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Abstract—Estimating engineering structures’ health conditions
and predicting their future behaviors are fundamental problems
for a city’s safe and efficient operations. Data-driven solutions
estimate the health conditions using statistical models generated
from measurement data. They have attracted growing interest
recently because advances in information and communication
technologies (ICT) have enabled numerous real-world measure-
ment data, and the flourishing big data community has provided
enormous state-of-the-art data analytics algorithms. Nevertheless,
most existing studies remain in numerical simulation while ne-
glecting their real-world implementation, restricting the extensive
development of data-driven methods. In this survey, we provide
a structural overview of the past decade’s data-driven structural
health monitoring (SHM) systems and algorithms from the
perspective of real-world implementation. Specifically, we cover
various aspects of the design and implementation of monitoring
systems, including sensing technologies, communication technolo-
gies, and processing software. In addition, we classify the used
data sources and statistical models with fined details. Under
the proposed taxonomy, their limitations and advantages are
thoroughly discussed. Based on our insights into existing studies,
we clarify two major implementation challenges: the digressive
performance in the real-world environment and inefficient com-
puting systems for real-time data analytics. Possible solutions
are then proposed to mitigate those challenges and promote the
implementation of data-driven methods. Finally, we raise our
outlook on future trends and suggest promising directions for
further investigation.

Index Terms—Data-driven methods, cyber-physical systems
(CPS), structural health monitoring (SHM), predictive mainte-
nance

I. INTRODUCTION

NGINEERING structures, as one of the biggest infras-

tructures in “Smart Cities,” play a fundamental role in
a society’s safe and efficient production. Constructing such
structures typically results in significant carbon emissions and
requires substantial financial, labor, and energy resources.
The failure or collapse of them can cause extensive damage
to society and pose a significant threat to life. Maintaining
the health and extending the service life of structures is
of significant social and economic value. Structural Health
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Monitoring (SHM) has gained increasing attention as a means
of achieving this goal. SHM involves implementing a damage
detection strategy for aerospace, civil, or mechanical engi-
neering infrastructure [1]. This process includes techniques
for regularly measuring dynamic responses and environmen-
tal conditions of structures, as well as analyzing data to
identify changes in material and geometric properties. SHM
has become widely utilized in various structures, including
bridges, high-rise buildings, stadiums, wind turbines, offshore
oil platforms, and nuclear power plants [2]. Furthermore, its
functionalities have extended from condition monitoring to
predictive maintenance, which involves anticipating damage
and performing maintenance before structures fail.

SHM is an interdisciplinary field that integrates technologies
from computer science, mechanics, and engineering disci-
plines [3]. It also relies on techniques from communication
engineering to electronic engineering [4]. For instance, in
the case of monitoring the health of a long-span bridge,
researchers often install numerous sensors to measure the
bridge’s displacement and vibration under various conditions,
including traffic load, wind forces, and earthquakes. These
sensors generate a large amount of streaming data from
the local sensor network, which is transmitted to a remote
cloud server for immediate decision-making, such as assessing
whether the vibration frequency is abnormal. This process
relies on sensing technology, wireless communication technol-
ogy, and dedicated storage and computation devices like cloud
servers for efficient streaming data processing. Dedicated data
processing algorithms typically incorporate techniques from
system identification [5] and big data analytics [1], such as
feature engineering, data fusion, and machine learning.

The popularity of SHM has led to an abundance of proposed
methods in the literature, which can be classified into two
categories: model-based and data-driven methods [1], [6].
In model-based methods, physical or law-based numerical
models [1] are built based on mechanical principles, engi-
neering practices, and experience from inspection. Their pa-
rameters are predefined with structures’ mechanical properties
and then updated using measurement data from structures.
Afterward, researchers can identify structural damages by
tracking changes in mechanical properties, and the prognosis
is performed by simulating the degradation of structures in
their numerical models. Thanks to extensively validated phys-
ical principles, laws, and theorems, model-based approaches
have been extensively used in many industrial systems [7].
However, inevitable discrepancies exist between engineering
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Fig. 1. Comparison between data-driven and model-based methods.

structures and their numerical models. Firstly, those numerical
models are built with much-simplified material and geometry
properties. Nevertheless, those properties of real engineering
structures are always nonlinear and anisotropic. That brings in-
evitable bias to the predicted responses. Secondly, engineering
structures’ boundary conditions and ambient environment are
ever-changing and unexpected. They are subject to numerous
factors which can hardly be simulated with predefined physical
models. This may also enlarge the gap between predictions and
actual performance.

Unlike model-based methods, data-driven methods process
measurement data without physics-based models. Instead, sta-
tistical models are built purely with data collected from struc-
tures. Then, damage-sensitive features (DSFs) are extracted,
and their intrinsic correlation with damages is captured in
either a supervised, self-supervised or unsupervised manner.
Furthermore, structural health conditions are estimated with
the newly sampled data. The comparison between data-driven
and model-based methods is presented in Fig. 1. The major
differences are the used numerical models and the way to
utilize the measurement data. Model-based methods utilize
the data to identify the physical properties of structures and
reconstruct the load applied to those structures. Then, the cor-
responding parameters in physics-based models are updated.
The environmental influences on structures are simulated with
reconstructed load to the updated models. In contrast, data-
driven methods abstract the monitoring process into a data
mining task while ignoring the exact physical meaning of
parameters. They target finding sensitive and robust features to
be mapped to specific damages or used as condition evaluating
indices for structures. Due to the irregular geometric size,
heterogeneous material, and ever-changing environmental con-
ditions, identifying the parameters for a fine-grained physics-
based model is either too costly or impossible. As a result,
it is fairly challenging to implement model-based methods in
real-world engineering structures. Fortunately, recent advances
in ICT have made it efficient and economical to collect *big
data’ from engineering structures. As a result, there followed
a surge in data-driven SHM in the past decade.

In this survey, we summarize studies on data-driven methods
from the perspectives of monitoring systems and algorithms.
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Although several comprehensive reviews [8]-[16] have been
published to summarize data-driven SHM methods, they either
focus on a specific type of algorithms (such as vibration-
based methods [10], [12], neural network [8], machine learning
[9], [13], and deep learning [12], [15]), or a specific type
of structure (such as bridges [11] and wind turbines [16]).
In addition, they mainly clarify the theories of data-driven
algorithms while neglect discussions on the overall monitoring
systems from a computational perspective.

Different from existing surveys, this paper reviews both
the data-driven algorithms and monitoring systems used for
a variety of engineering structures. Moreover, we found that
while various data-driven methods have been proposed, most
of them are designed regardless of their performance in
real engineering structures. Although they have been tested
with numerical simulation or laboratory experiments, their
implementation performance such as latency, accuracy, and
robustness in real-world SHM systems are unknown. In fact,
those performance might degrade significantly since those
data-driven methods usually assume the excitation, damage
types, and possible damage locations are known, which can
hardly be fulfilled in real-world projects.

To this end, this survey also focuses on the concern of their
real-world implementation. Based on our insights into existing
studies, we foresee two major implementation challenges:
the digressive performance of data-driven methods in the
real-world environment and the poor efficiency of current
monitoring systems for real-time data analytics. Moreover, we
have proposed possible solutions and pointed out directions
for further investigation.

This survey is ognized as follows. The design and devel-
opment of data-driven SHM systems are firstly introduced in
section 2. Section 3 clarifies typical procedures in different
types of data-driven SHM methods. Key elements in those
procedures, including sources of excitation, input data, statis-
tical models, and monitoring objectives, are summarized with
abundant examples. Section 4 classifies the input data used
in data-driven methods into three types. Then we compare
their advantages and disadvantages in real-world implemen-
tation with detailed descriptions. Section 5 goes into finer
details about five classes of statistical models used in data-
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Fig. 2. Deployment architecture of SHM systems.

driven methods. Their performance in numerical simulations,
reduced-scale laboratory experiments, and implementation in
real structures are clarified. Challenges about existing data-
driven algorithms in real-world structures are then discussed
in section 6. We then propose fusion methods as a promising
solution. Section 7 summarizes the challenges of implementing
real data-driven monitoring systems and promising directions
in improving those systems. The last section draws conclusions
based on the comprehensive review of existing research.
Suggestions for the usage of algorithms and design of SHM
systems are given, and promising future trends are elaborated.

II. IMPLEMENTATION OF DATA-DRIVEN METHODS TO
REAL-WORLD STRUCTURES

Although enormous data-driven algorithms have been pro-
posed, most of them are tested in numerical simulation, where
environmental factors are available and even controllable.
Some algorithms have been validated in laboratory experi-
ments [14], while implementations to real-world engineering
structures are much fewer [17]. It is due to following chal-
lenges. Firstly, the responses of engineering structures are
subject to a variety of excitation, such as temperature, traffic
load, and wind load. It is hardly possible to observe and
simulate all of them precisely. Secondly, data transmission
is always disturbed by unexpected ambient environmental
factors. The collected data are usually polluted by noises
and sometimes suffer from data missing. Thirdly, the delay
caused by data transmission and data processing is inevitable,
especially for data processing algorithms with high space and
time complexity.

In this section, we start from the implementation of data-
driven methods in real-world structures. We first introduce the
architecture of real-world SHM systems and clarify related
techniques, hardwares and softwares involved in their imple-
mentation. Then we review the latest data-driven SHM systems
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for various real-world engineering structures. The performance
of those systems and data-driven algorithms are clarified and
summarized. Finally, we compare SHM with several popular
areas in the frontier of modern scientific research.

A. Architecture of SHM Systems

As Fig. 2 shows, a SHM system for engineering structure is
an Internet of Things (IoT) system [4] with three subsystems:

e Sensory and control subsystem
o Transmission and communication subsystem
« Data storage and processing subsystem

In the sensory and control subsystem of Fig.2, we summa-
rize 13 widely used data acquisition and sensing technology
and classify them into 4 categories: ambient environment
sensing, structural responses measurement, surface defects
detection, and internal defects detection. In ambient environ-
ment sensing, anemometers [18] are used to measure wind
speed and direction. Thermistors [19] are temperature-sensitive
resistors that change resistance with temperature, allowing for
the monitoring of temperature variations in structures. A Fiber
Bragg Grating (FBG) [20] is the optical sensor that measure
strain, temperature, and pressure by monitoring changes in
the wavelength of light reflected within the fiber. In structural
responses measurement, accelerometers [21] measure acceler-
ation and vibrations in structures. Strain gauges [22] measure
the strain (deformation) in structures by converting changes
in electrical resistance into strain values. Linear Variable
Differential Transformers (LVDT), Global Positioning System
(GPS) [23] and Laser-based sensors [24] can measure dis-
placement in structures. Laser-based sensors can also measure
surface defects of structures. The more commonly used surface
detection device are cameras [25]. They can detect cracks,
corrosion, and other signs of damage. RFID sensors [26] are
also used to detect both surface crack and corrosion. In internal



TABLE I
SUMMARY TO THE COMMUNICATION TECHNOLOGIES USED IN SHM SYSTEMS
Communi- Transmission throughput Energy con- Feature Ref
cation range sumption
RS232 <15m <20kbps / Reliable, secure, and low-latency communication; Used in
RS485 <1200m <10Mbps Limited mobility and flexibility; most
USB <30m <20 Gbps(USB 3.2) quui're physi.cal cabling}nfrastructure; SHM
<480 Mbps(USB 2.0) High installation and maintenance costs; systems
RFID <10m <100kbps low No internal power source; Simple and cost-effective deployment; [33]
Bluetooth  <100m <1Mbps low Supports point-to-point and mesh network topologies; [34]
- <600Mbps(2.4GHz) . Supports multiple devices and network topologies;
WiFi <200m <1733Mgps(5GHz) middle Higlrl)er power Eonsumption than most wirglessg technologies; 1351
Zigbee <100m <250kbps low Supports mesh network topologies with a large number of devices; [36]
LoRa <14km <50kbps low Isdeal for infrequent data transrn.ission over long distances; [37]
upports star network topology;
NB-IoT <20km <200kbps low gesigned .forvmassive IoT deploymel.lts; . . (38]
perates in licensed spectrum, ensuring reliable communication;
Cellular 3G:<5km 3G:2.8~14.4Mbps high Requires a subscription and SIM card; [39]
network  4G:<3km 4G:300~450 Mbps Higher power consumption than other wireless technologies;
5G:<300m 5G:2.5~4.6 Gbps

Note: / denotes the energy consumption is usually not considered in wired communication

defects detection, eddy current [27] is a non-destructive testing
technique used to detect cracks, corrosion, or other defects
in metallic structures by inducing electrical currents in the
material. Lead(Pb)—zirconate (Zr)-titanate (Ti) (PZT) [28] is
a type of sensor that generates electrical charge in response
to mechanical stress, enabling the monitoring of vibrations,
pressure, or strain in structures. Radar [29], [30] is used to
investigate internal defects or damage in concrete, masonry,
or other non-metallic structures.

To some extent, the choice in type, number, and location
of sensors can decide the monitoring performance of a data-
driven SHM system. Generally, the more types and number
of sensors, the more accurate observations of structures and
surrounding environment are obtained. Nevertheless, the de-
ployment of sensors is also restricted by the cost, requirement
of data processing algorithms, and the installation condition of
a structure. The layout schema of sensors is a tradeoff between
performance and expense. Numerous studies on sensor layout
optimization [31] have been proposed to achieve the optimal
monitoring performance with a limited number of sensors.

Data collected by sensors are transmitted to the data storage
and processing subsystems through a wired or wireless con-
nection. RS485, RS232, and USB cables are widely used for
wired communication. RS485 and RS 232 are two serial data
standards, while USB is the universal serial bus. For wireless
data transmission, the widely used protocols include RFID,
Bluetooth, Wifi, Zigbee, LoRa, Cellular network (3G, 4G, 5G),
and NB-IoT. The comparison of those protocols used in SHM
systems is summarized in the table below. Here in Table I,
we only compare the key performance metrics of different
protocols. Please refer to a survey of Abdulkarem et. al. [32]
for a comprehensive review of the wireless communication
technologies used in SHM.

Before the extensive use of cloud computing, data in SHM
systems are stored with a self-designed schema in the local
base station deployed on or near the engineering structure.
With the emerging demand for storing and processing a large
volume of measurement data, cloud computing was ultilized
in the monitoring system. Meanwhile, standardized databases,

including structured query language (SQL) [40]-[42] and not
only SQL(NoSQL) [43]-[45] database management systems
were involved in the monitoring system, enabling efficient
data storage, access, and management. SQL is applicable for
most current SHM systems, especially for small-scale SHM
systems with few sensor nodes. Because their data are usually
collected in fixed sampling frequency and have unchanged
data types. Typical SQL databases used in data-driven SHM
systems include PostgreSQL [41] and MySQL [40], [46].With
the development of big data analysis, the fusion of multi-
modality data has become a growing trend in data-driven
SHM. The types and volume of these data can be dynamic
as they may come from ever-changing and unexpected data
sources. For instance, some SHM systems [44], [47], [48]
are designed to store images, videos, and words, such as
inspection reports. For such systems, NoSQL databases may
be more suitable due to their dynamic schema for unstructured
data. Popular NoSQL databases in data-driven SHM include
MongoDB [43] and Apache Cassandra [43], [44].

Most of the existing SHM systems store and process data
on cloud platforms. Monitoring systems running on local base
stations might only support data storage and light-weighted
signal conditioning. Computation-intensive data-driven algo-
rithms are performed on other devices in an offline fashion.
Domain-specific tools are used to process collected data. Ex-
tensively used software includes but not be limited to Matlab
for system identification, Python together with various ML
libraries for data mining, and universal finite element analysis
(FEA) software such as StadPro, ANSYS, Bentley, Adina, and
Abaqus. In addition, BIM-related tools are used for building
digital models, including Autodesk Revit, Grasshopper, Dy-
namo, and Rhinoinside. Especially, some systems on local
base stations still incorporate enormous computation resources
and can support computation-intensive data analysis locally.
For instance, for Tsing Ma Bridge [47] in Hong Kong, a
dedicated data processing and control system has been built
in the central control office of the bridge’s administrative
department. However, it is usually applicable for crucial large-
scale engineering structures where data safety is considered a



high priority and the budget is abundant.

Benefited from the elastic storage and computation re-
sources, monitoring systems running on the cloud usually
incorporate data storage functions and adequate data analytics
tools. As data are continuously generated from sensor clusters
and flow into the cloud server, stream data processing frame-
works, such as Apache Kafka, Apache Spark, and Apache
Flink, are also needed in the cloud for real-time or near
real-time data analytics. Moreover, cloud-based monitoring
systems can provide three modes of services: infrastructure as
a service (IaaS), platform as a service (PaaS), and software as a
service (SaaS). [aaS means the computation infrastructures can
be directly utilized for the execution of designed algorithms
and scripts. PaaS is mainly for the running of data analytics
applications on the fly. SaaS provides user interfaces, web
services, and many more services directly to users for efficient
remote access, control, and data visualization.

Except for cloud computing, fog and edge computing are
also introduced to SHM systems recently. The borderline
between fog computing and edge computing is blurred in the
monitoring systems of engineering structures. They both aim
at migrating computation resources to the distributed devices
near the data source, achieving less latency and higher data
safety. Dang et al. [42] designed a hybrid-cloud based SHM
system that used both the cloud computing layer and fog
computing layer. The fog layer’s local server can data pre-
processing steps and remove insensible data. Then burden in
data transmission and computation of cloud servers are much
mitigated. Besides, the fog layers can perform encrypted data
communication between them and the public cloud, promising
the security of data for important engineering structures.

B. Data-Driven SHM Systems for Real-World Structures

Ever since the end of the last century, SHM systems
have been extensively deployed in various crucial engineering
structures all overall the world. However, their incorporation
with data-driven tools starts much later. In Table II, we sum-
marize existing real-world SHM systems that incorporate data-
driven algorithms. We mainly summarize the SHM systems for
engineering structures like bridges, stadiums, power plants,
railways, and other structures. We don’t include high-rise
buildings because SHM systems’ implementation to high-rise
buildings have been comprehensively summarized by Shan
[49] and Sivasuriyan [50].

