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Abstract 

 

The secured bonding between the externally bonded fiber reinforced polymer (FRP) and 

the host structure is critical to provide the composite action of the FRP strengthened 

structure. Conventional FRP debonding assessment is usually based on nondestructive 

testing methods, which have limited sensing coverage and thus cannot detect debonding 

far away from the sensors. In this study, the global vibration-based method is developed 

to identify the debonding condition of FRP strengthened structures for the first time. An 

FRP strengthened cantilever steel beam was tested in the laboratory. As debonding 

damage is non-invertible, a series of FRP debonding scenarios were specially designed 

by a stepwise bonding procedure in an inverse sequence. In each scenario, the first six 

natural frequencies and mode shapes were extracted from the modal testing and used for 

detecting the simulated debonding damage via the model updating technique. An l0.5 

regularization is adopted to enforce the sparse damage detection. A new Q-learning 

evolutionary algorithm is developed to solve the optimization problem by integrating the 

K-means clustering, Jaya, and the tree seeds algorithms. The experimental results show 

that the debonding condition of the FRP strengthened beam can be accurately located and 

quantified in all debonding scenarios. The present study provides a new FRP debonding 

detection approach.  

 

Keywords: FRP strengthened structures, bonding condition, Q-learning, evolutionary 

algorithm, vibration properties.  
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1. Introduction 

Fiber-reinforced polymer (FRP) products are extensively applied to strengthen or 

retrofit the deteriorated steel and reinforce concrete (RC) structures due to their 

lightweight, high strength, corrosion resistance and ease of installation [1-4]. They are 

commonly externally bonded to the structures to improve both the strength and stiffness. 

The strengthening effect of the FRP products is effective only when the interface bonding 

is secured and reliable, while many failure modes of the FRP strengthened structures are 

related to debonding [2]. Therefore, many installation specifications, such as host 

structure surface preparation and end anchorage, were suggested to improve the interface 

bonding and prevent premature debonding [4]. However, FRP debonding can initiate at 

hot zones with bonding imperfections or stress concentration, develop along the bonding 

interface in an imperceptible manner, jeopardize the structural integrity and stiffness, and 

eventually lead to the failure of the reinforcement and even the structure. It is therefore 

of high significance to detect the debonding and locate the debonding zone with high 

accuracy. 

Conventional FRP debonding detections are based on nondestructive testing (NDT) 

techniques [5], including strain/displacement monitoring using Fiber Bragg Grating 

sensing technique [6, 7] and digital image correlation technique [8, 9], acoustic emission 

technique [10, 11], infrared thermography technique [12, 13], microwave technique [14, 

15], guided wave technique [16-18], electromechanical impedance technique [19, 20], etc. 

These techniques belong to a category of local identification techniques, which indicates 

that they can only detect the condition in the vicinity of the sensors. Therefore, they are 

suitable to evaluate small-scale structures only. For a practical large-scale structure, either 

a large number of sensors are required to fully cover the entire structure, or the damage 

location of the target structure is known a priori so that the sensors can be installed in 

these locations. However, the FRP debonding damage may initiate at any bonding 

imperfections, and thus the debonding locations are difficult to know in advance. 

Compared with these local NDT techniques, the vibration-based methods evaluate the 
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structural health condition through analyzing the global vibration properties of the 

structure, for example, natural frequencies, mode shapes, mode shape curvature and 

frequency response function in the frequency domain [21, 22] or the time-domain 

responses [23, 24]. As these global vibration properties are related to the global condition, 

the sensors are not necessary to be installed in the vicinity of the damaged 

area/components. In fact, the frequency measurement can be quickly obtained with a few 

even one single sensors. The vibration-based technique has been studied and developed 

to detect damage in civil engineering structures [25-27]. The detected damage types 

include corrosion, cracks, delamination, etc. The technique has also been applied to 

evaluate the stiffness degradation and restoration before and after FRP retrofitting [28-

32]. These studies show that the stiffness variation due to FRP retrofitting ranges from 

16.6% to 22.2%. However, to the best knowledge of the authors, the vibration-based 

methods have not been applied to detect the FRP debonding damage. 

Mathematically, vibration-based methods can be considered as an optimization 

process to update a structural model so that its predicted vibrational properties are close 

to the measured ones in an optimal manner [33-38]. However, these methods usually 

require a good initial guess of the parameters and the function gradient. In addition, 

identifying damage in large-scale structures is difficult when only limited measurement 

data are available. 

Owing to the rapid development in computer technologies over the last decades, 

evolutionary algorithms have become increasingly popular in solving optimization 

problems. In particular, genetic algorithms [39], differential evolution [40], particle 

swarm optimizer [41], artificial bee colony algorithm [42], and tree seeds algorithm (TSA) 

[43] have gained great attention and recognition in the field of vibration-based damage 

identification. Following regulations simulated from nature, these algorithms do not 

require good initial conditions and gradient information. They identify an “optimal” 

solution in a search space in an iterative manner [44]. For instance, Maity and Tripathy 

[39] applied the genetic algorithm to identify structural damage based on changes in 
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natural frequencies. Seyedpoor and Montazer [40] proposed a two-stage method for 

structural damage detection using differential evolution. Kang et al. [41] improved the 

particle swarm optimizer by introducing an artificial immune mechanism. Sun et al. [42] 

constructed a nonlinear factor into the artificial bee colony algorithm to enhance its 

optimization performance and then applied the modified algorithm to identify linear and 

nonlinear system parameters. Ding et al. [43] showed that the TSA performed well in 

damage detection with and without considering model and measurement uncertainties. 

