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Multistage Graph Convolutional Network With
Spatial Attention for Multivariate Time
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Abstract—In multivariate time series (MTS) analysis, data
loss is a critical issue that degrades analytical model perfor-
mance and impairs downstream tasks such as structural health
monitoring (SHM) and traffic flow monitoring. In real-world
applications, MTS is usually collected by multiple types of
sensors, making MTS and correlations between variates heteroge-
neous. However, existing MTS imputation methods overlook the
heterogeneous correlations by manipulating heterogeneous MTS
as a homogeneous entity, leading to inaccurate imputation results.
Besides, correlations between different data types vary due to
ever-changing environmental conditions, forming dynamic corre-
lations in MTS. How to properly learn the hidden correlation
from heterogeneous MTS for accurate data imputation remains
unresolved. To solve the problem, we propose a multistage graph
convolutional network with spatial attention (MSA-GCN). In the
first stage, we decompose heterogeneous MTS into several clusters
with homogeneous data collected from identical sensor types and
learn intracluster correlations. Then, we devise a GCN with
spatial attention to explore dynamic intercluster correlations,
which is the second stage of MSA-GCN. In the last stage,
we decode the learned features from previous stages via stacked
convolutional neural networks. We jointly train these three-stage
models to predict the missing data in MTS. Leveraging this
multistage architecture and spatial attention mechanism makes
MSA-GCN effectively learn heterogeneous and dynamic correla-
tions among MTS, resulting in superior imputation performance.
We tested MSA-GCN with the monitoring data from a large-span
bridge and Wetterstation weather dataset. The results affirm
its superiority over baseline models, demonstrating its enhanced
accuracy in reducing imputation errors across diverse datasets.

Index Terms— Data imputation, graph convolutional network
(GCN), structural health monitoring (SHM).
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I. INTRODUCTION

ATA loss issues frequently occur in real-world data

acquisition and transmission due to unavoidable inci-
dents, such as sensor malfunctions and noise interference.
These problems pose challenges for time series analysis
methods, resulting in decreased performance for many related
downstream applications, including structural health moni-
toring (SHM), traffic flow monitoring, and a wide range
of Internet-of-Things (IoT) applications. Consequently, data
imputation, also known as data completion or data recon-
struction, has been extensively researched in the literature.
Existing data imputation solutions generally fall into two
categories: model-based (correlation-based) methods and data-
driven methods. Traditional model-based approaches involve
modeling temporal correlations within one variable or spatial
correlations between multiple variables with explicit mathe-
matical equations that come from domain-specific numerical
models. The missing values are recovered based on those
correlations and available valid data. Model-based methods
have been extensively studied in IoT systems for engineer-
ing structures [1], [2], transportation system [3], [4], smart
manufacturing [5], and air quality monitoring [6], [7]. A
typical example is recovering the missing data for an SHM
system using correlations derived from finite element models
for engineering structures.

Implementing model-based methods in real-world IoT sys-
tems can be challenging for several reasons. First, a gap
inevitably exists between predefined equations and the actual
IoT system. Correlations between real-world measurement
data are often more elusive, as variables are subject to
numerous unexpected factors or hidden variables. However,
the “white-box” models [8] utilized in model-based methods
are typically constructed based on manual assumptions and
simplifications, which lead to suboptimal performance when
implemented. Second, explicit equations that describe correla-
tions between variables are unavailable in many complex IoT
systems. Despite the availability of massive amounts of data,
many interactions between these variables still remain undis-
covered and elusive. These challenges restrict the practical
application of model-based solutions in engineering practice.

Data-driven methods refer to methods that work directly
from data and do not require domain-specific models. As a
promising alternative, data-driven methods can automatically
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learn correlations between variables and are usually applicable
across various fields and applications. Derived from measure-
ment data, these methods can simulate real-world systems
with higher fidelity. The rapid advancement of data-driven data
imputation methods has been facilitated by the unprecedented
availability of high-fidelity measurements from real-world IoT
systems, numerical simulations, and experimental data. Tra-
ditional data-driven models include matrix factorization [9],
autoregressive integrated moving average models [10], and
k-means [11]. Meanwhile, progress in machine learning (ML)
algorithms has provided researchers with a wealth of statistical
models for data imputation [12], including convolutional neu-
ral networks (CNNs), recurrent neural networks (RNNs), graph
neural networks (GNNs), and generative adversarial networks
(GAN:S).

However, large-scale IoT systems typically consist of multi-
ple monitoring items, resulting in heterogeneous measurement
variates. The monitoring item here refers to a variable mea-
sured by a group of sensors deployed in different locations of a
monitoring system. It is different from the sensor type because
the same type of sensor can be used for different monitoring
items. For instance, accelerometers on the bridge deck and
accelerometers on cables belong to different monitoring items
although they are all accelerometers. They describe the vibra-
tion of different parts of a bridge, exhibiting distinct amplitude
and fluctuation patterns.

Heterogeneous measurement variates lead to heteroge-
neous correlations between variates, encompassing correla-
tions within the same monitoring items and between different
monitoring items. Furthermore, correlations between different
monitoring items are inherently dynamic because they are
influenced by ever-changing environmental conditions and
other unexpected factors. These heterogeneous and dynamic
correlations bring difficulties for existing data-driven methods
to learn well.

For instance, an SHM system for a bridge includes various
monitoring items, such as the acceleration of the bridge deck
and cables, displacement of piers, and multipoint temperature.
Acceleration, temperature, and displacement data have distinct
modalities, e.g., sampling frequencies, amplitudes, and fluctu-
ation patterns. Therefore, the correlations between data within
each item naturally exhibit different patterns. Furthermore,
the correlation between bridge deck acceleration and cable
acceleration is dynamic, exhibiting significant variations based
on external conditions. Under strong wind conditions, these
two variables are closely correlated. However, their correlation
diminishes under traffic load, which only excites a small region
of the bridge.

