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Abstract Externally bonded fiber-reinforced polymer (EB-FRP) laminates have 10 

become a popular technique for strengthening existing reinforced concrete (RC) 11 

structures. However, the high tensile strength of the FRP laminate is often not fully 12 

utilized due to premature debonding failure of the FRP-to-concrete interface, typically 13 

occurring in a thin layer beneath the bond interface. Numerical simulations have gained 14 

significant attention as a supplement to experimental tests, as they have the ability to 15 

provide valuable insights into the debonding process. However, most existing 16 

numerical models for EB-FRP joint debonding are unable to explicitly consider cracks 17 

within different concrete phases (i.e., mortar and interfacial transition (ITZ)), or 18 

precisely capture the corresponding failure mechanisms involving mortar cracking, ITZ 19 

debonding and kinking. This study proposes a novel meso-scale phase field model for 20 
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concrete, which is capable of accurately modeling complex failure behaviors, including 21 

mixed-mode fracture in both the mortar and ITZ, as well as friction on cracked surfaces. 22 

The ITZ is regularized using an auxiliary interface phase field and then the overall 23 

mixed-mode failure behaviors in both the mortar and ITZ are modeled using a unified 24 

damage phase field. To validate the proposed meso-scale model, three pull-off tests of 25 

FRP-to-concrete bonded joints, which were well reported in existing literature, are 26 

simulated. Moreover, the model is used to investigate the effects of adhesion and the 27 

FRP laminate on the debonding behavior of the FRP-to-concrete joints.  28 

Keywords: FRP-to-concrete bonded joints; meso-scale modeling; phase field model; 29 

Pull-off test 30 

Introduction  31 

Externally bonded fiber-reinforced polymer (EB-FRP) laminates have become one 32 

of the most favored techniques for strengthening reinforced concrete (RC) structures. 33 

In comparison to traditional strengthening materials, such as steel plates, FRP laminates 34 

can offer some outstanding advantages such as high strength-to-weight ratio, superior 35 

corrosion resistance, and customizable material properties. However, numerous studies 36 

have shown that the high tensile strength of the FRP laminate is often not fully utilized 37 

due to premature debonding failure of the FRP-to-concrete interface (Chen and Teng, 38 

2001, Teng et al., 2002, Teng et al., 2003, Dai et al., 2005, Lu et al., 2005a, Ali-Ahmad 39 

et al., 2006, De Lorenzis and Teng, 2007). This debonding failure is influenced by 40 
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various factors, such as bond length, FRP to concrete width ratio, FRP axial stiffness, 41 

adhesive modulus and concrete strength (Chen and Teng, 2001, Yao et al., 2005, Dai et 42 

al., 2009, Wu and Jiang, 2013). Additionally, Pan and Leung (2007) found that the 43 

debonding process was also affected by concrete composition, as the interfacial friction 44 

resulting from aggregate interlocking within the fracture process zone could prevent 45 

damage evolution. However, it is very challenging to precisely evaluate the effect of 46 

aggregate distribution, shape and size on the bond capacity through experimental tests 47 

due to uncertainties that might be involved in preparation and test processes, such as 48 

surface treatment, adhesive thickness control, and load eccentricity. Therefore, 49 

advanced numerical simulation can serve as a supplement to experimental tests in 50 

investigating the underlying debonding mechanisms of FRP-to-concrete bonded joints 51 

(Yang et al., 2003, Lu et al., 2005b, Wu and Jiang, 2013, Tao and Chen, 2015, Kai et 52 

al., 2022). Despite significant efforts dedicated to this research area, the influence of 53 

adhesive properties, bending stiffness of the FRP laminate, and concrete composition 54 

on debonding mechanisms, particularly the complex mixed-mode fracture in the thin 55 

layer and the resultant interfacial fracture energy, which is defined as the area beneath 56 

the shear stress-slip relationship of the FRP-to-concrete interface assuming an overall 57 

Mode II loading condition, remains controversial (Dai et al., 2005, Lu et al., 2005a, Wu 58 

and Jiang, 2013).  59 

Extensive research indicates that debonding of FRP laminates usually occurs 60 

within a thin layer in the concrete prism, approximately 1-5 mm away from the adhesive 61 



4 
 

interface.(Lu et al., 2005b, Yao et al., 2005). Considering the commonly employed 62 

coarse aggregate size distribution in concrete, this debonding behavior clearly occurs 63 

within the mesoscopic length scale. Therefore, many mesoscale modellings of FRP-to-64 

concrete debonding tests have been conducted over the last two decades. Those 65 

simulations can be broadly classified into two groups: homogeneous and heterogeneous 66 

meso-scale models. In homogeneous models, the concrete is assumed to be a uniform 67 

material with properties determined using homogenization techniques. Then to capture 68 

the meso-scale failure patterns beneath the adhesion layer, failure modellings are 69 

conducted using very small element sizes. This modeling strategy has been employed 70 

in several studies, including (Lu et al., 2005b, Lin and Wu, 2016, Wu and Jiang, 2013, 71 

Tao and Chen, 2015, Li and Guo, 2019), which have shown good agreement with 72 

experimental results. Although using elements that are one-order smaller than the 73 

thickness of the fracture layer seems to be a plausible approach for modeling debonding 74 

behaviors, there are still some concerns that need to be addressed. For instance, it 75 

remains unclear whether the homogenized material properties can accurately capture 76 

localized failures, such as small cracks that are parallel or inclined to the adhesion layer. 77 

Additionally, it is uncertain whether this modeling strategy can effectively describe the 78 

influence of aggregates near the bonded surface. Some of these factors were 79 

investigated by Coronado and Lopez (2010). They employed a crack band model to 80 

simulate the debonding process and assigned distinct properties to the crack band level 81 

and the concrete. An alternative modeling strategy is the heterogeneous model, which 82 
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treats concrete as a multi-phase material comprising of mortar, aggregate and the 83 

interfacial transition zone (ITZ). By considering the debonding failure length scale, this 84 

strategy can provide a more precise and comprehensive understanding of the debonding 85 

process in FRP-to-concrete joints. However, there are currently only a limited number 86 

of numerical studies available in this field. Li et al. (2021) investigated the impact of 87 

coarse aggregate distribution on debonding behavior using a meso-scale model. 88 

However, they did not account for the ITZ, which significantly contributes to concrete 89 

damage. In fact, one major factor limiting the wide application of the heterogeneous 90 

model is the numerical difficulty. To be an effective heterogeneous model, it should 91 

possess the following characteristics based on the debonding behavior of the FRP-to-92 

concrete joint: (1) the ability to handle complex failure patterns, including branching 93 

and connecting; (2) the ability to account for mixed-mode failure and subsequent 94 

friction; and (3) the ability to consider the interaction of failure within different phases, 95 

such as interfacial cracking and kinking into the mortar. One of the most promising 96 

methods that can fulfill these requirements is the phase field model of fracture.  97 

The phase field model of fracture is a non-local smeared crack model based on the 98 