Table II summarizes details for each monitoring system and
the functionalities of the data-driven method in each system.
As the table implies, most of the data-driven algorithms in
the monitoring systems are run offline in local base stations
instead of online. This is because of the high time and space
complexity of most data-driven algorithms. Secondly, most
SHM systems are developed for a specific structure or a small
population of structures under unified management. Never-
theless, numerous works for the SHM system development
are repetitive and trivial. An universal commercial solution is
desperately needed. Nevertheless, few commercial integrated
solutions for SHM systems are available in the market. Lastly,
wired-based monitoring systems still dominate practical engi-
neering structure projects, despite the convenience of wireless
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Fig. 3. Relationship between CPS, DT, BIM, and SHM.

sensor nodes in both device installation and maintenance.
Since the abundant and stable power supply required by ex-
isting wireless sensor nodes are usually inapplicable for most
projects. Besides, the data transmission stability of wireless
communication is much poorer than wired communication
solutions, while stability has a high priority for real-world
monitoring projects.

C. Comparison of SHM with CPS, DT, and BIM

SHM is closely related to three hot research areas: cyber-
physical system (CPS), digital twin (DT), and building infor-
mation modeling (BIM). To avoid confusion, we distinguish
the four concepts before going deeper into data-driven methods
in SHM. Their relationships are illustrated in the Venn diagram
shown in Fig. 3.

CPS refers to physical and engineered systems whose op-
erations are monitored, coordinated, controlled, and integrated
by a computing and communication core [75]. It focuses on
the integration of computation and physical process, usually
with feedback loops where physical processes affect computa-
tions and vice versa [76]. Typical physical systems constitute
physical entities and real processes such as civil structures,
human bodies, water, transportation, power grid, supply chain,
etc. DT refers to a multi-physics, multi-scale, probabilistic,
ultra-fidelity simulation that reflects, in a timely manner, the
state of a corresponding physical entity based on historical
data, real-time sensor data, and physical model. DT [77] is
usually regarded as a subset of CPS as it does not include the
controlling of physical entities like CPS. Building information
modeling (BIM) [78] is developed from computer-aided design
(CAD) and used for planning, design, construction, and oper-
ation of facilities. BIM can be regarded as DT’s application
in the building industry.

SHM can be interpreted as CPS’s application in monitoring
engineering structures, including but not limited to large-
scale civil structures, aerospace structures, and machinery. In
the meanwhile, SHM has overlaps with both BIM and DT.
Nevertheless, it also includes many particular areas that are
not in DT and BIM. For instance, SHM involves many non-
destructive testing (NDT) methods for defects monitoring.
Those technologies don’t rely on digital twin. Some pure data-
driven SHM methods are not included in BIM because 3D
digital models are not needed in those methods.

III. TyPiCAL PROCEDURE OF DATA-DRIVEN METHODS

Similar to the taxonomy proposed by Rytter [79], we
divide the objectives of data-driven monitoring and predictive
maintenance methods into three levels.

o Damage identification



TABLE I

SHM SYSTEMS WITH DATA-DRIVEN METHODS FOR REAL-WORLD ENGINEERING STRUCTURES

Structures Sensors, data transmission and storage methods References and key functionalities
Four bridges in Hong ~ Sensors: Accelerometers, anemometers, strain gauges, displace- [47] incorporates various data-driven algorithms in an off-line
Kong, China ment sensors, GPS, thermometers, dynamic weight in motion = SHM system
stations, hygrometers, corrosion cells, cameras, elasto-magnetic
sensors, and others; SHM System: Wired local base station
Yeongjong grand  Sensors: Accelerometers, laser displacement sensors, potentiome- [51] use KPCA to learn relationships between responses and

bridge, Seoul

ters, tiltmeters, strain gauges, thermometers, anemometers; SHM
system: Data are stored in data loggers on the bridge

environment, and detect anomalies by statistical novelty detection
methods.

A suspension bridge,
England

Sensors: Anemometers, displacement sensors, thermometers, load
cells; SHM system: NA

[52] use five statistical models to predict bridge’s natural
frequencies with environmental conditions.

Tianjin Yonghe  Sensors: Accelerometers, hygrothermographs, and anemometers; [53] train a Bayesian neural network to predict acceleration and
Bridge, China SHM system: Wired local base station use prediction errors to detect anomalies
Hollandse Brug  Sensors: Temperature sensors, strain sensors, and vibration sen- [54] train a graph neural network to predict future strain with

bridge, Netherlands

sors; SHM system: NA

strain data from sensors

Infante D. Henrique
bridge, Portugal

Sensors: Accelerometers and thermometers; SHM system: Wired
system

[55] use multivariate statistical techniques to extract DSFs from
frequencies and identify damages

A PSC box girder
bridge, France

Sensors: Accelerometers and thermometers; SHM systems: Local
wired system with offline data processing

[56] learn the correlation between temperature and the bridge’s
model parameters by neural network based regression

A suspension bridge,
China

Sensors: Anemometers and accelerometers; SHM system: NA

[18] predict the vortex-induced vibration mode with a trained
decision tree

Dashengguan
Yangtze
China

Bridge,

Sensors: Strain gauges and thermometer; SHM system: NA

[57] identify the aging truss with correlation learned from strain
and temperature.

25 de Abril Suspen-
sion Bridge, Portugal

Sensors: Thermometers, anemometers, strain gauges, accelerom-
eters, displacement sensors, and tiltmeters; SHM system: NA

[58] train a gradient boosting regression tree to predict fatigue
damage with environment parameters

Sydney Harbour
Bridge

Sensors: Accelerometers; SHM system: Wired Local computing
node

[59] use k-means to identify damaged jack arches with the
spectral moment

Telegraph and New-
burg Road Bridge,
UsS

Sensors: Strain gauges, strain transducers, uniaxial accelerom-
eters, thermistors, and cameras; SHM system: Wireless SHM
system with a cloud server

[44], [48] analyze the correlation between traffic load and
strain, and propose a data-driven load rating method for damage
detection

FuSui bridge, Korea

Sensors: Displacement sensors, temperature sensors, strain sen-
sors, and accelerometers; SHM system: Wired local management
station

[60] analyze correlation between strain and temperature for
thermal response prediction

A steel girder bridge,
Japan

Sensors: Accelerometers; SHM system: A wired temporary system

[61] identify locations of small changes in the structural mass
and stiffness

Zhaobaoshan Bridge,
China

Sensors: Thermometers, humidity sensors, displacement sensors,
accelerometers, and strain gauges; SHM system: NA

[62] detect anomalies using dynamic ICA with strain after
removing temperature effects

A high-speed track
bridge, France

Sensors: Displacement sensors, accelerometers, temperature
gauges, and Q sensors for measuring axle loads; SHM system:
NA

[63] use a clustering method to discriminate three different stages
of the bridge

G.Meazza stadium

Sensors: Accelerometers; SHM system: NA

[64] find the correspondence between autoregressive parameters
and environment conditions

Lillgrund  offshore

wind farm

Sensors: Accelerometers in the tower and strain gauges on blades
and sensors for condition monitoring data; SHM system: Data are
stored in a cloud server

[65] use system information, environmental parameters, and
vibration data to train a decision tree and detect abnormal
operations

Two wind turbines,
Germany

Sensors: Accelerometers and wind turbine operation information
(power, wind, yaw angle, and etc.); SHM system: Wired system

[66] use polynomial chaos expansion smoothness priors time-
varying autoregressive moving average to diagnose the structural
condition

An offshore
turbine, China

wind

Sensors: Accelerometers; SHM system: Wireless system with
online data process

[67] train two support vector machines with annotated time-
domain and frequency-domain data, respectively, for anomaly
detection of the wind turbine.

A suspension rail-
way, Germany

Sensors: Accelerometers, tiltmeters, and velocity sensors; SHM
system: Data are stored in local SD card and processed offline

[68] train a support vector machine using pristine track condition
and use it to identify health state and detect anomalous signals

Sunrise Movable
Bridge, US

Sensors: Accelerometers; SHM system: Wired system

[69] use cross correlation analysis and robust regression analysis
to detect damage scenarios caused by leakage and lack of
sufficient oil in the gearbox

San  Pietro  bell-

tower, Italy

Sensors: Accelerometers and temperature measurement Sensors;
SHM system: Wired system with local PC and remote server

[70] use multivariate statistical analysis techniques to remove
effects of environmental conditions and detect damages in the
form of outliers in frequencies

Consoli Palace, Italy

Sensors: Accelerometers, crack meters, and temperature sensors;
SHM system: Wired system with online data processing

[71] train multivariate statistical analysis models with identified
modal features and use them to identify anomalies of the structure

A concrete gravity
dam, China

Sensors: Displacement sensors, water level, and thermometers;
SHM system: Local data storage system with offline data pro-
cessing

[19] use a support vector machine to learn the correlation
between temperature and displacements

La Baells dam, Spain

Sensors: Air temperature sensors, reservoir level sensors, and
displacement sensors; SHM system: NA

[72] train boosted regression trees to predict the dam’s future
behavior, and use displacement prediction errors to detect anoma-
lies

Alto Rabagao dam,
Portugal

Sensors: Temperatures sensors, level sensors, displacements sen-
sors, tiltmeters, strain gauges, pressure sensors, and seepage
sensors; SHM system: NA

[73] use multiple linear regression (MLR) is to analyze variations
in the crest displacements with temperature and reservoir level

Alto Lindoso dam,
Portugal

Sensors: Thermometers, reservoir water level, displacements sen-
sors, strains gauges, and pressures sensors; SHM system: NA

[74] use linear regression to simulate variance of time-frequency
features of displacements and temperature




o Condition assessment
o Damage prognosis

Damage identification includes identifying the existence,
location, type, and extent of local defects in engineering
structures. Due to the sparsity of local damages in the whole
structure, damage identification is usually performed regularly
and after the structure suffers from a sudden degradation or
an extreme disaster strike. Data-driven damage identification
aims at finding physical defects which cause the change of the
condition indices. However, different damage patterns might
lead to similar influences on structural conditions. So, the key
objective of damage identification is searching for DSFs which
are accurately mapped to physical damages such as cracks,
a decrease in stiffness, corrosion, etc. Condition assessment
refers to estimating a structure’s overall serviceability in
normal or unfavorable environmental conditions during a long
service life [11]. It should be performed regularly to closely
track the fluctuation of conditions and detect the abnormality
instantly. The condition assessment mainly includes the fol-
lowing tasks:

o Estimating structural condition indices under normal load
pattern (temperature load, traffic load, pedestrian load,
and wind load)

« Estimating structural condition indices in extreme events
(earthquakes, typhoons, collisions, blasts, and overloaded
vehicles)

o Estimating structural conditions after retrofitting

Data-driven condition assessment aims at extracting struc-
tural condition indices (SCIs) from measurement data to
estimate the reliability of structures. Widely used SCIs include
parameters of time series analysis models [23], [60], statistical
features [80], [81] of raw data, and structural vibration prop-
erties [10]. Data-driven condition assessment usually spans a
long period of service life. Previously estimated SCIs can be
used as the baseline and the long-term variation of SCIs shows
the condition of a structure.

The search of SCIs or DSFs in data-driven SHM meth-
ods can be interpreted as typical feature engineering tasks.
Specifically, a data-driven method aims to select and optimize
features that are sensitive to structural health conditions or
damages from measurement data. The typical procedures of
those data-driven approaches are shown in Fig. 4. Based on the
labels used in training samples, those data-driven methods are
classified into three types: supervised method, self-supervised
method, and unsupervised method. In supervised methods, a
statistical model is trained with samples annotated with labels.
In SHM, those samples usually include excitation applied to
the structure and corresponding structural responses collected
by sensors. Labels are known health conditions and damage
information. Typical statistical models used in supervised
methods include support vector machine (SVM) [82], decision
tree [65], ensemble learning model [83], neural network [53],
and many deep learning models [12]. Both self-supervised
methods and unsupervised methods train statistical models
without structural damage information.

Instead of predicting health conditions or damages directly,
models in self-supervised methods are trained to predict data

in the future steps, while models in unsupervised samples
are trained to capture the correlations between variables in
samples or to cluster the given samples. Then damages and
health conditions are estimated by analyzing the prediction
error and outliers in the new coming sample. Widely used
statistical models for self-supervised methods include time
series analysis models [84], Bayesian-based models [53], and
various ML models [54], [85]. Unsupervised methods mainly
include multivariate analysis such as principal components
analysis (PCA) [70], canonical correlation analysis (CCA)
[86], independent component analysis (ICA) [62], and cluster
analysis [63]. More details on the statistical models used in
data-driven methods are clarified in section 5 of this survey.

Damage prognosis denotes forecasting an engineering sys-
tem’s future damages or health conditions and estimating its
remaining service life [87]. It is the primary task in predictive
maintenance. Different from the previous two levels, it relies
not only on structures’ past and present information but also
prediction of future environmental conditions. Data-driven
damage prognosis relies on the experience from previous data
records, current structural conditions, together with the predic-
tion of structural damages and load conditions development
in the future. As shown in Fig. 5, an accurate prognostic
analysis never divorced from monitoring results in the previous
two levels. Furthermore, It requires the integration of both
deterministic and probabilistic predictive modeling capabilities
[88]. Among the three levels. damage prognosis is the most
complicated one due to the lack of comprehensive estima-
tion of current structures and the uncertainty of the future
surrounding environment in real applications. Meanwhile, it
is regarded as the future direction of SHM [88] owing to
its tremendous potential for life-safety and economic benefits
during a structure’s service life.

Table III summarizes four critical modules in a typical data-
driven method. The choices for each module are listed based
on the reviewed data-driven methods in this paper. The sources
of excitation are usually determined by the used statistical
models and the common load conditions of engineering struc-
tures. For instance, wind turbines usually work under wind
load, while bridges are subject to traffic load and temperature
effects. More details about the input data and statistical models
are introduced In the following two sections.

IV. TYPES OF DATA USED IN DATA-DRIVEN METHODS

As the name implies, data-driven methods profoundly rely
on the data collected from structures. Generally, they require
an enormous amount of data to generate their feature spaces.
Moreover, the choice of data determines the upper limit of a
data-driven method. Specifically, the more sensitive the data
is to structures’ local defects or changes in overall health
condition, the higher accuracy in structural health monitoring
will be achieved. We summarize the used data into three levels
based on the interoperability of their correlation to structural
health conditions and damages.

A. Data with Low Interpretability

Raw acceleration, strain, internal force, and displacement
[21] are features that explicitly reflect the conditions of
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TABLE III
SUMMARY OF CRITICAL MODULES IN A DATA-DRIVEN METHOD

Sources of excitation

Input data

1.White noises, ambient vibration, random excitation
2.Traffic load, vehicle bridge interaction

or human-structure interaction

3. Temperature effects

4.Impact load, hammer excitation

5.Wind load

6.Earthquake, ground motion, dynamic

base excitation

7.Uniform pressure, self-weight, and other dead load
8.Excitations in NDT methods

and displacement

features
5.Time-frequency
domain features

NDT methods

1.Raw acceleration data
2.Raw strain, internal force,

3.Modal properties
4.Frequency domain

6.Data collected with

Statistical model Monitoring cbjectives
1.Time series analysis: AR, 1.Existence of
ARMA, NARX, and NARMAX  damage
2.Bayesian theory 2.Location of the
3.Multivariate analysis (PCA, damage
ICA, CCA, regression, cluster 3. Type of the
analysis) damage
4. ML based method (SVM, DT, 4.Extent of the
KNN, and Ensemble learning, damage

5.Condition assessment
6.Damage prognosis

NN, DNN)
5.Hybrid statistical models

engineering structures. Intuitively, the large deformation and
abnormal vibration can be taken as signals of danger for
structures that suffer from damage. However, they cannot be
interpreted as damage-sensitive features with high confidence.
Because acceleration, strain, internal force, and displacement
are determined by not only the mechanical properties of
a structure but also the load applied to the structure. The

abnormal deformation and vibration might result from the un-
expected external loads applied to structures, but the structures
are still healthy and intact. Consequently, they are classified
into data with low interpretability in this paper.

Raw acceleration: In traditional structure dynamics, ac-
celeration data are most frequently used to describe the
dynamic responses of a structure. Various structural dynamic



features representing the dynamic properties of structures
can be extracted from raw acceleration data from structures.
Nevertheless, most of the data-driven methods cannot extract
DSFs directly from them without any preprocessing. Yet, some
types of neural networks [53], especially deep neural networks
(DNNGs) like CNN [89]-[95], have been proven to achieve high
prediction accuracy with raw acceleration data. Besides, deep
Bayesian belief network (DBBN) [96] has also been validated
to detect damage of structure from acceleration responses.
Raw strain, internal force, and displacement: The strain
of structures can be measured with FBG and strain gauges.
Structual displacements can be monitored with LVDTvacuum
laser collimation system, GPS. It is widely accepted that
strain is more sensitive to local defects while displacement
is a common indicator of the overall structural condition
and load patterns. Julian et al. [22], [97] identified structural
damages with the strain field measured by FBG. Strain data
collected from Canton Tower were used by Wan et al. [98]
to predict future strain with Bayesian framework combined
with Gaussian process. Internal forces can reflect the structural
variation caused by environmental and operational effects, and
they are especially important for cable-stayed bridges [85].
Based on the displacements and velocities of different nodes,
Li and Yu [99] used online SVM to classify the damaged and
healthy conditions of a structure. Kang [19] used SVM to learn
the correlation between air temperature and displacements of a
concrete gravity dam. Salazar [72] trained boosted regression
trees to predict a dam’s future behavior using its radial
displacement and various environmental factors.

