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18  Abstract: The constitutive behavior of Ultra-high performance concrete (UHPC) and ultra-
19 high performance fiber reinforced concrete (UHPFRC) under multiaxial stresses, which has not
20 been well understood, needs to be urgently investigated in order to meet an increasing demand
21 foruse of UHPC/UHPFRC in construction. This paper therefore presents an experimental study
22 on the triaxial compressive behavior of UHPC and UHPFRC under triaxial compression. The
23 compressive strength of UHPC and UHPFRC in present study are up to 126.9 and 151.5 MPa,
24 respectively. The test variables included the level of lateral hydraulic pressure, steel fiber
25  volume fraction, and uniaxial compressive strength of UHPC and UHPFRC. The present
26  experimental study provides the much-needed systematic test data on the triaxial compressive
27  behavior of UHPC/UHPFRC. The test results showed that the lateral hydraulic pressure
28  significantly enhanced both the strength and ductility of UHPC and UHPFRC. The presence of
29  steel fibers had significant effects on the axial stress-axial strain behavior and the dilation
30  behavior of UHPC and UHPFRC. Finally, new axial stress-axial strain models as well as a new
31  equation for the axial strain-lateral strain relationship for UHPC and UHPFRC were first
32 proposed.
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1. Introduction

Ultra-high performance concrete (UHPC) and ultra-high performance fiber reinforced
concrete (UHPFRC) have become a promising alternative to conventional materials in the
construction of new structures due to its superior mechanical properties and durability. UHPC
and UHPFRC are characterized with a high cement and silica fume content and a low water-to-
cement ratio, leading to an ultra-high compressive strength and a low permeability [1-4]. The
raw materials for making UHPC and UHPFRC typically include water, cement, silica fume,
high-range superplasticizer, supplemental fine materials (e.g., fly ash, quartz powder, silica
powder), quartz sand, and fibers [1,5-10]. With the consistent growth of application of
UHPC/UHPFRC in new construction, a large number of studies have been conducted on its
mix proportions, production and/or curing procedures, as well as mechanical behavior of
structural members made of UHPC/UHPFRC [3,4,6,7,11-21]. However, very limited studies
have investigated the behavior of UHPC/UHPFRC under multiaxial stresses. The behavior of
concrete under multiaxial stresses has long been recognized as an important element in
understanding the behavior of concrete structural members in practice which are generally
subjected to various loading conditions. The constitutive behavior of concrete under multiaxial
stresses are key information necessary for finite element modelling of concrete structural
members. One of the most typical multiaxial stress states is the triaxial compressive stress state
with two equal lateral compressive stresses (commonly applied through a hydraulic pressure)
in combination with axial compression, which is essential for the modelling of steel spiral and
stirrup confined concrete [22], concrete filled in steel tube [23] and fiber reinforced polymer
(FRP)-confined concrete members [19,24-28]. The tests on concrete under combined axial
compression and hydraulic pressure are referred to as hydraulic pressure tests hereafter.
Particularly, concrete with a constant lateral pressure throughout the loading process is
commonly referred to as concrete with active confinement [29,30].

According to the literature, in terms of compressive strength, concrete with a strength
ranging from 20 to 50 MPa is referred to as normal-strength concrete (NSC), while high-

strength concrete (HSC), high-performance concrete (HPC), or high-performance fiber
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reinforced concrete (HPFRC) generally has a compressive strength exceeding 50 MPa [31,32].
Ultra-high strength concrete (UHSC) and UHPC/UHPFRC are generally characterized with a
compressive strength of at least 120 MPa [33,34]. UHPC/UHPFRC generally does not contain
coarse aggregates, while HSC/UHSC/FRC contains coarse aggregates.

A large number of studies have been carried out on the triaxial compressive behavior of
NSC, HSC, and fiber reinforced concrete (FRC) [29,30,35-46]. Following the pioneer study of
Richart et al. [35], extensive experimental studies have been conducted on NSC under active
confinement [36-39], leading to accurate stress-strain models [38,39]. The behavior of HSC
under triaxial stress states has also been extensively investigated and a number of failure criteria
and stress-strain models for HSC have been proposed [29,37—43]. The effect of steel fibers on
the triaxial compressive behavior of HSC was found not significant [44,45].

Compared with NSC and HSC, limited studies have been conducted on the triaxial
compressive behavior of UHSC and UHPC [47-52]. Wang et al. [47] investigated the triaxial
compressive behavior of cylindrical UHSC specimens with coarse aggregate (48 mm in
diameter and 96 mm in height, i.e., 48 mm x 96 mm) with a compressive strength over 200
MPa through hydraulic pressure tests. The tests were performed over an extensive range of
confining pressures with large gaps (0, 25, 50, 100, 200 and 400 MPa). Very limited studies
have been conducted so far on the triaxial compressive behavior of UHPC/UHPFRC through
hydraulic pressure tests [45—49]. Wu et al. [49] investigated the effect of steel fiber content (0-
2.4%) on the triaxial compressive behavior of UHPC (called reactive powder concrete, RPC,
in the original paper) with a compressive strength higher than 140 MPa through tests on 43.6
mm % 130 mm cylinder specimens. It was found that the failure mode of UHPC specimens was
affected by the steel fiber content, but the peak axial stress was little affected. Vogel et al. [50]
tested four 150 mm X% 300 mm cylindrical and five 100-mm-length cubic UHPC specimens.
The compressive strength of their UHPC was measured to be 123 MPa and 149 MPa
respectively. They found that the triaxial compressive strength of UHPC follows a power law
function of the confining pressure and the development of triaxial compressive strength of

