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ABSTRACT:

In-operation construction vibration monitoring records inevitably contain various anomalies caused by
sensor faults, system errors, or environmental influence. An accurate and efficient anomaly detection
technique is essential for vibration impact assessment. Identifying anomalies using visualization tools
is computationally expensive, time-consuming, and labor-intensive. In this study, an unsupervised
approach for detecting anomalies in construction vibration monitoring data was proposed based on a
temporal convolutional network and autoencoder. The anomalies were autonomously detected on the
basis of the reconstruction errors between the original and reconstructed signals. Considering the false
and missed detections caused by great variability in vibration signals, an adaptive threshold method was
applied to achieve the best identification performance. This method used the log-likelihood of the
reconstruction errors to search for an optimal coefficient for anomalies. A distributed training strategy
was implemented on a cloud platform to speed up training and perform anomaly detection without
significant time delay. Construction-induced accelerations measured by a real vibration monitoring
system were used to evaluate the proposed method. Experimental results show that the proposed
approach can successfully detect anomalies with high accuracy; and the distributed training can
remarkably save training time, thereby realizing real-time anomaly detection for online monitoring

systems with accumulated massive data.
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1. Introduction

Vibration-based monitoring is an effective technique for identifying structural or machine statuses
through vibration responses. An in-operation vibration monitoring system is inevitably susceptible to
sensor faults, system failure, and environmental influence. In this case, inaccurate values (often known
as data anomalies) may be recorded, such as spikes, drift, and biased values. Moreover, some anomalies
are related to emergencies, such as power and equipment failure. These anomalies can easily interfere
with the analysis of actual vibration levels, leading to false assessment results and disturbing the alarm
functions of vibration monitoring systems. For example, contractors are often required to suspend
construction activities and take remedial actions, if the monitored vibration levels exceed prescribed
control limits and alarm signals are issued. Frequent false alarms triggered by data anomalies instead
of real vibration impact may considerably disturb the construction schedule and cause economic losses
to construction projects. A reliable and efficient method for diagnosing data anomalies is crucial to
ensure the serviceability of typical vibration monitoring systems so that users can respond to true alarms
promptly and properly and prevent potential adverse impacts.

Numerous studies on detecting anomalies in machinery and structural vibration signals have been
conducted [1-5]. In comparison, vibrations induced by construction activities are time-variant and
nonstationary. For example, vibration amplitudes and frequencies vary considerably during different
construction works (including no construction conditions). Extremely harsh environments and
electromagnetic interference on construction sites may trigger signal anomalies more frequently, which
may substantially interfere real-time alarm functions. These issues challenge the development of an
accurate and reliable anomaly diagnosis for construction-induced vibration monitoring data.

The anomaly detection for time-series data has been previously realized by data visualization tools,
wherein perceptible changes in waveform shapes or trends were considered abnormal behaviors [6].
The most common time-series visualization techniques include line charts, scatter plots, and maps [7].
Given that an appropriate overview of anomalous data requires expertise in data analysis and knowledge
of the dynamic characteristics of vibration signals, human intervention and judgment bias are inevitable

in this approach. Moreover, a full-scale monitoring system would produce vast amounts of data during



its service life. Therefore, identifying data anomalies manually in real-time through visualization
techniques is difficult.

The above limitation can be overcome using artificial Intelligence techniques. Various supervised
machine learning methods have been successfully implemented for anomaly detection in vibration
monitoring data. For example, Kerschen et al. [8] detected faulty sensor data through principal
component analysis, and its efficiency was verified through an experimental application. Yang and
Nagarajaiah [9] proposed a principal component pursuit algorithm to find noise outliers in the ambient
vibration response of structural health monitoring (SHM) data. Gul and Catbas [10] used autoregressive
models in conjunction with the Mahalanobis distance to detect outliers in the SHM data for different
laboratory structures. Fu et al. [11] detected sensor faults by distributed similarity test based on the
similarity of the power spectral density, and then trained an artificial neural network to classify three
abnormal behaviors in wireless smart sensor networks.

