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10 Abstract Externally bonded fiber-reinforced polymer (EB-FRP) laminates have
11 become a popular technique for strengthening existing reinforced concrete (RC)
12 structures. However, the high tensile strength of the FRP laminate is often not fully
13 utilized due to premature debonding failure of the FRP-to-concrete interface, typically
14 occurring in a thin layer beneath the bond interface. Numerical simulations have gained
15  significant attention as a supplement to experimental tests, as they have the ability to
16  provide valuable insights into the debonding process. However, most existing
17  numerical models for EB-FRP joint debonding are unable to explicitly consider cracks
18  within different concrete phases (i.e., mortar and interfacial transition (ITZ)), or
19  precisely capture the corresponding failure mechanisms involving mortar cracking, [TZ

20  debonding and kinking. This study proposes a novel meso-scale phase field model for
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concrete, which is capable of accurately modeling complex failure behaviors, including
mixed-mode fracture in both the mortar and ITZ, as well as friction on cracked surfaces.
The ITZ is regularized using an auxiliary interface phase field and then the overall
mixed-mode failure behaviors in both the mortar and ITZ are modeled using a unified
damage phase field. To validate the proposed meso-scale model, three pull-off tests of
FRP-to-concrete bonded joints, which were well reported in existing literature, are
simulated. Moreover, the model is used to investigate the effects of adhesion and the
FRP laminate on the debonding behavior of the FRP-to-concrete joints.

Keywords: FRP-to-concrete bonded joints; meso-scale modeling; phase field model;

Pull-off test

Introduction

Externally bonded fiber-reinforced polymer (EB-FRP) laminates have become one
of the most favored techniques for strengthening reinforced concrete (RC) structures.
In comparison to traditional strengthening materials, such as steel plates, FRP laminates
can offer some outstanding advantages such as high strength-to-weight ratio, superior
corrosion resistance, and customizable material properties. However, numerous studies
have shown that the high tensile strength of the FRP laminate is often not fully utilized
due to premature debonding failure of the FRP-to-concrete interface (Chen and Teng,
2001, Teng et al., 2002, Teng et al., 2003, Dai et al., 2005, Lu et al., 2005a, Ali-Ahmad

et al.,, 2006, De Lorenzis and Teng, 2007). This debonding failure is influenced by
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various factors, such as bond length, FRP to concrete width ratio, FRP axial stiffness,
adhesive modulus and concrete strength (Chen and Teng, 2001, Yao et al., 2005, Dai et
al., 2009, Wu and Jiang, 2013). Additionally, Pan and Leung (2007) found that the
debonding process was also affected by concrete composition, as the interfacial friction
resulting from aggregate interlocking within the fracture process zone could prevent
damage evolution. However, it is very challenging to precisely evaluate the effect of
aggregate distribution, shape and size on the bond capacity through experimental tests
due to uncertainties that might be involved in preparation and test processes, such as
surface treatment, adhesive thickness control, and load eccentricity. Therefore,
advanced numerical simulation can serve as a supplement to experimental tests in
investigating the underlying debonding mechanisms of FRP-to-concrete bonded joints
(Yang et al., 2003, Lu et al., 2005b, Wu and Jiang, 2013, Tao and Chen, 2015, Kai et
al., 2022). Despite significant efforts dedicated to this research area, the influence of
adhesive properties, bending stiffness of the FRP laminate, and concrete composition
on debonding mechanisms, particularly the complex mixed-mode fracture in the thin
layer and the resultant interfacial fracture energy, which is defined as the area beneath
the shear stress-slip relationship of the FRP-to-concrete interface assuming an overall
Mode II loading condition, remains controversial (Dai et al., 2005, Lu et al., 2005a, Wu
and Jiang, 2013).

Extensive research indicates that debonding of FRP laminates usually occurs

within a thin layer in the concrete prism, approximately 1-5 mm away from the adhesive
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interface.(Lu et al., 2005b, Yao et al., 2005). Considering the commonly employed
coarse aggregate size distribution in concrete, this debonding behavior clearly occurs
within the mesoscopic length scale. Therefore, many mesoscale modellings of FRP-to-
concrete debonding tests have been conducted over the last two decades. Those
simulations can be broadly classified into two groups: homogeneous and heterogeneous
meso-scale models. In homogeneous models, the concrete is assumed to be a uniform
material with properties determined using homogenization techniques. Then to capture
the meso-scale failure patterns beneath the adhesion layer, failure modellings are
conducted using very small element sizes. This modeling strategy has been employed
in several studies, including (Lu et al., 2005b, Lin and Wu, 2016, Wu and Jiang, 2013,
Tao and Chen, 2015, Li and Guo, 2019), which have shown good agreement with
experimental results. Although using elements that are one-order smaller than the
thickness of the fracture layer seems to be a plausible approach for modeling debonding
behaviors, there are still some concerns that need to be addressed. For instance, it
remains unclear whether the homogenized material properties can accurately capture
localized failures, such as small cracks that are parallel or inclined to the adhesion layer.
Additionally, it is uncertain whether this modeling strategy can effectively describe the
influence of aggregates near the bonded surface. Some of these factors were
investigated by Coronado and Lopez (2010). They employed a crack band model to
simulate the debonding process and assigned distinct properties to the crack band level

and the concrete. An alternative modeling strategy is the heterogeneous model, which
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treats concrete as a multi-phase material comprising of mortar, aggregate and the
interfacial transition zone (ITZ). By considering the debonding failure length scale, this
strategy can provide a more precise and comprehensive understanding of the debonding
process in FRP-to-concrete joints. However, there are currently only a limited number
of numerical studies available in this field. Li et al. (2021) investigated the impact of
coarse aggregate distribution on debonding behavior using a meso-scale model.
However, they did not account for the ITZ, which significantly contributes to concrete
damage. In fact, one major factor limiting the wide application of the heterogeneous
model is the numerical difficulty. To be an effective heterogeneous model, it should
possess the following characteristics based on the debonding behavior of the FRP-to-
concrete joint: (1) the ability to handle complex failure patterns, including branching
and connecting; (2) the ability to account for mixed-mode failure and subsequent
friction; and (3) the ability to consider the interaction of failure within different phases,
such as interfacial cracking and kinking into the mortar. One of the most promising
methods that can fulfill these requirements is the phase field model of fracture.

