

1 Stress-strain models for ultra-high performance 2 concrete (UHPC) and ultra-high performance fiber- 3 reinforced concrete (UHPFRC) under triaxial compression 4

5 S.S. Zhang^{1*}, J.J. Wang², Guan Lin^{3*}, T. Yu⁴, D. Fernando⁵

6
7 ¹ Professor, School of Civil and Hydraulic Engineering, Huazhong University of Science and
Technology, Wuhan, China.

8
9 ² PhD Candidate, School of Civil and Hydraulic Engineering, Huazhong University of Science and
Technology, Wuhan, China.

10
11 ³ Assistant Professor, Department of Ocean Science and Engineering, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, China.

12
13 ⁴ Professor, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong, China.

14
15 ⁵ Professor, School of Engineering, University of Edinburgh, Scotland, EH9 3FG, United Kingdom.

16
17
18 **Abstract:** The constitutive behavior of Ultra-high performance concrete (UHPC) and ultra-
19 high performance fiber reinforced concrete (UHPFRC) under multiaxial stresses, which has not
20 been well understood, needs to be urgently investigated in order to meet an increasing demand
21 for use of UHPC/UHPFRC in construction. This paper therefore presents an experimental study
22 on the triaxial compressive behavior of UHPC and UHPFRC under triaxial compression. The
23 compressive strength of UHPC and UHPFRC in present study are up to 126.9 and 151.5 MPa,
24 respectively. The test variables included the level of lateral hydraulic pressure, steel fiber
25 volume fraction, and uniaxial compressive strength of UHPC and UHPFRC. The present
26 experimental study provides the much-needed systematic test data on the triaxial compressive
27 behavior of UHPC/UHPFRC. The test results showed that the lateral hydraulic pressure
28 significantly enhanced both the strength and ductility of UHPC and UHPFRC. The presence of
29 steel fibers had significant effects on the axial stress-axial strain behavior and the dilation
30 behavior of UHPC and UHPFRC. Finally, new axial stress-axial strain models as well as a new
31 equation for the axial strain-lateral strain relationship for UHPC and UHPFRC were first
32 proposed.

33
34 **Keywords:** UHPC; UHPFRC; triaxial compression; stress-strain model; active confinement;
35 FRP confined concrete; concrete filled steel tube

36
37 *Corresponding author: S.S. Zhang, shishun@hust.edu.cn; G. Lin, ling@sustech.edu.cn.

39 **1. Introduction**

40 Ultra-high performance concrete (UHPC) and ultra-high performance fiber reinforced
41 concrete (UHPFRC) have become a promising alternative to conventional materials in the
42 construction of new structures due to its superior mechanical properties and durability. UHPC
43 and UHPFRC are characterized with a high cement and silica fume content and a low water-to-
44 cement ratio, leading to an ultra-high compressive strength and a low permeability [1–4]. The
45 raw materials for making UHPC and UHPFRC typically include water, cement, silica fume,
46 high-range superplasticizer, supplemental fine materials (e.g., fly ash, quartz powder, silica
47 powder), quartz sand, and fibers [1,5–10]. With the consistent growth of application of
48 UHPC/UHPFRC in new construction, a large number of studies have been conducted on its
49 mix proportions, production and/or curing procedures, as well as mechanical behavior of
50 structural members made of UHPC/UHPFRC [3,4,6,7,11–21]. However, very limited studies
51 have investigated the behavior of UHPC/UHPFRC under multiaxial stresses. The behavior of
52 concrete under multiaxial stresses has long been recognized as an important element in
53 understanding the behavior of concrete structural members in practice which are generally
54 subjected to various loading conditions. The constitutive behavior of concrete under multiaxial
55 stresses are key information necessary for finite element modelling of concrete structural
56 members. One of the most typical multiaxial stress states is the triaxial compressive stress state
57 with two equal lateral compressive stresses (commonly applied through a hydraulic pressure)
58 in combination with axial compression, which is essential for the modelling of steel spiral and
59 stirrup confined concrete [22], concrete filled in steel tube [23] and fiber reinforced polymer
60 (FRP)-confined concrete members [19,24–28]. The tests on concrete under combined axial
61 compression and hydraulic pressure are referred to as hydraulic pressure tests hereafter.
62 Particularly, concrete with a constant lateral pressure throughout the loading process is
63 commonly referred to as concrete with active confinement [29,30].

64 According to the literature, in terms of compressive strength, concrete with a strength
65 ranging from 20 to 50 MPa is referred to as normal-strength concrete (NSC), while high-
66 strength concrete (HSC), high-performance concrete (HPC), or high-performance fiber

67 reinforced concrete (HPFRC) generally has a compressive strength exceeding 50 MPa [31,32].
68 Ultra-high strength concrete (UHSC) and UHPC/UHPFRC are generally characterized with a
69 compressive strength of at least 120 MPa [33,34]. UHPC/UHPFRC generally does not contain
70 coarse aggregates, while HSC/UHSC/FRC contains coarse aggregates.

71 A large number of studies have been carried out on the triaxial compressive behavior of
72 NSC, HSC, and fiber reinforced concrete (FRC) [29,30,35–46]. Following the pioneer study of
73 Richart et al. [35], extensive experimental studies have been conducted on NSC under active
74 confinement [36–39], leading to accurate stress-strain models [38,39]. The behavior of HSC
75 under triaxial stress states has also been extensively investigated and a number of failure criteria
76 and stress-strain models for HSC have been proposed [29,37–43]. The effect of steel fibers on
77 the triaxial compressive behavior of HSC was found not significant [44,45].

78 Compared with NSC and HSC, limited studies have been conducted on the triaxial
79 compressive behavior of UHSC and UHPC [47–52]. Wang et al. [47] investigated the triaxial
80 compressive behavior of cylindrical UHSC specimens with coarse aggregate (48 mm in
81 diameter and 96 mm in height, i.e., 48 mm × 96 mm) with a compressive strength over 200
82 MPa through hydraulic pressure tests. The tests were performed over an extensive range of
83 confining pressures with large gaps (0, 25, 50, 100, 200 and 400 MPa). Very limited studies
84 have been conducted so far on the triaxial compressive behavior of UHPC/UHPFRC through
85 hydraulic pressure tests [45–49]. Wu et al. [49] investigated the effect of steel fiber content (0–
86 2.4%) on the triaxial compressive behavior of UHPC (called reactive powder concrete, RPC,
87 in the original paper) with a compressive strength higher than 140 MPa through tests on 43.6
88 mm × 130 mm cylinder specimens. It was found that the failure mode of UHPC specimens was
89 affected by the steel fiber content, but the peak axial stress was little affected. Vogel et al. [50]
90 tested four 150 mm × 300 mm cylindrical and five 100-mm-length cubic UHPC specimens.
91 The compressive strength of their UHPC was measured to be 123 MPa and 149 MPa
92 respectively. They found that the triaxial compressive strength of UHPC follows a power law
93 function of the confining pressure and the development of triaxial compressive strength of
94 UHPC was different from those of NSC and HSC. Strain data and stress-strain curves of the

95 tested specimens were not reported in their study. Wang et al. [51] conducted hydraulic pressure
96 tests on both UHPC and UHPFRC cylindrical specimens (50 mm × 100 mm) with the confining
97 pressure ranging from 0 to 50 MPa. The compressive strength of their UHPC/UHPFRC ranged
98 from 119.8 MPa to 148.5 MPa. For most of their specimens, the axial stress decreased quickly
99 after the peak stress even though the confining pressure was high, which is different with the
100 results from [30,45,46,52]. They found that the enhancement in compressive strength of
101 UHPFRC at a given hydraulic pressure was slightly lower than that of UHPC. Wu et al [52]
102 performed a series tests of UHPC and UHPFRC with 0.5%, 1.0% and 1.5% steel fiber addition
103 cylindrical specimens (50 mm × 100 mm), however, the uniaxial compressive strength of their
104 UHPC and UHPFRC were 75.57 MPa, 84.07 MPa, 93.26 MPa and 99.98 MPa much lower than
105 the general understanding [20,21].

106 The triaxial compressive behavior of UHPC or UHPFRC has not been fully understood
107 based on the limited studies reviewed above. No reliable model has been proposed to accurately
108 capture the axial stress-axial strain curves of UHPC or UHPFRC under triaxial compression.
109 This paper therefore presents the results of an experimental program on UHPC and UHPFRC
110 subjected to triaxial compression through hydraulic pressure tests. Various hydraulic pressures
111 from 0 to 50 MPa were applied on cylindrical UHPC and UHPFRC specimens. In addition, two
112 steel fiber volume ratios and two uniaxial compressive strengths were included as the test
113 variables. The experimental program provided a much-needed supplement to the very limited
114 existing test data on the triaxial compressive behavior of UHPC and UHPFRC. The test results
115 showed that the confining pressure significantly enhanced both the strength and ductility of
116 UHPC and UHPFRC. The presence of steel fibers had significant effects on the axial stress-
117 axial strain behavior and the dilation behavior of UHPC. It was also found that existing models
118 developed for NSC failed to predict the axial stress-axial strain behavior of UHPC and
119 UHPFRC subjected to triaxial compression; new axial stress-axial strain models were therefore
120 proposed in the present study. In addition, a new equation was proposed for the prediction of
121 the axial strain-lateral strain relationship of the test UHPC and UHPFRC specimens.

122 **2. Experimental program**

123 *2.1. Test specimens*

124 In total, 14 UHPC and 18 UHPFRC cylindrical specimens (with a diameter of 50 mm and
125 a height of 100 mm) were prepared and tested under triaxial compression with the confining
126 pressure ranging from 0 to 50 MPa. Such a range of confining pressures generally covers the
127 typical stress states of concrete in practical engineering (e.g., steel confined concrete, FRP-
128 confined concrete) [16,19–25]. Two nominally identical specimens were tested for each
129 specimen configuration except for the specimens with a confining pressure of 0 MPa (i.e.,
130 specimens under uniaxial compression). Two concrete grades were covered for UHPC and the
131 corresponding UHPFRC. The details of the test specimens are summarized in Table 1. Each
132 specimen was given a name which starts with “UHPC” or “UHPFRC” representing the concrete
133 type, followed by “1” or “2” denoting the higher or lower concrete strength grade, and then a
134 two digit number representing the magnitude of the confining pressure. The name ends with
135 one digit number (if exists) to differentiate between the two nominally identical specimens. For
136 example, specimen UHPC-1-50-1 refers to the first specimen of the two nominally identical
137 UHPC specimens with higher uniaxial concrete strength tested under a confining pressure of
138 50 MPa.

139

140 *2.2. Materials and specimen preparation*

141 In the present study, UHPC was produced using the following raw materials: Portland
142 cement, silica fume, fly ash, quartz sand, quartz powder, superplasticizer and water. The
143 composition of UHPFRC is the same as UHPC, expect that straight steel fibers of 2% in volume
144 fraction were added in the former. The key properties of the steel fibers are shown in Table 2.
145 The mix proportions of UHPC and UHPFRC are given in Table 3. To achieve two concrete
146 grades of UHPC and UHPFRC, two different values of water-to-binder ratio and slightly
147 different amounts of superplasticizer were adopted as listed in Table 3.

148 The mixing, casting and curing process of UHPC and UHPFRC specimens included the
149 following steps: (1) dry-mixing cement, silica fume, fly ash, quartz sand, quartz powder in a

150 concrete mixer for around 3 minutes; (2) adding water and superplasticizer into the mixture and
151 continuing mixing for around 7 minutes; (3) for UHPFRC, adding dispersed steel fibers into
152 the mixture and mixing for around 5 minutes; (4) pouring the mixture into a plastic mold and
153 vibrating the mold to ensure the compactness of concrete; (5) curing the specimens in room
154 temperature for 24 hours before demolding, followed by steam-curing with a temperature of 90
155 $\pm 3^\circ\text{C}$ for 48 hours in accordance with ASTM C1856/C1856M-17 [33]; and (6) curing the
156 specimens in a curing room with a temperature of $20 \pm 2^\circ\text{C}$ for at least 28 days. After curing,
157 uniaxial compression tests were carried out on three identical *cylindrical specimens* (with a
158 diameter of 100 mm and a height of 200 mm) for each group of UHPC and UHPFRC and the
159 results are presented in Table 4. Before the triaxial compression tests, some voids on the surface
160 of each specimen were filled with high-strength gypsum to ensure a smooth surface for well
161 receiving the lateral pressure. Both ends of each specimen were capped with high-strength
162 gypsum to ensure that the ends were perpendicular to the specimen axis and the axial load was
163 uniformly applied on the cross-section (Fig. 1).

164

165 2.3. Test set-up and instrumentation

166 Both uniaxial and triaxial compression tests were performed on an MTS Model 815 Rock
167 Mechanics Test System as shown in Fig. 2. While this system was designed for testing rock
168 specimens, it is also suitable for testing UHPC and UHPFRC specimens due to their ultra-high
169 compressive strength comparable to that of rock. The machine mainly consists of a vertical
170 servo-controlled electro-hydraulic actuator with a load capacity of 4600 kN and a high-pressure
171 vessel of up to 140 MPa (Fig. 2). During the loading process, the vessel is filled with hydraulic
172 oil to apply the lateral confining pressure on the surface of the test specimen. To avoid the
173 penetration of hydraulic oil into the specimens and thus ensure an effective application of lateral
174 confining pressure, a heat-shrinkable tube made of fluorinated ethylene propylene was used to
175 wrapping each test specimen (except for the specimens with a zero hydraulic pressure) before
176 testing.

177 For each test specimen, two axial strain extensometers at 180° apart covering a mid-height

178 region of 50 mm were installed to measure the axial strains of the specimen. The axial strains
179 of the specimen could also be obtained from the full-height axial shortenings recorded by the
180 MTS testing system. In addition, a ring chain type extensometer was installed around the mid-
181 height section of each specimen for measuring the lateral strains. The layouts of the
182 extensometers are shown in Fig.3. The axial loads, confining pressures, axial strains, and lateral
183 strains were recorded by a data acquisition system for every 0.2 seconds.

184

185 *2.4. Test procedure*

186 In the present paper, compressive stresses and strains are defined to be positive. The
187 loading path of the specimens subjected to a hydraulic pressure is shown in Fig. 4: the axial
188 stress σ_1 and the hydraulic pressure ($\sigma_2 = \sigma_3$) were first applied to the specimen
189 simultaneously with a load control rate of 0.1 MPa/s until the targeted value of the confining
190 pressure (f_l) was reached (Stage 1); after that, the confining pressure ($\sigma_2 = \sigma_3$) was kept
191 constant and the axial load was applied onto the specimen with a displacement control rate of
192 0.001 mm/s (Stage 2). During Stage 2, the axial stress σ_1 increased to the compressive strength
193 of the specimen (f_{cc}) and finally dropped as a result of failure. The maximum confinement ratio
194 (f_l/f'_{co} , where f'_{co} is the uniaxial UHPC/UHPFRC strength) was approximately 0.5.

195

196 **3. Experimental observations and results**

197 *3.1. Failure modes*

198 *3.1.1. Specimens under uniaxial compression*

199 Both the UHPC and UHPFRC specimens failed with an explosive sound when the peak
200 stress was reached. Typical failure modes of the UHPC and UHPFRC specimens are shown in
201 Fig. 5. It can be seen that the UHPC and UHPFRC specimens exhibited significantly different
202 failure modes. The UHPC specimens were crushed and split into several longitudinal pieces
203 shortly after the peak stress was reached, while the UHPFRC specimens had more smeared
204 cracks with a more gradual failure process after the peak stress accompanied with snapping
205 pulling-out sounds of steel fibers. Compared with the UHPC specimens with a sudden brittle

206 failure, the UHPFRC specimens exhibited a certain level of ductility with a progressive failure
207 due to the existence of steel fibers. The above observations on the failure modes of UHPC and
208 UHPFRC specimens under uniaxial compression are consistent with those reported by other
209 researchers [11,23,47,51,52].