B. Data with Medium Interpretability

Structural modal properties, frequency domain features, and
time-frequency domain features are extracted from structural
dynamic responses (e.g., raw acceleration and displacement).
They have interpretable physical meanings and are able to
reveal the intrinsic dynamic properties of structures. Specifi-
cally, the degradation of material and defects of structures lead
to the variation of their dynamic properties. Compared with
raw dynamic responses, dynamic properties are less related to
excitations and more subject to structural states themselves.
Consequently, they are extensively used as indicators in the
monitoring of real-world engineering structures. However, the
variation of dynamic properties might also result from the
temperature change. Besides, those data are not sensitive to
damage precursor and small-scale damages [100]. So, they are
classified into data with medium interpretability in this paper.

Structural modal properties: Structural modal properties
include frequencies [101], [102], damping ratios [103], mode
shapes [101], [104], and mode shape derivatives [102], [105].
Wang and Ni [106] used measured modal frequencies and
incomplete mode shape components to identify the occurrence
of damages with auto-associative neural network. Frequencies
and mode shapes were also processed by Cury and Crémona
[107] for detecting structural behaviors based on symbolic data
analysis (SDA). Huo et al. [108] chose cross correlation func-
tion amplitude (CCFA) as the DSF, wherein CCFA was related
to the modal shapes of structures and was computed from

dynamic responses of structures. Hu et al. [109] used PCA
to detect the damage from the changes of natural frequencies
of the structure, wherein PCA can eliminate the variations
of frequencies caused by the operational and environmental
conditions.

Frequency domain features: Fourier transformation is fre-
quently used to extract frequency domain features and to build
the feature space. Lederman et al. [110] and Duan et al. [111]
mapped the fast Fourier transform (FFT) magnitude to the
bridge’s damages with machine learning algorithms. Damage
location and damage extent were detected successfully. FRF
is widely used to describe structures’ dynamic character by
representing the relationship between structural responses and
excitation in the frequency domain. Fallahian et al. [112] used
a couple sparse coding to detect damages in a numerical frame
structure, wherein the scale of FRF was reduced via PCA first
and then used as the features to be mapped to corresponding
damages. As the ratio of two responses in the frequency
domain, transmissibility has been proved to be sensitive in
detecting structural dynamics behavior changes [113]. Nguyen
et al. [114] used a neural network to detect the stiffness loss
of the girder section for a bridge in Vietnam. The input of
the neural network is the sum of transmissibility for different
displacement collection nodes in different frequency ranges.
Zhou et al. [115] used PCA to condense the transmissibility
obtained from both a clamped-clamped beam and a model of
the benchmark structure that were excited by impact force and
impact hammer, respectively. The DSFs were constructed with
distance-based measures. TF a mathematical representation
of the output-to-output relationship for a dynamical system
[116]. In the research of Diao et al. [117], TF amplitudes were
preprocessed with PCA. After the reduction of dimensionality,
the TF was inputted to SVM. Then damage location and extent
were identified. Liu et al. [118] used one-dimension CNN to
detect damage from structural TF. The acceleration responses
are transformed into TF and fed to CNN during training and
testing.

Time-frequency domain features: Wavelet transformation
[119] is used to transform structural responses from time
domain to time-frequency domain, through which the dynamic
parameters of structures can be obtained. Shi and Yu [120]
used discrete wavelet transform (DWT) to decompose the
acceleration responses. Tibaduzia [121] computed DWT co-
efficients from the dynamic responses collected by PZT. Kim
et al. [122] used DWT to eliminate the noises of structural
velocity responses and reduce the computation cost of the
following analyses. HosseinAbadi et al. [123] conducted the
damage identification on both simulated and real steel beams
with the guided ultrasonic wave (GUW) generated by PZT,
in which wavelet packet transform was used to de-noise the
GUW. Besides, wavelet packet distribution [124]-[126] is also
used as the damage index for SHM.

C. Data with High Interpretability

NDT methods use capacitive, inductive, piezoelectric, op-
tical effects, and many more non-destructive techniques to
detect defects of structures made up of various materials like



concrete and steel. Data collected with NDT methods [127],
[128] and pictures taken by cameras are of highly inter-
pretability because they can visualize or detect the physical
defects (such as cracks, corrosions, and bolt loose) directly.
Common techniques used in NDT include PZT, Laser, Eddy
Current, acoustic emission [129] , near-field radio frequency
reflectivity [130], X-ray [131], and Radar. Unlike NDT, which
aims at detecting local defects inside structures, vision-based
SHM methods identify defects on the surface of structures
based on images. Owing to the tremendous progress of Al-
based computer vision, vision-based SHM algorithms [25]
have emerged and achieved extensive applications in real-
world engineering structures during the last decade. Among
all types of data used in SHM, image is one of the most
direct indicator in identifying damages. Based on the identified
severity, type and location of defects, the conditions of the
monitored structures can be estimated. It should be noted here
that there is a slight difference between NDT and NDE. NDT
is restricted to testing, while NDE includes both testing and
the evaluation of the results. In this survey, NDE refers to
SHM methods that work with data from NDT methods.

V. STATISTICAL MODELS USED IN DATA-DRIVEN
METHODS

As a ‘bridge’ that links data and monitoring objectives,
statistical models play a key role in estimating the conditions
of structures. In this section, we introduced commonly used
statistical models and summarized recent publications based
on those models. Their advantages, disadvantages, and appli-
cable scenarios are also discussed comprehensively.

A. Time Series Analysis

Time series analysis is a critical tool in many fields of
research, including control, engineering, and economics. It em-
ploys time series models to uncover relationships and patterns
within data that are recorded over time, providing insights into
trends and behavior. The time series analysis for SHM usually
follows three steps [84]: (i) random excitation and structural
responses collection, (ii) statistical model fitting, (iii) damage
identification and structural health inference. Raw acceleration
data and responses collected with PZT sensors are common
data sources in time series analysis. In SHM, the parameters
of time series models and the residual errors of prediction are
two common types of DSF. Based on different manners that
time series models can simulate, those methods are basically
classified into two categories: linear and nonlinear time series
models, as summarized in Table IV. Autoregressive (AR) and
autoregressive moving average (ARMA) models are the most
frequently used linear models that can simulate and predict
the linear responses of structures. Nonlinear Autoregressive
with exogenous (NARX) and nonlinear Autoregressive Mov-
ing Average with Exogenous Inputs (NARMAX) models can
predict the nonlinear structural responses. Obviously, the re-
sponses from real structures are always nonlinear, and thus
those nonlinear models can simulate the systems with higher
accuracy.

Recent research proposed some new DSFs for damage
detection, including Ljung-Box statistic of AR model residual
sequence [132], Cosh spectral distance of AR model spec-
trum [132], evolutionary spectra from TFARMA [133], and
Kolmogorov—Smirnov (KS) test statistical distance [135]. In
addition, innovations in the algorithm design have been made
for damage identification, including NARMAX with Echo
State Networks (ESNs) [144], AR-ARX two-staged model
[134], and NARX neural network [136]. Except for damage
detection, ARMA model has also been applied in long-term
condition assessment. Van Le and Nishio [23] used an ARIMA
model to simulate the global deformation pattern of tower and
girder points in Can Tho bridge in Vietnam. They concluded
that the AR-MA parameters could be used as features for
estimating the bridge’s condition. NARX model can also be
used to predict the thermal responses under hard environmental
effects [60].

Time series analysis methods have advantages of low com-
putational complexity, simpleness in form, and high inter-
pretability. However, they operate on the premise that al-
terations in a structure’s integrity will cause corresponding
changes in its dynamic responses. Nevertheless, these re-
sponses may only exhibit a dominant effect when damages are
significant enough to produce discernible changes detectable
by sensors. If response variations predominantly stem from
excitation sources or environmental factors, time series analy-
sis may struggle to identify defects. Additionally, time series
analysis is most effective when a substantial amount of time-
history data is available under consistent ambient conditions.

B. Bayesian Theory

Bayesian theory has found widespread applications in data-
driven predictive maintenance, including Bayesian (belief)
network, Bayesian neural network, Bayesian decision tree
(BDT), and Bayesian Inference. Bayesian (belief) network is
one type of graphical model embedded with the probability
and direct dependency relationship of different variables and
events. It is widely used for decision-making based on big
data from various domains. Rafiq et al. [138] used dynamic
Bayesian belief networks to conduct overall condition-based
deterioration profiles based on the inspection results of dif-
ferent elements. Wan et al. [98] used Bayesian framework
combined with Gaussian process to predict the future structural
stress responses. The method was proved effective with strain
data collected from Canton Tower. Flynn et al. [139] applied
a Bayesian network to enhance the guided wave based SHM.
With the help of Bayesian approach, the missed detections
were considerably reduced in the guided wave based damages
identification. A bayesian neural network is a neural network
with a prior distribution on its weights [143]. Bayesian prior is
used to regularize the neural network and control overfitting
problems. Pan et al. [96] used DBBN to detect damage of
a structure from acceleration responses. Arangio et al. [53],
[90] also used Bayesian neural networks to detect damages
for a numerical suspension bridge and real cable-stayed bridge
based on acceleration time histories. BDT is a type of decision
tree with Bayesian theory. Cury and Crémona [107] compared



TABLE IV
SUMMARY OF DATA-DRIVEN METHODS BASED ON TIME SERIES ANALYSIS

Time series Input Exci- Monitoring .
analysis Data tation Objectives [mplementation Ref
ARIMA/ AR 1 1 1 Laboratory experiment 1: truss model and damages are simulated by adding disks; (132]
model Laboratory experiment 2: concrete bridge model with cracks generated through earthquake excitation =~
2 3 5 Girder and tower displacement of a cable-stayed bridge in Vietnam [23]
6 8 1 Steel truss bridge model in the laboratory with loosen bolts [133]
NARMAX/ 2 3 5 Strain and temperature data collected form Fu Sui bridge [60]
Modal properties identified from acceleration and wind turbine operation information (power, wind,
NARX . . . . .
2 5 1 yaw angle, rotor revolutions per minute, and temperature) are used for tracking and diagnosing [66]
model o . . .
structural condition of two wind turbines in Germany
1 2 4 Reduced scale experiment of the bridge deck and field test on real bridge with cracks [134]
1 1 2,4 Numerical models of a shear building and a steel moment-resisting frame, and a 3D six-story steel [135]
moment frame with stiffness degradation of different elements
1 1 1 8-DOF mass-spring system and 3-story frame structure with linear and nonlinear damages [136]
2 3 1 Laboratory footbridge model with loading and unloading of two half-full tanks on the bridge [137]

Note: Values in columns of Input Data, Excitation, and Monitoring refer to the number of items defined in Table 3. For instance, 1 in Input data column
refers to random excitation, which is the first type of excitation in Table III. Ref is the reference

TABLE V
SUMMARY OF DATA-DRIVEN METHODS BASED ON BAYESIAN THEORY

Bayesian- Input Excit- Monitoring

based methods Data ation Objectives Implementation Ref

Bayesian 2 NA 6 Strain data prediction for Canton Tower [98]

(belief) * NA 5 Condition assessment for UK masonry arch railway bridges [138]

network 6 8 1 Panel with stiffeners in laboratory and damages were simulated with holes in the panel [139]

Bayesian 1 1 1 A three-story frame structure in a laboratory with added mass and stiffness reduction [96]

neural 1 1 1 Tianjin Yonghe Bridge with damages and deterioration [53]

network 1 2,5 2,4 Numerical suspension bridge with stiffness reduction of hangers, cables, and beams [90]

BDT 3 | 2.4 Avnumerical mod'el with reductiop of the Young’s Modulus and real bridge application (107]
with a strengthening of a steel bridge

Bayesian 2 3 5,6 Real-world monitoring data acquired from a cable-stayed bridge [140]

. Stress responses generated from a three-dimensional finite element model of an I-10

inference 2 2 5 . . [141]
Twin Span Bridge

6 8 6 Experimental datasets from several lab tests are used to verify the proposed framework [142]

Note: NA denotes that the information is not available; * denotes inspection results are used as input data

the performance of BDT, neural network, and SVM in the
structural damage identification. Both raw dynamic responses
and processed information (frequencies and mode shapes)
were used as input to test the statistical models. Bayesian
inference is widely used to quantify uncertainty in data-driven
methods in SHM. Ni et al. [140] used Bayesian regression
model to interpret the relationship between expansion joint
and temperature. Yu et al. [141] used Bayesian inference to
predict the future extreme load effect, which was subsequently
used in the proposed bridge condition assessment framework.
Gobbato et al. [142] proposed a damage prognosis framework
for adhesively-bonded joints based on Bayesian inference of
nondestructive evaluation (NDE) inspection results.

Bayesian techniques offer advantages in probabilistic quan-
tification of model uncertainty, enabling a better understanding
of the confidence levels associated with structural health
predictions. They also allow for the integration of prior knowl-
edge or expertise about the system, which can improve the
predictive accuracy and reliability of SHM. Those advantages
are especially beneficial when data are multi-source but the
volume is limited or contain to much noises. Meanwhile,
Bayesian techniques rely on the assumed models for data and
prior distributions. If these models are not representative of
the underlying process, the resulting predictions and infer-
ences can be inaccurate. Besides, they can be computationally

intensive since they are designed to generate distribution of
variables instead of constant values. This may limit their appli-
cability in real-time monitoring or with limited computational
resources.

C. Multivariate Analysis

Multivariate analysis (MA) helps in processing high-
dimensional data and analyzing correlations and mutual infer-
ence between different variables. In existing SHM systems,
it is extensively used in analyzing fluctuation of measured
structural responses with respect to environmental conditions,
damages, and sensor faults. Then, the identified correlations
are used for predictive maintenance through clustering and
outlier-based anomaly detection.

The most widely used MA models include PCA, CCA, ICA,
multivariate regression, and cluster analysis. Their application
in data-driven monitoring for engineering structures is sum-
marized in Table VI. PCA searches an orthogonal space from
the multivariate observation matrix to transform variates to a
new coordinate system with no cross-correlations [144]. It has
been utilized to extract DSF [55], [83], [145], compress data
volume, and eliminate environmental interference [146] from
data. ICA is initially proposed for blind source separation by
separating independent multivariate signal vectors that don’t
follow Gaussian distribution from mixed signals. In SHM,



ICA has been used for system identification [147] and damage
identification [148]. Huang et al. [62] used a modified dynamic
ICA (DICA) to extract components sensitive to anomalies and
detect anomalies for both numerical structures and a real-world
cable-stayed bridge after training with acceleration and strain
data, respectively. CCA works for finding collections of linear
combinations of pairs of multivariate data vectors that are
maximally correlated with each other and uncorrelated with
other pairs [149]. Bhowmik et al. [86] used CCA to obtain
vibration modes of structures in real-time.

Similar to other MA models, multivariate regression-based
approaches also consists in measuring the variations in oper-
ational and environmental actions along with the structural
responses and then establishing regression models between
them [150]. Henriques et al. [73] used multiple linear regres-
sion (MLR) to analyze variations in the crest displacements
with temperature and reservoir level of Alto Rabagdo dam in
Portugal. The deviations of those variations generated from
MLR can be used to alert possible damage in the dam. Mata
et al. [74] also used linear regression to analyze data collected
from a dam, Alto Lindoso dam in Portugal. Instead of raw
measurement data, the time-frequency features extracted from
displacement and air temperature are used in the regression
analysis. Cluster analysis targets to arrange data into automati-
cally generated groups instead of predefined groups. Cury et al.
[63] used several symbolic clustering methods to cluster both
raw acceleration and modal data of a railway bridge in France.
Results show that those symbolic clustering methods achieve
more robust results with modal data than raw accelerations.
Alamdari [59] used k-means, a clustering algorithm, to identify
damaged jack arches for Sydney Harbour Bridge in Australia.
Spectral moment, a type of frequency domain feature, is used
to form the feature spaces.

Different moving average (MA) models make different
assumptions about the underlying data. However, measurement
data may not always conform to these assumptions, resulting
in uncertain performance of these methods in real-world SHM
systems. Consequently, SHM systems typically incorporate
multiple multivariate analysis models, which are compared
to select the most appropriate candidate model. Gomanducci
et al. [55] have used six types of multivariate statistical
techniques to learn the correlation between natural frequencies
and environmental conditions. The anomaly of structures is
identified based on the residual error matrix computed with
multivariate statistical techniques. Garcia-Macias [71] has pro-
posed two software solutions that integrate various multivariate
statistical techniques for anomaly detection. The two solutions
have been used to process acceleration, crack width, and
temperature collected from a monumental masonry palace in
Italy. Huang et al. [62] also carried out comparative inves-
tigations among PCA, ICA, and DICA to detect anomalies.
Besides, several different MA models can be utilized jointly
for more accurate analysis. Ubertini et al. [70] integrate several
multivariate analysis methods to detect damage of a historic
structure, San Pietro bell-tower in Italy. A multivariate linear
regression (MLR) model is adopted to remove the effects
of temperature in identified natural frequencies, and PCA is
used to remove the effects of other unmeasured environmental

factors.

In conclusion, MA is advantageous in extracting meaningful
features from high-dimensional data, which is typical of SHM
systems. However, the specific assumptions to measurement
data made by MA models, such as linearity, normality, or
independence, can restrict their widespread implementation,
especially when those assumptions do not hold in real-world
SHM applications.

D. Machine Learning Based Methods

1) Classical ML methods: As Table VII implies, the widely
employed classical ML methods in SHM include SVM, deci-
sion tree, K-nearest neighbor (KNN), and ensemble learning.
SVM is one type of supervised learning method. Based on the
statistical learning theory, it tries to find the optimal hyperplane
for the target data set, aiming at enlarging the margin between
different classes as much as possible. In many cases, SVM
can successfully distinguish between healthy and damaged
conditions by identifying the boundary in high-dimensional
feature spaces. SVM has been employed to process various
types of data in SHM systems, including traditional modal
parameters [82], [151], strains and displacement [99], wavelet
transformation of responses [123], guided-wave [123], and TF
[117]. Compared with the applications in civil engineering,
SVM may obtain more applications in the damage identi-
fication for machines, including bearings [152], [153] and
gearboxes [154]. However, the normal SVM algorithm can
only tackle linear separable conditions. Although, with the
aid of kernel methods, SVM can work on linear inseparable
conditions. The classification ability of SVM is still limited
because of its inherent characteristic.