Existing data-driven methods often overlook heterogeneous
and dynamic correlations, impairing data imputation accuracy.
Most of these methods are designed for a single monitoring
item, such as acceleration data [13], [14], [15], strain [16],
velocity [17], displacement [18], and temperature [19]. Some
other methods were proposed for data imputation while mon-
itoring multiple items. Nevertheless, they either manipulate
heterogeneous data as a homogeneous entity [20] or only
use data from one item to optimize the imputation model’s
parameters for another monitoring item [21]. None of the
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existing methods simultaneously explore the intercorrelation
and intracorrelation among the monitoring items.

We propose a multistage graph convolutional network with
spatial attention (MSA-GCN) for multivariate time series
(MTS) imputation. Specifically, in the first stage, we decom-
pose the sensors of an IoT system into multiple sensor
clusters based on their monitoring items. We apply multiple
self-designed intracluster encoders within each sensor cluster
to capture the spatial correlations between homogeneous sen-
sors and temporal dependencies between different time steps,
respectively. In the second stage, we adopt an advanced GCN
with spatial attention to learn the dynamic interactions between
different monitoring items. In the third stage, data for each
sensor are recovered using features extracted in the previous
two stages. We jointly train these three-stage models and
predict missing values in heterogeneous MTS. The innovative
architecture helps MSA-GCN to explore heterogeneous and
dynamic correlations in heterogeneous data efficiently.

The contributions of this article are highlighted as follows.

1) We propose MSA-GCN, an innovative multistage ML
model, to solve a new data loss issue. In this issue,
data loss happens in heterogeneous MTS collected
for multiple monitoring items. The multistage archi-
tecture enables MSA-GCN to divide heterogeneous
data correlations into two levels: correlations within
each monitoring item and between multiple monitoring
items. Afterward, MSA-GCN can incorporate different
networks dedicated to capturing the two levels of corre-
lations, respectively, leading to proper feature learning.

2) In MSA-GCN, we design “n” encoders in the first stage
to independently learn data correlations within each
monitoring item. This approach enables MSA-GCN to
achieve higher feature extraction accuracy for hetero-
geneous data, as data collected in different monitoring
items inherently exhibit distinct interactions.

3) MSA-GCN incorporates a spatial attention mechanism
in the second stage to accurately learn the dynamic
correlations between different monitoring items. Spatial
attention is calculated based on the output from the first
stage and subsequently used to dynamically adjust the
weights of the graph’s edges in the second stage. MSA-
GCN can effectively capture dynamic correlations by
assigning different weights to edges according to the
strength of the correlations.

4) We utilize two datasets to evaluate the accuracy of our
proposed MSA-GCN. One is a real-world monitoring
dataset from Tsing Ma Bridge in Hong Kong and the
other is the Wetterstation weather dataset. Our findings
reveal that MSA-GCN outperforms existing data impu-
tation baseline models in terms of imputation accuracy
and demonstrates robustness under varying data loss
severities.

Section II presents related works and the distinctions to
our method. Problem formulation is presented in Section III.
In Section IV, we illustrate the technical details of the MSA-
GCN model. Experimental results are presented in Section V
before we conclude the article and outline future directions in
Section VI.
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II. RELATED WORK

MTS imputation involves restoring missing values in incom-
plete time series data collected from multiple sensors. These
time series can be either homogeneous or heterogeneous.
Homogeneous time series pertain to data collected by the
same type of sensor for the same monitoring item, while
heterogeneous data encompass data from multiple monitoring
items. In this section, we survey existing ML-based imputation
methods for dealing with homogeneous and heterogeneous
MTS.

A. Data Imputation for Homogeneous MTS

Numerous [oT systems measure a single monitoring item at
multiple locations, resulting in homogeneous data collection,
such as air pollution data from various air quality monitoring
stations within a city [22], energy consumption data from an
enterprise collected by multiple smart meters [23], and traffic
data at multiple intelligent transportation systems units [24].
Researchers have developed diverse ML models to uncover
hidden correlations within the data and perform data imputa-
tion. Early works primarily utilized CNNs [13], [15] to extract
spatial correlations. Many studies also employed RNNs [25],
[26] to exploit temporal dependencies in time series. Recently,
there has been growing interest in GNN as they are inherently
designed to learn from graph-shaped data, which can naturally
describe sensor networks and irregular spatial correlations
[27], [28]. In addition, various GANs [16], [18], [29], [30]
and their variants have been proposed for data imputation
tasks. GANs enable data-driven models to accurately mimic
the original distribution of data, and GAN-based data imputa-
tion solutions have demonstrated remarkable performance in
certain datasets.

Some researchers have combined different types of neural
networks to extract more comprehensive features. Yu et al. [6]
integrated CNN and GAN to recover air pollution data, while
Liang et al. [24] combined temporal convolution network
(TCN) and GNN to effectively and efficiently extract temporal
and spatial features for accurate data recovery. Wu et al. [7]
proposed an ML model that integrated bi-directional RNN
(BRNN), denoising auto-encoder (DAE), and GAN to recover
air quality monitoring data. Nevertheless, real-world IoT sys-
tems always consist of multiple monitoring items and generate
heterogeneous data. None of the above-mentioned approaches
are designed to extract correlations from heterogeneous data
and they might fail to recover the missing values of heteroge-
neous data correctly.

B. Data Imputation for Heterogeneous MTS

An increasing number of IoT systems have begun to
collect heterogeneous data using various types of sensors
for more comprehensive sensing. Although leveraging these
heterogeneous data appropriately helps uncover hidden cor-
relations and enables more accurate data imputation. It is
more challenging than data imputation with homogeneous
data. Because heterogeneous data typically exhibit significant
differences in characteristics. These data have different sizes,
amplitudes, and fluctuation patterns and their correlations are
also heterogeneous.

