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Abstract

The secured bonding between the externally bonded fiber reinforced polymer (FRP) and
the host structure is critical to provide the composite action of the FRP strengthened
structure. Conventional FRP debonding assessment is usually based on nondestructive
testing methods, which have limited sensing coverage and thus cannot detect debonding
far away from the sensors. In this study, the global vibration-based method is developed
to identify the debonding condition of FRP strengthened structures for the first time. An
FRP strengthened cantilever steel beam was tested in the laboratory. As debonding
damage is non-invertible, a series of FRP debonding scenarios were specially designed
by a stepwise bonding procedure in an inverse sequence. In each scenario, the first six
natural frequencies and mode shapes were extracted from the modal testing and used for
detecting the simulated debonding damage via the model updating technique. An /o5
regularization is adopted to enforce the sparse damage detection. A new Q-learning
evolutionary algorithm is developed to solve the optimization problem by integrating the
K-means clustering, Jaya, and the tree seeds algorithms. The experimental results show
that the debonding condition of the FRP strengthened beam can be accurately located and
quantified in all debonding scenarios. The present study provides a new FRP debonding

detection approach.

Keywords: FRP strengthened structures, bonding condition, Q-learning, evolutionary

algorithm, vibration properties.



1. Introduction

Fiber-reinforced polymer (FRP) products are extensively applied to strengthen or
retrofit the deteriorated steel and reinforce concrete (RC) structures due to their
lightweight, high strength, corrosion resistance and ease of installation [1-4]. They are
commonly externally bonded to the structures to improve both the strength and stiffness.
The strengthening effect of the FRP products is effective only when the interface bonding
is secured and reliable, while many failure modes of the FRP strengthened structures are
related to debonding [2]. Therefore, many installation specifications, such as host
structure surface preparation and end anchorage, were suggested to improve the interface
bonding and prevent premature debonding [4]. However, FRP debonding can initiate at
hot zones with bonding imperfections or stress concentration, develop along the bonding
interface in an imperceptible manner, jeopardize the structural integrity and stiffness, and
eventually lead to the failure of the reinforcement and even the structure. It is therefore
of high significance to detect the debonding and locate the debonding zone with high
accuracy.

Conventional FRP debonding detections are based on nondestructive testing (NDT)
techniques [5], including strain/displacement monitoring using Fiber Bragg Grating
sensing technique [6, 7] and digital image correlation technique [8, 9], acoustic emission
technique [10, 11], infrared thermography technique [12, 13], microwave technique [ 14,
15], guided wave technique [16-18], electromechanical impedance technique [19, 20], etc.
These techniques belong to a category of local identification techniques, which indicates
that they can only detect the condition in the vicinity of the sensors. Therefore, they are
suitable to evaluate small-scale structures only. For a practical large-scale structure, either
a large number of sensors are required to fully cover the entire structure, or the damage
location of the target structure is known a priori so that the sensors can be installed in
these locations. However, the FRP debonding damage may initiate at any bonding
imperfections, and thus the debonding locations are difficult to know in advance.

Compared with these local NDT techniques, the vibration-based methods evaluate the
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structural health condition through analyzing the global vibration properties of the
structure, for example, natural frequencies, mode shapes, mode shape curvature and
frequency response function in the frequency domain [21, 22] or the time-domain
responses [23, 24]. As these global vibration properties are related to the global condition,
the sensors are not necessary to be installed in the vicinity of the damaged
area/components. In fact, the frequency measurement can be quickly obtained with a few
even one single sensors. The vibration-based technique has been studied and developed
to detect damage in civil engineering structures [25-27]. The detected damage types
include corrosion, cracks, delamination, etc. The technique has also been applied to
evaluate the stiffness degradation and restoration before and after FRP retrofitting [28-
32]. These studies show that the stiffness variation due to FRP retrofitting ranges from
16.6% to 22.2%. However, to the best knowledge of the authors, the vibration-based
methods have not been applied to detect the FRP debonding damage.

Mathematically, vibration-based methods can be considered as an optimization
process to update a structural model so that its predicted vibrational properties are close
to the measured ones in an optimal manner [33-38]. However, these methods usually
require a good initial guess of the parameters and the function gradient. In addition,
identifying damage in large-scale structures is difficult when only limited measurement
data are available.