A decision tree is a sort of diagram that can learn the
relationship between features and target outputs through com-
puting their conditional probabilities. Abdallah et al. [65] used
a decision tree to detect abnormal operations based on data col-
lected from wind turbines. System information, environmental
parameters, and vibration data from wind turbines are used to
train the decision tree for the binary classification. Bayane et
al. [155] predicted the probability of fatigue failure of a 60-
year-old viaduct using a decision tree. Probabilistic models
were developed based on codes and strain monitoring data.
In addition to predictive maintenance, a decision tree can be
helpful design parameters for damage detection systems [156]
and predict the vortex-induced vibration mode [18].

Isomap is an Ml model widely used for dimensionality
reduction. It incorporates geodesic distance on a weighted
graph with the classical multidimensional scaling. Jeong et
al. [157] used Isomap to detect the stiffness change of a
cantilevered beam in comparison with PCA. They found
that Isomap-based damage identification was superior to the
PCA-based one. Liu [145] also compared Isomap with other
dimensionality reduction methods, including PCA, Laplacian
eigenmaps, and autoencoders.

KNN is a simple nonparametric and distance-based method
to cluster samples in the feature space. The anomaly of
clustering results generated from new coming data gives rise
to the alarm of damage. KNN has been proved effective in



TABLE VI
SUMMARY OF DATA-DRIVEN METHODS BASED ON MULTIVARIATE ANALYSIS

Multivariate analysis ggg ft)i(glllt_ I\O/[t;?ctgi:;g Implementation Ref
MLR 3 NA 1 The Infante D. Henrique bridge in Portugal [55]
3 1 1 San Pietro bell-tower in Perugia [70]
PCA Distance 4 4 | Test 1: a numerical clamped-clamped beam with stiffness reduction; Test 2: the [115]
measure ASCE benchmark model with additional mass, changing braces or loosening bolts
Kernel regression 1 2 2,4 Reduced scale experiment for bridge and vehicle with additional mass [110]
CCA 1 1 1,2 2 storey shear building model with different water dispenser and IASC-ASCE [86]
benchmark structure
ICA 1,2 1 1,2 A numerical benchmark structure and an actual cable-stayed bridge [62]
Multivariate regression 2 3 Alto Rabagio dam, a concrete dam in Portugal with the crest displacements vary [73]
with temperature and reservoir level
5 3 1 Alto Lindoso dam, a concrete dam in Portugal with horizontal displacements (radial [74]
direction) vary with air temperature
Cluster analysis 2 4 2 Sydney Harbour Bridge with damaged jack arches [59]
1,3 1 1 A railway bridge with three different stages: before, during, and after strengthening. [63]

detecting damages using modal parameters identified from a
laboratory wooden truss [158] and raw strain data generated in
a numerical railway bridge [159]. Ensemble learning refers to
a model that combines the prediction of several base learners
to improve the performance of classification or prediction. Li
et al. [160] compared the performance of ensemble learning
(RealAdaBoost) with logistic regression, decision tree, neural
network, and SVM in damage detection for a bridge. They
found that RealAdaBoost outperformed other classifiers in
this task. Ensemble learning algorithms such as random forest
and XGBoost were used to detect damages by Huang et al.
[83] in the American Society of Civil Engineers (ASCE)
benchmark structure, which is a laboratory-scale four-story
steel frame. The cross correlation function (CCF) and wavelet
packet decomposition (WPD) was used to form the feature
space. Ensemble learning achieves higher prediction accuracy
in damage type detection compared with SVM.

Classical ML models often have simple architecture sup-
ported by clear theoretical basis. Consequently, they can work
well with small datasets and are often more interpretable than
deep neural networks. These are crucial in real-world SHM
projects, as real-world monitoring data are always limited.
And engineers need to understand the underlying patterns and
relationships to make informed decisions. However, they have
limited capacities to capture complex, non-linear relationships
in the data, which may lead to suboptimal performance in
certain scenarios. Besides, it is recommended to use ensem-
ble learning when the performance of a single classifier is
inadequate.Because ensemble learning has been shown to
outperform many standalone classifiers in various damage
identification scenarios.

2) Neural networks: Neural networks, also known as artifi-
cial neural networks (ANN) consists of layers and connections,
which simulate the structure of neurons and synapses in the
brain of mammals. The development of them is regarded as
the beginning of the machine learning discipline [1]. In the
last century, researchers began to apply neural networks in
the damage identification of SHM [161]. They were continu-
ously studied and used in damage identification and condition
evaluation in the past decade. It should be noted that neural
networks summarized in this subsection refer to shallow neural

networks. Studies on deep neural networks are introduced in
the next subsection.

Neural networks are extensively employed to identify dam-
ages from measured modal properties [106], DWT coefficients
of acceleration responses [120], cross-correlation coefficient
of impedance [162], the sum of transmissibility from dis-
placement [114], and sparse coding extracted features from
acceleration [163]. They are also used to predict dynamic
responses in [53], [89], [136] and their prediction errors are
used to evaluate the health condition of engineering structures,
such as Tianjin Yonghe Bridge [53].

Compared to classical machine learning models, neural
networks can capture more complex, non-linear relationships,
which improves their accuracy and generalization in com-
plex tasks. Table VIII demonstrates that neural networks can
be applied to both classification and regression problems,
making them useful in detecting damage occurrence, extent,
and types. However, neural networks, even shallow ones, are
often considered “black boxes” due to their complex structure,
which makes it difficult to understand the underlying patterns
and relationships. Additionally, neural networks can be more
computationally expensive and typically require larger datasets
than classical ML models. Furthermore, the feature extraction
ability of shallow neural networks is limited by their simple
architecture and limited parameters, which means they may not
be suitable for tasks involving high-dimensional sequential and
spatial data. Those disadvantages can restrict their real-world
implementation.

3) Deep learning models: DNN models have more hidden
layers and parameters compared to shallow neural networks,
which enhances their feature extraction ability and enables
them to simulate more complex nonlinear systems. Addition-
ally, the sophisticated structures of different types of DNNs
contribute to the feature extraction in the data processing
of SHM. Studies have shown that artificial neural networks
(ANNs) can simulate structural responses [164], and recurrent
neural networks (RNNs) with encoder-decoder architecture
can even predict them with attention mechanisms [165]. To
some extent, this helps explain why DNNs perform well in
data-driven structural health monitoring.

CNNs are distinguished from other DNNs with convolution



TABLE VII
SUMMARY OF DATA-DRIVEN METHODS BASED ON CLASSICAL ML MODELS

ML models Ilr)lgllat EZZI;_ l\odgj:i?lrvlggg Implementation Ref
3 3 5 Data from Ting Kau Bridge (Hong Kong) were used for analyzing the correlation between [82]
temperature and modal properties
SVM 1 2 Ball-bearing with loose elements and framework numerical model with stiffness reduction [151]
2 6 1 A laboratory SDOF mechanical structure with stiffness change [99]
5 8 4 A numerical and a real steel beam with cracks of different width [123]
-, Data form Lillgrund offshore wind farm comprising 48 wind turbines were used for the
Decision tree 1 3,5 1 . . . . X [65]
classification of normal operation and abnormal vibration
2 2 6 Strain from a Crét de I’ Anneau Viaduct were used to predict the probability of fatigue failure [155]
Isomap 3 1 2 Numerical models for a cantilevered beam with stiffness damage [157]
KNN 3 1 1 A laboratory wooden truss structure with added point masses as damages [158]
Ensemble 1 NA 1,2 Acceleration responses of a healthy and a damaged bridge [160]
learning 5 1 2,3 ASEC benchmark structure with loose of stiffness and failed connections [83]
TABLE VIII
SUMMARY OF DATA-DRIVEN METHODS BASED ON NEURAL NETWORKS
Input Excit- Monitorin .
Dgta ation Objectivef [mplementation Ref
2 1 A numerical single-track railway bridge with damages simulated by removing the bottom flange in a [89]
girder section or removing one bracing
1 1 1 Data from real bridge damage with damages [53]
1 1 8-DOF mass-spring system and 3-story frame structure with linear and nonlinear damages [136]
3 NA 1,2 The 3D FEM model of Tsing Ma Bridge with the damaged bridge deck [106]
1 24 Numerical bridge model with reduction of Young’s modulus and a real steel bridge with strengthening [107]
4 2 2,4 Numerical model for Ca-Non Bridge with stiffness decreases in girder [114]
5 6 1 ASCE benchmark model with broken braces [120]
1,3 7 3 A numerical model for a bridge with Young’s and shear modulus reduction [163]
4 8 3,4 Reduced scale experiment and real bridge with notches and loose bolts [162]

layers and pooling layers. The joint operation of the two
structures works like a filter by eliminating the noises [166]
and reserving specific frequency ranges of original data [92].
The latest work on deep learning algorithms in data-driven
SHM has been summarized in Table IX. CNNs have been
used to identify damage from structural TF [167], acceleration
responses [91], [92], [94], [95], [159], spatial-spectral features
transformed from raw acceleration [111], strain field [168],
electromechanical impedance (EMI) signatures [169], and
bridge condition rating data from National Bridge Inventory
(NBI]) data repository [170]. The aforementioned CNN-based
methods were all validated with numerical or laboratory tests.
Later, Zhang et al. [61] finished the CNN-based damage
identification test in a real steel girder bridge. They found
CNN can detect the location of the added mass and stiffness
in the bridge with high accuracy. Besides, some researchers
also used CNN in anomaly detection during the data collection
[171].

RNN is a type of neural network that process sequential
data recurrently with one repeated network. RNNs can cap-
ture complex temporal patterns and long-range dependencies
from variable-length sequences. Therefore, they have been
extensively used in SHM for sensor data prediction, structural
damage identification, and remaining useful life prediction.
Wootton et al. [137], [172] used one type of RNN, echo
state networks (ESN), to predict the tilt of a footbridge from
temperature force. Robles Urquijo et al. [173] also used long
short-term memory (LSTM) to detect the ‘no vehicle’, ‘light
vehicle’, and ‘heavy vehicle’ conditions for a highway bridge
based on the strain data collected with FBG. Guo et al. [174]

chose LSTM to detect bridge conditions. Previous deflection
data collected from the girder were used to predict the present
deflection value, and the prediction error could depict the
health condition. Zhou et al. [175] demonstrated the feasibility
of RNN in solving nonlinear inverse problems. Acceleration
time-history data and impact load were the output of RNN.
Given the high prediction accuracy of RNN in this inverse
problem, it is reasonable to expect further application in
damage identification, which is another inverse problem.

In the past five years, graph neural networks (GNNs) have
been introduced to SHM applications because data collected
from multiple sensors in an engineering structure naturally
forms a graph. And GNNs are designed to extract features
from those graph-shaped data. In other ML models such
as CNNs and RNNs that only work with grid-shaped data
(matrix), graph-shaped data must be transformed into a matrix
before feeding into those models. This transformation may
distort or neglect graph-shaped features, leading to a decrease
in the accuracy of data-driven methods. As a versatile non-
Euclidean machine learning algorithm designed specifically
for graphs, GNNs are more suitable for learning from graph-
shaped data in SHM systems and have been actively stud-
ied in recent years. Tsialiamanis et al. [176] used GNN to
predict the natural frequencies of a population of numerical
truss structures and use the predicted frequencies to detect
the existence of damages. Zhou et al. [177] trained graph
convolutional networks (GCNs) to detect bolt losses. The
input graph of GCN is electro-mechanical impedance (EMI)
readings from PZT sensor networks, and the target node
outputs are torque losses of bolts. The proposed GNN model



achieved smaller prediction error than all baseline models. Son
et al. [178] used a message passing neural network (MPNN)
to learn the mapping from cables’ tension to the decrease of
cables’ section areas. Similarly, Li et al. [85] also used cable
forces to train a spatiotemporal graph convolutional network
(STGCN). However, STGCN is trained with sequences of
cable forces in a period of time to predict future cable forces
instead of predicting damages directly. The adjacent matrix
in STGCN consists of learnable parameters to automatically
capture correlations between nodes that are locally connected.
STGCN is also utilized by Bloemheuvel et al. [54] for strain
prediction of a real-world highway bridge. But this work focus
on comparing different graph generation methods for strain
prediction instead of damage identification.

Autoencoder is another type of DNN that has been applied
in SHM as well. The damage extent and location identification
accuracy of deep autoencoder [179] and deep sparse autoen-
coder [180] methods were also proved with both numerical
models and laboratory experiments. Rafiei and Adeli [181]
proposed a structural condition assessment method with a deep
Boltzmann machine (DBM). After being exposed to 4 levels of
earthquake excitation, the structure’s overall conditions were
classified into four categories accordingly. The reduced scale
experiments for a 42-story building proved the performance of
the proposed method in evaluating the health indices for both
substructures and the entire structure. Compared with neural
networks, DNNs have better feature extraction ability. DNN
consistently achieves higher prediction accuracy than neural
networks with the same datasets. However, as a compute-
intensive algorithm, DNNs have higher requirements on com-
putation resources. Real-time monitoring with DNNs has been
one of the biggest challenges due to the limited computation
resources in existing SHM systems.

To sum up, CNNs are particularly effective at extracting
local spatial features from grid-like data structures. However,
they may not perform well on non-grid data structures or when
the input data lacks spatial locality. RNNs are designed to
capture long-range dependencies from sequential data, making
them well-suited for time-series analysis. Nevertheless, RNNs
can suffer from the vanishing or exploding gradient problem,
making it challenging to train deep RNNs. GNNs can handle
irregular data structures, making them suitable for SHM tasks
where the data is represented as a graph or network. But they
are not well-suited for handling grid-like data structures or
purely sequential data. Although DNNs have demonstrated
impressive performance, they typically require a large amount
of labeled training data, which is often unavailable in most
SHM projects. Moreover, their interpretability are even lower
than shallow neural networks. Those disadvantages limit their
implementation in real-world SHM systems.

E. Hybrid Statistical Models

Some data-driven methods integrate various statistical mod-
els into a pipeline for sequential feature extraction and map-
ping. Due to the significance of each model in the pipeline, it
would be unfair to categorize such integrated methods into any
of the statistical models previously mentioned. In this paper,

we refer to these data-driven solutions as hybrid statistical
models. Table X summarizes typical combinations of statistical
models used in these hybrid approaches.

Dimensionality reduction+Classifier/Regression analy-
sis: PCA is a widely used dimensionality reduction method in
SHM. It significantly reduces computation costs and improves
the generalization ability of damage identification methods.
Vitola et al. [145] used PCA to preprocess dynamic responses
from different sensors on aluminum and composite plates
with PZT sensors. They then classified the responses into
different clusters corresponding to different damages using
KNN. Additionally, PCA has been combined with various
other feature extraction or mapping methods, such as self-
organizing maps [22] and sparse coding [112].

Many other dimensionality reduction methods have also
been applied in SHM algorithms, including Isomap [167],
Random Projection [182], autoencoder [167], and Laplacian
Eigenmaps [167]. Liu et al. [167] analyzed the performance
of four different dimensionality reduction methods in a data-
driven SHM method based on acceleration responses from
a bridge and a vehicle. It was observed that non-linear and
non-convex dimensionality reduction methods (e.g., stacked
autoencoder) achieved the best identification accuracy. Dif-
ferent applications of dimensionality reduction methods in
data-driven SHM are summarized in Table X. Dimensionality
reduction methods can eliminate noises or non-primary infor-
mation. Besides, it can be used as preprocessing method in
hybrid statistical models for improving the robustness of data-
driven methods and reducing the computation.

Time series analysis + SVM/PCA: Time series analysis
models are used to predict time-history data. More details on
these models will be illustrated in Section 4.1. Parameters and
residual errors (RE) of these analysis models can be used as
DSFs. Gui et al. [185] selected AR parameters and RE in
autoregressive model as the DSFs. Kim et al. [122] also choose
AR parameters of the responses to form the DSFs. Datteo et al.
[64] analyzed the data (from August 13th, 2015 to April 19th,
2016) of a stadium and used AR parameters of acceleration
data DSF. The results indicated that the principal component
analysis (PCA) method could classify different responses of
the stadium under different events like empty, hosting concerts,
or hosting football games.

Based on existing research, we recommend selecting ap-
propriate statistical models based on the data, monitoring
objectives, and characteristics of the monitored structures.
Table XI summarizes the recommended scenarios for each
statistical model.