12245

Nevertheless, few existing data imputation studies have
focused on heterogeneous data. Niu et al. [21] developed
a spatiotemporal graph attention network to restore missing
cable forces using valid cable force data and temperature data.
However, this method cannot simultaneously impute missing
temperature data, as temperature data are not used as node
attributes in the graph but rather used to compute attention
coefficients. As a result, the correlations between multiple
temperature measurement points and between temperature and
cable forces are not explored. Hou et al. [31] proposed an
RNN-based method for data imputation between different data
types. However, they mix strain and displacement data to
generate a whole entity as the input. Since no hint is given
to the RNN to distinguish between strain and displacement
data, this method cannot effectively learn correlations between
heterogeneous data. In contrast, the MSA-GCN proposed in
this article is designed to investigate both correlations within
each monitoring item and between different monitoring items,
enabling simultaneous prediction of missing values from mul-
tiple monitoring items.

III. PROBLEM FORMULATION
A. Notations and Data Loss Model

In an IoT system, we define a heterogeneous MTS as a
collection of MTS from n sensor clusters. Each sensor cluster
contains multiple sensors that generate time series for the same
monitoring item, such as temperature, displacement, and wind
velocity. We assume that time series from different clusters
exhibit heterogeneity, which can manifest as differences in
sampling frequency or the number of sensors across clusters.
Data within the same sensor cluster are homogeneous.

We denote the raw data collected from the ith cluster within
a period of time as F;"pm e R%*% j — 1,..., n, where S;
denotes the number of sensors in this cluster and 7; denotes
the number of sampling steps in this monitored period. Data
loss can happen in any sensor and we represent it using n
masks for n sensor clusters, respectively. The ith mask is
denoted as M; € RS*T j = 1, ..., n. The value in the sth
row and rth column in M; is denoted as my,. It represents
that corresponding value of sensor s in time step ¢ is missing
(mg, = 0) or valid (mgz;, = 1) in F:“pm. In this article,
variables denoted with bold letters represent multidimensional
arrays, and variables denoted with italic letters represent single
values.

Fig. 1 illustrates the data imputation task for the incom-
plete heterogeneous time series. In this figure, we use NAN,
which means Not A Number, to represent each missing value.
In practical IoT systems, measurement data can be lost in
a single sampling step or across consecutive sampling steps.
To properly simulate real-world data loss conditions, we use
two data-missing scenarios simultaneously when generating
datasets. We adopt the block missing data loss setting from
GRIN [32]. Specifically, there is a failure at each sampling step
with a probability of ppieck. The duration of each node failure
is uniformly sampled from minge, t0 maxgep. In addition,
we apply the point missing to the remaining valid data,
by removing 5% of them randomly.
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B. Data Imputation Problem for Heterogeneous MTS

We formulate the data imputation problem for heteroge-

neous MTS as follows.

1) Given: A heterogenous dataset {Filnpm, e, } con-
sists of data from n sensor clusters and a group of
corresponding masks {Mj, ..., M, } that represent data
loss.

2) Assumption: Variates from the same sensor cluster are
homogeneous and variates from different sensor clusters
are heterogeneous. Data loss happens in every variate.

3) Objective: Train a data-driven model to recover the
missing values in the heterogeneous dataset.

input
Fn

The well-trained model is used to recover the missing
data for multiple sensor clusters simultaneously shown in (1)
and (2)

{?1“..,?n}=:f({F?m“,“.,F?m“}{hdh.“,hmg) 1)

where Y; € RS*T i = 1,...,n denotes the predicted value
for the ith cluster. f denotes the well-trained data imputation
model. Afterward, Y; are filled into the raw data F™" to
generate the imputed data Y; for the ith sensor cluster using

Y; = Impute (Fi"pm, Y;, Mi)

=F"™ oM +Y;0(1-M) 2)

where the symbol © denotes Hadamard product.

IV. METHODOLOGY
A. Overall Framework

Considering the differences between intercluster correla-
tions and intracluster correlations in heterogeneous data, it can
be improper to learn these correlations with one GNN. As a
result, we design MSA-GCN to learn them separately. The
overall architecture is illustrated in Fig. 2. The proposed
MSA-GCN consists of three stages: the first two stages
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are used for encoding raw data, while the last stage works
for decoding. Specifically, there are n separate self-designed
spatial-temporal encoders in stage 1, with each encoding
the graph sequence from one sensor cluster independently.
In stage 2, each vertex of the input graph represents features
extracted from each sensor cluster in stage 1. We incorporate
an attention-based GNN in stage 2 to explore the intercluster
correlations. The spatial attention mechanism is suitable for the
diverse and dynamic intercluster correlations between different
sensor clusters, as it can dynamically adjust the strength of
correlations between vertices in each training step. Stage 3
decodes the feature from stage 2 and receives local features
from stage 1 through a residual connection. It fuses the two
sets of features and makes the final prediction.

B. Stage 1: Intracluster Encoder

As shown in Fig. 2, the intracluster encoder comprises n
encoders, which operate with n sensor clusters, respectively.
Fig. 3 displays the details of components in one encoder.
In each encoder, two spatial-temporal encoders encode data
sequences in forward and backward directions, respectively,
along the time axis. Their outputs are first merged with a
direction merge encoder (DME). Subsequently, the outputs of
DME are upsampled along the time axis and merged along the
channel axis with a channel merge encoder (CME). Afterward,
the output of each intracluster encoder in stage 1 has the same
shape and will serve as the vertex feature in the input graph
of stage 2.

We propose TD-GRIN, a temporal decayed GRIN module,
as the spatial-temporal encoders in stage 1. GRIN [32] is a
state-of-the-art spatial-temporal encoder for MTS imputation.
We innovatively integrate it with temporal decayed factors
because sequential data are often missing in consecutive time
steps. The decayed factor 8¢ [25], defined in (3), helps describe
the time gap between the current time step s, and the last
observation. It provides a hint for GRIN to update hidden
states accurately based on the hidden states in the last time
step, together with the prediction for the current time step

14+84,, ift>1,my=0
s0=11, ift>1,my=1 (3)
0, if r = 1.