UHPC was different from those of NSC and HSC. Strain data and stress-strain curves of the
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tested specimens were not reported in their study. Wang et al. [51] conducted hydraulic pressure
tests on both UHPC and UHPFRC cylindrical specimens (50 mm % 100 mm) with the confining
pressure ranging from 0 to 50 MPa. The compressive strength of their UHPC/UHPFRC ranged
from 119.8 MPa to 148.5 MPa. For most of their specimens, the axial stress decreased quickly
after the peak stress even though the confining pressure was high, which is different with the
results from [30,45,46,52]. They found that the enhancement in compressive strength of
UHPFRC at a given hydraulic pressure was slightly lower than that of UHPC. Wu et al [52]
performed a series tests of UHPC and UHPFRC with 0.5%, 1.0% and 1.5% steel fiber addition
cylindrical specimens (50 mm x 100 mm), however, the uniaxial compressive strength of their
UHPC and UHPFRC were 75.57 MPa, 84.07 MPa, 93.26 MPa and 99.98 MPa much lower than
the general understanding [20,21].

The triaxial compressive behavior of UHPC or UHPFRC has not been fully understood
based on the limited studies reviewed above. No reliable model has been proposed to accurately
capture the axial stress-axial strain curves of UHPC or UHPFRC under triaxial compression.
This paper therefore presents the results of an experimental program on UHPC and UHPFRC
subjected to triaxial compression through hydraulic pressure tests. Various hydraulic pressures
from 0 to 50 MPa were applied on cylindrical UHPC and UHPFRC specimens. In addition, two
steel fiber volume ratios and two uniaxial compressive strengths were included as the test
variables. The experimental program provided a much-needed supplement to the very limited
existing test data on the triaxial compressive behavior of UHPC and UHPFRC. The test results
showed that the confining pressure significantly enhanced both the strength and ductility of
UHPC and UHPFRC. The presence of steel fibers had significant effects on the axial stress-
axial strain behavior and the dilation behavior of UHPC. It was also found that existing models
developed for NSC failed to predict the axial stress-axial strain behavior of UHPC and
UHPFRC subjected to triaxial compression; new axial stress-axial strain models were therefore
proposed in the present study. In addition, a new equation was proposed for the prediction of

the axial strain-lateral strain relationship of the test UHPC and UHPFRC specimens.
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2. Experimental program
2.1. Test specimens

In total, 14 UHPC and 18 UHPFRC cylindrical specimens (with a diameter of 50 mm and
a height of 100 mm) were prepared and tested under triaxial compression with the confining
pressure ranging from 0 to 50 MPa. Such a range of confining pressures generally covers the
typical stress states of concrete in practical engineering (e.g., steel confined concrete, FRP-
confined concrete) [16,19-25]. Two nominally identical specimens were tested for each
specimen configuration except for the specimens with a confining pressure of 0 MPa (i.e.,
specimens under uniaxial compression). Two concrete grades were covered for UHPC and the
corresponding UHPFRC. The details of the test specimens are summarized in Table 1. Each
specimen was given a name which starts with “UHPC” or “UHPFRC” representing the concrete
type, followed by “1” or “2” denoting the higher or lower concrete strength grade, and then a
two digit number representing the magnitude of the confining pressure. The name ends with
one digit number (if exists) to differentiate between the two nominally identical specimens. For
example, specimen UHPC-1-50-1 refers to the first specimen of the two nominally identical
UHPC specimens with higher uniaxial concrete strength tested under a confining pressure of

50 MPa.

2.2. Materials and specimen preparation

In the present study, UHPC was produced using the following raw materials: Portland
cement, silica fume, fly ash, quartz sand, quartz powder, superplasticizer and water. The
composition of UHPFRC is the same as UHPC, expect that straight steel fibers of 2% in volume
fraction were added in the former. The key properties of the steel fibers are shown in Table 2.
The mix proportions of UHPC and UHPFRC are given in Table 3. To achieve two concrete
grades of UHPC and UHPFRC, two different values of water-to-binder ratio and slightly
different amounts of superplasticizer were adopted as listed in Table 3.

The mixing, casting and curing process of UHPC and UHPFRC specimens included the

following steps: (1) dry-mixing cement, silica fume, fly ash, quartz sand, quartz powder in a

5



150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

concrete mixer for around 3 minutes; (2) adding water and superplasticizer into the mixture and
continuing mixing for around 7 minutes; (3) for UHPFRC, adding dispersed steel fibers into
the mixture and mixing for around 5 minutes; (4) pouring the mixture into a plastic mold and
vibrating the mold to ensure the compactness of concrete; (5) curing the specimens in room
temperature for 24 hours before demolding, followed by steam-curing with a temperature of 90
+3°C for 48 hours in accordance with ASTM C1856/C1856M-17 [33]; and (6) curing the
specimens in a curing room with a temperature of 20+2°C for at least 28 days. After curing,
uniaxial compression tests were carried out on three identical cylindrical specimens (with a
diameter of 100 mm and a height of 200 mm) for each group of UHPC and UHPFRC and the
results are presented in Table 4. Before the triaxial compression tests, some voids on the surface
of each specimen were filled with high-strength gypsum to ensure a smooth surface for well
receiving the lateral pressure. Both ends of each specimen were capped with high-strength
gypsum to ensure that the ends were perpendicular to the specimen axis and the axial load was

uniformly applied on the cross-section (Fig. 1).