210

211 *3.1.2. Specimens under triaxial compression*

212 Fig. 6 shows failure modes of all UHPC and UHPFRC specimens under triaxial
213 compression. A sharp diagonal major crack can be observed in the specimens, which is
214 significantly different from the specimens under uniaxial compression (see Fig. 5). In addition
215 to the major diagonal crack, some minor multiple diagonal cracks could also be observed on
216 the surface of the specimen. It could be seen that an increase in confining pressure leads to a
217 smaller inclined angle (with respect to horizon) of the major diagonal crack and a smaller
218 diagonal crack width as shown in Fig. 6. The uniaxial concrete compressive strength does not
219 seem to have an obvious effect on the failure modes of UHPC and UHPFRC specimens under
220 various confining pressures (by comparing UHPC/UHPFRC-1 and UHPC/UHPFRC-2
221 specimens).

222

223 *3.2. Uniaxial compressive strength and corresponding strain*

224 The test results of the specimens under uniaxial compression, including the average
225 compressive strength and the corresponding axial strain are shown in Table 4. The average
226 uniaxial compressive strengths of UHPC-1 and UHPC-2 were measured to be 126.9 MPa and
227 101.0 MPa, respectively, while those of UHPFRC-1 and UHPFRC-2 were 151.5 MPa and 127.1
228 MPa, respectively. The axial strains at peak stress of UHPFRC specimens are larger than those
229 of UHPC specimens. The elastic moduli, calculated by the slope of the stress-strain curve
230 between the axial strain of 0.00005 and that at 40% of the ultimate stress (according to ASTM
231 C469/C469M [53]), of the test specimens are also listed in the table.

232

233 *3.3. Axial stress-strain curves*

234 The axial stress-strain (axial strain and lateral strain) curves of the test UHPC and
235 UHPFRC specimens under various confining pressures are shown in Fig. 7 and Fig. 8,
236 respectively. The key test results, including the compressive strength (i.e., peak stress f_{cc}) and
237 the corresponding axial strain (ε_{cc}), are listed in Table 5. The axial stresses were obtained from
238 the applied axial loads divided by the concrete cross-sectional area. The axial strain
239 extensometers covering a mid-height of 50 mm were used to obtain the axial strains; the lateral
240 strains were obtained from the readings of the hoop ring chain type extensometer (Fig. 3). It
241 should be noted that two UHPC specimens (UHPC-1-50-1 and UHPC-2-50-1) under a
242 confining pressure of 50 MPa experienced premature failure due to the damage of the heat-
243 shrinkable tube, thus their results are excluded in the subsequent discussions. Fig. 7 and Fig. 8
244 show that the stress-strain curves of two nominally identical specimens are generally close to
245 each other, with the maximum difference in peak stress being 11.4% for specimen UHPFRC-
246 2-50.

247 Fig. 9 shows the normalized axial stress (σ_c/f'_{co}) and normalized axial strain ($\varepsilon_c/\varepsilon_{co}$) of
248 specimens UHPC-1 and UHPFRC-2 which had similar uniaxial compressive strengths. The
249 axial stress-strain curves of UHPC and UHPFRC specimens under triaxial compression
250 generally consist of three branches: an ascending first branch up to the peak stress point (ε_{cc} ,
251 f_{cc}); a descending branch after the peak stress; and a third branch which is much flatter (i.e.,
252 the stresses reduced much more gradually) than the second branch or even with a residual stress
253 plateau. Compared with UHPC specimens, the first branch of the stress-strain curves of
254 UHPFRC specimens seems to be longer and more curved especially for the specimens with a
255 relatively high hydraulic pressure (40 MPa and 50 MPa). The UHPFRC specimens generally
256 possess a more gradual stress reduction for the second branch (i.e., flatter second branch)
257 compared with the UHPC specimens under the same hydraulic pressure as shown in Fig. 9,
258 indicating the beneficial effects of steel fibers on the ductility of concrete. It is also seen from
259 Fig. 9 that the addition of steel fibers enhances the residual stress; however, the enhancement
260 in peak axial stress due to a confining pressure is reduced compared with that of UHPC without
261 steel fibers.

262 In addition, it can be seen that the steep descending second branch of UHPC specimens is
263 a little affected by the hydraulic pressure; however, the increase in hydraulic pressure evidently
264 reduces the slope of the descending second branch of UHPFRC specimens (i.e., a slower
265 reduction in the axial stress with respect to the axial strain). Fig. 8 also shows that the concrete
266 grade has little effects on the shape of the stress-strain curves of UHPFRC specimens; however,
267 specimens with a lower compressive strength (i.e., UHPFRC-2 series) obviously have a larger
268 axial strain at the peak stress, leading to a longer portion before the peak stress, than the
269 corresponding specimens with a higher compressive strength (i.e., UHPFRC-1 series). However,
270 the effect of concrete grade on the stress-strain behavior of UHPC specimens was not obvious
271 (Fig. 7). The axial stresses of UHPC specimens with a zero hydraulic pressure dropped to nearly
272 zero rapidly after the peak stress while the axial stresses of UHPFRC specimens dropped more
273 gradually to a residual stress.

274

275 *3.4. Axial strain-lateral strain curves*

276 The axial strain-lateral strain curves of specimens under various confining pressures are
277 shown in Fig. 10 and Fig. 11 for UHPC and UHPFRC specimens, respectively. Similar to NSC,
278 the axial strain-lateral strain curves of UHPC/UHPFRC specimens with hydraulic pressure
279 generally consist of two linear portions connected smoothly at the transition region. The curves
280 of UHPC or UHPFRC specimens with different confining pressures are close to each other
281 during the initial loading stages, but they diverge obviously in the second portion. The
282 normalized axial strain ($\varepsilon_c/\varepsilon_{co}$) and lateral strain ($\varepsilon_l/\varepsilon_{co}$) curves of specimens UHPC-1 and
283 UHPFRC-2 are shown in Fig. 12. For the UHPC specimens with a zero pressure, the lateral
284 strains after the peak stress increased rapidly due to the brittle failure of the specimen, leading
285 to an almost vertical line for the second portion of the axial strain-lateral strain curve. However,
286 the UHPFRC specimens without confining pressure failed in a much more gradual process,
287 leading to an inclined second portion after the sudden transition point as shown in Fig. 12. At a
288 given axial strain, the lateral strain of an UHPC or UHPFRC specimen with a higher hydraulic
289 pressure is smaller in magnitude, indicating that the dilation of concrete is more effectively

290 restricted by a larger confining pressure. Fig. 12 shows that the dilations of UHPC specimens
291 are generally larger than UHPFRC specimens, especially for those with confining pressures of
292 0, 10 and 30 MPa.

293

294 **4. Proposed axial stress-axial strain models**

295 Extensive research has been conducted on NSC under active confinement, leading to
296 numerous axial stress-axial strain models (simply referred to as stress-strain models hereafter)
297 [38,39,54,55]. However, it was found that these models are not able to well predict the stress-
298 strain behavior of UHPC/UHPFRC due to its different shape characteristics of stress-strain
299 curve compared with NSC or HSC as mentioned earlier. The stress- strain curve of unconfined
300 UHPC/UHPFRC exhibits a much steeper descending branch after the peak stress due to its ultra
301 high strength as demonstrated by existing studies and as shown in Fig. 7 and Fig. 8. As a result,
302 it is necessary to develop new stress-strain models which are suitable for both unconfined and
303 actively confined UHPC and UHPFRC. In this section, the stress-strain model proposed by
304 Popovics [55] with some adaptions (Model I) is first evaluated, followed by a new stress-strain
305 model (Model II). Model I employs a single equation for describing the entire stress-strain curve,
306 which is largely controlled by the peak axial stress and the corresponding strain, while Model
307 II is a two-segment stress-strain model which adopts separate equations for the ascending and
308 descending branches. A test database was assembled for the regression analysis for obtaining
309 the key parameters of the two models. The test data used in the regression analysis included the
310 UHPC (including RPC) and UHPFRC specimens of the present study as well as those from
311 existing studies [48–51]. Only the specimens with a uniaxial compressive strength higher than
312 120 MPa and without coarse aggregates were included in the test database. The test database
313 included totally 25 RPC specimens and 39 UHPC or UHPFRC specimens as listed in Table 6.

314

315 *4.1. Proposed axial stress-axial strain models*

316 *4.1.1. Model I*

317 The equation of Popovics [55] has been widely employed in depicting the axial stress-

318 axial strain curves of unconfined or actively confined NSC and HSC [29,39,54–59]. Therefore,
 319 Popovics' equation is adopted in Model I, which is described in the following equation:

$$\frac{\sigma_c}{f_{cc}} = \frac{(\varepsilon_c/\varepsilon_{cc}) \times r}{r - 1 + (\varepsilon_c/\varepsilon_{cc})^r} \quad (1)$$

320

$$r = \frac{E_c}{E_c - f_{cc}/\varepsilon_{cc}} \quad (2)$$

321 where σ_c and ε_c are the axial stress and the axial strain; f_{cc} and ε_{cc} are respectively the
 322 peak axial stress and the corresponding axial strain; E_c is the elastic modulus of
 323 UHPC/UHPFRC, which can be calculated in $E_c = 35497.50 + 78.00 \times f'_{co}$
 324 (f'_{co} is the compressive strength of unconfined UHPC/UHPFRC) proposed by Teng et al [7]
 325 This equation was found to be reasonably accurate in predicting the test UHPC/UHPFRC
 326 specimens in the present study.

327

328 4.1.2. Model II

329 It was later found that Model I does not perform very well in capturing the descending
 330 branch of UHPC/UHPFRC. Therefore, Model II, which is a two-segment stress-strain model
 331 with separate equations for the ascending and descending branches, is proposed. The Popovics'
 332 [55] equation (Eq. 1) is still employed for the ascending branch, while the following fractional
 333 equation is employed for the descending branch:

$$\sigma_c = f_{cres} + \frac{f_{cc} - f_{cres}}{1 + n \times \left(\frac{\varepsilon_c}{\varepsilon_{cc}} - 1 \right)^2} \quad \text{for } \varepsilon_c > \varepsilon_{cc} \quad (3)$$

334 where $n = \frac{2}{1+100V_{sf}}$ (where V_{sf} is the steel fiber volume ratio) is the curve-fitting factor for
 335 the post-peak descending branch to distinguish the influence of steel fiber on the stress-strain
 336 relationship; f_{cres} is the residual axial stress as discussed in detail in Section 4.3. Eq. (3) has
 337 the following characteristics: (I) when $\varepsilon_c = \varepsilon_{cc}$, $\sigma_c = f_{cc}$; (II) when $\varepsilon_c = +\infty$, $\sigma_c = f_{cres}$.

338 It is evident that the determination of peak stress point $(f_{cc}, \varepsilon_{cc})$ is critical in both Model
 339 I and Model II, and the residual axial stress f_{cres} is needed in Model II to generate the entire
 340 stress-strain curve. The calculations of these parameters are discussed in detail in the following

341 sections.

342

343 *4.2. Peak axial stress f_{cc} and corresponding strain ε_{cc}*

344 Similar to NSC and HSC under triaxial compression, the peak axial stress f_{cc} of UHPC
345 or UHPFRC increases with the confining pressure f_l . The relationships between the peak axial
346 stress and the confining pressure for all the collected specimens are shown in Fig. 13. It can be
347 seen that the addition of steel fibers slightly reduces the axial stress enhancement for the
348 specimen in the present study and Wang et al.'s study [51], but the effect of steel fibers is not
349 significant in Wu et al.'s study [49]. A regression analysis of the test results led to the following
350 equation for the peak axial stress f_{cc} :

$$\frac{f_{cc}}{f'_{co}} = 1 + (3.1 - 16V_{sf}) \times \left(\frac{f_l}{f'_{co}}\right)^{0.7} \quad (4)$$

351

352 Similarly, the following equation was obtained for the axial strain at peak axial stress ε_{cc}
353 based on a regression analysis of the test results:

$$\frac{\varepsilon_{cc}}{\varepsilon_{c0}} = 1 + (12 + 100V_{sf}) \times \left(\frac{f_l}{f'_{co}}\right)^{1.05} \quad (5)$$

354 The performance of Eq. (4) and Eq. (5) are shown in Figs. 13 and 14, respectively. It can be
355 seen that the two equations fit the test results very well. The coefficient of determination (R^2)
356 of Eq. (4) for UHPC and UHPFRC specimens are 0.85 and 0.88, respectively. The coefficient
357 of determination (R^2) in predicting the axial strain at peak axial stress ε_{cc} for UHPC and
358 UHPFRC specimens are 0.93 and 0.92, respectively.

359

360 *4.3. Residual axial stress f_{cres}*

361 As discussed in the preceding sections, a residual axial stress (f_{cres}) may exist after the
362 descending branch of the stress-strain curve of concrete under triaxial compression
363 [39,41,58,60–63]. As shown in Figs. 7 and 8, this residual axial stress of UHPC and UHPFRC
364 generally increases as the hydraulic pressure increases. The definition of such residual axial

365 stress in concrete, however, varies in different studies [41,62,63]. Xie et al. [41] considered the
 366 residual axial stress at the point where the slope of the remaining part of the descending curve
 367 is less than 2% of the initial slope of the ascending branch. Smith [62] defined the axial stress
 368 carried by concrete at a lateral strain of 0.03 as the residual axial stress. This method, however,
 369 is not applicable to some specimens with a long post-peak descending branch (e.g., specimens
 370 UHPFRC-1-10 and UHPFRC-2-10) as shown in Fig. 8. Samani and Attard [63] took the end
 371 points of axial stress-axial strain curves as the residual stress and found these definitions are
 372 close to the reported residual stress values in most cases. In the present study, the residual axial
 373 stress is defined based on the methods of Xie et al. [41] and Smith [62]. In the present study, a
 374 residual stress plateau is assumed to appear when the slope magnitude of the descending curve
 375 is less than 2% of the elastic modulus of UHPC/UHPFRC and the axial stress at the end of the
 376 axial stress-strain curve is then defined as the residual axial stress f_{cres} . If no stress plateau
 377 was identified for a test specimen, this specimen was excluded in the subsequent analysis and
 378 discussion for the residual axial stress.

379 The relationships between the normalized residual axial stress f_{cres}/f'_{co} and the
 380 confinement ratio f_l/f'_{co} for the test UHPC and UHPFRC specimens which had a stress
 381 plateau are shown in Fig. 15. Fig. 15 shows that the normalized residual stress is an almost
 382 linear function of the confinement ratio. A regression of the test results led to the following
 383 linear equation for f_{cres} :

$$\frac{f_{cres}}{f'_{co}} = 9V_{sf} + 4.7 \times \left(\frac{f_l}{f'_{co}} \right) \quad (6)$$

384 As shown in Fig. 15, Eq. (6) provides accurate estimations for the residual axial stresses of the
 385 test specimens of the present study ($V_{sf} = 2\%$). It should be noted that, due to the limit test data
 386 on UHPFRC with various values of V_{sf} , only the UHPFRC specimens of the present study
 387 with $V_{sf} = 2\%$ were used for the regression analysis of Eq. (6). Eq. (6) may need refinement
 388 in the future when more test data on UHPFRC become available.