Algorithm 1 illustrates the forward pass of a TD-
GRIN. We slice F™U along the time axis and obtain
£ 6, ™), where £ € RS, = 1,...,T.
The same operation is applied to mask M and we obtain
{m;,my, ..., my}. h denotes the hidden state in TD-GRIN.
A denotes the adjacent matrix for one sensor cluster. Revs
denotes the operation that reverses a list along time direc-
tion. Convld denotes a 1-D CNN. SpatialDecoder comprises
linear readout layers and one message-passing neural net-
work. Please refer to [32] for details on the spatial decoder.
TD — MPGRU is a self-designed recurrent message passing
network cell that updates the hidden state h. It will be
introduced later.

Similar to the GRIN module, we obtain preliminary impu-
tation results FPed!l Fpred2 and FrP" a5 the representation for
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Fig. 2. Overall architecture of MSA-GCN. The input heterogeneous data are divided into five clusters and MSA-GCN consists of three stages. Stages 1 and
3 have multiple networks to encode and decode data for each sensor cluster. The number of clusters in MSA-GCN is not fixed at 5. It varies with different

datasets.

intracluster features extracted by TD-GRIN. Since we have
GRIN modules for two directions, we obtain four preliminary
imputation results with the same size as the input F"P", They
are stacked into F™P ¢ R**S*T denoting the imputation in
stage 1. In the ith encoder in stage 1, intracluster features are
concatenated with the mask following:

Fi'mra _ F;epr,fwd‘ ‘F;epf,bwd’ ‘ M; )
1 TD-GRIN .
where Fn ¢ R<H, HDXSXT = ] n. HID-CRIN jg
i ; : fvd’ bwd
the size of hidden states in TD-GRIN. Ff.epr " and F; P

denote the TD-GRIN extracted intracluster features for ith sen-
sor cluster in forward and backward directions, respectively.
|| denotes a concatenation operator. FiI"™ contains both spatial
and temporal features from the ith sensor cluster.

The forward pass of TD — MPGRU is detailed in
Algorithm 2. Its input comprises the current hidden state h,
x;, mask m,, and decay factor 8¢ for the current time step,
and the adjacency matrix A,q;. In contrast to MPGRU in [32],
we incorporate the decay factor ¢ when computing the update
state u,. In Algorithm 2, 84 is first transformed via a linear
transformation NN. We then obtain the temporal decay factor
¥, by encoding it further with a 1-D CNN. The estimated
hidden state h® and estimated feature X° are generated with
y; and h. Here, MPNN denotes the message-passing neural
network, while o and tanh represent the sigmoid and tanh
activation functions, respectively.

Our proposed DME consists of two 2-D CNNs, which
process Fi"™ to encode its (2 x H;">ORIN 4 1) channels into
a single channel. Considering the fact that different sensor
clusters have varying numbers of sensors, S; and 7; can differ
among clusters. However, to generate a graph-shaped input for
stage 2, n intracluster features F}“"a,i = 1,...,n should be

Algorithm 1 TD-GRIN

Input: {f’lnp”’,f’znpm, .,f‘T"p”t},{ml,mz,

Direction = Forward or Backward

my},84 h, A,

if Direction = Backward

Finput — ReVS(Finpur) — {fl;,wm’ o flznpm, fllnpuf}
8% = Revs(8%)
M = Revs(M)

end

fort=1—T do
377! — Conv1d(h)
X, =m, O finpuz (] _ mt) @ Apredl
§r g = SpatlalDecoder(x,,m,,h,A“df )
X, = m, o fttnput + (1 _ mt) o y;}redZ
h = TD — MPGRU(h,x,,m,, A%, 6;1)

end
X dl Apredl Apredl Apredl
=W 42 d2 " pred?
d2 pre ~ pre Apre

yrre ={y] . Ys B
Frerr — {frepr’ fgepr’ L frTepr}
if Direction = Backward

Ypredl — ReVS(Ypredl)

YpredZ — ReVS(YpredZ)

Frerr — Revs(Frepr)
Olltpllt: ?predl , ?predZ7 Frerr

encoded into tensors of identical shape. To accomplish this
transformation, we introduce the CME. In the CME, we first
use an up-sampling layer to standardize time sequences col-
lected at different sampling frequencies to a uniform size.
Subsequently, a 1-D convolution layer is employed to merge
features along the channel axis, which corresponds to sensors
in the sensor cluster. The merged feature at this stage is
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Algorithm 2 TD-MPGRU
Input: h,x,,m,, A%/ §4
7 = exp{—Relu(NN(§))}
y, = Convld(yy)
h5 =h ©) Ve
%2 = NN(h%)
x} = Impute(X?, x,, m,)
r = o {MPNN(x, ||m,|[h, A*V)}
ug = o {MPNN(x?||m,|[h®, A*%/)}
¢; = tanh{MPNN(X’||m, ||r, © h?, A%4/)}
h=uvO0h+{1-uw)O¢
Output: h

Encoder 1-i (i=1,...n)

_______________ - imp
I - =) s
I . int
1. | TD-GRIN Residual connection ! Fim a
| Backward 1
I (TocriN 1 Y
Fl IMI\ ________________ ’

@®: Concatenate

Fig. 3. Architecture of one encoder in stage 1. It make preliminary prediction
F'™P_ extract intracluster feature F'™™, and merge features into F,.O ! as input
for stage 2.

Inter-cluster Encoder

Fig. 4. Architecture of one encoder in stage 2. It extracts intercluster features
and encode them into FI.O2 as the input for stage 3.

denoted as Fio !. Regardless of the varying sensor counts
and sampling frequencies across different sensor clusters, FiO !
from each sensor cluster maintains a consistent shape. These
features are then used as an input graph for the second stage.