2.3. Test set-up and instrumentation

Both uniaxial and triaxial compression tests were performed on an MTS Model 815 Rock
Mechanics Test System as shown in Fig. 2. While this system was designed for testing rock
specimens, it is also suitable for testing UHPC and UHPFRC specimens due to their ultra-high
compressive strength comparable to that of rock. The machine mainly consists of a vertical
servo-controlled electro-hydraulic actuator with a load capacity of 4600 kN and a high-pressure
vessel of up to 140 MPa (Fig. 2). During the loading process, the vessel is filled with hydraulic
oil to apply the lateral confining pressure on the surface of the test specimen. To avoid the
penetration of hydraulic oil into the specimens and thus ensure an effective application of lateral
confining pressure, a heat-shrinkable tube made of fluorinated ethylene propylene was used to
wrapping each test specimen (except for the specimens with a zero hydraulic pressure) before
testing.

For each test specimen, two axial strain extensometers at 180° apart covering a mid-height
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region of 50 mm were installed to measure the axial strains of the specimen. The axial strains
of the specimen could also be obtained from the full-height axial shortenings recorded by the
MTS testing system. In addition, a ring chain type extensometer was installed around the mid-
height section of each specimen for measuring the lateral strains. The layouts of the
extensometers are shown in Fig.3. The axial loads, confining pressures, axial strains, and lateral

strains were recorded by a data acquisition system for every 0.2 seconds.

2.4. Test procedure

In the present paper, compressive stresses and strains are defined to be positive. The
loading path of the specimens subjected to a hydraulic pressure is shown in Fig. 4: the axial
stress o; and the hydraulic pressure (0, = g3 ) were first applied to the specimen
simultaneously with a load control rate of 0.1 MPa/s until the targeted value of the confining
pressure (f;) was reached (Stage 1); after that, the confining pressure (o, = g3) was kept
constant and the axial load was applied onto the specimen with a displacement control rate of
0.001 mm/s (Stage 2). During Stage 2, the axial stress g; increased to the compressive strength
of the specimen (f,.) and finally dropped as a result of failure. The maximum confinement ratio

(fi/feo> where f;, is the uniaxial UHPC/UHPFRC strength) was approximately 0.5.

3. Experimental observations and results
3.1. Failure modes
3.1.1. Specimens under uniaxial compression

Both the UHPC and UHPFRC specimens failed with an explosive sound when the peak
stress was reached. Typical failure modes of the UHPC and UHPFRC specimens are shown in
Fig. 5. It can be seen that the UHPC and UHPFRC specimens exhibited significantly different
failure modes. The UHPC specimens were crushed and split into several longitudinal pieces
shortly after the peak stress was reached, while the UHPFRC specimens had more smeared
cracks with a more gradual failure process after the peak stress accompanied with snapping

pulling-out sounds of steel fibers. Compared with the UHPC specimens with a sudden brittle
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failure, the UHPFRC specimens exhibited a certain level of ductility with a progressive failure
due to the existence of steel fibers. The above observations on the failure modes of UHPC and
UHPFRC specimens under uniaxial compression are consistent with those reported by other

researchers [11,23,47,51,52].

3.1.2. Specimens under triaxial compression

Fig. 6 shows failure modes of all UHPC and UHPFRC specimens under triaxial
compression. A sharp diagonal major crack can be observed in the specimens, which is
significantly different from the specimens under uniaxial compression (see Fig. 5). In addition
to the major diagonal crack, some minor multiple diagonal cracks could also be observed on
the surface of the specimen. It could be seen that an increase in confining pressure leads to a
smaller inclined angle (with respect to horizon) of the major diagonal crack and a smaller
diagonal crack width as shown in Fig. 6. The uniaxial concrete compressive strength does not
seem to have an obvious effect on the failure modes of UHPC and UHPFRC specimens under
various confining pressures (by comparing UHPC/UHPFRC-1 and UHPC/UHPFRC-2

specimens).

3.2. Uniaxial compressive strength and corresponding strain

The test results of the specimens under uniaxial compression, including the average
compressive strength and the corresponding axial strain are shown in Table 4. The average
uniaxial compressive strengths of UHPC-1 and UHPC-2 were measured to be 126.9 MPa and
101.0 MPa, respectively, while those of UHPFRC-1 and UHPFRC-2 were 151.5 MPa and 127.1
MPa, respectively. The axial strains at peak stress of UHPFRC specimens are larger than those
of UHPC specimens. The elastic moduli, calculated by the slope of the stress-strain curve
between the axial strain of 0.00005 and that at 40% of the ultimate stress (according to ASTM

C469/C469M [53]), of the test specimens are also listed in the table.