389

390 *4.4. Comparison with test results*

391 The comparison between the predictions of Model I and Model II and test results for the

392 test specimens in the present study and Wang et al. [48] are shown in Fig. 16. The predicted
 393 curve of each specimen under triaxial compression terminated when the average experimental
 394 ultimate axial strain was reached. It can be seen from Figs. 16(a) and (b) that the predictions of
 395 Model II agree reasonably well with the test curves of UHPC specimens with various confining
 396 pressures, while Model I fails to capture the sudden load drop after the peak stress and the
 397 residual axial stress especially for those with a relatively high confining pressure. Figs. 16(c)
 398 and (d) show that both Model I and Model II slightly overestimate the peak axial stress of
 399 UHPFRC specimens. The performance of Model I and Model II is very close for the UHPFRC
 400 specimens in the present study. Figs. 16 (c) and (d) show the comparison of the test results from
 401 Wang et al. [48] and the predictions from Model I and Model II. It can be seen that Model II
 402 captures the test curves more accurately. In general, Model II performs well in predicting the
 403 axial stress-axial strain curves of the UHPC and UHPFRC specimens under triaxial
 404 compression.

405

406 **5. Proposed equations for axial strain-lateral strain relationship**

407 The axial strain-lateral strain relationship is an essential element for understanding the
 408 dilation behavior of UHPC and UHPFRC under various confining pressures. Many equations
 409 have been proposed for the axial strain-lateral strain relationship of NSC or HSC. A typical and
 410 widely adopted one is the equation of Teng et al [64] originally proposed for unconfined,
 411 actively confined, and fiber reinforced polymer (FRP)-confined concrete, which is described in
 412 the following equation:

$$\frac{\varepsilon_c}{\varepsilon_{co}} = 0.85 \left(1 + 8 \frac{\sigma_l}{f'_{co}}\right) \times \left\{ \left[1 + 0.75 \left(-\frac{\varepsilon_l}{\varepsilon_{co}}\right)\right]^{0.7} - \exp \left[-7 \left(-\frac{\varepsilon_l}{\varepsilon_{co}}\right)\right] \right\} \quad (7)$$

413 where σ_l is the confining pressure ($= f_l$ for active confinement); and ε_l is the lateral strain.

414 Fig. 17 shows the comparison of the predictions with Eq. (7) and the test curves of the
 415 UHPC and UHPFRC specimens in the present study (the test curves of the specimens in the
 416 existing studies are not reported). The predicted curve of each specimen terminated when the
 417 average experimental ultimate lateral strain was reached. It can be seen from Fig. 17 that the
 418 predictions of Eq. (7) generally overestimate the test curves of UHPC and UHPFRC specimens

419 except for the specimens with 10 MPa hydraulic pressure. This comparison indicates that the
420 confinement effectiveness of UHPC/UHPFRC is lower than that of NSC.

421 Teng et al's [64] equation was thus modified to the following equation by considering the
422 effects of ultra-high strength and the steel fibers in UHPC or UHPFRC:

$$\frac{\varepsilon_c}{\varepsilon_{co}} = \left(1 + 4.3 \left(\frac{f_l}{f'_{co}}\right)^{0.9}\right) \times \left\{ \left[1 + 0.53 \left(-\frac{\varepsilon_l}{\varepsilon_{co}}\right)\right]^{(f)} - \exp \left[-7 \left(-\frac{\varepsilon_l}{\varepsilon_{co}}\right)\right] \right\} \quad (8)$$

$$f = 0.58 \times \left(\frac{f_l}{f'_{co}}\right)^{(0.1+0.5V_{sf})} + 0.3 \quad (9)$$

423 where f is a function of the confinement ratio f_l/f'_{co} . Eq. (8) was developed based on a
424 regression analysis using the test results of the present study. Fig. 17 shows that the proposed
425 equations perform much better than the original equations of Teng et al [64] in predicting the
426 axial strain-lateral strain curves of the test specimens.

427

428 **6. Conclusions**

429 This paper presents the results of a systematic experimental program on the triaxial
430 compression behavior of UHPC and UHPFRC by testing 32 specimens, contributing to the so
431 far largest test database of such tests. The experimental program included the steel fiber volume
432 fraction, the uniaxial concrete strength, and the confining pressure (ranging from 0 to 50 MPa)
433 as the key test variables. Based on the test results, two axial stress-axial strain models and new
434 equations for the axial strain-lateral strain relationship for UHPC and UHPFRC under various
435 confining pressures were proposed. The results and discussions presented in the paper allow the
436 following conclusions to be drawn:

437

438 (1) The failure patterns of UHPC and UHPFRC specimens under triaxial compression were
439 found to be the major shear diagonal crack. An increase in confining pressure led to a
440 smaller inclined angle (with respect to horizon) of the major shear crack.

441 (2) The axial stress-strain relationships of UHPC specimens under various confining pressures
442 exhibited a sudden axial stress drop after the peak stress while the UHPFRC specimens

443 showed better ductility (i.e., less steep descending branch after the peak stress) especially
444 for those with a larger confining pressure.

445 (3) The addition of steel fibers reduces the enhancement of peak axial stress due to a confining
446 pressure.

447 (4) A residual axial stress plateau exists at the end of the descending branch of the stress-strain
448 curve for both the UHPC and UHPFRC specimens. The presence of steel fibers increases
449 the value of the residual axial stress.

450 (5) The widely used axial strain-lateral strain equation of Teng et al [64] for normal strength
451 concrete was modified and recalibrated. The modified model provides accurate predictions
452 for the axial strain-lateral strain curves of UHPC or UHPFRC specimens under various
453 confining pressures.

454 (6) The axial stress-axial strain models were firstly proposed based on the test results in present
455 study. The new proposed models can provide reasonably accurate predictions in terms of
456 the peak stress, the descending branch, and the residual plateau of the test specimens.

457

458 The proposed axial stress-axial strain models and the axial strain-lateral strain equation were
459 developed based only on limited test data; their accuracy needs to be further verified when more
460 test data on UHPC/UHPFRC with wider ranges of concrete strength and steel fiber volume
461 fraction become available in the future.

462

463 **Acknowledgments**

464 The authors are grateful for the financial support received from the National Natural
465 Science Foundation of China (Project No. 52078231), the Key Research and Development
466 Program of Hubei Province of China (Project No. 2021BCA150), and the Hong Kong Research
467 Grants Council (Project No. T22-502/18-R).

468

469 **References**

470 [1] Shi C, Wu Z, Xiao J, Wang D, Huang Z, Fang Z. A review on ultra high performance

471 concrete: Part I. Raw materials and mixture design. *Construction and Building Materials*
472 2015;101:741–51. <https://doi.org/10.1016/j.conbuildmat.2015.10.088>.

473 [2] Yoo D-Y, Banthia N. Mechanical properties of ultra-high-performance fiber-reinforced
474 concrete: A review. *Cement and Concrete Composites* 2016;73:267–80.
475 <https://doi.org/10.1016/j.cemconcomp.2016.08.001>.

476 [3] Xue J, Briseghella B, Huang F, Nuti C, Tabatabai H, Chen B. Review of ultra-high
477 performance concrete and its application in bridge engineering. *Construction and Building
478 Materials* 2020;260:119844. <https://doi.org/10.1016/j.conbuildmat.2020.119844>.

479 [4] Yu R, Spiesz P, Brouwers HJH. Mix design and properties assessment of Ultra-High
480 Performance Fibre Reinforced Concrete (UHPFRC). *Cement and Concrete Research*
481 2014;56:29–39. <https://doi.org/10.1016/j.cemconres.2013.11.002>.

482 [5] Huang B-T, Wang Y-T, Wu J-Q, Yu J, Dai J-G, Leung CK. Effect of fiber content on
483 mechanical performance and cracking characteristics of ultra-high-performance seawater
484 sea-sand concrete (UHP-SSC). *Advances in Structural Engineering* 2021;24:1182–95.
485 <https://doi.org/10.1177/1369433220972452>.

486 [6] Wille K, Boisvert-Cotulio C. Material efficiency in the design of ultra-high performance
487 concrete. *Construction and Building Materials* 2015;86:33–43.
488 <https://doi.org/10.1016/j.conbuildmat.2015.03.087>.

489 [7] Teng J-G, Xiang Y, Yu T, Fang Z. Development and mechanical behaviour of ultra-high-
490 performance seawater sea-sand concrete. *Advances in Structural Engineering*
491 2019;22:3100–20. <https://doi.org/10.1177/1369433219858291>.

492 [8] Akeed MH, Qaidi S, Ahmed HU, Faraj RH, Mohammed AS, Emad W, et al. Ultra-high-
493 performance fiber-reinforced concrete. Part II: Hydration and microstructure. *Case Studies
494 in Construction Materials* 2022;17:e01289. <https://doi.org/10.1016/j.cscm.2022.e01289>.

495 [9] Hassan AMT, Mahmud GH, Mohammed AS, Jones SW. The influence of normal curing
496 temperature on the compressive strength development and flexural tensile behaviour of
497 UHPFRC with vipulanandan model quantification. *Structures* 2021;30:949–59.
498 <https://doi.org/10.1016/j.istruc.2021.01.063>.

499 [10] Emad W, Mohammed AS, Bras A, Asteris PG, Kurda R, Muhammed Z, et al. Metamodel
500 techniques to estimate the compressive strength of UHPFRC using various mix
501 proportions and a high range of curing temperatures. *Construction and Building Materials*
502 2022;349:128737. <https://doi.org/10.1016/j.conbuildmat.2022.128737>.

503 [11] Hassan AMT, Jones SW, Mahmud GH. Experimental test methods to determine the
504 uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced
505 concrete (UHPFRC). *Construction and Building Materials* 2012;37:874–82.
506 <https://doi.org/10.1016/j.conbuildmat.2012.04.030>.

507 [12] Graybeal BA. Compressive Behavior of Ultra-High-Performance Fiber-Reinforced
508 Concrete. *MJ* 2007;104. <https://doi.org/10.14359/18577>.

509 [13] Yoo D-Y, Lee J-H, Yoon Y-S. Effect of fiber content on mechanical and fracture properties
510 of ultra high performance fiber reinforced cementitious composites. *Composite Structures*
511 2013;106:742–53. <https://doi.org/10.1016/j.compstruct.2013.07.033>.

512 [14] Wu Z, Shi C, He W, Wu L. Effects of steel fiber content and shape on mechanical properties
513 of ultra high performance concrete. *Construction and Building Materials* 2016;103:8–14.
514 <https://doi.org/10.1016/j.conbuildmat.2015.11.028>.

515 [15] Su Y, Li J, Wu C, Wu P, Li Z-X. Effects of steel fibres on dynamic strength of UHPC.
516 *Construction and Building Materials* 2016;114:708–18.
517 <https://doi.org/10.1016/j.conbuildmat.2016.04.007>.

518 [16] Yang SL, Millard SG, Soutsos MN, Barnett SJ, Le TT. Influence of aggregate and curing
519 regime on the mechanical properties of ultra-high performance fibre reinforced concrete
520 (UHPFRC). *Construction and Building Materials* 2009;23:2291–8.
521 <https://doi.org/10.1016/j.conbuildmat.2008.11.012>.

522 [17] Prem PR, Ramachandra Murthy A, Bharatkumar BH. Influence of curing regime and steel
523 fibres on the mechanical properties of UHPC. *Magazine of Concrete Research*
524 2015;67:988–1002. <https://doi.org/10.1680/macr.14.00333>.

525 [18] Gesoglu M, Güneyisi E, Muhyaddin GF, Asaad DS. Strain hardening ultra-high
526 performance fiber reinforced cementitious composites: Effect of fiber type and

527 concentration. Composites Part B: Engineering 2016;103:74–83.
528 <https://doi.org/10.1016/j.compositesb.2016.08.004>.

529 [19] Liao J, Yang KY, Zeng J-J, Quach W-M, Ye Y-Y, Zhang L. Compressive behavior of FRP-
530 confined ultra-high performance concrete (UHPC) in circular columns. Engineering
531 Structures 2021;249:113246. <https://doi.org/10.1016/j.engstruct.2021.113246>.

532 [20] Ma K, Ma Y, Xing G, Liu B. Behavior of ultra-high-performance concrete columns
533 subjected to axial compressive load. Advances in Structural Engineering 2021;24:3792–
534 808. <https://doi.org/10.1177/13694332211038440>.

535 [21] Hu R, Fang Z, Jiang R, Xiang Y, Liu C. Fatigue prediction model of ultra-high-
536 performance concrete beams prestressed with CFRP tendons. Advances in Structural
537 Engineering 2022;25:611–24. <https://doi.org/10.1177/13694332211062340>.

538 [22] Yang X, Zohrevand P, Mirmiran A. Behavior of Ultrahigh-Performance Concrete
539 Confined by Steel. J Mater Civ Eng 2016;28:04016113.
540 [https://doi.org/10.1061/\(ASCE\)MT.1943-5533.0001623](https://doi.org/10.1061/(ASCE)MT.1943-5533.0001623).

541 [23] Hoang AL, Fehling E, Lai B, Thai D-K, Chau NV. Experimental study on structural
542 performance of UHPC and UHPFRC columns confined with steel tube. Engineering
543 Structures 2019;187:457–77. <https://doi.org/10.1016/j.engstruct.2019.02.063>.

544 [24] Zohrevand P, Mirmiran A. Behavior of Ultrahigh-Performance Concrete Confined by
545 Fiber-Reinforced Polymers. J Mater Civ Eng 2011;23:1727–34.
546 [https://doi.org/10.1061/\(ASCE\)MT.1943-5533.0000324](https://doi.org/10.1061/(ASCE)MT.1943-5533.0000324).

547 [25] Tian H, Zhou Z, Wei Y, Wang Y, Lu J. Experimental investigation on axial compressive
548 behavior of ultra-high performance concrete (UHPC) filled glass FRP tubes. Construction
549 and Building Materials 2019;225:678–91.
550 <https://doi.org/10.1016/j.conbuildmat.2019.07.204>.

551 [26] Guler S. Axial behavior of FRP-wrapped circular ultra-high performance concrete
552 specimens. Structural Engineering and Mechanics 2014;50:709–22.
553 <https://doi.org/10.12989/SEM.2014.50.6.709>.

554 [27] Wang W, Wu C, Liu Z, Si H. Compressive behavior of ultra-high performance fiber-

555 reinforced concrete (UHPFRC) confined with FRP. Composite Structures 2018;204:419–
556 37. <https://doi.org/10.1016/j.compstruct.2018.07.102>.

557 [28] Lam L, Huang L, Xie J-H, Chen J-F. Compressive behavior of ultra-high performance
558 concrete confined with FRP. Composite Structures 2021;274:114321.
559 <https://doi.org/10.1016/j.compstruct.2021.114321>.

560 [29] Xiao QG, Teng JG, Yu T. Behavior and Modeling of Confined High-Strength Concrete. J
561 Compos Constr 2010;14:249–59. [https://doi.org/10.1061/\(ASCE\)CC.1943-5614.0000070](https://doi.org/10.1061/(ASCE)CC.1943-5614.0000070).

562 [30] Gholampour A, Ozbaekoglu T. Fiber-reinforced concrete containing ultra high-strength
563 micro steel fibers under active confinement. Construction and Building Materials
564 2018;187:299–306. <https://doi.org/10.1016/j.conbuildmat.2018.07.042>.

565 [31] fib (International Federation for Structural Concrete) 2013. fib Model Code for concrete
566 structures. Berlin: Ernst & Sohn GmbH & Co KG 2013.

567 [32] ABNT (Associação Brasileira de Normas Técnicas) 2014. Design of concrete structures—
568 Procedure. ABNT NBR 6118 Rio de Janeiro, Brazil: ABNT 2014.