C. Stage 2: Intercluster Encoder

Fig. 4 illustrates the intercluster encoder utilized in stage 2.
It is composed of two concatenated repeated modules. In each
module, attention-based spatial graph convolutional networks
(ASGCNSs) [33] extract intercluster features followed by one
2-D CNN. Another 2-D CNN works as a residual connection.
The output of this stage is Fioz’ representing the encoded
intercluster features as the input for stage 3. The 2-D CNNs,
being widely used feature extractors, are adept at extract-
ing spatial features. In this section, we primarily introduce
ASGCNs, which are employed to explore the diverse and
dynamic correlations between different sensor clusters.

The traditional graph convolutional network (GCN) is
employed to extract spatial dependencies from the input graph
sequence. The forward pass in a GCN can be represented as
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follows:
Fl+1 — GCN(FI,AadJ)
—0c (f)*%AadJ'ﬁ*%F’w’ + B’) (5)
where FO ¢ RS*H' is the input feature in layer / and

FU+D ¢ RS*H™" ig the output of the GCN. A = A 4,
where A is the adjacent matrix of the input graph. Degree
matrix D is a diagonal matrix with element in the diagonal as
D; =Y, A"‘dJ W® and B are learnable parameters. o is a
nonhnear actlvatlon function.

In ASGCN, the spatial attention matrix S is computed with

S=V' o ((F'W))(WoF") +b°) (©)

where V¢ € R™" W, e R W, € R are learnable
weights of ASGCN. b® are learnable bias. o denotes the
activation function. The value Sj; in S represents the strength
of correlation between vertex i and j. It is updated during
each training step with the new coming input data. A softmax
function shown in (7) is then applied to S to ensure the sum
of weights to be 1. Then, we got S’ for adjusting the adjacent
matrix in GCN

5, = @) 0

2 i1 €xp (Sis)

The computed spatial attention matrix will be used to adjust
the terms of the Chebyshev polynomial in the Chebyshev
polynomial approximation of the graph convolution operation.
We use graph Laplacian matrix L as the graph filter and g
as the kernel. The graph convolution operation is defined as

F' = go(L)F = go(UAU")F' = Ugg(MU'F'  (8)

where L = Iy — D~ (/2 A3D~1/2) A3d jg the adjacent matrix
of the input graph. Degree matrix D is a diagonal matrix with
diagonal element D;; = > A?;1J . U is the matrix of eigen-
vectors and A = diag[Al, ..., An] is the diagonal matrix of
eigenvalues. However, it is computation-intensive to perform
eigenvalue decomposition on a large-scale Laplacian matrix.
As a result, we use Chebyshev polynomial approximation [34]
to reduce computation
K—1
Ugy(A)UTF ~ Z 0T (L)F' )
k=0
where 6 € RX is the vector of polynomial coefficients to be
updated during model training. Tj (L) € R"™" is the Chebyshev
polynomial of order k evaluated at L= 2/ Amax)L—1Iy. Ty (I:)
can be computed recursively using the Tj (I:) and T (I:). Amax
is the largest eigenvalue of the Laplacian matrix. K is the
largest order of used in the approximation.
The spatial attention matrix S’ is used to adjust elements in
T (L) and the graph convolution operation becomes

Finter _ Z Gk Tk

By choosing K < n in the Chebyshev polynomial approx-
imation, we reduce the number of trainable parameters and
accelerate the training efficiency.

) © S'FOL (10)
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Fig. 5. Architecture of one decoder in stage 3. Stage 3 merges intracluster

and intercluster features in the previous two stages and decodes them with
stacked CNNs to make the final prediction.

D. Stage 3: Decoder

The output of stage 2 is a graph sequence where each vertex
represents features extracted from the corresponding sensor
cluster. As our objective is to recover missing data for each
sensor, it is necessary to decompose the features of each vertex
in stage 2 back into features for multiple sensors within the
sensor cluster. Fig. 5 illustrates the architecture of one such
decoder. Mirroring the CME in stage 1, which merges features
of multiple sensors, we employ a 1-D CNN in stage 3 to
decompose the output vertex features of stage 2.

Given the potential loss of local information during the
merging and decomposing processes, we incorporate a residual
connection from stages 1-3. Specifically, the intracluster ver-
tex features Fj.“"a in stage 1 are concatenated with the output
of the 1-D CNN in stage 3. The concatenated features are
then processed by the stacked CNN decoder. The output of the
decoder for the ith sensor cluster is denoted as Y;. Finally, the
imputed data for each sensor cluster are computed according
to (2).

In the MSA-GCN model, we leverage predictions from
both stages 1 and 3 from n sensor clusters to compute the
overall loss. The final loss function is computed as Loss =
>, Loss;, where

Loss; = mse(Fmp Impute(Fmput Y, M, ))

Flnput mput Y predl,fwd .M,

Impute

Fmput

(Fmpu[ IHPUt pred2 fwd M

Impute

Fmput IHPUt pred2 bwd M

Impute

(F )
Impute( FimPut |y, predi bwd M)
(F )
(¥ )

and mse denotes mean square error loss function.

V. EXPERIMENTS WITH SHM DATA AND WEATHER DATA
A. Graph Representation of Data

We utilized historical monitoring data from the SHM system
of Tsing Ma Bridge, a large-span suspension bridge in Hong
Kong, to evaluate the data imputation performance of the
MSA-GCN. The SHM system continuously collects dynamic
responses from multiple substructures of the bridge, including
the bridge deck, cables, and abutments. In addition, it gathers
ambient environmental conditions around the bridge, such as
wind velocity and temperature. Accelerometers mounted on
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Fig. 6. Comparison of data in different monitoring items. Acceleration
of cable, deck, and abutment exhibit different vibration patterns over time.

However, acceleration collected by two sensors on the same abutment pattern
has similar vibration patterns.

TABLE I
DATA CHARACTERISTICS IN EACH SUBSYSTEM MONITORING ITEM
Monigtoring item Number Sampling Unit
of sensor  frequency

Abutment acceleration 3 51.2 Hz mm/s?
Cable acceleration 6 51.2 Hz mm/s?
Cross deck direction acceleration 5 51.2 Hz mm/s?
Vertical deck direction acceleration 10 51.2 Hz mm/s?