3.3. Axial stress-strain curves
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The axial stress-strain (axial strain and lateral strain) curves of the test UHPC and
UHPFRC specimens under various confining pressures are shown in Fig. 7 and Fig. 8,
respectively. The key test results, including the compressive strength (i.e., peak stress f..) and
the corresponding axial strain (&), are listed in Table 5. The axial stresses were obtained from
the applied axial loads divided by the concrete cross-sectional area. The axial strain
extensometers covering a mid-height of 50 mm were used to obtain the axial strains; the lateral
strains were obtained from the readings of the hoop ring chain type extensometer (Fig. 3). It
should be noted that two UHPC specimens (UHPC-1-50-1 and UHPC-2-50-1) under a
confining pressure of 50 MPa experienced premature failure due to the damage of the heat-
shrinkable tube, thus their results are excluded in the subsequent discussions. Fig. 7 and Fig. 8
show that the stress-strain curves of two nominally identical specimens are generally close to
each other, with the maximum difference in peak stress being 11.4% for specimen UHPFRC-
2-50.

Fig. 9 shows the normalized axial stress (a,/f,,) and normalized axial strain (¢./&,) of
specimens UHPC-1 and UHPFRC-2 which had similar uniaxial compressive strengths. The
axial stress-strain curves of UHPC and UHPFRC specimens under triaxial compression
generally consist of three branches: an ascending first branch up to the peak stress point (&,
fec); a descending branch after the peak stress; and a third branch which is much flatter (i.e.,
the stresses reduced much more gradually) than the second branch or even with a residual stress
plateau. Compared with UHPC specimens, the first branch of the stress-strain curves of
UHPFRC specimens seems to be longer and more curved especially for the specimens with a
relatively high hydraulic pressure (40 MPa and 50 MPa). The UHPFRC specimens generally
possess a more gradual stress reduction for the second branch (i.e., flatter second branch)
compared with the UHPC specimens under the same hydraulic pressure as shown in Fig. 9,
indicating the beneficial effects of steel fibers on the ductility of concrete. It is also seen from
Fig. 9 that the addition of steel fibers enhances the residual stress; however, the enhancement
in peak axial stress due to a confining pressure is reduced compared with that of UHPC without

steel fibers.
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In addition, it can be seen that the steep descending second branch of UHPC specimens is
a little affected by the hydraulic pressure; however, the increase in hydraulic pressure evidently
reduces the slope of the descending second branch of UHPFRC specimens (i.e., a slower
reduction in the axial stress with respect to the axial strain). Fig. 8 also shows that the concrete
grade has little effects on the shape of the stress-strain curves of UHPFRC specimens; however,
specimens with a lower compressive strength (i.e., UHPFRC-2 series) obviously have a larger
axial strain at the peak stress, leading to a longer portion before the peak stress, than the
corresponding specimens with a higher compressive strength (i.e., UHPFRC-1 series). However,
the effect of concrete grade on the stress-strain behavior of UHPC specimens was not obvious
(Fig. 7). The axial stresses of UHPC specimens with a zero hydraulic pressure dropped to nearly
zero rapidly after the peak stress while the axial stresses of UHPFRC specimens dropped more

gradually to a residual stress.

3.4. Axial strain-lateral strain curves

The axial strain-lateral strain curves of specimens under various confining pressures are
shown in Fig. 10 and Fig. 11 for UHPC and UHPFRC specimens, respectively. Similar to NSC,
the axial strain-lateral strain curves of UHPC/UHPFRC specimens with hydraulic pressure
generally consist of two linear portions connected smoothly at the transition region. The curves
of UHPC or UHPFRC specimens with different confining pressures are close to each other
during the initial loading stages, but they diverge obviously in the second portion. The
normalized axial strain (g./€.,) and lateral strain (g;/¢.,) curves of specimens UHPC-1 and
UHPFRC-2 are shown in Fig. 12. For the UHPC specimens with a zero pressure, the lateral
strains after the peak stress increased rapidly due to the brittle failure of the specimen, leading
to an almost vertical line for the second portion of the axial strain-lateral strain curve. However,
the UHPFRC specimens without confining pressure failed in a much more gradual process,
leading to an inclined second portion after the sudden transition point as shown in Fig. 12. Ata
given axial strain, the lateral strain of an UHPC or UHPFRC specimen with a higher hydraulic

pressure is smaller in magnitude, indicating that the dilation of concrete is more effectively
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restricted by a larger confining pressure. Fig. 12 shows that the dilations of UHPC specimens
are generally larger than UHPFRC specimens, especially for those with confining pressures of

0, 10 and 30 MPa.