All these algorithms have generally achieved satisfactory results in tackling the multi-

modal optimization problem in structural damage detection or system identification. 

In view of the advantage of vibration-based damage detection techniques over NDT 

techniques in terms of sensing coverage and sensor number requirement, as well as the 

excellent performance of the evolutionary algorithm, the global vibration-based method 

and evolutionary algorithms are combined together in this study to identify the FRP 

debonding condition. Although the FRP has been used to strengthen both the metallic and 

RC structures, the debonding in the FRP strengthened steel structure is investigated in the 

current study, as a preliminary endeavour to apply the vibration-based technique to detect 

the FRP debonding damage. This is because the FRP debonding process is a complex and 

nonlinear process, especially in the RC structures [45-47], where the concrete crack and 

debonding typically occur simultaneously. 

In this paper, a multi-sample objective function is established by minimizing the 

discrepancies between the measured first several modal data and those obtained from the 

finite element (FE) model. Two major improvements are proposed in the study. First, a 

sparse regularization technique [48-50] is introduced to enforce the damage identification 

results to several elements, which is consistent with the fact that the debonding damage 

may occur at a few locations only. Therefore, the identified damage results will be more 

accurate than the conventional regularization technique. Second, a novel integrated 

evolutionary algorithmic framework is proposed to minimize the objective function. The 

K-means clustering, Jaya, and tress seeds algorithms are used to formulate a search 
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strategy pool, and the individuals in the colony space can adaptively choose the most 

suitable search strategy in each iteration under the guidance of Q-learning [51, 52]. Such 

unique and novel search mechanism improves the search capacity of the method during 

the optimization and thus leads to more accurate debonding detection results. 

 

2. Basic formulations of FRP debonding detection 

2.1. Influence on structural rigidity of FRP bonding condition 

A beam shown in Fig. 1 is used to quantify the strengthening and debonding of FRP 

in a beam. The initial beam has a cross−section of 1h b×   and a bending stiffness of 

3
1 1 1 1 12E I E bh=  , where 1h   and b   are the cross section height and width, respectively; 

1 1E I  is the flexural rigidity with 1E  being the Young’s modulus of the material and 1I  

being the moment of inertia. After being strengthened by a layer of FRP (tensional 

modulus 2E  and thickness 2h  and the same width b ) as shown in Fig. 1(b), the cross-

sectional area increases to ( )1 2b h h+ , and the neutral axis moves from the middle plane 

( 1 2h ) to cy  measuring from the bottom of the beam cross section as shown in the figure. 

Consequently, the flexural rigidity of the composite section increases to 

( ) ( )2 2
1 1 2 2 1 1 1 2 2 1 22 2c cK E I E I E bh h y E bh h h y= + + − + + −  (1) 

where the last two terms on the right-hand side are due to the bonding effect. By contrast, 

if debonding occurs, the cross-section will remain the same, but the flexural rigidity will 

reduce to 1 1 2 2dK E I E I= + , which equals to the summation of the bending stiffnesses of 

the original structure and the FRP layer. Therefore, a stiffness reduction factor (SRF) of 

the cross−section can be quantified as 

( ) ( )
1 1 2 2

2 2
1 1 2 2 1 1 1 2 2 1 2

1 1
2 2

d

c c

K E I E I
K E I E I E bh h y E bh h h y

α +
= − = −

+ + − + + −
  (2) 
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(a) Schematic diagram of FRP strengthened beam 

 
 

 

(b) Original cross−section (c) Strengthened cross−section (d) Debonded cross−section 

Fig. 1 Different states of FRP strengthening in a beam structure 

 

Both the introduction of the externally bonded FRP layer and debonding of the FRP 

layer have obvious influence on the structural stiffness. For example, according to Eq. (1), 

applying 1 mm thick FRP with tensile modulus 80 GPa to a 5 mm thick steel beam [from 

Fig. 1(b) to Fig. 1(c)] will increase the bending stiffness of the composite beam by 32%, 

while the debonding [from Fig. 1(c) to Fig. 1(d)] will reduce it by 24%. Therefore, the 

FRP bonding/debonding condition have a significant effect on the structural stiffness of 

FRP strengthened structures. 