569 [33] ASTM C1856/C1856M. Standard Practice for Fabricating and Testing Specimens of
570 Ultra-High Performance Concrete. American Society for Testing and Materials 2017.

571 [34] CSA-A23.1. Annex U of ‘Ultra-High-Performance Concrete.’ Canadian Standards
572 Association 2019.

573 [35] Richart FE, Brandtzaeg A, Brown RL. A study of the failure of concrete under combined
574 compressive stresses. Bulletin No185, Univ of Illinois, Engineering Experimental Station,
575 Champaign, IL 1928.

576 [36] Sfer D, Carol I, Gettu R, Etse G. Study of the Behavior of Concrete under Triaxial
577 Compression. J Eng Mech 2002;128:156–63. [https://doi.org/10.1061/\(ASCE\)0733-9399\(2002\)128:2\(156\)](https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(156)).

579 [37] Sheikh SA, Laine D, Cui C. Behavior of Normal- and High-Strength Confined Concrete.
580 ACI Structural Journal 2013;110:989–99.

581 [38] Candappa DC, Sanjayan JG, Setunge S. Complete Triaxial Stress-Strain Curves of High-
582 Strength Concrete. J Mater Civ Eng 2001;13:209–15.

583 https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(209).

584 [39] Attard MM, Setunge S. Stress-Strain Relationship of Confined and Unconfined Concrete.
585 ACI Materials Journal 1996;93. https://doi.org/10.14359/9847.

586 [40] Ansari F, Li Q. High-Strength Concrete Subjected to Triaxial Compression. ACI Materials
587 Journal 1998;95. https://doi.org/10.14359/420.

588 [41] Xie J, Elwi AE, MacGregor JG. Mechanical Properties of Three High-Strength Concretes
589 Containing Silica Fume. ACI Materials Journal 1995;92. https://doi.org/10.14359/9764.

590 [42] Li Q, Ansari F. High-Strength Concrete in Triaxial Compression by Different Sizes of
591 Specimens. ACI Materials Journal 2000;97:684–9.

592 [43] Li Q, Ansari F. Mechanics of Damage and Constitutive Relationships for High-Strength
593 Concrete in Triaxial Compression. Journal of Engineering Mechanics 1999;125:1–10.
594 https://doi.org/10.1061/(ASCE)0733-9399(1999)125:1(1).

595 [44] Lu X, Hsu C-TT. Behavior of high strength concrete with and without steel fiber
596 reinforcement in triaxial compression. Cement and Concrete Research 2006;36:1679–85.
597 https://doi.org/10.1016/j.cemconres.2006.05.021.

598 [45] Farnam Y, Moosavi M, Shekarchi M, Babanajad SK, Bagherzadeh A. Behaviour of Slurry
599 Infiltrated Fibre Concrete (SIFCON) under triaxial compression. Cement and Concrete
600 Research 2010;40:1571–81. https://doi.org/10.1016/j.cemconres.2010.06.009.

601 [46] Babanajad SK, Farnam Y, Shekarchi M. Failure criteria and triaxial behaviour of HPFRC
602 containing high reactivity metakaolin and silica fume. Construction and Building
603 Materials 2012;29:215–29. https://doi.org/10.1016/j.conbuildmat.2011.08.094.

604 [47] Wang Y-B, Liew JYR, Lee SC, Xiong DX. Experimental Study of Ultra-High-Strength
605 Concrete under Triaxial Compression. ACI Materials Journal 2016;113.
606 https://doi.org/10.14359/51688071.

607 [48] Zhang K, Zhao L-Y, Ni T, Zhu Q-Z, Shen J, Fan Y-H. Experimental investigation and
608 multiscale modeling of reactive powder cement pastes subject to triaxial compressive
609 stresses. Construction and Building Materials 2019;224:242–54.
610 https://doi.org/10.1016/j.conbuildmat.2019.07.049.

611 [49] Wu L, Wang Z, Liu D, Zhu H, Lu Y, Lin L. Effect of Confining Pressure and Steel Fiber
612 Volume Content on Mechanical Property of Reactive Powder Concrete. *Journal of*
613 *Building Materials* 2018;21:208–15.

614 [50] Vogel F, Sovják R, Jogl M. Experimental Tests of the UHPC in Triaxial Compression.
615 *Applied Mechanics and Materials* 2013;486:78–83.
616 <https://doi.org/10.4028/www.scientific.net/AMM.486.78>.

617 [51] Wang Y-Z, Wang Y-B, Zhao Y-Z, Li G-Q, Lyu Y-F, Li H. Experimental study on ultra-high
618 performance concrete under triaxial compression. *Construction and Building Materials*
619 2020;263:120225. <https://doi.org/10.1016/j.conbuildmat.2020.120225>.

620 [52] Wu P, Wu C, Liu Z, Xu S, Li J, Li J. Triaxial strength and failure criterion of ultra-high
621 performance concrete. *Advances in Structural Engineering* 2022;136943322210806.
622 <https://doi.org/10.1177/13694332221080603>.

623 [53] ASTM C469/C469M. Standard Test Method for Static Modulus of Elasticity and Poisson's
624 Ratio of Concrete in Compression. American Society for Testing and Materials 2002.

625 [54] Mirmiran A, Shahawy M. Dilation characteristics of confined concrete. *Mech Cohes-Frict
626 Mater* 1997;2:237–49. [https://doi.org/10.1002/\(SICI\)1099-1484\(199707\)2:3<237::AID-CFM32>3.0.CO;2-2](https://doi.org/10.1002/(SICI)1099-1484(199707)2:3<237::AID-
627 CFM32>3.0.CO;2-2).

628 [55] Popovics S. A numerical approach to the complete stress-strain curve of concrete. *Cement
629 and Concrete Research* 1973;3:583–99. [https://doi.org/10.1016/0008-8846\(73\)90096-3](https://doi.org/10.1016/0008-8846(73)90096-3).

630 [56] Fam A, Rizkalla SH. Confinement Model for Axially Loaded Concrete Confined by
631 Circular Fiber-Reinforced Polymer Tubes. *Aci Structural Journal* 2001;98:451–61.

632 [57] Marques SPC, Marques DC dos SC, Lins da Silva J, Cavalcante MAA. Model for Analysis
633 of Short Columns of Concrete Confined by Fiber-Reinforced Polymer. *J Compos Constr*
634 2004;8:332–40. [https://doi.org/10.1061/\(ASCE\)1090-0268\(2004\)8:4\(332\)](https://doi.org/10.1061/(ASCE)1090-0268(2004)8:4(332)).

635 [58] Binici B. An analytical model for stress-strain behavior of confined concrete. *Engineering
636 Structures* 2005;27:1040–51. <https://doi.org/10.1016/j.engstruct.2005.03.002>.

637 [59] Jiang T, Teng JG. Analysis-oriented stress-strain models for FRP-confined concrete.
638 *Engineering Structures* 2007;29:2968–86. <https://doi.org/10.1016/j.engstruct.2007.01.010>.

639 [60] Lim JC, Ozbakkaloglu T. Stress–strain model for normal- and light-weight concretes under
640 uniaxial and triaxial compression. Construction and Building Materials 2014;71:492–509.
641 <https://doi.org/10.1016/j.conbuildmat.2014.08.050>.

642 [61] Imran I, Pantazopoulou SJ. Plasticity Model for Concrete under Triaxial Compression. J
643 Eng Mech 2001;127:281–90. [https://doi.org/10.1061/\(ASCE\)0733-9399\(2001\)127:3\(281\)](https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(281)).

645 [62] Shawn S. Smith, Kasper J. Willam, Kurt H. Gerstle, Stein Sture. Concrete Over the Top--
646 Or, is there Life After Peak? ACI Materials Journal n.d.;86.

647 [63] Samani AK, Attard MM. A stress–strain model for uniaxial and confined concrete under
648 compression. Engineering Structures 2012;41:335–49.
649 <https://doi.org/10.1016/j.engstruct.2012.03.027>.

650 [64] Teng JG, Huang YL, Lam L, Ye LP. Theoretical Model for Fiber-Reinforced Polymer-
651 Confined Concrete. J Compos Constr 2007;11:201–10.
652 [https://doi.org/10.1061/\(ASCE\)1090-0268\(2007\)11:2\(201\)](https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201)).

653

Table 1 Experimental program of triaxial compression tests

Specimen	Concrete grade	Steel fiber volume fraction (%)	Confining pressure (MPa)	No. of identical specimens
UHPC-1-0	1	0	0	1
UHPC-1-10-1,2	1	0	10	2
UHPC-1-30-1,2	1	0	30	2
UHPC-1-50-1,2	1	0	50	2
UHPC-2-0	2	0	0	1
UHPC-2-10-1,2	2	0	10	2
UHPC-2-30-1,2	2	0	30	2
UHPC-2-50-1,2	2	0	50	2
UHPFRC-1-0	1	2	0	1
UHPFRC-1-10-1,2	1	2	10	2
UHPFRC-1-20-1,2	1	2	20	2
UHPFRC-1-30-1,2	1	2	30	2
UHPFRC-1-40-1,2	1	2	40	2
UHPFRC-1-50-1,2	1	2	50	2
UHPFRC-2-0	2	2	0	1
UHPFRC-2-10-1,2	2	2	10	2
UHPFRC-2-30-1,2	2	2	30	2
UHPFRC-2-50-1,2	2	2	50	2

Table 2 Properties of steel fibers

Cross-section	Fiber type	Diameter (mm)	Length (mm)	Aspect ratio	Tensile strength (MPa)
Circle	Straight	0.2	13	65	>2600

Table 3 Mix proportions of UHPC and UHPFRC (kg/m^3)

Series	Cement	Silica fume	Fly ash	Quartz sand	Quartz powder	Steel fiber	Superplasticizer	Water
UHPC-1	800	240	112	960	224	0	40	208
UHPC-2	800	240	112	960	224	0	36	240
UHPFRC-1	800	240	112	960	224	156	40	208
UHPFRC-2	800	240	112	960	224	156	36	240

Table 4 Uniaxial compression test results

Specimen	Diameter (mm)	Height (mm)	Compressive strength (MPa)	Axial strain at peak stress (%)	Elastic modulus (GPa)
UHPC-1	100	200	129.2	0.324	40.5
UHPC-2	100	200	113.4	0.287	45.1
UHPFRC-1	100	200	164.5	0.427	39.3
UHPFRC-2	100	200	139.1	0.398	36.6
UHPC-1	50	100	126.9	0.318	44.5
UHPC-2	50	100	101.0	0.269	46.6
UHPFRC-1	50	100	151.5	0.435	40.1
UHPFRC-2	50	100	127.1	0.423	38.3

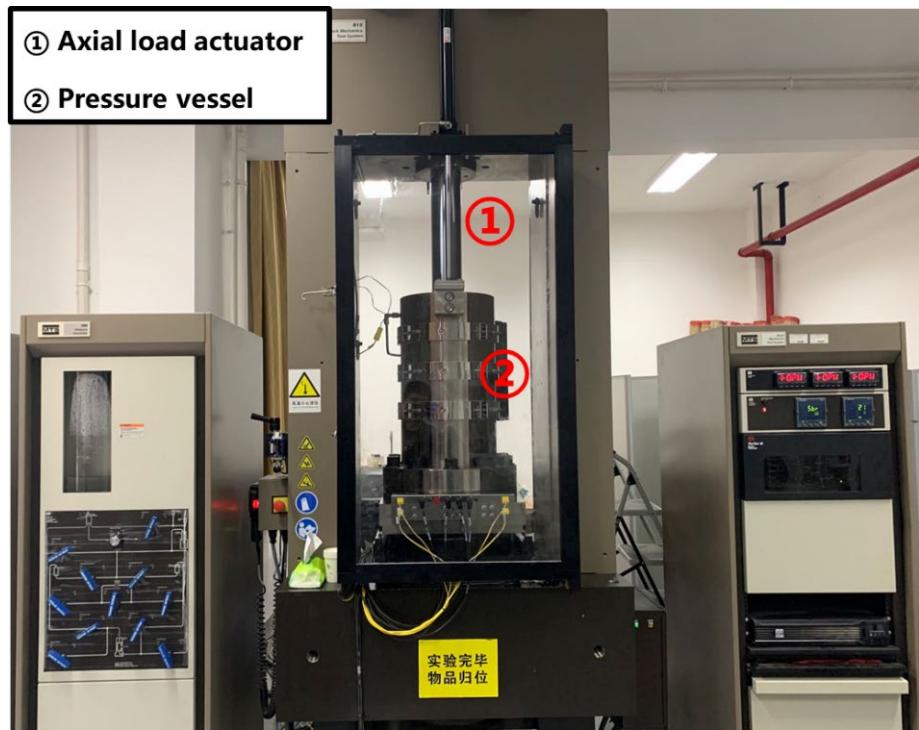
Table 5 Triaxial compression test results

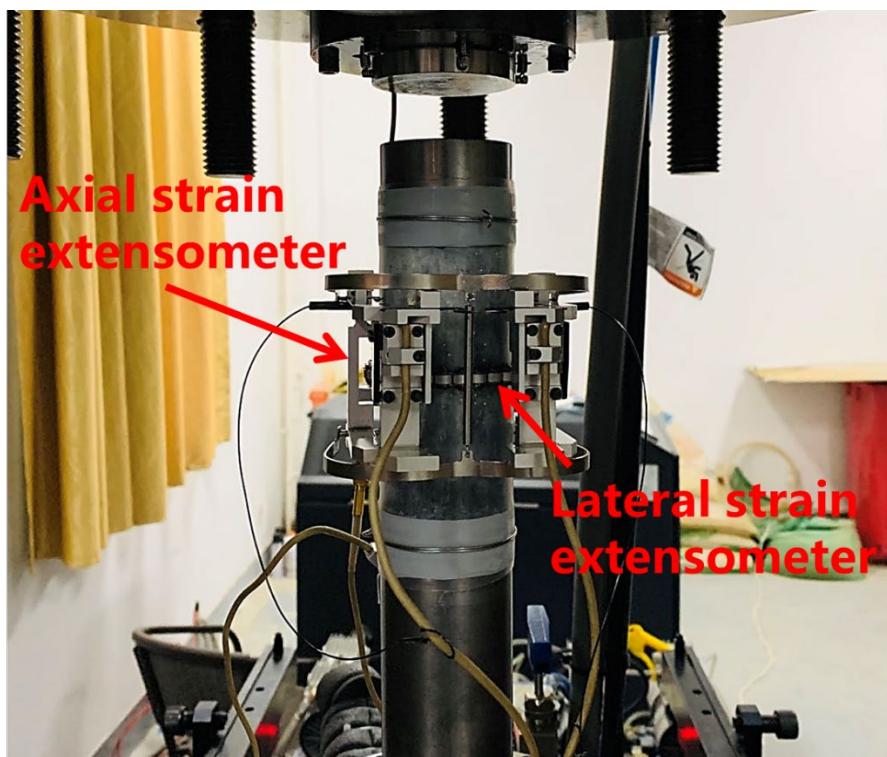
Specimen	f_{cc} (MPa)	ε_{cc} (%)	f_l (MPa)	f_l/f'_{co}	f_{cc}/f'_{co}	$\varepsilon_{cc}/\varepsilon_{co}$	f_{cres} (MPa)
UHPC-1-0	126.92	0.32	0	0.00	1.00	1.00	—
UHPC-1-10-1	187.41	0.66	10	0.08	1.48	2.08	—
UHPC-1-10-2	173.97	0.65	10	0.08	1.37	2.05	—
UHPC-1-30-1	233.55	1.08	30	0.24	1.84	3.40	154.08
UHPC-1-30-2	257.72	1.22	30	0.24	2.03	3.82	140.05
UHPC-1-50-1	292.87	1.05	50	0.39	2.31	3.30	—
UHPC-1-50-2	331.91	1.74	50	0.39	2.62	5.46	270.01
UHPC-2-0	101.03	0.27	0	0.00	1.00	1.00	—
UHPC-2-10-1	128.06	0.54	10	0.10	1.27	1.99	—
UHPC-2-10-2	156.76	0.56	10	0.10	1.55	2.10	—
UHPC-2-30-1	216.58	1.11	30	0.30	2.14	4.14	140.77
UHPC-2-30-2	217.81	1.07	30	0.30	2.16	3.96	126.43
UHPC-2-50-1	241.59	0.67	50	0.49	2.39	2.49	—
UHPC-2-50-2	290.14	1.69	50	0.49	2.87	6.26	241.43
UHPFRC-1-0	151.46	0.44	0	0.00	1.00	1.00	—
UHPFRC-1-10-1	188.54	0.73	10	0.07	1.24	1.67	—
UHPFRC-1-10-2	195.14	0.72	10	0.07	1.29	1.65	—
UHPFRC-1-20-1	237.87	1.09	20	0.13	1.57	2.51	127.62
UHPFRC-1-20-2	210.51	0.99	20	0.13	1.39	2.27	105.68
UHPFRC-1-30-1	246.87	1.38	30	0.20	1.63	3.17	172.08
UHPFRC-1-30-2	252.39	1.40	30	0.20	1.67	3.21	147.38
UHPFRC-1-40-1	281.55	1.96	40	0.26	1.86	4.51	231.63
UHPFRC-1-40-2	277.71	2.01	40	0.26	1.83	4.61	209.75
UHPFRC-1-50-1	315.52	2.36	50	0.33	2.08	5.43	284.88
UHPFRC-1-50-2	303.40	2.32	50	0.33	2.00	5.33	—
UHPFRC-2-0	127.10	0.42	0	0.00	1.00	1.00	—
UHPFRC-2-10-1	152.18	0.73	10	0.08	1.20	1.73	—
UHPFRC-2-10-2	154.82	0.78	10	0.08	1.22	1.83	—
UHPFRC-2-30-1	214.95	2.00	30	0.24	1.69	4.71	142.32
UHPFRC-2-30-2	198.02	1.87	30	0.24	1.56	4.42	158.02
UHPFRC-2-50-1	309.40	3.05	50	0.39	2.43	7.20	256.84
UHPFRC-2-50-2	289.87	2.80	50	0.39	2.28	6.61	300.13