Supervised deep learning (DL) methods, such as convolutional neural network (CNN) and long
short-term memory (LSTM), have recently been proved effective for anomaly detection in vibration-
based monitoring. Ni et al. [12] used a one-dimensional (1D) CNN to detect anomalies in SHM data.
Zhang and Lei [13] proposed a CNN-based data anomaly detection method for vibration signals
collected on a bridge. Li et al. [14] established a two-stage CNN model to identify anomaly patterns for
a long-term SHM system. Liu et al. [15] used the LSTM network to identify sensor faults based on
statistical features of the monitoring data. Lindemann et al. [16] employed LSTM and discrete wavelet
transform to detect anomalies in vibration singles of various pumps. In addition to studies using time-
series data, studies based on computer vision and DL have been reported in the latest publications [17,
18]. In particular, acceleration signals were converted into images in the data preprocessing stage and
then used to train CNN for anomaly detection.

However, supervised learning approaches require a large amount of labeled data, and labeling all
anomalous patterns for massive data is impractical, if not impossible [19]. Moreover, abundant normal
data and limited anomalous data are often available from vibration monitoring systems. The imbalance

in training data may result in the poor performance of various supervised learning approaches [20].



Alternatively, unsupervised learning methods, which typically train on abundant data without labels and
use hidden feature representations to detect data anomalies, represent more useful and promising
solutions.

The existing unsupervised methods for anomaly detection can be classified into one-class
approaches, clustering analysis, and reconstruction-based methods [21]. One-class approaches, such as
one-class support vector machine (SVM) [14, 22], assume that all training data belong to one class and
distinguish anomalous data from normal data. However, one-class SVM performs poorly in cases when
anomalies form clusters by themselves. It is also unsuitable for multi-class anomaly detection in large
datasets. Clustering algorithms aim to separate data based on inner similarity. They assume that normal
data belong to one specific cluster, whereas anomalous data should not belong to any cluster. The
underlying mechanism of a clustering technique is to identify clusters instead of anomalies [23]. This
technique does not perform well when data belong to one or more clusters (e.g., overlapping clusters or
fuzzy boundaries). The main idea of reconstruction-based methods is that networks learn from normal
data with few anomalies and make reliable predictions. Anomalous sequences deviating from normal
data cannot be reconstructed identically because of the lack of training. Hence, anomalies can be
identified through great discrepancies between input and output. The reconstruction errors are usually
represented by distances or densities [21]. The commonly used indices include Euclidean distance [24],
Mabhalanobis distance [25], and maximum likelihood estimation [26]. A predetermined threshold is
often applied to determine whether data are anomalous. Incorrect or unreliable anomaly threshold may
cause false positive (i.e., the model indicates normal data as anomalous data) or false negative cases
(i.e., the anomalous data are neglected by the model). Determining an appropriate threshold to identify
anomalies remains an outstanding concern.

Autoencoder (AE) is a generally used DL method that can reconstruct data sequences in an
unsupervised manner. Tremendous efforts have been devoted to adopting AE in damage detection [27-
29] and defect detection [30, 31]. Mao et al. [32] proposed a combination of the generative adversarial
network and AE to detect and eliminate anomalies in accelerations by encoding time series into images

in advance. Nevertheless, outliers with very short durations are often visible in the time domain but may



disappear in other domains [33], and thus it is difficult to select appropriate encoding methods suitable
for different types of outliers in practical applications. Such time-to-image transformation requires extra
operation and specialized knowledge and brings more operation complexity.

Moreover, high sampling-frequency data captured by in-operation monitoring systems are expected
to be processed in real time. Increasing sensor numbers also lead to larger data streams. Such large data
streams and complex DL models with many hyperparameters require high computational efficiency [34,
35], which is barely achievable by a single computing machine with limited hardware support. Besides,
new anomalies that are unexpected in the training phase may be generated in practical situations, and
thus the anomaly detection model should be continuously updated. There is a strong demand to deploy
DL models to multiple machines for simultaneous training and computation. Research about distributed
training has made remarkable achievements over the past decades. Xing et al. [36] presented a
comprehensive summary of deployment, communication mode, and design principles of distributed
learning platforms and algorithms. Zhang et al. [37] compared the scale and availability of three popular
distributed learning platforms. Their performances were evaluated by an image classification task on
the MNIST dataset. Verbraeken et al. [38] reviewed advanced machine learning algorithms and
emphasized the current situation, application, and future development of distributed machine learning.