Then the FE model of the FRP strengthened structure can be established to conduct 

the model updating and debonding detection. As the mass loss during the debonding is 

negligible, only the change in the stiffness is considered in the model updating. Assuming 

that the structure consists of ne  elements, its stiffness matrix in the intact state can be 

established as  

1

ne
i

u
i

K
=
∑K =  (3) 

where iK  is the thi  element stiffness matrix in the undamaged state and 
1

ne

i=
∑ denotes the 

matrix assembling. If the debonding occurs, the stiffness matrix of the structure can be 

written as [53] 



8 

 

( )
1 1

1
ne ne

i i
d d i

i i
K Kα

= =

= −∑ ∑K =  (4) 

where i
dK  represents the thi  element stiffness matrix in the damaged state. Based on the 

aforementioned assumption, debonding detection of the FRP strengthened structure is 

converted into identifying the SRF vector α  . A non-zero item of α   indicates the 

debonding location and its value (0 ≤ iα  <1) quantifies the debonding severity. 

 

2.2. Multi-sample-based model updating for debonding identification 

As stated previously, the change in stiffness would lead to the alteration of vibration 

properties, such as the natural frequencies and mode shapes. These changes, or element 

damage can be identified through the model updating technique. The model updating 

technique adjusts the elemental parameters (here α  ) continuously so that the model 

properties match the measurement counterparts in an optimal way [54]. In this study, the 

multi-sample natural frequencies and mode shapes are used to formulate the objective 

function [55], given as 

( )
( )

( )
2

2 0.5
1 1 1

1
E ANS NM NM
ij i

i
j i ii

J MAC
ω ω

ε
σ= = =

  −  = + − +    
  

∑∑ ∑
α

α α α  (5) 

where E
ijω   denotes the thi   natural frequency from the thj   measurement, and ( )A

iω α   is 

that from the analytical FE model, NS and NM represent the total number of measurement 

sets and the number of modes, respectively, and 2
iσ   is the variance of the thi   natural 

frequency and can be calculated as 

( )22

1

1
1

NS

i ij i
jNS

σ ω ω
=

= −
− ∑  (6) 

where iω   is the mean value of the thi   natural frequency. ( )iMAC α   is the thi   modal 

assurance criteria calculated as 
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{ } { }( )
{ } { }

2

2 2

TA E
i i

i
A E

i i

MAC
φ φ

φ φ
=

⋅
 (7) 

where E
iφ   and A

iφ   represent the thi   mode shapes from the measurement and the 

analytical FE model, respectively; “T” denotes the vector transpose. The first two terms 

in the right-hand side of Eq. (5) is to minimize the discrepancy between the FE model 

output and the extracted experimental frequency and mode shapes. The last term, 0.5
ε α  

is the sparsity regularization item, and ε   is termed as the regularization parameter. A 

small ε  poses a smaller penalty on the residual term, leading to an over-fitting solution. 

Conversely, a large ε  results in a loss in the data fidelity. The discrepancy principle rule 

following Hou et al. [50] is used to select the optimal regularization parameter. 

Introducing the sparsity regularization item into the optimization is to enforce the sparsity 

of the solution, that is, most items of α  will approach zero except several elements with 

damage. By contrast, the conventional l2 regularization will cause the optimization result 

of α  to be a full vector with small values, which indicates that the debonding occurs all 

along the interface and does not match the real situation that the damage (or debonding) 

exists in several elements only.  

Using the multi-sample objective function may fully use the data sets and thus reduce 

the influence of the measurement noise. The variance 2
iσ  serves as the weight of each 

mode. A small variance—indicating a more accurate measurement—enjoys a higher 

weight in the objective function. As natural frequencies are scalars, their covariance 

values are relatively simple and can be conveniently calculated. By contrast, mode shapes 

are vectors. The calculation of their covariance matrices is time-consuming. Therefore, 

only the natural frequencies are multi-sampled in this study [55] for simplicity and 

computational efficiency. 

Herein, through defining the objective function, the debonding detection problem is 

transformed into an optimization problem [43]. As traditional optimization techniques 
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may lead to local minimal solutions, a robust evolutionary algorithm is developed to 

minimize Eq. (5). 

 

3. Proposed Q-learning based evolutionary methodology 

3.1. Search strategy pool 

Exploration and exploitation are two cornerstones that lead an evolutionary process 

toward optimization and/or convergence. Exploration is defined as visiting the whole new 

regions of a search space, while exploitation is defined as visiting those regions of a 

search space within the neighborhood of previously visited points [56]. A contradiction 

exists between the exploration and exploitation search modes. Specifically, an algorithm 

concentrating on exploration will greatly affect its convergence rate; while an algorithm 

focusing on exploitation may be trapped in the local minimum. As the FRP debonding 

can occur at any structural part due to either bonding imperfection or stress concentration, 

the non-zero items in α  may be located arbitrarily. The trade-off between the exploration 

and exploitation is important to optimize the search performance. 

As different evolutionary algorithms show different optimization performances due to 

sundry search strategies, this study aims to balance the exploration and exploitation by 

introducing diverse search strategies. Here ix  is regarded as an arbitrary individual with 

n  designed variable in the initial solution space that contains CS  feasible solutions in 

total, and j  represents an arbitrary dimension variable in the individual. In the proposed 

strategy pool, search strategies of three representative machine learning and evolutionary 

algorithms, namely, the K-means clustering algorithm [57], the Jaya algorithm [58], and 

the TSA [43], will be adopted. 