The phase field model of fracture is a non-local smeared crack model based on the
Francfort-Marigo variational principle (Francfort and Marigo, 1998). This model
utilizes a continuous scalar damage phase field to regularize cracks and treats damage
evolution as a competition between deformation and fracture energies. As a result, it
can handle complex failure patterns without requiring additional failure criteria or crack

tracking strategies. This makes it one of the most promising methods in computational
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fracture mechanics. Furthermore, one prominent advantage of the phase field model of
fracture, compared to traditional smeared crack models, is its ability to theoretically
reproduce the discrete crack surface area by integrating the crack surface density
function, which enables the model to quantitatively investigate the failure process of
materials. Phase field models of fracture have been successfully applied to various
fracture problems, including brittle fracture (Bourdin et al., 2000, Miche et al., 2010b,
Ambati et al., 2015b), ductile fracture (Borden, 2012, Miehe et al., 2015, Ambeati et al.,
2015a) and composites fracture (Zhang et al., 2019a, Quintanas-Corominas et al., 2019,
Bui and Hu, 2021) problems. The author recently proposed a meso-scale phase field
model for multi-phase materials (Zhang et al., 2019b, Zhang et al., 2020, Zhang et al.,
2023), which has been demonstrated to accurately hand complex failure patterns and
the interactions of failure between different phases. However, this model is primarily
designed for analyzing tensile-dominated failure.

This paper aims to propose a new meso-scale phase field model capable of
considering mixed-model failure and the resulting friction between crack surfaces. The
next section presents the proposed phase field model, which incorporates the effect of
crack angle into the constitutive law and the damage phase field driving force, which
distinguishes it from traditional phase field models of fracture. The proposed model
constructs energy densities that contribute to the evolution of both tensile and shear
failure by using a local crack coordinate. These densities are integrated into the

variational principle (Francfort and Marigo, 1998) to derive a non-local damage phase
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field evolution equation. It is important to note that, to improve computational
efficiency and mitigate convergence issues, the crack angle is only calculated at the
onset of damage, such calculation is only valid under monotonic loads. Then, the
construction of a phase field model-based meso-scale modeling framework is presented.
A total of 17 pull-off tests from existing literature are simulated to validate the proposed
model. The influences of adhesion and FRP properties on FRP-to-concrete joints are

then investigated. Finally, the conclusions of the present study are provided.

Proposed phase field model for mixed mode failure

Constitutive law

Consider a continuum solid material occupying a domain Q eR*™ as shown in
Fig. 1(a), where dim is the dimension. Q is subjected to a prescribed traction T(x,t)
and a prescribed displacement ﬁ(x, t). The domain may be subjected to a body force
per volume b (x,t). Assuming that the material is isotropic and linear elastic, the
constitutive relationship is
o=C:¢ (1)
where o is the stress tensor. ¢ is the strain tensor, and C is the fourth-order
elasticity tensor.
Then, consider a cohesive crack ', eR™™ as shown in Fig. 1(a). For a point x at
the crack surface, Fig. 1(b) gives the corresponding 2D stress state. Within the phase

field model framework, the influence of cracks on the constitutive law can be

7
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considered using the damage phase field d, which characterizes the material’s damage
state, as

o=C,(d,0):¢ 2)
where C, is termed as the damaged elasticity tensor.

To simplify the derivation of the damaged elasticity tensor C,, the principal
stresses o, and o, are considered with n; and n2 the corresponding principal stress
axes and assume that the crack angle is « with respect to n2. As shown in Fig. 2(b), a
local coordinate system x Oy’ can be built, through which the vectors that are along and
normal to the crack can be specified by

m=R-n, n=R-n, 3)

1°

where R is the rotation matrix. Accordingly, the stress and strain vectors at the local

coordinate can be specified as

o, o, & &,
o, t=T,-q40,¢, &, 1=T,-1¢, 4)
x'y' z-xy ]/x'y' 7xy

where the stress and strain rotation matrices are

I’ kK 2K rooK ki
T =\k> I 2k |, T.=|k I —kl 5)
~kl K -k 2kl 2kl I’ -k’

inwhich /=n,(1) and k =n(2).Atthelocal coordinate, the softening of the material

stiffness resulting from tensile and shear damage can be characterized by the damage

phase field d using two degradation functions: g,(d) for tensile failure and g (d)

for shear failure and friction. Explicit forms of the two degradation functions will be
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discussed in the following sections. Accordingly, the damaged elasticity matrix at the

local coordinate can be specified by

¢, g1§/ﬂC12 0
Caltoc(daa) = glglﬂcﬂ g,Cy 0 (6)
0 0 §/}}C33

where Cj (i,j=1,2,3) is the (i,j)th value of the intact elasticity matrix. Therefore, the
damaged elasticity matrix at the global coordinate can be obtained as

C,(d,a)=T,"-CT. (7
Phase field model for mixed-mode failure

This section proposes a phase field model for mixed-mode failure. The main feature
that distinguishes the present model from tradition phase field models of fracture is the
incorporating of the mixed-model failure constitutive law constructed in the previous
section. The determination of the crack angle and energy densities driving different
failure patterns will be given in the following derivations.

Consider a system as shown in Fig. 3(a) and the corresponding smeared crack case
characterized by the damage phase field d as shown in Fig. 3(b), in which d=0 and d=1
represent intact and totally damaged states, respectively. The elastic energy W. and the
external energy W: can be specified as

W, =[ w.(&.d.a)v, W, =jr27-udS+J‘Q17-udV (8)
where y, is the strain energy density. For a time-depended system, the kinetic energy

Wi can be specified as
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W, = [, iy ©
where p is the mass density.