Cloud computing with distributed training has been developed to increase data scalability and
reduce computational time. Cloud computing refers to a group of on-demand computing resources
(typically storage and computing power) deployed on networked machines at different locations [39].
Both hardware and services require minor operation from an individual user. Users can access the cloud
computing platform through the Internet by paying for the resources they use only, which can help
reduce unnecessary hardware expenses. Early in 2005, Apache developed the Hadoop distributed
system, wherein Hadoop distributed file system (HDFS) can provide expandable storage space for
massive data and MapReduce realizes distributed computing. Recently, cloud computing has been
implemented in several SHM applications. Yu and Lin [40] proposed a structural damage detection
method based on MapReduce. Similarly, Cai and Mahadevan [41] improved the computation efficiency

of SHM diagnosis through MapReduce and Apache Spark.



To the best of the authors’ knowledge, real-time anomaly detection using unsupervised DL for
practical vibration monitoring systems has never been reported in the previous literature. In light of this
gap, the present study proposed a novel anomaly detection method for construction vibration monitoring
signals by combining a temporal convolutional network (TCN) and AE. Compared with those existing
methods in the literature, the TCN-AE model was trained in an unsupervised manner without any need
for labeled training data, thereby alleviating data preparation requirements and eliminating human
intervention. An adaptive threshold method for anomalies was adopted, and the optimal coefficient
corresponding to the best performance was determined.

This paper is organized as follows. Section 2 introduces the background theory of AE, TCN,
adaptive threshold with adjustment coefficient, and distributed training implemented in this study.
Section 3 briefly introduces the vibration data source collected by a vibration monitoring system
operated in a construction project in Hong Kong, the anomalous patterns in the training dataset, and the
algorithmic setup. In Section 4, the anomaly detection results and the performance of distributed
training are presented. Section 5 summarizes the major contributions of this study and directions for
future work.

2. Anomaly Detection using Unsupervised Deep Learning and Cloud
Computing

2.1. Overview of TCN-AE

2.1.1. Basic Framework of AE

AE has been widely used for dimension reduction [42] and denoising [43]. Fig. 1 shows the
schematic framework of AE, consisting of an encoder network and a decoder network. The encoder
transforms input x into a hidden representation h(x), and the decoder maps the hidden vector to a
reconstruction of input, denoted as ¥. AE aims to minimize the reconstruction error between input and

output vectors. This objective can be described as

- (1
argmin ) [lx = il
i=1

where n is the number of samples. In this study, logcosh is used as a loss function to estimate the
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reconstruction error. The mathematical expression of logcosh is written as

. A )

logcosh = Z log(cosh(y; — x;)).
i=1

The logcosh is the logarithm of the hyperbolic cosine of the prediction error, which is insusceptible to
occasional outliers and has the advantages of robustness, no tunable hyperparameter, and fast
convergence [44]. The previous literature [45] demonstrated that the logcosh loss function not only
outperformed two typical loss functions, i.e., mean square error (MSE) and mean absolute error (MAE),

but also improved the performance of the network.

Dooooogoooog-

Encoder Decoder

Fig. 1. Basic framework of AE.

2.1.2. Architecture of TCN

TCN was developed by Bai et al. [46] and successfully applied to anomaly detection in time-series
data later [47]. Conceptually, TCN is based on a convolutional network with numerous advantages,
such as few hyperparameters, strong adaptability, and computational efficiency. Unlike CNN, TCN uses
casual convolution, dilated convolution, and residual blocks. Given an input time-series signal x =
(xg, %1, ---, X7), an output sequence y = (Yo, Y1, .., Yr) 1s predicted at each time step. The casual
convolution at time t (t < T) is conducted based on the elements from time t and before, thereby
preserving the order of sequential input data [46]. The convolution works as a sliding window that
covers the input sequence and summarizes the weighted average of x in each time step. It can be