Francfort-Marigo variational principle (Francfort and Marigo, 1998). This model 99 

utilizes a continuous scalar damage phase field to regularize cracks and treats damage 100 

evolution as a competition between deformation and fracture energies. As a result, it 101 

can handle complex failure patterns without requiring additional failure criteria or crack 102 

tracking strategies. This makes it one of the most promising methods in computational 103 
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fracture mechanics. Furthermore, one prominent advantage of the phase field model of 104 

fracture, compared to traditional smeared crack models, is its ability to theoretically 105 

reproduce the discrete crack surface area by integrating the crack surface density 106 

function, which enables the model to quantitatively investigate the failure process of 107 

materials. Phase field models of fracture have been successfully applied to various 108 

fracture problems, including brittle fracture (Bourdin et al., 2000, Miehe et al., 2010b, 109 

Ambati et al., 2015b), ductile fracture (Borden, 2012, Miehe et al., 2015, Ambati et al., 110 

2015a) and composites fracture (Zhang et al., 2019a, Quintanas-Corominas et al., 2019, 111 

Bui and Hu, 2021) problems. The author recently proposed a meso-scale phase field 112 

model for multi-phase materials (Zhang et al., 2019b, Zhang et al., 2020, Zhang et al., 113 

2023), which has been demonstrated to accurately hand complex failure patterns and 114 

the interactions of failure between different phases. However, this model is primarily 115 

designed for analyzing tensile-dominated failure.  116 

This paper aims to propose a new meso-scale phase field model capable of 117 

considering mixed-model failure and the resulting friction between crack surfaces. The 118 

next section presents the proposed phase field model, which incorporates the effect of 119 

crack angle into the constitutive law and the damage phase field driving force, which 120 

distinguishes it from traditional phase field models of fracture. The proposed model 121 

constructs energy densities that contribute to the evolution of both tensile and shear 122 

failure by using a local crack coordinate. These densities are integrated into the 123 

variational principle (Francfort and Marigo, 1998) to derive a non-local damage phase 124 
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field evolution equation. It is important to note that, to improve computational 125 

efficiency and mitigate convergence issues, the crack angle is only calculated at the 126 

onset of damage, such calculation is only valid under monotonic loads. Then, the 127 

construction of a phase field model-based meso-scale modeling framework is presented. 128 

A total of 17 pull-off tests from existing literature are simulated to validate the proposed 129 

model. The influences of adhesion and FRP properties on FRP-to-concrete joints are 130 

then investigated. Finally, the conclusions of the present study are provided. 131 

Proposed phase field model for mixed mode failure 132 

Constitutive law 133 

Consider a continuum solid material occupying a domain dimRΩ∈  as shown in 134 

Fig. 1(a), where dim is the dimension. Ω  is subjected to a prescribed traction ( ), tt x  135 

and a prescribed displacement ( ), tu x . The domain may be subjected to a body force 136 

per volume ( ), tb x  . Assuming that the material is isotropic and linear elastic, the 137 

constitutive relationship is  138 

 :=C:σ ε  (1) 139 

where σ   is the stress tensor. ε   is the strain tensor, and C   is the fourth-order 140 

elasticity tensor. 141 

Then, consider a cohesive crack dim
c RΓ ∈  as shown in Fig. 1(a). For a point x at 142 

the crack surface, Fig. 1(b) gives the corresponding 2D stress state. Within the phase 143 

field model framework, the influence of cracks on the constitutive law can be 144 
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considered using the damage phase field d, which characterizes the material’s damage 145 

state, as  146 

 ( ), :d d θ=C :σ ε  (2) 147 

where dC  is termed as the damaged elasticity tensor.  148 

To simplify the derivation of the damaged elasticity tensor dC  , the principal 149 

stresses 1σ  and 2σ  are considered with n1 and n2 the corresponding principal stress 150 

axes and assume that the crack angle is α  with respect to n2. As shown in Fig. 2(b), a 151 

local coordinate system x’Oy’ can be built, through which the vectors that are along and 152 

normal to the crack can be specified by  153 

 1 2,= ⋅ = ⋅m R n n R n  (3) 154 

where R is the rotation matrix. Accordingly, the stress and strain vectors at the local 155 

coordinate can be specified as 156 

 
' '

' '

' ' ' '

,
x x x x

y y y y

x y xy x y xy

σ ε

σ σ ε ε
σ σ ε ε
τ τ γ γ

       
       = ⋅ = ⋅       
       
       

T T  (4) 157 

where the stress and strain rotation matrices are  158 

 

2 2 2 2

2 2 2 2

2 2 2 2

2
2 ,

2 2

l k kl l k kl
k l kl k l kl
kl kl l k kl kl l k

σ ε

   
   = − = −   
   − − − −   

T T  (5) 159 

in which 1(1)l = n  and 1(2)k = n . At the local coordinate, the softening of the material 160 

stiffness resulting from tensile and shear damage can be characterized by the damage 161 

phase field d using two degradation functions: ( )Ig d  for tensile failure and ( )IIg d%  162 

for shear failure and friction. Explicit forms of the two degradation functions will be 163 
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discussed in the following sections. Accordingly, the damaged elasticity matrix at the 164 

local coordinate can be specified by 165 

 
11 12

21 22

33

0
( , ) 0

0 0

I II
loc
d I II I

II

C g g C
d g g C g C

g C
α

 
 =  
  

C
%

%
%

 (6) 166 

where Cij (i,j=1,2,3) is the (i,j)th value of the intact elasticity matrix. Therefore, the 167 

damaged elasticity matrix at the global coordinate can be obtained as 168 

 1( , ) loc
d dd σ εα −= ⋅ ⋅C T C T  (7) 169 

Phase field model for mixed-mode failure 170 

This section proposes a phase field model for mixed-mode failure. The main feature 171 

that distinguishes the present model from tradition phase field models of fracture is the 172 

incorporating of the mixed-model failure constitutive law constructed in the previous 173 

section. The determination of the crack angle and energy densities driving different 174 

failure patterns will be given in the following derivations.  175 

Consider a system as shown in Fig. 3(a) and the corresponding smeared crack case 176 

characterized by the damage phase field d as shown in Fig. 3(b), in which d=0 and d=1 177 

represent intact and totally damaged states, respectively. The elastic energy We and the 178 

external energy Wt can be specified as 179 

 ( , , )d , d d
t

e e tW d V W S Vψ α
Ω Γ Ω

= = ⋅ + ⋅∫ ∫ ∫t u b uε  (8) 180 

where eψ  is the strain energy density. For a time-depended system, the kinetic energy 181 

Wk can be specified as 182 
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 1 d
2kW Vρ

Ω
= ⋅∫ u u& &  (9) 183 

where ρ  is the mass density.  184 

According to (Bourdin et al., 2000) the fracture energy with respect to the smeared 185 

crack description can be given by 186 

 ( , )df c dW G d d Vγ
Ω

= ∇∫  (10) 187 

where ( , )d d dγ ∇  is termed as the crack surface density function, whose integration 188 

over the entire domain gives the real crack surface area. Gc is the critical energy release 189 

rate. It should be noticed that Eq. (10) is the fracture energy for the traditional phase 190 

field model, which can only consider the tensile failure. In the following, a modified 191 

form will be proposed to consider the mixed-mode failure. Following (Bourdin et al., 192 

