

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use (<https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms>), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: <http://dx.doi.org/10.1007/s10064-023-03102-w>.

Estimation of Mechanical and Hydraulic Parameters of Bentonite-

Soil Mixtures in Oedometer Condition with Index Properties

An LI

Department of Civil and Environmental Engineering
The Hong Kong Polytechnic University, Hong Kong, China
Email: an0929.li@connect.polyu.hk

Email: an0929.li@connect.polyu.hk

Wen-Bo CHEN

Department of Civil and Environmental Engineering
The Hong Kong Polytechnic University, Hong Kong, China

Email: geocwb@gmail.com
wb.chen@polyu.edu.hk

Ze-Jian CHEN

Department of Civil and Environmental Engineering
The Hong Kong Polytechnic University, Hong Kong, China

Email: ze-jian.chen@connect.polyu.hk

Pei-Chen WU

Department of Civil and Environmental Engineering
The Hong Kong Polytechnic University, Hong Kong, China

Email: elvis.wu@polyu.edu.hk

Jian-Hua YIN^{1,2}

1: Department of Civil and Environmental Engineering

2: Research Institute for Land and Space

The Hong Kong Polytechnic University, Hong Kong, China

Email: cejhyin@polyu.edu.hk

And

Chao ZHOU

Chao ZHENG
Department of Civil and Environmental Engineering
The Hong Kong Polytechnic University, Hong Kong, China

Email: c.zhou@polyu.edu.hk

Abstract

A large amount of bentonite slurry is dumped as construction waste in fill banks around the world. In order to reuse them, it is important to determine the mechanical

46 and hydraulic parameters of bentonite-soil mixtures containing different
47 montmorillonite contents. The establishment of these parameters with index
48 properties is an efficient and simple way. Despite the proposal of some correlations to
49 estimate the compression and swelling indices for kaolinite or illite-dominated soils
50 (KIDSs) with relatively low liquid limits, they are unsuitable for bentonite-soil
51 mixtures dominated by montmorillonite. Besides, no correlation was given for
52 predicting the parameters in the non-linear creep function as well. In this study, the
53 results of the index, oedometer and scanning electron microscope (SEM) tests on five
54 mixtures with different montmorillonite contents from 5% to 35% were presented.
55 Compression and swelling indices creep coefficient as well as the non-linear creep
56 parameters and hydraulic conductivity of bentonite-soil mixtures were obtained.
57 Several correlations were put forward to estimate the mechanical parameters with
58 Atterberg limit indices. The proposed correlations were further verified using the data
59 collected from literature, which can well estimate the mechanical parameters of soils
60 with a liquid limit of above 50%. In addition, a simplified model with a
61 homogenization approach was developed to estimate hydraulic conductivity, which is
62 easier to be adopted in practical engineering.

63 **Keywords:** Bentonite Slurry; Montmorillonite Content; Correlation;
64 Homogenization; Mixture

65

1 **Introduction**

2 Bentonite is commonly used in civil engineering, including the construction of
3 diaphragm walls, the operation of tunnel boring machines, etc. However, the used
4 bentonite slurry is a kind of construction waste that might pollute water and soil. It is
5 challenging to dispose of massive bentonite slurry all over the world. When economic,
6 environmental and sustainable development factors are taken into account, the used
7 bentonite slurry shall be dewatered before being moved and disposed of as fill
8 material at a permanent disposal site or consolidated in situ with additional fills to
9 provide land for other developments. If bentonite slurry is used as fill material to
10 support any structure, its hydraulic conductivity (k), compressibility, long-term
11 behavior and corresponding mechanical parameters such as creep coefficient (C_{ae})
12 and compression (C_c) and swelling indices (C_s) are important in the design of
13 geotechnical applications. These parameters must be determined in advance.
14 Nevertheless, bentonite slurry generally contains different montmorillonite contents
15 ranging from 4% to 40% due to the different dosages of bentonite in different projects
16 ([Amarasinghe et al., 2012](#)). Oedometer tests require high-quality undisturbed soil
17 specimens which are quite expensive and time-consuming, especially with the
18 incorporation of the creep stage ([Yin, 1999b](#)). In terms of time and cost, it is
19 infeasible to conduct oedometer tests on all undisturbed soil specimens with different
20 clay contents ([Zhang et al., 2021](#)). Establishing correlations with index properties
21 could provide the preliminarily estimated values of soil parameters for practical
22 engineering design.

23

24 To overcome the above-mentioned inconvenience, some attempts have been made to
25 establish correlations between mechanical parameters and index properties (e.g.,

26 liquid limit, plasticity index or void ratio at the liquid limit) for soils since it is much
27 easier to obtain the indices of soils in the laboratory. Proposed by Skempton (1944),
28 the first correlation with the liquid limit (w_L) for predicting compression index is one
29 of the most widely used correlations at present. In the following decades, extensive
30 attempts have been made to correlate compression index with a variety of physical
31 parameters, including liquid limit (Terzaghi & Peck, 1948; Cozzolino, 1961; Yin,
32 1999b), plasticity index, I_P (Wroth & Wood, 1978; Nakase et al., 1988; Tiwari &
33 Ajmera, 2012) and void ratio at liquid limit e_L (Nagaraj & Murthy, 1983; Burland,
34 1990). Nonetheless, no correlation can perfectly predict the compression index with
35 different property indices for all kinds of soil owing to the variation in the type and
36 localization of different soils (Verbrugge & Schroeder, 2018).

37

38 Bentonite also exhibits obvious swelling behavior because of particle surface
39 hydration and exchangeable cations as well as osmosis with electrical double-layer
40 repulsion (Oscarson et al., 1990; Sridharan, 1999; Yilmaz & Marschalko, 2014; Yin et
41 al., 2021). Therefore, the swelling index is also rather necessary in the geotechnical
42 design for bentonite-soil mixtures since the swelling behavior of mixtures may lead to
43 unexpected differential settlement. Previous research has correlated the swelling index
44 with different index properties (Nakase et al., 1988; Yin, 1999b; Tiwari & Ajmera,
45 2011). Some researchers tried to make use of artificial neural networks to predict the
46 swelling index (Kordnaeij et al., 2015; Kurnaz et al., 2016), whereas no previous
47 research focused on bentonite mixtures with strong swelling properties. Thus, the
48 establishment of the swelling index with liquid limit, plasticity index or other
49 geotechnical properties for bentonite mixtures is needed.

50

51 Some attempts have been made for estimating hydraulic conductivity (Pandian et al.,

52 1995; Sivapullaiah et al., 2000; Chapuis, 2012; Deng et al., 2017). A majority of
53 equations are on the basis of the relationship between hydraulic conductivity and the
54 e_L/e_0 value. Shi and Yin (2018) put forward a theoretical model based on the
55 homogenization approach to predict the hydraulic conductivity of marine clay-sand
56 mixtures with different sand contents. The theoretical model can still be greatly
57 simplified despite being able to well predict the hydraulic conductivity of binary
58 mixtures.

59

60 In general, clayey soils demonstrate creep behavior under laboratory and in situ
61 conditions during both primary and secondary consolidation (Yin & Graham, 1989;
62 Feng et al., 2017) owing to viscosity significantly affecting the long-term settlement
63 of reclamation lands or other soft soil foundations. The creep coefficient must be
64 determined beforehand in the long-term settlement calculation for both engineering
65 practice and constitutive modeling incorporating viscous characteristics. As stated
66 before, however, it takes more time to measure the creep coefficient in oedometer
67 tests. Several correlations have been proposed for the preliminary estimation of the
68 creep coefficient (Nakase et al., 1988; Yin, 1999b; Zeng et al., 2012; Yin et al., 2014;
69 Zhu et al., 2016). Yin (1999a) pointed out that the use of the logarithmic function
70 overestimates creep settlement due to the non-linearity of soil creep behavior, and
71 thus proposed a function to fit the nonlinear creep behavior of soils. Correlating these
72 nonlinear parameters with easily obtained geotechnical indexes could be meaningful
73 for the application in practical engineering in that solving the nonlinear creep function
74 is somewhat complicated for practical use.

75

76 The correlations proposed in the literature are summarized in Table 1, which can only

77 be capable of predicting one or more specific kinds of soil. Most of them mainly focus
 78 on kaolinite or illite-dominated soils (KIDSs), thereby indicating their inability to
 79 predict the parameters of soils with high liquid limits or plasticity index, particularly
 80 montmorillonite-dominated soils (MDSs). It can be also found that no relevant
 81 correlation remains available in the literature for estimating nonlinear creep
 82 parameters. Meanwhile, it is also necessary to achieve the estimation of hydraulic
 83 conductivity easily. Hence, new correlations for estimating mechanical parameters
 84 and a model with a homogenization approach should be proposed to better understand
 85 the relationships between the mechanical parameters and Atterberg limit indices of
 86 montmorillonite-soil mixtures.

87

88 **Table 1** Correlations of C_c , C_s and C_{ae} available in the literature

Correlation	Applicability	Reference
$C_c = 0.007(w_L - 10)$	Remoulded clays	Skempton (1944)
$C_c = 0.009(w_L - 10)$	Normally consolidated clays	Terzaghi and Peck (1967)
$C_c = 0.0046(w_L - 9)$	Brazilian clays	Cozzolino (1961)
$C_c = 0.0102w_L - 0.131$	Hong Kong Marine Deposit (HKMD)	Yin (1999)
$C_c = 0.0012w_L$	Remoulded clays with activity >1	Tiwari and Ajmera (2012)
$C_c = 0.0104I_p + 0.046$	Kawasaki clay and natural marine clay	Nakase <i>et al.</i> (1988)
$C_c = 0.0138I_p + 0.00732$	HKMD	Yin (1999)
$C_c = 0.75(e_0 - 0.5)$	Soils with low plasticity	Sowers (1970)
$C_c = 0.2237e_L$	Remoulded normally consolidated clay	Nagaraj and Murthy (1983)
$C_c = 0.208e_0 + 0.0083$	Chicago clays	Bowles (1989)
$C_c = 0.3921e_L$	Remoulded clays with activity >1	Tiwari and Ajmera (2012)
$C_s = 0.0007w_L + 0.0062$	Fine grained soils	Sinan (2009)
$C_s = 7 \times 10^{-6} \times (w_L)^2 - 0.0014w_L$	Remoulded montmorillonite-sand mixtures	Tiwari and Ajmera (2011)

$C_s = 0.00194I_p - 0.00892$	Kawasaki and natural marine clays	Nakase <i>et al.</i> (1988)
$C_s = 0.00219I_p - 0.0104$	HKMD	Yin (1999)
$C_s = 6 \times 10^{-6} \times (I_p)^2 - 0.0026I_p$	Remoulded montmorillonite -sand mixtures	Tiwari and Ajmera (2011)
$C_s = 0.015(e_0 + 0.007)$	Clays with $WL > 100\%$	Azzouz <i>et al.</i> (1976)
$C_s = 0.0087(e_0)^2 + 0.031e_0$	Remoulded montmorillonite -sand mixtures	Tiwari and Ajmera (2011)
$C_{ae} = 0.00033I_p + 0.00168$	Kawasaki and natural marine clays	Nakase <i>et al.</i> (1988)
$C_{ae} = 0.000369I_p - 0.00055$	HKMD	Yin (1999)

89

90 In the present study, a series of index and oedometer tests were performed on
 91 bentonite-soil mixtures. Based on the model established by [Shi and Yin \(2018\)](#), a
 92 simplified method with a homogenization approach was proposed for the estimation
 93 of hydraulic conductivity. Scanning electron microscope (SEM) analysis interpreted
 94 compressibility and homogenization from the micro perspective. Correlations for
 95 predicting the mechanical parameters of soils were derived from the results of
 96 oedometer tests. The correlations proposed in this paper were further verified with the
 97 data collected from the literature.

98

99 Materials and experiment procedures

100 In this study, a range of multi-stage loading (MSL) oedometer tests was conducted on
 101 the bentonite-soil mixtures which were made by mixing two materials. The first one is
 102 bentonite slurry originally collected from a disposal site in Hong Kong. Soils from 11
 103 locations of different depths were mixed with an excavator in the field to obtain a
 104 more uniform sample. Comprising fine sand, silt and clay particles, this bentonite
 105 slurry is slightly dark grey. The other is a commercially available pure bentonite
 106 named Bentonil® GCT 4 and obtained from the company Clariant. As sodium
 107 bentonite in dark yellow, Bentonil® GCT 4 is extensively used in different civil

108 engineering projects in Hong Kong. Quantitative X-ray diffraction (QXRD) tests were
109 carried out on the two samples, to determine the mineralogical composition of the two
110 materials and further mix them to specific montmorillonite content. The mineralogical
111 composition of the two materials is shown in Table 2.

112

113 **Table 2** Mineralogical composition of the two materials (Unit:
114 wt%)

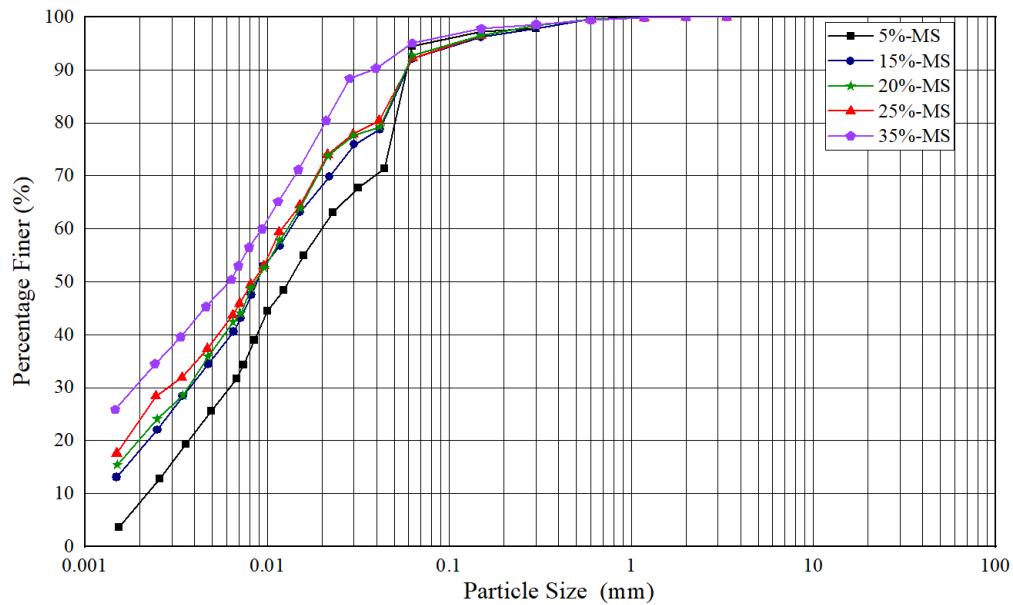
Sample	Montmorillonite	Quartz	Feldspar	Others
Bentonite slurry	4	49	11	36
Bentonil® GCT 4	84	4	5	7
BS-5%*	5	48	11	36
BS-15%*	15	43	10	32
BS-20%*	20	40	10	30
BS-25%*	25	37	10	28
BS-35%*	35	31	9	25

115 *The mineralogical composition of mixtures was calculated according to the XRD
116 results of bentonite slurry and Bentonil® GCT 4

117

118 Five bentonite-soil mixtures with different montmorillonite contents were prepared in
119 light of the QXRD results and named BS-5%, -15%, -20%, -25% and -35%,
120 respectively. All specimens were physically characterized to determine their particle
121 size distribution, liquid and plastic limits, plasticity index and initial void ratio in
122 accordance with [British Standard 1377 \(2016\)](#) in the laboratory. The particle size
123 distribution curves and basic properties of all five mixtures are illustrated in Fig. 1
124 and Table 3, respectively.