defined as



- 3)
ym) = Y x(n - Dwd),

i=0
where y is the output of convolution, w(i) represents convolutional filter weights, and k specifies
the filter length. Zero padding is applied only on the left side of the input vector to realize casual
convolution. As a result, the output signal has the same length as the input.
The dilated convolution adds a parameter called dilation rate d [48], where dilation rate d refers
to the interval between elements in the input signal used for output sequence computation. For a network
with M layers, the dilation rate is generally set to d = 2M~1, The dilated convolution can be written

as

y(n) = Z x(n —di)w(i).
i=0
Fig. 2 shows an example of dilated casual convolution with a dilation rate d = (1,2,4) and a

kernel size of k=3. If d =1, the regular convolution operation is obtained. In the stacked

architecture, long-term temporal information is learned by the network with the increasing dilation rate.
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Fig. 2. Dilated casual convolution with dilated rates d = (1,2,4) and kernel size k = 3.

As presented in Fig. 3, the structure of the baseline TCN is a stack of residual blocks. A residual
block contains two subblocks, each comprising a dilated convolution layer, a weight normalization layer,
an activation layer, and a dropout layer sequentially. Furthermore, an additional 1 X 1 convolution

layer, known as a skip connection, is applied to ensure the same input and output dimension of each
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residual block.
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Fig. 3. TCN residual blocks.

2.1.3. Architecture of TCN-AE

Thill et al. [49] developed TCN-AE, which combines an AE and a novel TCN model. Fig. 4
demonstrates the architecture of TCN-AE with dilated rates d = (1,2,4). The input time series of
length T passes through a TCN-encoder with three dilated convolutional layers. The red box represents
the kernel of the dilated convolution. Each dilated convolutional layer is followed by a skip connection
ofa 1 X 1 convolution. The outputs of the skip connections are concatenated and then compressed as
an encoded representation. Afterward, the encoded representation is downsampled by a pooling layer,
generating the final output of the TCN-encoder. In the TCN-decoder, the input is upsampled to the
original length T. Similar to the TCN-encoder, a stack of three dilated convolutional layers followed
by skip connections is applied to the data sequence after upsampling. The reversed dilated rates d =
(4,2,1) are used for the TCN-decoder. Finally, the output convolutional layer with an activation

function reconstructs the representation sequence to a decoded time series.
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Fig. 4. Architecture of TCN-AE with dilated rates d = (1, 2, 4).

2.2. Adaptive Threshold with Adjustment

After the TCN-AE is trained, reconstruction error is used as an indicator for judging data anomalies.

As mentioned, the TCN-AE aims to minimize the difference between the input and output signals. The

TCN-AE is trained on normal data sequence with few anomalies in this study. Consequently, high

reconstruction errors are expected when anomalies exist in the data sequence. Minor differences

correspond to normal data, whereas huge differences indicate abnormal events. The learning and

reconstruction processes operate in unsupervised manners.

The reconstruction errors do not have a constant baseline. Thus, an adaptive threshold was applied

to find the optimal threshold for anomalies automatically. An anomaly is usually a temporal pattern

rather than one exact point of the signal; therefore, a rolling window of length [ slides over the error

sequence to generate an error matrix E = (eg, eq, ..., er_;41). The reconstruction error between input

x and output y is calculated by the Euclidean distance

12



&)

n
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The length of the rolling window is set to 500 in this study, which corresponds to 2 s for each
window. In order to smoothen the noise and erroneous events that may occur abruptly, a Gaussian filter

is applied to the error matrix.

The occurrence of anomalies is decided by an anomaly score. It is calculated according to the log-

likelihood of the error matrix, which can be expressed as

n n (6)
as = L@le) = | [fles6) = ) Infees0),
i=0 i=0
where 6 is the parameter of the probability distribution, and f is the density. Given the complexity
of time-series data, the kernel density estimation (KDE) is utilized to estimate the probability density
[50], which can be expressed as

- — e (7
e =2 > k(229), 7

i=0

where K is the kernel function, and h is the bandwidth. The Gaussian kernel is selected in this study

because it can provide the density distribution with optimal smoothness [51].