4. Proposed axial stress-axial strain models

Extensive research has been conducted on NSC under active confinement, leading to
numerous axial stress-axial strain models (simply referred to as stress-strain models hereafter)
[38,39,54,55]. However, it was found that these models are not able to well predict the stress-
strain behavior of UHPC/UHPFRC due to its different shape characteristics of stress-strain
curve compared with NSC or HSC as mentioned earlier. The stress- strain curve of unconfined
UHPC/UHPFRC exhibits a much steeper descending branch after the peak stress due to its ultra
high strength as demonstrated by existing studies and as shown in Fig. 7 and Fig. 8. As a result,
it is necessary to develop new stress-strain models which are suitable for both unconfined and
actively confined UHPC and UHPFRC. In this section, the stress-strain model proposed by
Popovics [55] with some adaptions (Model I) is first evaluated, followed by a new stress-strain
model (Model IT). Model I employs a single equation for describing the entire stress-strain curve,
which is largely controlled by the peak axial stress and the corresponding strain, while Model
IT is a two-segment stress-strain model which adopts separate equations for the ascending and
descending branches. A test database was assembled for the regression analysis for obtaining
the key parameters of the two models. The test data used in the regression analysis included the
UHPC (including RPC) and UHPFRC specimens of the present study as well as those from
existing studies [48—51]. Only the specimens with a uniaxial compressive strength higher than
120 MPa and without coarse aggregates were included in the test database. The test database

included totally 25 RPC specimens and 39 UHPC or UHPFRC specimens as listed in Table 6.

4.1. Proposed axial stress-axial strain models
4.1.1. Model 1

The equation of Popovics [55] has been widely employed in depicting the axial stress-
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axial strain curves of unconfined or actively confined NSC and HSC [29,39,54—-59]. Therefore,

Popovics’ equation is adopted in Model I, which is described in the following equation:

& _ (&c/€cc) X1

fcc - r—1+ (gc/gcc)r (1)
— EC 2
T_Ec_fcc/gcc ()

where o, and ¢, are the axial stress and the axial strain; f,. and &.. are respectively the
peak axial stress and the corresponding axial strain; E. is the elastic modulus of
UHPC/UHPFRC, which can be calculated in E.= 35497.50 + 78.00 X f_,
(fz, is the compressive strength of unconfined UHPC/UHPFRC) proposed by Teng et al [7]
This equation was found to be reasonably accurate in predicting the test UHPC/UHPFRC

specimens in the present study.

4.1.2. Model I1

It was later found that Model I does not perform very well in capturing the descending
branch of UHPC/UHPFRC. Therefore, Model II, which is a two-segment stress-strain model
with separate equations for the ascending and descending branches, is proposed. The Popovics’
[55] equation (Eq. 1) is still employed for the ascending branch, while the following fractional

equation is employed for the descending branch:

fcc _fcres
1+nx (£ - 1)2

cc

Oc = feres + for e, > €., 3)

where n = (where Vgr is the steel fiber volume ratio) is the curve-fitting factor for

2
1+100Vss
the post-peak descending branch to distinguish the influence of steel fiber on the stress-strain
relationship; f.r.s is the residual axial stress as discussed in detail in Section 4.3. Eq. (3) has
the following characteristics: (I) when €. = €.., 0, = fqc; (I) when g, = 400, 0, = f,es.
It is evident that the determination of peak stress point (f,., &) is critical in both Model
I and Model II, and the residual axial stress f..s; 1s needed in Model II to generate the entire

stress- strain curve. The calculations of these parameters are discussed in detail in the following
12
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sections.

4.2. Peak axial stress f.. and corresponding strain &,

Similar to NSC and HSC under triaxial compression, the peak axial stress f.. of UHPC
or UHPFRC increases with the confining pressure f;. The relationships between the peak axial
stress and the confining pressure for all the collected specimens are shown in Fig. 13. It can be
seen that the addition of steel fibers slightly reduces the axial stress enhancement for the
specimen in the present study and Wang et al.’s study [51], but the effect of steel fibers is not
significant in Wu et al.’s study [49]. A regression analysis of the test results led to the following

equation for the peak axial stress f.:

0.7
fee _q 4 (3.1 — 16Vyf) X (ﬁ) (4)

feo feo
Similarly, the following equation was obtained for the axial strain at peak axial stress &,
based on a regression analysis of the test results:
1.05

€

—£ =1+ (12 + 100V,f) X (i) (5)

€co fco
The performance of Eq. (4) and Eq. (5) are shown in Figs. 13 and 14, respectively. It can be
seen that the two equations fit the test results very well. The coefficient of determination (R?)
of Eq. (4) for UHPC and UHPFRC specimens are 0.85 and 0.88, respectively. The coefficient
of determination (R?) in predicting the axial strain at peak axial stress &., for UHPC and

UHPFRC specimens are 0.93 and 0.92, respectively.

4.3. Residual axial stress feres

As discussed in the preceding sections, a residual axial stress (f,,.s) may exist after the
descending branch of the stress-strain curve of concrete under triaxial compression
[39,41,58,60-63]. As shown in Figs. 7 and 8, this residual axial stress of UHPC and UHPFRC

generally increases as the hydraulic pressure increases. The definition of such residual axial
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stress in concrete, however, varies in different studies [41,62,63]. Xie et al. [41] considered the
residual axial stress at the point where the slope of the remaining part of the descending curve
is less than 2% of the initial slope of the ascending branch. Smith [62] defined the axial stress
carried by concrete at a lateral strain of 0.03 as the residual axial stress. This method, however,
is not applicable to some specimens with a long post-peak descending branch (e.g., specimens
UHPFRC-1-10 and UHPFRC-2-10) as shown in Fig. 8. Samani and Attard [63] took the end
points of axial stress-axial strain curves as the residual stress and found these definitions are
close to the reported residual stress values in most cases. In the present study, the residual axial
stress is defined based on the methods of Xie et al. [41] and Smith [62]. In the present study, a
residual stress plateau is assumed to appear when the slope magnitude of the descending curve
is less than 2% of the elastic modulus of UHPC/UHPFRC and the axial stress at the end of the
axial stress-strain curve is then defined as the residual axial stress f,,.s. If no stress plateau
was identified for a test specimen, this specimen was excluded in the subsequent analysis and
discussion for the residual axial stress.