125


126 **Table 3** Basic properties of bentonite-soil mixtures

	BS- 5%	BS- 15%	BS- 20%	BS- 25%	BS- 35%	Bentonil® GCT 4
Liquid limit, w_L (%)	56	86	114	135	181	390
Plastic limit, w_P (%)	21	27	31	34	37	63
Plasticity index, I_P (%)	35	59	83	101	144	327

127

128 Prior to oedometer tests, the bentonite-soil mixtures with a water content of 1.4 times
 129 their liquid limit were poured into a cylindrical steel mould for self-weight
 130 consolidation. Then, a vertical pressure from 5 to 40 kPa was gradually applied to the
 131 slurry for one-dimensional pre-consolidation to obtain consistent soil specimens.
 132 Upon the completion of the pre-consolidation process under the maximum pressure of
 133 40 kPa, five saturated bentonite mixture specimens with a diameter of 70 mm and a
 134 thickness of 19 mm were taken from the mould by the use of confining rings for all
 135 oedometer tests. Silicon grease was smeared on the inner wall of each confining ring
 136 in order to minimize the friction between the ring and the soil specimen. Additionally,
 137 filter papers were positioned on both the top and bottom surfaces of each specimen to
 138 prevent soil particles from entering porous stones.

139

141 **Fig. 1** Particle size distribution curves of bentonite-soil mixtures with different
142 montmorillonite contents
143

144 MSL oedometer tests were carried out with Casagrande-type oedometers on the five
145 bentonite-soil mixture specimens. The minimal consolidation stress of 5 kPa was
146 applied instantly to reach equilibrium, followed by the consolidation of specimens
147 with the subsequent instant loadings of 10, 20, 50, 100, 200 and 400 kPa. To get the
148 swelling index C_s , the stress gradually decreased from 400 to 50 kPa and then
149 reloaded to the final stress level of 800 kPa in the same incremental steps. Stages
150 before 50 kPa and unloading-reloading stages lasted for 1,440 min. The rest of the
151 stages were maintained for five days to ensure that all specimens had sufficient time
152 to exhibit long-term creep behavior. MSL oedometer tests were also conducted on
153 pure bentonite, namely Bentonil® GCT 4, to obtain its hydraulic conductivity for
154 building a model with a homogenization approach. After oedometer tests, artificial
155 bentonite-soil mixtures were dried by vacuum under -82 °C for 24h with a freeze
156 dryer used for keeping the original microstructure. After that, the dry specimens were
157 cut into cubes with sides of 6 mm for SEM observation.

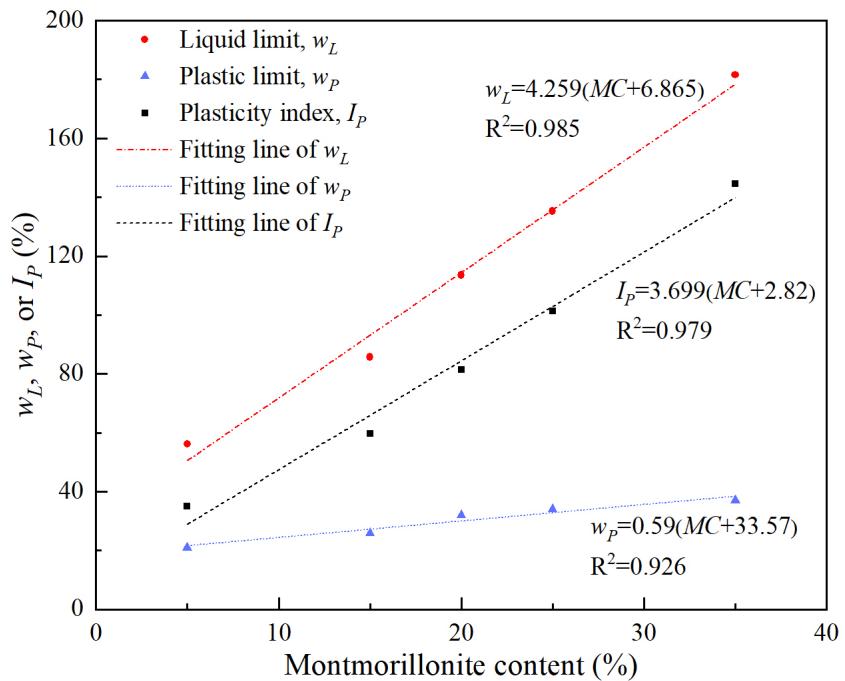
158

159 **Results and discussion**

160 The results of oedometer tests conducted on bentonite-soil mixture specimens with
161 different montmorillonite contents were presented and discussed. Particular emphasis
162 was placed on the following aspects: (a) correlations of soil parameters (C_c , C_s and
163 C_{ae}) with Atterberg limit indices, (b) relationships between parameters (ψ'_o and ε'_c) in
164 the nonlinear function proposed by [Yin \(1999a\)](#) and basic indices, (c) a simplified
165 model with a homogenization approach and (d) microfabric analysis.

166

167 ***Correlations of Atterberg limit indices***

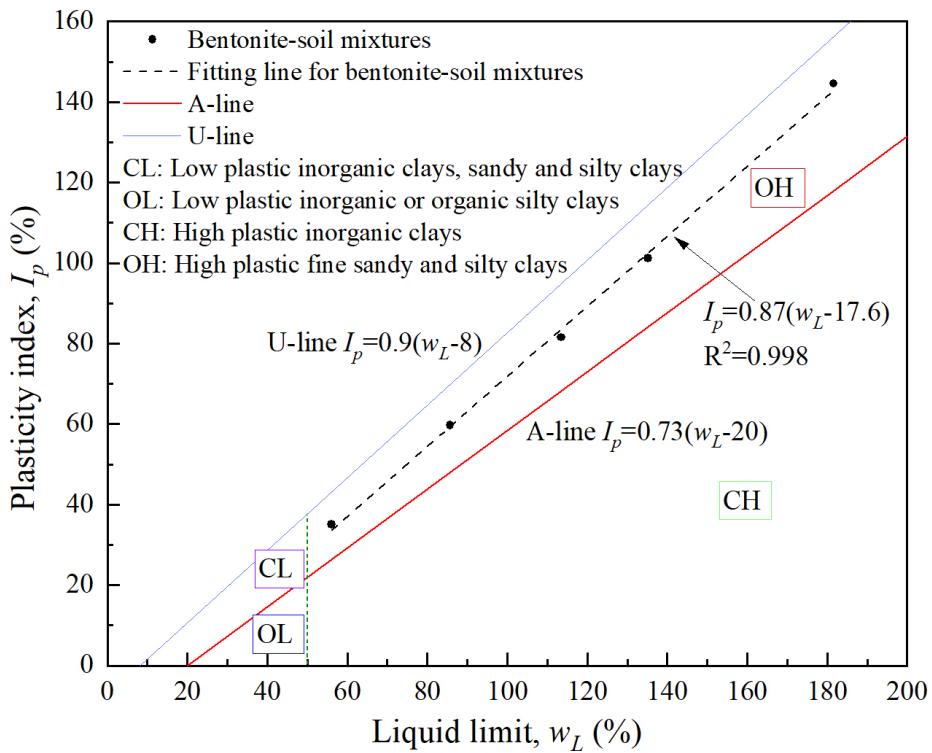

168 Liquid limit and plasticity index were determined in accordance with [British Standard](#)
169 [1377 \(2016\)](#) and summarized (see Table 3). Regarding the five artificial mixture
170 specimens utilized in this study, their activity values defined as the ratio of plasticity
171 index to clay content were found to be all greater than 1. Moreover, correlating the
172 montmorillonite content and basic property indices of bentonite-soil mixtures could
173 be extremely meaningful for practical engineering. As a result, Fig. 2 displays the
174 three straight lines best fitting the montmorillonite content and the results of liquid
175 and plastic limits as well as the plasticity index for all specimens as follows:

176 $w_L = 4.259(MC + 6.865)$ (1)

177 $w_p = 0.59(MC + 33.57)$ (2)

178 $I_p = 3.699(MC + 2.82)$ (3)

179 where MC denotes the montmorillonite content in percentage. As demonstrated in Fig.
180 2, the coefficients of determination (R^2) for the fitting lines of w_L , w_p and I_p are 0.986,
181 0.926 and 0.978, respectively. This means that strong correlations existed between
182 montmorillonite content and liquid and plastic limits as well as the plasticity index.



185 **Fig. 2** Relationships of montmorillonite content with liquid and plastic limits as well
186 as plasticity index

188 In the meantime, plasticity was utilized in this study. A- and U-line are plotted in Fig.
189 3. It was observed that all the plasticity points of montmorillonite-soil mixtures fall
190 above the A-line and the liquid limit of all specimens are beyond 50%. This indicates
191 that the tested samples are high plastic fine sandy and silty clays. A regression
192 equation between I_P and w_L for montmorillonite-soil mixtures was determined from
193 linear fitting, as shown in Eq. (4).

$$I_p = 0.87(w_L - 17.6) \quad (4)$$

196 The R^2 value of correlation is 0.997. The following correlations adopted Eq. (4) to
197 describe the relationship between I_P and w_L for montmorillonite-soil mixtures.

199
200 **Fig. 3** Plasticity of bentonite-soil mixtures
201

202 ***Correlations of compression index***

203 Skempton (1944) was among the first ones to correlate C_c with liquid limit, whose
204 correlation is widely used. Subsequently, most of the correlations for predicting C_c by
205 use of the Atterberg limit, initial void ratio, and the void ratio at liquid limit have been
206 presented by some researchers. However, these correlations are usually limited to a
207 specific type of soil. Concerning bentonite-soil mixtures, the correlations between C_c
208 and the various indices of five specimens were presented in the following sections.

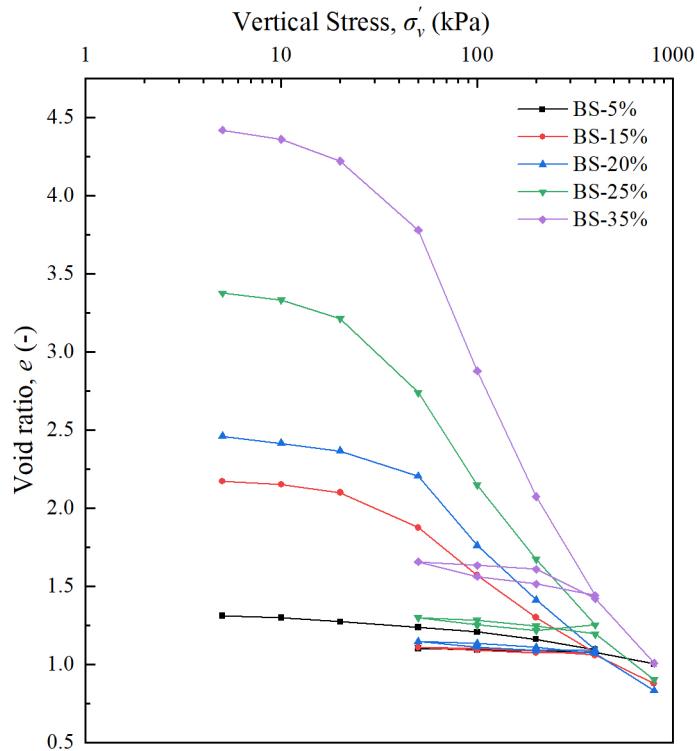
209
210 ***Liquid limit***

211 Plenty of correlations between C_c and w_L were proposed in the past decades
212 (Skempton, 1944; Terzaghi & Peck, 1948; Nakase et al., 1988; Yin, 1999b; Tiwari &
213 Ajmera, 2012). Among them, a linear correlation between the compression index and
214 liquid limit for HKMD was presented by Yin (1999b). However, a large portion of

215 clay minerals in HKMD are kaolinite and illite (Tovey, 1986) whose properties are
216 greatly different from those of montmorillonite.

217

218 The curves of void ratio versus the logarithm of vertical effective stress (e -log(σ_v)
219 curves) are depicted in Fig. 4, from which the compression index was determined for
220 all five specimens. To better estimate the C_c values of bentonite-soil mixtures, the
221 variation of compression index with liquid limit and a best-fitting line for mixtures are
222 plotted in Fig. 5(a). A correlation between C_c and w_L was displayed in Eq. (5), with an
223 R^2 value of 0.994.


224

$$C_c = 0.0141w_L - 0.516 \quad (5)$$

225

226 Several regression lines from the literature are also presented in Fig. 5(a). It can be
227 observed that experimental data were not in good agreement with these regression
228 lines. Compared with the line proposed by [Tiwari and Ajmera \(2012\)](#) and produced
229 based on the oedometer results of montmorillonite-sand mixtures, Tiwari's line was
230 found to lie above the fitting line obtained from this study. This observation implies
231 that the compression index is not only related to the indexes of soil but also affected
232 by its grain composition. The current correlations for predicting soil parameters are
233 not universal. On this account, it is suggested that future research focus on
234 investigating composition effects on the relationship between soil parameters and
235 index properties.

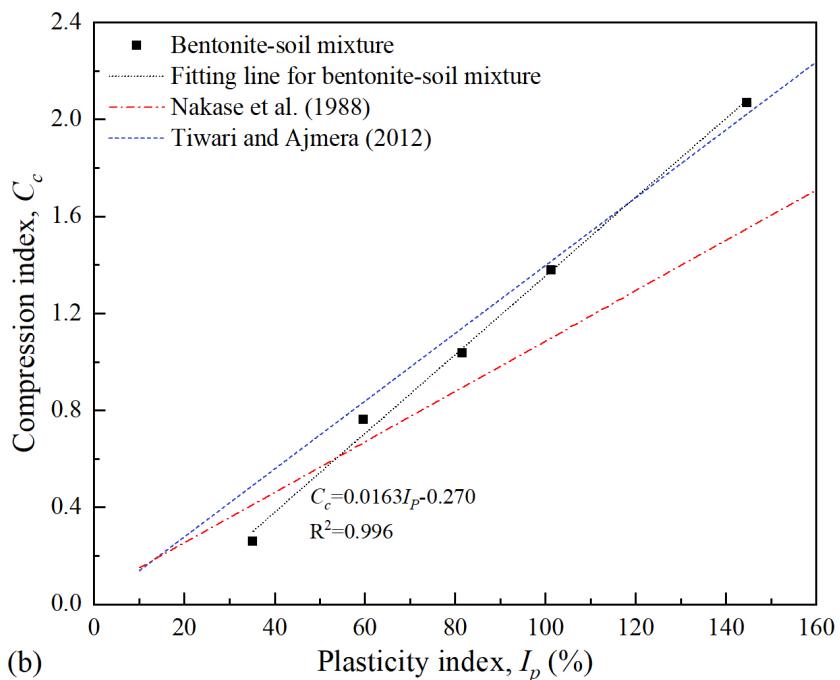
236

237
238 **Fig. 4** Variations of void ratio versus the logarithm of vertical stress for five
239 specimens
240

241 *Plasticity index*


242 The plasticity index is one of the most crucial indices in geotechnical engineering.
243 Nakase et al. (1988) and Tiwari and Ajmera (2012) presented some linear predictive
244 correlations of C_c with plasticity index, as shown in Fig. 5(b). The change of
245 compression index with I_p is also displayed in Fig. 5(b). Thereafter, a new correlation
246 equation expressed in Eq. (6) was obtained with a value of R^2 of 0.996 by linear
247 fitting in the I_p - C_c plane.