The adaptive threshold is adjusted dynamically based on the anomaly score. If the anomaly score
is larger than the threshold, the data within the time window will be classified as anomalies. The
threshold is set based on Harrell-Davis (HD) quantile estimator [52] and median absolute deviation

(MAD) approach [53]. The HDMAD is defined as

HDMAD = ¢ X Qup(p = 0.5){|as, — Myp|: 1 < i < n}, (®)

where Myp is the HD median of the anomaly score, and ¢ is a constant term of 1.4826, suggested by

Simmons et al. [54]. With this approach, the anomaly threshold can be calculated by

T = Myp — a X HDMAD, 9)



where « is the adjustment coefficient that usually equals 3. In this study, the value of «a is adjusted
between 2 to 5 [53], and the adjustment step is set to 0.4 each time. The coefficient that maximized the

F;-score is taken as the optimal coefficient.

The calculation of the F;-score is derived from true positive (TP), false positive (FP), and false
negative (FN). A binary anomaly flag [0, 1] is determined for each time series point, in which flag = 1
means anomalous data while flag = 0 means normal. Therefore, TP indicates that anomalous data are
correctly identified by the adaptive threshold, while FP indicates that normal data are incorrectly
detected as anomalies, and FN indicates missed detection of anomalous data. On the other hand, true
negative (TN) indicates other normal data points are detected as normal. Noted that labels are not passed

to the DL model at any time but are only used for calculating the F;-score.

TP
recision — (10)
recision = TP
TP
Recall = ———— (1
O T TP YN
_ 2 X Precision X Recall (12)

'™ Precision + Recall
2.3. Distributed Training

Distributed deep neural networks mainly focus on the process of training in parallel. Distributed
training has two methods: data parallelism and model parallelism. Model parallelism is applied to a
model too large to fit into a single machine, whereas data parallelism is appropriate for extremely large
datasets to achieve fast training. Fig. 5 shows the distributed training paradigm of data parallelism.
Before training begins, a complete model is replicated on all GPUs. The training dataset is divided into
several pieces with the same number of GPUs. Each GPU trains a replica of the model locally and
computes the gradient of the loss function on a portion of the training data. An efficient ring-allreduce
strategy is used to average gradients and communicate gradients among GPUs to reduce communication
costs [55]. Then, the model is updated synchronously until it converges. Despite the simple and

straightforward concept of the data parallelization approach, the implementation is rather complicated.

Distributed learning is achieved in this study by adopting an open-source toolkit, Horovod [55].
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Fig. 5. Data parallelism approach.

3. Experimental Setup
3.1. Construction-induced Vibration Database

A real-time sensory system for construction-induced vibration impact monitoring was deployed on
a selected construction site in Hong Kong, where foundation works involving mini piling were
conducted. As shown in Fig. 6(a), five monitoring points were installed on five columns in the existing
adjacent building to monitor the vibration impact in the most influenced area. Three high-fidelity
accelerometers (KD1000) were installed at each monitoring point for triaxial vibration measurement.
The accelerometers have a sensitivity of 10 mV/g, a measurement range of 500 g, and a sampling
frequency of up to 10 kHz. Each accelerometer was equipped with a magnetic base. As shown in Fig.
6(b), three accelerometers were mounted on a steel block through magnetism in three orthogonal
directions. The steel block was attached to the column through the epoxy resin. A fixed monitoring
station was deployed inside the building, which comprised other measurement units such as a data

logger (NI USB-6343), a charge amplifier (KD500), and a computer.
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(a) (b)

Fig.6. Installation of accelerometers and five measurement points. (a) Five measurement points,

(b) Three accelerometers mounted on a steel block.

The acceleration was recorded with a sampling frequency of 250 Hz, which can fulfil the
requirements of measuring vibrations induced by construction activities. The monitoring system has
15-channel of acceleration signals, corresponding to 13,500,000 data points every hour. The data in the
vertical direction of point 1 (red circle) were used for illustration in this study. Notably, the measured
vibrations with and without construction activities might differ by order of magnitude. Even the
construction-induced vibrations attenuated rapidly with increasing separation distances from vibration
sources. Therefore, the collected vibration data varied considerably in a wide range. All data were thus
normalized by scaling into the range between zero and one before the training. The normalization of
the data can eliminate the measurement distance effect but preserve other information and relationships
of the original input data, enhancing model accuracy and convergence speed [56]. The equation of min-

max normalization is given as

o X — min (X) (13)
" max (x) — min (x)

where x is the original data and x’ is the normalized data.