The procedures of the K-means clustering strategy are presented as follows:  

1. Randomly selecting initial clustering centers 1 2, , , kC C C  from the CS  feasible 

solutions in the colony. 
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2. Assigning the remaining feasible solutions ix  to these clustering centers based on 

their minimum Euclidean distance. If and only if the distance i k i p− ≤ −x C x C  

( pC  represent any other clustering centers), then ix  belongs to kC . 

3. Calculating new clustering centers 1 2, , , k′ ′ ′C C C  as follows: 

1

i k

k i
inN ∈

′ = ∑
x C

C x  (8) 

where inN  is the number of feasible solutions within a cluster. The best newly generated 

clustering center is sent back to replace the old solution. Applying K-means clustering 

strategy is beneficial to make full use of colony information. 

The search mode in the Jaya algorithm is presented in Eq. (9), in which a new 

candidate is created by removing the old solution towards the best bestx  while escaping 

the worst one worstx  in the colony. Such configuration ensures this strategy’s exploitation 

ability. 

( ) ( ), , , , , ,i j i j best j i j worst j i jx x rand x x rand x x′ = + ⋅ − − ⋅ −  (9) 

The searching manner in the TSA differs from the Jaya algorithm. Several candidates 

are generated from the old solution based on the following strategy [52] 

( ), , , ,i j i j i j k jx x x x rand′ = + − ⋅  (10) 

where kx  is another different individual in the colony. Solutions are randomly created, 

the best one among them will be used as the final candidate. Such configuration ensures 

this strategy’s exploration ability. 

In summary, the K-means clustering strategy is beneficial to make full use of colony 

information; the Jaya algorithm ensures its exploitation ability; and the TSA ensures its 

exploration ability. The Q-learning framework [51, 52] will integrate the three algorithms 

to guide the individuals adaptively choose the most reasonable and suitable search 

strategy in each iteration, enabling the trade-off between the exploitation and exploration. 
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3.2. Q-learning 

Q-learning is one of the most important breakthroughs in reinforcement learning, in 

which an intelligent agent reacts to the change in the state of the environment according 

to received immediate rewards or punishments. The main components of Q-learning 

contain an intelligent agent, an environment, states, actions, and rewards [51, 52]. In each 

iteration, the agent analyzes each given action in gaining future rewards or penalties and 

is prone to those with the maximum rewards (Q-values). In mathematics, Q-learning 

contains a series of states { }1 2, , , nS s s s=    and their corresponding actions 

{ }1 2, , , nA a a a=   to be calculated. The actions are assessed in each iteration based on 

the following equation [52] 

( ) ( ) ( ) ( ) ( )1, 1 , , max ,new
t t t t t t t tQ s a Q s a r s a Q s aβ β γ += − + + ⋅    (11) 

where Qnew(st,at) and Q(st,at) represent the updated and previous Q-values, respectively; 

β is the step size; r(st,at) stands for the observed reward; γ is a discount factor and is 

responsible for penalizing the future reward, usually set as 0.8 [51, 52]; and maxQ(st+1,at) 

means the maximum Q-value for all actions. Q(st,at) is compiled in a so-called Q-table. 

The hyperparameter β is normally set to a high value at the beginning and is reduced with 

iterations, thereby can be expressed as follows [51, 52] 
0.91t

iter

t
Max

β = −  (12) 

where t  is the current iteration number and Maxiter is the maximum number of iterations. 

To select the best action, the agent ought to obey a policy π : S→A that maps a state S to 

the best action A. Fig. 2 demonstrates the calculation procedures of the Q-learning 

algorithm. The proposed algorithm integrates the strategy pool and the Q-learning 

together to compose a novel and efficient algorithm. The details of the algorithm are 

demonstrated in the following section. 

 



13 

 

Algorithm 1 Main steps of Q-learning algorithm 
If (terminal conditions are not satisfied) then 

1. For each state { }1 2, , ,t ns A s s s∈ =   and action { }1 2, , ,t na A a a a∈ =  ; 
2. Set ( ),t tQ s a rand=  in the Q-table; 
3. End For 
4. Randomly choose an initial state ts ; 
5. Repeat 
6. Select the best action ta  for the current state ts  from the Q-table; 
7. Perform action ta  and update the immediate reward r ; 
8. Obtain the maximum Q-value for the next state 1ts + ; 
9. Update the Q-table entry using Eq. (11); 
10. Update the current state ts   using the action corresponding with the 

maximum Q-value; 
11. Until the maximum iteration number iterMax  reached. 

End If 

Fig. 2 Algorithmic structure of the Q-learning algorithm 

 

3.3. Procedure of the Q-learning-based evolutionary algorithm 

The proposed search strategy pool is combined with the Q-learning framework. 

Specifically, the individuals in the colony are regarded as the intelligent agents; the 

environment is featured by the search space of individuals; the states denote the current 

operation of everyone, i.e., K-means clustering strategy, search mode of the Jaya, and 

search mode of the TSA. The action can be defined as it changes from one state to the 

other. Q-learning adaptively switches the individual from one operation (state) to the 

other on the basis of the individual’s achievement. Positive and negative rewards are 

given to well-performed and non-well-performed individuals in the colony. 