Note: “—” is not applicable according to the definition in present study.

Table 6 Triaxial compression tests of UHPC/UHPFRC specimens from literature

Number	Diameter (mm)	Height (mm)	V_{sf} (%)	f'_{co} (MPa)	ε_{co} (%)	f_l (MPa)	f_{cc} (MPa)	ε_{cc} (%)	f_{cres} (MPa)
Zhang et al. [48]									
1	50	100	0	184	NA	5	239	0.97	—
2	50	100	0	184	NA	10	271	1.06	—
3	50	100	0	184	NA	20	294	1.37	—
4	50	100	0	184	NA	30	327	1.65	—
5	50	100	0	184	NA	40	351	2.03	—
Wu et al. [49]									
6	43.6	130	0	143.15	0.47	10	234.25	NA	—
7	43.6	130	0	143.15	0.47	20	267.81	NA	—
8	43.6	130	0	143.15	0.47	40	332.53	NA	—
9	43.6	130	0	143.15	0.47	70	406.85	NA	350
10	43.6	130	0.3	152.74	0.49	10	229.45	NA	—
11	43.6	130	0.3	152.74	0.49	20	260.62	NA	169
12	43.6	130	0.3	152.74	0.49	40	332.53	NA	245
13	43.6	130	0.3	152.74	0.49	70	402.06	NA	380
14	43.6	130	1	155.14	0.49	10	225.86	NA	—
15	43.6	130	1	155.14	0.49	20	276.20	NA	—
16	43.6	130	1	155.14	0.49	40	348.12	NA	255
17	43.6	130	1	155.14	0.49	70	408.05	NA	363
18	43.6	130	1.7	164.73	0.52	10	228.25	NA	92
19	43.6	130	1.7	164.73	0.52	20	278.60	NA	147
20	43.6	130	1.7	164.73	0.52	40	343.32	NA	—
21	43.6	130	1.7	164.73	0.52	70	423.63	NA	—
22	43.6	130	2.4	159.93	0.53	10	234.25	NA	113
23	43.6	130	2.4	159.93	0.53	20	276.20	NA	—
24	43.6	130	2.4	159.93	0.53	40	333.73	NA	—
25	43.6	130	2.4	159.93	0.53	70	430.82	NA	—
Vogel et al. [50]									
26	100	200	0	122.50	NA	10	178.00	NA	NA
27	100	200	0	122.50	NA	20	208.50	NA	NA
28	100	200	0	122.50	NA	30	230.50	NA	NA
Wang et al. [51]									
29	50	100	0	125.60	0.30	5	197.00	0.51	—
30	50	100	0	125.60	0.30	10	215.90	0.58	—
31	50	100	0	125.60	0.30	20	281.70	0.84	—
32	50	100	0	125.60	0.30	30	296.40	0.84	—


33	50	100	0	125.60	0.30	40	338.80	1.30	—
34	50	100	0	125.60	0.30	50	374.80	1.63	—
35	50	100	1.5	153.40	0.34	5	186.20	0.46	—
36	50	100	1.5	153.40	0.34	10	236.00	0.67	112
37	50	100	1.5	153.40	0.34	20	276.60	0.88	—
38	50	100	1.5	153.40	0.34	30	332.70	1.10	—
39	50	100	1.5	153.40	0.34	40	352.80	1.45	—
40	50	100	1.5	153.40	0.34	50	358.10	1.81	—


Note: “—” is not applicable according to the definition in present study, “NA” is not available in the study.

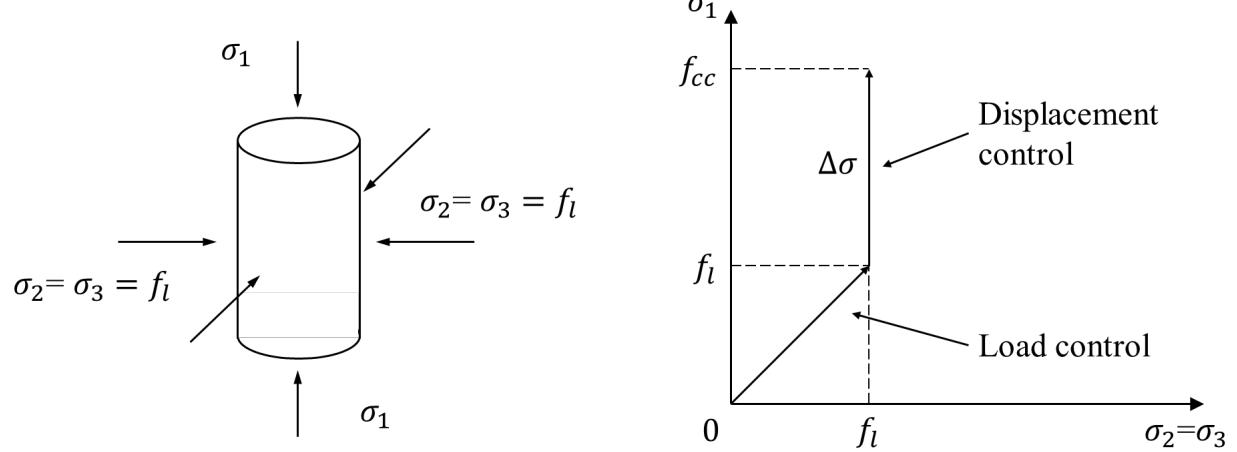

Fig. 1. Surface patching using gypsum for specimens of triaxial compression tests

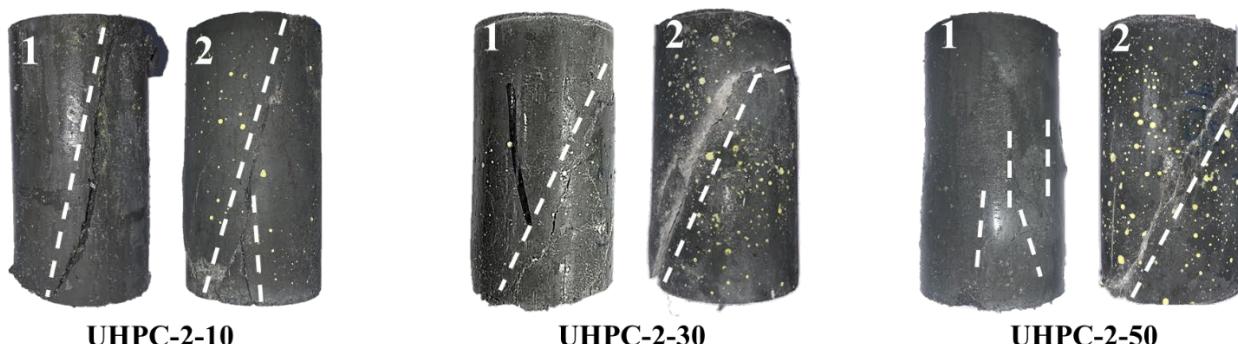
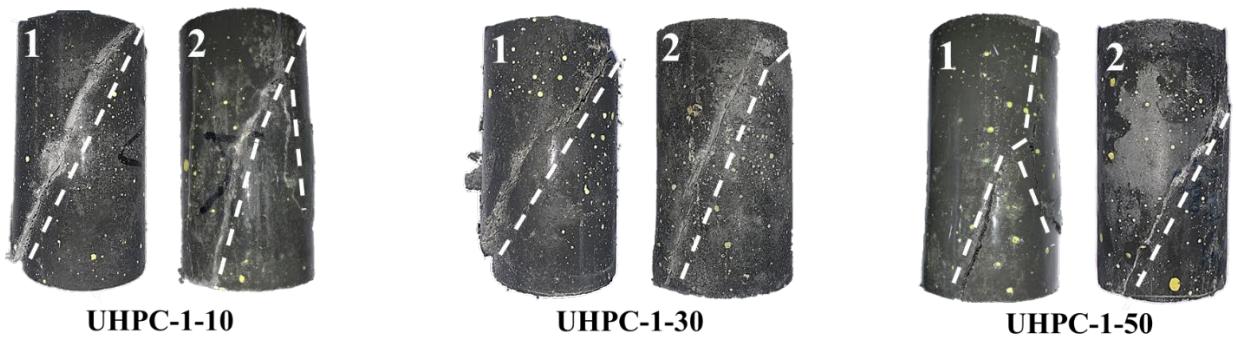
Fig. 2. Triaxial compression test system

Fig. 3. Layout of axial strain and lateral strain extensometers

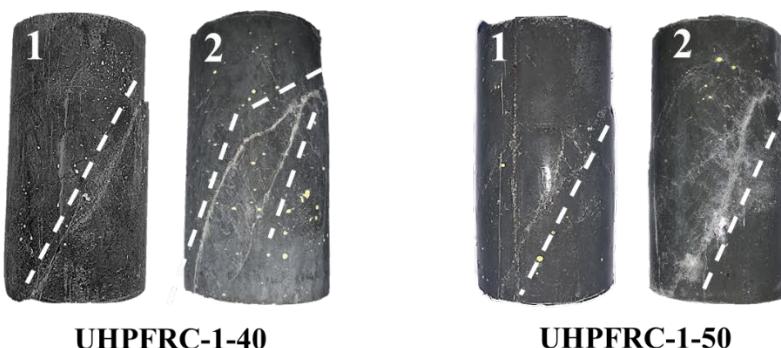
Fig. 4. Stress state of specimen and loading path of triaxial compression tests