Owing to the rapid development in computer technologies over the last decades,
evolutionary algorithms have become increasingly popular in solving optimization
problems. In particular, genetic algorithms [39], differential evolution [40], particle
swarm optimizer [41], artificial bee colony algorithm [42], and tree seeds algorithm (TSA)
[43] have gained great attention and recognition in the field of vibration-based damage
identification. Following regulations simulated from nature, these algorithms do not
require good initial conditions and gradient information. They identify an “optimal”
solution in a search space in an iterative manner [44]. For instance, Maity and Tripathy

[39] applied the genetic algorithm to identify structural damage based on changes in
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natural frequencies. Seyedpoor and Montazer [40] proposed a two-stage method for
structural damage detection using differential evolution. Kang et al. [41] improved the
particle swarm optimizer by introducing an artificial immune mechanism. Sun et al. [42]
constructed a nonlinear factor into the artificial bee colony algorithm to enhance its
optimization performance and then applied the modified algorithm to identify linear and
nonlinear system parameters. Ding et al. [43] showed that the TSA performed well in
damage detection with and without considering model and measurement uncertainties.
All these algorithms have generally achieved satisfactory results in tackling the multi-
modal optimization problem in structural damage detection or system identification.

In view of the advantage of vibration-based damage detection techniques over NDT
techniques in terms of sensing coverage and sensor number requirement, as well as the
excellent performance of the evolutionary algorithm, the global vibration-based method
and evolutionary algorithms are combined together in this study to identify the FRP
debonding condition. Although the FRP has been used to strengthen both the metallic and
RC structures, the debonding in the FRP strengthened steel structure is investigated in the
current study, as a preliminary endeavour to apply the vibration-based technique to detect
the FRP debonding damage. This is because the FRP debonding process is a complex and
nonlinear process, especially in the RC structures [45-47], where the concrete crack and
debonding typically occur simultaneously.

In this paper, a multi-sample objective function is established by minimizing the
discrepancies between the measured first several modal data and those obtained from the
finite element (FE) model. Two major improvements are proposed in the study. First, a
sparse regularization technique [48-50] is introduced to enforce the damage identification
results to several elements, which is consistent with the fact that the debonding damage
may occur at a few locations only. Therefore, the identified damage results will be more
accurate than the conventional regularization technique. Second, a novel integrated
evolutionary algorithmic framework is proposed to minimize the objective function. The

K-means clustering, Jaya, and tress seeds algorithms are used to formulate a search
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strategy pool, and the individuals in the colony space can adaptively choose the most
suitable search strategy in each iteration under the guidance of Q-learning [51, 52]. Such
unique and novel search mechanism improves the search capacity of the method during

the optimization and thus leads to more accurate debonding detection results.

2. Basic formulations of FRP debonding detection
2.1. Influence on structural rigidity of FRP bonding condition

A beam shown in Fig. 1 is used to quantify the strengthening and debonding of FRP

in a beam. The initial beam has a cross—section of 4, xb and a bending stiffness of
E, = Ebh’ /12, where h and b are the cross section height and width, respectively;

E I, is the flexural rigidity with E, being the Young’s modulus of the material and 7,

being the moment of inertia. After being strengthened by a layer of FRP (tensional

modulus £, and thickness 4, and the same width 4 ) as shown in Fig. 1(b), the cross-
sectional area increases to b(hl +h, ) , and the neutral axis moves from the middle plane

(h,/2)to y, measuring from the bottom of the beam cross section as shown in the figure.

Consequently, the flexural rigidity of the composite section increases to
K =ElI, +E, I+ Ebh (h/2-y.) + E.bh, (h+h /2y, ) (1)
where the last two terms on the right-hand side are due to the bonding effect. By contrast,

if debonding occurs, the cross-section will remain the same, but the flexural rigidity will

reduce to K, = E\I, + E, I, , which equals to the summation of the bending stiffnesses of

the original structure and the FRP layer. Therefore, a stiffness reduction factor (SRF) of

the cross—section can be quantified as

K, EI +E,I,
a=1 R 1= 2 2 (2)
El +E,1,+Ebh(h/2—y,) +Ebh,(h+h/2—y,)




(a) Schematic diagram of FRP strengthened beam
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Fig. 1 Different states of FRP strengthening in a beam structure

Both the introduction of the externally bonded FRP layer and debonding of the FRP
layer have obvious influence on the structural stiffness. For example, according to Eq. (1),
applying 1 mm thick FRP with tensile modulus 80 GPa to a 5 mm thick steel beam [from
Fig. 1(b) to Fig. 1(c)] will increase the bending stiffness of the composite beam by 32%,
while the debonding [from Fig. 1(c) to Fig. 1(d)] will reduce it by 24%. Therefore, the
FRP bonding/debonding condition have a significant effect on the structural stiffness of
FRP strengthened structures.

Then the FE model of the FRP strengthened structure can be established to conduct
the model updating and debonding detection. As the mass loss during the debonding is
negligible, only the change in the stiffness is considered in the model updating. Assuming
that the structure consists of ne elements, its stiffness matrix in the intact state can be

established as
K =) K 3)
i=1

where K' isthe i” element stiffness matrix in the undamaged state and Z denotes the
i=1

matrix assembling. If the debonding occurs, the stiffness matrix of the structure can be

written as [53]



ne

K,=2 K= (1-a)K' (4)

i=1
where K, represents the i  element stiffness matrix in the damaged state. Based on the

aforementioned assumption, debonding detection of the FRP strengthened structure is

converted into identifying the SRF vector @ . A non-zero item of « indicates the

debonding location and its value (0 < «, <1) quantifies the debonding severity.