According to (Bourdin et al., 2000) the fracture energy with respect to the smeared

crack description can be given by
W, = jQ G.y,(d,Vd)dV (10)
where y,(d,Vd) is termed as the crack surface density function, whose integration
over the entire domain gives the real crack surface area. G is the critical energy release
rate. It should be noticed that Eq. (10) is the fracture energy for the traditional phase
field model, which can only consider the tensile failure. In the following, a modified
form will be proposed to consider the mixed-mode failure. Following (Bourdin et al.,

2000), the general form of the crack surface density function can be given by

v,(d,Vd) =iLla)(d)+IOVd-Vd} (11)

Colto

where /o is the damage phase field internal length scale characterizing the width of the
smeared crack. w(d) and co are the crack geometry function and model parameter,
respectively (Wu, 2017).

An viscosity part related to the rate of the damage phase field can be given by
(Zhang et al., 2021)

we =jth%z<-<¢§>idth (12)

where the bracket operator is defined as <x> (x * |x|) /2. x is the artificial phase field

viscosity (Miehe et al., 2010b).

The Lagrange functional of the considered system can be specified as

10
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Lig.® =W +W' +W W, -W, (13)

where ¢ =[u,d]. Then according to the Lagrange dynamical equations

d(oL) oL
sl s s

the governing equations and the boundary conditions can be obtained as

v.v&da g g ino (15)
og
od-G. od v
Wedd) 7 ouT (17)
o€
Vd-p=0, atl’ (18)

where p denotes the outward unit normal vector of the boundary I' It is noteworthy that
the crack angle a in Egs. (15)-(17) is an internal variable that depends on the stress
state. The expression for calculating this angle will be given in the following sections.
Therefore, it is not considered in the variational operation.

As discussed previously, the fracture energy W: in Eq. (10) is defined for the
traditional phase field model (Francfort and Marigo, 1998, Bourdin et al., 2000, Miehe
et al., 2010a). In order to extend the traditional phase field model to account for mixed-
mode failure, a modified phase field evolution equation is introduced to replace Eq.
(16).

F—Ww(ﬁ (19)

where F'is the driving force for damage phase field evolution. To account for different

failure modes, a mixed driving force form is adopted as

11
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ro %) y(&) 0g,(d) y;(&)
od G, od G,

(20)

where Gr and Gur are the critical energy release rates for tensile and shear damage,

respectively. g,(d) is the degradation function used to characterize the softening of
the material stiffness due to shear failure. Therefore, g,(d) is a component of the
shear-friction degradation function & (d) introduced in Eq. (6), and the explicit
expression will be given in the following sections. The elastic energy densities
corresponding to tensile and shear failure are denoted as y; and y,, respectively.
These energy densities can be determined using the constitutive law. Referring to the
local coordinate illustrated in Fig. 2(b), the elastic stress components parallel and
perpendicular to the crack surface are denoted as 7, =7,.,, and o, =0, respectively.

Accordingly, the tensile energy density can be specified as

» 2
n <O-" >+

V= 2E

21)

The shear strength of materials can be characterized by Mohr-Coulomb criterion

based on the relationship between shear stress and normal stress on a plane of failure
as

Y, =g/ (d){c]) -tang+Y, (22)

where ¢ is the friction angle and Y, is the cohesion strength. The first term of the right-

hand side of the equation represents the contribution due to the normal compressive

stress at the plane of failure, which is referred to as the reduced friction stress

7, =g,(d) <O',’f >7 -tan¢@ in this study. Accordingly, the shear energy density can be

12
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defined by

(%) o)

where

o =(|eal -l ]). (24)
is the component of shear stress that excludes the contribution from friction stress. As
the evolution of damage in a material is closely related to the contact condition between
crack surfaces, the shear energy density should be calculated incrementally during this
process, which can be given by
(i) =(wa) "+ [ ey 25)

where the superscripts k£ and k-1 denote the current and previous loading increments,
respectively.

To prevent physically unrealistic self-healing resulting from local unloading, two
history-dependent variables are introduced as

H, :max{z//,"(e,j)}, H, =5£1[%JX]{1//7,(8,J')} (26)

Jel0.]

Accordingly, the new phase field driving force in Eq. (20) can be rewritten as

F=-2l—r.—1_ —=—. 27)

Crack angle, damage initiation and evolution

The unified phase field model of fracture proposed by Wu (2017) suggests that the
influence of tensile-dominated cohesive damage on the softening of the material

stiffness can be characterized by a parametric degradation function, which is defined as

13
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(1-d)*

d)= 28
& = T v ad—05ad (@)
where a; is related to material properties. For tensile failure, it can be defined by
4 = 4EG,2 29)
ColoY;

where G and Y7 are the tensile critical energy release rate and strength, respectively.
According to the constitutive law in Eq. (2) and shear energy density in Egs. (22)

-(25), an interpolative degradation for shear-friction failure is defined by

Tf

& (d)=g,(d)+[1-g,(d)] . (30)

max

where 7 =max{r;‘1 (e, j)} is the historical maximum shear stress and a; can be
jel0.4]

defined as

_ 466Gy

a, = AE (31)
Eq. (30) shows that when the friction stress vanishes (ie., 7,=0), f=g,,
indicating that &4 is related only to shear failure. On the other hand, when 7, #0
and g, =0 (indicating total damage), & is only dependent on frictional sliding.
These relationships highlight the dependence of &, on both shear failure and
frictional sliding and demonstrate how it varies under different conditions.

Eq. (27) shows that the damage driving force F is closely related to the crack
angle a. To determine a, two assumptions are made in this paper. First, it is assumed

that the crack will always evolve in the direction of the maximum damage driving force.