(a) UHPC-1

(b) UHPC-2

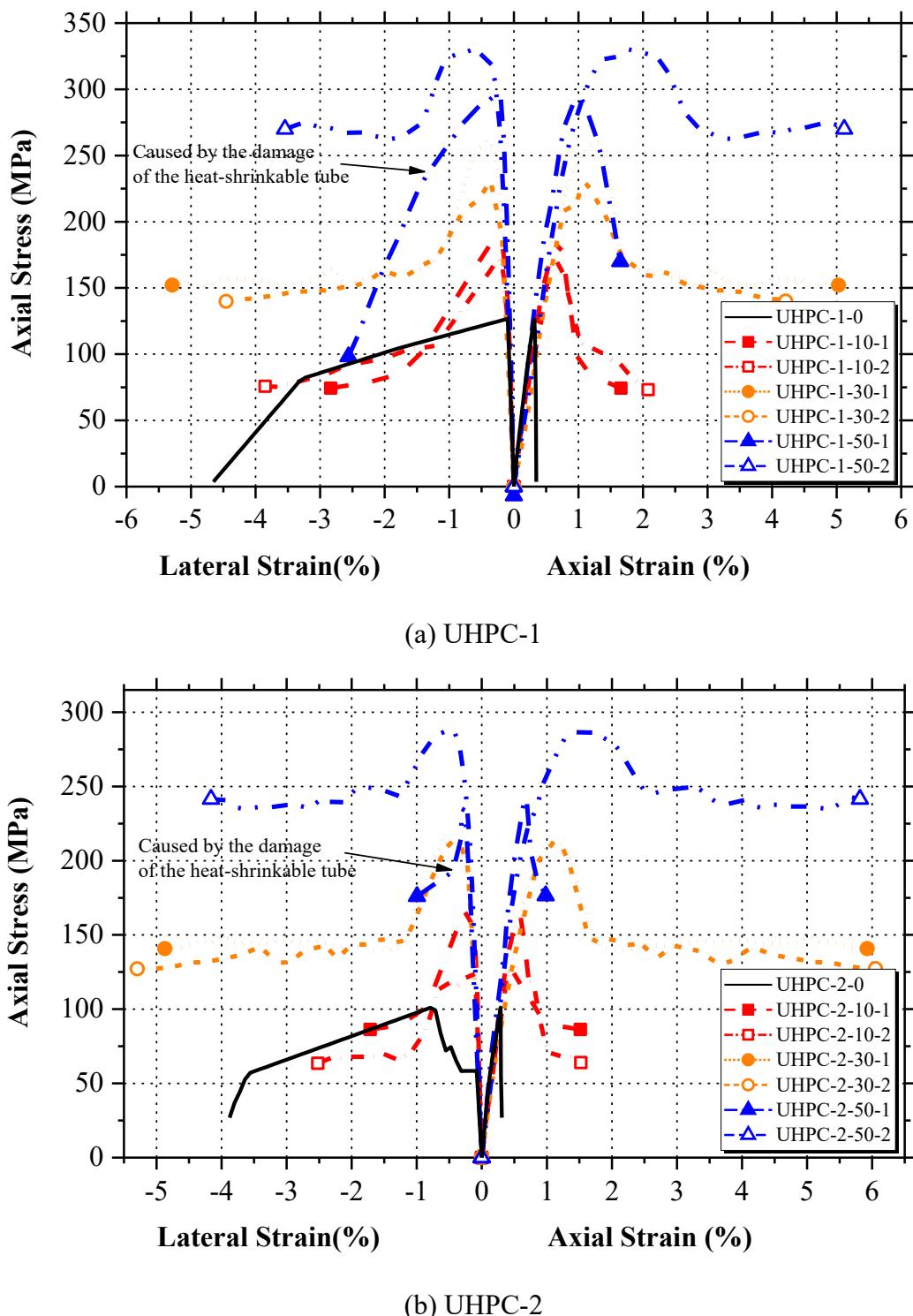



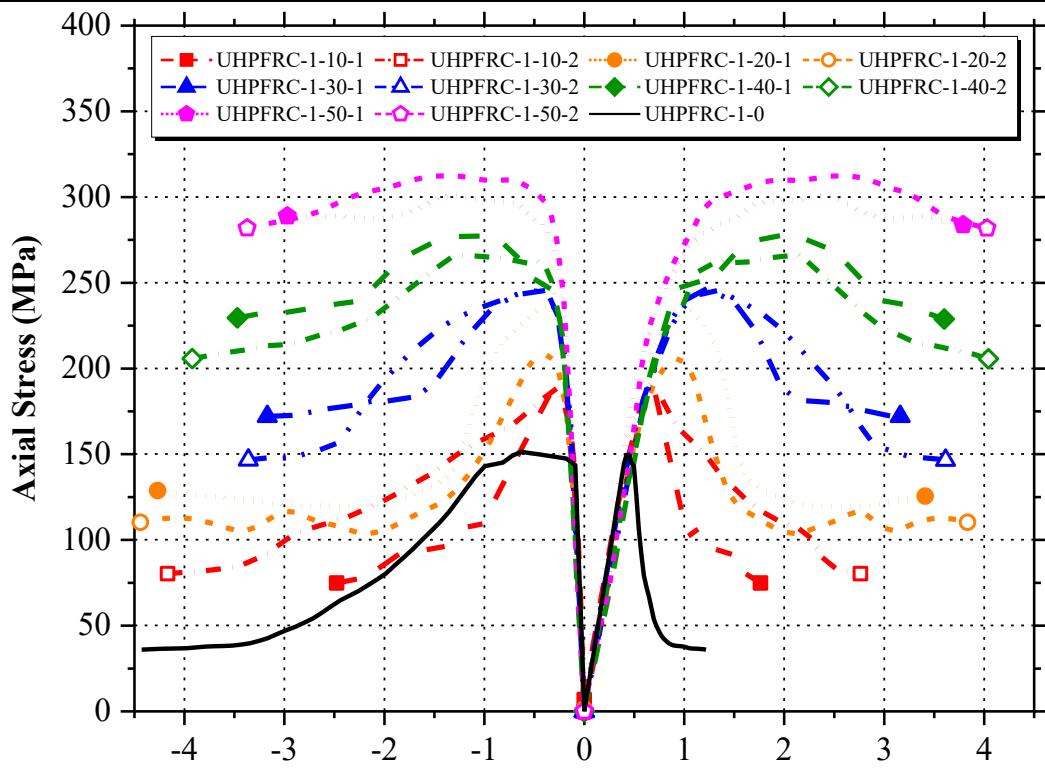
(c) UHPFRC-1



(d) UHPFRC-2

Fig. 5. Failure modes of UHPC and UHPFRC specimens (50 mm × 100 mm) under uniaxial compression


(a) UHPC



(b) UHPFRC

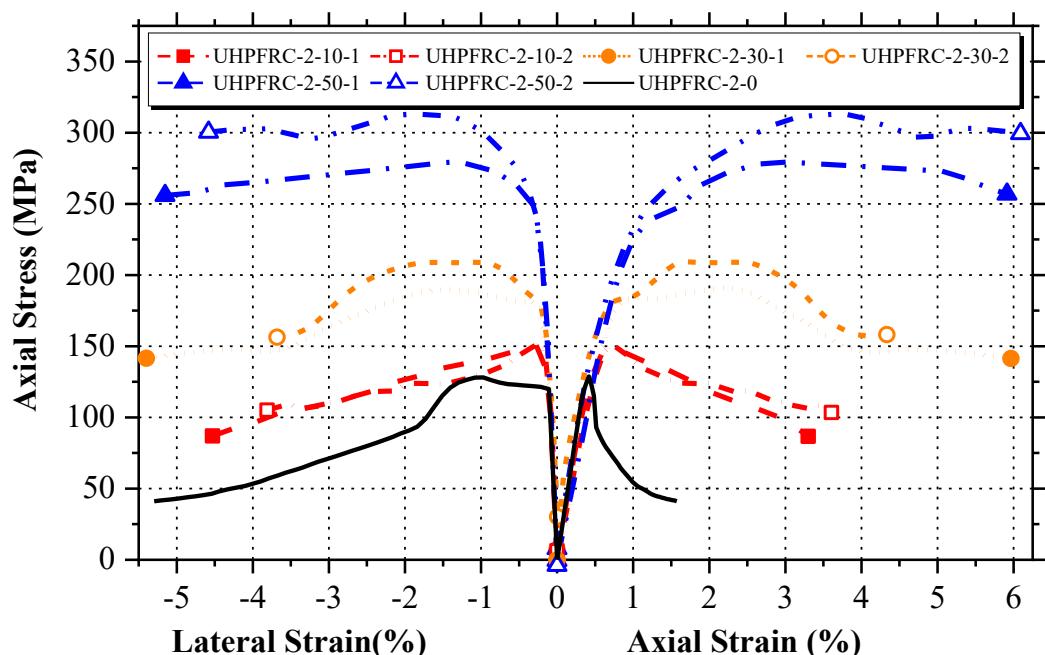
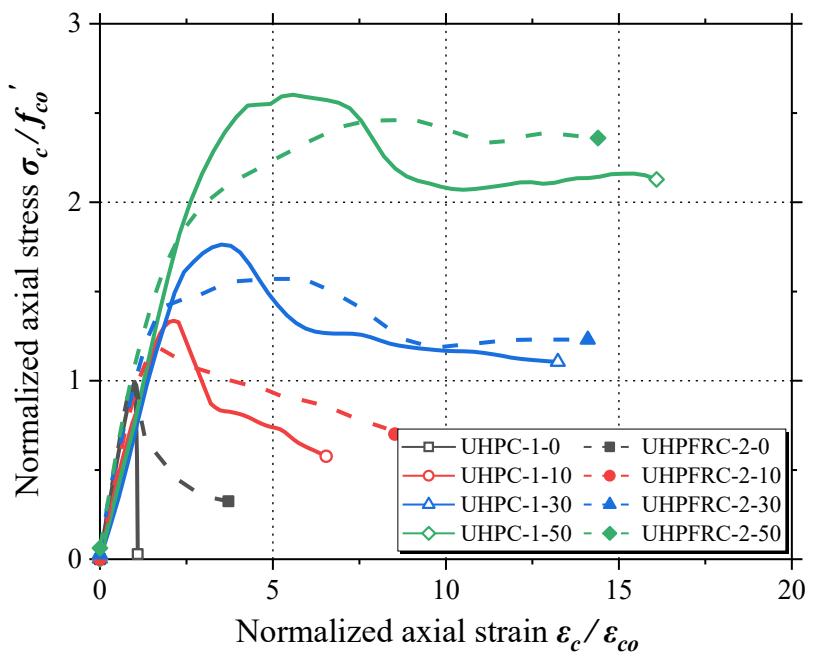
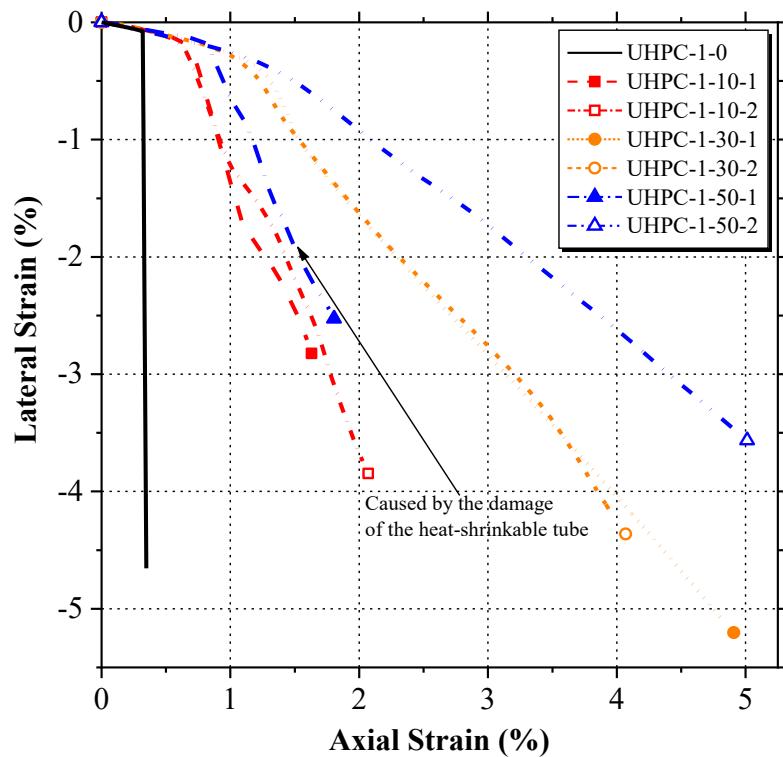

Fig. 6. Failure modes of UHPC and UHPFRC specimens under triaxial compression

Fig. 7. Stress-strain curves of UHPC under different confining pressures



(a) UHPFRC-1



(b) UHPFRC-2

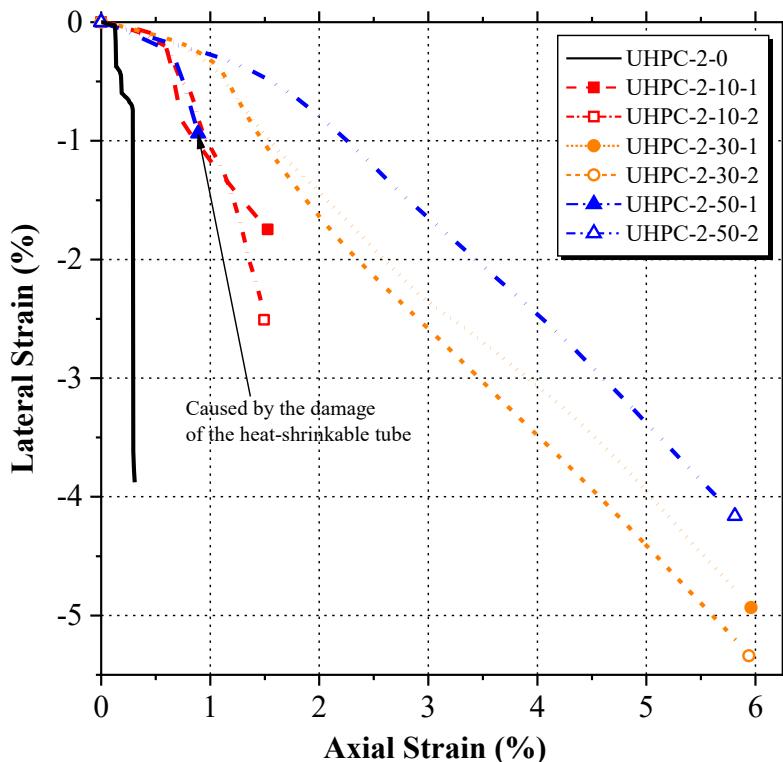
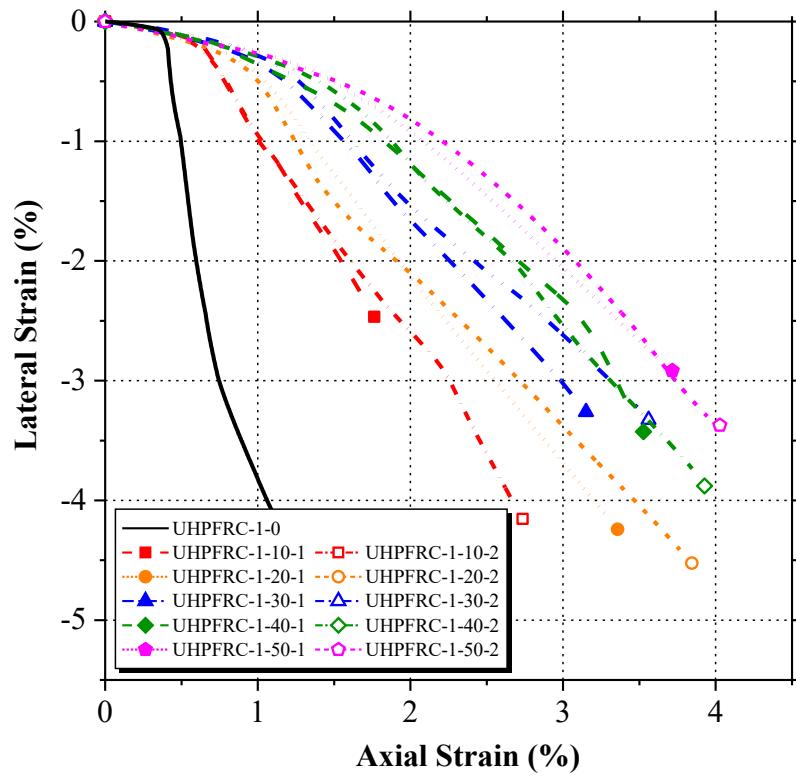
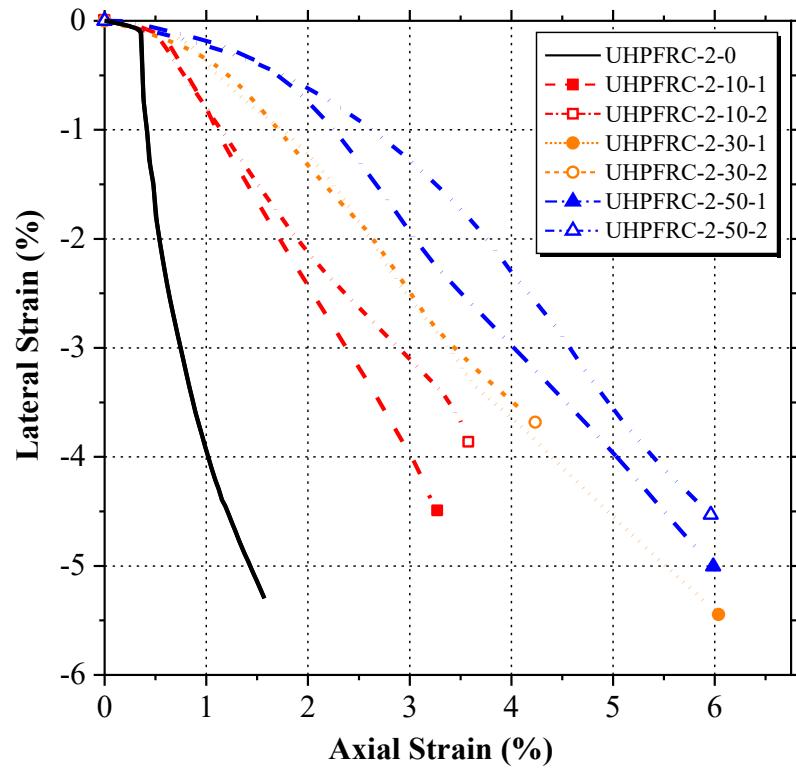