The relationships between the normalized residual axial stress fi..s/fs, and the
confinement ratio f;/f;, for the test UHPC and UHPFRC specimens which had a stress
plateau are shown in Fig. 15. Fig. 15 shows that the normalized residual stress is an almost
linear function of the confinement ratio. A regression of the test results led to the following

linear equation for f,..:

I T = OV 447 X (}%) ©)

As shown in Fig. 15, Eq. (6) provides accurate estimations for the residual axial stresses of the

test specimens of the present study (Vs = 2%). It should be noted that, due to the limit test data
on UHPFRC with various values of V¢, only the UHPFRC specimens of the present study
with Vs = 2% were used for the regression analysis of Eq. (6). Eq. (6) may need refinement

in the future when more test data on UHPFRC become available.

4.4. Comparison with test results

The comparison between the predictions of Model I and Model II and test results for the
14
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test specimens in the present study and Wang et al. [48] are shown in Fig. 16. The predicted
curve of each specimen under triaxial compression terminated when the average experimental
ultimate axial strain was reached. It can be seen from Figs. 16(a) and (b) that the predictions of
Model II agree reasonably well with the test curves of UHPC specimens with various confining
pressures, while Model I fails to capture the sudden load drop after the peak stress and the
residual axial stress especially for those with a relatively high confining pressure. Figs. 16(c)
and (d) show that both Model I and Model 1I slightly overestimate the peak axial stress of
UHPFRC specimens. The performance of Model I and Model II is very close for the UHPFRC
specimens in the present study. Figs. 16 (¢) and (d) show the comparison of the test results from
Wang et al. [48] and the predictions from Model I and Model II. It can be seen that Model I1
captures the test curves more accurately. In general, Model II performs well in predicting the
axial stress-axial strain curves of the UHPC and UHPFRC specimens under triaxial

compression.

5. Proposed equations for axial strain-lateral strain relationship
The axial strain-lateral strain relationship is an essential element for understanding the
dilation behavior of UHPC and UHPFRC under various confining pressures. Many equations
have been proposed for the axial strain-lateral strain relationship of NSC or HSC. A typical and
widely adopted one is the equation of Teng et al [64] originally proposed for unconfined,
actively confined, and fiber reinforced polymer (FRP)-confined concrete, which is described in
the following equation:
€c 0 &\1%7 €1
£ _ 085 (1 + 8—,) x [1 +0.75 (— —)] _ exp [—7 (——)] %)
SCO f;‘O gCO SCO
where o; is the confining pressure (= f; for active confinement); and ¢; is the lateral strain.
Fig. 17 shows the comparison of the predictions with Eq. (7) and the test curves of the
UHPC and UHPFRC specimens in the present study (the test curves of the specimens in the
existing studies are not reported). The predicted curve of each specimen terminated when the
average experimental ultimate lateral strain was reached. It can be seen from Fig. 17 that the

predictions of Eq. (7) generally overestimate the test curves of UHPC and UHPFRC specimens
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except for the specimens with 10 MPa hydraulic pressure. This comparison indicates that the
confinement effectiveness of UHPC/UHPFRC is lower than that of NSC.
Teng et al’s [64] equation was thus modified to the following equation by considering the

effects of ultra-high strength and the steel fibers in UHPC or UHPFRC:

09 o
£ £ €
Ze o <1 +43 (i) ) x { 1+ 053 (——l)] — exp [—7 (— —l)]} ®)
€co fco €co €co
f (0.1+0.5Vy)
f =058x (—’) +0.3 )
feo
where f is a function of the confinement ratio f;/f.,. Eq. (8) was developed based on a
regression analysis using the test results of the present study. Fig. 17 shows that the proposed

equations perform much better than the original equations of Teng et al [64] in predicting the

axial strain-lateral strain curves of the test specimens.

6. Conclusions

This paper presents the results of a systematic experimental program on the triaxial
compression behavior of UHPC and UHPFRC by testing 32 specimens, contributing to the so
far largest test database of such tests. The experimental program included the steel fiber volume
fraction, the uniaxial concrete strength, and the confining pressure (ranging from 0 to 50 MPa)
as the key test variables. Based on the test results, two axial stress-axial strain models and new
equations for the axial strain-lateral strain relationship for UHPC and UHPFRC under various
confining pressures were proposed. The results and discussions presented in the paper allow the

following conclusions to be drawn:

(1) The failure patterns of UHPC and UHPFRC specimens under triaxial compression were
found to be the major shear diagonal crack. An increase in confining pressure led to a
smaller inclined angle (with respect to horizon) of the major shear crack.

(2) The axial stress-strain relationships of UHPC specimens under various confining pressures

exhibited a sudden axial stress drop after the peak stress while the UHPFRC specimens
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showed better ductility (i.e., less steep descending branch after the peak stress) especially
for those with a larger confining pressure.