The interaction between Q-learning and the search strategy pool can be summarized 

in the following three procedures [52]: 

(1) Acquire the best operation to be performed according to the Q-table value for the 

current individual. 

(2) Execute the chosen operation and compute the objective function. The immediate 

reward is computed as 
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( )
1 if obj improved

,
1 otherwiset tr s a 

= −
 (13) 

(3) Update the Q-table for the current individual using Eq. (11). 

The optimization process is implemented in three phases. First, an initial colony 

containing CS  individuals is randomly generated by  

( ), , , ,
l u l

i j i j i j i jx x rand x x= + ⋅ −  (14) 

where ,
u
i jx  and ,

l
i jx  denote the upper and lower bound of ,i jx , respectively. Second, a 3×3 

matrix is randomly generated as the initial Q-table for each individual in the colony. In 

each matrix, its rows and columns correspond the three search strategies. The individual 

chooses which strategy to update according to the location of the maximum Q-value in 

its Q-table. Subsequently, the Q-table is updated according to whether the solution 

improved or not. The process is repeated until Maxiter is reached. The pseudo-code of the 

proposed algorithm is outlined in Fig. 3. The algorithm keeps a simple algorithmic 

structure and is easy to operate as there are no special controlling parameters are 

introduced. 

 

Algorithm 2 Main steps of the Q-learning-based evolutionary algorithm 
%% Set the control parameters for the proposed algorithm. 
%% CS : colony size; iterMax : maximum iteration number. 
%% ,

u
i jx : upper bound of the ,i jx ; ,

l
i jx : lower bound of the ,i jx . 

%% D : Dimension number of the problems to be optimized. 
If (terminal conditions are not satisfied) then 

1. %% Initialization 
2. For    1:i CS=  
3.    Randomly generate a 3×3 matrix as the initial Q-table. 
4.    For    1:j D=  
5.      Generate ,i jx  by Eq. (14); 
6.    End For 
7. End For 
8. %% Individuals’ updating in the colony 
9. Repeat Cycle =1 
10. Do for every individual, ix  
11. Select the best action, ta  for the current state ts  from the Q-table. 
12. Switch action 
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13.    Case 1 
14.             Update i′x  by the K-means clustering strategy; 
15.    Case 2 
16.             Update i′x  by Eq. (9); 
17.    Case 3 
18.             Determine the number of candidates [ )2,0.1N CS∈  randomly; 
19.             Update candidates by Eq. (10); 
20.             Update i′x  by keeping the best candidate; 
21. %% Greedy selection mechanism 
22. Evaluate ′x  
23. For    1:i CS=  
24.    If i′x  is superior to ix  
25.       Then i′x  is survived to the next cycle; 
26.    End If 
27.    Update the immediate reward based on Eq. (13); 
28.    Update the Q-table entry using Eq. (11); 
29.    Update the current state; 
30.        Cycle = Cycle +1; 
31. Until Cycle = Maxiter; 
32. Return best xbest; 

End If 

Fig. 3 Pseudo code of the proposed algorithm. 

 

3.4. Benchmark verification 

One representative benchmark test, named Sum-square, is used to evaluate the 

superiority of the proposed algorithm over other two related evolutionary algorithms, i.e., 

Clustering-based TSA [43] and Clustering-based Jaya algorithm [55]. The Sum-square, 

shown in Fig. 4, is a continuous, convex, and unimodal function, which has been widely 

used to test an algorithm’s convergence performance. Its expression is given as follows 

( ) ( )2
1 1 2

1
, , ,   100 100, 100

D

D i i
i

F x x x ix x D
=

= − < < =∑  (15) 

The initial colony 100CS =   and the terminal condition is Maxiter = 500. Fig. 5(a) 

shows the iteration process of objective function values based on the three algorithms. 

The proposed Q-learning-based evolutionary algorithm can yield the largest 

improvements in the convergence rate and identification accuracy. Furthermore, Fig. 5(b) 

shows the selection proportion for the three search strategies, in which the proportions 
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fluctuate in the early stage and maintain a stable status after 12 iterations. This indicates 

that the individuals in the colony are adaptively choosing the most suitable search 

strategies. Moreover, although the same search strategies are adopted in other two 

algorithms, they suffer slow convergence. The comparisons demonstrate the necessity of 

introducing the Q-learning framework and the importance of maintaining an evolutionary 

algorithm’s exploration and exploitation. 

 
Fig. 4 Sum-square function graph 

 

  
(a) (b) 

Fig. 5 Optimization process of the Sum-square function 

 

Five more mathematical benchmarks (Fig. 6) are used to verify the proposed 

algorithm’s capacity in solving optimization problems. These functions consist of two 

unimodal functions (denoted by F2 and F3) and three multimodal functions (denoted by 

F4, F5, and F6). The former has only one global optimal solution and is used to inspect the 

local search ability of the algorithm. The latter, with multiple local optimal solutions, is 
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employed to test the global search ability of the algorithm [56]. The mathematical 

formulae, dimension, search ranges, global optimal value, and the acceptance threshold 

of each function are presented in Table 1. When the objective function value of the best 

solution in a run is less than the specified threshold value, the run is treated as a successful 

run. 