Fig. 8. Stress-strain curves of UHPFRC under different confining pressures

Fig. 9. Normalized axial stress–axial strain curves of UHPC and UHPFRC

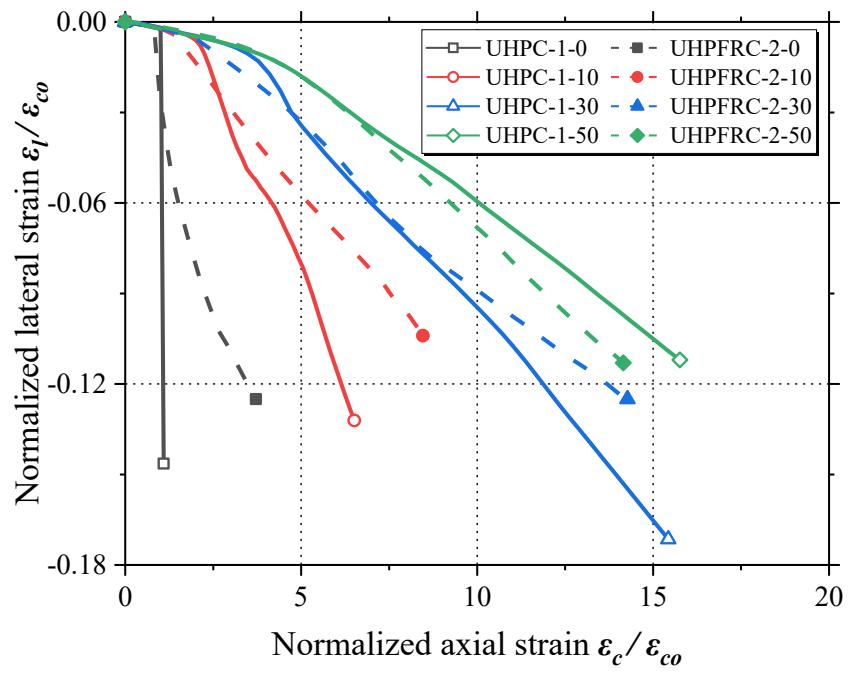


(a) UHPC-1

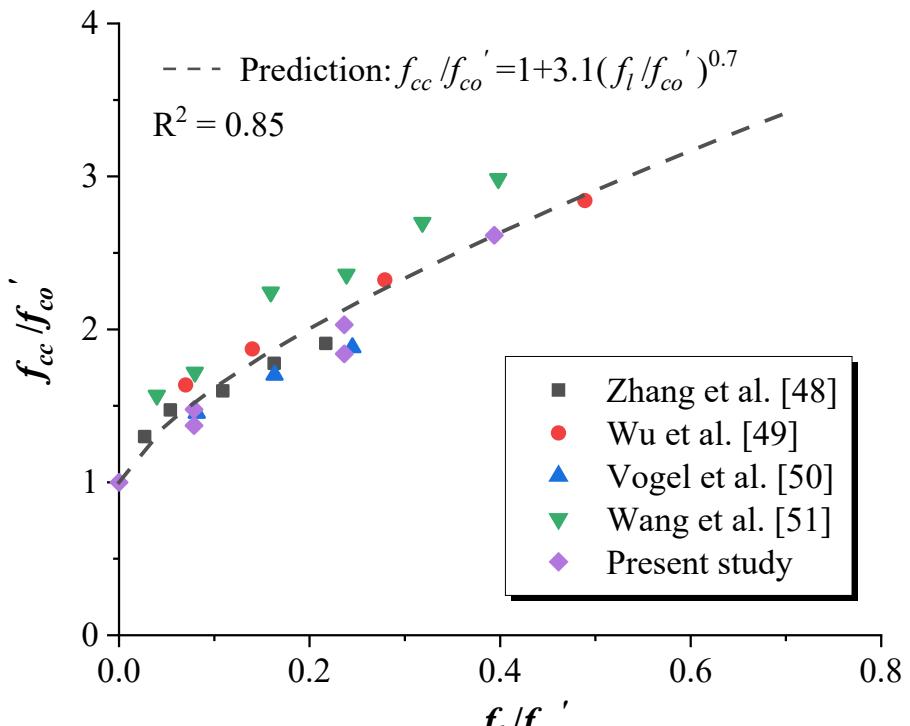


(b) UHPC-2

Fig. 10. Axial strain-lateral strain curves of UHPC specimens under different confining pressures



(a) UHPFRC-1



(b) UHPFRC-2

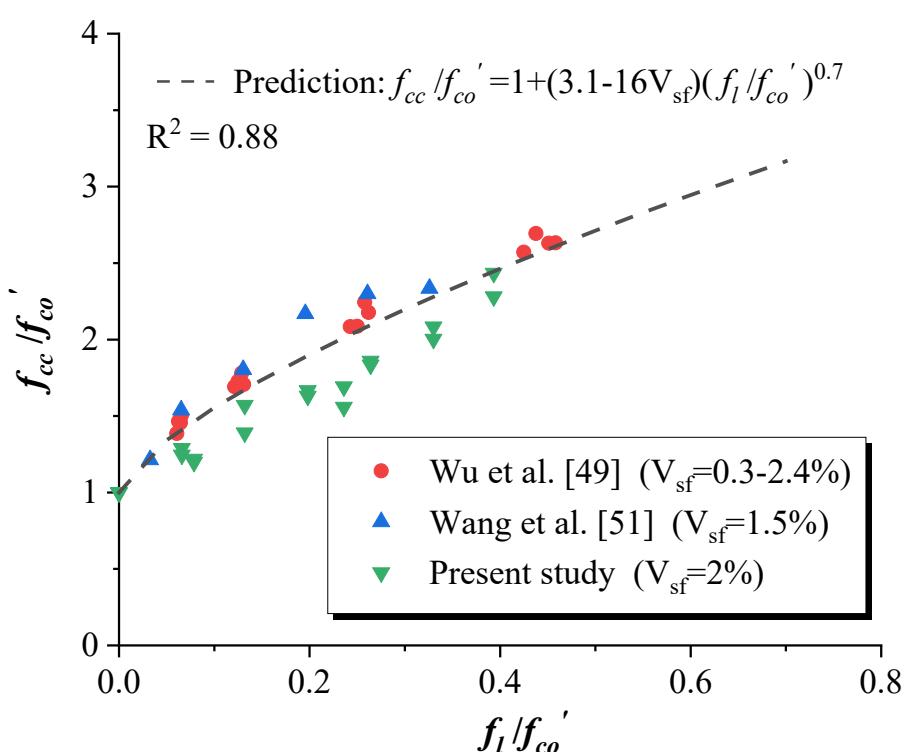
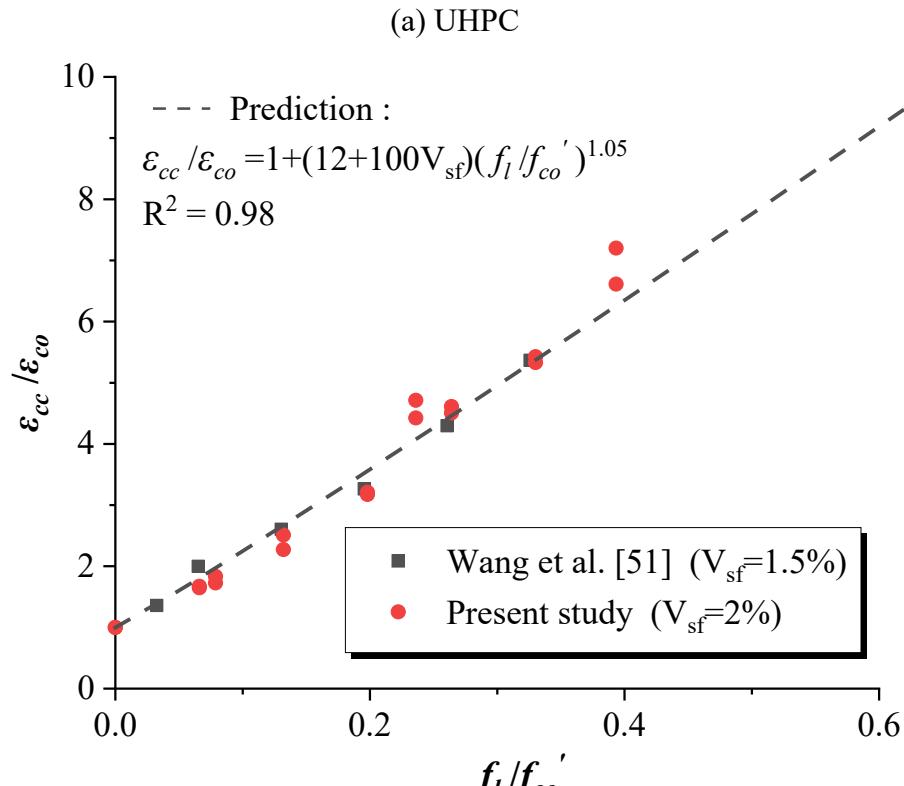
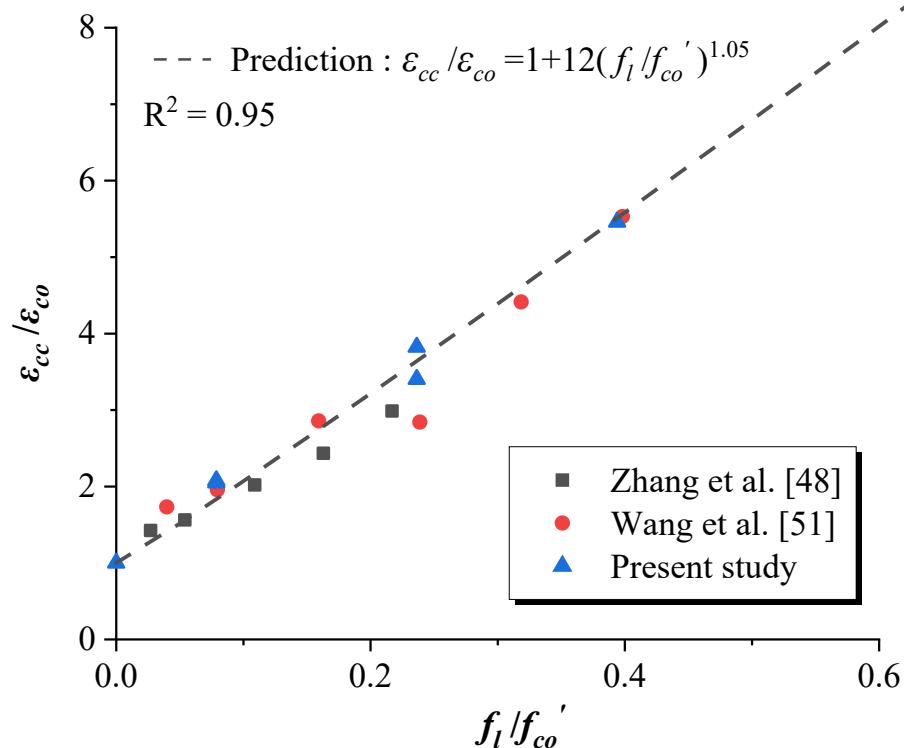
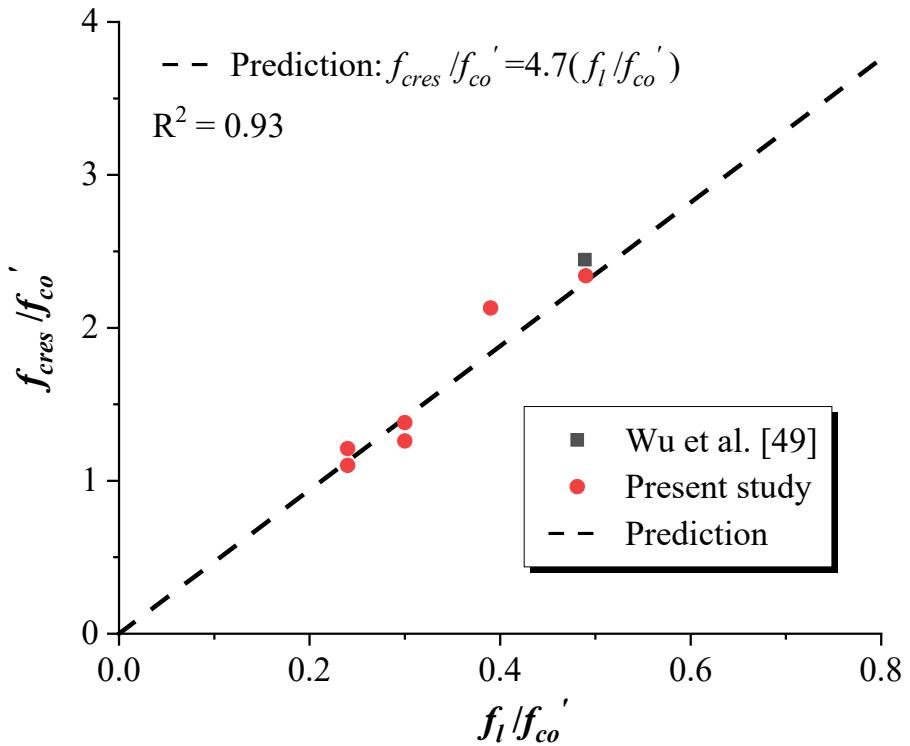

Fig. 11. Axial strain-lateral strain curves of UHPFRC specimens under different confining pressures

Fig. 12. Normalized axial strain-lateral strain curves of UHPC and UHPFRC

(a) UHPC



(b) UHPFRC

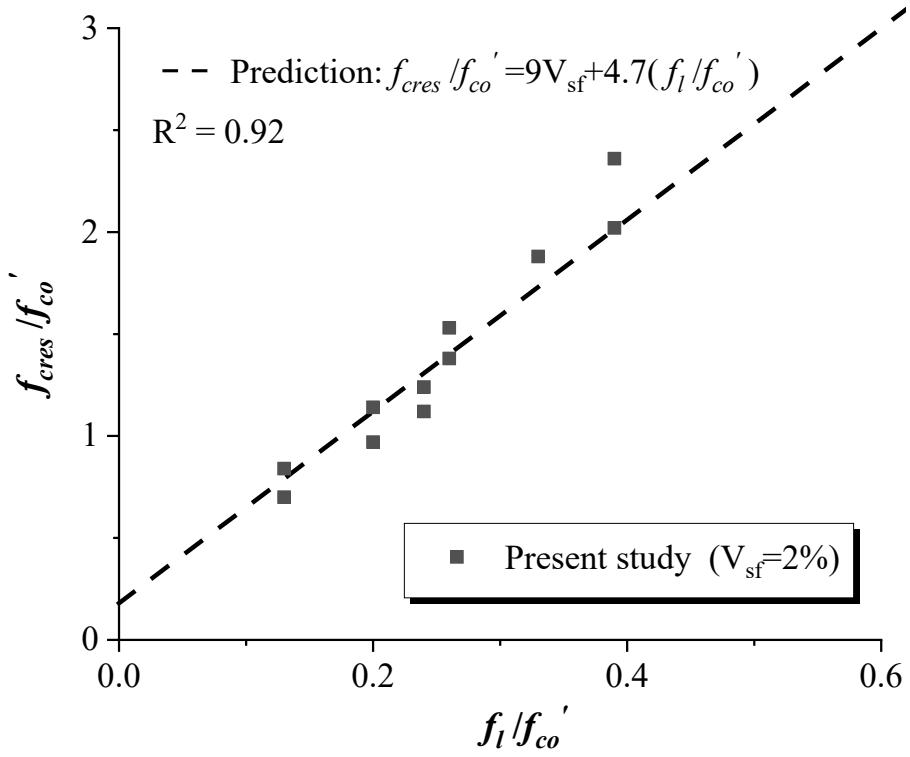
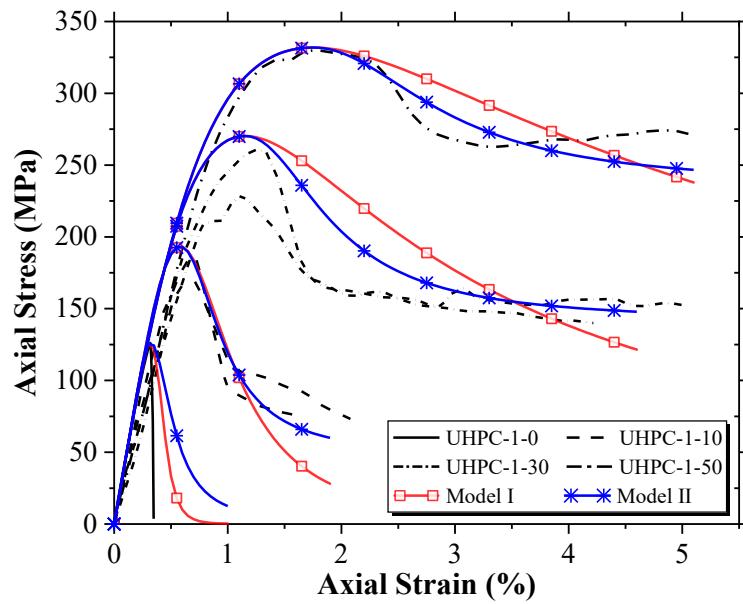
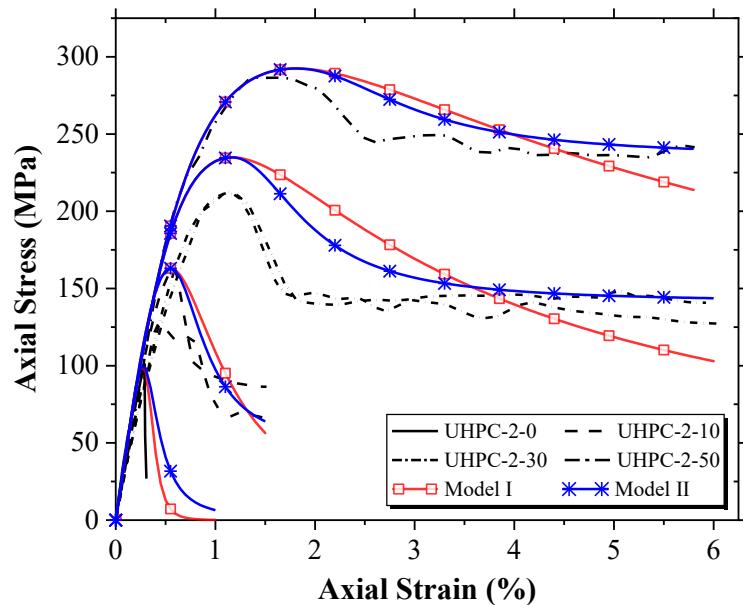