2.2. Multi-sample-based model updating for debonding identification

As stated previously, the change in stiffness would lead to the alteration of vibration
properties, such as the natural frequencies and mode shapes. These changes, or element
damage can be identified through the model updating technique. The model updating
technique adjusts the elemental parameters (here @ ) continuously so that the model
properties match the measurement counterparts in an optimal way [54]. In this study, the
multi-sample natural frequencies and mode shapes are used to formulate the objective

function [55], given as

2

J(a):f:% [wf_: (a)} +§:[1—MACI.((1)]+8||0{||0.5 (5)

2
j=1 i=1
where a)UE denotes the i" natural frequency from the j” measurement, and a)f (a) is
that from the analytical FE model, NS and NM represent the total number of measurement

sets and the number of modes, respectively, and o7 is the variance of the i" natural

frequency and can be calculated as

7 =i glea) ©

j1
where EI is the mean value of the i" natural frequency. MAC, (@) is the i" modal

assurance criteria calculated as
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where ¢” and ¢ represent the i" mode shapes from the measurement and the

analytical FE model, respectively; “T” denotes the vector transpose. The first two terms

in the right-hand side of Eq. (5) is to minimize the discrepancy between the FE model
output and the extracted experimental frequency and mode shapes. The last term, & ||a|| 0s

is the sparsity regularization item, and & is termed as the regularization parameter. A
small & poses a smaller penalty on the residual term, leading to an over-fitting solution.
Conversely, a large ¢ results in a loss in the data fidelity. The discrepancy principle rule
following Hou et al. [50] is used to select the optimal regularization parameter.
Introducing the sparsity regularization item into the optimization is to enforce the sparsity
of the solution, that is, most items of @ will approach zero except several elements with
damage. By contrast, the conventional /> regularization will cause the optimization result
of a to be a full vector with small values, which indicates that the debonding occurs all
along the interface and does not match the real situation that the damage (or debonding)
exists in several elements only.

Using the multi-sample objective function may fully use the data sets and thus reduce

the influence of the measurement noise. The variance o] serves as the weight of each

mode. A small variance—indicating a more accurate measurement—enjoys a higher
weight in the objective function. As natural frequencies are scalars, their covariance
values are relatively simple and can be conveniently calculated. By contrast, mode shapes
are vectors. The calculation of their covariance matrices is time-consuming. Therefore,
only the natural frequencies are multi-sampled in this study [55] for simplicity and
computational efficiency.

Herein, through defining the objective function, the debonding detection problem is

transformed into an optimization problem [43]. As traditional optimization techniques
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may lead to local minimal solutions, a robust evolutionary algorithm is developed to

minimize Eq. (5).

3. Proposed Q-learning based evolutionary methodology
3.1. Search strategy pool

Exploration and exploitation are two cornerstones that lead an evolutionary process
toward optimization and/or convergence. Exploration is defined as visiting the whole new
regions of a search space, while exploitation is defined as visiting those regions of a
search space within the neighborhood of previously visited points [56]. A contradiction
exists between the exploration and exploitation search modes. Specifically, an algorithm
concentrating on exploration will greatly affect its convergence rate; while an algorithm
focusing on exploitation may be trapped in the local minimum. As the FRP debonding
can occur at any structural part due to either bonding imperfection or stress concentration,
the non-zero items in @ may be located arbitrarily. The trade-off between the exploration
and exploitation is important to optimize the search performance.

As different evolutionary algorithms show different optimization performances due to

sundry search strategies, this study aims to balance the exploration and exploitation by
introducing diverse search strategies. Here x; is regarded as an arbitrary individual with
n designed variable in the initial solution space that contains CS feasible solutions in

total, and J represents an arbitrary dimension variable in the individual. In the proposed

strategy pool, search strategies of three representative machine learning and evolutionary
algorithms, namely, the K-means clustering algorithm [57], the Jaya algorithm [58], and
the TSA [43], will be adopted.

The procedures of the K-means clustering strategy are presented as follows:

1. Randomly selecting initial clustering centers C,,C,,---,C, from the CS feasible

solutions in the colony.
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2. Assigning the remaining feasible solutions x; to these clustering centers based on
their minimum Euclidean distance. If and only if the distance |xl. - Ck| < |xl. -C p|
(C, represent any other clustering centers), then x; belongs to C, .

3. Calculating new clustering centers C|,C,,---,C, as follows:
, 1
v DX (8)

in x;€Cy
where N,, is the number of feasible solutions within a cluster. The best newly generated

clustering center is sent back to replace the old solution. Applying K-means clustering
strategy is beneficial to make full use of colony information.