VI. IMPLEMENTATION CHALLENGES OF DATA-DRIVEN
ALGORITHMS

After reviewing existing literature, we found that the as-
sumptions and premise of many proposed data-driven algo-
rithms might not aligned with engineering practices. Besides,
those algorithms have not been tested with real measure-
ment data or in real engineering structures. Due to their
requirements in complete observation of the structure, a
stable surrounding environment, and sufficient computation
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TABLE IX
SUMMARY OF DATA-DRIVEN METHODS BASED ON DEEP LEARNING

Input  Excit- Monitorin, .
DL models Dgta ation  Objec tive;g Implementation Ref
4 1 2 Numerical four-story frame structure with stiffness reduction [167]
1 6 3 Numerical steel frame buildings with reduced beam sections [91]
1 1 2,4 A numerical beam structure with a decrease in cross-section area [92]
1 1 4 ASCE benchmark experimental data wherein damages were simulated with the removal of the [95]
diagonal braces, loosen bolts
1 1 2,4 Reduced scale steel frame with loosen bolts [94]
4 5 2,4 Numerical arch bridge and damages are simulated with a decreased cross-section area [111]
CNN 1 4 2 A laboratory model of a short steel girder bridge with additional mass and a real long steel [61]
girder bridge (in-service) with additional mass and steel plate.
6 8 2 Laboratory aluminum plate with an added metallic nut [169]
2 7 2 FEM of two channels welded with steel plate and damages are simulated with cracks [168]
* NA 5 CNN is trained and tested on National Bridge Inventory (NBI) database from the Year 1992 to [170]
2017 by the Federal Highway Administration (FHWA) in the United States
2 2 2,4 A numerical model of a steel railway truss bridge and damages are simulated with reduced [159]
cross-sectional areas of elements
RNN 2 3 1 Laboratory footbridge model with loading and unloading of two half-full tanks on the bridge [137],
[172]
2 2 5 Strain data from FBG sensors in a highway bridge since 2000 [173]
2 NA 1 A real bridge in Hubei Province, China [174]
1 4 5 Numerical and lab experiments to identify impact load history [175]
GNN 3 NA 1 Numerical two-dimensional trusses to predict the natural frequencies under different temperature [176]
6 8 2,4 A twin-bolt plate with multiple bolt losses [177]
2 7 2,3 Numerical bridges and damages are simulated by reducing the cross-sectional areas of cables [178]
2 NA 2 A cable-stayed bridge in China. The cable forces are monitored for damage identification [85]
2 NA NA A large highway bridge in the Netherlands after retrofits. [54]
Deep sparse 3 4 2,4 Numerical steel frame with element stiffness reduction and laboratory concrete bridge with cracks [180]
autoencoder
Deep 3 4 2,4 Numerical and laboratory steel frame structures with element stiffness reduction [179]
autoencoder
DBM 4 1 5 Reduced scale laboratory experiment for a 42-story concrete high-rise building [181]
Note: * denotes bridge condition rating data
TABLE X
SUMMARY FOR HYBRID STATISTICAL MODELS
Hybrid Statistical Models I]I)lgtuat Ea):i‘;tl_ I\égjnéz(;r‘tgsg Implementation Ref
Selforganizing 2 7 1 Laboratory experiment for wing section with skin cutting & cracks [22],
maps [97]
PCA+ Sparse coding 4 4 2,4 Numerical two-span two-story frame with column stiffness reduction [112]
KNN 6 8 2 Damage is simulated with added mass. Experiments include: Aluminum [145]
Rectangular Profile with four damage locations, Aluminum Plate with three
damage locations, and Composite Plate with three damage locations
Random Bayesian 3,4 NA 1 Benchmark dataset from a three-story building structure with gaps and added [182]
Projection+ mass, Z24 bridge with damage introduced deliberately
Stacked au-  Linear regression 1 2 4 Numerical model & lab bridge experiment with concentrated mass at mid-span [183]
toencoder+
SVM 5 6 1 Three-story laboratory building with degradation of floor stiffness [122]
Time series+ 1 1 2 Laboratory eight-DOF mass-spring system with nonlinear damages simulated [184]
with installed bumper
1 1 1 Frame structure with the adjustment of the gap between the bumper and column [185]
PCA 1 2 5 Real stadium with different events [64]

resources, their accuracy and robustness can degrade in real-
world monitoring projects. In this section, we first summarize
the implementation challenges of data-driven algorithms and
then propose our solutions and insights for future directions.

A. Challenges in Monitoring Algorithms

The primary implementation challenge of data-driven mon-
itoring algorithms comes from the field collected data. Unlike
model-based monitoring methods, data-driven methods are
more vulnerable to the quality and quantity of data. Never-
theless, data collected from real structures are always limited,
unlabelled, and unbalanced. Consequently, it is incredibly

challenging to implement data-driven algorithms in real-world
projects.

Firstly, data-driven methods require data from both intact
and damaged conditions to generate the feature space, from
which they can automatically capture the relationship between
input data and DSFs. However, most engineering structures
have never encountered failures. Data from structures with de-
fects are much less than data from intact structures. Therefore,
data-driven methods trained with imbalanced data might not
be able to make accurate predictions. Secondly, most samples
from structures are unlabeled because the health conditions
of an actual engineering structure are always unknown. In



TABLE XI
RECOMMEND APPLICABLE SCENARIOS OF STATISTICAL MODELS IN DATA-DRIVEN SHM

Statistical models Computgtlonal Interpritability Recommended applicable scenarios
complexity
. . . . Analyse patterns and trends for time sequences collected from structures situated in
Time series analysis Low High ; - -
relatively stable environmental conditions
. . Predict the likelihood of damages and make optimal decision under dynamic environment
Bayesian theory / High o .
with high uncertainty
Multivariate analysis Medium High Extract correlations and mutual inference between different variables
. . . Accomplish simple classification, clustering, and regression tasks based on datasets with
Classical ML methods Medium Medium L
small quantities of data
Neural networks Medium Low Identify non-linear relationships between variables when computation resources is limited
Deep RNN High Low Learn sequential patterns from high-dimensional time sequences
learning CNN High Low Learn spatial patterns from high-dimensional graph shaped data
models GNN High Low Learn spatial patterns from high-dimensional grid-like data
Hybrid statistical / / Applicable for SHM projects with large and diverse datasets, complex data relationships,
models and varied data types.

Note: / denotes the computational complexity or interpritability is unevaluable;

contrast, samples generated from numerical simulation can
be labeled. However, unexpected errors might be introduced
because of the gap between real structures and numerical
simulation. Those unlabeled data make it quite challenging
to train supervised data-driven methods. Although some data-
driven methods can detect the degradation of engineering
structures in an unsupervised manner, they can only detect the
existence of degradation instead of the extent of degradation.
Thirdly, the field monitoring data is limited with respect to the
variable environmental conditions. A statistical model usually
fails to make an accurate prediction when the environmental
conditions are not seen in the training samples. So, data-driven
approaches might not be robust to the unseen environment
where the engineering structures are operating [186].

Moreover, most data-driven monitoring approaches operate
like a black box,” which lacks physical interpretation, and
their performance in real projects is unreliable. When damages
are misidentified, it is difficult to find out where the mistake
comes from and explain why it happens. It is even harder to
update the data-driven algorithms if we want to prevent the
recurrence of similar mistakes.

B. Challenges in Predictive Maintenance Algorithms

As clarified in section III, damage prognosis represents the
future trend of health monitoring for engineering structures.
It enables the planning of regular maintenance, guiding of
retrofits, and ultimately prolonging the service life of struc-
tures. However, it is the most challenging objective among
the six monitoring objectives since it requires reliance on both
current monitoring results and predictions of future behaviors.
The summary of existing studies in section V also supports
this argument. Only a small fraction of existing data-driven
methods are proposed to achieve objective 6, which refers
to damage prognosis in Table III. Instead, most methods are
designed to detect the existence and extent of one specific type
of damage, remaining in the first several levels for predictive
maintenance.

In addition to the challenges similar to data-driven monitor-
ing, the implementation challenges of data-driven predictive
maintenance also involve the following aspects. Firstly, it
places higher demands on the input data and statistical models

since predicting future failure and RUL requires the exact de-
gree of damages concerning the engineering structures’ func-
tional failure. Secondly, most real-world engineering structures
have large spatial scales and multiple complicated substruc-
tures, leading to complex failure modes. As a result, it is
nearly impossible to fully understand the precise physics of
failure [187]. Thirdly, damage prognosis is performed on top
of predictions of structures’ behavior and environmental con-
ditions. However, environmental factors are volatile, and the
degradation of structures is usually nonlinear and unexpected,
increasing the prediction errors in future damages. Fortunately,
data-driven methods are appropriate for making predictions
under great uncertainty, especially when the mechanism of
engineering structures’ (like composite structures) damage
evolution is not fully understood [188]. Through incorporating
statistical models (such as Non-Homogenous Hidden Semi
Markov Model (NHHSMM) [188], Gaussian process-based
predictive model [189], Bayesian Neural Network [129], etc.),
data-driven methods can predict the RUL for engineering
structures.

C. Possible Solutions: Fusion Methods

Fusion methods have been widely studied in the broad sense
of SHM [190]. They represent a promising way of bringing
together the strengths of different data sources and models.
Consequently, they lead to a complete image of the present
damage, reduce ambiguity, and increase confidence in the
results [191]. As Fig. 6 shows, the fusion operations can occur
during raw data collection [191], feature extraction [107],
[182], model updating [192], [193], and decision making
[138], [194]. Unlike existing frameworks that only include
data, feature, and decision-level fusion, we include model-
level fusion in our fusion methods and will clarify it with
fined details later.

Data-level fusion refers to the integration of raw data from
multiple sensors [191], [195], [196]. Those sensors measure
the same physical quantities, and the physical meaning of
measured raw data is the same. Data-level fusion helps enlarge
the source of information and reduce the ambiguity in the
further data processing.
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Fig. 6. Fusion methods for the monitoring and predictive maintenance of engineering structures.

Feature-level fusion aims at combining features extracted
from heterogeneous data or from the same data but with
different data featuring methods. Different features describe
the properties of structures from different aspects. For instance,
physical and statistical properties from raw data can indicate
the overall health conditions, while the NDT results can
reflect the localized defects. Frequency domain features like
frequencies can describe the vibration patterns, while time
domain features reveal the amplitude variation of data. The
integration of those macro and micro features helps draw
an exhaustive and precise condition assessment of the whole
structure. Dang et al. [197] integrate features in time and
frequency domains from acceleration data, demonstrating that
the feature-level fusion method can achieve highly accurate
damage detection with lower time and space complexity.
So, the proposed method is more practical for real-world
engineering projects.

Model-level fusion combines statistical models in data-
driven methods and physical models in model-based meth-
ods. It makes full use of available resources and achieves
higher accuracy when neither precise physical models nor
sufficient measurement data are available in the monitoring
of large/complex engineering structures. A model-level fu-
sion method use known physical properties of engineering
structures to compensate for the insufficient measurement
data. Meanwhile, it also improves the usability of data-driven
methods since their reliance on data is much reduced. Physics-
guided ML models [198], sometimes also called physics-
informed/enhanced ML models [199], [200], belong to model-
level fusion methods. They embed ML models with given prior
knowledge of the physical properties of the corresponding
physical systems. Knowledge in several formats is utilized,
including physics-guided loss function, architecture design
inspired by physical systems, and parameter values in physical
systems. Guided by prior physical knowledge, the search-
ing spaces for parameter updating are dramatically reduced,
and fewer data are required for model training. Moreover,
ML models are less prone to make physically implausible
predictions owing to the inductive bias [201] introduced by
physical systems. In decision-level fusion methods, predictions
generated by different methods are integrated to form the final
decision through particular fusion rules. How to aggregate
those predictions and make robust decisions remains an open
research issue [190].

In summary, regardless of where the fusion occurs, a fu-
sion method can always achieve higher accuracy and greater
generalization ability. At times, it can also reduce time and

space complexity by integrating multiple data or features
simultaneously in a more efficient manner. Considering these
advantages, we believe that the four levels of fusion represent
a promising direction for the implementation of data-driven
methods.

VII. IMPLEMENTATION CHALLENGES OF CURRENT SHM
SYSTEMS

Current SHM systems are alarmingly inefficient in support-
ing the execution of complex data analytic algorithms under
acceptable performance. SHM systems in real-world engineer-
ing structures are required to be responsive to anomalies and
robust to node failures. Nevertheless, unlike the prosperity
of research on data-driven algorithms, much less attention
has been paid to optimizing the operational performance of
SHM monitoring systems, such as latency, robustness, and
data security issues. As Table II implies, most real-world
data-driven monitoring systems don’t support real-time data
processing. Instead, data are first stored in databases and then
processed offline once users send the request. That can be
risky for engineering structures because damage cannot be
identified instantly. To this end, we put forward promising
solutions and future directions to promote the implementation
of online monitoring systems.

A. Deficiencies of Current Monitoring Systems

Fig. 7 shows a currently adopted cloud-based monitoring
system, in which a server/station is deployed either near the
structure (private cloud) or on a remote server on the internet
(public cloud). Data are transmitted to and stored in a cen-
tralized server, where SHM applications are provided through
web services. The robustness of this system is limited and data
are not well protected, hindering the wide implementation of
such a system. Firstly,a cloud-based monitoring system consist
of numerous sensors. Those sensors inevitably suffer from
aging or external impacts in outdoor environments, such as
strong wind, heavy rainfall, and even earthquake. However,
the centralized computing paradigm adopted by cloud-based
SHM systems is vulnerable to node failures. They might not
work normally in a fierce environment but the engineering
structure should be monitored more closely during that period.
Secondly, data collected by SHM systems are valuable because
they reveal the structure’s operational condition. They belong
to the structure’s governing body and their leakage can be
dangerous to the normal operation of the structure. Never-
theless, similar to most [oT applications, data in cloud-based
SHM systems are natively vulnerable to attacks because data
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Fig. 7. SHM system based on cloud computing and edge computing.

are usually transferred over global network before processing.
There are many potential security holes to be fixed but little
attention has been paid to data security issues in SHM.

Reducing the latency of a monitoring system is also chal-
lenging. The latency is usually related to data transmission
efficiency, the server’s computation resources, and the data
processing algorithms’ complexity. Systems based on remote
cloud servers have abundant and elastic computation capac-
ities. But they suffer from high data transmission latency
because the data volume is enormous large and the trans-
mission distance is enormous long. Systems based on local
base stations or private cloud servers have much-reduced
data transmission latency and increased privacy. But their
computation resources are usually limited and fixed. They
might be inefficient or too expensive to execute complex data-
driven algorithms.

Moreover, current data-driven algorithms are usually com-
putationally demanding for SHM systems, especially for
those based on structural modal properties, frequency domain
features, and time-frequency domain features. For instance,
the extraction of modal properties usually relies on system
identification methods, including the eigensystem realization
algorithm [202] and subspace system identification [203].
They all involve complex operations on large-scale matrixes
and have high time and space complexity. The recently pro-
posed DL-based solutions, such as CNN, RNN, and GNN,
are computationally demanding as well. They even require
extensive or specific hardware for computation acceleration,
e.g., high-performance GPU and TPU. Otherwise, the data
processing time can be extremely long, increasing the risk
when damages strike engineering structures.

Developing and implementing real-time monitoring systems
is much more expensive than numerical simulation. They are
more demanding in the efficiency, stability, and data security
of the system. However, few researchers study it due to its
miscellaneous programming tasks concerning limited research
value. Few developers are willing to develop specialized tools
for it considering its relatively small market and the lack
of a mature monetization mode. Till now, SHM systems
are designed only for a few crucial engineering structures
and managed by governments for public safety instead of
commercial use.

B. Possible Solutions

Improvements to SHM systems are desperately needed to
mitigate the above deficiencies. Wireless sensor networks
(WSN) [204], [205] are used first and edge computing [206],
[207] has been introduced to SHM recently. In SHM, re-
searchers use WSN to reduce cost and improve efficiency
when managing a large number of sensors. Edge computing
can reduce the latency dramatically by migrating data com-
putation and storage from a cloud server to distributed edge
devices. The overall system’s robustness is much improved
due to distributed computation resources. Data security is
improved as well because raw data can be encrypted and
authenticated key establishment [208] can be performed in
edge devices. Although resource congestion might also happen
in edge clusters since the distributed computation and storage
resources are relatively weaker than the centralized resources
in cloud servers. The possible solutions include developing
high-performance edge clusters and optimizing the distributed
data processing algorithms. However, high-performance edge
clusters also occupy large spaces and require an enormous
power supply, making them inconvenient in implementation.
Consequently, reducing the delay of data processing algo-
rithms under constraint computation resources has been a
promising research direction.

However, research on optimizing the complexity or re-
source demand of SHM algorithms has just started. Liu et
al. [205] adopted distributed modal analysis approaches in
WSN-based SHM to reduce requirements on computational
resources. Wu et al. [209] used transfer learning and network
pruning technique to deploy DCNN-based defects detection
on edge devices. With limited computation resources on edge
nodes, the proposed model compression method achieved
high accuracy and acceptable time cost for crack detection
and corrosion detection. Chen et al. [207] have designed a
lossy data compression algorithm for edge devices in SHM
systems. It helps reduce the latency for data transmission
analytics. Moreover, the proposed physics-enhanced PCA is
proven to preserve modal properties for acceleration responses
with much reduced time and space complexity. Testoni et
al. [210] designed a sensor network system where accelera-
tion sensor nodes could acquire and reprocess data such as
frequency spectrum pick extraction. Besides, the data and
power are exchanged in the same bus based on data-over-
power (DoP) communication. The real-time requirements of



SHM applications are subsequently fulfilled. Still, the system
architecture and distributed algorithms need further optimiza-
tion. Fortunately, the ever-increasing number of heterogeneous
IoT devices (such as smartphones, edge gateways, and multi-
access edge computing servers) in Smart City infrastructures
can provide ubiquitous computing resources, enabling future
real-time health monitoring and predictive maintenance.

Furthermore, a standalone SHM system might only con-
tribute partially to the comprehensive assessment of the overall
health conditions due to the absence of various environmental
information. A ”Smart City” in the future must constitute
multiple intelligent systems except for SHM systems. In-
telligent transportation systems (ITS) [211], and Automated
driving systems might help locate and identify vehicles, which
are subsequently used to identify the exact excitations on
civil engineering structures like bridges. A GPS [212] can
be implemented in SHM to monitor structure displacement.
Integrated with a meteorological monitoring system [213], an
SHM system might be able to prepare for extreme weather in
the future.