Fig. 13. Relationship between normalized peak axial stress f_{cc}/f'_{co} and confinement ratio f_l/f'_{co}

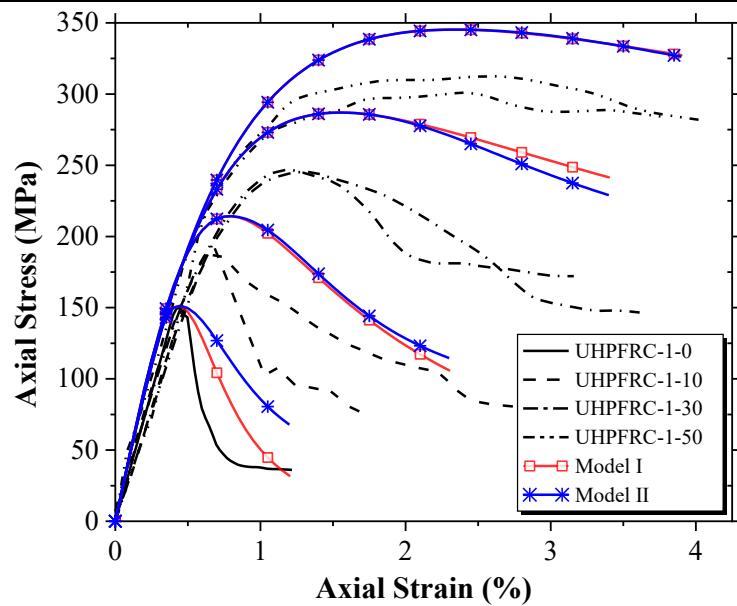
Fig. 14. Relationship between normalized axial strain $\varepsilon_{cc}/\varepsilon_{co}$ and confinement ratio f_l/f'_{co}

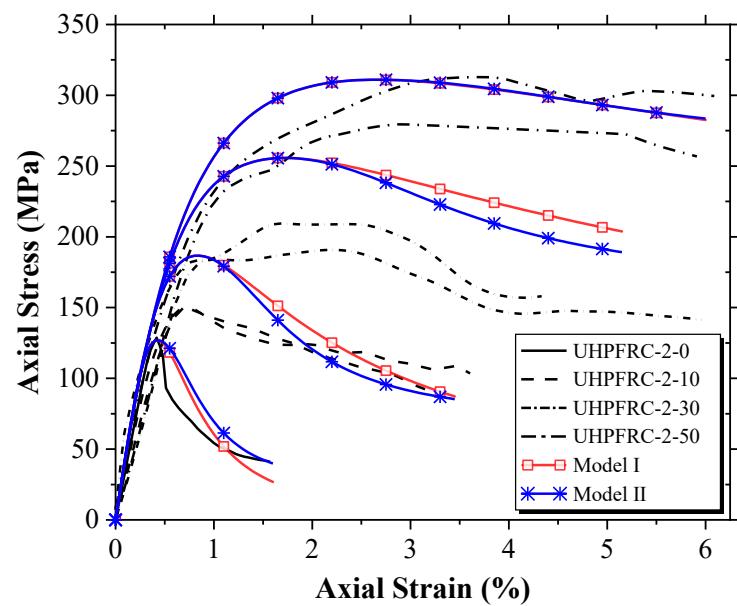


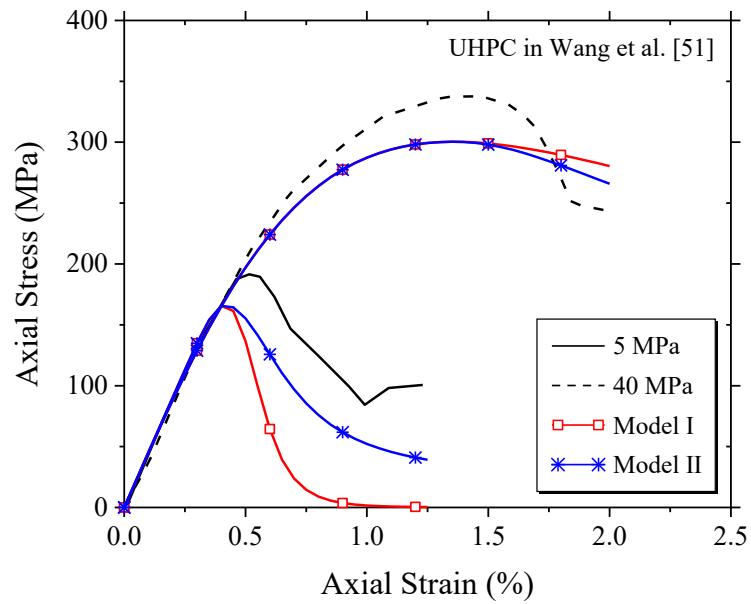
(a) UHPC

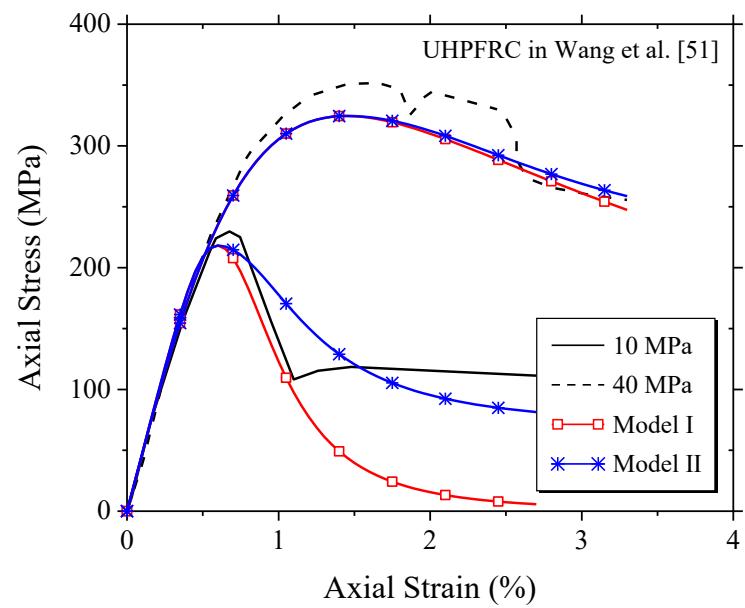


(b) UHPFRC

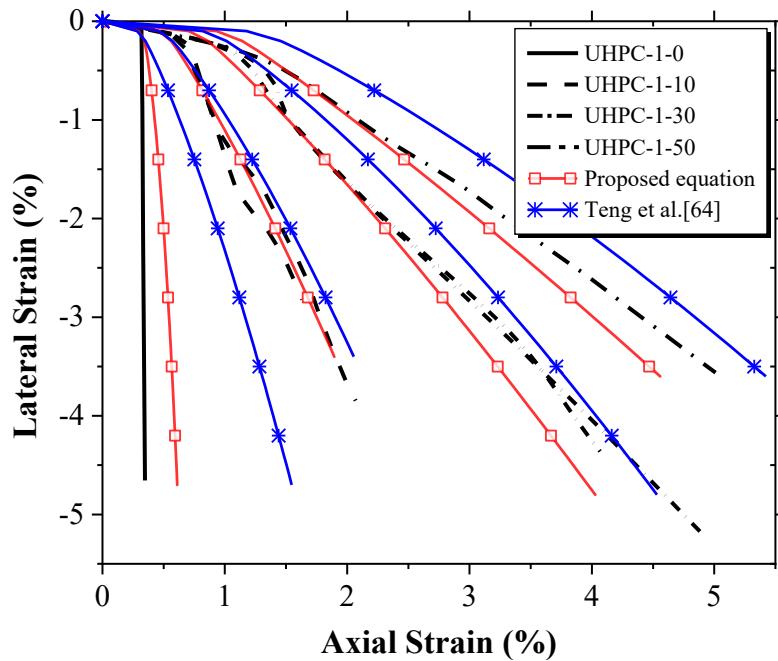

Fig. 15. Relationship between normalized residual axial stress f_{cres}/f'_{co} and confinement ratio f_l/f'_{co}


(a) UHPC-1

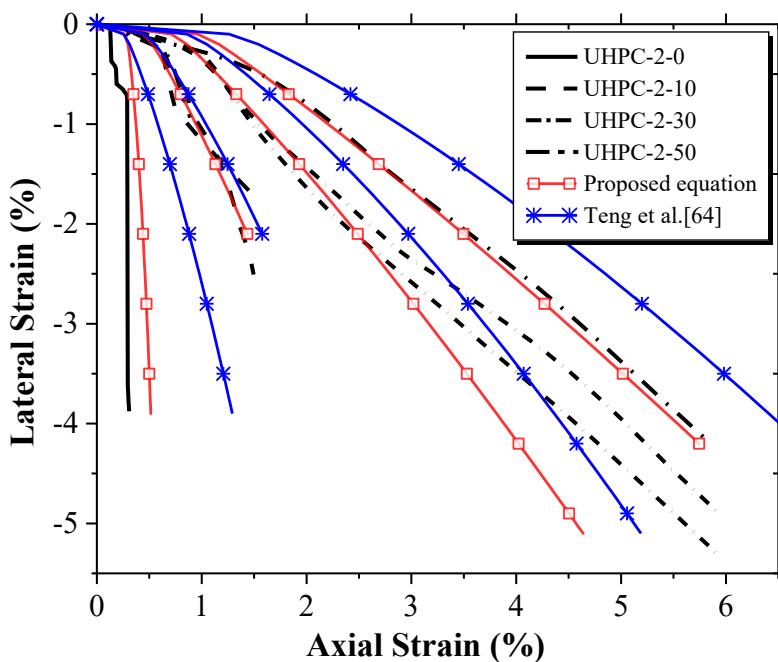

(b) UHPC-2


(c) UHPFRC-1

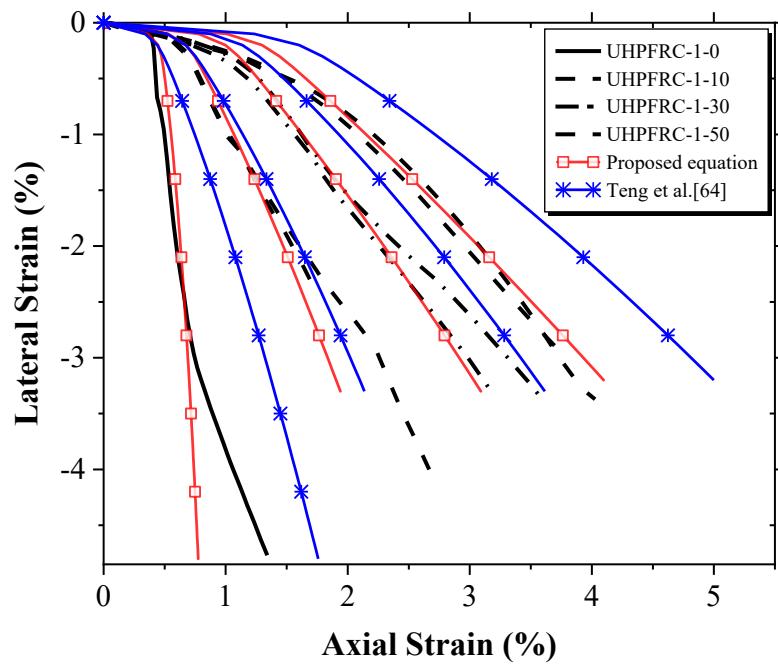
(d) UHPFRC-2

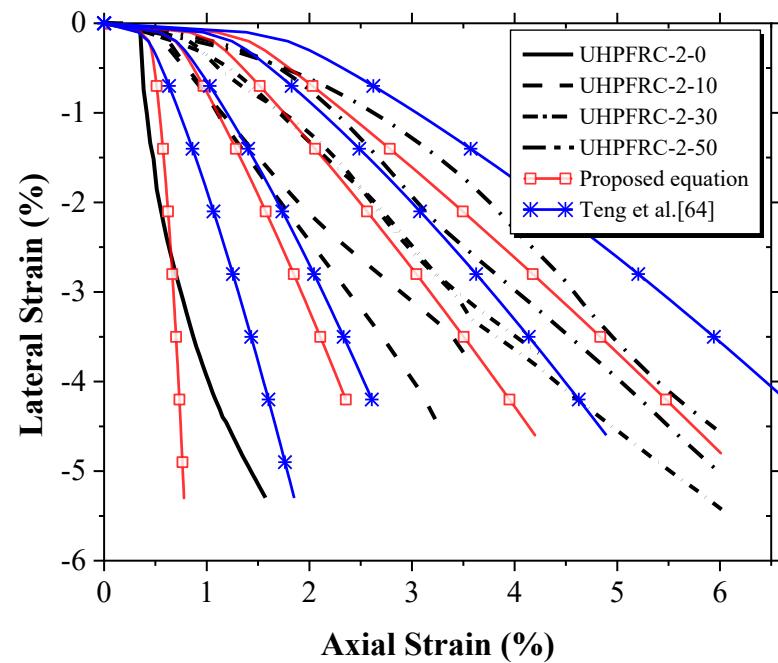


(e) UHPC in Wang et al. [51]



(f) UHPFRC in Wang et al. [51]


Fig. 16. Comparison of axial stress-axial strain curves between test and prediction


(a) UHPC-1

(b) UHPC-2

(c) UHPFRC-1

(d) UHPFRC-2

Fig. 17. Comparison of axial strain-lateral strain curves between test and prediction