2000), the general form of the crack surface density function can be given by  193 

 0
0 0

1 1( , ) ( )d d d d l d d
c l

γ ω
 

∇ = + ∇ ⋅∇ 
 

 (11) 194 

where l0 is the damage phase field internal length scale characterizing the width of the 195 

smeared crack. ω(d) and c0 are the crack geometry function and model parameter, 196 

respectively (Wu, 2017). 197 

An viscosity part related to the rate of the damage phase field can be given by 198 

(Zhang et al., 2021) 199 

 
21 d d

2
d

v t
W d V tκ

Ω +
= ⋅∫ ∫ &  (12) 200 

where the bracket operator is defined as ( ) / 2x x x
±
= ± . κ is the artificial phase field 201 

viscosity (Miehe et al., 2010b). 202 

The Lagrange functional of the considered system can be specified as 203 
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 ( , ) d
k v t e fL W W W W W= + + − −q q&  (13) 204 

where [ , ]d=q u . Then according to the Lagrange dynamical equations 205 

 d
d

L L
t
 ∂ ∂

− = ∂ ∂ 
0

q q&
 (14) 206 

the governing equations and the boundary conditions can be obtained as 207 

 ( , , ) ine d ,  ψ α ρ∂
∇⋅ + Ω

∂
b = u&&ε

ε
 (15) 208 

 ( , , ) ( , ) ine d

c

d d d d ,  
d G d

ψ α γ κ
+

∂ ∂ ∇
− − Ω

∂ ⋅ ∂
= &ε  (16) 209 

 ( , , ) ate
t

d ,  ψ α∂
⋅ Γ

∂
p = tε

ε
 (17) 210 

 0 atd ,  ∇ ⋅ Γp =  (18) 211 

where p denotes the outward unit normal vector of the boundary Γ It is noteworthy that 212 

the crack angle α in Eqs. (15)-(17) is an internal variable that depends on the stress 213 

state. The expression for calculating this angle will be given in the following sections. 214 

Therefore, it is not considered in the variational operation.  215 

As discussed previously, the fracture energy Wt in Eq. (10) is defined for the 216 

traditional phase field model (Francfort and Marigo, 1998, Bourdin et al., 2000, Miehe 217 

et al., 2010a). In order to extend the traditional phase field model to account for mixed-218 

mode failure, a modified phase field evolution equation is introduced to replace Eq. 219 

(16). 220 

 ( , )d d dF d
d

γ κ
+

∂ ∇
− =

∂
&  (19) 221 

where F is the driving force for damage phase field evolution. To account for different 222 

failure modes, a mixed driving force form is adopted as 223 
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 ( ) ( ) ( ) ( )n n
I I II II

I II

g d g dF
d G d G

ψ ψ∂ ∂
= − ⋅ − ⋅

∂ ∂
ε ε  (20) 224 

where GI and GII are the critical energy release rates for tensile and shear damage, 225 

respectively. ( )IIg d  is the degradation function used to characterize the softening of 226 

the material stiffness due to shear failure. Therefore, ( )IIg d  is a component of the 227 

shear-friction degradation function ( )IIg d%   introduced in Eq. (6), and the explicit 228 

expression will be given in the following sections. The elastic energy densities 229 

corresponding to tensile and shear failure are denoted as n
Iψ  and n

IIψ , respectively. 230 

These energy densities can be determined using the constitutive law. Referring to the 231 

local coordinate illustrated in Fig. 2(b), the elastic stress components parallel and 232 

perpendicular to the crack surface are denoted as ' '
n
m x yτ τ=  and '

n
n yσ σ= , respectively. 233 

Accordingly, the tensile energy density can be specified as 234 

 

2

2

n
nn

I E

σ
ψ +=  (21) 235 

The shear strength of materials can be characterized by Mohr-Coulomb criterion 236 

based on the relationship between shear stress and normal stress on a plane of failure 237 

as 238 

 ( ) tann
sh I n oY g d Yσ φ

−
= ⋅ +  (22) 239 

where ϕ is the friction angle and Yo is the cohesion strength. The first term of the right-240 

hand side of the equation represents the contribution due to the normal compressive 241 

stress at the plane of failure, which is referred to as the reduced friction stress 242 

( ) tann
f I ng dτ σ φ

−
= ⋅   in this study. Accordingly, the shear energy density can be 243 
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defined by 244 

 
( )2

2

n
IIn

II G
τ

ψ =  (23) 245 

where  246 

 n n
II m fτ τ τ

+
= −  (24) 247 

is the component of shear stress that excludes the contribution from friction stress. As 248 

the evolution of damage in a material is closely related to the contact condition between 249 

crack surfaces, the shear energy density should be calculated incrementally during this 250 

process, which can be given by  251 

 ( ) ( ) ' '

1
' '

1
d

k
x y

k
x y

k kn n n
II II II

γ

γ
ψ ψ τ γ

−

−
= + ∫  (25) 252 

where the superscripts k and k-1 denote the current and previous loading increments, 253 

respectively. 254 

To prevent physically unrealistic self-healing resulting from local unloading, two 255 

history-dependent variables are introduced as 256 

 { } { }
[0, ] [0, ]

max ( , ) , max ( , )n n
I I II IIj t j t

H j H jψ ψ
∈ ∈

= =ε ε  (26) 257 

Accordingly, the new phase field driving force in Eq. (20) can be rewritten as  258 

 ( ) ( )I I II II

I II

g d H g d HF
d G d G

∂ ∂
= − ⋅ − ⋅

∂ ∂
 (27) 259 

Crack angle, damage initiation and evolution 260 

The unified phase field model of fracture proposed by Wu (2017) suggests that the 261 

influence of tensile-dominated cohesive damage on the softening of the material 262 

stiffness can be characterized by a parametric degradation function, which is defined as 263 
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2

2 2
1 1

(1 )( )
(1 ) 0.5I

dg d
d a d a d

−
=

− + −
 (28) 264 

where a1 is related to material properties. For tensile failure, it can be defined by 265 

 1 2
0 0

4 I

I

EGa
c l Y

=  (29) 266 

where GI and YI are the tensile critical energy release rate and strength, respectively.  267 

According to the constitutive law in Eq. (2) and shear energy density in Eqs. (22)268 

-(25), an interpolative degradation for shear-friction failure is defined by 269 

 [ ]
max

( ) ( ) 1 ( ) f
II II IIg d g d g d

τ
τ

= + − ⋅%  (30) 270 

where { }max [0, ]
max ( , )n

mj t
jτ τ

∈
= ε   is the historical maximum shear stress and a1 can be 271 

defined as 272 

 1 2
0 0

4 II

o

GGa
c l Y

=  (31) 273 

Eq. (30) shows that when the friction stress vanishes (i.e., 0fτ =  ), II IIg g=%  , 274 

indicating that IIg%  is related only to shear failure. On the other hand, when 0fτ ≠   275 

and 0IIg =   (indicating total damage), IIg%   is only dependent on frictional sliding. 276 