Previous studies have shown that anomaly detection can be realized with AE trained on normal
data [57, 58]. One hour of acceleration with few anomalies was used as training data, corresponding to

900,000 data points. The training samples were extracted using a 10 s window with 90% overlap. In
16



each training epoch, 10% of training data that was selected randomly was used as the validation set.
The test dataset contained another set of one-hour acceleration data collected at different time, which

was deliberately selected to ensure that it contains three types of outliers, namely, spike, shift, and trend.

Fig. 7 demonstrates the normal monitoring data with and without ongoing construction works.
Great amplitude changes can be observed, which indicates that the vibration data generated by
construction activities is time-variant. Three types of anomalies exist in the monitoring data. Fig. 8(a)
shows the spike type, a sudden change in the measurement value, corresponding to high-frequency
large-amplitude vibration contents. It is one of the most common data anomalies in the construction-
induced vibration monitoring system. Another common anomalous pattern, namely shift, is shown in
Fig. 8(b), which might be caused by systematic bias. Typical acceleration data should fluctuate around
the zero amplitude of the monitored object. As shown in Fig. 8(c), the noticeable monotonic upward or
downward changes in the time domain can be considered as a trend type, which may be attributed to

sensor faults.

Ng 0.(;05 (\g O.C;S (—H Wmd%-
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(a) (b)

Fig. 7. Examples of normal data. (a) Without construction activity, (b) With construction activity.
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Fig. 8. Examples of data anomaly. (a) Spike, (b) Shift, (c) Trend.
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3.2. Algorithmic Setup

All experiments were conducted on the MatPool cloud platform instead of on a single computer
used on-site. Each virtual machine is configured with I1l(IXeon(R) E5-2678 v3 CPU @ 2.50 GHz, 30
GB of memory, and NVIDIA RTX A2000 GPUs. The number of GPUs varied between 1 and 4. The
Keras [59] and TensorFlow [60] frameworks were adopted in the experiments. Fig. 9 shows an overview
of the framework of TCN-AE with its parameters. The one-dimensional input acceleration data of length
T was passed to astack of L =5 dilated convolution layers with ng;;rers = 32 filters of size k =5,
resulting in a feature map with dimension T X 32. The dilation rates d = 1, 2,4, 8,16 were used for
the encoder. Each dilated convolutional layer was followed by a 1 X 1 convolution with ngjjrers =5
filters, which reduced the dimension to T X 5. Afterward, an average pooling layer with a pool size

s = 8 was set to downsample the output of the encoder. Subsequently, the compressed hidden vector

Acceleration (m/sz)
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was passed to the decoder and then upsampled to the original length T. The TCN architectures of the
encoder and decoder were the same, and the dilation rates d = 16,8,4,2,1 were used for the decoder.

During the training process, 10% of the training data was used for validation. The Adam optimizer
proposed by Kingma and Ba [61] was applied with an initial learning rate of 0.002. Other parameters
of the model include linear activation and Glorot normal weight initializer [62]. The batch size was set
to 128 for the model. It was trained over 50 epochs. An early stopping with the patience of 5 epochs

was applied to avoid the overfitting problem of the model.

TCN-Encoder TCN-Decoder
[ Input (T x 1) ] [ Output (T x 1) ]
! i

TCN (q = (1’ 2' 4’ 8, 16), 1x1 Conv (k= 1, n= 5)

k=5,n=32) [Tx32
lTx32 ' TCN (q = (16,8, 4,2, 1),
' 1x1Conv(k=1,n=5) k=5n=32)
| Tx5 [Txs
Average pooling (s = 8) \ Upsampling (s = 8) ‘

| | |

T/8 x5

Fig.9. Framework of TCN-AE with its parameters

4. Results and Discussion
4.1. Anomaly Detection with Adaptive Threshold

Fig. 10 demonstrates acceleration signals with and without construction activities reconstructed by
the TCN-AE. In this case, TCN-AE could successfully reconstruct the normal signal. Moreover, it was
not affected by the state of ongoing construction activity. In contrast, TCN-AE had difficulties in