248
$$C_c = 0.0163I_p - 0.270 \quad (6)$$


249
250 It can be noticed that the line proposed by Nakase et al. (1988) is quite diverse from
251 the experimental data of bentonite-soil mixtures. This is because his correlation was
252 produced by the data of marine clay-sand mixtures whose dominated mineral is

253 kaolinite and plasticity index ranged between 10% and 50%.

254

255

256

257 **Fig. 5** Variations of compression index with (a) liquid limit and (b) plasticity index

258

259 **Correlations of swelling index**

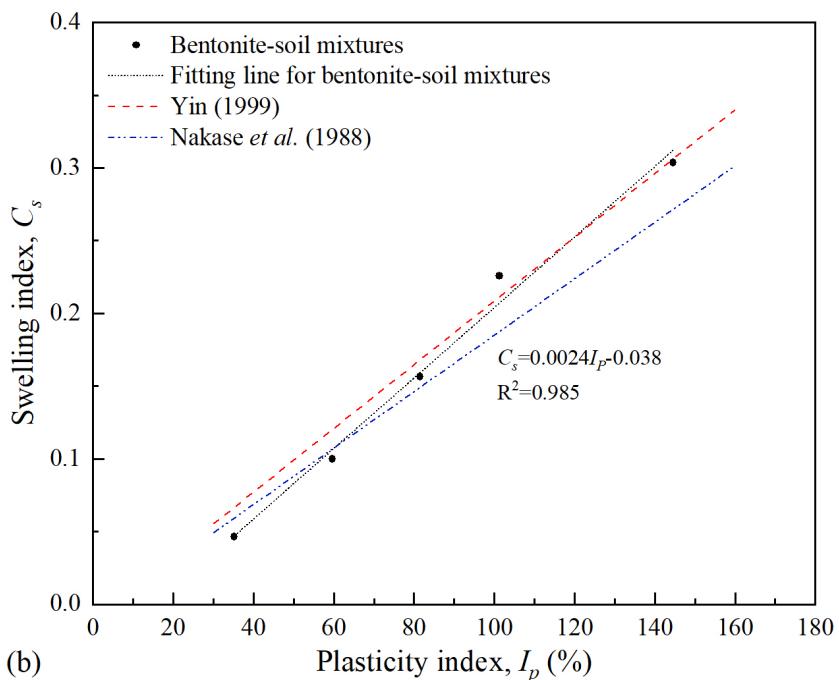
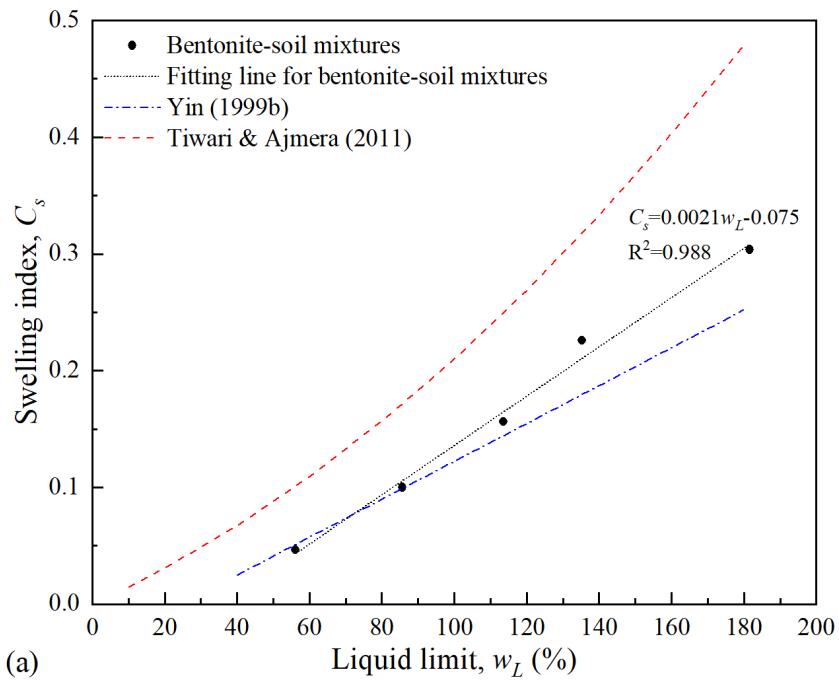
260 It appears that the empirical equations for predicting the swelling coefficient are quite

261 limited compared with the number of predictive correlations of compression index
262 presented in the literature. However, some correlations were previously presented in
263 the literature for predicting swelling index, including Nakase et al. (1988), Yin
264 (1999b), and Tiwari and Ajmera (2011). As indicated by Alonso et al. (1999), the
265 swelling behavior of expansive soils is of significance to geotechnical engineering. As
266 known to all, bentonite is a typical highly expansive soil. Thus, the swelling index
267 was determined for five specimens from e - $\log\sigma'$ curves, as shown in Fig. 4. The
268 results of correlation for predicting the swelling index with liquid limit or plasticity
269 index were illustrated in the following sections.

270

271 *Liquid limit*

272 The change of swelling index with liquid limit is depicted in Fig. 6(a). A
273 corresponding regression equation with an R^2 value of 0.988 was obtained from the
274 data of bentonite-soil mixtures tested in this study, as expressed in Eq. (7).



275
$$C_s = 0.0021w_L - 0.075 \quad (7)$$

276

277 Two correlations of the swelling index and liquid limit available in the literature (Yin,
278 1999b; Tiwari & Ajmera, 2011) are also plotted in Fig. 6(a) for comparison. The
279 correlation between C_s and the liquid limit is well linear, differing from the quadratic
280 correlations deduced by Tiwari and Ajmera (2011) based on the results of different
281 clay dominant soils. It was discovered that the linear correlation proposed by Yin
282 (1999b) could capture the part of the trend of C_s for the tested mixtures with a liquid
283 limit of lower than 80%. Nevertheless, the swelling index estimated using Tiwari's
284 quadratic equation was greatly distinct from the experimental finding with a
285 significantly greater value. Therefore, Eq. (7) was recommended for predicting the

286 swelling index of bentonite-soil mixtures if liquid limit was known.

287

290 **Fig. 6** Changes in swelling index with (a) liquid limit and (b) plasticity index

291

292 *Plasticity index*

293 Correlations of the swelling index with the plasticity index have been presented by

294 some scholars (Nakase et al., 1988; Yin, 1999b; Kordnaeij et al., 2015). A regression
295 line plotted by using the data of C_s and I_p is shown in Fig. 6(b). With a coefficient of
296 determination of 0.985, the corresponding correlation was expressed in Eq. (8).

297
$$C_s = 0.0024I_p - 0.038 \quad (8)$$

298

299 Meanwhile, two regression lines from previous research are plotted in Fig. 6(b) as
300 well for comparison with the fitting line generated from the experimental data in the
301 present investigation. It can be noticed that the three lines are close, and Yin's line is
302 quite similar to that proposed in this study.

303

304 ***Correlations of creep parameters***

305 The time-dependent stress-strain behavior during the loading stage, i.e., creep, was
306 tested in this study. Creep coefficient C_{ae} is a most critical parameter in the design of
307 geotechnical projects, visco-plastic elastic constitutive modeling and long-term
308 settlement calculation (Yin & Graham, 1989; Zhu & Yin, 2000; Yin & Feng, 2017;
309 Yin et al., 2022). Correlating C_{ae} with index properties will contribute to its more
310 convenient use.

311

312 C_{ae} values were determined from curves in terms of void ratio versus the logarithm of
313 time for each loading stage with a duration of five days for all tested specimens
314 except the one with a montmorillonite content of 5% because of its low viscosity and
315 less significant time-dependent behavior. The average value of C_{ae} for each specimen
316 was calculated and utilized to establish relationships with Atterberg limit indices.
317 Besides, two nonlinear parameters in the nonlinear creep function proposed by Yin
318 (1999a) and used by numerous researchers (Mesri & Vardhanabuti, 2005; Shen &

319 [Xu, 2011; Le et al., 2017](#)) were also computed for the soil specimens under a constant
320 loading of 100 kPa and correlated with liquid limit and plasticity index.

321

322 *Liquid limit*

323 A correlation was presented by [Zhu et al. \(2016\)](#) in terms of creep coefficient and the
324 combination of liquid limit and water content, which however was somewhat
325 complicated. The variation of creep coefficient with w_L is shown in Fig. 7. The
326 regression polynomial equation presented in Eq. (9) was obtained from the curve,
327 with an R^2 value of 0.997, indicating a good fit.

328

$$C_{ae} = 1.67 \times 10^{-5} (w_L)^2 - 5.29 \times 10^{-6} w_L - 0.0017 \quad (9)$$

329

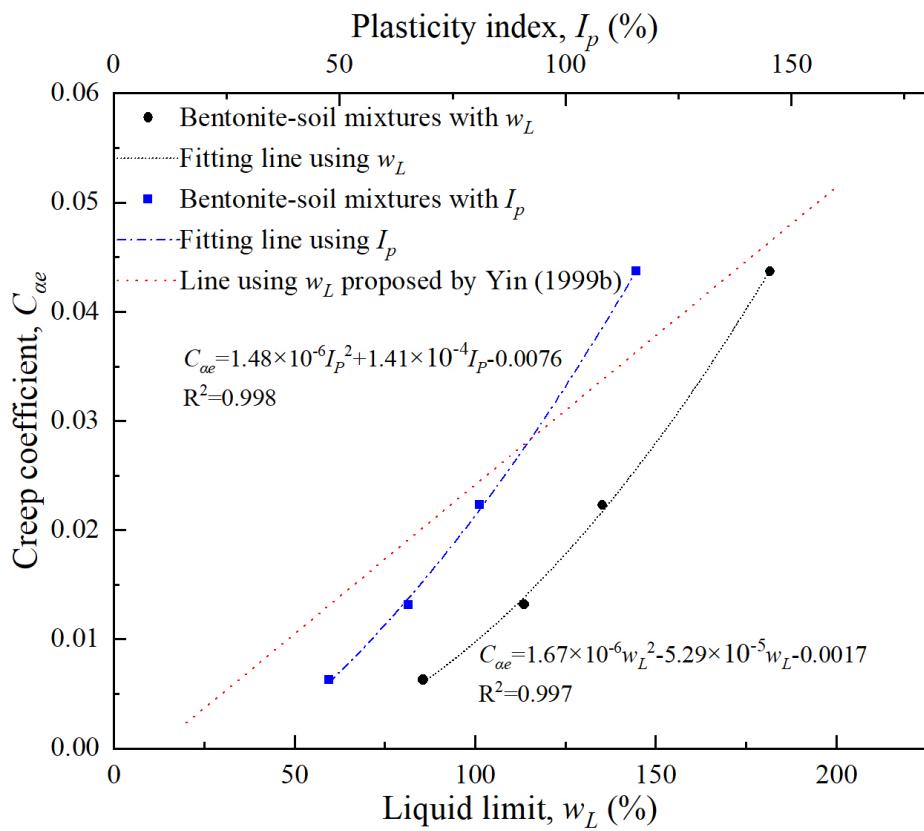
330 Apart from that, a correlation between the creep coefficient and plasticity index
331 proposed by [Yin \(1999b\)](#) is also shown in Fig. 7 for comparison. It was found that the
332 equation proposed by [Yin \(1999b\)](#) for HKMD with different clay contents could not
333 predict the C_{ae} value of bentonite-soil mixtures used in this study well. Moreover, the
334 predicted values are much greater than the values measured from oedometer tests.
335 One reason is that kaolinite and illite are the dominated clay minerals of HKMD,
336 while montmorillonite is the main composition of the mixture in this study.
337 Montmorillonite is the most viscous of the three main clay minerals. The different
338 properties of the three clay minerals, especially viscosity property, give rise to
339 significant distinctions in the liquid limit, plasticity index and the C_{ae} values between
340 bentonite-soil mixtures and HKMD. Another reason is that the matrix soil of the
341 mixture used in this study is bentonite, a construction waste which may contain a
342 mass of sand, drilling slag, residue from poured concrete, curing agents, etc. The
343 increase of granular materials resulted in the obviously increased permeability of the

344 soil mixture. Furthermore, the viscosity of the clay mixture decreased with the
 345 increasing percentage of granular materials.

346

347 *Plasticity index*

348 A quadratic curve is also plotted in Fig. 7 to fit the creep coefficient with the plasticity
 349 index, and the corresponding correlation was given by Eq. (10). It was found that the
 350 value of the determination coefficient is 0.998 and the creep coefficient can be
 351 captured by the proposed correlation well.


352

$$C_{ae} = 1.48 \times 10^{-6} (I_p)^2 + 1.41 \times 10^{-4} I_p - 0.0076 \quad (10)$$

353

354 It can be observed from Fig. 7 that the trend of the two regression curves plotted by
 355 liquid limit and plasticity index are identical.