These relationships highlight the dependence of IIg%   on both shear failure and 277 

frictional sliding and demonstrate how it varies under different conditions. 278 

Eq. (27) shows that the damage driving force F is closely related to the crack 279 

angle α. To determine α, two assumptions are made in this paper. First, it is assumed 280 

that the crack will always evolve in the direction of the maximum damage driving force. 281 

Second, to improve computational efficiency and mitigate convergence issues, it is 282 



15 
 

assumed that the crack angle is only calculated at the onset of damage. This means that 283 

the proposed model considers monotonic loads only. Accordingly, the crack angle can 284 

be determined by 285 

 
0

( ) ( )arg max{ } arg max I I II II

I II d

g d H g d HF
d G d Gα α

α
=

 ∂ ∂
= = − ⋅ − ⋅ ∂ ∂ 

 (32) 286 

Substituting the degradation functions and energy densities into Eq. (32), the above 287 

equation can be rewritten as 288 

 

22

2 2
0 0 0

2arg max
nn
m fn

Ic l Y Yα

τ τσ
α + +

  −  = ⋅ +      

 (33) 289 

It is noteworthy that for traditional phase field models of fracture, the damage 290 

initiation criterion is implicitly embedded in the damage evolution equation (Bourdin 291 

et al., 2000). However, we have proven that by properly defining the energy densities 292 

and the degradation functions, some widely adopted initiation criteria (such as Hashin 293 

damage criterion) can be implicitly embedded into the phase field model (Zhang et al., 294 

2021). For the present model, the corresponding damage initiation criterion can be 295 

obtained through  296 

 
0

0

( , ) 0d
d

d

d dF
d

γ
=

=

∂ ∇
− =

∂
 (34) 297 

Substituting the driving force (Eq. (27)) into Eq. (34), a damage initiation criterion 298 

that is implicitly embedded in the proposed phase field model can be obtained as 299 

 

22

2 2
0

1
nn
m fn

IY Y

τ τσ
+ +

−
+ =  (35) 300 

The above equation indicates that a quadratic stress-based damage initiation criterion 301 
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is automatically embedded in the model. If friction stress is not considered, Eq. (35) 302 

will degenerate into the widely used stress-based initiation criterion for cohesive zone 303 

models (Turon et al., 2006). Moreover, by comparing Eq. (35) and the equation used 304 

to determine the crack angle (i.e., Eq. (33)), it can be seen that the embedded damage 305 

initiation criterion is consistent with the crack angle determination procedure. This 306 

consistency indicates that the potential crack direction is also where the damage tends 307 

to initiate, which is physically reasonable.  308 

Meso-scale phase field model 309 

Meso-scale concrete model and ITZ regularization 310 

Concrete is a heterogeneous material composed of different components: mortar, 311 

aggregates and the ITZ. These components have different properties and can be 312 

modeled as isotropic materials at the meso-scale (Ren et al., 2015, Kai et al., 2023b, 313 

Kai et al., 2023a). However, the material heterogeneity can significantly affect the 314 

internal failure pattern of concrete. To addressed this, we propose a meso-scale phase 315 

field model that can capture the failure of both the mortar and the ITZ within a unified 316 

phase field framework. For simplicity, only coarse aggregates larger than 2.4 mm are 317 

considered, while other fine aggregates, along with cement are regarded as the mortar 318 

phase (Xi et al., 2018, Hu et al., 2022). A typical three-segment gradation size 319 

distribution is employed, as described by (Neville, 1995, Xi et al., 2018): 2.40-4.76mm 320 

(8.08%), 4.76-9.52mm (15.96%), and 9.52-19.05mm (15.96%). In the simulations, 321 
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aggregates are represented using polygons with 5 to 8 sides. And the corresponding 322 

random aggregate distribution is generated by a put and take algorithm, with further 323 

details available in (Xi et al., 2018). 324 

Consider a domain Ω   containing an aggregate as shown in Fig. 4. In typical 325 

normal strength concrete, the aggregates are generally stronger than the mortar and the 326 

ITZ. As a result, this paper only considers mortar cracking and ITZ debonding (Fig. 327 

4(a)). The mixed mode phase field model, which is proposed in the previous section, 328 

can be directly used to simulate mortar cracking. However, accurately modeling ITZ 329 

debonding remains challenging due to the ITZ’s thickness, which is normally tens of 330 

microns (Barnes et al., 1979). Such a thin ITZ thickness necessitates the use of a very 331 

dense element mesh, which may distort elements in adjacent areas. Currently, there are 332 

two modeling categories for ITZ debonding: (a) using zero-thickness cohesive elements 333 

(Ren et al., 2015, Yılmaz and Molinari, 2017, Xi et al., 2018), and (b) using an 334 

approximate ITZ thickness of about 0.1 mm – 1 mm (Šavija et al., 2013, Du et al., 2014, 335 

Huang et al., 2015, Zhou et al., 2017). In this paper, we adopt a combined ITZ modeling 336 

strategy. During the elastic stage, ITZ is regarded to have zero thickness, which implies 337 

that the mortar and the aggregate are perfectly bonded. During the debonding evolution 338 

stage, the ITZ’s fracture properties, such as its strengths, critical energy release rates, 339 

and friction angle, are regularized in the adjacent mortar phase. This interface 340 

regularization method is inspired by the traditional phase field model of fracture and 341 

can be naturally integrated into the current modeling framework. Previous numerical 342 
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results have demonstrated that this strategy is capable accurately capturing ITZ 343 

debonding (Nguyen et al., 2016, Zhang et al., 2019b, Zhang et al., 2020, Li et al., 2020, 344 

Hu et al., 2022).  345 

Fig. 4(b) shows that an interface phase field, denoted as η, is introduced to 346 

regularize the ITZ. The corresponding governing equation and boundary conditions for 347 

η are (Zhang et al., 2019b) 348 

 2 0, inilη η− ∆ = Ω  (36) 349 

 ( ) 1, at iη = Γx  (37) 350 

 0, atη∇ ⋅ = Γp  (38) 351 

where li is internal length scale of the the interface phase field, which generally can be 352 

set to be the same as that of the damage phase field, i.e., li=l0 (Zhang et al., 2019b, Hu 353 

et al., 2022). iΓ  is the aggregate boundary. It is important to note that the interface 354 

phase field can be solved using either an implicit or an explicit solution scheme. 355 

However, once η is determined, no further updates are necessary, regardless of the 356 

solution scheme used. As a result, this additional degree of freedom (DOF) will have 357 

minimal impact on the overall computational efficiency. For more details of the 358 

interface phase field, refer to (Zhang et al., 2019b, Zhang et al., 2020). 359 

Following the work conducted by Hu et al. (2022) a sharp transition between 360 

different phases is employed as 361 

 
( ) ITZ

Otherwise Mortar
xη η≥




 (39) 362 

We would like to reiterate that in Eq. (39), the ITZ and the mortar only represent the 363 
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corresponding fracture properties, as the ITZ is not considered during the elastic stage. 364 

