent in case 3.  

  
(a) (b) 
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Fig. 17. Training and validation losses for all distributed training cases. (a) Training, (b) 

Validation. 

5. Conclusions 

In this study, a novel unsupervised DL approach for detecting data anomalies in construction 

vibration monitoring signals was proposed based on TCN-AE. Compared with most existing anomaly 

detection approaches, TCN-AE reconstructed time-series data in an unsupervised manner, and no 

additional labels were required in the training process. Anomaly scores were defined by the log-

likelihood values of the reconstruction errors between input vibrations and reconstructed output. Data 

with larger anomaly scores were detected as anomalies. The anomaly threshold was defined by HD 

quantile with MAD, and the adaptive threshold method with an adjustment coefficient was adopted. 

Moreover, distributed training, which has not been implemented for anomaly detection for vibration-

based monitoring systems in previous literature, was adopted. Major conclusions are summarized as 

follows.  

The construction vibration signals from the monitoring system of a construction project were 

utilized to validate the efficacy of the proposed method. The experiments show that the TCN-AE could 

reconstruct normal data successfully. However, reconstruction errors became large when anomalous 

data existed. An adaptive threshold was applied for anomaly detection, and the experimental results 

show that a coefficient of 3.2 can achieve the best detection performance (the optimal 𝐹ଵ-score equals 

0.9427). By utilizing distributed training on 2 GPUs over 2 virtual machines, the computation efficiency 

was significantly improved by 224%, as expected. In specific, computational time was reduced from 

810 s to 250 s when training one-hour data, which corresponded to 900,000 data points. It is possible 

to extend the proposed distributed training method to real-time anomaly detection for many channels 

of data.  

Noted that this study regarded all types of anomalous data as anomalies. The classification of 

different types of anomalies has not been achieved. In addition, the vibration responses in this study 

contained very few anomalies. More comprehensive experiments should be conducted in future 



 

27 

 

research to examine the effectiveness of the proposed method when applied to vibration data containing 

more types of anomalies or high anomaly ratios.  
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