  

  
 

 
Fig. 6 The graphics of five benchmark functions. 

 

Table 1 Formulae of all six benchmark functions. 

Number Mathematical formulae Dimension Range Global 
solution 

Acceptance 
threshold 
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F1 ( ) 2
1 1

D
ii

F ix
=

= ∑x  100 [–100,100] 0 10–8 

F2 ( )2 1 1

DD
i ii i

F x x
= =

= +∑ ∏x  100 [–10,10] 0 10–8 

F3 ( ) { }3 max , [1, ]iF x i D= ∈x  30 [–100,100] 0 10–8 

F4 
( )

( )

0.1
2

1
1

4 4

sin exp 100 1

10

D
D ii

ii

x
x

F

=
=

  
  − +  
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The parameters of the proposed algorithm are set as CS = 50 and Maxiter = 500. The 

performance of the algorithm is evaluated using the following three criteria: (1) the mean 

and standard deviation of the best objective function value, which are used to evaluate 

the quality or solution obtained by the proposed algorithm; (2) the average cycle (AVEN) 

to reach the acceptance threshold, which represents the convergence speed; and (3) the 

successful rate (SR%) of the 30 independent runs, which reflects the robustness or 

reliability of the proposed algorithm.  

The final optimization results using the proposed algorithm towards the six 

mathematical benchmarks are presented in Table 2. The proposed algorithm can acquire 

satisfactory optimizations with a fast convergence speed. The 100% SR for all 

benchmarks demonstrates the algorithm’s excellent robustness/reliability, which lays the 

foundation for the following FRP debonding identification. 

 

Table 2 Optimization results of the six benchmarks based on the proposed algorithm 

Function 

Number 

Criterion 1 Criterion 2 Criterion 3 

Mean value Standard deviation  AVEN SR% 

1 0.00e+00 0.00e+00 7 100 

2 2.17e–284 0.00e+00 11 100 

3 2.48e–175 0.00e+00 14 100 
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4 –2.06261 9.033e–16 2 100 

5 –1 0.00e+00 4 100 

6 1.34e-31 6.68e-47 16 100 

 

4. An experimental study 

4.1. Model description 

The proposed algorithm is applied to detect the FRP debonding of an experimental 

FRP strengthened steel cantilever beam (Fig. 7). The left end of the beam is fixed by a set 

of strong steel brackets. The total length of the host steel beam is 1000 mm, and the 

cross−section is 50.00 × 5.00 mm2. The Young’s modulus and density of the steel are 200 

GPa and 7.85×103 kg/m3, respectively. The beam is strengthened by two layers of CFRP 

cloth through a wet-layup process. The density of the FRP layer is estimated as 1.5×103 

kg/m3. The resulted FRP layer is around 1 mm thick. A standard coupon test was 

conducted to estimate the tensile modulus of the FRP layer in view of the possible 

variation of its thickness and curing condition in the wet layout process. The average 

thickness of the coupons is 0.87 mm and the tested tensile modulus is around 100 GPa. 

However, the thickness of the FRP layer in the modal test is around 1mm, possibly due 

to more resin is used. The extra resin will reduce the modulus of the FRP layer. Therefore, 

the tensile modulus of the FRP layer is estimated as 80 GPa.  

 

 
Fig. 7 Overview of the cantilever beam covered with FRP 

 

4.2. Damage introduction and scenarios  

As the debonding initiation and development are difficult to control in the loading test, 
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a stepwise bonding process is designed to simulate the gradual debonding process in a 

reversed order as shown in Fig. 8. That is, the full length FRP strip was partially bonded 

to the steel beam at the beginning, and three small zones were intentionally not bonded 

to simulate the debonding at the three positions. This state is referred to as 

damage/debonding scenario 3, or DS3, which has three debonded zones, namely, 1st from 

0 to 50 mm, 2nd from 250 to 300 mm and 3rd from 600 to 650 mm, respectively, measuring 

from the fixed end to the free end. The selection of these three debonding zones may 

cover the high stress zone (the 1st zone) and possible bonding imperfection zones (the 2nd 

and 3rd zones). Subsequently, the third and second non-bonded FRP region were attached 

to the beam through a wet-layup process sequentially, which are referred to as DS2 and 

DS1, respectively. Finally, the first non-bonded region was attached, and the entire FRP 

strip was fully bonded, which is the intact state or DS0. The specimen of DS3 is shown 

in Fig. 9. 

According to the calculation in Section 2, the stiffness of the debonded zone is around 

24% lower than that of the bonded zone, equivalent to an SRF of 24%. Note that this is 

an estimated value and may be different from the real one due to the manual error in 

attaching the FRP strips and epoxy. 