Second, to improve computational efficiency and mitigate convergence issues, it is

14
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assumed that the crack angle is only calculated at the onset of damage. This means that
the proposed model considers monotonic loads only. Accordingly, the crack angle can

be determined by

(32)

o =arg max{F'} =arg max{ ———~.—— =2~ ~.
g P {F} g p { od G, od GII}

d=0

Substituting the degradation functions and energy densities into Eq. (32), the above

equation can be rewritten as

n

T

m

>+ (33)

2
R
e sgm| 2 <f;;>++< Yolf

It is noteworthy that for traditional phase field models of fracture, the damage
initiation criterion is implicitly embedded in the damage evolution equation (Bourdin
et al., 2000). However, we have proven that by properly defining the energy densities
and the degradation functions, some widely adopted initiation criteria (such as Hashin
damage criterion) can be implicitly embedded into the phase field model (Zhang et al.,
2021). For the present model, the corresponding damage initiation criterion can be

obtained through

97,(d,Vd)

d=0 ad =0 (34)

d=0

Substituting the driving force (Eq. (27)) into Eq. (34), a damage initiation criterion

that is implicitly embedded in the proposed phase field model can be obtained as

(or), , {eal-les

Iz Yy

n
Tm

). =1 (35)

The above equation indicates that a quadratic stress-based damage initiation criterion

15
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is automatically embedded in the model. If friction stress is not considered, Eq. (35)
will degenerate into the widely used stress-based initiation criterion for cohesive zone
models (Turon et al., 2006). Moreover, by comparing Eq. (35) and the equation used
to determine the crack angle (i.e., Eq. (33)), it can be seen that the embedded damage
initiation criterion is consistent with the crack angle determination procedure. This
consistency indicates that the potential crack direction is also where the damage tends

to initiate, which is physically reasonable.

Meso-scale phase field model

Meso-scale concrete model and ITZ regularization

Concrete is a heterogeneous material composed of different components: mortar,
aggregates and the ITZ. These components have different properties and can be
modeled as isotropic materials at the meso-scale (Ren et al., 2015, Kai et al., 2023b,
Kai et al., 2023a). However, the material heterogeneity can significantly affect the
internal failure pattern of concrete. To addressed this, we propose a meso-scale phase
field model that can capture the failure of both the mortar and the ITZ within a unified
phase field framework. For simplicity, only coarse aggregates larger than 2.4 mm are
considered, while other fine aggregates, along with cement are regarded as the mortar
phase (Xi et al.,, 2018, Hu et al., 2022). A typical three-segment gradation size
distribution is employed, as described by (Neville, 1995, Xi et al., 2018): 2.40-4.76mm

(8.08%), 4.76-9.52mm (15.96%), and 9.52-19.05mm (15.96%). In the simulations,

16
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aggregates are represented using polygons with 5 to 8 sides. And the corresponding
random aggregate distribution is generated by a put and take algorithm, with further
details available in (Xi et al., 2018).

Consider a domain €2 containing an aggregate as shown in Fig. 4. In typical
normal strength concrete, the aggregates are generally stronger than the mortar and the
ITZ. As a result, this paper only considers mortar cracking and ITZ debonding (Fig.
4(a)). The mixed mode phase field model, which is proposed in the previous section,
can be directly used to simulate mortar cracking. However, accurately modeling ITZ
debonding remains challenging due to the ITZ’s thickness, which is normally tens of
microns (Barnes et al., 1979). Such a thin ITZ thickness necessitates the use of a very
dense element mesh, which may distort elements in adjacent areas. Currently, there are
two modeling categories for ITZ debonding: (a) using zero-thickness cohesive elements
(Ren et al., 2015, Yilmaz and Molinari, 2017, Xi et al., 2018), and (b) using an
approximate I'TZ thickness of about 0.1 mm — 1 mm (gavija etal., 2013, Duetal., 2014,
Huang et al., 2015, Zhou et al., 2017). In this paper, we adopt a combined ITZ modeling
strategy. During the elastic stage, ITZ is regarded to have zero thickness, which implies
that the mortar and the aggregate are perfectly bonded. During the debonding evolution
stage, the ITZ’s fracture properties, such as its strengths, critical energy release rates,
and friction angle, are regularized in the adjacent mortar phase. This interface
regularization method is inspired by the traditional phase field model of fracture and

can be naturally integrated into the current modeling framework. Previous numerical
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results have demonstrated that this strategy is capable accurately capturing ITZ
debonding (Nguyen et al., 2016, Zhang et al., 2019b, Zhang et al., 2020, Li et al., 2020,
Hu et al., 2022).

Fig. 4(b) shows that an interface phase field, denoted as 7, is introduced to
regularize the ITZ. The corresponding governing equation and boundary conditions for

n are (Zhang et al., 2019b)

n-I!An=0, in Q (36)
n(x)=1, atl, (37)
Vn-p=0, at’ (38)

where /i is internal length scale of the the interface phase field, which generally can be
set to be the same as that of the damage phase field, i.e., /=l (Zhang et al., 2019b, Hu
et al., 2022). T, is the aggregate boundary. It is important to note that the interface
phase field can be solved using either an implicit or an explicit solution scheme.
However, once 7 is determined, no further updates are necessary, regardless of the
solution scheme used. As a result, this additional degree of freedom (DOF) will have
minimal impact on the overall computational efficiency. For more details of the
interface phase field, refer to (Zhang et al., 2019b, Zhang et al., 2020).

Following the work conducted by Hu et al. (2022) a sharp transition between
different phases is employed as

{mmZﬁ ITZ (39)

Otherwise Mortar

We would like to reiterate that in Eq. (39), the ITZ and the mortar only represent the
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corresponding fracture properties, as the ITZ is not considered during the elastic stage.
n 1is a specified value that controls the boundary between different phases. In this paper,
we set the thickness of the ITZ to be the same as the smeared crack width. It is well
known that in phase field models, the sharp crack surface area can be reproduced by
integrating the crack density function y, over the smeared crack region. Therefore,
the current approach to treating ITZ thickness ensures that the ITZ’s fracture energy
can be accurately captured during the modeling. According to (Wu, 2017), the width of
the fully developed smeared crack can be given by

D=c,-l, (40)

Using the one-dimensional analytical solution of the interface phase field,

n:exp(—mj (41)

L

1

the specified value 77 can be obtained as 77 =exp(—c,) .

Meso-scale modeling

Material properties determination and verification

According to Euro Code (2005), the Young’s modulus of the aggregate can be

determined by

B & 03
Ea—22[10j (42)

where f, is the cubic compressive strength of the aggregate.