356

357

358

Fig. 7 Variations of creep coefficient with liquid limit or plasticity index

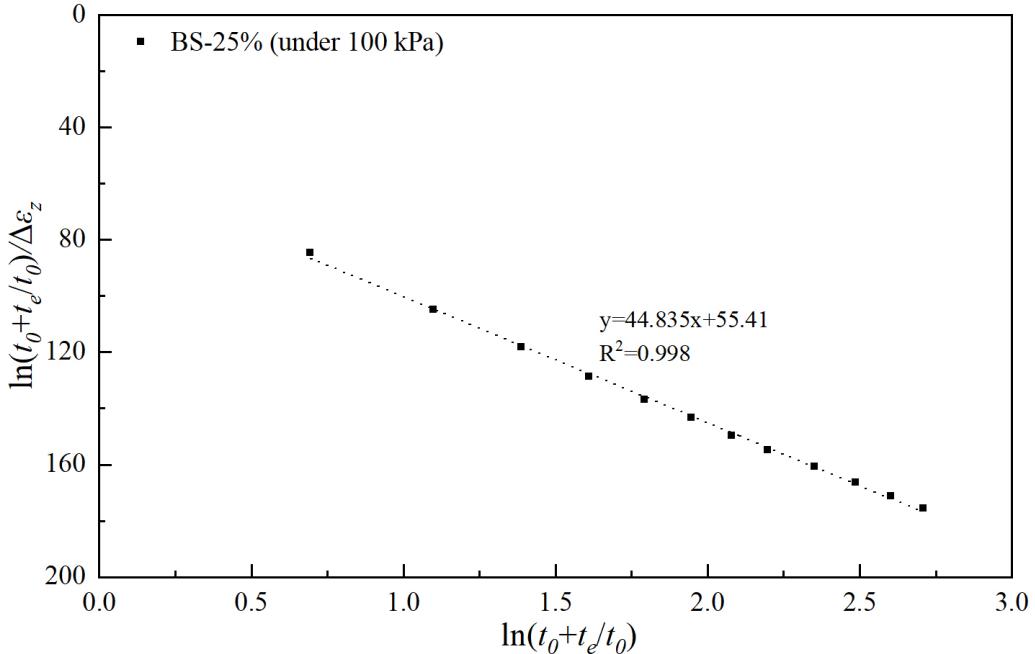
359

360 ***Correlations of parameters in the nonlinear creep function***361 The great bulk of conventional equations for the analysis of time-dependent behavior
362 were based on the linear correlations between creep strain and the logarithm of time.363 Nevertheless, one limitation of the linear creep function is that strain will be infinite
364 when time is equal to infiniteness, which is not in line with the scientific foundation.365 Hence, a non-linear creep function was put forward by [Yin \(1999a\)](#) to incorporate the
366 influence of the decreasing creep parameter with time, which was expressed as
367 follows:

$$368 \quad \Delta\epsilon_z = \frac{\psi_0/V}{1 + \frac{\psi_0}{\epsilon_c' V} \ln[(t_0 + t_e)/t_0]} \ln[(t_0 + t_e)/t_0] \quad (11)$$

$$\frac{\ln[(t_0 + t_e)/t_0]}{\Delta\epsilon_z} = \frac{V}{\psi_0} + \frac{1}{\epsilon_c'} \ln[(t_0 + t_e)/t_0]$$

369 where ψ_0 is a material parameter; ϵ_c' is creep strain limit when time is infinite; t_0 is the
370 time parameter to express the beginning of creep behavior; t_e is the equivalent time
371 related to creep. Notably, the time parameter t_0 was considered a constant material
372 parameter.


373

374 The values of the nonlinear creep parameter and limit strain for all the specimens with
375 different montmorillonite contents under the stress of 100 kPa were calculated by
376 curve fitting with Eq. (11). Fig. 8 displays the typical fitting curve with the nonlinear
377 creep function plotted by the experimental data of BS-25%. It can be observed that a
378 linear equation of the form $y=ax+b$ was determined with an R^2 value of 0.9986,
379 indicating good curve fitting. According to Eq. (11), the slope of the fitting curve

380 corresponded to $\frac{1}{\varepsilon_c^l}$ and the intercept corresponded to $\frac{V}{\psi_0}$. The values of ε_c^l and ψ_0

381 were thus obtained.

382

383

384 **Fig. 8** Typical fitting curve with the nonlinear creep function for BS-25% under 100
385 kPa

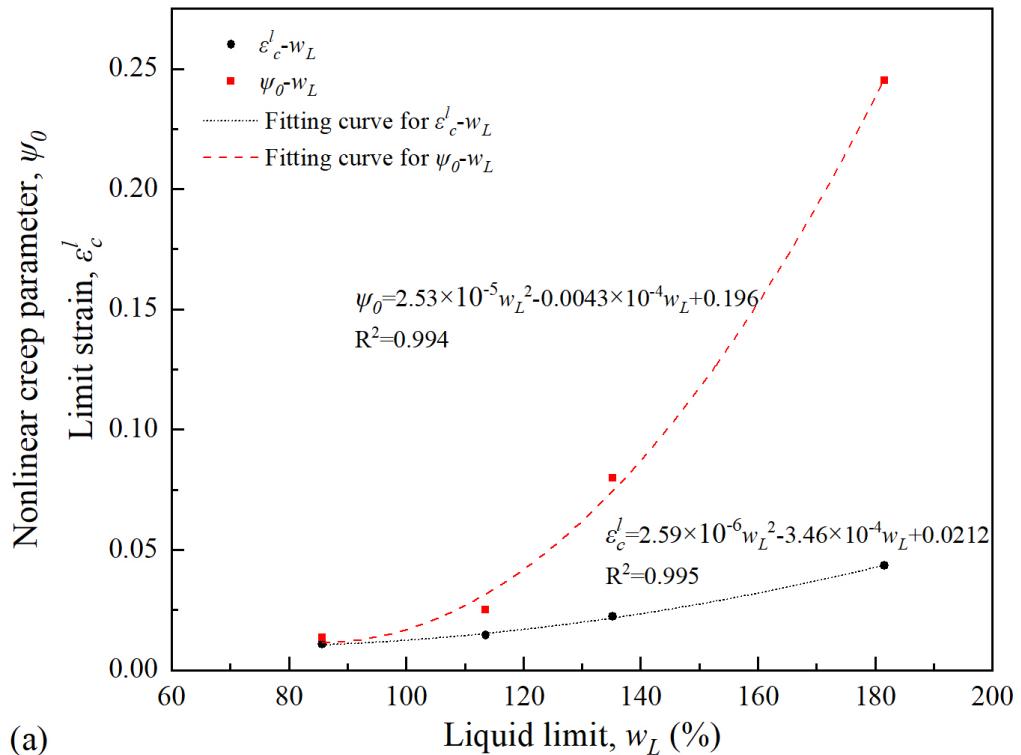
386

387 Figs. 9(a) and (b) show the relations between the two parameters of the nonlinear
388 creep function and Atterberg limit indices. Further, corresponding correlations were
389 produced and given in Eqs. (12) to (15).

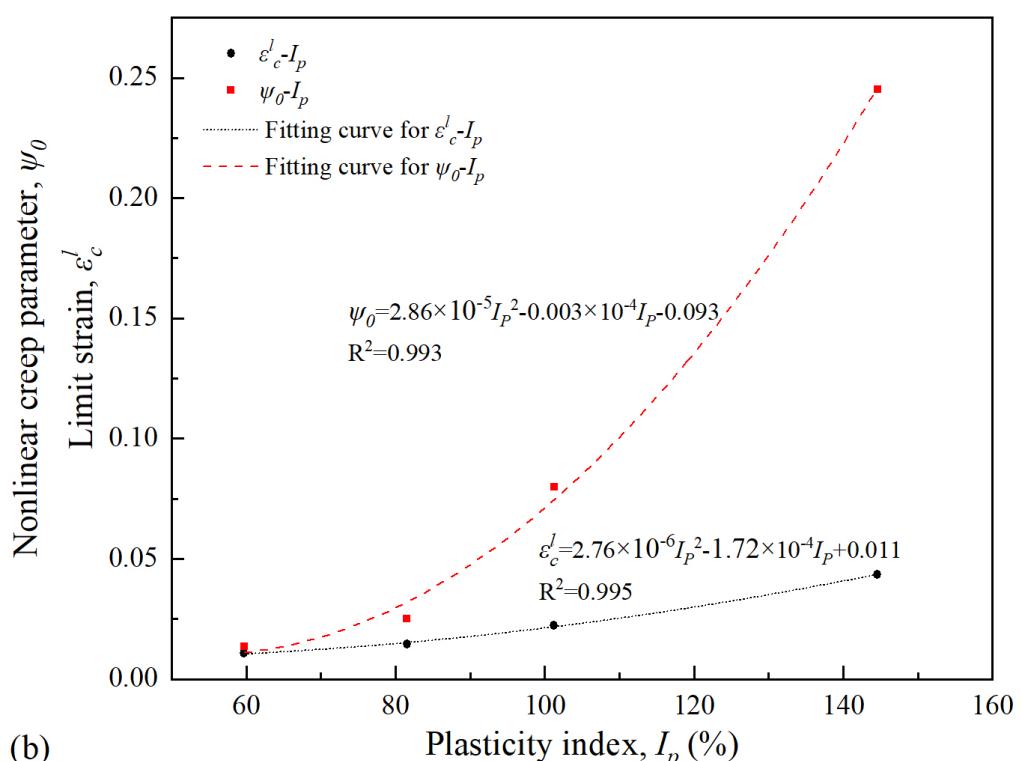
390
$$\varepsilon_c^l = 2.59 \times 10^{-6} (w_L)^2 - 3.46 \times 10^{-4} w_L + 0.0212 \quad (12)$$

391
$$\psi_0 = 2.53 \times 10^{-5} (w_L)^2 - 0.00432 w_L + 0.196 \quad (13)$$

392
$$\varepsilon_c^l = 2.76 \times 10^{-6} (I_p)^2 - 1.72 \times 10^{-4} I_p + 0.011 \quad (14)$$


393
$$\psi_0 = 2.86 \times 10^{-5} (I_p)^2 - 0.00307 I_p + 0.093 \quad (15)$$

394


395 It can be discovered that their determination coefficients are quite close, which are all

396 around 0.99. The predicted values can be employed in both engineering practice and
 397 numerical modeling, but the related index properties of soils should be in the tested
 398 range. Any extension beyond this range should be checked.

399

400

401

402 **Fig. 9** Relationships between nonlinear parameters and (a) liquid limit and (b)

403 plasticity index

404

405 *Verification of the proposed correlations using the data from published literature*

406 Based on the oedometer test results of bentonite-soil mixtures, several correlations
407 were proposed to estimate soil parameters, including compression and swelling
408 indices, creep coefficient, nonlinear creep parameter as well as limit strain. Although
409 the correlations were derived from a specific soil type, some of them were also
410 adopted to estimate the parameters of different types of soil, whose data were
411 collected from previous literature. Since liquid limit and plasticity index are more
412 common in geotechnical engineering, verification studies with published data focused
413 on the correlations with w_L and I_p .

414

415 *Prediction of compression index*

416 Data pertinent to the liquid limit and plasticity index of 30 different soils collected
417 from previous literature (Yin, 1999b; Sridharan & Nagaraj, 2000; Cerato &
418 Lutenegger, 2004; Tong & Yin, 2011; Tiwari & Ajmera, 2012; Feng et al., 2017)
419 were utilized to calculate the compression index with Eqs. (5) and (6). Soil specimens
420 were divided into two groups according to mineral components. The first one is
421 KIDSs, and the other one is MDSs. The scatter plots of the predicted C_c value for soil
422 specimens in previous literature using the newly proposed correlations are presented
423 in Figs. 10(a) and (b). The range interval of $\pm 10\%$ of the measured C_c value was also
424 determined by two plotted lines in the two figures. It can be observed from both
425 figures that the proposed correlations can predict the C_c value with an acceptable
426 accuracy of roughly 90% using the liquid limit and plasticity index for MDSs.

427 Nevertheless, the predicted results with the correlation using I_p were more accurate
428 than those using w_L . However, it seems that neither I_p nor the w_L correlation can
429 accurately estimate the C_c value for KIDSs. This phenomenon can be attributed to two
430 aspects. On the one hand, the index values of KIDSs are generally smaller than the
431 index range of the soils used in this study. On the other hand, differences in the
432 properties of montmorillonite and kaolin exert a significant impact on the behavior of
433 soils. By and large, it can be considered that the proposed correlations are suitable for
434 estimating the C_c value only for soils with a liquid limit of 40-200% or a plasticity
435 index of 40-160%.

436

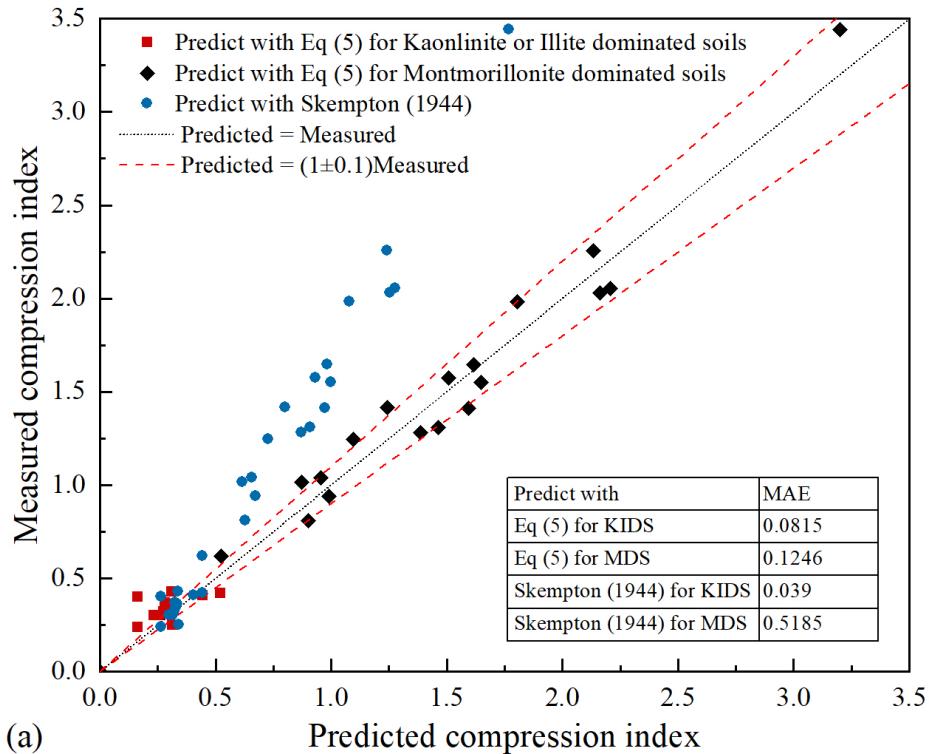
437 At the same time, the predicted results using the correlations proposed by [Skempton](#)
438 ([1944](#)) and [Yin \(1999b\)](#), and the corresponding mean absolute error (MAE) values of
439 prediction with different correlations are demonstrated in Figs. 10(a) and (b) for
440 comparison, respectively. It can be seen that the prediction result of Skempton's
441 equation is much smaller than the actual value when the soil has a C_c value greater
442 than 0.5. In other words, Skempton's equation is not suitable for estimating the
443 compression index of MDSs. The accuracy of the prediction results obtained using
444 Yin's equation with I_p is within an acceptable range. For both KIDSs and MDSs, the
445 correlations proposed in this study yielded the lowest MAE values compared with the
446 previous equation in the literature. In addition, the correlation of C_c with I_p
447 outperformed that with w_L as its prediction result has a lower MAE value.