The search mode in the Jaya algorithm is presented in Eq. (9), in which a new

candidate is created by removing the old solution towards the best x,,, while escaping

the worst one x, . in the colony. Such configuration ensures this strategy’s exploitation

worst
ability.

! —_—
Xi; =X, trand '(xbest,./ —|xl.,_/.|)— m”d'(xwom,./ _|xi,.f|) 9)

The searching manner in the TSA differs from the Jaya algorithm. Several candidates

are generated from the old solution based on the following strategy [52]

!
X =X +(xi’j —xk,j)-rand (10)
where X, is another different individual in the colony. Solutions are randomly created,

the best one among them will be used as the final candidate. Such configuration ensures
this strategy’s exploration ability.

In summary, the K-means clustering strategy is beneficial to make full use of colony
information; the Jaya algorithm ensures its exploitation ability; and the TSA ensures its
exploration ability. The Q-learning framework [51, 52] will integrate the three algorithms
to guide the individuals adaptively choose the most reasonable and suitable search
strategy in each iteration, enabling the trade-off between the exploitation and exploration.
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3.2. Q-learning

Q-learning is one of the most important breakthroughs in reinforcement learning, in
which an intelligent agent reacts to the change in the state of the environment according
to received immediate rewards or punishments. The main components of Q-learning
contain an intelligent agent, an environment, states, actions, and rewards [51, 52]. In each
iteration, the agent analyzes each given action in gaining future rewards or penalties and

is prone to those with the maximum rewards (Q-values). In mathematics, Q-learning

contains a series of states S ={sl,s2,---,sn} and their corresponding actions

A= {al,az,---,an} to be calculated. The actions are assessed in each iteration based on

the following equation [52]
0" (s,.a,) :(l—ﬁ)Q(st,at)+,B[r(st,a[)+7-maxQ(sHl,a,)] (11)

where O""(sr,a:) and Q(ss,ar) represent the updated and previous Q-values, respectively;
[ is the step size; r(sra:) stands for the observed reward; y is a discount factor and is
responsible for penalizing the future reward, usually set as 0.8 [51, 52]; and maxQ(s«+1,ar)
means the maximum Q-value for all actions. Q(ss,ar) is compiled in a so-called Q-table.
The hyperparameter £ is normally set to a high value at the beginning and is reduced with

iterations, thereby can be expressed as follows [51, 52]

0.9¢
=1-
Z Max

iter

(12)

where ¢ is the current iteration number and Maxicr is the maximum number of iterations.
To select the best action, the agent ought to obey a policy 7 : S—4 that maps a state S to
the best action 4. Fig. 2 demonstrates the calculation procedures of the Q-learning
algorithm. The proposed algorithm integrates the strategy pool and the Q-learning
together to compose a novel and efficient algorithm. The details of the algorithm are

demonstrated in the following section.
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Algorithm 1 Main steps of Q-learning algorithm
If (terminal conditions are not satisfied) then
1. For each state s, € A={s,,s,,---,s,} and action a, € 4={a,,a,,--,a,};

. Set O(s,,a,)=rand in the Q-table;

. End For
. Randomly choose an initial state s, ;

. Repeat
. Select the best action a, for the current state s, from the Q-table;

. Perform action a, and update the immediate reward 7 ;

. Obtain the maximum Q-value for the next state s, ;

t+1 2
. Update the Q-table entry using Eq. (11);
10. Update the current state s, using the action corresponding with the

O 00 3 N B W BN

maximum Q-value;
11. Until the maximum iteration number Max,

. Teached.
End If

Fig. 2 Algorithmic structure of the Q-learning algorithm

3.3. Procedure of the Q-learning-based evolutionary algorithm

The proposed search strategy pool is combined with the Q-learning framework.
Specifically, the individuals in the colony are regarded as the intelligent agents; the
environment is featured by the search space of individuals; the states denote the current
operation of everyone, i.e., K-means clustering strategy, search mode of the Jaya, and
search mode of the TSA. The action can be defined as it changes from one state to the
other. Q-learning adaptively switches the individual from one operation (state) to the
other on the basis of the individual’s achievement. Positive and negative rewards are
given to well-performed and non-well-performed individuals in the colony.

The interaction between Q-learning and the search strategy pool can be summarized
in the following three procedures [52]:

(1) Acquire the best operation to be performed according to the Q-table value for the

current individual.
(2) Execute the chosen operation and compute the objective function. The immediate

reward is computed as

13



1 if obj improved
-1 otherwise

(13)

(3) Update the Q-table for the current individual using Eq. (11).
The optimization process is implemented in three phases. First, an initial colony
containing CS individuals is randomly generated by

! u !
X, =%+ mnd-(xi,j —xi’j) (14)

where x;, and xfjl. denote the upper and lower bound of x; ;, respectively. Second, a 3x3

matrix is randomly generated as the initial Q-table for each individual in the colony. In
each matrix, its rows and columns correspond the three search strategies. The individual
chooses which strategy to update according to the location of the maximum Q-value in
its Q-table. Subsequently, the Q-table is updated according to whether the solution
improved or not. The process is repeated until Maxizr is reached. The pseudo-code of the
proposed algorithm is outlined in Fig. 3. The algorithm keeps a simple algorithmic
structure and is easy to operate as there are no special controlling parameters are

introduced.