η  is a specified value that controls the boundary between different phases. In this paper, 365 

we set the thickness of the ITZ to be the same as the smeared crack width. It is well 366 

known that in phase field models, the sharp crack surface area can be reproduced by 367 

integrating the crack density function dγ  over the smeared crack region. Therefore, 368 

the current approach to treating ITZ thickness ensures that the ITZ’s fracture energy 369 

can be accurately captured during the modeling. According to (Wu, 2017), the width of 370 

the fully developed smeared crack can be given by 371 

 0 0D c l= ⋅  (40) 372 

Using the one-dimensional analytical solution of the interface phase field,  373 

 exp
i

x
l

η
 

= − 
 

 (41) 374 

the specified value η  can be obtained as 0exp( )cη = − . 375 

Meso-scale modeling 376 

Material properties determination and verification 377 

According to Euro Code (2005), the Young’s modulus of the aggregate can be 378 

determined by 379 

 
0.3

22
10

a
a

fE  =  
 

 (42) 380 

where fa is the cubic compressive strength of the aggregate.  381 

The Young’s modulus of the homogenized concrete can determined using the 382 
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Chinese code for design of concrete structures as (Lu et al., 2005a) 383 

 100
2.2 34.74 /c

c

E
f

=
+

 (43) 384 

where fc is the cubic compressive strength of the concrete.  385 

According to the Mori-Tanaka homogenization theory (Mori and Tanaka, 1973, Li 386 

et al., 2021), the Young’s modulus of the mortar Em can determined using the following 387 

relationship  388 

 ( )
1 (1 )

a a m
c m

a m

V E EE E
V f
−

= +
+ −

 (44) 389 

where Va is the aggregate volume fraction and the parameter fm is  390 

 ,
4 / 3 2(1 )

a m m
m m

m m m

E E Ef
E

µ
µ υ
−

= =
+ +

 (45) 391 

in which υm is the Poisson’s ratio of the mortar.  392 

As shown in earlier sections, the meso-scale modeling requires knowledge of the 393 

fracture properties of the mortar and the ITZ. According to (Sideris et al., 2004), the 394 

cylinder compressive strength of the mortar can be specified by 395 

 ' 12.4147
0.2964

m
m

Ef −
=  (46) 396 

Then according to the work conducted by Nagai et al. (Nagai et al., 2005), the tensile 397 

strength and the critical energy release rates for tensile failure of the mortar can be 398 

specified by 399 

 ( )'1.4 ln 1.5m
I mY f= ⋅ −  (47) 400 

 ( )
0.7'

20.0469 0.5 26
10

m m
I a a

fG d d
 

= − + ⋅ 
 

 (48) 401 
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where da=2.36 mm is adopted (Li et al., 2021). According to (Pina‐Henriques and 402 

Lourenço, 2006, Prakash et al., 2020), the critical energy release rate for shear failure 403 

of the mortar can be taken as four times that of the tensile failure, i.e., 4m m
II IG G= . 404 

According to (Nagai et al., 2005), the tensile strength i
IY  and the cohesion strength  405 

i
oY  of the ITZ can be obtained by 406 

 1.44 2.3i
I wY C= − +  (49) 407 

 2.6 3.9i
o wY C= − +  (50) 408 

where 409 

 '

1
0.047 0.5w

m

C
f

=
+

 (51) 410 

It is important to note that, to the best of the authors’ knowledge, there is currently no 411 

available method to directly evaluate the cohesion strength m
oY   of the mortar. 412 

Therefore, in this study, this parameter is determined by /m m i i
o I I oY Y Y Y= ⋅ . Furthermore, 413 

following the suggestions in (López et al., 2008, Huang et al., 2016), the critical energy 414 

release rates of the ITZ are set to be half that of the mortar, i.e., 0.5i m
I IG G=   and 415 

0.5i m
II IIG G= . In this study, the aggregate cubic compressive strength fa=122.63 MPa 416 

used in (Contrafatto et al., 2016, Li et al., 2021) is adopted. A typical friction angle 417 

ϕ=35o is adopted for both the mortar and the ITZ (Nagai et al., 2005). 418 

This section outlines the relationships among different material properties of 419 

concrete as adopted in existing literature. To further validate these relationships, three-420 

point bending tests conducted by Hoover et al. (2013) are simulated here by the 421 

proposed meso-scale phase field model. According to (Hoover et al., 2013), the 422 
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concrete used in these tests had a cylinder compressive strength of 55.6 MPa, a Young’s 423 

modulus of 41.24 GPa and a Poisson’s ratio of 0.172. By utilizing these known 424 

properties, the other material properties of concrete required for the simulations can be 425 

obtained based on the above-mentioned relationships.  426 

The geometry and boundary conditions for the tests are depicted in Fig. 5. Four 427 

different cases are considered for the verification, including two specimen sizes: D=40 428 

mm and D=93 mm, and two crack lengths: λ=0.15 and λ=0.3 for each specimen size. 429 

The predicted force versus crack mouth opening displacement (CMOD) curves, along 430 

with the corresponding crack patterns, are illustrated in Fig. 6. Experimental results 431 

reported by Hoover et al. (2013) are also included as grey regions for comparison. It 432 

can be seen that the predicted force-CMOD curves exhibit an initial elastic stage, 433 

followed by a softening stage after reaching the maximum value. These stages align 434 

well with the experimental data, indicating not only the validation of the proposed 435 

meso-scale phase field model but also the effectiveness of the material properties 436 

obtained through the relationships outlined in this section.  437 

Pull-off test FE model  438 

In the references (Lu et al., 2005b, Tao and Chen, 2015, Lin and Wu, 2016, Li and 439 

Guo, 2019), numerical simulations were conducted for the pull-off test, in which an 440 

FRP laminate is bonded to a concrete prism and subjected to tension. It should be noted 441 

that, for the sake of simplicity, most of the simulations were conducted using two-442 

dimensional models with the plane stress hypothesis. However, it is important to 443 
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acknowledge that the debonding of the FRP-to-concrete joint is not a two-dimensional 444 

case in theory, as the bond width of the FRP laminate is typically smaller than the width 445 

of the bonded surface of the concrete prism. Experimental results have demonstrated 446 

that the ratio between the widths of the FRP laminate and the prism concrete 447 

significantly influences the bond strength. To account for this three-dimensional width 448 

effect, it is common practice to incorporate a width factor βw into a two-dimensional 449 

model. According to Lin et al. (2017) this width factor can be given by  450 

 ( ) ( )0.50.385 0.438 1.71 8( ) 0.001 1 / / 1 0.01w co f f f c ff E t b b bβ − = + + − +   (52) 451 

where fco is the compressive strength of concrete; Ef and tf are the Young’s modulus and 452 

thickness of FRP laminate, respectively; bf and bc are the widths of the FRP laminate 453 

and concrete prism, respectively.  454 

The FE model and boundary conditions are depicted in Fig. 7. In this study, a 455 

displacement-controlled loading mode is employed. The proposed meso-scale phase 456 

field model is implemented in the commercial software ABAQUS (Version, 2011) 457 

through the users’ subroutine VUEL. For more details regarding the implementation 458 

and source codes, please refer to (Hu et al., 2023). As depicted in the figure, the concrete 459 

prism has a thickness of 45 mm. Along the thickness direction, it is divided into two 460 

distinct parts: the meso-scale part, which comprises aggregates, mortar and ITZ, and 461 

the homogenized concrete part. Extensive research indicates that debonding usually 462 

occurs within a thin layer in the concrete prism, approximately 1 - 5 mm away from the 463 

adhesive interface. Hence, to ensure the computational efficiency while allowing 464 
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sufficient depth for debonding evolution, the thickness of the meso-scale part is set to 465 

be tm=15 mm. Another critical consideration in meso-scale modeling is the three-466 

dimensional distribution of aggregates within the concrete prism. This heterogeneity 467 

cannot be adequately represented by a two-dimensional meso-scale model. 468 

Consequently, in this section, four different aggregate distributions are employed. 469 