(3) The addition of steel fibers reduces the enhancement of peak axial stress due to a confining
pressure.

(4) Aresidual axial stress plateau exists at the end of the descending branch of the stress-strain
curve for both the UHPC and UHPFRC specimens. The presence of steel fibers increases
the value of the residual axial stress.

(5) The widely used axial strain-lateral strain equation of Teng et al [64] for normal strength
concrete was modified and recalibrated. The modified model provides accurate predictions
for the axial strain-lateral strain curves of UHPC or UHPFRC specimens under various
confining pressures.

(6) The axial stress-axial strain models were firstly proposed based on the test results in present
study. The new proposed models can provide reasonably accurate predictions in terms of

the peak stress, the descending branch, and the residual plateau of the test specimens.

The proposed axial stress-axial strain models and the axial strain-lateral strain equation were
developed based only on limited test data; their accuracy needs to be further verified when more
test data on UHPC/UHPFRC with wider ranges of concrete strength and steel fiber volume

fraction become available in the future.
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Table 1 Experimental program of triaxial compression tests

. No. of
) Concrete Steel fiber Confining ) )
Specimen . identical
grade volume fraction (%) pressure (MPa) i
specimens
UHPC-1-0 1 0 0 1
UHPC-1-10-1,2 1 0 10 2
UHPC-1-30-1,2 1 0 30 2
UHPC-1-50-1,2 1 0 50 2
UHPC-2-0 2 0 0 1
UHPC-2-10-1,2 2 0 10 2
UHPC-2-30-1,2 2 0 30 2
UHPC-2-50-1,2 2 0 50 2
UHPFRC-1-0 1 2 0 1
UHPFRC-1-10-1,2 1 2 10 2
UHPFRC-1-20-1,2 1 2 20 2
UHPFRC-1-30-1,2 1 2 30 2
UHPFRC-1-40-1,2 1 2 40 2
UHPFRC-1-50-1,2 1 2 50 2
UHPFRC-2-0 2 2 0 1
UHPFRC-2-10-1,2 2 2 10 2
UHPFRC-2-30-1,2 2 2 30 2
UHPFRC-2-50-1,2 2 2 50 2




Table 2 Properties of steel fibers

. . . Length ) Tensile strength
Cross-section  Fiber type ~ Diameter (mm) Aspect ratio
(mm) (MPa)

Circle Straight 0.2 13 65 >2600




Table 3 Mix proportions of UHPC and UHPFRC (kg/m?)

. Silica Quartz Quartz Steel .
Series Cement Fly ash Superplasticizer =~ Water
ume sand powder fiber
UHPC-1 800 240 112 960 224 0 40 208
UHPC-2 800 240 112 960 224 0 36 240
UHPFRC-1 800 240 112 960 224 156 40 208
UHPFRC-2 800 240 112 960 224 156 36 240




Table 4 Uniaxial compression test results

. . . Axial strain at Elastic
. Diameter Height Compressive
Specimen peak stress modulus
(mm) (mm) strength (MPa)
(%) (GPa)
UHPC-1 100 200 129.2 0.324 40.5
UHPC-2 100 200 113.4 0.287 45.1
UHPFRC-1 100 200 164.5 0.427 39.3
UHPFRC-2 100 200 139.1 0.398 36.6
UHPC-1 50 100 126.9 0.318 44.5
UHPC-2 50 100 101.0 0.269 46.6
UHPFRC-1 50 100 151.5 0.435 40.1

UHPFRC-2 50 100 127.1 0.423 383




Table S Triaxial compression test results

Specimen o e e flfa ealew
UHPC-1-0 126.92 0.32 0 0.00 1.00 1.00 —
UHPC-1-10-1 187.41 0.66 10 0.08 1.48 2.08 —
UHPC-1-10-2 173.97 0.65 10 0.08 1.37 2.05 —
UHPC-1-30-1 233.55 1.08 30 0.24 1.84 3.40 154.08
UHPC-1-30-2 257.72 1.22 30 0.24 2.03 3.82 140.05
UHPC-1-50-1 292.87 1.05 50 0.39 2.31 3.30 —
UHPC-1-50-2 331.91 1.74 50 0.39 2.62 5.46 270.01
UHPC-2-0 101.03 0.27 0 0.00 1.00 1.00 —
UHPC-2-10-1 128.06 0.54 10 0.10 1.27 1.99 —
UHPC-2-10-2 156.76 0.56 10 0.10 1.55 2.10 —
UHPC-2-30-1 216.58 1.11 30 0.30 2.14 4.14 140.77
UHPC-2-30-2 217.81 1.07 30 0.30 2.16 3.96 126.43
UHPC-2-50-1 241.59 0.67 50 0.49 2.39 2.49 —
UHPC-2-50-2 290.14 1.69 50 0.49 2.87 6.26 241.43
UHPFRC-1-0 151.46 0.44 0 0.00 1.00 1.00 —
UHPFRC-1-10-1 188.54 0.73 10 0.07 1.24 1.67 —
UHPFRC-1-10-2 195.14 0.72 10 0.07 1.29 1.65 —
UHPFRC-1-20-1 237.87 1.09 20 0.13 1.57 2.51 127.62
UHPFRC-1-20-2 210.51 0.99 20 0.13 1.39 2.27 105.68
UHPFRC-1-30-1 246.87 1.38 30 0.20 1.63 3.17 172.08
UHPFRC-1-30-2 252.39 1.40 30 0.20 1.67 3.21 147.38
UHPFRC-1-40-1 281.55 1.96 40 0.26 1.86 4.51 231.63
UHPFRC-1-40-2 277.71 2.01 40 0.26 1.83 4.61 209.75
UHPFRC-1-50-1 315.52 2.36 50 0.33 2.08 543 284.88
UHPFRC-1-50-2 303.40 2.32 50 0.33 2.00 5.33 —
UHPFRC-2-0 127.10 0.42 0 0.00 1.00 1.00 —
UHPFRC-2-10-1 152.18 0.73 10 0.08 1.20 1.73 —
UHPFRC-2-10-2 154.82 0.78 10 0.08 1.22 1.83 —
UHPFRC-2-30-1 214.95 2.00 30 0.24 1.69 4.71 142.32
UHPFRC-2-30-2 198.02 1.87 30 0.24 1.56 4.42 158.02
UHPFRC-2-50-1 309.40 3.05 50 0.39 243 7.20 256.84
UHPFRC-2-50-2 289.87 2.80 50 0.39 2.28 6.61 300.13