Algorithm 2 Main steps of the Q-learning-based evolutionary algorithm
%% Set the control parameters for the proposed algorithm.
%% CS : colony size; Max

: maximum iteration number.

iter

%% x;',: upper bound of the x, , ;x| : lower bound of the x, .

%% D : Dimension number of the problems to be optimized.
If (terminal conditions are not satisfied) then
1. %% Initialization
2.For i=1:CS
3. Randomly generate a 3%3 matrix as the initial Q-table.
4. For j=1:D
5. Generate x, ; by Eq. (14);
6. End For
7. End For
8. % % Individuals’ updating in the colony
. Repeat Cycle =1
10. Do for every individual, x,

\O

11. Select the best action, g, for the current state s, from the Q-table.
12. Switch action

14



13. Case 1l

14. Update x| by the K-means clustering strategy;

15. Case?2

16. Update x| by Eq. (9);

17. Case3

18. Determine the number of candidates N e [2, 0.1CS ) randomly;
19. Update candidates by Eq. (10);

20. Update x| by keeping the best candidate;

21. %% Greedy selection mechanism
22. Evaluate x’
23.For i=1:CS

24. If x| is superior to X,

25. Then x; is survived to the next cycle;

26. EndIf
27. Update the immediate reward based on Eq. (13);
28. Update the Q-table entry using Eq. (11);
29. Update the current state;
30. Cycle = Cycle +1;
31. Until Cycle = Maxiter;
32. Return best xpes:;
End If

Fig. 3 Pseudo code of the proposed algorithm.

3.4. Benchmark verification

One representative benchmark test, named Sum-square, is used to evaluate the
superiority of the proposed algorithm over other two related evolutionary algorithms, i.e.,
Clustering-based TSA [43] and Clustering-based Jaya algorithm [55]. The Sum-square,
shown in Fig. 4, is a continuous, convex, and unimodal function, which has been widely

used to test an algorithm’s convergence performance. Its expression is given as follows

D
F(x,%,,+,x,) = > ix} (—100 < x, <100, D =100) (15)
i=l

The initial colony CS =100 and the terminal condition is Maxier = 500. Fig. 5(a)
shows the iteration process of objective function values based on the three algorithms.
The proposed Q-learning-based evolutionary algorithm can yield the largest
improvements in the convergence rate and identification accuracy. Furthermore, Fig. 5(b)

shows the selection proportion for the three search strategies, in which the proportions
15



fluctuate in the early stage and maintain a stable status after 12 iterations. This indicates
that the individuals in the colony are adaptively choosing the most suitable search
strategies. Moreover, although the same search strategies are adopted in other two
algorithms, they suffer slow convergence. The comparisons demonstrate the necessity of
introducing the Q-learning framework and the importance of maintaining an evolutionary

algorithm’s exploration and exploitation.

Proportion

o TSA search strategy

—— Proposed algorithm
[ | —%— Clustering-based TSA

Clustering-based Jaya algorithm

02 || - Jaya search strategy

Objective function values

K-means clustering strategy

0 10 20 30 40 50 0 10 20 30 40 50

Cycles Cycles

(a) (b)

Fig. 5 Optimization process of the Sum-square function

Five more mathematical benchmarks (Fig. 6) are used to verify the proposed
algorithm’s capacity in solving optimization problems. These functions consist of two
unimodal functions (denoted by F2 and F3) and three multimodal functions (denoted by
F4, Fs, and Fe). The former has only one global optimal solution and is used to inspect the

local search ability of the algorithm. The latter, with multiple local optimal solutions, is

16



employed to test the global search ability of the algorithm [56]. The mathematical
formulae, dimension, search ranges, global optimal value, and the acceptance threshold
of each function are presented in Table 1. When the objective function value of the best

solution in a run is less than the specified threshold value, the run is treated as a successful

Faolx,x,)

Fig. 6 The graphics of five benchmark functions.

Table 1 Formulae of all six benchmark functions.