reconstructing the accelerations with anomalies, as shown in Fig. 11.
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Fig. 10. Normal data reconstructed by the TCN-AE. (a) Without construction activity, (b) With
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Fig. 11. Anomalous data reconstructed by the TCN-AE. (a) Spike, (b) Shift, (c) Trend.
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The log-likelihood value of Euclidian distance was calculated as the anomaly score. Given the

complexity and noise in the measured acceleration, KDE was used to estimate the distribution of
20



anomaly scores. Fig. 12 shows the KDE estimated distribution with Gaussian kernel and different
bandwidths. The blue curve is the histogram of anomaly scores. The comparison shows that the densities
estimated by KDE with bandwidth h = 0.2 and h = 0.5 are oversmoothed by hiding much of the
underlying structure, whereas the KDE with bandwidth h = 0.05 is considered optimally smoothed
because its density is close to the true density. Consequently, the bandwidth for the following

experiments was set to 0.05.

Histogram KDE, h=0.2| -
——KDE, h=0.05—KDE, h=0.5

100 ¢

80

60 r

Density

40t

6.35 6.4 6.45 6.5 6.55
Error value

Fig.12. KDE estimated error distribution with different bandwidths.

High anomaly scores are considered anomalies. The adjustment of the optimal threshold was
performed by varying coefficient a from 2 to 5. By setting a = 2, the anomaly detection obtained an
F;-score of 0.8798. The a increased by 0.4 each step and stopped at ¢ = 5. The highest F;-score
equals 0.9427 with an optimal coefficient of 3.2. Fig. 13 depicts the anomaly score and adaptive
thresholds when « = 3.2. Table 1 summarizes the coefficients and model performances in terms of

precision, recall, and F;-score at each step.
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Fig. 13. Adaptive threshold (¢ = 3.2) and anomaly score.

Table 1
Coefficient and performance for anomalies detection.
Step a Precision Recall F;-score

1 2.0 0.8797 0.8798 0.8798
2 24 0.9296 0.9403 0.9185
3 2.8 0.9317 0.9437 0.9313
4 3.0 0.9372 0.9437 0.9319
5 3.2 0.9475 0.9539 0.9427
6 3.6 0.9417 0.9478 0.9374
7 4.0 0.9391 0.9363 0.9374
8 44 0.9116 0.8933 0.9024
9 4.8 0.8879 0.9190 0.8497
10 5.0 0.8436 0.8467 0.8389

As shown in Fig. 14, most of the anomalies were successfully identified by the adaptive threshold,
in which red shaded areas represent anomaly windows containing anomalies. Fig. 15 demonstrates
examples of FN and FP cases. Specifically, FN indicates missed detection of subsistent anomalies. As
demonstrated in Fig. 15(a), the spile anomaly has not been detected. On the contrary, there is no anomaly
in the shaded area shown in Fig. 15(b), which is counted as FP. The precision of all cases is lower than

the recall, which indicates that for most cases, normal data are incorrectly presumed to be anomalous.
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Fig. 15. Examples of FN and FP cases. (a) FN, (b) FP.

4.2. Performance of Distributed Training

The computation efficiency of the TCN-AE is another crucial concern directly affecting the online
application feasibility. In this study, distributed training was conducted with Horovod on an hour of
acceleration data from one channel (900,000 data points) for 20 epochs. The configurations of all cases
are summarized in Table 2. In particular, the computing time was compared among four distributed
strategies: a single GPU (case 1), a stand-alone cluster with four GPUs (cases 2 and 3), a four-node
cluster with one GPU each (case 4), and a two-node cluster with two GPUs each (case 5). Direct training

was performed in case 1, given that a single GPU was used.
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Table 2

Configurations of distributed training.