 

 
Fig. 8 Sequential FRP debonding in the cantilever beam. 
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Fig. 9 Introduced debonding in the cantilever beam (DS3, Unit: mm) 

 

4.3. Modal testing 

Modal tests were conducted for each damage scenario. The beam was excited using 

an instrumented hammer with a rubber tip. The accelerations at 10 locations with equal 

spacing of 100 mm (Fig. 7) were measured by accelerometers and then collected by a 

datalogger (Fig. 10). The sampling frequency is 5000 Hz, and the data collection duration 

is 60 seconds. In each scenario, the beam was hit for 5 times and these signals were 

combined into a 5-minute duration signal. The input force and accelerations response of 

the undamaged beam are shown in Fig. 11. The frequency response functions of the beam 

are then calculated, and the first six frequencies and mode shapes were extracted from 

these stitched signals using a rational fraction polynomial method [59]. The extracted 

modal data of DS0 are shown in Fig. 12. 

 

 
Fig. 10 Data acquisition system 
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Fig. 11 Input and output time history 

 

 

  
(a) Mode 1, frequency = 3.86 Hz (b) Mode 2, frequency = 24.87 Hz 

  
(c) Mode 3, frequency = 68.17 Hz (d) Mode 4, frequency = 132.68 Hz 
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(e) Mode 5, frequency = 216.41 Hz (f) Mode 6, frequency = 318.19 Hz 

 

Fig. 12 The measured first six mode shapes for DS0 

 

Table 3 summarizes the first six natural frequencies and the corresponding MAC 

values of the experimental beam from DS0 to DS3. The natural frequencies decrease 

significantly from DS0 to DS1, while the changes are relatively small from DS1 to DS3. 

This indicates that the debonding close to the fixed end has more significant effect on the 

frequencies than the debonding in the mid-span. This is more apparent for the first three 

modes. The higher modes, namely, the 4th, 5th and 6th modes experienced a small change.  

 

Table 3 Measured modal data of the beam in undamaged and damaged states 

Mode 

No. 

DS0 

Freq. (Hz) 

DS1 DS2 DS3 

Freq. (Hz) MAC Freq. (Hz) MAC Freq. (Hz) MAC 

1 3.86 3.64 (−5.70) 99.97 3.60 (−6.74) 99.97 3.59 (−6.99) 99.96 

2 24.87 23.76 (−4.46) 99.95 23.82 (−4.22) 99.96 23.55 (−5.31) 99.91 

3 68.17 66.35 (−2.67) 99.90 65.70 (−3.62) 99.88 65.34 (−4.15) 99.94 

4 132.68 129.73 (−2.22) 99.13 128.96 (−2.80) 99.28 128.80 (−2.92) 99.61 

5 216.41 213.72 (−1.24) 99.79 213.24 (−1.46) 99.79 211.19 (−2.41) 99.83 

6 318.19 315.01 (−1.00) 99.66 312.01 (−1.94) 99.60 310.76 (−2.34) 99.64 

Note: Values in parentheses are relative changes (%) between DS0 and DS1 to DS3. 

 

4.4. Damage detection 

The structure is modeled using 20 Euler–Bernoulli beam elements with each being 
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50 mm long. In this way, each debonding zone has the same length as each element. Then 

the damage severity of debonding zone is equal to the reduction in the moment of inertia 

of the cross-section defined in Eq. (2). Therefore, the SRFs of each damaged element is 

assumed as 24%, and the three damage scenarios are summarized in Table 4. 

 

Table 4 Debonding locations and extents of the experimental beam 

Damage scenario Debonding element(s) SRF 

DS1 1 1 0.24α =  

DS2 1,6 1 6 0.24α α= =  

DS3 1, 6, 13 1 6 13 0.24α α α= = =  

 

The FE model updating is first performed to fine tune the initial FE model so that its 

vibration properties match the measured ones of the undamaged structure as closely as 

possible [58]. The first six natural frequencies and the mode shapes are used to in the 

model updating by applying the proposed Q-learning-based evolutionary algorithm. The 

flexural rigidity (EI) of 20 elements is chosen as the updating parameters. In the model 

updating, the colony size is set as CS = 100 and Maxiter = 200. Table 5 compares the first 

six natural frequencies of the initial FE model and the updated one, especially the first 

mode. The difference of the FE model decreases significantly after updating. The updated 

model can represent the real beam and will be used for debonding detection. 
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Table 5 Measured and analytical natural frequencies of the cantilever beam in DS0 

Mode 

No. 
Freq. (Hz) 

Before updating After updating 

Analytical (Hz) Difference (%) Analytical (Hz) Difference (%) 

1 3.86 3.64 −5.70 3.79 −1.81 

2 24.87 23.76 −4.46 24.55 −1.29 

3 68.17 66.35 −2.67 67.68 −0.72 

4 132.68 129.73 −2.22 132.49 −0.14 

5 216.41 213.72 −1.24 215.88 −0.24 

6 318.19 315.01 −1.00 317.23 −0.03 

 

The damage detection is conducted from DS1 to DS3, in an inverse sequence as the 

experiment. The measured modal data in DS1 are used to update the fine-tuned FE model 

in DS0. 1% white noise is added to the measured natural frequency to generate 15 data 

samples. The parameters set for the Q-learning algorithm are the same as the previous 

model updating. The regularization parameter ε   in DS1 is determined as 20 by the 

discrepancy principle rule following Hou et al. [50]. Due to the measurement 

uncertainties and the regularization term, the global optimum for the DS1 is within the 

neighborhood of 64.90. In addition, the C-Jaya-TSA algorithm proposed in Ref. [58] is 

also employed for comparison with the same algorithm operators. Although C-Jaya-TSA 

algorithm performed well in dealing with damage identification problems, it does not 

equip the adaptive selection mechanism as the proposed algorithm. 