Number Mathematical formulae Dimension  Range Glol‘?al Acceptance
solution threshold

17



Fi F(x)= i X 100 [-100,100] 0 108

F Fy(x)=>" | 100 [-10,10] 0 108
Fs Fy(x)=m {x ie 1D]} 30 [-100,100] 0 10
=] N T
Fs {H sin( e"p[ 100- ] } 2 [-10,10] -2.06261  —2.0626
£ 10*
|:1+cos(121lz’l;x,2 ﬂ
Fs Fi(x)=- - +2 2 [5125.02] -1 -0.999999
» (O‘SZi:Ixiz)
F,(x)=sin(3zx,)" +(x 1)’ [1 +sin(37x, )ZJ
Fe 2 [-10,10] 0 108

+(x, - 1)2 [1 + Sin(Zﬂx2)2:|

The parameters of the proposed algorithm are set as CS = 50 and Maxirer = 500. The
performance of the algorithm is evaluated using the following three criteria: (1) the mean
and standard deviation of the best objective function value, which are used to evaluate
the quality or solution obtained by the proposed algorithm; (2) the average cycle (AVEN)
to reach the acceptance threshold, which represents the convergence speed; and (3) the
successful rate (SR%) of the 30 independent runs, which reflects the robustness or
reliability of the proposed algorithm.

The final optimization results using the proposed algorithm towards the six
mathematical benchmarks are presented in Table 2. The proposed algorithm can acquire
satisfactory optimizations with a fast convergence speed. The 100% SR for all
benchmarks demonstrates the algorithm’s excellent robustness/reliability, which lays the

foundation for the following FRP debonding identification.

Table 2 Optimization results of the six benchmarks based on the proposed algorithm

Function Criterion 1 Criterion 2 Criterion 3
Number Mean value Standard deviation AVEN SR%

1 0.00e+00 0.00e+00 7 100

2 2.17e-284 0.00e+00 11 100

3 2.48e-175 0.00e+00 14 100

18



4 -2.06261 9.033e-16 2 100
5 -1 0.00e+00 4 100
6 1.34e-31 6.68¢-47 16 100

4. An experimental study
4.1. Model description

The proposed algorithm is applied to detect the FRP debonding of an experimental
FRP strengthened steel cantilever beam (Fig. 7). The left end of the beam is fixed by a set
of strong steel brackets. The total length of the host steel beam is 1000 mm, and the
cross—section is 50.00 x 5.00 mm?. The Young’s modulus and density of the steel are 200
GPa and 7.85x10° kg/m’, respectively. The beam is strengthened by two layers of CFRP
cloth through a wet-layup process. The density of the FRP layer is estimated as 1.5x10°
kg/m>. The resulted FRP layer is around 1 mm thick. A standard coupon test was
conducted to estimate the tensile modulus of the FRP layer in view of the possible
variation of its thickness and curing condition in the wet layout process. The average
thickness of the coupons is 0.87 mm and the tested tensile modulus is around 100 GPa.
However, the thickness of the FRP layer in the modal test is around 1mm, possibly due
to more resin is used. The extra resin will reduce the modulus of the FRP layer. Therefore,

the tensile modulus of the FRP layer is estimated as 80 GPa.

B S e S e i o ] M
3 e e ]

Fig. 7 Overview of the cantilever beam covered with FRP

4.2. Damage introduction and scenarios

As the debonding initiation and development are difficult to control in the loading test,
19



a stepwise bonding process is designed to simulate the gradual debonding process in a
reversed order as shown in Fig. 8. That is, the full length FRP strip was partially bonded
to the steel beam at the beginning, and three small zones were intentionally not bonded
to simulate the debonding at the three positions. This state is referred to as
damage/debonding scenario 3, or DS3, which has three debonded zones, namely, 1% from
0 to 50 mm, 2" from 250 to 300 mm and 3™ from 600 to 650 mm, respectively, measuring
from the fixed end to the free end. The selection of these three debonding zones may
cover the high stress zone (the 1% zone) and possible bonding imperfection zones (the 2"
and 3" zones). Subsequently, the third and second non-bonded FRP region were attached
to the beam through a wet-layup process sequentially, which are referred to as DS2 and
DSI, respectively. Finally, the first non-bonded region was attached, and the entire FRP
strip was fully bonded, which is the intact state or DS0. The specimen of DS3 is shown
in Fig. 9.

According to the calculation in Section 2, the stiffness of the debonded zone is around
24% lower than that of the bonded zone, equivalent to an SRF of 24%. Note that this is
an estimated value and may be different from the real one due to the manual error in

attaching the FRP strips and epoxy.

Fixed end
i DS3 I
DS2
Test Damage
sequence detection
sequence
DS1 I

i DSO I

Bonded FRP [l Debonded FRP

Fig. 8 Sequential FRP debonding in the cantilever beam.
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Fig. 9 Introduced debonding in the cantilever beam (DS3, Unit: mm)

4.3. Modal testing

Modal tests were conducted for each damage scenario. The beam was excited using
an instrumented hammer with a rubber tip. The accelerations at 10 locations with equal
spacing of 100 mm (Fig. 7) were measured by accelerometers and then collected by a
datalogger (Fig. 10). The sampling frequency is 5000 Hz, and the data collection duration
is 60 seconds. In each scenario, the beam was hit for 5 times and these signals were
combined into a 5-minute duration signal. The input force and accelerations response of
the undamaged beam are shown in Fig. 11. The frequency response functions of the beam
are then calculated, and the first six frequencies and mode shapes were extracted from
these stitched signals using a rational fraction polynomial method [59]. The extracted

modal data of DSO are shown in Fig. 12.