The Young’s modulus of the homogenized concrete can determined using the
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Chinese code for design of concrete structures as (Lu et al., 2005a)

v 100
< 22+34.74/ f,

(43)

where fc is the cubic compressive strength of the concrete.
According to the Mori-Tanaka homogenization theory (Mori and Tanaka, 1973, Li
et al., 2021), the Young’s modulus of the mortar E» can determined using the following

relationship

g op +JdE L) (44)

T 1A=V,

where Va is the aggregate volume fraction and the parameter fm is

E -F E
f;n = n = 4 /um = = (45)
E +4u, /3 2(1+v,)

in which v is the Poisson’s ratio of the mortar.
As shown in earlier sections, the meso-scale modeling requires knowledge of the
fracture properties of the mortar and the ITZ. According to (Sideris et al., 2004), the

cylinder compressive strength of the mortar can be specified by

E —12.4147

= 46
I 0.2964 (16)
Then according to the work conducted by Nagai et al. (Nagai et al., 2005), the tensile
strength and the critical energy release rates for tensile failure of the mortar can be

specified by

Y =14-In(f,)-15 (47)
f, 0.7
Gy =(0.04694; —0.5d, +26)‘(ﬁj (48)
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where d,=2.36 mm is adopted (Li et al., 2021). According to (Pina - Henriques and
Lourengo, 2006, Prakash et al., 2020), the critical energy release rate for shear failure
of the mortar can be taken as four times that of the tensile failure, i.e., G, =4G; .
According to (Nagai et al., 2005), the tensile strength ¥, and the cohesion strength

Y! of the ITZ can be obtained by

Y, =—1.44C, +23 (49)
Y =-2.6C +3.9 (50)
where
1

C =— (51)
0.047f +0.5

It is important to note that, to the best of the authors’ knowledge, there is currently no
available method to directly evaluate the cohesion strength Y” of the mortar.
Therefore, in this study, this parameter is determined by Y” =Y, /Y, -Y!. Furthermore,
following the suggestions in (Lopez et al., 2008, Huang et al., 2016), the critical energy
release rates of the ITZ are set to be half that of the mortar, i.e., G =0.5G and
G, =0.5G} . In this study, the aggregate cubic compressive strength f;=122.63 MPa
used in (Contrafatto et al., 2016, Li et al., 2021) is adopted. A typical friction angle
$=35° is adopted for both the mortar and the ITZ (Nagai et al., 2005).

This section outlines the relationships among different material properties of
concrete as adopted in existing literature. To further validate these relationships, three-
point bending tests conducted by Hoover et al. (2013) are simulated here by the

proposed meso-scale phase field model. According to (Hoover et al., 2013), the
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concrete used in these tests had a cylinder compressive strength of 55.6 MPa, a Young’s
modulus of 41.24 GPa and a Poisson’s ratio of 0.172. By utilizing these known
properties, the other material properties of concrete required for the simulations can be
obtained based on the above-mentioned relationships.

The geometry and boundary conditions for the tests are depicted in Fig. 5. Four
different cases are considered for the verification, including two specimen sizes: D=40
mm and D=93 mm, and two crack lengths: 2=0.15 and 1=0.3 for each specimen size.
The predicted force versus crack mouth opening displacement (CMOD) curves, along
with the corresponding crack patterns, are illustrated in Fig. 6. Experimental results
reported by Hoover et al. (2013) are also included as grey regions for comparison. It
can be seen that the predicted force-CMOD curves exhibit an initial elastic stage,
followed by a softening stage after reaching the maximum value. These stages align
well with the experimental data, indicating not only the validation of the proposed
meso-scale phase field model but also the effectiveness of the material properties

obtained through the relationships outlined in this section.

Pull-off test FE model

In the references (Lu et al., 2005b, Tao and Chen, 2015, Lin and Wu, 2016, Li and
Guo, 2019), numerical simulations were conducted for the pull-off test, in which an
FRP laminate is bonded to a concrete prism and subjected to tension. It should be noted
that, for the sake of simplicity, most of the simulations were conducted using two-

dimensional models with the plane stress hypothesis. However, it is important to
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acknowledge that the debonding of the FRP-to-concrete joint is not a two-dimensional
case in theory, as the bond width of the FRP laminate is typically smaller than the width
of the bonded surface of the concrete prism. Experimental results have demonstrated
that the ratio between the widths of the FRP laminate and the prism concrete
significantly influences the bond strength. To account for this three-dimensional width
effect, it is common practice to incorporate a width factor fw into a two-dimensional
model. According to Lin et al. (2017) this width factor can be given by

B, =1+ £ [8(E,1,)"** +0.001](1-b, /b,)" /(1+0.015}") (52)
where fco 1s the compressive strength of concrete; Erand # are the Young’s modulus and
thickness of FRP laminate, respectively; by and b. are the widths of the FRP laminate
and concrete prism, respectively.

The FE model and boundary conditions are depicted in Fig. 7. In this study, a
displacement-controlled loading mode is employed. The proposed meso-scale phase
field model is implemented in the commercial software ABAQUS (Version, 2011)
through the users’ subroutine VUEL. For more details regarding the implementation
and source codes, please refer to (Hu et al., 2023). As depicted in the figure, the concrete
prism has a thickness of 45 mm. Along the thickness direction, it is divided into two
distinct parts: the meso-scale part, which comprises aggregates, mortar and ITZ, and
the homogenized concrete part. Extensive research indicates that debonding usually
occurs within a thin layer in the concrete prism, approximately 1 - 5 mm away from the