These distributions can be viewed as two-dimensional slices extracted from the three-470 

dimensional pull-off test, specifically along the width direction. Each slice case uses 471 

the plane stress hypothesis and the width factor given in Eq. (52). As a result, the load-472 

slip curve of the pull-off test can be obtained by averaging the curves from the four 473 

aggregate distributions. The lengths of the FRP laminate and the concrete prism are 474 

Lf=150 mm and Lc=190 mm, respectively. There is an unbonded zone between the the 475 

loaded end and the right edge of the concrete prism, which has a length of Lr=25 mm. 476 

The restrained height, as shown in Fig. 7, is tu=15 mm. When bonding FRP to concrete, 477 

there are two common methods: using a prefabricated laminate bonded with adhesive 478 

or utilizing dry fiber sheets using a wet lay-up process (Teng et al., 2002, Lu et al., 479 

2005b). In the former method, the FRP laminate and the adhesive can be clearly 480 

distinguished. However, in the more widely adopted wet lay-up method, the boundary 481 

between the FRP laminate and the adhesive cannot be clearly distinguished. Hence, 482 

following the approach in (Lu et al., 2005b, Tao and Chen, 2015, Lin and Wu, 2016), 483 

we assume that the FRP laminate is perfectly bonded to the concrete prism. Of course, 484 

explicitly considering the interface effect would provide a more precise understanding 485 
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of the related failure mechanisms. For instance, Jawdhari and colleagues (Jawdhari et 486 

al., 2018, Jawdhari et al., 2019, Kadhim et al., 2021, Kadhim et al., 2022) conducted 487 

both experimental and numerical investigations on the bond characteristics of carbon 488 

FRP rod panels adhered to concrete. They adopted interfacial elements to simulate the 489 

interfacial behavior to reproduce test results. In this study, cohesive elements (CEs) are 490 

also used to investigate the effect of adhesive on the bond behavior as shown in the 491 

parametric study section. The FRP laminate is treated as an isotropic elastic material, 492 

with a Poisson’s ratio 0.3fυ = , as suggested by (Li et al., 2021). The element size in 493 

the meso-scale part is set to he=0.125 mm, hence the corresponding internal length 494 

scales are set to be 0.25 mm. 495 

Verification and discussion 496 

To validate the efficacy of the proposed meso-scale phase field model in predicting 497 

the ultimate loads of FRP-to-concrete joints, a total of 17 tests (Takeo et al., 1997, Ueda 498 

et al., 1999, Tan, 2002, Yao et al., 2005, Ali-Ahmad et al., 2006, Wu and Jiang, 2013) 499 

are simulated. Fig. 8 presents a comparison between the predicted results and 500 

experimental data, showing a good agreement between the numerical predictions and 501 

the test results. Furthermore, in order to showcase the capacity of the model in capturing 502 

more detailed characteristics of FRP-to-concrete joints, i.e., the load-slip curve, load 503 

FRP axial strain, and crack pattern within the concrete prism, four tests (Ali-Ahmad et 504 

al., 2006, Yao et al., 2005, Wu and Jiang, 2013) are chosen from the aforementioned 505 

database as illustrative examples. The material properties and geometric information 506 
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for these tests are given in Table 1. 507 

Fig. 9 showcases the predicted load-slip curves for the considered tests. As 508 

discussion in the previous section, four different aggregate distributions are employed 509 

to approach the mechanical behavior of the three-dimensionally distributed aggregates. 510 

It can be observed that the mean curves (represented by solid black lines) obtained from 511 

various distributions exhibit similar characteristics as slip increases: an initial linear 512 

stage followed by nonlinear growth with a gradually reduced rate, indicating the 513 

initiation of damage at this stage. Subsequently, the external load reaches a plateau, 514 

indicating a stable debonding propagation behavior. Finally, a sharp decrease in the 515 

loading capacity occurs, indicating complete debonding of the FRP laminate from the 516 

concrete prism. These stages are consistent with the observations from pull-off tests on 517 

FRP-to-concrete joints (Lu et al., 2005a, Yao et al., 2005). Moreover, the mean curves 518 

show a quantitative agreement with experimental results (referred to red dotted lines 519 

and dots). 520 

Fig. 10 illustrates the predicted distributions of axial strains in FRP laminates for 521 

different tests. For the sake of clarity, only the mean strain obtained by averaging the 522 

strains from the four different distributions is provided, similar to Fig. 9. At low external 523 

load/slip, the strain distribution gradually decreases as the location moves away from 524 

the loaded end, indicating a linear or initiation of debonding stage. As the external 525 

load/slip increases, the strain distribution approaches a plateau near the loaded end, 526 

followed by a decrease as the location moves away, indicating a debonding propagation 527 
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process. Moreover, Fig. 10 includes comparisons between the distributions of strains 528 

obtained from simulations and experimental measurements, demonstrating a good 529 

agreement between the predictions and experimental results. It is important to note that 530 

in Fig. 10(c), the strain distributions under different external loads are compared. 531 

However, considering certain characteristics of the debonding of the FRP-to-concrete 532 

joints, such as the inevitable differences in ultimate loads between simulations and 533 

experiments, as well as the significant variation in slip with a small change in external 534 

load during the debonding process, the comparison should be conducted carefully. 535 

During the elastic stage, a numerical strain distribution corresponding to a load level 536 

that is equal to the experimental load is selected. During the debonding propagation 537 

stage, the strain distribution used for comparison is chosen to ensure a similar effective 538 

stress transfer length to that of the experimental strain distribution. This treatment is 539 

similar to that employed in (Lu et al., 2005b, Lin and Wu, 2016). 540 

Fig. 11(a) and (b) illustrate the predicted crack patterns for the tests conducted 541 

by Ali-Ahmad et al. (2006) and Wu and Jiang (2013), respectively. It is important to 542 

note that due to the lack of accurate information regarding the adhesive between the 543 

FRP laminate and mortar/aggregate, as well as the fact that debonding typically occurs 544 

within the concrete prism, a perfect bonding condition is assumed, as adopted in (Lu et 545 

al., 2005b, Tao and Chen, 2015, Lin and Wu, 2016). Furthermore, to avoid 546 

unrealistically deep debonding cracks caused by the assumption of perfect bonding 547 

between the big aggregates and FRP laminate, the aggregate distribution algorithm is 548 
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modified to ensure that the depth of the aggregate bonded to the FRP laminate is less 549 

than 8 mm, a value close to the maximum crack depth reported by Lin and Wu (2016). 550 