Note: “—” is not applicable according to the definition in present study.



Table 6 Triaxial compression tests of UHPC/UHPFRC specimens from literature

Number Diameter  Height st feo €co fi fee €cc feres
(mm) (mm) (%) (MPa) (%) (MPa) (MPa) (%) (MPa)
Zhang et al. [48]
1 50 100 0 184 NA 5 239 0.97 —
2 50 100 0 184 NA 10 271 1.06 —
3 50 100 0 184 NA 20 294 1.37 —
4 50 100 0 184 NA 30 327 1.65 —
5 50 100 0 184 NA 40 351 2.03 —
Wu et al. [49]
6 43.6 130 0 143.15 0.47 10 234.25 NA —
7 43.6 130 0 143.15 0.47 20 267.81 NA —
8 43.6 130 0 143.15 0.47 40 332.53 NA —
9 43.6 130 0 143.15 0.47 70 406.85 NA 350
10 43.6 130 0.3 152.74 0.49 10 229.45 NA —
11 43.6 130 0.3 152.74 0.49 20 260.62 NA 169
12 43.6 130 0.3 152.74 0.49 40 332.53 NA 245
13 43.6 130 0.3 152.74 0.49 70 402.06 NA 380
14 43.6 130 1 155.14 0.49 10 225.86 NA —
15 43.6 130 1 155.14 0.49 20 276.20 NA —
16 43.6 130 1 155.14 0.49 40 348.12 NA 255
17 43.6 130 1 155.14 0.49 70 408.05 NA 363
18 43.6 130 1.7 164.73 0.52 10 228.25 NA 92
19 43.6 130 1.7 164.73 0.52 20 278.60 NA 147
20 43.6 130 1.7 164.73 0.52 40 343.32 NA —
21 43.6 130 1.7 164.73 0.52 70 423.63 NA —
22 43.6 130 2.4 159.93 0.53 10 234.25 NA 113
23 43.6 130 2.4 159.93 0.53 20 276.20 NA —
24 43.6 130 2.4 159.93 0.53 40 333.73 NA —
25 43.6 130 2.4 159.93 0.53 70 430.82 NA —
Vogel et al. [50]
26 100 200 0 122.50 NA 10 178.00 NA NA
27 100 200 0 122.50 NA 20 208.50 NA NA
28 100 200 0 122.50 NA 30 230.50 NA NA
Wang et al. [51]
29 50 100 0 125.60 0.30 5 197.00 0.51 —
30 50 100 0 125.60 0.30 10 215.90 0.58 —
31 50 100 0 125.60 0.30 20 281.70 0.84 —
32 50 100 0 125.60 0.30 30 296.40 0.84 —



33
34
35
36
37
38
39
40

50
50
50
50
50
50
50
50

100
100
100
100
100
100
100
100

0
0
1.5
1.5
1.5
1.5
1.5
1.5

125.60
125.60
153.40
153.40
153.40
153.40
153.40
153.40

0.30
0.30
0.34
0.34
0.34
0.34
0.34
0.34

40
50
5
10
20
30
40
50

338.80
374.80
186.20
236.00
276.60
332.70
352.80
358.10

1.30
1.63
0.46
0.67
0.88
1.10
1.45
1.81

Note: “—" is not applicable according to the definition in present study, “NA” is not

available in the study.



Fig. 1. Surface patching using gypsum for specimens of triaxial compression tests
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Fig. 2. Triaxial compression test system



Fig. 3. Layout of axial strain and lateral strain extensometers
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Fig. 4. Stress state of specimen and loading path of triaxial compression tests
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Fig. 5. Failure modes of UHPC and UHPFRC specimens (50 mm x 100 mm) under uniaxial compression
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Fig. 6. Failure modes of UHPC and UHPFRC specimens under triaxial compression
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Fig. 7. Stress-strain curves of UHPC under different confining pressures
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Fig. 8. Stress-strain curves of UHPFRC under different confining pressures
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