VIII. CONCLUSION

This survey provides an overview of the latest studies on
data-driven monitoring and predictive maintenance for engi-
neering structures from an implementation perspective. Firstly,
we introduce the system architecture and typical procedures
of data-driven solutions with detailed explanations. Then, we
classify the data and statistical models used in data-driven
methods, clarify the advantages and limitations of differ-
ent models, and discuss their implementation in real-world
projects. We propose solutions to address two major challenges
in implementing existing data-driven methods, including the
digressive performance in the real-world environment and
inefficient computing systems for real-time data analytics.
Finally, to provide guidance for future research on data-driven
solutions, we summarize our insights into the future trends as
follows:

o From single statistical model to hybrid statistical model:
Combining statistical models can meet multiple require-
ments for SHM tasks, such as feature extraction, noise
elimination, dimensionality reduction, feature mapping,
and damage prognosis, making them more robust for real-
world data analytics and warranting further investigation.

o From private datasets to public datasets with standard
objects: Public datasets with standard objects and eval-
uation metrics can advance SHM research as they en-
able researchers to identify state-of-the-art algorithms
with higher efficiency and accuracy. Existing data-driven
SHM methods are predominantly evaluated using private
datasets collected from specific structures, making it
difficult to compare their performance.

o From pure data-driven to physics-enhanced data-driven
methods: Physical models of engineering structures have
been well studied and extensively validated for decades.
Integrating those physical principles, laws, and theorems
into statistical models provides a promising way to find
robust and generalized DSFs.

20

o From centralized remote server to distributed nearby
edge devices: Edge-based and WSN-based solutions are
promising for achieving real-time SHM since they rely on
distributed computing, and algorithms distributed among
local devices generate less delay in data processing and
transmission.

Limitations in existing ICT also restrict the usability of data-
driven SHM. We summarize following noteworthy research
directions in ICT to push the horizon of the extensive imple-
mentation of data-driven SHM.

o Improve the accuracy and durability of monitoring sys-
tems. Data-driven methods heavily rely on field-collected
data, and long-term and precise monitoring data can help
these methods capture long-term patterns and achieve
higher accuracy. Therefore, there is an urgent need to
improve the accuracy of existing sensors, develop new
sensors, and enhance systems’ durability to environmen-
tal conditions in data-driven methods.

¢ Optimize current wireless communication solutions.
While wireless monitoring systems are more convenient
to install and maintain, they are rarely chosen due to
the instability and inefficiency of existing wireless com-
munication solutions or their high energy consumption.
Therefore, improvements in existing ICT (e.g., 5G) are
necessary for the wider use of wireless monitoring sys-
tems in the future.

o Improve the numerical simulation technology of en-
gineering structures. Real-world measurement data are
always imbalanced and unlabeled, since most engineering
structures operates normally during their service period.
Researchers always need to generate damage scenarios
use physical models or laboratory experiments. Con-
sequently, developing fine-grained numerical simulation
technology (i.e. DT) for engineering structures can sig-
nificantly contribute to data-driven methods.

o Enhance the interpretability of DL algorithms. While DL
algorithms excel in feature extraction ability compared
to other statistical methods, their lack of interpretabil-
ity severely hinders their development. Enhancing their
interpretability is a guaranteed path to their extensive
implementation.

ACKNOWLEDGMENTS

The authors are grateful for the financial supports from the
Key-Area Research and Development Program of Guangdong
Province (2019B111106001), the Research Grants Council of
Hong Kong through the Theme-based Research Scheme (T22-
502/18-R), the Innovation and Technology Commission of
Hong Kong through Smart Railway Technology and Applica-
tions (No. K-BBY1), the Hong Kong Polytechnic University
through the Strategic Importance Project (No. ZE2L), and the
Research Institute for Artificial Intelligence of Things, the
Hong Kong Polytechnic University. The findings and opinions
expressed in this paper are from the authors alone and are not
necessarily the views of the sponsors.



(1]
[2]

(3]
[4]

[5]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

C. R. Farrar and K. Worden, Structural health monitoring: a machine
learning perspective. John Wiley & Sons, 2012.

H.-N. Li, T-H. Yi, L. Ren, D.-S. Li, and L.-S. Huo, “Reviews
on innovations and applications in structural health monitoring for
infrastructures,” Structural Monitoring and Maintenance, vol. 1, no. 1,
pp. 145, 2014.

W. Ostachowicz and A. Giiemes, New trends in structural health
monitoring. Springer Science & Business Media, 2013, vol. 542.

C. A. Tokognon, B. Gao, G. Y. Tian, and Y. Yan, “Structural health
monitoring framework based on internet of things: A survey,” IEEE
Internet of Things Journal, vol. 4, no. 3, pp. 619-635, 2017.

1. Takewaki, M. Nakamura, M. Nakamura, and S. Yoshitomi, System
identification for structural health monitoring. WIT Press, 2012.

R. J. Barthorpe, “On model-and data-based approaches to structural
health monitoring,” Ph.D. dissertation, University of Sheffield, 2010.
J. Luo, M. Namburu, K. Pattipati, L. Qiao, M. Kawamoto, and
S. Chigusa, “Model-based prognostic techniques [maintenance applica-
tions],” in Proceedings AUTOTESTCON 2003. IEEE Systems Readiness
Technology Conference. leee, 2003, pp. 330-340.

D. An, N. H. Kim, and J.-H. Choi, “Practical options for selecting
data-driven or physics-based prognostics algorithms with reviews,”
Reliability Engineering &amp System Safety, vol. 133, pp. 223-236,
jan 2015.

A. Malekloo, E. Ozer, M. AlHamaydeh, and M. Girolami, “Machine
learning and structural health monitoring overview with emerging
technology and high-dimensional data source highlights,” Structural
Health Monitoring, vol. 21, no. 4, pp. 1906-1955, aug 2021.

R. Hou and Y. Xia, “Review on the new development of vibration-based
damage identification for civil engineering structures: 2010-2019,”
Journal of Sound and Vibration, vol. 491, p. 115741, jan 2021.

L. Sun, Z. Shang, Y. Xia, S. Bhowmick, and S. Nagarajaiah, “Review
of bridge structural health monitoring aided by big data and artificial
intelligence: From condition assessment to damage detection,” Journal
of Structural Engineering, vol. 146, no. 5, may 2020.

G. Toh and J. Park, “Review of vibration-based structural health
monitoring using deep learning,” Applied Sciences, vol. 10, no. 5, p.
1680, mar 2020.

M. Flah, I. Nunez, W. B. Chaabene, and M. L. Nehdi, “Machine
learning algorithms in civil structural health monitoring: A systematic
review,” Archives of Computational Methods in Engineering, vol. 28,
no. 4, pp. 2621-2643, jul 2020.

D. A. T. Burgos, R. C. G. Vargas, C. Pedraza, D. Agis, and F. Pozo,
“Damage identification in structural health monitoring: A brief review
from its implementation to the use of data-driven applications,” Sen-
sors, vol. 20, no. 3, p. 733, jan 2020.

M. Azimi, A. Eslamlou, and G. Pekcan, “Data-driven structural health
monitoring and damage detection through deep learning: State-of-the-
art review,” Sensors, vol. 20, no. 10, p. 2778, may 2020.

M. Martinez-Luengo, A. Kolios, and L. Wang, “Structural health
monitoring of offshore wind turbines: A review through the statistical
pattern recognition paradigm,” Renewable and Sustainable Energy
Reviews, vol. 64, pp. 91-105, oct 2016.

P. Cawley, “Structural health monitoring: Closing the gap between
research and industrial deployment,” Structural Health Monitoring,
vol. 17, no. 5, pp. 1225-1244, 2018.

S. Li, S. Laima, and H. Li, “Data-driven modeling of vortex-induced
vibration of a long-span suspension bridge using decision tree learning
and support vector regression,” Journal of Wind Engineering and
Industrial Aerodynamics, vol. 172, pp. 196-211, jan 2018.

F. Kang, J. Li, and J. Dai, “Prediction of long-term temperature effect
in structural health monitoring of concrete dams using support vector
machines with jaya optimizer and salp swarm algorithms,” Advances
in Engineering Software, vol. 131, pp. 6076, may 2019.

X. W. Ye, Y. H. Su, and J. P. Han, “Structural health monitoring of civil
infrastructure using optical fiber sensing technology: A comprehensive
review,” The Scientific World Journal, vol. 2014, pp. 1-11, 2014.

S. Das, P. Saha, and S. K. Patro, “Vibration-based damage detection
techniques used for health monitoring of structures: a review,” Journal
of Civil Structural Health Monitoring, vol. 6, no. 3, pp. 477-507, apr
2016.

J. Sierra-Perez, M. A. Torres-Arredondo, G. Cabanes, A. Giieme,
and L. E. Mujica, “Structural health monitoring by means of strain
field pattern recognition on the basis of pca and automatic clustering
techniques based on som,” IFAC-PapersOnLine, vol. 48, no. 28, pp.
987-992, 2015.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[39]

[40]

[41]

[42]

[43]

21

H. V. Le and M. Nishio, “Time-series analysis of GPS monitoring data
from a long-span bridge considering the global deformation due to air
temperature changes,” Journal of Civil Structural Health Monitoring,
vol. 5, no. 4, pp. 415425, may 2015.

A. B. Mehrabi and S. Farhangdoust, “A laser-based noncontact vibra-
tion technique for health monitoring of structural cables: Background,
success, and new developments,” Advances in Acoustics and Vibration,
vol. 2018, pp. 1-13, jun 2018.

C.-Z. Dong and F. N. Catbas, “A review of computer vision-based
structural health monitoring at local and global levels,” Structural
Health Monitoring, vol. 20, no. 2, pp. 692-743, 2021.

J. Zhang, G. Y. Tian, A. M. Marindra, A. 1. Sunny, and A. B. Zhao,
“A review of passive rfid tag antenna-based sensors and systems for
structural health monitoring applications,” Sensors, vol. 17, no. 2, p.
265, 2017.

G. Chen, W. Zhang, Z. Zhang, X. Jin, and W. Pang, “A new rosette-
like eddy current array sensor with high sensitivity for fatigue defect
around bolt hole in SHM,” NDT &amp E International, vol. 94, pp.
70-78, mar 2018.

W. Na and J. Baek, “A review of the piezoelectric electromechanical
impedance based structural health monitoring technique for engineering
structures,” Sensors, vol. 18, no. 5, p. 1307, apr 2018.

J.-M. Munoz-Ferreras, Z. Peng, Y. Tang, R. Gomez-Garcia, D. Liang,
and C. Li, “A step forward towards radar sensor networks for structural
health monitoring of wind turbines,” in 2016 IEEE Radio and Wireless
Symposium (RWS). 1EEE, jan 2016.

1. Morris, H. Abdel-Jaber, and B. Glisic, “Quantitative attribute anal-
yses with ground penetrating radar for infrastructure assessments and
structural health monitoring,” Sensors, vol. 19, no. 7, p. 1637, apr 2019.
W. Ostachowicz, R. Soman, and P. Malinowski, “Optimization of
sensor placement for structural health monitoring: A review,” Structural
Health Monitoring, vol. 18, no. 3, pp. 963-988, 2019.

M. Abdulkarem, K. Samsudin, F. Z. Rokhani, and M. F. A. Rasid,
“Wireless sensor network for structural health monitoring: A con-
temporary review of technologies, challenges, and future direction,”
Structural Health Monitoring, vol. 19, no. 3, pp. 693-735, jul 2019.
J. Zhang, G. Tian, A. Marindra, A. Sunny, and A. Zhao, “A review
of passive RFID tag antenna-based sensors and systems for structural
health monitoring applications,” Sensors, vol. 17, no. 2, p. 265, jan
2017.

J. Yin, Z. Yang, H. Cao, T. Liu, Z. Zhou, and C. Wu, “A survey
on bluetooth 5.0 and mesh,” ACM Transactions on Sensor Networks,
vol. 15, no. 3, pp. 1-29, aug 2019.

G. Heo, B. Son, C. Kim, S. Jeon, and J. Jeon, “Development of a wire-
less unified-maintenance system for the structural health monitoring of
civil structures,” Sensors, vol. 18, no. 5, p. 1485, 2018.

J.-L. Lee, Y.-Y. Tyan, M.-H. Wen, and Y.-W. Wu, “Applying Zig-
Bee wireless sensor and control network for bridge safety mon-
itoring,” Advances in Mechanical Engineering, vol. 10, no. 7, p.
168781401878739, jul 2018.

C. Li and Z. Cao, “Lora networking techniques for large-scale and long-
term iot: A down-to-top survey,” ACM Computing Surveys (CSUR),
vol. 55, no. 3, pp. 1-36, 2022.

I. Bisio, C. Garibotto, F. Lavagetto, and A. Sciarrone, “A novel IoT-
based edge sensing platform for structure health monitoring,” in IEEE
INFOCOM 2022 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). 1EEE, may 2022.

L. Chettri and R. Bera, “A comprehensive survey on internet of things
(iot) toward 5g wireless systems,” IEEE Internet of Things Journal,
vol. 7, no. 1, pp. 16-32, 2019.

K. Y. Koo, N. D. Battista, and J. M. Brownjohn, “Shm data manage-
ment system using mysql database with matlab and web interfaces,”
in 5th international conference on structural health monitoring of
intelligent infrastructure (shmii-5), canciin, méxico, 2011, pp. 589-596.
Y. Zhang, S. M. O’Connor, G. W. van der Linden, A. Prakash, and
J. P. Lynch, “SenStore: A scalable cyberinfrastructure platform for
implementation of data-to-decision frameworks for infrastructure health
management,” Journal of Computing in Civil Engineering, vol. 30,
no. 5, sep 2016.

H. Dang, M. Tatipamula, and H. X. Nguyen, “Cloud-based digital
twinning for structural health monitoring using deep learning,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 6, pp. 3820-3830,
jun 2022.

S. Jeong, Y. Zhang, S. O’Connor, J. P. Lynch, H. Sohn, and K. H.
Law, “A nosql data management infrastructure for bridge monitoring,”
Smart Structures and Systems, vol. 17, no. 4, pp. 669-690, 2016.



[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

S. Jeong, R. Hou, J. P. Lynch, H. Sohn, and K. H. Law, “A scal-
able cloud-based cyberinfrastructure platform for bridge monitoring,”
Structure and Infrastructure Engineering, vol. 15, no. 1, pp. 82-102,
2019.

Y. Qin, R. Xiao, Y. Wang, and K. H. Law, “A bridge information
modeling framework for model interoperability,” in Computing in Civil
Engineering 2019. American Society of Civil Engineers, jun 2019.

K. Smarsly, D. Hartmann, and K. H. Law, “A computational framework
for life-cycle management of wind turbines incorporating structural
health monitoring,” Structural Health Monitoring, vol. 12, no. 4, pp.
359-376, jun 2013.

Y. L. Xu and Y. Xia, Structural health monitoring of long-span
suspension bridges. CRC Press, 2011.

R. Hou, “Bridge structrural health monitoring using a cyber-physical
system framework,” Ph.D. dissertation, 2020.

J. Shan, H. Zhang, W. Shi, and X. Lu, “Health monitoring and field-
testing of high-rise buildings: A review,” Structural Concrete, vol. 21,
no. 4, pp. 1272-1285, apr 2020.

A. Sivasuriyan, D. S. Vijayan, W. Gorski, . Wodzyrniski, M. D.
Vaverkovd, and E. Koda, “Practical implementation of structural health
monitoring in multi-story buildings,” Buildings, vol. 11, no. 6, p. 263,
jun 2021.

C. K. Oh, H. Sohn, and I.-H. Bae, “Statistical novelty detection within
the yeongjong suspension bridge under environmental and operational
variations,” Smart materials and structures, vol. 18, no. 12, p. 125022,
20009.

I. Laory, T. N. Trinh, I. F. Smith, and J. M. Brownjohn, “Methodologies
for predicting natural frequency variation of a suspension bridge,”
Engineering Structures, vol. 80, pp. 211-221, dec 2014.

S. Arangio and F. Bontempi, “Structural health monitoring of a
cable-stayed bridge with bayesian neural networks,” Structure and
Infrastructure Engineering, vol. 11, no. 4, pp. 575-587, 2015.

S. Bloemheuvel, J. van den Hoogen, and M. Atzmueller, “A compu-
tational framework for modeling complex sensor network data using
graph signal processing and graph neural networks in structural health
monitoring,” Applied Network Science, vol. 6, no. 1, pp. 1-24, 2021.
G. Comanducci, F. Magalhdes, F. Ubertini, and A. Cunha, “On
vibration-based damage detection by multivariate statistical techniques:
Application to a long-span arch bridge,” Structural Health Monitoring,
vol. 15, no. 5, pp. 505-524, aug 2016.

A. Cury, C. Cremona, and J. Dumoulin, “Long-term monitoring of a psc
box girder bridge: Operational modal analysis, data normalization and
structural modification assessment,” Mechanical Systems and Signal
Processing, vol. 33, pp. 13-37, 2012.

Y.-L. Ding, G.-X. Wang, Y. Hong, Y.-S. Song, L.-Y. Wu, and Q. Yue,
“Detection and localization of degraded truss members in a steel arch
bridge based on correlation between strain and temperature,” Journal
of Performance of Constructed Facilities, vol. 31, no. 5, oct 2017.

Z. Sun, J. Santos, and E. Caetano, “Data-driven prediction and interpre-
tation of fatigue damage in a road-rail suspension bridge considering
multiple loads,” Structural Control and Health Monitoring, may 2022.
M. M. Alamdari, T. Rakotoarivelo, and N. L. D. Khoa, “A spectral-
based clustering for structural health monitoring of the sydney harbour
bridge,” Mechanical Systems and Signal Processing, vol. 87, pp. 384—
400, mar 2017.

J. W. Hu and M. R. Kaloop, “Single input-single output identification
thermal response model of bridge using nonlinear ARX with wavelet
networks,” Journal of Mechanical Science and Technology, vol. 29,
no. 7, pp. 2817-2826, jul 2015.

Y. Zhang, Y. Miyamori, S. Mikami, and T. Saito, “Vibration-based
structural state identification by a 1-dimensional convolutional neu-
ral network,” Computer-Aided Civil and Infrastructure Engineering,
vol. 34, no. 9, pp. 822-839, apr 2019.

H.-B. Huang, T.-H. Yi, and H.-N. Li, “Anomaly identification of struc-
tural health monitoring data using dynamic independent component
analysis,” Journal of Computing in Civil Engineering, vol. 34, no. 5,
sep 2020.