adhesive interface. Hence, to ensure the computational efficiency while allowing
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sufficient depth for debonding evolution, the thickness of the meso-scale part is set to
be tm=15 mm. Another critical consideration in meso-scale modeling is the three-
dimensional distribution of aggregates within the concrete prism. This heterogeneity
cannot be adequately represented by a two-dimensional meso-scale model.
Consequently, in this section, four different aggregate distributions are employed.
These distributions can be viewed as two-dimensional slices extracted from the three-
dimensional pull-off test, specifically along the width direction. Each slice case uses
the plane stress hypothesis and the width factor given in Eq. (52). As a result, the load-
slip curve of the pull-off test can be obtained by averaging the curves from the four
aggregate distributions. The lengths of the FRP laminate and the concrete prism are
L~150 mm and L~190 mm, respectively. There is an unbonded zone between the the
loaded end and the right edge of the concrete prism, which has a length of L,=25 mm.
The restrained height, as shown in Fig. 7, is #z=15 mm. When bonding FRP to concrete,
there are two common methods: using a prefabricated laminate bonded with adhesive
or utilizing dry fiber sheets using a wet lay-up process (Teng et al., 2002, Lu et al.,
2005b). In the former method, the FRP laminate and the adhesive can be clearly
distinguished. However, in the more widely adopted wet lay-up method, the boundary
between the FRP laminate and the adhesive cannot be clearly distinguished. Hence,
following the approach in (Lu et al., 2005b, Tao and Chen, 2015, Lin and Wu, 2016),
we assume that the FRP laminate is perfectly bonded to the concrete prism. Of course,

explicitly considering the interface effect would provide a more precise understanding
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of the related failure mechanisms. For instance, Jawdhari and colleagues (Jawdhari et
al., 2018, Jawdhari et al., 2019, Kadhim et al., 2021, Kadhim et al., 2022) conducted
both experimental and numerical investigations on the bond characteristics of carbon
FRP rod panels adhered to concrete. They adopted interfacial elements to simulate the
interfacial behavior to reproduce test results. In this study, cohesive elements (CEs) are
also used to investigate the effect of adhesive on the bond behavior as shown in the
parametric study section. The FRP laminate is treated as an isotropic elastic material,
with a Poisson’s ratio v, =0.3, as suggested by (Li et al., 2021). The element size in
the meso-scale part is set to 4.=0.125 mm, hence the corresponding internal length

scales are set to be 0.25 mm.

Verification and discussion

To validate the efficacy of the proposed meso-scale phase field model in predicting
the ultimate loads of FRP-to-concrete joints, a total of 17 tests (Takeo et al., 1997, Ueda
et al., 1999, Tan, 2002, Yao et al., 2005, Ali-Ahmad et al., 2006, Wu and Jiang, 2013)
are simulated. Fig. 8 presents a comparison between the predicted results and
experimental data, showing a good agreement between the numerical predictions and
the test results. Furthermore, in order to showcase the capacity of the model in capturing
more detailed characteristics of FRP-to-concrete joints, i.e., the load-slip curve, load
FRP axial strain, and crack pattern within the concrete prism, four tests (Ali-Ahmad et
al., 2006, Yao et al., 2005, Wu and Jiang, 2013) are chosen from the aforementioned

database as illustrative examples. The material properties and geometric information
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for these tests are given in Table 1.

Fig. 9 showcases the predicted load-slip curves for the considered tests. As
discussion in the previous section, four different aggregate distributions are employed
to approach the mechanical behavior of the three-dimensionally distributed aggregates.
It can be observed that the mean curves (represented by solid black lines) obtained from
various distributions exhibit similar characteristics as slip increases: an initial linear
stage followed by nonlinear growth with a gradually reduced rate, indicating the
initiation of damage at this stage. Subsequently, the external load reaches a plateau,
indicating a stable debonding propagation behavior. Finally, a sharp decrease in the
loading capacity occurs, indicating complete debonding of the FRP laminate from the
concrete prism. These stages are consistent with the observations from pull-off tests on
FRP-to-concrete joints (Lu et al., 2005a, Yao et al., 2005). Moreover, the mean curves
show a quantitative agreement with experimental results (referred to red dotted lines
and dots).

Fig. 10 illustrates the predicted distributions of axial strains in FRP laminates for
different tests. For the sake of clarity, only the mean strain obtained by averaging the
strains from the four different distributions is provided, similar to Fig. 9. At low external
load/slip, the strain distribution gradually decreases as the location moves away from
the loaded end, indicating a linear or initiation of debonding stage. As the external
load/slip increases, the strain distribution approaches a plateau near the loaded end,

followed by a decrease as the location moves away, indicating a debonding propagation
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process. Moreover, Fig. 10 includes comparisons between the distributions of strains
obtained from simulations and experimental measurements, demonstrating a good
agreement between the predictions and experimental results. It is important to note that
in Fig. 10(c), the strain distributions under different external loads are compared.
However, considering certain characteristics of the debonding of the FRP-to-concrete
joints, such as the inevitable differences in ultimate loads between simulations and
experiments, as well as the significant variation in slip with a small change in external
load during the debonding process, the comparison should be conducted carefully.
During the elastic stage, a numerical strain distribution corresponding to a load level
that is equal to the experimental load is selected. During the debonding propagation
stage, the strain distribution used for comparison is chosen to ensure a similar effective
stress transfer length to that of the experimental strain distribution. This treatment is
similar to that employed in (Lu et al., 2005b, Lin and Wu, 2016).

Fig. 11(a) and (b) illustrate the predicted crack patterns for the tests conducted
by Ali-Ahmad et al. (2006) and Wu and Jiang (2013), respectively. It is important to
note that due to the lack of accurate information regarding the adhesive between the
FRP laminate and mortar/aggregate, as well as the fact that debonding typically occurs
within the concrete prism, a perfect bonding condition is assumed, as adopted in (Lu et
al., 2005b, Tao and Chen, 2015, Lin and Wu, 2016). Furthermore, to avoid
unrealistically deep debonding cracks caused by the assumption of perfect bonding

between the big aggregates and FRP laminate, the aggregate distribution algorithm is
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modified to ensure that the depth of the aggregate bonded to the FRP laminate is less
than 8 mm, a value close to the maximum crack depth reported by Lin and Wu (2016).
In Fig. 11(a) and (b), only regions with the phase field value d>0.9 are displayed to
provide a clear representation of the crack patterns. It can be seen that in all cases, the
debonded portion consisting of aggregates and mortar has a height less than § mm
which is consistent with the findings reported in (Yao et al., 2005, Lin and Wu, 2016).
Furthermore, several distinct failure behaviors associated with aggregates can be
observed. Firstly, cracks tend to deviate from their original propagation paths and are
significantly influenced by adjacent ITZ regions on the left sides of the aggregates, due
to the weaker fracture properties of these regions. Secondly, the mortar on the right side
of the aggregates is more prone to peel off, forming inclined cracks to the FRP laminate,
as indicated by the yellow rectangle in the figure. These distinctive crack patterns are a
result of considering the influence of compression and friction in these areas. In fact,
similar crack patterns can also be observed in simulations conducted using
homogeneous models (Lu et al., 2005b, Lin and Wu, 2016, Li and Guo, 2019), as shown
in Fig. 11(c), although these models cannot explicitly illustrate the influence of

aggregate on the debonding behavior.