Machines GPUs/Machine Batch size/GPU  Global batch size ~ Learning rate
Case 1 1 1 128 128 0.002
Case 2 1 4 32 128 0.002
Case 3 1 4 128 512 0.004
Case 4 4 1 32 128 0.002
Case 5 2 2 64 128 0.002

The comparison was based on a batch size of 128, corresponding to 320,000 data points per
iteration. Two alternatives were considered for the training on the stand-alone cluster with four GPUs.
Case 2 had a global batch size of 128 distributed over four GPUs, which resulted in a batch size of 32
for each GPU. The batch size of 128 was set to each GPU in case 3, thereby obtaining a global batch
size of 512. The learning rate set in case 3 was doubled to compensate for the large batch size. The

batch size per GPU was set to 32 and 64 in cases 4 and 5, respectively.

Fig. 16 compares the training time of each case. The comparison between case 1 and other cases
shows that the training progress runs faster with more GPU counts. Case 3 with a global batch size of
512 consumes less time than case 2 with a global batch size of 128, indicating that a large batch size
would reduce the number of iterations required to complete an epoch of training. Besides, GPUs were
deployed on four and two machines in case 4 and case 5, respectively. Compared with training on one
machine, the training time was not affected by cross-communication between different machines, thus

validating the effectiveness of the adopted distributed training strategy.
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Fig. 16. Comparison of training time.

The experimental results indicate that processing the 1 h single-channel acceleration took 250 s by
distributing the training on the two-node cluster with two GPUs each (case 5), which corresponded to
4 s for training on 1 min of single-channel data. When applied to the online vibration monitoring system,
the newly generated data would be used to keep the model up to date. For the construction-induced
vibration system containing 15 channels (as described in Section 3.1), training the model on all data
generated in 1 min takes approximately 60 s, which realizes the real-time training on data of multiple
channels. Furthermore, a well-trained model took a very short time to make predictions; thus, the
anomaly detection was almost synchronous with model training. If the number of sensors (i.e., channels)
is further increased, the training time can be further reduced by employing an increased number of

GPUs or machines to satisfy real-time anomaly detection.

Fig.17 compares the training and validation losses measured by logcosh for all cases. Both the
training and validation losses greatly depended on batch size. For a fixed number of epochs, case 3 with
the largest global batch size of 512 converged at the highest training and validation losses, whereas
other cases trained on the same global batch size converged toward a similar minimum. This finding
indicates that case 3 required more epochs to converge to an optimal minimum value. Overlarge batch
size would reduce the generalization capability of the model [63]. Even though increasing the learning

rate can compensate for large batch sizes, the effect of the two-fold increased learning rate was not

apparent in case 3.
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Fig. 17. Training and validation losses for all distributed training cases. (a) Training, (b)

Validation.

5. Conclusions

In this study, a novel unsupervised DL approach for detecting data anomalies in construction
vibration monitoring signals was proposed based on TCN-AE. Compared with most existing anomaly
detection approaches, TCN-AE reconstructed time-series data in an unsupervised manner, and no
additional labels were required in the training process. Anomaly scores were defined by the log-
likelihood values of the reconstruction errors between input vibrations and reconstructed output. Data
with larger anomaly scores were detected as anomalies. The anomaly threshold was defined by HD
quantile with MAD, and the adaptive threshold method with an adjustment coefficient was adopted.
Moreover, distributed training, which has not been implemented for anomaly detection for vibration-
based monitoring systems in previous literature, was adopted. Major conclusions are summarized as

follows.

The construction vibration signals from the monitoring system of a construction project were
utilized to validate the efficacy of the proposed method. The experiments show that the TCN-AE could
reconstruct normal data successfully. However, reconstruction errors became large when anomalous
data existed. An adaptive threshold was applied for anomaly detection, and the experimental results
show that a coefficient of 3.2 can achieve the best detection performance (the optimal F;-score equals
0.9427). By utilizing distributed training on 2 GPUs over 2 virtual machines, the computation efficiency
was significantly improved by 224%, as expected. In specific, computational time was reduced from
810 s to 250 s when training one-hour data, which corresponded to 900,000 data points. It is possible
to extend the proposed distributed training method to real-time anomaly detection for many channels

of data.

Noted that this study regarded all types of anomalous data as anomalies. The classification of
different types of anomalies has not been achieved. In addition, the vibration responses in this study

contained very few anomalies. More comprehensive experiments should be conducted in future
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research to examine the effectiveness of the proposed method when applied to vibration data containing

more types of anomalies or high anomaly ratios.
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