A. Cury, C. Crémona, and E. Diday, “Application of symbolic data anal-
ysis for structural modification assessment,” Engineering Structures,
vol. 32, no. 3, pp. 762-775, mar 2010.

A. Datteo, F. Luca, and G. Busca, “Statistical pattern recognition
approach for long-time monitoring of the g.meazza stadium by means
of AR models and PCA,” Engineering Structures, vol. 153, pp. 317—
333, dec 2017.

1. Abdallah, V. Dertimanis, H. Mylonas, K. Tatsis, E. Chatzi, N. Dervili,
K. Worden, and E. Maguire, “Fault diagnosis of wind turbine structures
using decision tree learning algorithms with big data,” in Safety and

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(77

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

22

Reliability — Safe Societies in a Changing World.
2018, pp. 3053-3061.

S. Bogoevska, M. Spiridonakos, E. Chatzi, E. Dumova-Jovanoska,
and R. Hoffer, “A data-driven diagnostic framework for wind turbine
structures: A holistic approach,” Sensors, vol. 17, no. 4, p. 720, mar
2017.

A. Zhang, M. Li, and L. Zhou, “Structural health monitoring of offshore
wind turbine based on online data-driven support vector machine,” in
2018 IEEE 7th Data Driven Control and Learning Systems Conference
(DDCLS). 1EEE, may 2018.

D. F. Hesser, K. Altun, and B. Markert, “Monitoring and tracking of
a suspension railway based on data-driven methods applied to inertial
measurements,” Mechanical Systems and Signal Processing, vol. 164,
p. 108298, feb 2022.

F. N. Catbas and M. Malekzadeh, “A machine learning-based algorithm
for processing massive data collected from the mechanical components
of movable bridges,” Automation in Construction, vol. 72, pp. 269-278,
dec 2016.

F. Ubertini, G. Comanducci, and N. Cavalagli, “Vibration-based struc-
tural health monitoring of a historic bell-tower using output-only
measurements and multivariate statistical analysis,” Structural Health
Monitoring, vol. 15, no. 4, pp. 438457, jul 2016.

E. Garcia-Macias and F. Ubertini, “MOVA/MOSS: Two integrated
software solutions for comprehensive structural health monitoring of
structures,” Mechanical Systems and Signal Processing, vol. 143, p.
106830, sep 2020.

F. Salazar, M. A. Toledo, J. M. Gonzdlez, and E. Ofiate, “Early
detection of anomalies in dam performance: A methodology based on
boosted regression trees,” Structural Control and Health Monitoring,
vol. 24, no. 11, p. 2012, apr 2017.

J. Mata, “Interpretation of concrete dam behaviour with artificial
neural network and multiple linear regression models,” Engineering
Structures, vol. 33, no. 3, pp. 903-910, mar 2011.

J. Mata, A. T. de Castro, and J. S. da Costa, “Time—frequency analysis
for concrete dam safety control: Correlation between the daily variation
of structural response and air temperature,” Engineering Structures,
vol. 48, pp. 658-665, mar 2013.

R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical
systems,” in Proceedings of the 47th Design Automation Conference
on - DAC '10. ACM Press, 2010.

E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th
IEEE international symposium on object and component-oriented real-
time distributed computing (ISORC). 1EEE, 2008, pp. 363-369.

E. Negri, L. Fumagalli, and M. Macchi, “A review of the roles of digital
twin in CPS-based production systems,” Procedia Manufacturing,
vol. 11, pp. 939-948, 2017.

S. Azhar, “Building information modeling (BIM): Trends, benefits,
risks, and challenges for the AEC industry,” Leadership and Manage-
ment in Engineering, vol. 11, no. 3, pp. 241-252, jul 2011.

A. Rytter, “Vibrational based inspection of civil engineering structures,”
1993.

Y.-L. Ding, G.-X. Wang, P. Sun, L.-Y. Wu, and Q. Yue, “Long-term
structural health monitoring system for a high-speed railway bridge
structure,” The Scientific World Journal, vol. 2015, pp. 1-17, 2015.
N. Dervilis, K. Worden, and E. Cross, “On robust regression analysis
as a means of exploring environmental and operational conditions for
SHM data,” Journal of Sound and Vibration, vol. 347, pp. 279-296,
jul 2015.

Y. Ni, X. Hua, K. Fan, and J. Ko, “Correlating modal properties
with temperature using long-term monitoring data and support vector
machine technique,” Engineering Structures, vol. 27, no. 12, pp. 1762—
1773, oct 2005.

D. Huang, D. Hu, J. He, and Y. Xiong, “Structure damage detection
based on ensemble learning,” in 2018 9th International Conference on
Mechanical and Aerospace Engineering (ICMAE). 1EEE, jul 2018.
S. D. Fassois and F. P. Kopsaftopoulos, “Statistical time series methods
for vibration based structural health monitoring,” in New Trends in
Structural Health Monitoring. Springer Vienna, 2013, pp. 209-264.
S. Li, J. Niu, and Z. Li, “Novelty detection of cable-stayed bridges
based on cable force correlation exploration using spatiotemporal graph
convolutional networks,” Structural Health Monitoring, vol. 20, no. 4,
pp. 2216-2228, 2021.

B. Bhowmik, T. Tripura, B. Hazra, and V. Pakrashi, “Real time
structural modal identification using recursive canonical correlation
analysis and application towards online structural damage detection,”
Journal of Sound and Vibration, vol. 468, p. 115101, mar 2020.

CRC Press, jun



[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

C. R. Farrar, H. Sohn, F. M. Hemez, M. C. Anderson, M. T. Bement,
P. J. Cornwell, S. W. Doebling, J. Schultze, N. Lieven, and A. Robert-
son, “Damage prognosis: current status and future needs,” Los Alamos
National Laboratory, LA, vol. 176, pp. 177-178, 2003.

C. R. Farrar and N. A. Lieven, “Damage prognosis: the future of
structural health monitoring,” Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol. 365,
no. 1851, pp. 623-632, 2007.

A. C. Neves, I. Gonzilez, J. Leander, and R. Karoumi, “Structural
health monitoring of bridges: a model-free ANN-based approach to
damage detection,” Journal of Civil Structural Health Monitoring,
vol. 7, no. 5, pp. 689-702, nov 2017.

S. Arangio and J. Beck, “Bayesian neural networks for bridge integrity
assessment,” Structural Control and Health Monitoring, vol. 19, no. 1,
pp. 3-21, 2012.

A. Ibrahim, A. Eltawil, Y. Na, and S. El-Tawil, “A machine learning
approach for structural health monitoring using noisy data sets,” IEEE
Transactions on Automation Science and Engineering, vol. 17, no. 2,
pp- 900-908, 2019.

Y. zhou Lin, Z. hua Nie, and H. wei Ma, “Structural damage detection
with automatic feature-extraction through deep learning,” Computer-
Aided Civil and Infrastructure Engineering, vol. 32, no. 12, pp. 1025-
1046, nov 2017.

H. Khodabandehlou, G. Pekcan, and M. S. Fadali, “Vibration-based
structural condition assessment using convolution neural networks,”
Structural Control and Health Monitoring, p. €2308, dec 2018.

O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, and D. J. Inman,
“Real-time vibration-based structural damage detection using one-
dimensional convolutional neural networks,” Journal of Sound and
Vibration, vol. 388, pp. 154-170, feb 2017.

0. Abdeljaber, O. Avci, M. S. Kiranyaz, B. Boashash, H. Sodano, and
D. J. Inman, “I-d CNNs for structural damage detection: Verification
on a structural health monitoring benchmark data,” Neurocomputing,
vol. 275, pp. 1308-1317, jan 2018.

H. Pan, G. Gui, Z. Lin, and C. Yan, “Deep BBN learning for health
assessment toward decision-making on structures under uncertainties,”
KSCE Journal of Civil Engineering, vol. 22, no. 3, pp. 928-940, mar
2018.

J. Sierra-Perez, A. Giiemes, and L. E. Mujica, “Damage detection
by using fbgs and strain field pattern recognition techniques,” Smart
materials and structures, vol. 22, no. 2, p. 025011, 2012.

H.-P. Wan and Y.-Q. Ni, “Bayesian modeling approach for forecast
of structural stress response using structural health monitoring data,”
Journal of Structural Engineering, vol. 144, no. 9, sep 2018.

X. Li and W. Yu, “Data stream classification for structural health
monitoring via on-line support vector machines,” in 2015 IEEE First
International Conference on Big Data Computing Service and Appli-
cations. 1EEE, mar 2015.

Y. Liu and S. Nayak, “Structural health monitoring: State of the art
and perspectives,” JOM, vol. 64, no. 7, pp. 789-792, jul 2012.

A. Teughels and G. D. Roeck, “Structural damage identification of the
highway bridge z24 by FE model updating,” Journal of Sound and
Vibration, vol. 278, no. 3, pp. 589-610, dec 2004.

J. Maeck and G. De Roeck, “Dynamic bending and torsion stiffness
derivation from modal curvatures and torsion rates,” Journal of Sound
and Vibration, vol. 225, no. 1, pp. 153-170, 1999.

G. Kawiecki, “Modal damping measurement for damage detection,”
Smart Materials and Structures, vol. 10, no. 3, pp. 466471, jun 2001.
B. Koh and S. Dyke, “Structural health monitoring for flexible bridge
structures using correlation and sensitivity of modal data,” Computers
&amp Structures, vol. 85, no. 3-4, pp. 117-130, feb 2007.

H. Zhu, L. Li, and X.-Q. He, “Damage detection method for shear
buildings using the changes in the first mode shape slopes,” Computers
&amp Structures, vol. 89, no. 9-10, pp. 733-743, may 2011.

J. Wang and Y. Ni, “Refinement of damage identification capability
of neural network techniques in application to a suspension bridge,”
Structural Monitoring and Maintenance, vol. 2, no. 1, pp. 77-93, mar
2015.

A. Cury and C. Crémona, “Pattern recognition of structural behaviors
based on learning algorithms and symbolic data concepts,” Structural
Control and Health Monitoring, vol. 19, no. 2, pp. 161-186, 2012.
L. sheng Huo, X. Li, Y.-B. Yang, and H.-N. Li, “Damage detection
of structures for ambient loading based on cross correlation function
amplitude and SVM,” Shock and Vibration, vol. 2016, pp. 1-12, 2016.
W.-H. Hu, E. Caetano, and A. Cunha, “Structural health monitoring of
a stress-ribbon footbridge,” Engineering Structures, vol. 57, pp. 578—
593, dec 2013.

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

23

G. Lederman, Z. Wang, J. Bielak, H. Noh, J. Garrett, S. Chen,
J. Kovacevi¢, F. Cerda, and P. Rizzo, “Damage quantification and
localization algorithms for indirect SHM of bridges,” in Bridge Main-
tenance, Safety, Management and Life Extension. CRC Press, may
2014, pp. 640-647.

Y. Duan, Q. Chen, H. Zhang, C. B. Yun, S. Wu, and Q. Zhu, “Cnn-
based damage identification method of tied-arch bridge using spatial-
spectral information,” Smart Struct. Syst, vol. 23, no. 5, pp. 507-520,
2019.

M. Fallahian, F. Khoshnoudian, and S. Talaei, “Application of couple
sparse coding ensemble on structural damage detection,” Smart Struc-
tures and Systems, vol. 21, no. 1, pp. 001-14, 2018.

A. P. Urgueira, R. A. Almeida, and N. M. Maia, “On the use of
the transmissibility concept for the evaluation of frequency response
functions,” Mechanical Systems and Signal Processing, vol. 25, no. 3,
pp. 940-951, apr 2011.

D. H. Nguyen, T. T. Bui, G. De Roeck, and M. A. Wahab, “Damage
detection in ca-non bridge using transmissibility and artificial neural
networks,” Structural Engineering and Mechanics, vol. 71, no. 2, pp.
175-183, 2019.

Y.-L. Zhou, N. M. Maia, and M. Abdel Wahab, “Damage detection
using transmissibility compressed by principal component analysis
enhanced with distance measure,” Journal of Vibration and Control,
vol. 24, no. 10, pp. 2001-2019, 2018.

W.-J. Yan, M.-Y. Zhao, Q. Sun, and W.-X. Ren, “Transmissibility-based
system identification for structural health monitoring: Fundamentals,
approaches, and applications,” Mechanical Systems and Signal Pro-
cessing, vol. 117, pp. 453-482, feb 2019.

Y. Diao, X. Men, Z. Sun, K. Guo, and Y. Wang, “Structural damage
identification based on the transmissibility function and support vector
machine,” Shock and Vibration, vol. 2018, 2018.

T. Liu, H. Xu, M. Ragulskis, M. Cao, and W. Ostachowicz, “A
data-driven damage identification framework based on transmissibility
function datasets and one-dimensional convolutional neural networks:
Verification on a structural health monitoring benchmark structure,”
Sensors, vol. 20, no. 4, p. 1059, 2020.

G. Facchini, L. Bernardini, S. Atek, and P. Gaudenzi, “Use of the
wavelet packet transform for pattern recognition in a structural health
monitoring application,” Journal of Intelligent Material Systems and
Structures, vol. 26, no. 12, pp. 1513-1529, 2015.

A. Shi and X.-H. Yu, “Structural damage detection using artificial
neural networks and wavelet transform,” in 2012 IEEE International
Conference on Computational Intelligence for Measurement Systems
and Applications (CIMSA) Proceedings. 1EEE, jul 2012.

D.-A. Tibaduiza, M.-A. Torres-Arredondo, L. Mujica, J. Rodellar, and
C.-P. Fritzen, “A study of two unsupervised data driven statistical
methodologies for detecting and classifying damages in structural
health monitoring,” Mechanical Systems and Signal Processing, vol. 41,
no. 1-2, pp. 467484, dec 2013.

Y. Kim, J. W. Chong, K. H. Chon, and J. Kim, “Wavelet-based
AR-SVM for health monitoring of smart structures,” Smart Materials
and Structures, vol. 22, no. 1, p. 015003, nov 2012.

H. Z. HosseinAbadi, R. Amirfattahi, B. Nazari, H. R. Mirdamadi, and
S. A. Atashipour, “GUW-based structural damage detection using WPT
statistical features and multiclass SVM,” Applied Acoustics, vol. 86, pp.
59-70, dec 2014.

X.-L. Peng, H. Hao, and Z.-X. Li, “Application of wavelet packet trans-
form in subsea pipeline bedding condition assessment,” Engineering
Structures, vol. 39, pp. 50-65, jun 2012.

C. D. Duan, Y. Y. Liu, and Q. Gao, “Structure health monitoring using
support vector data description and wavelet packet energy distribu-
tions,” in Applied Mechanics and Materials, vol. 135. Trans Tech
Publ, 2012, pp. 930-937.

R. Yan and R. X. Gao, “Wavelet domain principal feature analysis for
spindle health diagnosis,” Structural Health Monitoring, vol. 10, no. 6,
pp. 631-642, jan 2011.

R. Yang, Y. He, and H. Zhang, “Progress and trends in nondestructive
testing and evaluation for wind turbine composite blade,” Renewable
and Sustainable Energy Reviews, vol. 60, pp. 1225-1250, jul 2016.
P. Rizzo, “Nde/shm of underwater structures: a review,” Advances in
Science and Technology, vol. 83, pp. 208-216, 2013.

T. Loutas, N. Eleftheroglou, and D. Zarouchas, “A data-driven prob-
abilistic framework towards the in-situ prognostics of fatigue life of
composites based on acoustic emission data,” Composite Structures,
vol. 161, pp. 522-529, feb 2017.

C. Tang, G. Y. Tian, K. Li, R. Sutthaweekul, and J. Wu, “Smart
compressed sensing for online evaluation of cfrp structure integrity,”



[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

IEEE Transactions on Industrial Electronics, vol. 64, no. 12, pp. 9608—
9617, 2017.

S. Senck, M. Happl, M. Reiter, M. Scheerer, M. Kendel, J. Glinz,
and J. Kastner, “Additive manufacturing and non-destructive testing
of topology-optimised aluminium components,” Nondestructive Testing
and Evaluation, vol. 35, no. 3, pp. 315-327, 2020.

R. Yao and S. N. Pakzad, “Autoregressive statistical pattern recogni-
tion algorithms for damage detection in civil structures,” Mechanical
Systems and Signal Processing, vol. 31, pp. 355-368, aug 2012.

X. Fan, J. Li, and H. Hao, “Piezoelectric impedance based damage
detection in truss bridges based on time frequency ARMA model,”
Smart Structures and Systems, vol. 18, no. 3, pp. 501-523, sep 2016.
S. Mustapha, Y. Hu, K. Nguyen, M. M. Alamdari, P. Runcie, U. Dack-
ermann, V. Nguyen, J. Li, and L. Ye, “Pattern recognition based on time
series analysis using vibration data for structural health monitoring in
civil structures,” Electronic Journal of Structural Engineering, 2015.
K. Roy, B. Bhattacharya, and S. Ray-Chaudhuri, “ARX model-based
damage sensitive features for structural damage localization using
output-only measurements,” Journal of Sound and Vibration, vol. 349,
pp. 99-122, aug 2015.

L. Yan, A. Elgamal, and G. W. Cottrell, “Substructure vibration NARX
neural network approach for statistical damage inference,” Journal of
Engineering Mechanics, vol. 139, no. 6, pp. 737-747, jun 2013.

A. J. Wootton, J. B. Butcher, T. Kyriacou, C. R. Day, and P. W.
Haycock, “Structural health monitoring of a footbridge using echo
state networks and NARMAX,” Engineering Applications of Artificial
Intelligence, vol. 64, pp. 152-163, sep 2017.

M. 1. Rafig, M. K. Chryssanthopoulos, and S. Sathananthan, “Bridge
condition modelling and prediction using dynamic bayesian belief
networks,” Structure and Infrastructure Engineering, vol. 11, no. 1,
pp. 38-50, 2015.