Fig. 10 Data acquisition system
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Fig. 11 Input and output time history

(a) Mode 1, frequency = 3.86 Hz

(b) Mode 2, frequency = 24.87 Hz

(c) Mode 3, frequency = 68.17 Hz
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(e) Mode 5, frequency =216.41 Hz (f) Mode 6, frequency = 318.19 Hz

Fig. 12 The measured first six mode shapes for DSO

Table 3 summarizes the first six natural frequencies and the corresponding MAC
values of the experimental beam from DS0O to DS3. The natural frequencies decrease
significantly from DSO to DS1, while the changes are relatively small from DS1 to DS3.
This indicates that the debonding close to the fixed end has more significant effect on the
frequencies than the debonding in the mid-span. This is more apparent for the first three

modes. The higher modes, namely, the 4, 5" and 6™ modes experienced a small change.

Table 3 Measured modal data of the beam in undamaged and damaged states

Mode DSO0 DS1 DS2 DS3

No.  Freq. (Hz) Freq. (Hz) =~ MAC  Freq.(Hz) @ MAC  Freq.(Hz) MAC

1 3.86 3.64(-5.70)  99.97 3.60 (-6.74) 99.97 3.59(-6.99) 99.96
2 2487 2376 (—4.46) 99.95 23.82(-4.22) 99.96 23.55(-5.31) 99.91
3 68.17  66.35(-2.67) 99.90 65.70 (-3.62) 99.88 65.34 (-4.15) 99.94
4 132.68  129.73 (-2.22) 99.13 128.96 (-2.80) 99.28 128.80 (-2.92) 99.61
5 21641  213.72(-124) 99.79 213.24 (~1.46) 99.79 211.19 (-2.41) 99.83
6 318.19  315.01 (-1.00) 99.66 312.01 (~1.94) 99.60 310.76 (-2.34) 99.64

Note: Values in parentheses are relative changes (%) between DS0 and DS1 to DS3.

4.4. Damage detection

The structure is modeled using 20 Euler—Bernoulli beam elements with each being
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50 mm long. In this way, each debonding zone has the same length as each element. Then
the damage severity of debonding zone is equal to the reduction in the moment of inertia
of the cross-section defined in Eq. (2). Therefore, the SRFs of each damaged element is

assumed as 24%, and the three damage scenarios are summarized in Table 4.

Table 4 Debonding locations and extents of the experimental beam

Damage scenario Debonding element(s) SRF
DS1 1 a,=0.24
DS2 1,6 a,=a,=024
DS3 1,6,13 o =0a,=a,=024

The FE model updating is first performed to fine tune the initial FE model so that its
vibration properties match the measured ones of the undamaged structure as closely as
possible [58]. The first six natural frequencies and the mode shapes are used to in the
model updating by applying the proposed Q-learning-based evolutionary algorithm. The
flexural rigidity (E]) of 20 elements is chosen as the updating parameters. In the model
updating, the colony size is set as CS = 100 and Maxieer = 200. Table 5 compares the first
six natural frequencies of the initial FE model and the updated one, especially the first
mode. The difference of the FE model decreases significantly after updating. The updated

model can represent the real beam and will be used for debonding detection.
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Table 5 Measured and analytical natural frequencies of the cantilever beam in DSO

Mode Before updating After updating
Freq. (Hz)
No. Analytical (Hz) Difference (%) Analytical (Hz) Difference (%)
1 3.86 3.64 —5.70 3.79 —1.81
2 24.87 23.76 —4.46 24.55 —-1.29
3 68.17 66.35 —2.67 67.68 —0.72
4 132.68 129.73 —2.22 132.49 —-0.14
5 21641 213.72 —1.24 215.88 —0.24
6  318.19 315.01 —1.00 317.23 —0.03

The damage detection is conducted from DS1 to DS3, in an inverse sequence as the
experiment. The measured modal data in DS1 are used to update the fine-tuned FE model
in DSO0. 1% white noise is added to the measured natural frequency to generate 15 data
samples. The parameters set for the Q-learning algorithm are the same as the previous
model updating. The regularization parameter & in DSI is determined as 20 by the
discrepancy principle rule following Hou et al. [50]. Due to the measurement
uncertainties and the regularization term, the global optimum for the DS1 is within the
neighborhood of 64.90. In addition, the C-Jaya-TSA algorithm proposed in Ref. [58] is
also employed for comparison with the same algorithm operators. Although C-Jaya-TSA
algorithm performed well in dealing with damage identification problems, it does not
equip the adaptive selection mechanism as the proposed algorithm.