Wind velocity 11 2.56 Hz m/s
Temperature 103 0.07 Hz Degs C

the bridge deck also record acceleration in two directions:
vertical and cross-deck. After discarding the abnormal data
from the raw dataset, we curated a dataset containing six
monitoring items, as detailed in Table I.

Fig. 6 illustrates the different vibration patterns of the
bridge’s cables, deck, and abutments. The figure aligns with
our hypothesis that data from the same monitoring item usually
exhibit similar characteristics, while data from different items
vary. The two acceleration time series from the bridge abut-
ment show a similar vibration pattern. However, the vibrations
of the abutment and deck in the vertical direction are more
frequent than those of the cables and deck in the cross-deck
direction. The acceleration in the vertical deck direction also
has a larger amplitude than the other three items. This could
be explained by the fact that a bridge’s vertical stiffness is
typically smaller than its stiffness in other directions due to
the bridge’s long span. It should be noted that offsets exist
in each accelerator on the bridge, so the mean value of the
measured accelerations is not zero. However, the acceleration
responses used during model training have a zero mean value
because we normalize them before training. As a result, the
offset of accelerators will not impact the performance of our
proposed method.

We create six graphs using the time series from the six
monitoring items. Specifically, we design graphs for the four
accelerometer clusters based on the sensor layout on the
bridge. Edges are assigned to sensor pairs whose distance
is less than a predefined threshold. For wind velocity and
temperature data, we follow the same procedure of comput-
ing the adjacent matrix in [27]. We compute the Euclidean
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TABLE II
DATA IMPUTATION ERROR OF MSA-GCN AND BASELINE MODELS IN SHM DATA

Self-designed graphs in stage 1 Fully connected graphs in stage 1
Method Pblock = 0.01 Pbiock = 0.02 DPbiock = 0.03 Pbiock = 0.01 Dbiock = 0.02 Pbiock = 0.03
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
Global Mean 13376 555.137 | 13.373  554.831 | 13.370  554.627 / / / / / /
Batch Mean 9.951 332754 | 9.951 332.863 9.949  332.649 / / / / / /
Interpolation 7.340 231789 | 8.236  281.992 8.671 305.701 / / / / / /
BRITS 8.251 240.748 9.011 279.498 | 9.379  297.293 / / / / / /
GRIN 4.863 106.546 | 5.846 136.660 | 6.357 153.040 | 4.523 99.715 5.556 129.120 | 6.081 144.556
Transformer 7.533  201.789 | 8.146  233.688 8.483  250.388 / / / / / /
TimesNet 5.572 108.164 | 5.964 123.294 | 6.199 132.627 / / / / / /
MS-GCN 4.352 74.662 5.056 95.218 5.441 107.218 | 4.633 84.890 5.378 107.778 5.781 121.098
MSA-GCN w/o stage 1 | 13.280  551.958 | 13.295 552.849 | 13.289 552.513 | 13.291 543362 | 13.296 544.213 | 13291 543.883
MSA-GCN w/o stage 2 | 4.327 71.384 4.994 90.468 5.355 101.443 | 4.727 87.639 5.474 111.122 | 5.881 124.637
MSA-GCN 4.248 67.963 4.906 86.438 5.265 97.135 4.627 81.915 5.366 104.698 5.766 118.083

Note: Transformer denotes Non-stationary Transformer

distance between sensor pairs to create a similarity matrix.
The connectivity threshold is set at the 75th percentile of
each row in the similarity matrix, ensuring that only the
strongest connections are retained. Furthermore, we apply
second-level filtering by setting the overall 75th percentile
of the similarity matrix as a cutoff, discarding values below
this threshold. In each graph, the attributes of each vertex
are the time-series data collected from each sensor. We then
divide these time series into segments with a fixed length
of 28.125 s for this experiment. Given that the sampling
frequency for all the accelerometers is 51.2 Hz, there are
1440 time steps in each acceleration segment. The length of
each wind velocity and temperature data segment is 256 and
2 steps, respectively. Finally, the generated dataset comprises
46 080 samples, representing 15 days of SHM monitoring data.

B. Baseline Models

We consider seven baseline models as alternatives
to MSA-GCN for comparison, including global mean
value, batch mean value, linear interpolation, BRITS [25],
GRIN [32], nonstationary transformer [35], and Times-
Net [36]. The global mean value and batch mean value are
naive data imputation methods that use the mean value of the
training set and each batch, respectively. Linear interpolation
is a method that constructs a straight line passing through two
known data points and uses that line to interpolate the missing
value. BRITS and GRIN are two deep learning-based models
known for their state-of-the-art data imputation accuracy.
BRITS is based on a RNN, while GRIN is based on a message-
passing GRU. GRIN’s performance has been validated on
several public datasets for MTS imputation.

We design three variants based on MSA-GCN as ablation
experiments to validate the contribution of multilayer architec-
ture and spatial attention mechanism. Specifically, we replace
the ASGCN in stage 2 with a traditional GCN. We call this
model multistage GCN (MS-GCN). In MS-GCN, we formu-
late a fully connected graph in stage 2 with the output of
stage 1. The GCN in stage 2 has three graph convolution
layers with a hidden size of 1440, 256, and 1440. Moreover,
we remove stages 1 and 2 from MSA-GCN, respectively, and
the models are named MSA-GCN w/o stage 1 and MSA-GCN

w/o stage 2. It should be noted here that we still keep DME
and CME in stage 1 in MSA-GCN w/o stage 1. Because they
are used to transform data from different sensor clusters into
consistent shapes. Then, the heterogeneous data can be fed
into the intercluster encoder in stage 2.

C. Dataset Generation and Model Training

To ensure stable training, we normalize each time series
data to have zero mean and unit variance before they are input
to MSA-GNN. As mentioned in Section III-A, we manually
remove data to simulate data loss. In the case of “block
missing,” pplock 1S set to 0.02 during model training. The
minimum and maximum durations for block failure are 3 and
10 steps, respectively. During testing, we use different ppjocx
values to test the generalization ability of our method under
varying severities of data loss. We set the batch size to 32 and
the initial learning rate to 0.001. During training, we optimize
the learning rate using the Adam Optimizer with a Cosine
Annealing Scheduler.