In Fig. 11(a) and (b), only regions with the phase field value d≥0.9 are displayed to 551 

provide a clear representation of the crack patterns. It can be seen that in all cases, the 552 

debonded portion consisting of aggregates and mortar has a height less than 8 mm 553 

which is consistent with the findings reported in (Yao et al., 2005, Lin and Wu, 2016). 554 

Furthermore, several distinct failure behaviors associated with aggregates can be 555 

observed. Firstly, cracks tend to deviate from their original propagation paths and are 556 

significantly influenced by adjacent ITZ regions on the left sides of the aggregates, due 557 

to the weaker fracture properties of these regions. Secondly, the mortar on the right side 558 

of the aggregates is more prone to peel off, forming inclined cracks to the FRP laminate, 559 

as indicated by the yellow rectangle in the figure. These distinctive crack patterns are a 560 

result of considering the influence of compression and friction in these areas. In fact, 561 

similar crack patterns can also be observed in simulations conducted using 562 

homogeneous models (Lu et al., 2005b, Lin and Wu, 2016, Li and Guo, 2019), as shown 563 

in Fig. 11(c), although these models cannot explicitly illustrate the influence of 564 

aggregate on the debonding behavior.  565 

Parametric studies 566 

In the previous section, the proposed meso-scale model is verified through three 567 

pull-off tests. The corresponding results indicate that the debonding behavior of FRP-568 
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to-concrete joints is influenced by various factors. To gain a general understanding of 569 

how these different components affect the debonding behavior, parametric studies on 570 

adhesive properties, as well as the thickness and modulus of the FRP laminate are 571 

conducted in this section.  572 

The effect of adhesive on the debonding behavior 573 

The objective of this section is to investigate the influence of adhesive properties 574 

on the debonding behavior. We would like to reiterate that in the simulations in previous 575 

sections, a prefect bonding assumption, as suggested by Lu et al. (2005b), is adopted. 576 

In this section, to consider the effect of the adhesive layer, a layer of cohesive elements 577 

is embedded between the FRP laminate and the concrete prism, as depicted Fig. 7. 578 

Specifically, we consider three different adhesive moduli: (a) Ead/Ef=3.3×10-3; (b) 579 

Ead/Ef=9.7×10-3; (c) Ead/Ef=9.7×10-2, where Ead and Ef are the Young’s modulus of the 580 

adhesive and the FRP laminate, respectively. An adhesive strength of 52 MPa from (Shi 581 

et al., 2019) is adopted for all cases.  582 

Fig. 12(a) illustrates the predicted load-slip curves for different cases. It can be 583 

seen that the ultimate slip, corresponding to the complete debonding of the FRP 584 

laminate from the concrete prism, exhibits a decreasing trend as the adhesive Young’s 585 

modulus increases, indicating that weaker adhesion can lead to a higher ultimate slip. 586 

One advantage of phase field models of fracture, is their ability to theoretically 587 

reproduce the discrete crack surface area. This is achieved by integrating the crack 588 

surface density function γd across the entire computational domain. This characteristic 589 
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allows for the introduction of a normalized crack length in the current simulation, 590 

representing the ratio between the crack surface area and the length of the FRP laminate. 591 

Fig. 12(b) depicts the normalized crack lengths for various cases. It can be observed 592 

that the smallest Young’s modulus case has the largest normalized crack length, 593 

indicating that the concrete beneath the bonded FRP laminate experiences more damage. 594 

As the Young’s modulus increases, the normalized crack length decreases and 595 

eventually approaches the perfectly bonding case. This trend is supported by the local 596 

crack patterns depicted in Fig. 13, where the case with the lowest Young's modulus 597 

tends to exhibit additional and deeper cracks compared to the other cases, as indicated 598 

by the yellow rectangle. 599 

The effect of FRP thickness and axial stiffness on the debonding behavior 600 

In pull-off tests, the thickness of the FRP laminate is typically much smaller than 601 

that of the concrete prism. To address meshing issues in the finite element (FE) model, 602 

previous studies (Lu et al., 2005b, Lin and Wu, 2016, Shi et al., 2019) have proposed 603 

using a nominal FRP laminate thickness, such as 1.0 mm . However, to maintain a 604 

constant axial stiffness (Eftf) of the FRP laminate, the Young's modulus needs to be 605 

adjusted accordingly. As shown in (Lu et al., 2005b, Lin and Wu, 2016, Shi et al., 2019), 606 

this approach of using a nominal thickness can increase the element size of the FRP 607 

laminate, reducing computational costs. This section aims to evaluate the validity of the 608 

nominal FRP thickness assumption in the meso-scale model and explore the impact of 609 

varying FRP thickness while keeping a constant Young's modulus on the debonding 610 
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behavior.  611 

To assess the validity of the nominal FRP thickness assumption, three thicknesses, 612 

i.e., tf=0.25 mm, tf=0.5 mm and tf=1.0 mm, are considered, with the Young's moduli 613 

adjusted to maintain a constant axial stiffness. Fig. 14(a) illustrates the predicted load-614 

slip curves. It shows that the curves for different thicknesses exbibit similar behavior 615 

until the slip reaches 0.75 mm. Beyond that point, clear deviations between the curves 616 

occur, with thicker laminate cases tending to have larger ultimate slips. One possible 617 

reason for this phenomenon could be the variation in bending stiffness, which can affect 618 

the stress conditions during debonding propagation. Fig. 14(b) depicts the 619 

corresponding normalized crack lengths. The increase in the normalized crack length 620 

quantitatively indicates that the thickness of the FRP laminate still influences the crack 621 

pattern, even when maintaining a constant axial stiffness. This trend is supported by the 622 

local crack patterns depicted in Fig. 15, where the thickest case exhibits more and 623 

deeper cracks compared to the other cases, as indicated by the yellow rectangle. 624 

To investigate the impact of the thickness of the FRP laminate while keeping the 625 

Young’s modulus constant, three different thickness cases, i.e., tf=0.25 mm, tf=0.5 mm 626 

and tf=1.0 mm, are considered. Fig. 16(a) illustrates the predicted load-slip curves 627 

corresponding to various thicknesses. It can be observed that increasing the thickness 628 

of the FRP laminate leads to a notable increase in the maximum load but a decrease in 629 

ultimate slip, aligning with the experimental findings reported by (Zhang and Smith, 630 

2013). In Fig. 16(b), the normalized crack length is depicted, revealing a consistent 631 
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decrease with increasing FRP thickness. Fig. 17 illustrates the local crack patterns. It 632 

can be seen that the trend in normalized crack length is influenced by the smoothness 633 

of the crack pattern. The thicker laminate case (Fig. 17 (c)) exhibits fewer dentiform 634 

cracks compared to thinner cases (i.e., Fig. 17 (a) and (b)), as indicated by yellow 635 

rectangles. 636 

Conclusions 637 

This paper proposes a novel meso-scale phase field model for accurately 638 

simulating the debonding behavior of FRP-to-concrete joints under monotonic loads. 639 