Parametric studies

In the previous section, the proposed meso-scale model is verified through three

pull-off tests. The corresponding results indicate that the debonding behavior of FRP-
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to-concrete joints is influenced by various factors. To gain a general understanding of
how these different components affect the debonding behavior, parametric studies on
adhesive properties, as well as the thickness and modulus of the FRP laminate are

conducted in this section.

The effect of adhesive on the debonding behavior

The objective of this section is to investigate the influence of adhesive properties
on the debonding behavior. We would like to reiterate that in the simulations in previous
sections, a prefect bonding assumption, as suggested by Lu et al. (2005b), is adopted.
In this section, to consider the effect of the adhesive layer, a layer of cohesive elements
is embedded between the FRP laminate and the concrete prism, as depicted Fig. 7.
Specifically, we consider three different adhesive moduli: (a) E./E~3.3x107; (b)
EadlEF9.7x1073; (¢) E«/EF9.7%102, where Eq and Er are the Young’s modulus of the
adhesive and the FRP laminate, respectively. An adhesive strength of 52 MPa from (Shi
et al., 2019) is adopted for all cases.

Fig. 12(a) illustrates the predicted load-slip curves for different cases. It can be
seen that the ultimate slip, corresponding to the complete debonding of the FRP
laminate from the concrete prism, exhibits a decreasing trend as the adhesive Young’s
modulus increases, indicating that weaker adhesion can lead to a higher ultimate slip.
One advantage of phase field models of fracture, is their ability to theoretically
reproduce the discrete crack surface area. This is achieved by integrating the crack

surface density function yqs across the entire computational domain. This characteristic
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allows for the introduction of a normalized crack length in the current simulation,
representing the ratio between the crack surface area and the length of the FRP laminate.
Fig. 12(b) depicts the normalized crack lengths for various cases. It can be observed
that the smallest Young’s modulus case has the largest normalized crack length,
indicating that the concrete beneath the bonded FRP laminate experiences more damage.
As the Young’s modulus increases, the normalized crack length decreases and
eventually approaches the perfectly bonding case. This trend is supported by the local
crack patterns depicted in Fig. 13, where the case with the lowest Young's modulus
tends to exhibit additional and deeper cracks compared to the other cases, as indicated

by the yellow rectangle.

The effect of FRP thickness and axial stiffness on the debonding behavior

In pull-off tests, the thickness of the FRP laminate is typically much smaller than
that of the concrete prism. To address meshing issues in the finite element (FE) model,
previous studies (Lu et al., 2005b, Lin and Wu, 2016, Shi et al., 2019) have proposed
using a nominal FRP laminate thickness, such as 1.0 mm. However, to maintain a
constant axial stiffness (Ety) of the FRP laminate, the Young's modulus needs to be
adjusted accordingly. As shown in (Lu et al., 2005b, Lin and Wu, 2016, Shi et al., 2019),
this approach of using a nominal thickness can increase the element size of the FRP
laminate, reducing computational costs. This section aims to evaluate the validity of the
nominal FRP thickness assumption in the meso-scale model and explore the impact of

varying FRP thickness while keeping a constant Young's modulus on the debonding
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behavior.

To assess the validity of the nominal FRP thickness assumption, three thicknesses,
i.e., #~=0.25 mm, #=0.5 mm and #~=1.0 mm, are considered, with the Young's moduli
adjusted to maintain a constant axial stiffness. Fig. 14(a) illustrates the predicted load-
slip curves. It shows that the curves for different thicknesses exbibit similar behavior
until the slip reaches 0.75 mm. Beyond that point, clear deviations between the curves
occur, with thicker laminate cases tending to have larger ultimate slips. One possible
reason for this phenomenon could be the variation in bending stiffness, which can affect
the stress conditions during debonding propagation. Fig. 14(b) depicts the
corresponding normalized crack lengths. The increase in the normalized crack length
quantitatively indicates that the thickness of the FRP laminate still influences the crack
pattern, even when maintaining a constant axial stiffness. This trend is supported by the
local crack patterns depicted in Fig. 15, where the thickest case exhibits more and
deeper cracks compared to the other cases, as indicated by the yellow rectangle.

To investigate the impact of the thickness of the FRP laminate while keeping the
Young’s modulus constant, three different thickness cases, i.e., #=0.25 mm, #=0.5 mm
and #=1.0 mm, are considered. Fig. 16(a) illustrates the predicted load-slip curves
corresponding to various thicknesses. It can be observed that increasing the thickness
of the FRP laminate leads to a notable increase in the maximum load but a decrease in
ultimate slip, aligning with the experimental findings reported by (Zhang and Smith,

2013). In Fig. 16(b), the normalized crack length is depicted, revealing a consistent
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decrease with increasing FRP thickness. Fig. 17 illustrates the local crack patterns. It
can be seen that the trend in normalized crack length is influenced by the smoothness
of the crack pattern. The thicker laminate case (Fig. 17 (c)) exhibits fewer dentiform
cracks compared to thinner cases (i.e., Fig. 17 (a) and (b)), as indicated by yellow

rectangles.