The evolutionary process of the model updating using the two algorithms is shown 

in Fig. 13. After around 80 cycles, the proposed algorithm converges to the neighborhood 

of the global optimum while the C-Jaya-TSA suffers a slow convergence. This indicates 

that the proposed algorithm adaptively choosing the most suitable search strategy can 

greatly enhance the convergence. The selection proportion of the three search strategies 

for this problem is shown in Fig. 14. Compared with Fig. 5(b), the three proportions 

fluctuate more intensely, and the TSA search strategy wins the most selection. This is 
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because the objective function for the damage identification is multi-modal [55] and 

possesses countless local optimums. Therefore, with the Q-learning framework, the 

search strategy focusing on exploration has more likelihood to be chosen. The objective 

function of the damage identification problem is more complicated than the basic 

mathematical benchmark problems. The algorithm may adaptively choose these search 

strategies more intensely to avoid the local minimum, thereby resulting in some 

fluctuations again after 190 cycles. Furthermore, the essence of the random search of the 

evolutionary algorithm would result in fluctuations to some extent in terms of the 

selection proportions. 

The debonding identification results are shown in Fig. 15. The debonded element 1 

is correctly detected using the proposed techniques, and the debonding severity (SRF = 

0.24) is also quantified. However, several undamaged elements are falsely detected using 

the C-Jaya-TSA.  

 
Fig. 13 Evolutionary process of the model updating for DS1 
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Fig. 14 Selection proportion of the three search strategies for DS1. 

 

 
Fig. 15 Debonding identification results for DS1 
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also affects the results [60, 61]. Besides, the FRP was attached to the steel beam manually 

through a wet lay-up process, which may cause variations in the FRP layer thickness and 

epoxy quality. Consequently, the element stiffness of the strengthened beam may not be 

uniform. Nevertheless, the proposed algorithm can still provide satisfactory identification 

results.  

 

 
Fig. 16 Identification results for DS2 

 
Fig. 17 Identification results for DS3 
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algorithm has been developed to detect the debonding in FRP strengthened structures for 

the first time. The modal data are used to formulate a multi-sample objective function 

with and a sparse regularization technique. A Q-learning evolutionary algorithm is 

proposed to solve the objective function in an optimal manner. An FRP strengthened 

cantilever steel beam has been tested in the laboratory and used to. The developed 

technique has been applied to an FRP strengthened cantilever steel beam tested in the 

laboratory. The following conclusions can be drawn: 

1. A series of FRP debonding scenarios were designed by a stepwise bonding procedure 

in an inverse sequence. The FRP debonding condition is modeled as the stiffness loss 

of the corresponding elements, which are successfully located and quantified by the 

vibration-based approach via the model updating technique; 

2. As the number of measurement data is less than the number of unknown parameters in 

the model updating, the model updating is an under-determined problem. The l0.5 

regularization technique can enforce the identification results converge to several 

damaged elements, overcoming the ill-posedness of the problem; 

3. The developed Q-learning evolutionary algorithm can achieve the global optimization 

and identify the damaged element accurately.  

Due to the influences of environmental factors, measurement noise, finite element 

modeling errors, and the complexity of identification problem, the objective function 

formulated in this study is complicated with many local minimums. The proposed Q-

learning evolutionary algorithm integrates the characteristics and advantages of K-means 

clustering, Jaya, and the tree seeds algorithms. Consequently, it can adaptively choose the 

most suitable search strategy and effectively balance the exploration and exploitation of 

the algorithm, thereby enhancing its global searchability. Moreover, the Q-learning 

evolutionary algorithm has a simple algorithmic structure and does not introduce new 

controlling parameters. 

The proposed method can also be used to detect poor workmanship, which is not 

unusual for FRP strengthening of large-scale structures, as a quality assurance measure 
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for FRP bonding work on site. For such uses, the bonding imperfection may be detected 

before the structure is heavily loaded so that the stiffness degradation is not complicated 

by the damage of concrete. 

The strengthening of the steel structure is one application scenario of FRP, where the 

stiffness reduction is purely due to debonding. FRP materials are also widely used to 

strengthen RC structures. There are two major debonding failure modes, namely, 

intermediate crack induced debonding and concrete cover separation. The present 

algorithm may be extended for identification of intermediate crack debonding, but such 

extension can only be valid when it is used together with a sophisticated model that can 

accurately simulate the mechanism of concrete crack development associated with FRP 

debonding. With respect to the concrete cover separation, it leads to the stiffness loss and 

mass reduction, which is against the unchanged mass assumption in the algorithm. The 

present algorithm needs to be further developed to account for the mass change in the 

future.  
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