448

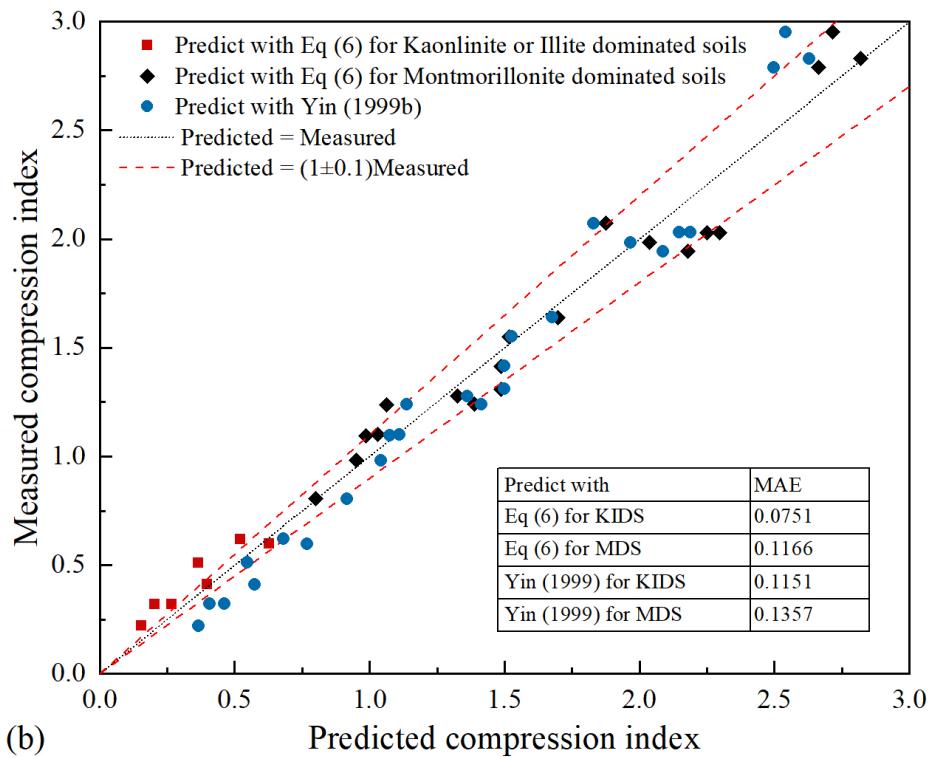
449 *Prediction of swelling index*

450 The liquid limit and plasticity index ([Yin, 1999b](#); [Tiwari & Marui, 2005](#); [Tong & Yin,](#)
451 [2011](#); [Kordnaeij et al., 2015](#)) of various soils available in the literature were collected

452 to estimate the swelling index using Eqs. (7) and (8). The relationship between the
453 measured and predicted C_s using liquid limit is plotted in Fig. 11(a), and that using
454 plasticity index is plotted in Figs. 11(b). It can be found that the predicted results of C_s
455 with w_L and I_p could match the measured C_s values well for almost the selected soil
456 specimens from the literature. MAE values can be compared to find that the estimated
457 C_s values using w_L and I_p are quite close, but the correlation with liquid limit
458 exhibited a relatively high level of agreement with the measured C_s values than that
459 using plasticity index. Hence, it was recommended to adopt Eq. (7) to estimate the
460 swelling index of soils.

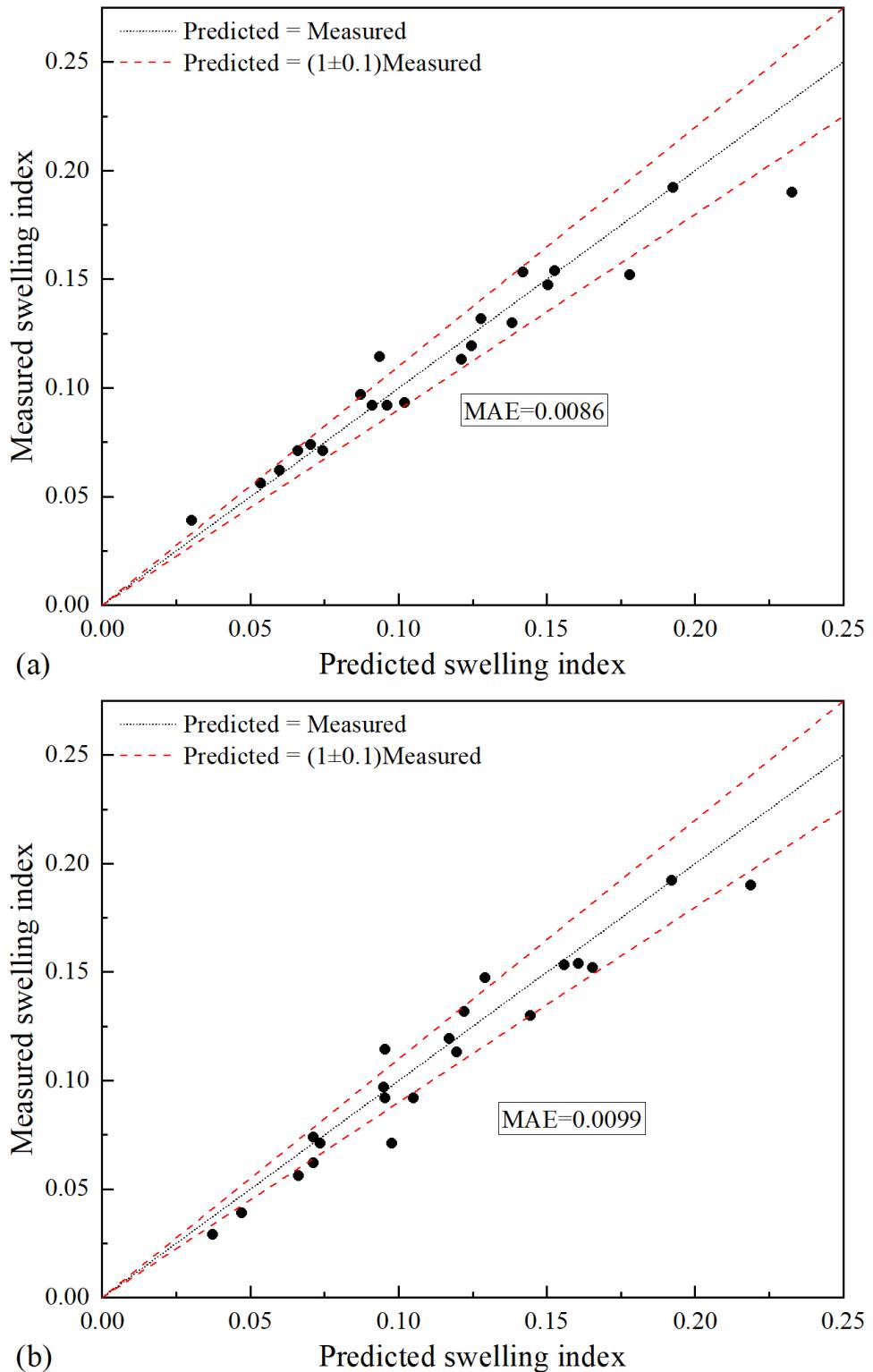

461

462 *Prediction of creep coefficient*

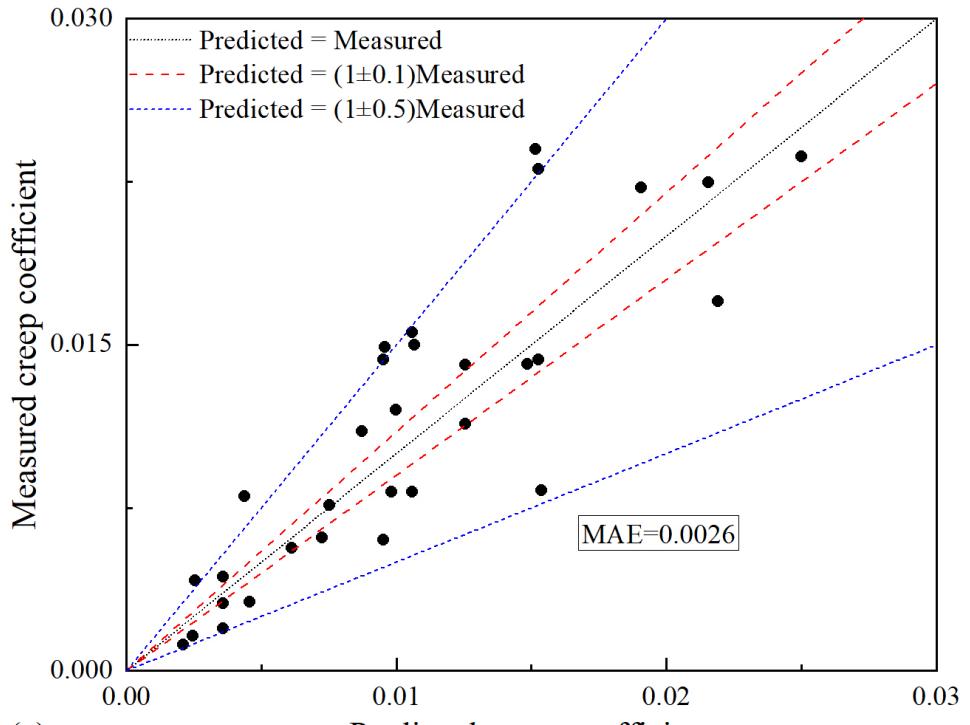

463 Detailed information regarding liquid limit, plasticity index, creep coefficient and
464 nonlinear creep behavior was gathered from literature, including [Yin \(1999a\)](#), [Yin](#)
465 [\(1999b\)](#), [Tong and Yin \(2011\)](#), [Zeng et al. \(2012\)](#), [Zhu et al. \(2016\)](#), and [Feng et al.](#)
466 [\(2017\)](#). These data were applied to estimate creep coefficient and nonlinear creep
467 behavior with equations using liquid limit or plasticity index. The estimated results of
468 C_{ae} are plotted against the measured ones in Figs. 12(a) and (b). It can be seen that
469 using liquid limit to predict creep coefficient yielded a lower MAE value than using
470 plasticity index. Correlations with w_L and I_p could provide an accuracy of 90% for
471 some types of soil, which however could estimate the C_{ae} value with an accuracy of
472 only 50% for other types of soil. The possible reason why the correlation cannot
473 predict the C_{ae} value well is that creep behavior is complicated and associated with a
474 few factors such as micro-pores, particle sliding and internal structure arrangement.
475 As a result, it was suggested that the newly proposed correlations only estimate the

476 creep coefficient of bentonite-soil mixtures or soils with a similar composition of the
477 mixtures used in this study.

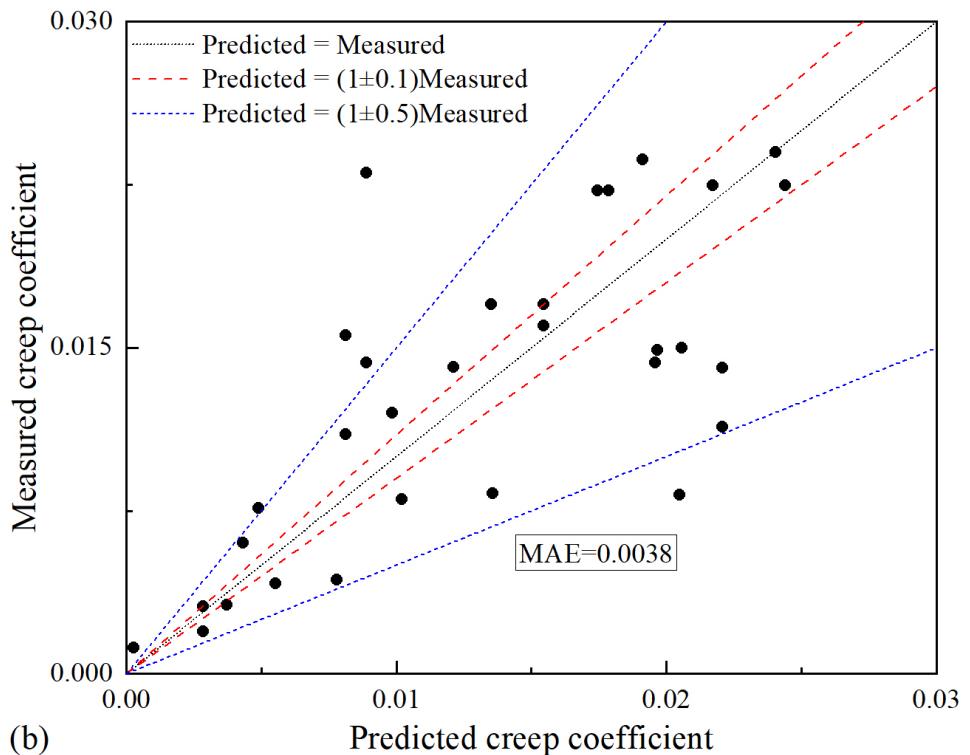
478



479


480

481 **Fig. 10** Measured C_c against the predicted C_c using (a) Eq (5) and (b) Eq (6) with the
482 published data
483



486 **Fig. 11** Measured C_s against the predicted C_s using (a) liquid limit and (b) plasticity
487 index with the published data

488

489 (a)

490

491 **Fig. 12** Measured C_{ae} versus the predicted C_{ae} using (a) liquid limit and (b) plasticity
492 index with the published data
493

494 ***The simplified model with a homogenization approach for hydraulic conductivity***

495 Hydraulic conductivity is an all-important property of clayey soils. Previous works on
496 the hydraulic conductivity of sand-clay mixtures have been investigated, and some
497 different methods of predicting hydraulic conductivity have been brought up (Pandian
498 et al., 1995; Sivapullaiah et al., 2000; Ozhan, 2021). Most of these methods
499 empirically correlated hydraulic conductivity with a liquid limit or corresponding void
500 ratios. Shi and Yin (2018) summarized the influence of sand fraction on the hydraulic
501 conductivity of sand-clay mixtures from previous literature. Additionally, a
502 theoretical model with a homogenization approach was presented to estimate the
503 hydraulic conductivity of sand-marine clay mixtures. Shi and Zhao (2020) held that
504 mixtures with high fine fractions can be simplified as binary mixtures. Thus,
505 bentonite-soil mixtures used in this study and containing bentonite matrix and
506 incompressible sand inclusions can be regarded as binary mixtures. On this account,
507 the model with a homogenization approach proposed by Shi and Yin (2018) can be
508 used for predicting the evolution of hydraulic conductivity for bentonite-soil mixtures
509 in oedometer conditions. This model can be simplified to only three model parameters
510 to make it easier for practical use.

511

512 ***State-dependent variables***

513 Local and overall state-dependent variables were defined and obtained from a series
514 of oedometer tests based on the assumption that sand inclusions are incompressible
515 and impermeable because of being stiffer than the clay matrix and unable to hold
516 water. The absorbed water was associated with the bentonite matrix. The bentonite-
517 soil mixture is composed of three phases: sand inclusion, fluid and bentonite clay
518 matrix phases. Based on the assumption made above, the volume fraction of the sand

519 inclusion ϕ_s can be expressed as

520

$$\phi_s = \frac{V_s}{V_s + V_b + V_f} = \frac{e_b - e}{(1+e)e_b} \quad (16)$$

521 where V_s , V_b and V_f denote the volume of sand inclusion, bentonite clay matrix and
522 fluid phases, respectively; $e = V_f/(V_b + V_s)$, representing the overall void ratio of the
523 mixture; $e_b = V_f/V_b$, referring to the local void ratio of the bentonite matrix.