Conclusions

This paper proposes a novel meso-scale phase field model for accurately
simulating the debonding behavior of FRP-to-concrete joints under monotonic loads.
The proposed model has been successfully validated using pull-off tests reported in
existing literature. The predicted results, including load-slip curves, axial strain
distributions in FRP laminates, and debonding crack patterns, exhibit good agreement
with experimental findings. One notable advantage of the proposed meso-scale phase
field model, when compared to existing homogeneous models, is its explicit
consideration of aggregate distribution. This feature enables the capture of complex
failure mechanisms, such as mortar failure, ITZ failure, and frictional effects, leading
to a more comprehensive understanding of the debonding process in FRP-to-concrete
joints. Moreover, the incorporation of a crack density function within the phase field
model allows for accurate reproduction of the surface area of cracks, facilitating
quantitative investigations of crack density-related behaviors. Through numerical

investigations, it has been found that the damage per unit area in the concrete beneath
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the bonded surface is influenced by the adhesive modulus. A smaller adhesive modulus
will lead to more damage, and as the modulus increases, it tends to approach the
perfectly bonding case. When the tensile/axial stiffness (i.e., Young’s modulus x
thickness) of the FRP laminate is kept constant, different FRP laminate thicknesses will
lead to different debonding behaviors. Such differences become more significant when
changing the laminate thickness while keeping the Young's modulus of the FRP
laminate constant, indicating a prominent influence of the axial stiffness of the FRP
laminate on the debonding behavior of FRP-to-concrete joints. It should be noted that
while the pull-off test in this paper is simulated under a plane stress hypothesis, the
actual debonding behavior is three-dimensional. Therefore, a nature extension of the
proposed meso-scale model to three-dimensional cases can be pursued. The relevant

work will be carried out in the future.
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672 Nomenclature

E
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fus 1.
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02 %

n,n

1°

m? c

Body and boundary forces

Widths of the FRP laminate and concrete prism

Global and local damaged elasticity matrices

Damage phase field and its time derivative

Young’s moduli for aggregates, mortar and concrete

Young’s moduli for FRP laminate and adhesive

Cubic compressive strengths for aggregates and concrete

Cylinder compressive strengths for mortar and concrete

Tensile and shear failure degradation functions

Shear-friction failure degradation function

Tensile and shear critical energy release rates

Length scales of damage and interface phase fields

Principal stress directions

Thickness of FRP laminate

Stress and strain rotation matrices

Displacement field

Tensile and shear strengths

Cohesion strength
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a Crack angle
B, Width factor
Va Crack surface density function
3 Strain tensor
n Interface phase field
K Artificial damage phase field viscosity
P density
o Stress tensor
o), T, Normal and shear stresses at crack surfaces
T Historical maximum shear stress
T, Reduced shear stress at crack surfaces
Ty The component of shear stress that excludes friction stress
@ Friction angle
vy, Elastic energy densities governing tensile and shear damage
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Tables

Table 1 Material properties and geometric details of the pull-off tests.

Experiment f. (MPa) b.(mm) by(mm) t/(mm) Er(GPa)
Ali-Ahmad et al. NO. 1 38.0 125 46 0.167 230.0
Yao et al. I1-5 23.0 150 25 0.165 256.0
Wu and Jiang C50-250-1 46.1 150 50 0.167 248.3
Wu and Jiang C60-250-1 56.4 150 50 0.167 248.3

Figure Captions

Fig. 1 (a) Considered continuum domain with boundary conditions and a crack and (b) stress state
at the point depicted in right figure.
Fig. 2 (a) Principal stress and (b) stress components at the local coordinate system with x -axis along
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crack direction.

Fig. 3 Sharp and diffusive crack topology. (a) Shape crack embedded in the continuum domain Q

and (b) the regularized crack I'q represented by crack phase field d.

Fig. 4 Sketches of mortar cracking and ITZ debonding: (a) the discrete representation and (b) the

regularized representation.

Fig. 5 Geometry and boundary condition of the TPB test.

Fig. 6 The experimental (Hoover et al., 2013) and predicted force-CMOD relationships, along with

simulated crack patterns in meso-scale regions: (a) specimen of D=40 mm and 4=0.15; (b) specimen

of D=40 mm and 4=0.3; (c) specimen of D=93 mm and /=0.15; and (d) specimen of D=93 mm and

4=0.3.

Fig. 7 Two-dimensional pull-off test FE model.

Fig. 8 Comparison of the predictions with experimental results.

Fig. 9 Predicted and experimental load-slip curves: (a) specimen No. 1 in (Ali-Ahmad et al., 2006);

(b) specimen II-5 in (Yao et al., 2005); (c) specimen C50-250-1 in (Wu and Jiang, 2013); (d)

specimen C60-250-1 in (Wu and Jiang, 2013).

Fig. 10 Predicted and experimental axial strain distributions in FRP: (a) specimen No. 1 in (Ali-

Ahmad et al., 2006); (b) specimen II-5 in (Yao et al., 2005); (c) specimen C50-250-1 in (Wu and

Jiang, 2013)

Fig. 11 Predicted crack patterns: (a) proposed model for specimen No. 1 in (Ali-Ahmad et al., 2006);

(b) proposed model for specimen C60-250-1 in (Wu and Jiang, 2013); (c) numerical simulations

from (Lin and Wu, 2016, Lu et al., 2005b, Li and Guo, 2019) by using homogeneous models.
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Fig. 12 Numerical predictions of the proposed model for various adhesions: (a) load-slip curves; (b)
normalized crack lengths.

Fig. 13 Predicted crack patterns near the loaded end for various adhesions: (a) E./E=3.3%107; (b)
Ead E/9.7x107%; (¢) Ead EF~9.7%1072.

Fig. 14 Numerical predictions of the proposed model for various FRP thicknesses (constant FRP
axial stiffness): (a) load-slip curves; (b) normalized crack lengths.

Fig. 15 Predicted crack patterns near the loaded end for various FRP thicknesses (constant FRP axial
stiffness): (a) #=0.25 mm; (b) #=0.5 mm; (c) #=1.0 mm.

Fig. 16 Numerical predictions of the proposed model for various FRP thicknesses (constant FRP
Young’s modulus): (a) load-slip curves; (b) normalized crack lengths.

Fig. 17 Predicted crack patterns near the loaded end for various FRP thicknesses (constant FRP

Young’s modulus): (a) #=0.25 mm; (b) #=0.5 mm; (c) t=1.0 mm.
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