Both MSA-GCN and the baseline models are trained with
the same dataset and model training hyperparameters. ppjock
is set to 0.02 in the training set. It’s worth noting that
we use three models independently to process acceleration,
wind velocity, and temperature data in our training set while
using BRITS, GRIN, nonstationary transformer, and Times-
Net. Because the acceleration, wind velocity, and temperature
data in the training set consist of matrices with three dif-
ferent shapes, corresponding to the three different sampling
frequencies in Table I. The three trained models are used
to recover data for the corresponding sensor clusters, respec-
tively, with their imputation error calculated from all sensor
clusters. The overall experimental results are summarized in
Table II.

We implement MSA-GCN using PyTorch 1.12.1. Graph
operations are performed using DGL 0.9.1, an open-source
library for deep learning on graphs. All models are trained
using a GTX 3090Ti GPU.

D. Data Imputation Performance Comparison

We evaluate the data imputation accuracy of the various
methods using mean absolute error (MAE) and mean squared
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Fig. 7. Comparison of data in the time domain. With the increase of ppjock, the data imputation error of each monitoring item also increases.
TABLE III
DATA IMPUTATION ERROR OF MSA-GCN AND BASELINE MODELS IN WEATHER DATA
Self-designed graphs in stage 1 Fully connected graphs in stage 1
Method Dblock = 0.01 DPblock = 0.02 Pblock = 0.03 Pblock = 0.01 Pblock = 0.02 Pblock = 0.03
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
Global Mean | 37.554  7825.589 | 40.107 8607.056 | 37.381 7778.770 / / / / / /
Batch Mean 17.332  3395.457 17.601  3459.153 16.566  3172.549 / / / / / /
Interpolation 3.938 876.138 3.842 940.960 3.836 716.601 / / / / / /
Transformer 8.611 673.208 8.521 677.738 8.644 673.208 / / / / / /
TimesNet 5.859 553.320 6.081 599.962 6.361 654.788 / / / / / /
BRITS 6.097 515.401 6.467 575.999 6.269 493.790 / / / / / /
GRIN 5.276 514.239 5.518 493.976 5.622 448.377 5.528  630.101 | 5.782 632.487 | 6.000 574.550
MSA-GCN 5.182 477.953 5.558 528.255 5.777 560.203 / / / / / /

Note: Transformer denotes Non-stationary Transformer

error (mse). The prediction accuracy of these methods is
assessed using the same testing sets. To explore how the

structure of the input graph-shaped data influences the final
imputation accuracy, we tested both self-designed graphs and
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Fig. 8. Comparison of data in the frequency domain. With the increase of pyiock, the difference of spectrum between MSA-GCN recovered data and ground
truth also increases. Their peaks in the spectrum match well, demonstrating that frequency features of data are well preserved in MSA-GCN’s prediction.

fully connected graphs for all the GNN-based models. As men-
tioned in Section V-A, we design a self-designed graph based
on the layout of sensors in the bridge. In a fully connected
graph, each vertex is connected with all other vertices. To test
the generalization of the models, we generate three testing
sets with different pyocx values: 0.01, 0.02, and 0.03. These
three testing sets represent the varying severity of data loss in
real-world data.

As shown in Table II, MSA-GCN outperforms all other
models across different scenarios, achieving the smallest MAE
and mse. Compared to GRIN, which yielded the smallest data
imputation error among the five baseline models, MSA-GCN
reduces MAE by up to 20.75% and mse by up to 58.10%.
Furthermore, the prediction error of MSA-GCN remains stable

across different pyjock values, demonstrating its robustness
under varying data loss severities.

Despite GRIN’s impressive accuracy in public datasets with
homogeneous data, its imputation performance in heteroge-
neous SHM data is less satisfactory. Using fully connected
graphs allows GRIN to reduce the error, but it still yields larger
data imputation errors than MSA-GCN and MS-GCN. A likely
explanation is that GRIN does not incorporate a multistage
architecture and thus cannot fully exploit the heterogeneous
and dynamic correlations in the data. The prediction results
of Global Mean, Batch Mean, and Interpolation with fully
connected graphs are blank because these methods do not
require transforming input data into graphs. Global Mean
yields the largest imputation error, demonstrating the poor
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performance of naive imputation methods on heterogeneous
data.

Both MSA-GCN and MS-GCN perform better with
self-designed graphs than with fully connected graphs in terms
of imputation accuracy. The reason can be that the multistage
architecture already efficiently captures the heterogeneous
correlations in the input data. Fully connected graphs link
uncorrelated nodes, leading to overfitting of the two multistage
models.

MS-GCN yields higher prediction errors than MSA-GCN
across various data loss severities, demonstrating the value
of the spatial attention mechanism employed in ASGCN of
stage 2. MSA-GCN w/o stages 1 and 2 also demonstrate
larger errors than the complete MSA-GCN, reinforcing the
importance of intracluster and intercluster features in predict-
ing missing values. Despite their subpar performance relative
to MSA-GCN, both MS-GCN and MSA-GCN w/o stage 2
outperform other baseline models, affirming the superiority of
the multistage architecture and intracluster features in restoring
missing values.

E. Data Imputation Results Discussion

Fig. 7 displays the ground truth data and the data imputed
by MSA-GCN for the five monitoring items under different
data loss severities. MSA-GCN achieves impressive accuracy
in each monitoring item, with some exceptions for local peaks
in the time series. As ppjock increases, the imputation error also
increases. However, the error remains within acceptable limits
even when pyocx increases to 0.03, where almost 18% of the
raw data are missing.