524

525 Considering the incompressibility of the sand phase and the association between all
526 moisture and the bentonite matrix, the local void ratio can be expressed as follows:

527

$$e_b = \frac{(1-\nu)\rho_s + \nu\rho_b}{(1-\nu)\rho_s} e \quad (17)$$

528 where ν represents the dry mass fraction of sand inclusion in the binary mixture; ρ_s ,
529 and ρ_b are the particle density of the sand inclusion and pure bentonite, respectively.

530

531 The overall void ratio e was given as a function of overall strain as follows:

532

$$e = V \exp(-\varepsilon) - 1 \quad (18)$$

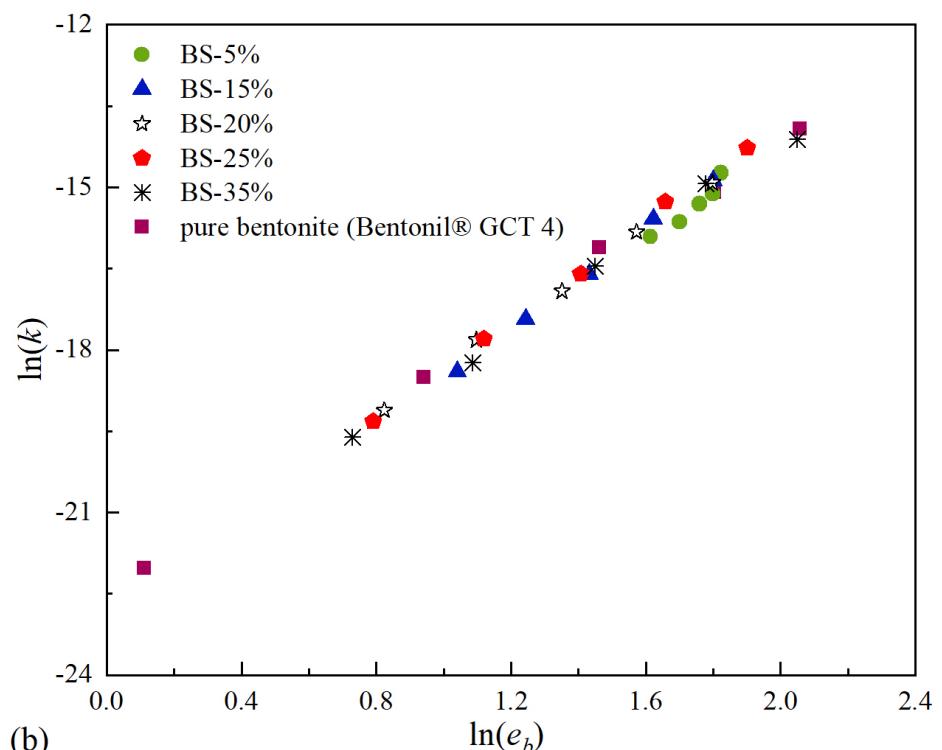
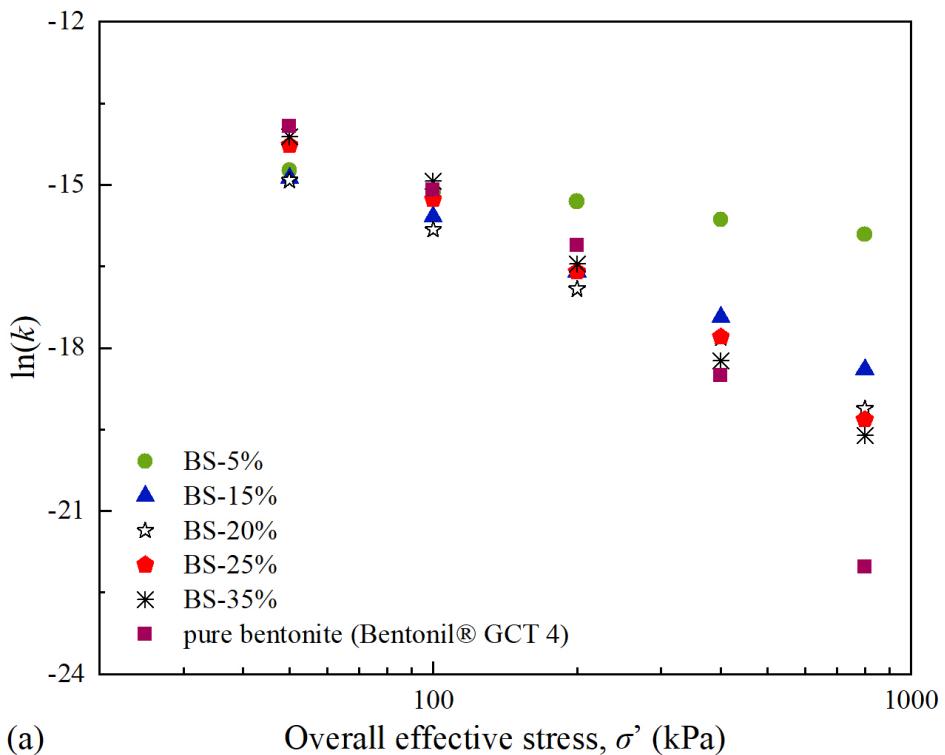
533 where V is the overall specific volume and $\varepsilon = \ln(h_0/h)$ is logarithmic strain.

534

535 Previous research has shown that a nonuniform stress distribution exists in the binary
536 mixture owing to the significantly different stiffnesses of constituents (Jamei et al.,
537 2013; Zhuang et al., 2017; Shi et al., 2020). Therefore, σ' and σ_b' were utilized to
538 express the overall effective stress of the bentonite-soil mixture and the local effective
539 stress of bentonite clay.

540

541 *Simplified homogenization approach*



542 The values of hydraulic conductivity k of all bentonite-soil mixtures were determined

543 for a variety of incremental overall effective stresses (50-800 kPa) from the results of
544 oedometer tests following [BS1377 \(2016\)](#). The evolution of the overall hydraulic
545 conductivity with the increase of the overall effective stress on a double logarithmic
546 scale is illustrated in Fig. 13(a). One can observe that the overall hydraulic
547 conductivity decreased with the increase of both vertical stress and bentonite content.
548 This is because that bentonite has strong hydrophility in the matrix, thus resulting in a
549 decrease in permeability ([Pandian et al., 1995](#)). According to the equations given
550 above, state-dependent variables were calculated, and the correlation between the
551 local void ratio and overall hydraulic conductivity on a double-logarithmic scale is
552 demonstrated in Fig. 13(b). It is noteworthy that the relationship is nearly linear in the
553 double-logarithmic space, which well agrees with the findings ([Zeng et al., 2012](#); [Shi](#)
554 [& Yin, 2018](#)) A linear equation was obtained from curve fitting and can be expressed
555 in the following form:

$$556 \quad \ln(k_b) = K_R + \xi \ln e_b \quad (19)$$

557 where k_b is the hydraulic conductivity of the pure bentonite; ξ is the slope of the linear
558 line; K_R is a corresponding model parameter when e_b is equal to 1.

559

562 **Fig. 13** Evolution of hydraulic conductivity with (a) the overall effective stress and
563 (b) the local void ratio of the bentonite matrix

564

565 Eq. (17) can be substituted into Eq. (19) to express the local hydraulic conductivity as
566 a function of the overall void ratio:

567
$$\ln(k_b) = K_R + \xi \ln\left[\frac{(1-\nu)\rho_s + \nu\rho_b}{(1-\nu)\rho_s}\right] + \xi \ln e \quad (20)$$

568

569 The model with a homogenization approach proposed by [Shi and Yin \(2018\)](#) was
 570 adopted to estimate the evolution of the hydraulic conductivity of bentonite-soil
 571 mixtures. In the model, the sand inclusion phase was assumed to be incompressible,
 572 and parallel structure and series configurations affected the overall behavior of the
 573 binary mixture equivalently. Following the model steps, the overall hydraulic
 574 conductivity k was given as a function of k_b as follows:

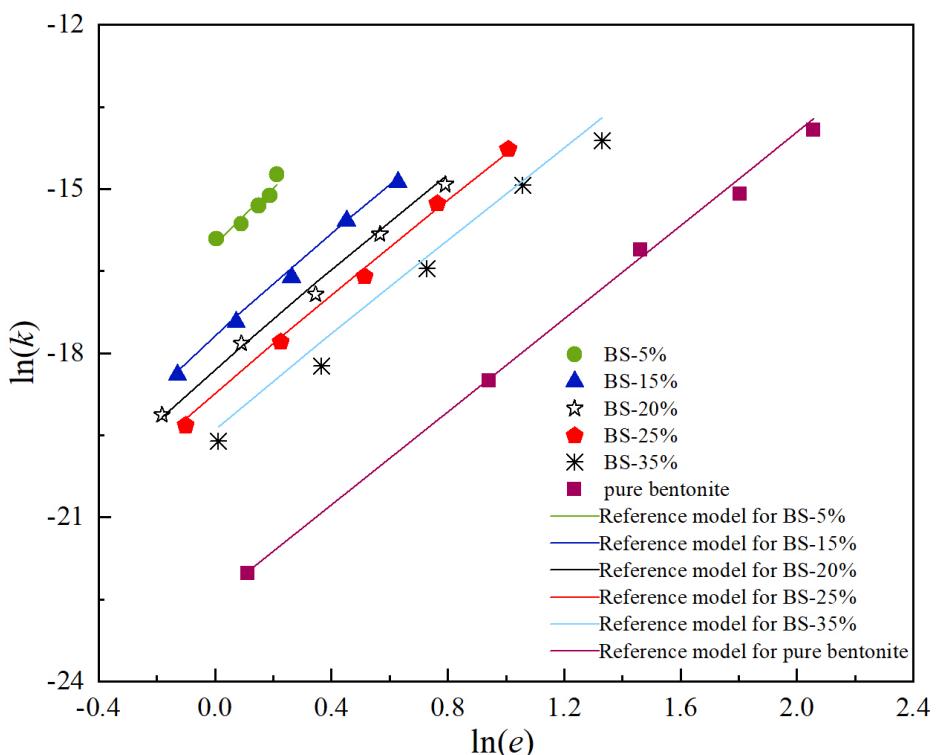
575
$$\ln(k) = \eta(1 - \phi_s) \ln(k_b) \quad (21)$$

576 where η is a structure variable, representing the intergranular structure evolution of
 577 sand inclusions. The structure variable was expressed as:

578
$$\eta = \left(\frac{\alpha}{\alpha - \phi_s}\right)^\beta \quad (22)$$

579 where α represents the upper bound of the volume fraction of sand particles and β
 580 stands for a constant model parameter controlling the sensitivity of the variable.
 581 Details can be referred to [Shi and Yin \(2018\)](#).

582


583 The model with a homogenization approach for estimating the overall hydraulic
 584 conductivity was set up. Four parameters were included in this model, and the model
 585 parameters of the bentonite-soil mixture are listed in Table 4. The comparison
 586 between the experimental and predicted results using Eq (21) is displayed in Fig. 14.
 587 It can be seen that the reproduced hydraulic conductivity of the bentonite-soil mixture
 588 using the model matched with experimental data well.

589

590 Table 4 Model parameters for estimating hydraulic conductivity

Clay matrix	K_R	ξ	α	β	Reference
Bentonite	-22.53	4.25	0.71	0.73	This study
HKMC	-18.25	4.35	0.74	0.79	Shi and Yin (2018)
Bentonite	-26.62	6.73	0.77	0.73	Pandian et al. (1995)
Nagoya clay	-18.39	3.65	0.50	0.33	Watabe et al. (2011)
70% Bentonite+ 30% Kaolinite	-25.31	4.17	0.70	0.68	Deng et al. (2017)
Bentonite	-24.17	3.57	0.80	0.62	Sivapullaiah et al. (2000)

591

592

593 **Fig. 14** Comparison between the experimental and predicted results

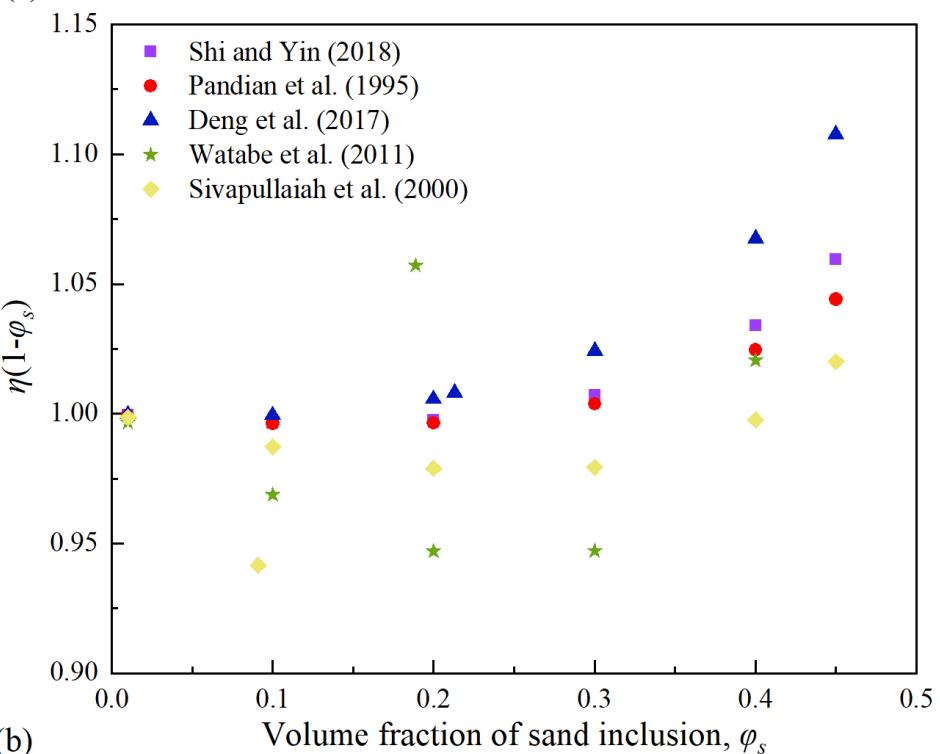
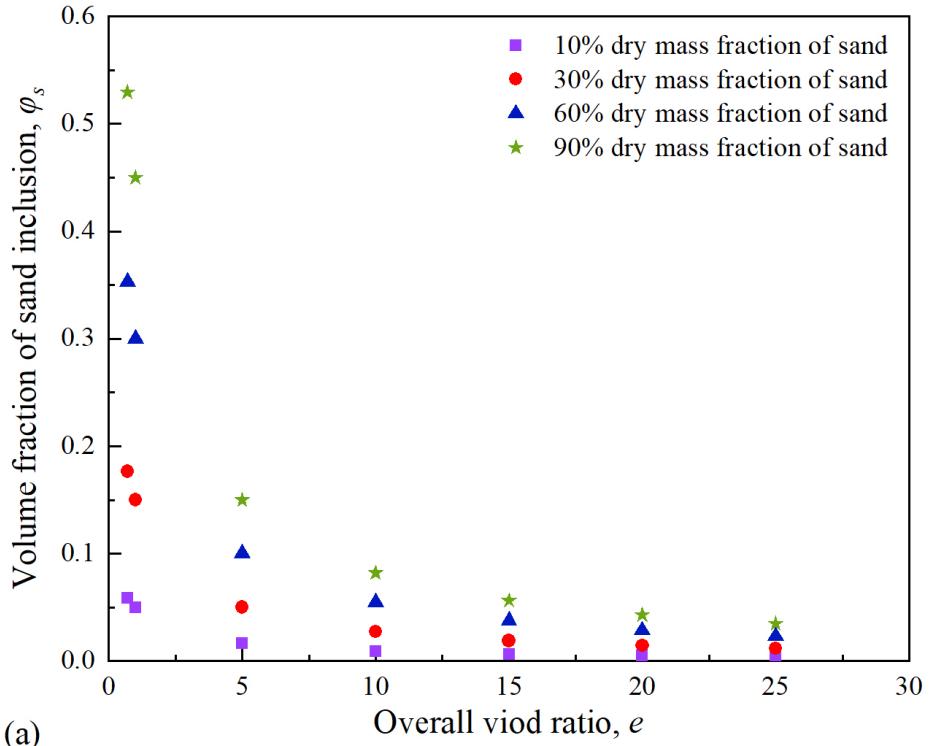
594

595 In the modeling process, however, it was found that the value of $\eta(1-\phi_s)$ ranged from
 596 0.99 to 1.01. The change of values of $\eta(1-\phi_s)$ with ϕ_s for five types of clay-sand
 597 mixtures from previous literature (Pandian et al., 1995; Sivapullaiah et al., 2000;
 598 Watabe et al., 2011; Deng et al., 2017; Shi & Yin, 2018) was investigated to simplify
 599 this homogenization model. The variations of the volume fraction of sand inclusions

600 with the void ratio for the mixture with different sand contents are shown in Fig. 15(a).