The proposed model has been successfully validated using pull-off tests reported in 640 

existing literature. The predicted results, including load-slip curves, axial strain 641 

distributions in FRP laminates, and debonding crack patterns, exhibit good agreement 642 

with experimental findings. One notable advantage of the proposed meso-scale phase 643 

field model, when compared to existing homogeneous models, is its explicit 644 

consideration of aggregate distribution. This feature enables the capture of complex 645 

failure mechanisms, such as mortar failure, ITZ failure, and frictional effects, leading 646 

to a more comprehensive understanding of the debonding process in FRP-to-concrete 647 

joints. Moreover, the incorporation of a crack density function within the phase field 648 

model allows for accurate reproduction of the surface area of cracks, facilitating 649 

quantitative investigations of crack density-related behaviors. Through numerical 650 

investigations, it has been found that the damage per unit area in the concrete beneath 651 
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the bonded surface is influenced by the adhesive modulus. A smaller adhesive modulus 652 

will lead to more damage, and as the modulus increases, it tends to approach the 653 

perfectly bonding case. When the tensile/axial stiffness (i.e., Young’s modulus × 654 

thickness) of the FRP laminate is kept constant, different FRP laminate thicknesses will 655 

lead to different debonding behaviors. Such differences become more significant when 656 

changing the laminate thickness while keeping the Young's modulus of the FRP 657 

laminate constant, indicating a prominent influence of the axial stiffness of the FRP 658 

laminate on the debonding behavior of FRP-to-concrete joints. It should be noted that 659 

while the pull-off test in this paper is simulated under a plane stress hypothesis, the 660 

actual debonding behavior is three-dimensional. Therefore, a nature extension of the 661 

proposed meso-scale model to three-dimensional cases can be pursued. The relevant 662 

work will be carried out in the future. 663 
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Nomenclature 672 

,b t  Body and boundary forces 

,f cb b  Widths of the FRP laminate and concrete prism 

, loc
d dC C  Global and local damaged elasticity matrices 

,d d& Damage phase field and its time derivative 

, ,a m cE E E  Young’s moduli for aggregates, mortar and concrete 

,f adE E  Young’s moduli for FRP laminate and adhesive 

,a cf f  Cubic compressive strengths for aggregates and concrete 

' ',m cf f  Cylinder compressive strengths for mortar and concrete 

,I IIg g  Tensile and shear failure degradation functions 

IIg%  Shear-friction failure degradation function 

,I IIG G  Tensile and shear critical energy release rates 

0 , il l  Length scales of damage and interface phase fields 

1 2,n n  Principal stress directions 

ft  Thickness of FRP laminate 

,σ εT T  Stress and strain rotation matrices 

u  Displacement field 

,I shY Y  Tensile and shear strengths 

oY  Cohesion strength 
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α  Crack angle 

wβ  Width factor 

dγ  Crack surface density function 

ε  Strain tensor 

η  Interface phase field 

κ  Artificial damage phase field viscosity 

ρ  density 

σ  Stress tensor 

,n n
n mσ τ  Normal and shear stresses at crack surfaces 

maxτ  Historical maximum shear stress 

fτ  Reduced shear stress at crack surfaces 

n
IIτ  The component of shear stress that excludes friction stress 

φ  Friction angle 

,n n
I IIψ ψ  Elastic energy densities governing tensile and shear damage 
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Tables 877 

Table 1 Material properties and geometric details of the pull-off tests. 878 

Experiment ' (MPa)cf  bc (mm) bf (mm) tf (mm) Ef (GPa) 

Ali-Ahmad et al. NO. 1 38.0 125 46 0.167 230.0 

Yao et al. II-5 23.0 150 25 0.165 256.0 

Wu and Jiang C50-250-1 46.1 150 50 0.167 248.3 

Wu and Jiang C60-250-1 56.4 150 50 0.167 248.3 

Figure Captions 879 

Fig. 1 (a) Considered continuum domain with boundary conditions and a crack and (b) stress state 880 

at the point depicted in right figure.  881 

Fig. 2 (a) Principal stress and (b) stress components at the local coordinate system with x’-axis along 882 
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crack direction. 883 

Fig. 3 Sharp and diffusive crack topology. (a) Shape crack embedded in the continuum domain Ω 884 

and (b) the regularized crack Γd represented by crack phase field d. 885 

Fig. 4 Sketches of mortar cracking and ITZ debonding: (a) the discrete representation and (b) the 886 

regularized representation. 887 

Fig. 5 Geometry and boundary condition of the TPB test. 888 

Fig. 6 The experimental (Hoover et al., 2013) and predicted force-CMOD relationships, along with 889 

simulated crack patterns in meso-scale regions: (a) specimen of D=40 mm and λ=0.15; (b) specimen 890 

of D=40 mm and λ=0.3; (c) specimen of D=93 mm and λ=0.15; and (d) specimen of D=93 mm and 891 

λ=0.3. 892 

Fig. 7 Two-dimensional pull-off test FE model. 893 

Fig. 8 Comparison of the predictions with experimental results. 894 

Fig. 9 Predicted and experimental load-slip curves: (a) specimen No. 1 in (Ali-Ahmad et al., 2006); 895 

(b) specimen II-5 in (Yao et al., 2005); (c) specimen C50-250-1 in (Wu and Jiang, 2013); (d) 896 

specimen C60-250-1 in (Wu and Jiang, 2013). 897 

Fig. 10 Predicted and experimental axial strain distributions in FRP: (a) specimen No. 1 in (Ali-898 

Ahmad et al., 2006); (b) specimen II-5 in (Yao et al., 2005); (c) specimen C50-250-1 in (Wu and 899 

Jiang, 2013) 900 

Fig. 11 Predicted crack patterns: (a) proposed model for specimen No. 1 in (Ali-Ahmad et al., 2006); 901 

(b) proposed model for specimen C60-250-1 in (Wu and Jiang, 2013); (c) numerical simulations 902 

from (Lin and Wu, 2016, Lu et al., 2005b, Li and Guo, 2019) by using homogeneous models. 903 
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Fig. 12 Numerical predictions of the proposed model for various adhesions: (a) load-slip curves; (b) 904 

normalized crack lengths. 905 

Fig. 13 Predicted crack patterns near the loaded end for various adhesions: (a) Ead/Ef=3.3×10-3; (b) 906 

Ead/Ef=9.7×10-3; (c) Ead/Ef=9.7×10-2. 907 

Fig. 14 Numerical predictions of the proposed model for various FRP thicknesses (constant FRP 908 

axial stiffness): (a) load-slip curves; (b) normalized crack lengths.  909 

Fig. 15 Predicted crack patterns near the loaded end for various FRP thicknesses (constant FRP axial 910 

stiffness): (a) tf=0.25 mm; (b) tf=0.5 mm; (c) tf=1.0 mm. 911 

Fig. 16 Numerical predictions of the proposed model for various FRP thicknesses (constant FRP 912 

Young’s modulus): (a) load-slip curves; (b) normalized crack lengths. 913 

Fig. 17 Predicted crack patterns near the loaded end for various FRP thicknesses (constant FRP 914 

Young’s modulus): (a) tf=0.25 mm; (b) tf=0.5 mm; (c) tf=1.0 mm. 915 
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