The evolutionary process of the model updating using the two algorithms is shown
in Fig. 13. After around 80 cycles, the proposed algorithm converges to the neighborhood
of the global optimum while the C-Jaya-TSA suffers a slow convergence. This indicates
that the proposed algorithm adaptively choosing the most suitable search strategy can
greatly enhance the convergence. The selection proportion of the three search strategies
for this problem is shown in Fig. 14. Compared with Fig. 5(b), the three proportions

fluctuate more intensely, and the TSA search strategy wins the most selection. This is
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because the objective function for the damage identification is multi-modal [55] and
possesses countless local optimums. Therefore, with the Q-learning framework, the
search strategy focusing on exploration has more likelihood to be chosen. The objective
function of the damage identification problem is more complicated than the basic
mathematical benchmark problems. The algorithm may adaptively choose these search
strategies more intensely to avoid the local minimum, thereby resulting in some
fluctuations again after 190 cycles. Furthermore, the essence of the random search of the
evolutionary algorithm would result in fluctuations to some extent in terms of the
selection proportions.

The debonding identification results are shown in Fig. 15. The debonded element 1
is correctly detected using the proposed techniques, and the debonding severity (SRF =
0.24) is also quantified. However, several undamaged elements are falsely detected using

the C-Jaya-TSA.

.......... C-Jaya-TSA
----- Proposed algorithm

= = =Global optimum

Objective function values

Fig. 13 Evolutionary process of the model updating for DS1
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Fig. 15 Debonding identification results for DS1

The proposed technique is then applied to DS2 and DS3, in which the corresponding
regularization parameters & is set as 8 and 5, respectively. The identified results are
shown in Figs. 16 and 17. In both cases, the proposed technique can detect the damage
locations correctly while the C-Jaya-TSA falsely detect several intact elements. The
identified SRFs of elements 6 and 13 are slightly different from the assumed value, which
may be due to the measurement errors. In general, more sensors will provide more

measurement data and may improve the damage identification results. The sensor location
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also affects the results [60, 61]. Besides, the FRP was attached to the steel beam manually
through a wet lay-up process, which may cause variations in the FRP layer thickness and
epoxy quality. Consequently, the element stiffness of the strengthened beam may not be
uniform. Nevertheless, the proposed algorithm can still provide satisfactory identification

results.
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Fig. 17 Identification results for DS3

5. Conclusions and discussions

The vibration-based technique using an integrated Q-learning-based evolutionary
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algorithm has been developed to detect the debonding in FRP strengthened structures for
the first time. The modal data are used to formulate a multi-sample objective function
with and a sparse regularization technique. A Q-learning evolutionary algorithm is
proposed to solve the objective function in an optimal manner. An FRP strengthened
cantilever steel beam has been tested in the laboratory and used to. The developed
technique has been applied to an FRP strengthened cantilever steel beam tested in the
laboratory. The following conclusions can be drawn:

1. A series of FRP debonding scenarios were designed by a stepwise bonding procedure
in an inverse sequence. The FRP debonding condition is modeled as the stiffness loss
of the corresponding elements, which are successfully located and quantified by the
vibration-based approach via the model updating technique;

2. As the number of measurement data is less than the number of unknown parameters in
the model updating, the model updating is an under-determined problem. The /o5
regularization technique can enforce the identification results converge to several
damaged elements, overcoming the ill-posedness of the problem,;

3. The developed Q-learning evolutionary algorithm can achieve the global optimization
and identify the damaged element accurately.

Due to the influences of environmental factors, measurement noise, finite element
modeling errors, and the complexity of identification problem, the objective function
formulated in this study is complicated with many local minimums. The proposed Q-
learning evolutionary algorithm integrates the characteristics and advantages of K-means
clustering, Jaya, and the tree seeds algorithms. Consequently, it can adaptively choose the
most suitable search strategy and effectively balance the exploration and exploitation of
the algorithm, thereby enhancing its global searchability. Moreover, the Q-learning
evolutionary algorithm has a simple algorithmic structure and does not introduce new
controlling parameters.

The proposed method can also be used to detect poor workmanship, which is not

unusual for FRP strengthening of large-scale structures, as a quality assurance measure
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for FRP bonding work on site. For such uses, the bonding imperfection may be detected
before the structure is heavily loaded so that the stiffness degradation is not complicated
by the damage of concrete.

The strengthening of the steel structure is one application scenario of FRP, where the
stiffness reduction is purely due to debonding. FRP materials are also widely used to
strengthen RC structures. There are two major debonding failure modes, namely,
intermediate crack induced debonding and concrete cover separation. The present
algorithm may be extended for identification of intermediate crack debonding, but such
extension can only be valid when it is used together with a sophisticated model that can
accurately simulate the mechanism of concrete crack development associated with FRP
debonding. With respect to the concrete cover separation, it leads to the stiffness loss and
mass reduction, which is against the unchanged mass assumption in the algorithm. The
present algorithm needs to be further developed to account for the mass change in the

future.
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