We also compare the ground truth and recovered data in the
frequency domain. We use fast Fourier transform to estimate
the power spectral density (PSD) of four types of acceleration
data. As shown in Fig. 8, the spectrum of the ground truth
and the MSA-GCN recovered data match very well. As ppock
increases, the PSD of the MSA-GCN imputed data gradually
deviates from the ground truth. However, the peaks in the PSD
are preserved accurately. This shows the great potential of
MSA-GCN in real-world implementation for SHM systems.
Because peaks in the PSD of acceleration represent the vibra-
tion frequencies of an engineering structure. These are crucial
features used for estimating the health condition of engineering
structures.

Fig. 7 indicates that MSA-GCN incurs a higher imputation
error in consecutive data loss steps than in a single step.
To analyze how the length of the data loss step influences
MSA-GCN’s performance, we compute its imputation error
under different lengths of consecutive data loss time steps.
Fig. 9 shows that both the MAE and mse of error increase with
the increase of consecutive data loss steps for each monitoring
item.

Moreover, within each time step, the number of failed
sensors can also influence the data imputation accuracy. This
is because the more sensors fail at the same time, the fewer
spatial correlations can be used to recover the missing value.
For instance, if we have ten sensors to monitor acceleration
in the vertical deck direction, and data from six sensors are
missing in one time step, we have to recover them with the
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remaining 4 sensors. This will be more challenging than if only
two sensors are missing. We computed and summarized the
MAE and mse of error for each time step. Fig. 10 shows the
change of error with respect to the increase of failed sensors in
a one-time step. For variables such as abutment acceleration,
cable acceleration, acceleration in the cross-deck direction,
acceleration in the vertical deck direction, and temperature,
an increased number of failed sensors consistently results in
larger imputation errors. However, the situation differs in the
case of wind velocity data where the number of failed sensors
does not seem to significantly impact the data imputation error.
This can be attributed to the weaker spatial correlations within
multipoint wind velocity data, while their temporal correla-
tions are strong. As a result, even if most of the other sensors
fail, MSA-GCN can effectively recover a sensor’s missing
wind velocity data using its past or future measurements.

Finally, we would like to analyze how the error performance
with the continuous increase of data loss severity. We increase
Polock to 0.1, in which around 36% of raw data are missing.
Fig. 11 shows that the overall imputation error continues to
increase with respect to the increase of pyjock. It also shows
that the increase of imputation error gradually becomes stable
when ppjock becomes larger.

F. Data Imputation Experiments on Weather Dataset

We also test the data imputation performance of our pro-
posed MSA-GCN in a public multivariate dataset with baseline
models. We chose the Wetterstation weather dataset [37]
because this dataset is heterogeneous. Different variates come
from different monitoring items, including air temperature,
humidity, and air pressure. However, each monitoring item
in this dataset has only one sensor and all monitoring items
share the same sampling frequency, making this dataset less
heterogeneous than our SHM dataset used in Section V-A.

We test the performance of all baseline models used
in experiments with the SHM dataset. Their performances
are summarized in Table III. The table demonstrates that
MSA-GCN surpasses other baseline models in imputation
accuracy on the Wetterstation weather dataset. However,
the performance between MSA-GCN and GRIN is closely
matched. The distinct advantage of MSA-GCN in handling
heterogeneous datasets is not fully showcased in this dataset
due to uniform sampling frequencies across sensors, ren-
dering it less heterogeneous compared to SHM datasets
where MSA-GCN typically excels. Besides, the results for
MSA-GCN in the column of fully connected graphs in stage 1
are blank because each monitoring item in the Wetterstation
weather dataset only has one sensor. There is only one node
in each graph in stage 1, making self-designed and fully
connected graphs the same.

The data imputation MAE and mse computed in our exper-
iment are higher than those in experiments of TimesNet [36].
That arises from differences in experimental settings and data
normalization. In our experiments, we calculate MAE and
mse for un-normalized data, whereas normalized data are
used to compute MAE and mse in experiments of TimesNet.
In addition, our experiments account for both block-missing
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Fig. 10. Data imputation error with the different number of failure sensors. In most monitoring items, the error increases with the increase of failure sensors.
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Fig. 11. Data imputation error under increasing pplock- The error gets larger
with the increase of ppjock and gradually converges to a constant value.

and point-missing scenarios across various variates, adding
complexity to our data imputation tasks. In contrast, exper-
iments in TimesNet only include point-missing scenarios.
Block-missing scenarios, where data is lost consecutively, pose

a greater challenge for accurate data recovery than isolated
point-missing scenarios.

VI. CONCLUDING REMARKS

In this article, we introduced MSA-GCN, a novel approach
for imputing missing data in MTS. Unlike many existing
methods that focus on homogeneous data, MSA-GCN is
designed to handle heterogeneous data from multiple mon-
itoring items, making it more applicable to real-world data
loss situations. By incorporating a multistage architecture,
MSA-GCN is capable of learning heterogeneous correlations
between MTS. It captures diverse intracluster correlations with
multiple encoders in stage 1 and intercluster correlations in
stage 2. Furthermore, MSA-GCN integrates a spatial attention
layer in stage 2, enabling the model to capture dynamic
intercluster correlations effectively.

Our experimental results, using six types of monitoring data
from the Tsing Ma Bridge, demonstrate MSA-GCN’s superior
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data imputation accuracy compared to baseline models under
various data loss severities. Ablation experiments also con-
firm the effectiveness of the spatial attention mechanism in
MSA-GCN. The frequency domain features of the imputed
data closely align with the ground truth, emphasizing the
practical value of MSA-GCN in real-world SHM systems.
Another experiment on the Wetterstation weather dataset fur-
ther validates MSA-GCN’s superiority over baseline methods
in terms of imputation accuracy. As a future direction, we plan
to extend MSA-GCN to handle even more heterogeneous
monitoring items, building upon the foundation established in
this work. In addition, we will investigate the applicability of
MSA-GCN to other domains, such as healthcare, finance, and
environmental monitoring, where heterogeneous MTS data are
also prevalent.
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