E. B. Flynn, M. D. Todd, A. J. Croxford, B. W. Drinkwater, and P. D.
Wilcox, “Enhanced detection through low-order stochastic modeling
for guided-wave structural health monitoring,” Structural Health Mon-
itoring, vol. 11, no. 2, pp. 149-160, 2012.

Y. Ni, Y. Wang, and C. Zhang, “A bayesian approach for condition
assessment and damage alarm of bridge expansion joints using long-
term structural health monitoring data,” Engineering Structures, vol.
212, p. 110520, jun 2020.

Y. Yu and C. S. Cai, “Prediction of extreme traffic load effects of
bridges using bayesian method and application to bridge condition
assessment,” Journal of Bridge Engineering, vol. 24, no. 3, mar 2019.
M. Gobbato, J. Kosmatka, and J. Conte, “Developing an integrated
structural health monitoring and damage prognosis (SHM-DP) frame-
work for predicting the fatigue life of adhesively-bonded composite
joints,” in Fatigue and Fracture of Adhesively-Bonded Composite
Joints. Elsevier, 2015, pp. 493-526.

R. M. Neal, Bayesian learning for neural networks.
& Business Media, 2012, vol. 118.

T.-H. Yi, H.-B. Huang, and H.-N. Li, “Development of sensor valida-
tion methodologies for structural health monitoring: A comprehensive
review,” Measurement, vol. 109, pp. 200-214, oct 2017.

J. Vitola, F. Pozo, D. Tibaduiza, and M. Anaya, “A sensor data fusion
system based on k-nearest neighbor pattern classification for structural
health monitoring applications,” Sensors, vol. 17, no. 2, p. 417, feb
2017.

H. Sohn, K. Worden, and C. R. Farrar, “&lttitle&gtnovelty detection
under changing environmental conditions&lt/title&gt,” in SPIE Pro-
ceedings, S.-C. Liu, Ed. SPIE, jul 2001.

Y. Yang and S. Nagarajaiah, “Time-frequency blind source separation
using independent component analysis for output-only modal identifi-
cation of highly damped structures,” Journal of Structural Engineering,
vol. 139, no. 10, pp. 1780-1793, oct 2013.

C. Zang, M. L. Friswell, and M. Imregun, “Structural damage detection
using independent component analysis,” Structural Health Monitoring,
vol. 3, no. 1, pp. 69-83, mar 2004.

D. S. Wilks, Statistical methods in the atmospheric sciences.
demic press, 2011, vol. 100.

C. Cremona and J. Santos, “Structural health monitoring as a big-data
problem,” Structural Engineering International, vol. 28, no. 3, pp. 243—
254, jul 2018.

K. Worden and A. J. Lane, “Damage identification using support vector
machines,” Smart Materials and Structures, vol. 10, no. 3, pp. 540-547,
jun 2001.

A. Soualhi, K. Medjaher, and N. Zerhouni, “Bearing health monitoring
based on hilbert-huang transform, support vector machine, and regres-

Springer Science

Aca-

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

24

sion,” IEEE Transactions on instrumentation and measurement, vol. 64,
no. 1, pp. 52-62, 2014.

X. Zhang, Y. Liang, J. Zhou, and Y. zang, “A novel bearing fault
diagnosis model integrated permutation entropy, ensemble empirical
mode decomposition and optimized SVM,” Measurement, vol. 69, pp.
164-179, jun 2015.

T. Praveenkumar, M. Saimurugan, P. Krishnakumar, and K. Ramachan-
dran, “Fault diagnosis of automobile gearbox based on machine learn-
ing techniques,” Procedia Engineering, vol. 97, pp. 2092-2098, 2014.
1. Bayane and E. Briihwiler, “Investigation of fatigue damage in a
RC deck slab due to moving loads through long-term monitoring of a
road viaduct,” in Bridge Maintenance, Safety, Management, Life-Cycle
Sustainability and Innovations. CRC Press, apr 2021, pp. 3721-3727.
L. Long, S. Thons, and M. Dohler, “The effects of shm system
parameters on the value of damage detection information,” in EWSHM
2018, 9th European Workshop on Structural Health Monitoring, 2018,
pp. 10—p.

M. Jeong, J.-H. Choi, and B.-H. Koh, “Isomap-based damage classifica-
tion of cantilevered beam using modal frequency changes,” Structural
Control and Health Monitoring, vol. 21, no. 4, pp. 590-602, 2014.
H. Sarmadi and A. Karamodin, “A novel anomaly detection method
based on adaptive mahalanobis-squared distance and one-class kNN
rule for structural health monitoring under environmental effects,”
Mechanical Systems and Signal Processing, vol. 140, p. 106495, jun
2020.

F. Parisi, A. Mangini, M. Fanti, and J. M. Adam, “Automated location
of steel truss bridge damage using machine learning and raw strain
sensor data,” Automation in Construction, vol. 138, p. 104249, jun
2022.

Z. Li, J. Guo, W. Liang, X. Xie, G. Zhang, and S. Wang, “Structural
health monitoring based on realadaboost algorithm in wireless sensor
networks,” in International Conference on Wireless Algorithms, Sys-
tems, and Applications. Springer, 2014, pp. 236-245.

F.-K. Chang, Structural health monitoring: current status and perspec-
tives. CRC Press, 1998.

J. Min, S. Park, C.-B. Yun, C.-G. Lee, and C. Lee, “Impedance-based
structural health monitoring incorporating neural network technique for
identification of damage type and severity,” Engineering Structures,
vol. 39, pp. 210-220, jun 2012.

J. Guo, X. Xie, R. Bie, and L. Sun, “Structural health monitoring
by using a sparse coding-based deep learning algorithm with wireless
sensor networks,” Personal and Ubiquitous Computing, vol. 18, no. 8§,
pp. 1977-1987, aug 2014.

D. M. Sahoo and S. Chakraverty, “Functional link neural network
learning for response prediction of tall shear buildings with respect
to earthquake data,” IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, vol. 48, no. 1, pp. 1-10, 2017.

T. Li, Y. Pan, K. Tong, C. E. Ventura, and C. W. de Silva, “Attention-
based sequence-to-sequence learning for online structural response
forecasting under seismic excitation,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 52, no. 4, pp. 2184-2200, 2021.
R.-T. Wu and M. R. Jahanshahi, “Deep convolutional neural network
for structural dynamic response estimation and system identification,”
Journal of Engineering Mechanics, vol. 145, no. 1, p. 04018125, 2019.
T. Liu, H. Xu, M. Ragulskis, M. Cao, and W. Ostachowicz, “A
data-driven damage identification framework based on transmissibility
function datasets and one-dimensional convolutional neural networks:
Verification on a structural health monitoring benchmark structure,”
Sensors, vol. 20, no. 4, p. 1059, feb 2020.

N. S. Gulgec, M. Takac, and S. N. Pakzad, “Convolutional neural net-
work approach for robust structural damage detection and localization,”
Journal of Computing in Civil Engineering, vol. 33, no. 3, may 2019.
M. de Oliveira, A. Monteiro, and J. V. Filho, “A new structural health
monitoring strategy based on PZT sensors and convolutional neural
network,” Sensors, vol. 18, no. 9, p. 2955, sep 2018.

H. Liu, “Smart structural condition assessment methods for civil infras-
tructures using deep learning algorithm,” Ph.D. dissertation, University
of Maryland, College Park, 2018.

Z. Tang, Z. Chen, Y. Bao, and H. Li, “Convolutional neural network-
based data anomaly detection method using multiple information for
structural health monitoring,” Structural Control and Health Monitor-
ing, vol. 26, no. 1, p. €2296, 2019.

A. J. Wootton, C. R. Day, and P. W. Haycock, “An echo state network
approach to structural health monitoring,” in 2015 International Joint
Conference on Neural Networks (IJCNN). 1EEE, jul 2015.

I. R. Urquijo, A. Q. Incera, S. V. Vaerenbergh, D. Inaud, and J. L.
Higuera, “Risks and opportunities of using fibre optic sensors for



[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

long term infrastructure health monitoring systems in an 18 year old
installation,” in International Conference on Smart Infrastructure and
Construction 2019 (ICSIC). ICE Publishing, jan 2019.

A. Guo, A. Jiang, J. Lin, and X. Li, “Data mining algorithms for
bridge health monitoring: Kohonen clustering and LSTM prediction
approaches,” The Journal of Supercomputing, vol. 76, no. 2, pp. 932—
947, oct 2019.

J. Zhou, L. Dong, W. Guan, and J. Yan, “Impact load identification of
nonlinear structures using deep recurrent neural network,” Mechanical
Systems and Signal Processing, vol. 133, p. 106292, nov 2019.

G. Tsialiamanis, C. Mylonas, E. Chatzi, N. Dervilis, D. J. Wagg,
and K. Worden, “Foundations of population-based shm, part iv: The
geometry of spaces of structures and their feature spaces,” Mechanical
Systems and Signal Processing, vol. 157, p. 107692, 2021.

L. Zhou, S.-X. Chen, Y.-Q. Ni, and A. W.-H. Choy, “Emi-gen: a
hybrid model for real-time monitoring of multiple bolt looseness
using electromechanical impedance and graph convolutional networks,”
Smart Materials and Structures, vol. 30, no. 3, p. 035032, 2021.

H. Son, V.-T. Pham, Y. Jang, and S.-E. Kim, “Damage localization and
severity assessment of a cable-stayed bridge using a message passing
neural network,” Sensors, vol. 21, no. 9, p. 3118, 2021.

C. S. N. Pathirage, J. Li, L. Li, H. Hao, W. Liu, and P. Ni, “Structural
damage identification based on autoencoder neural networks and deep
learning,” Engineering Structures, vol. 172, pp. 13-28, oct 2018.

C. S. N. Pathirage, J. Li, L. Li, H. Hao, W. Liu, and R. Wang,
“Development and application of a deep learning—based sparse au-
toencoder framework for structural damage identification,” Structural
Health Monitoring, vol. 18, no. 1, pp. 103-122, 2019.

M. H. Rafiei and H. Adeli, “A novel unsupervised deep learning
model for global and local health condition assessment of structures,”
Engineering Structures, vol. 156, pp. 598-607, feb 2018.

T. Rogers, K. Worden, R. Fuentes, N. Dervilis, U. Tygesen, and
E. Cross, “A bayesian non-parametric clustering approach for semi-
supervised structural health monitoring,” Mechanical Systems and
Signal Processing, vol. 119, pp. 100-119, mar 2019.

J. Liu, S. Chen, M. Bergés, J. Bielak, J. H. Garrett, J. Kovacevié, and
H. Y. Noh, “Diagnosis algorithms for indirect structural health mon-
itoring of a bridge model via dimensionality reduction,” Mechanical
Systems and Signal Processing, vol. 136, p. 106454, 2020.

C. K. Oh and H. Sohn, “Damage diagnosis under environmental and
operational variations using unsupervised support vector machine,”
Journal of sound and vibration, vol. 325, no. 1-2, pp. 224-239, 2009.
G. Gui, H. Pan, Z. Lin, Y. Li, and Z. Yuan, “Data-driven support vector
machine with optimization techniques for structural health monitoring
and damage detection,” KSCE Journal of Civil Engineering, vol. 21,
no. 2, pp. 523-534, jan 2017.

T. Tinga and R. Loendersloot, “Physical model-based prognostics and
health monitoring to enable predictive maintenance,” in Predictive
Maintenance in Dynamic Systems. Springer International Publishing,
2019, pp. 313-353.

C. Hu, B. D. Youn, and P. Wang, “Ensemble of data-driven prognostic
algorithms for robust prediction of remaining useful life,” in 2011 IEEE
Conference on Prognostics and Health Management. 1EEE, jun 2011.
N. Eleftheroglou, D. Zarouchas, T. Loutas, R. Alderliesten, and
R. Benedictus, “Structural health monitoring data fusion for in-situ
life prognosis of composite structures,” Reliability Engineering &amp
System Safety, vol. 178, pp. 40-54, oct 2018.

Y. Liu, S. Mohanty, and A. Chattopadhyay, “‘Condition based structural
health monitoring and prognosis of composite structures under uniaxial
and biaxial loading,” Journal of Nondestructive Evaluation, vol. 29,
no. 3, pp. 181-188, jun 2010.

R.-T. Wu and M. R. Jahanshahi, “Data fusion approaches for structural
health monitoring and system identification: past, present, and future,”
Structural Health Monitoring, vol. 19, no. 2, pp. 552-586, 2020.

A. A. Broer, R. Benedictus, and D. Zarouchas, “The need for multi-
sensor data fusion in structural health monitoring of composite aircraft
structures,” Aerospace, vol. 9, no. 4, p. 183, 2022.

R. Rocchetta, M. Broggi, Q. Huchet, and E. Patelli, “On-line bayesian
model updating for structural health monitoring,” Mechanical Systems
and Signal Processing, vol. 103, pp. 174-195, 2018.

M. Rabiei and M. Modarres, “A recursive bayesian framework for
structural health management using online monitoring and periodic
inspections,” Reliability Engineering &amp System Safety, vol. 112,
pp. 154-164, apr 2013.

A. Decd and D. M. Frangopol, “Real-time risk of ship structures
integrating structural health monitoring data: Application to multi-

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

25

objective optimal ship routing,” Ocean Engineering, vol. 96, pp. 312—
329, 2015.

N. Li, Y. Lei, N. Gebraeel, Z. Wang, X. Cai, P. Xu, and B. Wang,
“Multi-sensor data-driven remaining useful life prediction of semi-
observable systems,” IEEE Transactions on Industrial Electronics,
vol. 68, no. 11, pp. 11482-11491, 2020.

J. Hou, H. Jiang, C. Wan, L. Yi, S. Gao, Y. Ding, and S. Xue,
“Deep learning and data augmentation based data imputation for
structural health monitoring system in multi-sensor damaged state,”
Measurement, vol. 196, p. 111206, 2022.

H. V. Dang, H. Tran-Ngoc, T. V. Nguyen, T. Bui-Tien, G. De Roeck,
and H. X. Nguyen, “Data-driven structural health monitoring using
feature fusion and hybrid deep learning,” IEEE Transactions on Au-
tomation Science and Engineering, vol. 18, no. 4, pp. 2087-2103, 2020.
J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar, “Integrating
physics-based modeling with machine learning: A survey,” arXiv
preprint arXiv:2003.04919, vol. 1, no. 1, pp. 1-34, 2020.

F-G. Yuan, S. A. Zargar, Q. Chen, and S. Wang, “Machine learning
for structural health monitoring: challenges and opportunities,” Sensors
and smart structures technologies for civil, mechanical, and aerospace
systems 2020, vol. 11379, p. 1137903, 2020.

M. Lesjak, “Prediction of chaotic systems with physics-enhanced
machine learning models,” 2020.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner et al., “Relational inductive biases, deep learning, and
graph networks,” arXiv preprint arXiv:1806.01261, 2018.

A. Almunif, L. Fan, and Z. Miao, “A tutorial on data-driven eigen-
value identification: Prony analysis, matrix pencil, and eigensystem
realization algorithm,” International Transactions on Electrical Energy
Systems, vol. 30, no. 4, p. e12283, 2020.

H. Shokravi, H. Shokravi, N. Bakhary, S. S. Rahimian Koloor, and
M. Petr, “Health monitoring of civil infrastructures by subspace system
identification method: an overview,” Applied Sciences, vol. 10, no. 8,
p. 2786, 2020.

M. Z. A. Bhuiyan, J. Wu, G. Wang, J. Cao, W. Jiang, and M. Atiquz-
zaman, “Towards cyber-physical systems design for structural health
monitoring,” ACM Transactions on Cyber-Physical Systems, vol. 1,
no. 4, pp. 1-26, oct 2017.

X. Liu, J. Cao, W.-Z. Song, P. Guo, and Z. He, “Distributed sensing for
high-quality structural health monitoring using wsns,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 26, no. 3, pp. 738-747,
2014.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE internet of things journal, vol. 3, no. 5, pp.
637-646, 2016.

Q. Chen, J. Cao, and Y. Xia, “Physics-enhanced pca for data compres-
sion in edge devices,” IEEE Transactions on Green Communications
and Networking, 2022.

M. E. S. Saeed, Q.-Y. Liu, G. Tian, B. Gao, and F. Li, “Akaiots:
authenticated key agreement for internet of things,” Wireless Networks,
vol. 25, pp. 3081-3101, 2019.

R.-T. Wu, A. Singla, M. R. Jahanshahi, E. Bertino, B. J. Ko, and
D. Verma, “Pruning deep convolutional neural networks for efficient
edge computing in condition assessment of infrastructures,” Computer-
Aided Civil and Infrastructure Engineering, vol. 34, no. 9, pp. 774-789,
2019.

N. Testoni, C. Aguzzi, V. Arditi, F. Zonzini, L. D. Marchi, A. Marzani,
and T. S. Cinotti, “A sensor network with embedded data processing
and data-to-cloud capabilities for vibration-based real-time SHM,”
Journal of Sensors, vol. 2018, pp. 1-12, jul 2018.

S. M. Khan, S. Atamturktur, M. Chowdhury, and M. Rahman, “Inte-
gration of structural health monitoring and intelligent transportation
systems for bridge condition assessment: Current status and future
direction,” IEEE Transactions on Intelligent Transportation Systems,
vol. 17, no. 8, pp. 2107-2122, aug 2016.

G. M. Guzman-Acevedo, G. E. Vazquez-Becerra, J. R. Millan-Almaraz,
H. E. Rodriguez-Lozoya, A. Reyes-Salazar, J. R. Gaxiola-Camacho,
and C. A. Martinez-Felix, “GPS, accelerometer, and smartphone fused
smart sensor for SHM on real-scale bridges,” Advances in Civil
Engineering, vol. 2019, pp. 1-15, jun 2019.

M. Benghanem, “Measurement of meteorological data based on wire-
less data acquisition system monitoring,” Applied Energy, vol. 86,
no. 12, pp. 2651-2660, dec 2009.