601 To consider the limit state, the value of ϕ_s was selected in the range of 0.01 to 0.5.

602 The model parameters α and β of clay-sand mixtures in the literature were kept



603 consistent with [Shi and Yin \(2018\)](#), which are listed in Table 4. The change of the

604 calculated value of $\eta(1-\phi_s)$ with the volume of the sand fraction is presented in Fig.

605 15(b). It can be observed that the value of $\eta(1-\phi_s)$ ranged from 0.95 to 1.10 and most

606 of the points were located in the range of 0.98 to 1.025.

607

610 Fig. 15 (a) Variation of volume fraction of sand with the overall void ratio; (b) change
 611 in the $\eta(1-\phi_s)$ value with the volume fraction of sand inclusions for soils
 612
 613 Consequently, the product of the structure variable η and the $(1-\phi_s)$ value had little

614 effect on the overall hydraulic conductivity of most clay-sand mixtures. The
615 theoretical model with a homogenization framework can be simplified to a new form
616 expressed as follows:

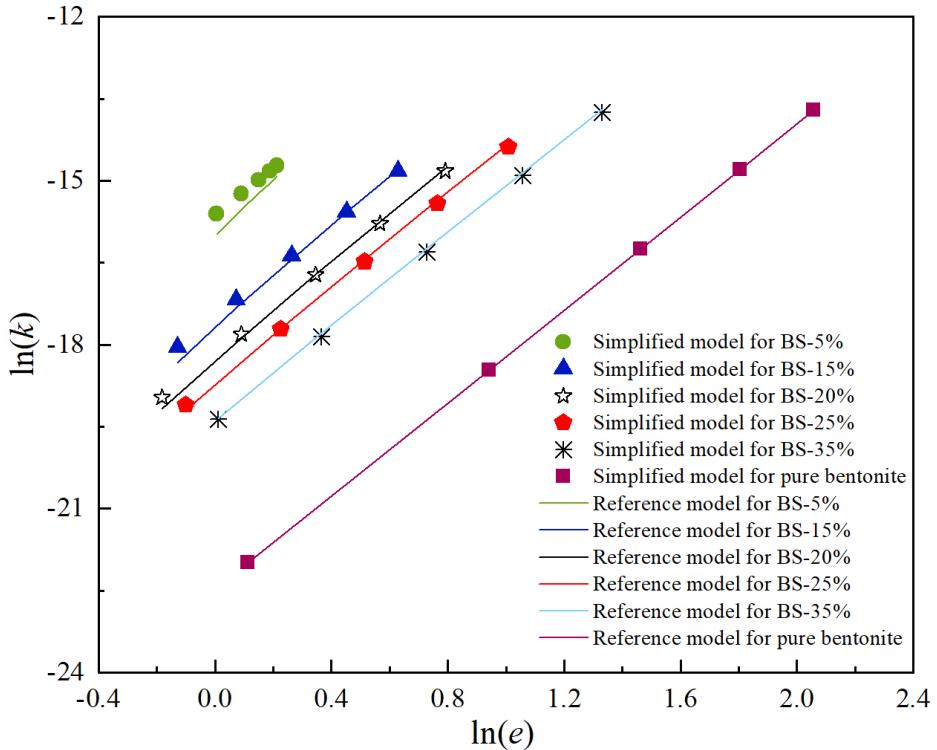
617

$$\ln(k) = \gamma \left[K_R + \xi \ln \left[\frac{(1-\nu)\rho_s + \nu\rho_b}{(1-\nu)\rho_s} \right] + \xi \ln e \right] \quad (23)$$

618 where γ is a model parameter to correlate the local and overall hydraulic conductivity.

619

620 For most clay-sand mixtures, the value of γ was recommended to take 1. The model
621 can be further simplified into the form of Eq. (24).


622

$$\ln(k) = K_R + \xi \ln \left[\frac{(1-\nu)\rho_s + \nu\rho_b}{(1-\nu)\rho_s} \right] + \xi \ln e \quad (24)$$

623

624 The simplified model was adopted to estimate hydraulic conductivity, and the results
625 were compared with reference ones, as demonstrated in Fig. 16. It can be seen that the
626 calculated results between reference and simplified models are quite close. The
627 simplified homogenization model only has three parameters very easy to be
628 determined from the oedometer tests on pure clay, which thus may be more easily
629 accepted by practical engineering applications. It is worth noting that the $\eta(1-\phi_s)$
630 value is around 1.1 when the dry mass fraction of sand inclusion is above 90% and the
631 overall void ratio is below 0.5 (see Fig. 15(a)). Hence, the simplified model should be
632 used with caution, and the value of γ can be taken within the range of 1.05 to 1.1 in
633 this extreme case.

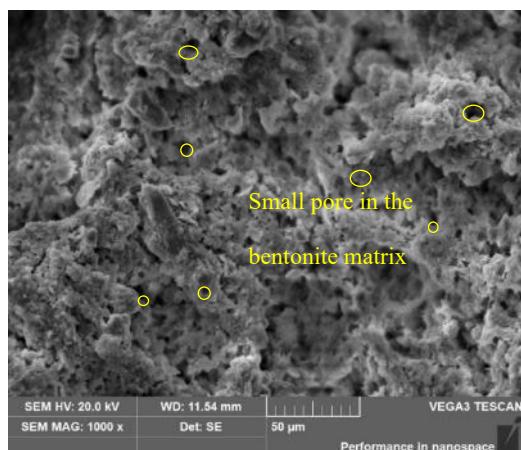
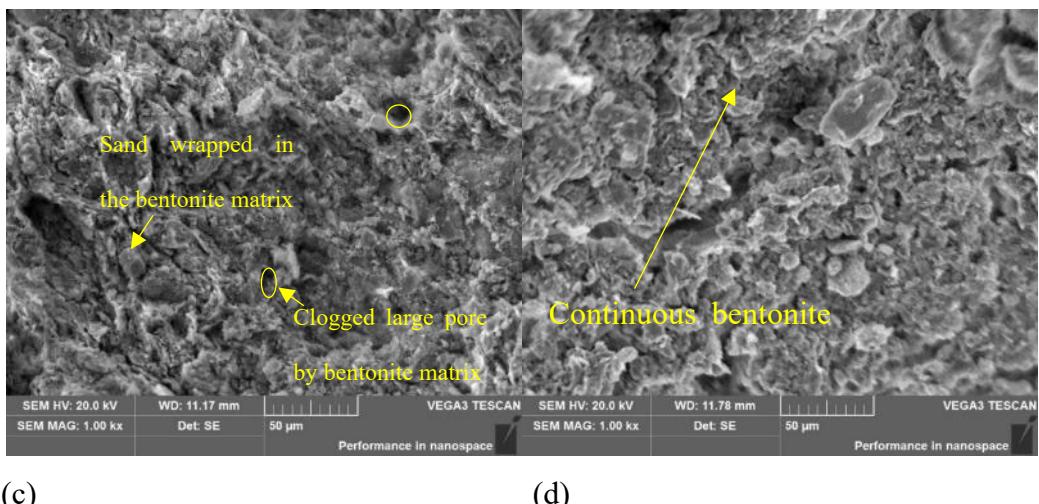
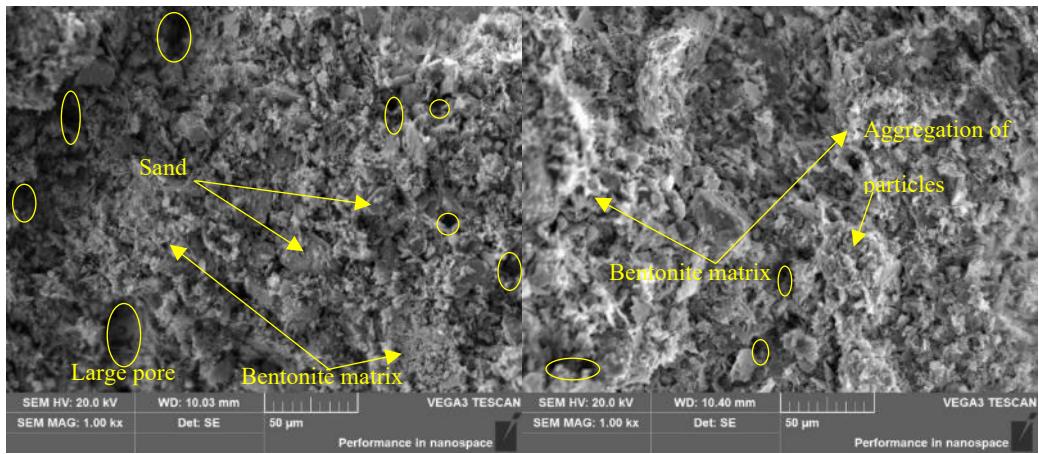
634

635

636 **Fig. 16** Comparison between simulation results with simplified and reference models

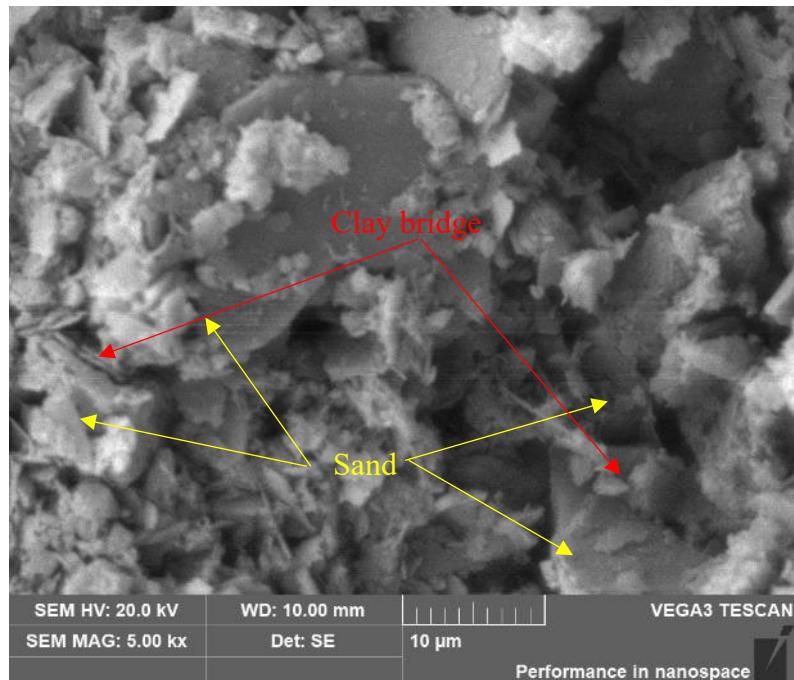
637

638 ***Microstructure analysis***

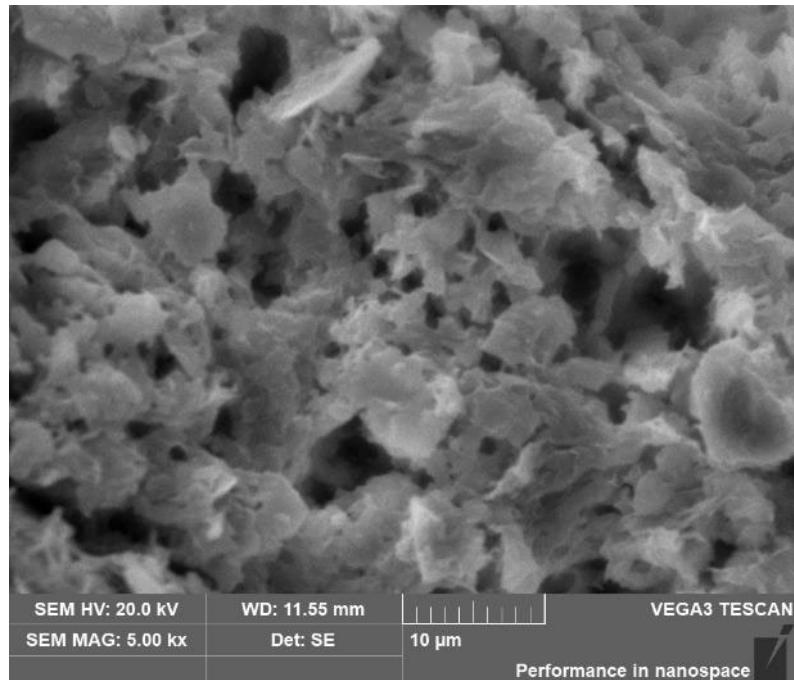



639 After oedometer tests, bentonite-soil mixtures were dried by vacuum and cut into
 640 cubes for SEM observation. SEM photos with $1,000 \times$ magnification for five
 641 specimens are obtained and presented in Figs. 17(a) ~ (e), respectively. Fig. 17(a)
 642 shows that silt particles are dominant in the microfabric, and sand particles are
 643 independent of each other to form a skeletal structure. However, the number of
 644 independent sand particles decreased on account of their closer contact with the
 645 bentonite matrix. The honeycomb microstructure of the continuous bentonite clay
 646 matrix was gradually developed with the increase of bentonite content (Fig. 17e). The
 647 comparison of SEM photos revealed that the diameter of visible pores decreased with
 648 the increase of bentonite content. The finding indicates that the large inter pores
 649 between sand grains were probably filled up by the bentonite clay matrix and
 650 converted to small-sized pores between clay matrix or aggregation and sand particles.

651 This variation of the microstructure of specimens reflected the increasing
652 compressibility with the increase of montmorillonite content. The diameter of pores
653 ranged from 1 to 5 μm in the BS-35% specimen and 5 to 20 μm in the BS-5% one.
654 This result is consistent with the findings of [Watabe et al. \(2011\)](#) and the
655 compressibility behavior in this study.

656


657 The more visible microfabric of BS-5% and -35% specimens magnified at 5,000
658 times are displayed in Figs. 18(a) and (b). The bonds between clay are dominated by
659 the formation of edge-to-face and -edge in the microfabric of BS-35% (Fig. 18b),
660 whereas the interaction of BS-5% specimens mainly features face-to-face formation.
661 As presented in Fig. 18(a), it appears that the clay particle or matrix tended to form
662 aggregation or accumulate at the contact points of adjacent sand particles or on the
663 surface of independent sand particles. The densification of the clay contributed to the
664 formation of clay bridges. Similarly, [Gratchev et al. \(2007\)](#) found a similar bridge-like
665 structure in a bentonite-sand mixture, but the clay bridge seemed to disappear and the
666 microfabric became more homogeneous in the BS-35% specimen compared with that
667 in Fig. 18(a). With the homogenization approach, the clay bridge can clarify the
668 different mechanisms of binary sand-clay mixtures, where stress distribution is non-
669 uniform since the clay bridge could bear more stress. With the increase in sand
670 fraction, the number of clay bridges increased, hence increasing the heterogeneity of
671 binary mixtures ([Fei, 2016](#); [Shi et al., 2018](#)). In short, the clay bridge is important in
672 the homogenization approach since it may significantly affect the strain and stress
673 distribution in soils.

674


681 **Fig. 17** SEM photos with 1,000 \times magnification for bentonite-soil mixtures:
682 (a) BS-5%, (b) BS-15%, (c) BS-20%, (d) BS-25% and (e) BS-35%

683

684 (a)

685

686 (b)

687

688 **Fig. 18** SEM photos of (a) BS-5% and (b) BS-35% with 5,000 \times magnification

689

690 **Conclusions**

691 In this paper, the results of mineralogic composition, index properties and the
692 consolidation behavior from the oedometer tests of reconstituted bentonite-soil

693 mixture specimens with different montmorillonite contents were presented, analyzed
694 and discussed. Several correlations were proposed to estimate the values of C_c , C_s , C_{ae} ,
695 ε_c^l and ψ_0 with easily accessible index properties. A simplified model with a
696 homogenization approach was put forward to predict the hydraulic conductivity at
697 different vertical stresses. Some of the newly proposed correlations were verified by
698 the use of the data collected from previous literature. The main conclusions drawn
699 from this comprehensive experimental study are as follows:

700 (1) Mechanical parameters, including C_c , C_s and C_{ae} , are closely related to the
701 montmorillonite content and Atterberg limit indices of the tested specimens.
702 These proposed correlations are capable of estimating the values of mechanical
703 parameters for the majority of montmorillonite-dominated soils in literature with
704 reasonable accuracy.

705 (2) Parameters in the nonlinear creep function, including ε_c^l and ψ_0 , experienced a
706 significant increase with montmorillonite content. The two nonlinear parameters
707 are also correlated with w_L and I_p with R^2 values larger than 0.9.

708 (3) A simplified model with a homogenization approach, which only has three model
709 parameters, was developed for easier use. Hydraulic conductivity can be well
710 estimated using the newly proposed model.

711 (4) A bridge-like structure which was called a clay bridge seemed to exist in
712 bentonite-soil mixtures to bond sand particles. The number of clay bridges
713 increased with the decrease of bentonite content.

714 (5) The newly proposed correlations were only recommended to estimate parameters
715 of MDSs with Atterberg limit indices in the tested range. Any extension beyond
716 this range must be checked and verified.

717

718 **Acknowledgments** The work in this paper was supported by a Research Impact Fund
719 (RIF) (R5037-18), a Theme-based Research Scheme Fund (TRS) (T22-502/18-R) and
720 three General Research Fund (GRF) projects (The Hong Kong Polytechnic University
721 (PolyU) 152179/18E; PolyU 152130/19E; PolyU 152100/20E) from the Research
722 Grants Council (RGC) of Hong Kong Special Administrative Region Government of
723 China. The authors also acknowledged the financial support of a grant (CD82, CD7A)
724 from Research Institute for Land and Space and grants (ZDBS, BD8U) from PolyU.

725

726 **Declarations**

727 **Conflict of interest** The authors declared no competing interests.

728

729 **References**

730 1377, B S (2016). British Standard 1377, Methods of Test for Soils for Civil
731 Engineering Purposes. In.

732 Alonso, E, Vaunat, J, & Gens, A (1999) Modelling the mechanical behaviour of
733 expansive clays. *Eng Geol* 54(1-2), 173-183.

734 Amarasinghe, P M, Katti, K S, & Katti, D R (2012) Insight into role of clay-fluid
735 molecular interactions on permeability and consolidation behavior of Na-
736 montmorillonite swelling clay. *J. Geotech. Geoenviron. Eng.* 138(2), 138-146.

737 Burland, J (1990) On the compressibility and shear strength of natural clays.
738 *Géotechnique* 40(3), 329-378.

739 Cerato, A B, & Lutenegger, A J (2004) Determining intrinsic compressibility of fine-
740 grained soils. *J. Geotech. Geoenviron. Eng.* 130(8), 872-877.

741 Chapuis, R P (2012) Predicting the saturated hydraulic conductivity of soils: a review.
742 *Bull. Eng. Geol. Environ.* 71(3), 401-434.

743 Cozzolino, V. (1961). Statistical forecasting of compression index. In *Proceedings of*
744 *the 5th international conference on soil mechanics and foundation engineering*
745 *Paris*.

746 Deng, Y, Wu, Z, Cui, Y, Liu, S, & Wang, Q (2017) Sand fraction effect on hydro-
747 mechanical behavior of sand-clay mixture. *Appl Clay Sci* 135, 355-361.

748 Fei, K (2016) Experimental study of the mechanical behavior of clay-aggregate
749 mixtures. *Eng Geol* 210, 1-9.

750 Feng, W-Q, Lalit, B, Yin, Z-Y, & Yin, J-H (2017) Long-term non-linear creep and
751 swelling behavior of Hong Kong marine deposits in oedometer condition. *Comput*
752 *Geotech* 84, 1-15.

753 Gratchev, I B, Sassa, K, Osipov, V I, Fukuoka, H, & Wang, G (2007) Undrained
754 cyclic behavior of bentonite-sand mixtures and factors affecting it. *Geotech. Geol.*
755 *Eng.* 25(3), 349-367.

756 Jamei, M, Villard, P, & Guiras, H (2013) Shear failure criterion based on
757 experimental and modeling results for fiber-reinforced clay. *Int. J. Geomech.*
758 13(6), 882-893.

759 Kordnaeij, A, Kalantary, F, Kordtabar, B, & Mola-Abasi, H (2015) Prediction of
760 recompression index using GMDH-type neural network based on geotechnical
761 soil properties. *Soils Found.* 55(6), 1335-1345.

762 Kurnaz, T F, Dagdeviren, U, Yildiz, M, & Ozkan, O (2016) Prediction of
763 compressibility parameters of the soils using artificial neural network.
764 Springerplus 5(1), 1-11.

765 Le, T M, Fatahi, B, Khabbaz, H, & Sun, W (2017) Numerical optimization applying
766 trust-region reflective least squares algorithm with constraints to optimize the non-
767 linear creep parameters of soft soil. Appl. Math. Model. 41, 236-256.

768 Mesri, G, & Vardhanabhuti, B (2005) Secondary compression. J. Geotech.
769 Geoenviron. Eng. 131(3), 398-401.

770 Nagaraj, T, & Murthy, B S (1983) Rationalization of Skempton's compressibility
771 equation. Geotechnique 33(4), 433-443.

772 Nakase, A, Kamei, T, & Kusakabe, O (1988) Constitutive parameters estimated by
773 plasticity index. Journal of Geotechnical Engineering 114(7), 844-858.

774 Oscarson, D, Dixon, D, & Gray, M (1990) Swelling capacity and permeability of an
775 unprocessed and a processed bentonitic clay. Eng Geol 28(3-4), 281-289.

776 Ozhan, H O (2021) Determination of mechanical and hydraulic properties of
777 polyacrylamide-added bentonite-sand mixtures. Bull. Eng. Geol. Environ. 80(3),
778 2557-2571.

779 Pandian, N, Nagaraj, T, & Raju, P N (1995) Permeability and compressibility
780 behavior of bentonite-sand/soil mixes. Geotech. Test. J. 18(1), 86-93.

781 Shen, S-L, & Xu, Y-S (2011) Numerical evaluation of land subsidence induced by
782 groundwater pumping in Shanghai. Can. Geotech. J. 48(9), 1378-1392.

783 Shi, X, Nie, J, Zhao, J, & Gao, Y (2020) A homogenization equation for the small
784 strain stiffness of gap-graded granular materials. Comput Geotech 121, 103440.

785 Shi, X, & Yin, J (2018) Estimation of hydraulic conductivity of saturated sand-
786 marine clay mixtures with a homogenization approach. Int. J. Geomech. 18(7),
787 04018082.

788 Shi, X, Yin, J, Feng, W, & Chen, W (2018) Creep coefficient of binary sand-
789 bentonite mixtures in oedometer testing using mixture theory. Int. J. Geomech.
790 18(12), 04018159.

791 Shi, X, & Zhao, J (2020) Practical estimation of compression behavior of clayey/silty
792 sands using equivalent void-ratio concept. J. Geotech. Geoenviron. Eng. 146(6),
793 04020046.

794 Sivapullaiah, P, Sridharan, A, & Stalin, V (2000) Hydraulic conductivity of bentonite-
795 sand mixtures. Can. Geotech. J. 37(2), 406-413.

796 Skempton, A W (1944) Notes on the compressibility of clays. Quarterly Journal of the
797 Geological Society 100(1-4), 119-135.

798 Sridharan, A (1999) Volume change behaviour of expansive soils. Problematic soils,
799 883-850.

800 Sridharan, A, & Nagaraj, H (2000) Compressibility behaviour of remoulded, fine-
801 grained soils and correlation with index properties. Can. Geotech. J. 37(3), 712-
802 722.

803 Terzaghi, K, & Peck, R (1948) Soil Mechanics in Engineering Practice (Fourth
804 Printing). John Wilfey & Sons Inc., New York, NY, USA.

805 Tiwari, B, & Ajmera, B (2011) Consolidation and swelling behavior of major clay
806 minerals and their mixtures. Appl Clay Sci 54(3-4), 264-273.

807 Tiwari, B, & Ajmera, B (2012) New correlation equations for compression index of
808 remolded clays. J. Geotech. Geoenviron. Eng. 138(6), 757-762.

809 Tiwari, B, & Marui, H (2005) A new method for the correlation of residual shear
810 strength of the soil with mineralogical composition. J. Geotech. Geoenviron. Eng.
811 131(9), 1139-1150.

812 Tong, F, & Yin, J-H (2011) Nonlinear creep and swelling behavior of bentonite mixed
813 with different sand contents under oedometric condition. Mar. Georesources
814 Geotechnol. 29(4), 346-363.

815 Tovey, N (1986) Microanalyses of a Hong Kong marine clay. Geotech. Eng. 17(2),
816 167-210.

817 Verbrugge, J-C, & Schroeder, C (2018) *Geotechnical correlations for soils and rocks*:
818 John Wiley & Sons.

819 Watabe, Y, Yamada, K, & Saitoh, K (2011) Hydraulic conductivity and
820 compressibility of mixtures of Nagoya clay with sand or bentonite. Géotechnique
821 61(3), 211-219.

822 Wroth, C, & Wood, D (1978) The correlation of index properties with some basic
823 engineering properties of soils. Can. Geotech. J. 15(2), 137-145.

824 Yilmaz, I, & Marschalko, M (2014) The effect of different types of water on the
825 swelling behaviour of expansive clays. Bull. Eng. Geol. Environ. 73(4), 1049-
826 1062.

827 Yin, J-H (1999a) Non-linear creep of soils in oedometer tests. Géotechnique 49(5),
828 699-707.

829 Yin, J-H (1999b) Properties and behaviour of Hong Kong marine deposits with
830 different clay contents. *Can. Geotech. J.* 36(6), 1085-1095.

831 Yin, J-H, Chen, Z-J, & Feng, W-Q (2022) A general simple method for calculating
832 consolidation settlements of layered clayey soils with vertical drains under staged
833 loadings. *Acta Geotech.*, 1-28.

834 Yin, J-H, & Feng, W-Q (2017) A new simplified method and its verification for
835 calculation of consolidation settlement of a clayey soil with creep. *Can. Geotech.*
836 *J.* 54(3), 333-347.

837 Yin, J-H, & Graham (1989) Viscous-elastic-plastic modelling of one-dimensional
838 time-dependent behaviour of clays. *Can. Geotech. J.* 26(2), 199-209.

839 Yin, J, Tang, Y, Geng, W, & Xu, G (2021) Coupled effects of initial water content
840 and swelling history on compression behaviors of bentonite. *Bull. Eng. Geol.*
841 *Environ.* 80(6), 4929-4941.

842 Yin, Z, Xu, Q, & Yu, C (2014) Elastic-viscoplastic modeling for natural soft clays
843 considering nonlinear creep. *Int. J. Geomech.*

844 Zeng, L, Hong, Z, Liu, S, & Chen, F (2012) Variation law and quantitative evaluation
845 of secondary consolidation behavior for remolded clays. *Chin. J. Geotech. Eng.*
846 34(8), 1496-1500.

847 Zhang, P, Yin, Z-Y, Jin, Y-F, Chan, T H, & Gao, F-P (2021) Intelligent modelling of
848 clay compressibility using hybrid meta-heuristic and machine learning algorithms.
849 *Geosci. Front.* 12(1), 441-452.

850 Zhu, J-G, & Yin, J-H (2000) Strain-rate-dependent stress-strain behavior of
851 overconsolidated Hong Kong marine clay. *Can. Geotech. J.* 37(6), 1272-1282.

852 Zhu, Q-Y, Yin, Z-Y, Hicher, P-Y, & Shen, S-L (2016) Nonlinearity of one-
853 dimensional creep characteristics of soft clays. *Acta Geotech.* 11(4), 887-900.

854 Zhuang, X, Wang, Q, & Zhu, H (2017) Effective properties of composites with
855 periodic random packing of ellipsoids. *MATL* 10(2), 112.

856